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ABSTRACT 

 
Mechanisms of Transcriptional Activation of Estrogen Responsive Genes in  

Breast Cancer Cells. (August 2006) 

Chien-Cheng Chen, B.S., National Taiwan University; 

M.S., National Taiwan University 

Chair of Advisory Committee: Dr. Stephen H. Safe 

 
 

Estrogen receptor (ER) acts as a ligand-activated transcription factor that 

regulates the expression of genes. The genomic mechanisms of ER action 

include ligand-induced dimerization of ER which binds estrogen responsive 

elements (EREs) in the promoters of target genes. There are also nongenomic 

mechanisms of ER action which are associated with membrane bound or cytosol 

ER-dependent activation of various protein-kinase cascades which also influence 

expression of target genes. 

Egr-1 is an immediate-early gene induced by 17β-estradiol (E2) in the 

rodent uterus and breast cancer cells. Deletion analysis of the Egr-1 promoter 

identified a minimal E2-responsive region that contained serum response 

element (SRE3) which bound Elk-1 and serum response factor (SRF) in gel 

mobility shift assays. Hormone-responsiveness of Egr-1 in MCF-7 cells was 

specifically inhibited by PD98059, a MAPKK inhibitor, but not by LY294002, an 

inhibitor of PI3-K. These results contrasted with the hormone-dependent 
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activation of the SRE in the c-fos promoter, which was inhibited by both PD98059 

and LY294002, suggesting that Egr-1, like c-fos, is activated through 

non-genomic pathways of estrogen action but through activation of different 

kinases. 

COUP-TFs are orphan nuclear receptors expressed in a variety of tissues 

where they regulate biological functions and organogenesis. In this study, we 

investigated coactivation of ERα by COUP-TF1 in cell lines transiently 

cotransfected with the pERE3 construct. COUP-TFI coactivated ERα-mediated 

transactivation, but unlike many other coactivators, COUP-TFI also enhanced 

transactivation of ERα when cells were cotransfected with the TAF1-ERα mutant 

or the 19c-ERα mutant. These data indicate that helix 12 of ERα is not required 

for coactivation by COUP-TFI when AF-1 of ERα is intact. However, when the 

AF-1 of ERα is deleted, the intact AF-2 function is required for coactivation by 

COUP-TFI. Analysis of multiple COUP-TFI deletion mutants showed that the 

DNA-binding domain and C-terminal region of COUP-TFI were important for 

coactivation of ERα. Point mutations of the DNA-binding domain of COUP-TFI 

resulted in loss of interactions with ERα, suggesting that the DNA-binding domain 

of COUP-TFI is important for its coactivation activity facilitating interactions with 

ERα. These results demonstrate that COUP-TFI coactivated ERα through a 

non-classical LXXLL-independent pathway. 
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CHAPTER I 

INTRODUCTION 

1.1 Cancer  

1.1.1 Breast Cancer 

Cancer, or neoplasia, is defined as “a group of diseases characterized by 

uncontrolled growth and spread of abnormal cells. If the spread is not controlled, 

it can result in death” (2). The word cancer is derived from the Latin for crab, 

because of the way it protrudes out from a central body like “the arms of a crab”. 

Even though cancer is often regarded as a single condition, it consists of more 

than 100 different diseases depending on its tissue of origin. Compared to the 

physiology of normal cells, cancerous cells exhibit deregulated homeostasis, 

uncontrolled growth, and invasiveness that are caused by cellular genetic or 

epigenetic alterations.   

Cancer is the second leading cause of death after heart disease in the U.S. 

About 1.3 million new cases of cancer will be diagnosed in 2005 and 

approximately 570,000 people will die from this disease. Approximately, 1 out of 

4 deaths are due to cancer. The 5-year relative survival rate of all cancers 

combined after first diagnosis is approximately 64%, whether in remission, under  

              
This dissertation follows the style of Molecular and Cellular Biology. 

     



 2

treatment, or disease-free (2). Excluding cancers of the skin, breast cancer is the 

most commonly occurring cancer among women, accounting for nearly 1 in 3 

cancers diagnosed in US women. The estimated annual incidence of breast 

cancer worldwide is about one million cases with ~200,000 cases in United 

States (27% of all cancers in women) and ~320,000 cases in Europe (31% of all 

cancers in women) (243). Over the last two decades, the annual incidence rate in 

the U.S. has been increasing steadily (94). Nevertheless, in the last 10-15 years, 

breast cancer mortality has declined by 2.3% per year due to multiple factors, 

including improvements in cancer screening and novel and more effective 

treatment regimens (319). 

1.1.2 Structure and Development of the Mammary Gland 

The human breast, in common with the mammary glands of other species, 

contains both epithelial and mesenchymal components. The adult human 

mammary gland comprises a number of “tree-like” glandular structures formed by 

dichotomous branching of each of several ducts arising from the nipple. The 

major functional units of the mammary gland are the lobular structures 

comprising several small blindended ductules situated at the end of the terminal 

ducts and known as terminal ductal lobular units (TDLUs). The entire ductal 

system is lined by a continuous layer of luminal epithelial cells that are, in turn, 

surrounded by a layer of myoepithelial cells as shown in Figure 1-1. These 

myoepithelial cells are in direct contact with the basement membrane. The 

TDLUs are surrounded by delimiting fibroblasts and embedded in a specialized  
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Figure 1-1 The two distinct mechanisms of branching morphogenesis in the 

pubertal mouse mammary gland (366). 
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intralobular stroma. The luminal epithelial cells are the major proliferating cell 

type, whereas cell division or expression of antigens associated with proliferation 

is exceedingly rare in the myoepithelial cell type (251). The mammary glands of 

most mammalian species, including humans, are not fully developed and 

functional at birth. Unlike other organs such as the liver that are fully formed at 

birth, breast tissue in newborns consists of only a few tiny ducts extending a 

small distance from the nipple. Between birth and puberty, the growth of this 

structure is isometric in relation to the rest of the body, but at puberty, under the 

influence of ovarian and pituitary hormones, the gland undergoes the first phase 

of allometric growth. In early puberty, the primitive ductal structures begin to 

rapidly divide and multiply to form a treelike structure composed of many ducts. 

Once ovulatory menstrual cycles have begun, there is a cyclical increase in 

proliferation associated with the luteal phase, and the TDLUs become more 

elaborate in terms of the number of alveoli they contain with each successive 

ovulatory cycle (287). This progressive development of the epithelium continues 

to the age of approximately 35 years. The second phase of allometric growth in 

the mammary gland occurs during pregnancy. During early pregnancy, there is 

another burst of activity in which the ductal trees expand further and the number 

of ductules within the TDLUs increases greatly. These ductules differentiate to 

synthesize and secrete milk in late pregnancy and subsequent lactation. Once 

weaning has occurred, the mammary gland involutes; the secretory luminal 
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epithelial cells apoptose, the alveoli collapse and both epithelial and stromal 

components are remodeled to resemble the prepregnant state. 

The evidence from histological studies has shown that most human breast 

tumors are derived from TDLUs and have morphological characteristics of 

luminal epithelial cells (4). Significantly, more than 90% of breast tumors 

synthesize cytokeratins distinctive of the luminal phenotype, and greater than 

70% synthesize steroid hormone receptors, indicating that the luminal epithelial 

cell population must be regarded as the primary target for the oncogenic events 

leading to tumor formation (295).  

Breast tumorigenesis is thought to result from a ‘benign to malignant’ 

progression, in which the accumulation of genetic changes allows evolution from 

normal breast epithelium through benign and atypical proliferative lesions to 

carcinoma in situ and frankly invasive tumors (15). The lesions associated with 

the greatest risk of invasive breast cancer are, in order of increasing risk: 

hyperplasia of usual type, atypical ductal hyperplasia, lobular carcinoma in situ 

and ductal carcinoma in situ (DCIS). These premalignant lesions, with the 

exception of high grade DCIS, are frequently dependent on estrogen for their 

growth, as judged by the presence of the estrogen receptor (ER). ER-negative 

tumors often overexpress the genes encoding growth factor receptors, such as 

epidermal growth factor (EGFR or erbB1) and erbB2/HER2, and these are often 

overexpressed in DCIS of high nuclear grade (128). Premalignant lesions 

synthesizing ER might account for the success of the antiestrogens tamoxifen 
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and raloxifene in breast cancer prevention, because it is their progression to 

invasive breast cancer that might be inhibited (73). 

1.1.3 Risk Factors for Breast Cancer 

Based on epidemiological studies conducted in different populations, 

several well-established risk factors for breast cancer have been identified and 

these include: age, geographic location and socioeconomic status, reproductive 

events (menarche, menopause, pregnancy, breastfeeding), exogenous 

hormones (hormone replacement therapy and oral contraceptives), lifestyle risk 

factors (alcohol, diet, obesity and physical activity), mammographic density, 

history of benign breast disease, ionizing radiation, bone density, height, IGF-1 

and prolactin levels, chemopreventive agents, as well as genetic factors (high- 

and low penetrance breast cancer susceptibility genes) (See Table 1-1). 

Significant differences (5-10 fold) in the incidence and mortality rates of 

breast cancer have been observed between low- (Far East, Africa and South 

America) and high-risk (North America and Northern Europe) areas (244). These 

differences become even more profound after menopause (see section on age). 

For example, the overall breast cancer incidence in the Japan is 32.7 per 

100,000 and 19.5 per 100,000 in the eastern Africa area; however the incidence 

in the U.S. is 91.4 per 100,000, and the country with the highest incidence is the 

Netherlands (91.6/100,000). 
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Table 1-1 Summary of breast cancer risk factors (92). 

Breast Cancer Risk Factors Magnitude of Risk 
 Factors that increase breast cancer risk  
Well-confirmed Increasing age ++ factors 

Geographical region (USA and western countries) ++  
Family history of breast cancer ++  

Mutations in BRCA1 and BRCA2 genes ++  
 Mutations in other high-penetrance genes (p53, 

ATM, NBS1, LKB1) ++ 

Ionizing radiation exposure (in childhood) ++  
History of benign breast disease ++  

Late age of menopause ++  
Early age of menarche ++  

Nulliparity and older age at first birth ++  
High mammography breast density ++  

High insulin-like growth factor I (IGF-I) levels ++  
Hormonal replacement therapy +  
Oral contraceptives recent use +  

Obesity in postmenopausal women +  
Tall stature +  

Alcohol consumption (~1 drink/day) +  
High prolactin levels +  

High saturated fat and well-done meat intake + Probable factors 
Polymorphisms in low-penetrance genes +  

High socioeconomic status +  
 Factors that decrease breast cancer risk + 
Well-confirmed Geographical region (Asia and Africa) -- factors 

Early age of first full-term pregnancy --  
Higher parity --  

Breast feeding (longer duration) --  
Obesity in premenopausal women -  
Fruit and vegetables consumption -  

Physical activity -  
Chemopreventive agents -  

Non-steroidal anti-inflammatory drugs - Probable factors 
-  Polymorphisms in low-penetrance genes 

++ (moderate to high increase in risk) -- (moderate to high decrease in risk);  

+ (low to moderate increase in risk)  - (low to moderate decrease in risk) 
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The large variation of breast cancer incidence among or within different 

regions of the world may be attributed to genetic differences among populations 

and/or differences in lifestyle, including diet and environmental exposures. 

Studies on migrants have demonstrated that breast cancer incidence increases 

in people who move from a region with low breast cancer incidence (i.e. Asian 

countries) to other locations with higher breast cancer incidence (i.e. U.S.), as 

early as 10 years spent in the adopted country. This underlines the crucial 

contribution of the environmental and lifestyle factors to breast cancer risk (243, 

388) 

1.1.3.1 Lifestyle Risk Factors 

Among lifestyle risk factors, alcohol has been identified in numerous 

epidemiological studies as an important risk factor for breast cancer (312). 

Specific diets rich in well-done meats (387) or fat (351) are associated with a 

slightly increased risk for developing breast cancer, in some studies while a high 

intake of fruits and vegetables (187) or omega-3 PUFAs (289) decreases breast 

cancer risk. Obesity represents a high breast cancer risk factor for 

postmenopausal women, whereas in premenopausal women it is protective 

(140). 

Alcohol Intake  

Numerous epidemiological studies have found a positive association 

between alcohol intake and the risk of developing breast cancer in both pre and 
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postmenopausal women with an overall risk of 1.6. The risk increases linearly in 

a dose dependent manner up to an intake of 60 g (approx. 2-5 drinks) /day. For 

every 10 g-increment (approx. 0.75-1 drink) increase in daily consumption of 

alcohol the risk increases by 9% (312, 313). 

Diet  

The human diet contains a great variety of natural and chemical 

carcinogens and anti-carcinogens. Some of these compounds may act through 

the generation of free oxygen radicals, which can lead to DNA damage, or other 

deleterious components. Accordingly, well-done meat consumption has been 

associated with increased breast cancer risk due to the formation of carcinogens 

during the cooking process (323, 387). 

Physical Activity  

A recent meta-analysis of 19 case-control and four cohort studies 

investigating the relationship between physical activity and breast cancer risk has 

shown a consistent 20% reduction associated with physical activity performed in 

adolescence and young adulthood (12-24 years old). For each one-hour increase 

in recreational physical activity per week during adolescence, the breast cancer 

risk drops with 3%. Physical activity may reduce the risk by delaying the onset of 

menarche and modifying bioavailable hormone levels (119, 182).  
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1.1.3.2 Genetic Risk Factors 

Family history of breast cancer is a well-established major risk factor, 

especially in combination with mutations in high-penetrance breast cancer 

susceptibility genes, such as BRCA1 and BRCA2, p53, PTEN, ATM, NBS1 or 

LKB1, which are responsible for a high proportion of the hereditary breast 

cancers .  

BRCA1/ BRCA2  

Mutations in BRCA1 and BRCA2 (Breast Cancer 1 and 2), two of the most 

commonly implicated genes in hereditary breast cancer, are responsible for 

approximately 80-90% of all hereditary breast cancers, whereas they are rarely 

observed in sporadic breast cancer patients. Women who carry mutations in 

BRCA1 or BRCA2 have a considerably increased lifetime risk of breast cancer (~ 

80%), that is roughly ten times greater than that of the general population. 

BRCA1 and BRCA2 are tumor suppressor genes whose primary functions are 

the maintenance of genomic integrity including DNA repair and recombination, 

cell cycle control, and transcriptional regultion (79). Germline mutations in 

BRCA1 are associated with approximatively 42% of breast cancer families and 

81% of families with both ovarian and breast cancer (107). Germline mutations in 

BRCA2 are linked to approximately 76% of breast cancer families in which both 

females and males are affected. 
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p53  

p53 was the first tumor suppressor gene linked to hereditary breast cancer. 

p53 also plays an important role in maintaining genomic stability in response to 

DNA damage by inducing transient G1 cell cycle arrest or by triggering apoptosis. 

Women with germline mutation in p53 have an 18-fold higher risk for developing 

breast cancer before age of 45 compared to the general population, and the risk 

declines with age (110). 

There are also low penetrance genes (but present in a high percentage of 

individuals) that enhance breast cancer risk in combination with exogenous (e.g. 

diet, pollution) and endogenous (e.g. hormones) factors (281). These genes 

include phase I metabolic enzymes which metabolically activate carcinogens (e.g. 

the cytochrome P450 family proteins) and phase II enzymes which inactivate 

carcinogens (e.g. N-acetyl transferase and GST family proteins). Polymorphisms 

in both phase I and II enzymes involved in xenobiotic and endobiotic metabolism 

therefore may modulate the relative risk of breast cancer for an individual (234).  

1.1.3.3 Reproductive Risk Factors 

Breast cancer incidence is very low (less than 10 new cases per 100,000 

women) before age 25 and increases up to 100-fold by age 45 (141). This pattern 

suggests the involvement of reproductive hormones in the etiology of breast 

cancer (259), as hormone-independent cancers would not significantly increase 

during the active reproductive period. The number and timing of different 
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reproductive events in a woman's life modulates the risk of breast tumorigenesis. 

Several reproductive factors such as early age at menarche (before age 12), late 

age at menopause (after age 55), nulliparity and late age at first full term 

pregnancy increase breast cancer risk, whereas other factors including early age 

at first full-term pregnancy, higher parity and prolonged lactation are protective 

against breast cancer (92).  

The duration of lifetime exposure to ovarian hormones is closely related to 

breast cancer risk. Early age at menarche (less than 12 years of age versus more 

than 14 years of age) has been associated with an increase in breast cancer risk 

on the order of 10-20% magnitude (28, 41) and a 1-year delay in the onset of 

menarche is associated with a 5% reduction in risk for developing breast cancer 

in later life (142). Similarly, delayed menopause maximizing the number of 

ovulatory cycles lead to an increased breast cancer risk and each 1-year delay in 

the onset of menopause is associated with a 3% increase in risk (142). In 

contrast, surgically induced menopause before the age of 35 results in a 

decrease of breast cancer risk. These women have only 40% of the risk of 

women experiencing natural menopause. Mechanistically, it has been 

demonstrated that mammary epithelial cells proliferation, which is linked to breast 

cancer development, can be correlated with serum ovarian hormonal levels. 

Proliferation rates are low in the follicular phase of the menstrual cycle, when 

estradiol and progesterone levels are also low, whereas during the luteal phase 

proliferation rates are twofold higher and correlate with the significantly increased 
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ovarian hormone levels (259). The higher cellular proliferative activity confers a 

higher susceptibility of the mammary gland to be transformed by chemical 

carcinogens (286). After menopause, ovarian hormone levels drop and this 

correlates with a substantial decrease in mammary epithelial cell proliferation 

(29). Numerous prospective epidemiological studies also provide strong 

evidence for this mechanism. Accordingly, postmenopausal women who develop 

breast cancer have on average 15% higher levels of circulating estradiol than 

other postmenopausal women (29). 

Epidemiological studies have also firmly established associations between 

risk for breast cancer and other reproductive factors, including nulliparity (having 

no children) or low parity, late age at first birth, and breast feeding (160). After a 

transient increase in risk for breast cancer, peaking at about 5 years after giving 

birth (196), having at least one child is associated with a decrease in the 

long-term risk of developing breast cancer compared with risk among the 

nulliparous, and this protective effect increases with number of children. Each 

birth reduces the relative risk of breast cancer by an average of 7% (1). The 

reduction in risk per birth is greater for births at young ages, such that women 

who have their first birth before the age of 20 years have a 30% lower risk than 

women with a first birth after the age of 35 years (99). The protective effects of 

pregnancy against breast cancer is explained by the induction of complete 

differentiation of the breast that may markedly reduce the susceptibility of the 

fully differentiated mammary gland to carcinogens due to, at least in part, by 
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decreasing proliferative activity of parous epithelium (285). Another hypothesis is 

that the decrease risk may also be due to the altered hormonal environment 

during pregnancy, and these include specific molecular changes induced by 

estrogen and progesterone and decreased circulating growth hormones (288). 

 Breast feeding is also protective against breast cancer and this effect 

might be due to the suppression of ovulation, reducing exposure to ovarian 

hormones (29). 

1.1.4 Estrogens and Breast Tumorigenesis 

1.1.4.1 Synthesis and Catabolism of Estrogens 

Estrogens are a class of steroid hormones important for normal sexual 

development and are essential for the normal functioning of the female 

reproductive organs such as the ovaries and uterus which are required for 

childbearing and hormone synthesis. Estrogens help control a woman’s 

menstrual cycle and are important for the normal development of the breast. 

Estrogens are also required for maintenance of healthy bones and for 

cardiovascular health.  

Both estrogens and their androgen precursors are biosynthetically derived 

from cholesterol. In premenopausal women, the ovaries, which are under the 

cyclic control of pituitary gonadotropins, are the predominant source of serum 

estrogen, and only a small proportion of serum estrogen comes from peripheral 

organs. In contrast, the low levels of estrogen produced in postmenopausal 
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women comes predominantly from aromatization of adrenal and ovarian 

androgens in extragonadal tissues such as the liver, muscle, and fat tissues 

(293).  

Estrogens are catabolized mainly by hydroxylation that result in the 

formation of 2-hydroxyestrone and 2-hydroxyestradiol, 4-hydroxyestrone and 

4-hydroxyestradiol, and 16α-hydroxyestrone and 16α-hydroxyestradiol (catechol 

estrogens). Estrogens are also metabolized by subsequent methylation to form 

methoxyl estrogens (239) and methylation of 2- and 4-hydroxyestrogen by 

catechol O-methyltransferase is also observed (115) (see Figure 1-2).  

Catechol estrogens bind the estrogen receptor and have weak estrogenic 

activity in animals. In addition, catechol estrogens are capable of continuous 

metabolic redox cycling, which yields quinone intermediates as metabolites. 

Because of the formation of free radicals in this process and the covalent binding 

of these intermediates to DNA, it has been proposed that estrogens have 

genotoxic activity (194). After synthesis, estrogens are secreted into the blood 

stream where it binds with sex-hormone-binding globulin and albumin. Free 

estrogens diffuse into target tissues to exert their specific biological effects. 
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Figure 1-2 Pathways of estrogen synthesis and catabolism (68). 
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1.1.4.2 Estrogen Exposure and Breast Cancer Risk 

The clinical and epidemiological evidence for an obligate role of estrogen 

in human mammary gland development and tumorigenesis is considerable. 

Estrogens are crucial for the normal development of the human mammary gland. 

There is complete failure of breast development in the absence of intact ovarian 

function, and estradiol-replacement therapy is necessary to induce breast 

development (83). The obligate role for estradiol in mammary gland development 

is also supported by the studies using esrtogen receptor α (ERα) knockout mice 

(33). The mammary glands in ERα knockout mice comprise rudimentary ducts 

confined to the nipple area, which cannot undergo further development with 

estradiol treatment. 

In breast cancer, there is evidence that estrogen stimulates the growth of 

both premalignant and invasive tumors. More than 100 years ago Beatson first 

recorded the successful treatment of breast cancer by removal of the ovaries 

(224). Recent studies have shown that women who undergo ovariectomy early in 

life have a very low incidence of breast cancer (284). Similarly, rats and mice 

whose ovaries have been removed develop few if any breast tumors. Men, who 

do not have ovaries and have low blood levels of estrogen, have low breast 

cancer rates compared to women (333). 

An association between the risk of breast cancer and persistently elevated 

blood levels of estrogen has been found consistently in many studies. Several 
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endocrine-associated risk factors are regularly associated with an increased 

relative risk of breast cancer in postmenopausal women (68, 380). One of these 

factors is obesity, which is probably related to an increased production of 

estrogen by aromatase activity in breast adipose tissue (159). Another factor is 

an elevated blood level of endogenous estrogen (relative risk, 2.00 to 2.58) (158). 

An increased relative risk is also associated with higher-than-normal blood levels 

of androgens which can be directly converted by aromatase to estrone and 

estradiol, respectively. Elevated urinary levels of estrogens and androgens are 

also associated with an increased risk of breast cancer in postmenopausal 

women (237). All this evidence supports the hypothesis that cumulative, 

excessive exposure to endogenous estrogen over a woman's life span 

contributes to and may be a causal factor in breast cancer. 

1.1.4.3 Mechanism of Estrogen-dependent Carcinogenesis 

 Experimental, clinical, and epidemiologic data suggest that estrogens 

contribute to development of mammary cancer, but the mechanisms of this 

process are not well understood. Studies in rodents have demonstrated that 

estrogens or their catechol metabolites are carcinogens in various tissues, 

including the kidney, liver, uterus, and mammary glands. Figure 1-3 outlines two 

different but complementary pathways that may contribute to the carcinogenicity 

of estrogen (375).  
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Several mechanisms have been proposed to explain carcinogenicity of 

estrogens in breast cancer (53, 194). One of them is that the ER-mediated 

activity of E2 is related to induction of genes critical for regulating the cell cycle 

and stimulating cell proliferation. With each cycle of new DNA synthesis during 

mitosis, the chances for error in DNA replication without adequate repair are 

increased. As the proliferative process continues, mutations can accumulate and 

disrupt critical genes required for cellular proliferation, DNA repair, angiogenesis, 

or apoptosis, and these modifications can lead to neoplastic transformation (53, 

103). Once the breasr cancer intiation has taken place, these 

hormone-responsive transformed cells cannot repair any spontaneous or 

induced DNA damage with impaired function. The rapid proliferation activated by 

estrogens might promote the growth of transformed cells, leading to the 

development of detectable breast tumors. Estrogens can also stimulate 

production of autocrine and paracrine growth factors from the epithelium and 

stroma in the breast that can further contribute to breast cancer progression 

(315).

     



 20

 

 

E2

E2 metabolism E2 estrogen receptor

Oxidative 
metabolites

Genomic
(transcriptional)

Nongenomic
(second messenger)

Mitochondrial
(transcriptional)

16α-OH-E1 2-OH-E1, 2-OH-E2,
4-OH-E1, and 4-OH-E2

Altered gene expression

Covalent binding
To proteins and DNA

4-OH-E1 and 4-OH-E2 quinones Increased cell proliferation
Decreased apoptosis

Quinone adducts and
Oxidative DNA damage

E2

E2 metabolism E2 estrogen receptor

Oxidative 
metabolites

Genomic
(transcriptional)

Nongenomic
(second messenger)

Mitochondrial
(transcriptional)

16α-OH-E1 2-OH-E1, 2-OH-E2,
4-OH-E1, and 4-OH-E2

Altered gene expression

Covalent binding
To proteins and DNA

4-OH-E1 and 4-OH-E2 quinones Increased cell proliferation
Decreased apoptosis

Quinone adducts and
Oxidative DNA damage  

 

Figure 1-3 Pathways for estrogen carcinogenesis (375). 
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Another mechanism involves oxidative metabolites of estrogens. The 

estradiol-3,4-quinone, which can form unstable adducts with adenine and 

guanine in DNA, results in destabilization of the glycosyl bond that links purine 

bases to the DNA backbone. Consequently, adenine and guanine, which are 

covalently bound to the estradiol quinone, are released from the DNA backbone 

and a naked, apurinic site is left behind in the DNA. Through the process of 

error-prone DNA repair, this site can form point mutations and serve as potential 

initiators of neoplastic transformation. In addition, reduction of estrogen quinones 

back to hydroquinones and catechols provides an opportunity for redox cycling 

which produces reactive oxygen species (53, 194) and probably accounts for the 

oxidative damage to lipids and DNA that is associated with estrogen treatment 

(185, 194).  

Estrogen has crucial roles in the proliferation of cancer cells in 

reproductive organs such as the breast and uterus. Estrogen-stimulated growth 

requires the ER which is a ligand-dependent transcription factor. It has been 

shown that about two-thirds of human breast tumors express higher levels of ER 

than normal breast tissues where ER levels are quite low. E2 and its intracellular 

receptor (ER) play a critical role in the formation and subsequent growth of 

mammary tumors and the molecular mechanisms of these responses are 

important for understanding the development and treatment of this disease. 
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1.2 Nuclear Receptor Superfamily 

1.2.1 Introduction 

Small lipophilic steroid hormones play an important role in the growth, 

differentiation, development and homeostasis of human tissues/cells. Most 

responses induced by these molecules are mediated through binding to nuclear 

receptors (NRs) that control gene expression (360). NRs exhibit a modular 

structure consisting of a C-terminal ligand dependent transcriptional activation 

domain (AF-2), a central DNA binding domain, and an N-terminal 

ligand-independent transcriptional activation domain (AF-1) Since the cloning of 

the first nuclear receptor for the glucocorticoid, more than 60 genes encoding 

nuclear receptors have been identified in vertebrates, arthropods and nematodes 

(344). Based on sequence similarity and evolutionary relatedness, the NR 

superfamily is divides into seven subfamilies, and within subfamilies there are 

further divisions into groups. In general, receptors within a group share at least 

80-90% identity within their DNA binding domains, and at least 40-60% identity 

within their ligand binding domains (223). 

1.2.2 Structures and Functions of NR Domains 

Nuclear receptors share a common modular structure with autonomous 

functional domains that can be interchanged between related receptors without 

loss of function (180). A typical nuclear receptor consists of a variable 

amino-terminal region (A/B domain), a conserved DNA-binding domain (DBD) or 
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region C, a linker region D, and a conserved E region that contains the 

ligand-binding domain (LBD). Some receptors contain an additional F domain in 

the C-terminal region which exhibits a highly variable sequence and whose 

structure and function are not well defined. Figure 1-4 is a schematic 

representation of a typical nuclear receptor.  

The A/B region is variable in both size and sequence and interacts with 

coactivators and/or other transcription factors in a cell- and promoter specific 

manner (34, 357). The A/B region in many receptors contains one constitutively 

active transcriptional activation function, referred to as AF-1 which contributes to 

ligand-independent activation of the receptor (337). The A/B domain is also a 

target for phosphorylation in many receptors including ER and PPARγ and this 

may result in activation or repression of its transcriptional activity (152, 155). 

The DBD or the C-region has the most conserved amino acid sequence 

among the members of the NR superfamily and is required for the recognition 

and binding of specific target sequences on DNA. The DBD has two highly 

conserved zinc-finger motifs spanning ~60-70 amino acids: C-X2-C-X13-C-X2-C 

and C-X5-C-X9-C-X2-C that are common to the entire family with the exception 

of two divergent members: DAX-1 and SHP (301, 381). In addition, the DBD has 

a COOH-terminal extension (CTE) that contains the so-called T and A boxes 

critical for specificity and polarity of NRs in DNA binding (134, 214). 
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Figure 1-4 Structural and functional organization of NRs (114).
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Each zinc-finger contains four highly conserved cysteine molecules that 

coordinate the binding of a zinc atom. Amino acids required for sequence 

specificity in DNA binding are present at the base of the N-terminal finger in a 

region termed the “P box”, and residues of second zinc finger that form the 

so-called “D box” are involved in dimerization (227, 382). The core DBD contains 

two a-helices: the first one is known as the recognition helix and binds the major 

groove of DNA making contacts with specific bases; the second helix spans the 

COOH terminus of the second zinc finger and forms a right angle with the 

recognition helix (17). The DBD may also contain a nuclear localization and 

nuclear export signals (31, 133). 

The D domain or hinge region of nuclear receptors is variable in length 

and amino acid sequence. Its flexibility can provide DBD rotation along the LBD 

by 180°. This is important for the interaction of receptor dimers with asymmetric 

hormone response elements (HREs) representing direct repeats and HREs 

representing inverted repeats. This region also forms a surface for interaction of 

receptors with coregulators (264) and it may contain a nuclear localization signal 

(310).  

The LBD or the E domain is moderately conserved among members of the 

NR superfamily. It contains an additional transactivation domain, AF-2, which is 

strictly ligand dependent and is a target for interaction with several coactivator 

and corepressor complexes (23, 209, 230). The crystal structure of the LBD has 

been determined for several nuclear receptors and has provided insights 
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regarding the mechanisms involved in lignad binding and transactivation (39). 

The overall structure of the LBD is similar for several NRs and is composed 12 

helices, H1-H12, arranged together in an antiparallel, three-layered sandwich 

which may include two to four β-strands. Helices H1-H11 form the hydrophobic 

lignad-binding pocket whose entrance is guarded by H12 (40, 348). Agonist 

ligand binding induces a conformational change in many NRs resulting in 

alternate positioning of H12. This promotes recruitment of coactivators that 

interact with their short LXXLL-like motifs (where L is leucine and X is any amino 

acid) called NR-boxes. LXXLL-like motifs are present in many coactivators and 

are common motifs required for interacting with the LBD of NRs. The residues of 

the ligand-dependent AF-2 are located in H12 (74, 209). The structural data, 

together with transcriptional activation data, imply that the positioning of helix 12 

is crucial for receptor activation. In addition the LBD also contains nuclear 

localization signals, a dimerization domain, and in some cases, repression 

domains (124, 153, 207). 

The F domain is not found in all receptors and this domain may be 

involved in additional discrimination between receptor agonists and antagonists. 

For example, the F domain of ERα is essential for E2-dependent gene 

transactivation through ERα/Sp1 pathway, but F domain of ERα is not essential 

SERM-mediated activation of ERα/Sp1 in breast cancer cells (163). 
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1.2.3 NR-mediated Transaction 

NRs regulate transcription by binding to specific DNA sequences in target 

genes known as response elements (REs). These elements are located in 

regulatory sequences normally present in the 5’-flanking region of target genes. 

Although REs are often found relatively close to the core promoter, in some 

cases they are present in enhancer regions several kilobases upstream of the 

transcriptional initiation site. The analysis of a large number of naturally occurring 

as well as synthetic REs revealed that a sequence of 6 base pairs of DNA 

sequence constitutes the core recognition motif, also referred to as “half-sites”. 

Although some monomeric receptors bind to a single hexameric motif, most 

receptors bind as homo- or heterodimers to REs composed typically of two core 

hexameric motifs. For dimeric REs, the half-sites can be configured as 

palindromes (Pal), inverted palindromes (IPs), or direct repeats (DRs). Diversity 

among REs is also achieved by the varying number of neutral base pairs 

separating the half-site repeats. This is the key identity factor contributing to the 

binding specificity of different retinoid X receptor (RXR) heterodimer pairs. It 

provides the geometry that is needed for two subunits to interact specifically. The 

insertion of even one extra base pair in the inter-half-site spacing displaces the 

interacting subunits by nearly 3.4 Å and re-orients them by ~35°. This leads to 

the disruption of supportive protein-protein and protein-DNA interactions (268). 

Sequence composition of the spacer nucleotides has been shown to play a less 

critical role in the recognition of REs (268, 386). According to the inter-half-site 
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spacing, these elements are systematic named as shown in Table 1-2. (204, 347, 

386). 

 

Table 1-2 Space rules for nuclear receptor response elements (255). 

Spacer 

NTs 

Systematic 

name 

Acronym Receptor 

Complex 

1 DR1 RARE, PPARE RXR-RXR, 
PPAR-RXR, 
RAR-RXR, …… 

2 DR2 RARE RAR-RXR 

3 DR3 VDRE RXR-VDR 

4 DR4 TRE RXR-TR 

5 DR5 RARE RXR-RAR 

RXR: retinoid X receptor, PPAR: peroxisome proliferator–activated receptor, 

RAR: retinoic acid receptor, VDR: vitamin D receptor, TR: thyroid hormone 

receptor; RARE: retinoic acid receptor response element, PPARE: peroxisome 

proliferator–activated receptor response element, VDRE: vitamin D receptor 

response element, TRE: thyroid hormone receptor response element. 
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The NR superfamily can be broadly divided into four classes based on 

their dimerization and DNA binding properties as shown in Figure 1-5 (205, 322). 

Class I receptors include the known steroid hormone receptors, which function as 

ligand induced homodimers and bind to DNA half-sites organized as inverted 

repeats. Steroid hormone receptors typically bind to palindromes containing 

AGAACA sequence separated by three nucleotides, with the exception of the 

estrogen receptor that recognize the consensus AGGTCA motif with the same 

configuration.  

Class II receptors such as thyroid hormone receptor (TR), retinoic acid 

receptor (RAR), and vitamin D receptor (VDR), heterodimerize with RXR and 

characteristically bind direct repeats. The classic retinoic acid response element 

(RARE) which was found in the RARβ2 gene promoter is a 5 bp-spaced direct 

repeat (DR5) containing the AGTTCA motif. In addition, response elements with 

a DR5 containing the AGGTCA motif also act as RAREs as well as direct 

AGGTCA repeats spaced by 1 bp (DR1) or 2 bp (DR2) (76, 127). RAR-RXR 

heterodimers bind to, and activate transcription from these three RAREs, 

provided target cells express both RARs and RXRs. Only a few natural vitamin D 

response elements (VDREs) are known; several of them contain DR3 elements.
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Studies with “optimized” synthetic response elements assembled from AGGTCA 

motifs have confirmed that DR3 elements bind VDR-RXR heterodimers, and that 

the cognate ligands, vitamin D, and 9C-RA, activate the corresponding promoters 

(78, 122). The thyroid hormone response element (TRE) consensus sequence is 

AGGTCA and TRα binds both AGGTCA and AGGACA motifs (63, 64). TRs have 

a strong preference for DR4, nevertheless, TRs bind other direct repeats 

including DR5, DR2, or DR0 (44, 121). TRs can also bind to inverted palindromes 

with a preferred spacing of six nucleotides (102). 

Class Ill receptors such as hepatocyte nuclear factor 4 (HNF4), chicken 

ovalbumin upstream promoter-transcription factors (COUP-TFs), RXR, Germ-cell 

nuclear factor (GCNF), testicular receptors 2 (TR2), and Tailless homolog (TLX) 

bind primarily to direct repeats as homodimers. Class IV receptors such as 

steroidogenic factor 1 (SF-1), Rev-erb, estrogen-receptor-related receptor (ERR), 

Nerve growth factor induced protein I-B (NGFI-B) and RAR related orphan 

receptor (ROR) typically bind to extended core sites as monomers. Most of the 

orphan receptors fall into class Ill and IV categories.  
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Figure 1-5 Modes of action of NRs (205). 
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1.2.4 Subclasses of Nuclear Receptor by its Ligands 

Lipophilic molecules that bind and activate nuclear receptors are referred 

to generically as “ligands” for nuclear receptors. Unlike polypeptide hormones 

that function via cell surface receptors, ligands for nuclear receptors are not 

directly encoded in the genome. All nuclear receptor ligands are small (molecular 

weight < 1000 daltons [d]) and lipophilic, enabling them to enter cells. Another 

common feature of nuclear receptor ligands is that all are derived from dietary, 

environmental, and metabolic precursors. In this sense, the function of these 

ligands and their receptors is to translate cues from the external and internal 

environments into changes in gene expression. Their critical role in maintaining 

homeostasis in multicellular organisms is highlighted by the fact that nuclear 

receptors are found in all vertebrates as well as insects but not in single-cell 

organisms such as yeast (98). NRs have been divided into three categories 

based on their function and source of ligand (Table 1-3) (3). The "Endocrine" 
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class of NRs binds endocrine-derived ligands and includes the steroid hormone, 

retinoic acid, thyroid hormone, and vitamin D receptors. The "Adopted Orphan 

Receptors" bind dietary lipid-derived ligands and regulate lipid metabolism. 

"Orphan Receptors" are the third category of NRs and the identity of endogenous 

and exogenous ligands for orphan receptors are unknown or poorly defined.  

Ligand-dependent activation of NRs can be variable; however, receptor 

ligands typically induce formation of a DNA-bound homodimer/heterodimer which 

subsequently recruits other nuclear coactivator and coregulatory proteins. This 

complex of nuclear factors associated with NRs is required for association with 

the basal transcription machinery and subsequent activation of gene expression.  

This process is highly complex and may involve different classes of 

coactivators/corepressors and other proteins which modify chromatin structure 

through acetylation or methylation (histone acetyltransferases and 

methyltransferases. We are going to further discuss the mechanisms of 

transcriptional regulation by NRs in the next section.
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Table 1-3 Nuclear receptor ligands and their receptors (3). 

Endocrine 

Endocrine lipld sensors 

Adapted Orphan 

Dietary & endogenous lipid 
sensors 

Orphan 

Endogenous ligands 
uncertain 

GR glucocorticoids 

MR mineralocorticoids 

PR progesterones 

AR androgens 

ER estrogens 

  

RAR retinoic acids 

TR thyroid hormones 

VDR vitamin D, LCA 
 

RXR 9-cis RA, 
DHA 

PPAR fatty acids 

LXR oxysterols 

FXR bile acids 

PAR xenobiotics 

CAR xenobiotics 
 

ERR synthetc steroids 

HNF-4 fatty acids? 

ROR fatty acids, sterols? 

SF-1 phospholipids? 

LRH-1 phospholipids? 

GCNF ? 

PNR ? 

TLX ? 

TR2,4 ? 

NGFI-
B 

? 

COUP
-TF 

? 

RVR ? 

DAX-1 ? 

SHP ? 
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1.3 Mechanism of Transcriptional Regulation by NRs 

1.3.1 Chromatin Structure and Gene Expression 

The genomic DNA in all eukaryotic cells is condensed and packaged by 

histone and nonhistone proteins into a dynamic ordered structure termed 

chromatin. The basic unit of chromatin is the nucleosome which contains 

approximately 146 base pairs (bp) of DNA wrapped in a lefthanded superhelix 

around an octamer of core histone proteins containing two molecules each of the 

following histones: H2A, H2B, H3, and H4 (201). Each core histone has a 

hydrophilic amino-terminal tail containing specific sites for post-translational 

modifications. In addition to core histones, linker histones (H1) can serve to lock 

the incoming and outgoing DNA helix to the outside of the core histone octamer, 

further stabilizing the nucleosome particle as shown in Figure 1-6. 

In the genome, each nucleosome is separated by a stretch of linker DNA 

varying in length from 10 to 60 bp. This form of DNA packaging is considered the 

primary functional unit of chromatin. In vivo, arrays of nucleosomes are packaged 

into canonical ‘30-nm’ fibers and then further condensed into a higher level of 

chromatin structure characterized by 80- to 100-nm chromonema fibers (132). 

Specific nucleosome-nucleosome interactions are essential for the condensation 

of nucleosome arrays into higher ordered chromatin structures (120). The 

packaging of genomic DNA into higher ordered chromatin presents an obstacle 
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for regulated gene expression by presumably restricting access of RNA 

polymerase II and of the basal transcription machinery (131). 

One of the predominant mechanisms used by NRs to activate or repress 

target-gene transcription is the recruitment of coregulatory factors capable of 

covalently modifying the amino terminal ends of histones. These modifications, 

including acetylation and deacetylation, methylation, and in some cases 

phosphorylation, are thought to alter chromatin structure and facilitate the 

subsequent recruitment of other effector proteins. Proteins such as coactivators 

which possess specific enzyme activities such as histone acetyltransferases 

(HATs) and histone/protein methyltransferases (HMTs) are recruited by NRs in 

the presence of cognate ligand where they facilitate activation of target genes. In 

contrast, corepressor complexes containing SMRT NCoR proteins can 

associate with NRs in the absence of ligand, or in the presence of specific 

antagonists, and facilitate transcriptional repression of target genes. Importantly, 

NR corepressor complexes contain HDAC activity that apparently reverses the 

effects of HAT action mediated by NR coactivators. A proposed model for the 

interaction of coactivators and corepressors with NRs is summaried in Figure 1-7.
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Figure 1-6 Structure and assembly of the nucleosome (340) 
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Figure 1-7 Coactivator and corepressor complexes for regulation of nuclear 

receptor-mediated transcription (250).
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1.3.2 NR Mediated Gene Activation 

Transcriptional activation by NRs involves recruitment of distinct classes 

of coactivators and other transcription related factors to promoters in the 

chromatin environment of the nucleus (Fig. 1.7). NRs may use several 

mechanisms to increase transcription of specific NR-dependent genes. First, 

NRs may directly interact with and recruit general transcription factors that are 

components of the preinitiation complex (PIC) to increase the rate of initiation of 

transcription. Second, the receptors may interact with proteins which can alter 

chromatin structure and render the promoter DNA of the target gene more 

accessible to various transcription factors and to RNA polymerase II. Third, the 

receptor may interact with other cellular components that act to bridge 

interactions with members of the PIC to promote formation of a 

transcriptional-active complex. 

1.3.2.1 NR and Transcription Preinitiation Complex (PIC) Formation 

The initiation of mRNA synthesis by RNA pol II involves the direct or 

indirect binding of core promoter DNA elements such as the TATA box, DPE 

(downstream promoter element) and the Inr (initiator) by a collection of “basal” 

transcription factors (TFs) (45, 238). The binding of ligand-activated NRs to DNA 

response elements in the promoter or regulatory regions of a 

hormone-responsive gene stimulates the assembly of a stable basal factor/RNA 

Pol II transcription PIC at the promoter, with recognition of the TATA box and 
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other core promoter elements by a complex called TFIID (81). The role of 

liganded NRs in promoting the formation of a stable PIC is 2-fold: (i) promoting 

PIC assembly through direct contacts with components of the basal transcription 

machinery (including TFIIB and TFIID) and (ii) recruiting coactivators, which in 

turn facilitate promoter PIC assembly through direct contacts with components of 

the basal transcription machinery and by loosening chromatin structure at the 

promoter (176, 350).  

TFIID is a complex of proteins containing the TATA-binding protein (TBP) 

and a collection of 10 to 12 polypeptides called TBP-associated factors (TAFs) 

(13). The TAFs in the TFIID complex are required for transcriptional activation by 

a number of different DNA-binding activators, including NRs. Several TAFs in 

TFIID, as well as TBP itself, make direct contacts with NRs as a part of the 

transcriptional regulatory process (211). For example, hTAFII30 in TFIID binds to 

ERα, an interaction critical for ERα-dependent transcription. Such interactions 

can help recruit or stabilize binding of TFIID at the promoter, a process that is 

enhanced by the interactions of some TAFs to the core promoter elements (13, 

146). The role of TAFs in NR-dependent transcription is illustrated by the fact that 

TFIID, but not TBP alone, can act synergistically with other cofactor complexes, 

such as Mediator and SWI/SNF, to potentiate transcription by NRs. Together, the 

available data indicate that TAFs are required for full transcriptional activation by 

NRs (13, 202).  
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1.3.2.2 NR Interaction with Coactivators 

Modulation of the assembly of preinitiation complexes by transcription 

factors involves not only direct actions but also indirect actions on components of 

the basal transcriptional machinery. When NRs are bound to their target 

promoters, like other transcription factors, they recruit coregulatory proteins 

termed coactivators or corepressors that activate or inhibit transcription. NR 

coregulators, interact with different NRs domains through their specific 

NR-interacting motifs such as LxxLL or the FxxLF. Many coregulators are most 

likely recruited at the promoter as part of preformed complexes (81, 212). When 

present on target gene promoters, transcriptional coregulators play different roles 

depending on their specific enzymatic activities (e.g., kinase, acetyl- or 

methyltransferase, or ubiquitin- or sumo-ligase activities) or due to their ability to 

recruit other regulatory proteins. Certain coregulators play a crucial role in 

remodeling chromatin structure by modifying histone tails and/or by promoting 

nucleosome remodeling, which in turn facilitates the access of other proteins to 

the promoter. Finally, transcriptional coregulators recruit and stabilize the basal 

transcriptional machinery at the promoter, including RNA polymerase II (pol II), 

leading to the formation of the transcriptional preinitiation and initiation 

complexes as shown in figure 1-7. Since their discovery in the mid-1990s, the 

number of transcriptional coregulators has rapidly increased to more than 150. 

The major group of coactivators enhances NR-dependent transcription by 

modification of the chromatin environment and alleviation of the repressive 
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effects of histone–DNA contacts. Coactivators in this group can be divided into 

two general classes: members of the switch/sucrose nonfermentable (SWI/SNF) 

family of proteins and members of the histone acetyltransferase (HAT) family. 

ATP-dependent Chromatin Remodelers 

The packaging of genomic DNA into nucleosomes restricts the 

receptor-dependent assembly of transcription complexes at the promoters of 

hormone regulated genes. Unlike many DNA-binding transcriptional regulators, 

NRs bind stably and with relatively high affinity to DNA even when their cognate 

HREs are assembled into chromatin (350). Thus, the relevant issue seems to be 

how receptors promote formation of an open chromatin architecture at the 

promoter. One way is through the ligand-dependent recruitment of chromatin 

remodeling complexes, which are multi-polypeptide enzymes categorized by the 

type of ATPase subunit that they contain, including yeast Snf2-like (e.g. 

SWI/SNF) or Drosophila ISWI-like (e.g. RSF, CHRAC, ACF) (223). Human 

SWI/SNF (hSWI/ SNF) represents a family of related complexes usually 

containing eight or nine subunits, with either hBrg1 or hBrm as the ySnf2-related 

ATPase subunit; however, the exact composition of these complexes can vary 

among cell types (164). Chromatin remodeling complexes use the energy stored 

in ATP to mobilize or structurally alter nucleosomes, allowing for greater access 

of the transcriptional machinery to promoter DNA, thus facilitating transcriptional 

activation (164, 278, 350).  
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The involvement of SWI–SNF complexes in NR dependent transcription 

was originally suggested by studies in yeast and mammalian cells which show a 

stimulatory effect of SWI–SNF components on NR-dependent activity (47, 377). 

In addition, cell-based approaches have also supported these results, including 

experiments showing a requirement for hBrg1-receptor interactions in estrogen 

receptor and glucocorticoid receptor gene regulatory activity and chromatin 

immunoprecipitation (ChIP) experiments showed the recruitment of hBrg1 to an 

estrogen-regulated promoter upon hormonal stimulation (84, 109). 

ATP-dependent chromatin remodeling is required for NR-dependent 

transcription but it is not sufficient. Chromatin remodeling may set the stage for 

subsequent actions by coactivators with histone modifying activities, such as 

HATs (82, 192). 

HAT-dependent Chromatin Remodeling 

Histone acetyltransferase coactivators were identified initially on the basis 

of their interaction with the ligand binding domains of a variety of nuclear 

receptors in the presence of cognate receptor ligands, and subsequent studies 

showed these coactivators exhibited HAT activity (318). The most well 

characterized group of HAT coactivators is the p160 family, which contains 

multiple members that share a striking homology. These common structural 

features are represented by steroid receptor coactivator family (SRC-1a) in figure 

1-8A. The SRC (steroid receptor coactivator) family is composed of three distinct 
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but structurally and functionally related members, which are named SRC-1 

(NcoA-1), SRC-2 (TIF2/GRIP1/NcoA-2), and SRC-3 

(p/CIP/RAC3/ACTR/AIB1/TRAM-1), respectively (211). Sequence analysis of 

SRC proteins has identified a basic helix-loop-helix (bHLH) and two Per-Arnt-Sim 

(PAS) domains in the amino-terminal region, a centrally located 

receptor-interacting domain (RID) and a C-terminal transcriptional activation 

domain (AD). The bHLH/PAS domain is highly conserved among the SRC 

members and it serves as a DNA binding and protein dimerization motif for 

interacting with many transcription factors. Detailed analysis revealed three 

conserved LXXLL motifs (NR box) in the RID, which appear to contribute to the 

specificity of coactivator-receptor interactions. HAT activity was identified in the 

C-terminal region of SRC members and there are also activation domains that 

interact with the CREB-binding protein (CBP). Members of the SRC family 

interact with steroid receptors, ER, PR and AR, and enhance their transcriptional 

activation in a ligand-dependent manner (184, 211). 

p300 and CBP are highly related HATs that interact with SRC-1, but also 

bind independently to nuclear hormone receptors in a ligand-dependent manner 

as shown in Figure 1-8 B (54). CREB-binding protein (CBP) was initially 

characterized as a coactivator required for efficient transactivation of 

cAMP-response element-binding protein. p300 was first identified as a 

coactivator of the adenovirus E1A oncoprotein. CBP and p300 share many 

functional properties and protein functions as coactivators for multiple NRs as 
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well as p53 and NF-kB; both possess intrinsic HAT activity and recruit HAT and 

p/CAF (CBP/p300-associated factor) (211). CBP/p300 also interacts with SRC 

family members and synergizes with SRC-1 in transactivation of ER and PR 

(314). This shows that a very large multicomponent HAT complex may be 

assembled in the vicinity of a ligand-bound receptor. 
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Figure 1-8 Functional domains of the p160/SRC family and p300/CBP (340). 
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The link between histone acetylation and transcriptional activation is 

well-established; however, the mechanism of histone acetylation-dependent 

activation of transcription is unclear. Although histone acetylation was initially 

thought to facilitate chromatin remodeling by loosening the association of the 

histone octamer with DNA through the neutralization of positive charges in the 

histone tails, more recent studies suggest that histone acetylation may require 

prior chromatin remodeling or may occur at a post-remodeling step (82, 192, 349). 

The results of one study suggest that post-remodeling histone acetylation by 

p300 may direct the transfer of histone H2A–H2B dimers from nucleosomes to a 

histone chaperone (144). Such an effect may help to establish and maintain an 

open chromatin configuration that favors transcription. The differences observed 

in different experimental systems for the order of chromatin remodeling and HAT 

activity have not been adequately explained, but may represent 

promoter-specific types of regulation (349). Recent results suggest another role 

for histone acetylation, namely to create binding sites on the amino-terminal tails 

of core histones for acetylated lysine binding domains, such as the bromodomain. 

A mechanism like this may allow for the recruitment of bromodomain-containing 

factors (e.g. the HAT TAFII250) to promoters that have nucleosomal histones 

with specific patterns of acetylation (148). Although HAT activity is critical for 

NR-dependent transcription, it is important to note that coactivators such as 

PCAF (233) and p300/CBP contribute other activities to the transcription process. 

For example, p300/CBP interacts with RNA pol II complexes (226) and possess a 
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glutamine-rich C-terminal region similar to the glutamine-rich activation domains 

found in some transcriptional activators, suggesting that p300/CBP may also 

function as classical coactivator by interacting with RNA pol II (175). Furthermore, 

both PCAF and p300/CBP can acetylate nonhistone, transcription-related factors, 

which in many cases alters the activity of those factors (174). For example, the 

acetylation of SRC3 by p300 disrupted the receptor–coactivator complex and 

decreased receptor-mediated gene activation (62). Estrogen receptor alpha is a 

target for p300-mediated acetylation, which may alter the transcriptional activity 

of the receptor (354). Thus some HATs, such as p300/CBP and PCAF, serve as 

multifunctional coactivators for NR-dependent transcription, contributing multiple 

activities to this process. 

HMT-dependent Chromatin Remodeling 

Recent studies indicate that proteins which have HMTs activity are also 

potential coactivators. Two PRMT (protein arginine methyltransferase) family 

members, CARM1 (coactivator-associated arginine methyltransferase) and 

PRMT1, that interact with the carboxyl-terminal region of SRC2 , enhanced 

nuclear receptor mediated transcriptional activation (61, 170). More recent 

studies have shown that the intrinsic methyltransferase activities of CARM1 and 

PRMT1 are required for enhancement activity. CARM1 methylates arginine in the 

tail of histone 3 and functions as a molecular switch that regulates the decision to 

express either genes induced by ligand-activated nuclear receptors or those 

activated by CREB transcription factor (300). CARM1 not only methylates H3 but 
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also an arginine residue in a domain of p300/CBP required for interaction with 

CREB, thus, inactivating the transcriptional activity of CREB. In this regard, 

CARM1 not only functions as a coactivator for nuclear receptor-mediated 

transcription but at the same time acts as a corepressor for CREB-mediated 

transcription (222, 373). 

Mediator Complexes 

Interactions between DNA-bound NRs and the RNA pol II transcriptional 

machinery help to promote formation of stable transcription PICs at the promoter. 

The multiprotein mediator complexes also known as the TRAP and DRIP 

complexes, are another class of NR-and RNA pol II-interacting co-activators. At 

least two individual subunits of Mediator can interact directly with NRs. Med220 

binds to NR ligand-binding domains in a ligand-dependent manner via a receptor 

interaction domain that contains two NR boxes. This subunit is responsible for 

the association of the entire Mediator complex with a variety of NRs in vitro and is 

probably responsible for the recruitment of mediator complex to the promoters of 

NR-regulated genes. For example, Warnmark and co-workers showed that 

TRAP220 interacted preferentially with ERβ compared to ERα and interactions 

were dependent on the two LXXLL NR box motifs (NR1 and NR2) in TRAP220 

(356). However, recently Wu and co-workers in this laboratory showed that in 

ZR-75 breast cancer cells coactivation of ERα by DRIP205 involves multiple 

regions of DRIP205 and ERα, and interaction of these proteins do not require the 

NR box motifs of DRIP205 (368).  
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New coactivators are continually being discovered and these include 

some unexpected molecules such as steroid-receptor-RNA activator-1 (SRA1), 

an RNA transcript, that functions as a eukaryotic transcriptional coactivator for 

steroid hormone receptors (184). An actin-binding protein (mACTN2) not only 

serves as a coactivator for the androgen, estrogen and thyroid hormone 

receptors, but also acts synergistically with GRIP1 to enhance NR-mediated 

(139). In summary, it is clear from coactivator studies that transcriptional 

regulation cannot be considered solely as a chromatin-based process, but should 

be considered as a process that is coupled to many other cellular events that are 

carried out by several distinct groups of proteins and enzymatic activities.  

1.3.3 NR Mediated Gene Repression 

It is now well recognized that gene repression or gene silencing is as 

important as gene activation. Nuclear receptors represent a large family of 

ligand-regulated transcription factors and although DNA binding of steroid 

hormone receptors is ligand-dependent, other nuclear receptors are bound to 

DNA in the absence of their cognate ligand. For example, unliganded NRs such 

as thyroid hormone receptor (TR), retinoic acid receptor (RAR) and most orphan 

receptors are located in nucleus and are bound to their response elements. 

These unliganded DNA-bound receptors actively repress transcription of target 

genes by recruitment of co-repressors. Gene repression by NRs is an important 

and crucial function in vivo since aberrant silencing leads to disease and 

developmental abnormalities. This repression “turns off” target genes and 
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amplifies the magnitude of the subsequent activation by hormone or ligand. For 

example, if the level of gene transcription in the repressed state is 10% of basal 

activity levels in the absence of receptor, a 10-fold hormone-dependent induction 

of this gene above basal levels represents an overall 100-fold increase in 

expression compared to the repressed genes (136).   

The ligand-dependent switch between the repressed and activated 

receptor conformations explains how hormones activate gene expression. 

However, many hormone-repressive target genes can be down-regulated by 

receptors after treatment with hormone. This is referred to as ligand-dependent 

negative regulation of transcription, or transrepression, and is different from the 

repression of basal transcription by unliganded receptors. The mechanism of 

negative regulation is not well understood. One mechanism involves nuclear 

receptor binding to DNA binding sites that reverse the paradigm of 

ligand-dependent activation (negative response elements), where the 

ligand-bound receptors recruit corepressors and HDAC activity to these binding 

sites (296). 

1.3.3.1 NR Interaction with Corepressors 

Various corepressors for NRs have also been identified. Corepressors 

such as silencing mediator of retinoid and thyroid hormone receptors (SMRT), 

nuclear receptor corepressor (NCoR) interact with NRs in a ligand-dependent 

manner and ligand binding leads to their dissociation from the receptors. 
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However, some corepressors such as LcoR (ligand-dependent nuclear-receptor 

corepressor), RIP140 (receptor-interacting protein-140) and REA (repressor of 

estrogen receptor activity) (77, 365), bind nuclear receptors in a 

ligand-dependent manner and competitively displace coactivators. These 

observations indicate the existence of specific regulatory mechanisms that use 

similar, but reverse, approaches for attenuating the function of agonist-bound 

receptors. 

SMRT, NCoR  

The SMRT and NCoR are related transcriptional corepressors isolated by 

virtue of their interaction with RAR and TR (65, 130). SMRT and NCoR bind 

unliganded TR or RAR, and their interactions are disrupted after binding of TR or 

RAR to their respective ligands. Subsequent studies show that SMRT and NCoR 

also interact with other NRs, including VDR, PPARδ, and LXR, and with orphan 

NRs, such as Rev-ErbA, COUP-TF, RORα, and DAX (212). SMRT or NCoR also 

interact with steroid hormone receptors, including ER, AR, and PR (86, 193), and 

this only takes place when steroid hormone receptors bind their corresponding 

antagonists. For example, tamoxifen, a known ER antagonist/agonist used for 

breast cancer treatment, enhances interactions between ER and NCoR. The 

interaction between SMRT or NCoR and NRs is dictated by two NR-interacting 

motifs located at the C-terminal ends of both proteins, with a consensus 

sequence of L IXXI VI, named the CoRNR motif (135). Sequence comparison 

of SMRT and NCoR indicates that they share a conserved domain called the 
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SANT domain (4). The N-terminal SANT domain of SMRT and NCoR is involved 

in associating with histone deacetylase 3 (HDAC3) and is required for activating 

its deacetylase activity (116, 383). The SANT domain is involved in histone 

binding. This observation was later confirmed by a study on the SANT2 domain 

of SMRT (378) which showed that the SANT2 domain can directly bind histones. 

Interestingly, SANT2 of SMRT prefers to bind unacetylated histones over 

acetylated forms; however, this property was not observed for the SANT1 

domain of SMRT, indicating that each of these two SANT domains encodes 

distinctive properties. The preferential binding of the SMRT SANT2 domain to 

unacetylated histone tails suggests that it can block the binding of HATs to 

histones and it appears that the two SANT domains of SMRT and NCoR can 

synergize with each other to promote and maintain histone deacetylation.  

Both SMRT and NCoR complexes are estimated to be 1.5–3 MDa in size 

(117, 191), suggesting that SMRT and NCoR associate with multiple protein 

components. Biochemical purification and characterization of these SMRT and 

NCoR associating proteins have identified HDAC3, transducing beta-like protein 

1 (TBL1), and TBL1 related protein (TBLR1) as common components (117, 191, 

378). Further characterization of TBL1 and TBLR1, which are related WD40 

repeat proteins, has revealed their selective affinity for histones H2B and H4 

(378), and this histone-binding activity is important for their transcriptional 

repression activity. These results reveal that TBL, TBLR1, and HDAC3 are 
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integral components of the SMRT and NCoR complexes and are critical for the 

transcriptional repression of NRs.  

RIP140 and LCoR 

Although agonist binding to NRs is primarily associated with recruitment of 

coactivators, recent studies show that agonist binding also results in binding of 

corepressor such as RIP140 and LCoR (52, 104). RIP140 was first identified by 

its interaction with TR, RAR, RXR, and PPAR as a corepressor in a 

ligand-dependent manner by using the GAL4 reporter system (186, 339). 

Interactions between RIP140 and NRs is mediated through a unique motif at the 

C-terminal region of the protein (148), although the constitutive binding appears 

to be mediated through repeated LXXLL motifs (101). Mutations in the 

NR-interacting motif in RIP140 decrease its ability to suppress an RA-responsive 

reporter gene, suggesting that RIP140 indeed functions as an NR corepressor. 

Moreover, RIP140 suppresses RA receptor-mediated induction by RA in a 

dose-dependent manner (148). Transcriptional repression by RIP140 has also 

been attributed to its interaction with HDAC1, HDAC3, and CtBP (352, 364).  

LCoR is another NR corepressor that was first isolated as a 

ligand-dependent interacting factor of ERα LBD in a yeast two-hybrid screening 

(104). Interactions of LCoR with ER in yeast and in mammalian cell lines takes 

place in an E2-dependent manner and there is evidence that LCoR interacts with 

other nuclear receptors, including GR, PR, and VDR, in a ligand 

binding-dependent fashion. Furthermore, LCoR also interacts selectively with 
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HDAC3 and HDAC6 but not with HDAC1 or HDAC4. The interactions between 

RIP140 or LCoR and NRs are mediated through motifs similar to the LXXLL motif 

and it has been postulated that in addition to the active role of RIP140 and LCoR 

as gene repressors, they also compete with coactivators for binding the 

hydrophobic pocket in the LBD. This competitive property of RIP140 and LCoR is 

ligand-dependent. The combination of both properties could be the key reason 

for the rapid attenuation of transcription immediately after agonist-induced 

transactivation.  

1.3.4 From Repression to Activation 

The possibility of switching gene expression from ‘off’ to ‘on’ and vice 

versa in mammalian system includes several regulatory strategies that cooperate 

to impose precise control of gene expression. 

1.3.4.1 Allosteric Regulation of NR Activity 

Ligand binding is the crucial molecular event that switches the function of 

nuclear receptors from active repression to transcriptional activation for the 

heterodimeric receptors such as RAR or TR that are constitutively bound to DNA. 

The hormone binding induces a conformational change in the ligand-binding 

domain of the receptor, which results in reduced affinity for corepressors and, 

enhanced affinity for coactivators. Similarly, agonist binding to steroid receptors, 

such as ER, progesterone receptor (PR), GR or AR, also induces a specific 

conformation that favors coactivator binding, whereas antagonist binding 
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promotes the interaction with corepressors. However, some recent studies show 

that there are additional molecular events that also modulate the nuclear receptor 

switch from repression to activation.  

1.3.4.2 Turnover and Transcription 

The degradation of transcriptional activators such as NRs is often required 

for gene activation. The cyclic turnover of some NRs on regulated promoters 

correlates with proteasome-dependent degradation activity, chaperone activity 

and chromatin remodeling events (108, 225, 276). The significance of an 

association between transcriptional activation and proteolysis of the activator is 

unclear and is somehow counterintuitive, since one might expect the removal of 

activators to correlate with the negative control of gene transcription. However, 

the cyclic clearance of nuclear receptors may be crucial, because it allows a 

continuous reassessment of the ‘state of the cell’ — each cycle would overcome 

the default of transcriptional repression only if the activating stimulus was still 

present (291). However, there are also examples where proteasome inhibition is 

reported to enhance transcriptional activation, and this indicates that the role of 

protein degradation in transcriptional regulation could be cell, nuclear-receptor 

and even promoter specific (37, 100). 

Reid et al. have reported that proteasome-mediated degradation and 

hERα-mediated transactivation are inherently linked and act to continuously turn 

over hERα on responsive promoters (276). In contrast, Fan et al. showed that the 
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proteasome-dependent degradation is not essential for ER transcriptional activity 

(100). In HeLa cells transfected with ERα, blocking either ubiquitination or 

proteasomal degradation markedly increased E2-induced expression of an 

ER-responsive reporter. In MCF-7 breast cancer cells, proteasome inhibition 

enhanced E2-induced expression of pS2 and cathepsin D, but decreased 

progesterone receptor (PR) expression. The results further indicate that promoter 

context must be considered when evaluating the relationship between ERα 

transcription and proteasome inhibition. In addition to ER, PPARα, GR, RARγ, 

RXRα, and TR are also regulated by the ubiquitin–proteasome system (38, 80). 

Ubiquitination of PPARα was decreased in the presence of ligand, providing a 

mechanism for the ligand-dependent stabilization (32).  

Recruitment of the ubiquitylation machinery and proteasome-dependent 

degradation of the coregulators is also required for transcriptional activation. In 

the case of the NCoR-containing corepressor complex, the 26S proteasome 

components are involved in promoting the release of the corepressors in 

response to ligand binding (249). TBL1 and TBLR1, two NCoEx (nuclear 

corepressor exchange factors) factors, are components of the NCoR and SMRT 

corepressor complexes and are required for the repression of specific 

transcription units (191, 335). TBL1/TBLR1 also serve as specific adaptors for 

the recruitment of the ubiquitin conjugating/20S proteasome complex to mediate 

exchange of NR corepressors for coactivators upon ligand binding. This implies 

that signals that promote gene induction must turn on parallel pathways to 
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activate the exchange machinery and release the repression checkpoint. 

Therefore, activation of the NCoEx factors could represent a control, which is 

imposed to maintain more robust transcriptional repression and to avoid 

undesirable gene expression. This level of regulation would increase the 

amplitude of transcriptional activation events by imposing a repression 

checkpoint. Furthermore, periodic cycles of NRs are important for continuous 

assessment of the hormonal state of the cell, then re-establishment of a 

repression checkpoint at each clearance phase could also provide a tighter 

control on gene activation. This means that the ubiquitylation and the release of 

the corepressors would be crucial, not only during the first activation step, but at 

each cycle of receptor assembly on the promoter.  

1.3.4.3 Nuclear Integration of Signaling Pathways 

NRs respond not only to hormonal stimulation, but they can also integrate 

information derived from a large variety of external stimuli. Several signaling 

pathways activated by various developmental or physiological signals exhibit 

crosstalk with nuclear receptor-mediated responses through both direct and 

indirect mechanisms. The transcriptional activity of nuclear receptors is 

modulated by the induction of post-translational modification of the receptor itself 

or of its coregulatory proteins. Phosphorylation, acetylation, sumoylation, 

ubiquitylation and methylation are among the modifications that modulate the 

functions of nuclear receptors and that potentially constitute an important cellular 

integration mechanism. It has been suggested that these modifications influence 
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cellular localization, enzymatic activity and stability of targeted proteins, and 

could also be important in modulating the timing of sequential recruitment of the 

different classes of coregulators to a single transcription unit. The transcriptional 

coactivators CBP and p300 are involved in numerous transcriptional events 

mediated by different trans-acting transcription factors. Both CBP and p300 are 

phosphoproteins and their phosphorylation status is under cell-cycle control 

(374). For example, p300 is phosphorylated by CDC2 and CDK2 kinases and 

negatively regulated by cyclin E–CDK2 (22). An interesting possibility is that the 

enzymatic activities of CBP and p300 are directly modulated as a result of the 

phosphorylation events that occur during cell-cycle progression. This was 

suggested by Ait-Si-Ali et al., who reported that general HAT activity peaked 

during the G1/S transition, and that the HAT activity of CBP was enhanced by the 

C-terminal phosphorylation mediated by cyclin E–CDK2 (12, 165). 

Other kinases, which include PKA, Ca2+/calmodulin-dependent kinase IV 

(CaMKIV) and MAPK, phosphorylate different CBP residues, thereby enhancing 

its transcriptional-activation activity (59, 147, 372). For example, phosphorylation 

by p44 MAPK has a positive effect on the enzymatic activity of CBP (11). In 

contrast, p300 phosphorylation by PKC represses transcriptional activity (379), 

which is consistent with the opposing activities of CBP and p300 on proliferation 

and the response to DNA damage. 

Phosphorylation is not the only modification that is used to integrate 

signalling pathways and coactivator functions. For example, CARM1-dependent 
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methylation of a specific domain of CBP (the KIX domain) which interacts with 

the kinase-interacting domain (KID) of CREB, is important for inducing the 

dissociation of CBP from CREB, and for inhibiting CREB-dependent 

transcriptional activation (373). Furthermore, p300 is also ubiquitinated and 

degraded by the ubiquitin–proteasome pathway during F9 embryonal carcinoma 

cell differentiation. Interestingly, p300 shows different phosphorylation patterns in 

undifferentiated versus differentiated cells, and the changes in phosphorylation 

status that are promoted by PKA affect its HAT activity only during differentiation 

(42, 145). 

Post-translational modifications of corepressors have also been reported. 

A recent paper showed that the direct phosphorylation of SMRT by IKKα is 

required for NF-κB mediated transcription (126). The phosphorylation on SMRT 

resulted in the dissociation from HDAC3 and nuclear export of SMRT. Failure of 

IKKα to stimulate this response inhibits the recruitment of NF-κB to promoters, 

blocking transcription and sensitizing cells to apoptosis (249). This is consistent 

with the observation that the ubiquitin-dependent dismissal and degradation of 

corepressors is required for the switch from gene repression to gene activation 

by nuclear receptors. Furthermore several kinases, including MAPKs, 

AKT/protein kinase B and casein kinase-2, modify NCoR and SMRT and to 

induce their relocalization from the nucleus to the cytoplasm (19, 129, 150). 
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1.4 Mechanism of ER Mediated Transcription Activity 

1.4.1 Introduction  

Estrogens are steroid hormones that regulate growth, differentiation, and 

function in a broad range of target tissues in the human body. The most potent 

and dominant estrogen in humans is 17ß-estradiol, but lower levels of estrone 

and estriol are also present. The biological effects of estrogens as shown in 

Figure 1-9 are mediated through ER α and ß, which are members of a large 

superfamily of nuclear receptors. These receptors act as ligand-activated 

transcription factors. The classical genomic mechanism of ER action involves 

estrogen binding to receptors in the nucleus, after which the receptors dimerize 

and bind to specific response elements known as estrogen responsive elements 

(EREs) located in the promoters of target genes (229). However, around one 

third of ER regulated genes in humans that do not contain ERE-like sequences 

(232), and the molecular mechanisms of transcriptional regulation by ER at 

alternative response elements are being extensively investigated. E2 induced 

transactivation of some genes involved ER-protein interactions where ER does 

not directly bind DNA but activates another DNA-bound transcription factor (113). 

This mechanism can be referred to as non-classical genomic pathway. 
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Figure 1-9 Models of estrogen action (125) 

 

     



 62

There are rapid biochemical and physiological responses that occur within 

seconds or minutes after estrogen administration that cannot be accounted for by 

changes in gene expression mediated by nuclear ER. These are known 

non-genomic actions of E2 and are believed to be mediated through 

membrane-associated ER. Non-genomic pathways are associated with activation 

of various protein-kinase cascades which indirectly influence gene expression, 

through phosphorylation of other transcription factors such as AP-1, serum 

response factor (SRF), and Elk-1 (75, 88, 154, 173).  

1.4.2 Overview of Estrogen Receptor Structure 

The biological effects of E2 are mediated by the ER and until 1996 it was 

assumed that a single ER was responsible for mediating the effects of E2, 

anti-estrogens and other selective ER modulators (SERMs). However, a second 

ER, designated as ERβ, has been identified (the former ER is called ERα). And 

this has initiated an extensive reevaluation of the comparative functions of ERα 

and ERβ in normal physiology and in diseases including cancer (179). 

ERα and ERβ are encoded by separate genes and belong to the 

steroid/thyroid hormone superfamily of nuclear receptors (118). The structures of 

the two ERs are compared in Figure 1-10. 
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Figure 1-10 The structure homology between ERα and ERβ (171) 

 

Like other NRs, both ER subtypes consist of six defined structural 

domains. There is considerable variability in the A/B, hinge (D), and F domains of 

ERα and ERβ. However, the DNA binding domains (DBDs) of ERα and ERβ are 

highly homologous (97) and thus ERα and ERβ bind various EREs with similar 

affinities. The ligand-binding domain (LBD) of ERα and ERβ also share a high 

degree of homology and it is not surprising that many compounds bind both 

receptors with similar affinities (178) or have similar potencies in activation of 

ERE-reporter gene expression (24). However, the two receptors have distinctly 

different tissue distribution and levels in normal tissues and in tumors (71, 190). 

These data together with the different phenotypes of the ERα and ERβ knock-out 

mice support the idea that the two ERs are not merely redundant but have 

distinct roles in estrogen and SERMs signaling (33).  

The ER contains two distinct transcriptional activation domains; activation 

function 1 (AF1) at the N-terminal and activation function 2 (AF2) at the carboxy 
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terminal. The N-terminal A/B domain is the least conserved region with only 17% 

identity between human ERα and ERβ (97). The N-terminal domain encodes a 

ligand-independent transactivation function (AF1) a region involved in 

protein-protein interactions and transcriptional activation of target gene 

expression. AF1 interacts with multiple proteins, including the p160 steroid 

receptor coactivator-1 (SRC1) and p300 (210, 236), general transcription factor 

TBP (362) and other coactivator proteins such as p68 RNA helicase (96), 

MMS19 (369) and RNA coactivator SRA (357). AF1 is also responsible for 

ligand-independent activation of ER through several different kinase signaling 

pathways (168). Serine 118 is the target for mitogen-activated protein kinase 

(MAPK)-dependent phosphorylation in response to growth factors (14, 149). 

Serines 104 and 106 are phosphorylated by the cyclin A-CDK2 complex (279).  

The ER LBD is a wedge–shaped structure that consists of 12 α helices. 

The LBD forms the pocket for ligand binding, homo-and hetero-dimerzation and a 

binding surface for coactivators and corepressors. The ligand-binding pocket is 

guarded by helix-12 (H12), which forms a movable lid over the pocket and 

contains residues that are crucial for AF2 function. Crystallographic analysis of 

the ERα LBD has established that ligand binding has a dramatic effect on 

receptor structure. Agonists such as 17ß-estradiol and diethylstilbestrol induce a 

receptor conformation in which the H12 is aligned over the hormone binding 

cavity, resulting in the formation of a specific binding site for coactivators (43, 

305). Coactivators recruited to the AF2 of ERα contain a distinctive common 
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signature motif termed an NR-box, comprising the core consensus sequence 

LXXLL where L is leucine and X is any amino acid. This interaction site on ERα is 

a shallow, hydrophobic groove that is formed by residues from H3, H4, H5 and 

H12. The LXXLL motif functions as a hydrophobic docking module in a helical 

conformation and all the three leucines of the motif make contacts with the 

groove which is stabilized by a charge clamp. Introduction of mutations in either 

partner abrogates the interactions (305). The agonist-induced conformational 

change of the LBD is also necessary for the nuclear receptor transactivation 

function.  

SERMs such as raloxifene and tamoxifen, bind across the cavity in a 

similar manner to agonists. However, their bulky side chains cannot be fully 

accommodated within the binding cavity. Instead, the side chains protrude from 

the binding cavity, resulting in the displacement of H12. This repositioning of H12 

in the LBD disrupts interactions between the hydrophobic grooves in the LBD 

with coactivators (43, 305).  

The crystal structures of ERβ isoform bound to genistein, a partial agonist 

for ERβ, and raloxifene, a pure antagonist for ERβ, have also been determined 

(257). Genistein, an isoflavonoid phytoestrogen, displays 7-30 fold higher affinity 

for ER β over ERα. The orientation of H12 in genistein–bound ERβ LBD is in a 

partially occupied antagonistic position compared to an agonist, and this explains 

the partial agonistic activity of genistein. However, in raloxifene-bound to the LBD 

     



 66

of ERβ, the piperidine ring of the ligand protrudes from the cavity and prevents 

H12 from adopting its agonist position. This feature is responsible for pure 

antagonistic properties of raloxifene on ERβ. The structure of the ERß LBD 

complexed with a pure antagonist, ICI 164,384, has been determined; and shows 

that binding of this antagonist completely destabilizes H12 and prevents it from 

adopting either agonist or SERM orientation (258). 

1.4.3 Membrane-associated ER  

The existence and function of membrane-associated ER (mER) was first 

reported in 1977 (256) and over the last 10 years there has been renewed 

interest on the structure and function of mER. There is evidence showing that the 

membrane and nuclear receptors are the same protein and this is based on 

immunohistochemistry staining of membrane ER, using a panel of antibodies 

directed against multiple epitopes of the nuclear ER (241). In addition, 

GH3/B6/F10 rat pituitary tumor cells transfected with an antisense oligonucleotide 

to nuclear ER resulted in loss of mER (231). Also in ER-negative Chinese 

hamster ovary (CHO) cells, transfection with cDNAs of ERα or ERß resulted in a 

single transcript, specific binding activity of labeled E2, and expression of ER in 

both nuclear and membrane fractions (272). However, the definitive proof that 

endogenous membrane and nuclear ER are the same protein which requires 

separate isolation and sequencing of the two receptor pools has not been carried 

out. In contrast to most membrane receptors, ER has no intrinsic transmembrane 
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domain, and there is evidence that a third party protein such as Shc, p85α of 

phosphatidylinositol 3-kinase (PI3K), caveolin and insulin-like growth factor-1 

receptor (IGF-1R) maybe required for linking the cytoplasmic ER pool to the inner 

face of the plasma membrane (218, 271, 316).  

Shc, an adapter protein, has no intrinsic kinase domain and mainly 

transduces signals dependent on protein–protein interactions (269). Three 

domains on Shc mediating protein–protein interactions are the phosphotyrosine 

binding (PTB) domain in the amino-terminal region, the Src homology 2 (SH2) 

domain in the carboxy-terminal region and a proline rich region called the 

collagen homology (CH) domain (246). When a receptor like IGF-1R is activated, 

Shc binds rapidly to IGF-1R through its PTB domains, leading to Shc itself being 

phosphorylated by receptor tyrosine kinase (247). The phosphorylated tyrosine 

residues on the PTB domain of Shc provide the docking sites for binding the SH2 

domain of Grb2 (Growth factor receptor binding 2) and this complex recruits SoS 

(Son of Sevenless), a guanine nucleotide exchange protein (282), leading to 

activation of the Ras/Raf/MAPK pathway (35, 247). It has been reported that E2 

rapidly induced Shc phosphorylation as well as Shc interaction with ERα in 

MCF-7 and long-term estrogen-deprived (LTED) MCF-7 cells. The N-terminal 

A/B domain of ERα was required and sufficient for interactions with the PTB and 

SH2 domains of Shc, although the full-length receptor was required for 

E2-mediated response in MCF-7 cells (317). Recently it is also shown that Shc, 

ERα and IGF-1R form a ternary complex in MCF-7 cells and down-regulation of 
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any of these proteins by small inhibitor RNAs (siRNAs) abrogates E2-induced 

activation of the MAPK pathway (316). These data suggested that Shc serves as 

a translocator for ERα by binding to the receptor and then carrying it to the 

Shc-binding sites of IGF1-R that are located on the cell membrane and transduce 

estrogen signals for activation of MAPK pathway. 

The p85α subunit of PI3K is also an adapter protein. The p85α contains an 

N-terminal SH3 and a C-terminal SH2 domain separated by an N-terminal SH2 

domain (183). p85α can associate with IGF-1R directly or indirectly by binding 

IRS-1, a substrate of IGF-1R (16, 376), leading to the activation of the p110 

catalytic subunit. It has been reported that ERα but not ERβ interacts directly with 

the P85α, and this association is required for E2-induced activation of PI3K 

pathway in endothelial and breast cancer cells (50, 311). Recently, the adaptor 

protein p130Cas was shown to transiently interact with ERα in a multi-molecular 

complex containing the c-Src kinase and the p85α in T47D breast cancer cells 

(46). Transient overexpression of p130Cas in T47D cells increases 

E2-dependent Src kinase and ERK1/2 MAPK activities. Furthermore, 

downregulation of p130Cas by siRNA was sufficient to inhibit E2-induced ERK1/2 

MAPK activity and cyclin D1 induction, suggesting that the adaptor protein 

p130Cas associates with the ERα transducing complex, regulating E2-dependent 

activation of c-Src kinase and downstream signaling pathways. 

The cellular tyrosine kinase c-Src is involved in intracellular signaling and 

cell proliferation initiated by both growth factors and steroids. Several reports 
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have shown that c-Src kinase activity is required for E2-induced stimulation of 

MAPK and PI3K activity in breast cancer and bone cells (46, 50, 317). 

Microinjection of kinase-dead c-Src into breast cancer cells (MCF-7 and T47D) 

prevented stimulation of cell proliferation by either E2 or progestins (48). In 

addition, the essential role for c-Src in E2-dependent activation of MAPK 

pathway was supported in studies using embryonic fibroblasts derived from Src-/- 

mice, which failed to support rapid activation of the MAPK pathway in response 

to E2, whereas wild-type c-Src+/+ cells did (172). ERα has been shown to 

interact with the SH2-domain of c-Src (21, 36, 218), and the phosphorylated 

tyrosine at position 537 in the LBD of ERα is required for this interaction (25). It 

has also been reported that moderator of nongenomic activity of ER (MNAR) 

which is identified from a breast cancer cell library (367) mediated or stabilized 

the interactions between ER and c-Src. MNAR associates with ligand-bound ERα 

and ERβ through LXXLL motifs, and binds to the c-Src SH3 domain via a 

proline-rich region (25). It is suggested that MNAR brings the ER into proximity 

with c-Src and helps enhance activation of c-Src by providing more effective 

interaction of ER and c-Src relieving c-Src inhibition through binding to the SH3 

domain. 

In endothelial cells, as in other cell types, ER has been found in caveolae 

where they activate endothelial nitric oxide synthase (eNOS) through protein 

kinase-mediated phosphorylation (56, 57). Caveolae are specialized membrane 

invaginations enriched in the scaffold protein caveolin-1. Caveolae facilitate 
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signal transduction by providing a subcellular location for various signaling 

molecules (302). It has been reported that Serine 522 of ERα is necessary for the 

physical interactions with N-terminal scaffolding domain of caveolin-1 protein 

(270). Marino and colleagues (6, 7) have shown that cysteine 447 a residue 

which is crucial to steroid-independent palmitoylation of the receptor is also 

important for association with the caveolin-1. Mutation of this single amino acid or 

inhibition of palmitoylation with 2-bromo-palmitate results in a significantly 

decreased expression of membrane receptors, compared to wild-type ER 

expression. Furthermore, cysteine 447-mutated ERα does not support 

E2-induced proliferative signaling through ERK and PI3K (6).  

Some motifs in the E domain of ERα are also critical for membrane 

localization and function and this includes residues necessary for dimerization of 

the endogenous membrane ERα and ERβ (55, 275). Mutation of these motifs 

prevents both receptor dimerization and E2-dependent signaling through ERK, 

PI3K, and cAMP in breast cancer cells (275). In contrast, eNOS activation in 

COS cells transfected with ER may not require membrane ER dimerization (55). 

Very recently, it was reported that elements within the nuclear localization 

sequence (NLS) of ERα (D domain) were required for E2-induced activation of 

ERK and PI3K and nitric oxide production through eNOS activation in transfected 

COS cells (385). 
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1.4.4 Genomic ER Activity  

1.4.4.1 Classical Genomic ER Activity 

 The classical mechanism of ER action involves estrogen binding to 

receptors in the nucleus, after which the receptors dimerize and bind to specific 

response elements known as estrogen response elements (EREs; 

GGTCANNNTGACC) located in the promoters of target genes as shown in 

Figure 1-11 (229). This consensus sequence was first identified in the 

vitellogenin genes from xenopus and chicken (166). Hormone binding also 

induces a conformational change within the ligand binding domain of ER, and this 

conformational change allows coactivator proteins to be recruited (280). This 

leads to alteration of chromatin, histone unwinding, interactions with components 

of the basal transcription machinery complex, and subsequent mRNA 

expression. 

1.4.4.2 Non-Classical Genomic ER Activity 

A number of studies have shown that ER can regulate transcription without 

binding directly to DNA. The receptors in such cases are tethered through 

protein-protein interactions to a transcription factor complex that contacts the 

DNA as shown in Figure 1-11. Through this mechanism, ER regulates 

expression of a large number of estrogen-responsive genes that do not contain 

EREs. This mechanism is also used by other members of the nuclear receptor 
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Figure 1-11 Genomic and nongenomic actions of ER on a target gene promoter 

(30). 
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 superfamily and is often referred to as transcriptional cross talk (113). ER/AP-1 

and ER/Sp1 are two major pathways of ER nonclassical genomic actions.  

ER/AP-1 Pathway 

An E2-responsive AP-1 element was initially identified in the proximal 

promoter of the ovalbumin gene (336) and other E2-responsive AP-1 elements 

have been identified in the collagenase, insulin-like growth factor 1, quinone 

reductase, and cyclin D1 gene promoters (111, 345, 346). Fos and Jun family 

proteins bind AP-1 elements as homo-or heterodimers. These proteins contain 

leucine zipper domain that mediates DNA binding and are typically associated 

with genes that rapidly responsed to various extracellular stimuli (303).  

Mechanistic studies of ER/AP-1 actions have shown that the requirement 

for ER structural domains is dependent on the receptor subtype and on ligand 

structure. For example, E2-dependent activation of ERα/AP-1 complexes 

requires the AF-2 domain of the receptor, which binds p160 coactivators and 

stabilizes formation of a multiprotein complex containing c-Jun, ERα, and 

transcriptional coactivators at the promoter. However, the ER DBD is required for 

tamoxifen-activated ERα/AP-1 dependent activity (361). Furthermore, ICI, 

182,780, an inhibitor of ER dimerization and ERE binding, activates an AP-1 

reporter construct (254). Interestingly, full length ERα containing mutations in 

AF1 also compromised E2-mediated AP-1 activity, indicating that ERα/AP-1 

action requires both AF1 and AF2 (363).  
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ERβ also activates transcription from an AP-1 element. However, the 

effects of estrogen and antiestrogen on ERβ/AP-1 contrasts to those observed 

for ERα/AP-1. E2, ICI, 182,780, tamoxifen, and raloxifene all activate an AP-1 

reporter construct in cells cotransfected with ERα whereas, in the presence of 

ERβ, E2 not only acts as antagonist but also inhibits the activity of tamoxifen and 

raloxifene dependent induction of ERβ/AP-1. However, either tamoxifen or 

raloxifene alone behave as full agonists (240). 

ER/Sp1 Pathway 

E2-responsive GC-rich elements were initially identified in the c-myc gene 

promoter (91). This site contains a nonconsensus ERE-half site (ERE½) and a 

Sp1 binding site that was required for estrogen-mediated induction. Similar 

ERE½/Sp1 elements have been subsequently characterized in the cathepsin D 

(177), heat shock protein 27 (Hsp27) (262), TGFα (353), prothymosin α (208), 

and human PR A (253), gene promoters. However, mutation of the ERE1/2 in the 

Hsp27 promoter did not result in the loss of E2 responsiveness, and the 

E2-dependent ERα/Sp1 action is still observed in cells transfected with a DBD 

deletion ERα mutant. The data suggested that GC-rich site alone was sufficient 

for E2-responsiveness and ERα binding to DNA was not required. The 

ERE-independent ERα/Sp1 action has also been observed for several genes 

including retinoic acid receptor α (327), c-Fos (87), insulin-like growth 
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factor-binding protein-4 (266), bcl-2 (85), adenosine deaminase (371), 

thymidylate synthase (370), cyclin D1 (51), cad (161), E2F-1 (228). 

Although both ERα and ERβ form complexes with Sp1 protein, only ERα 

induces consensus Sp1 element-linked reporter gene activity whereas ERβ, 

exhibits minimal or decreased the basal reporter gene activity and these 

responses are ligand- and cell type-specific. Interestingly, it was recently 

reported that both ERα and ERβ regulate EGF receptor gene expression through 

GC-rich elements and, depending on ligand, ERβ exerts full agonist activity on 

this promoter, indicating that promoter context is also an important factor in 

ERβ/Sp1 action (292). 

ERα/Sp1 protein-protein interactions were investigated in vitro using GST 

pull-down assays, which showed interaction between the C-terminal end of Sp1 

and multiple regions of ERα (261). Additionally, it has been shown using a series 

of ERα deletion mutants and ERα/ERβ chimeric mutants that the AF1 domain of 

ERα is critical for ERα/Sp1-mediated transactivation. Recent studies indicated 

that E2-dependent activation of ERα/Sp1 also required the C-terminal F domain 

of ERα, which was not required for antiestrogen activation of ERα/Sp1 and 

overexpression of a C-terminal F domain peptide (aa 575-595) specifically 

blocked E2-mediated ERα/Sp1 transactivation, suggesting that other nuclear 

cofactors interacting with the F domain may be important for ERα/Sp1 action 

(163).    

     



 76

ERα not only interacts with Sp1 but also with Sp3 protein, another 

member of Sp protein family that can also act as transcriptional repressor. It was 

reported that vascular endothelial growth factor (VEGF) gene expression is 

regulated by ERα/Sp1 or ERα/Sp3 either positively or negatively and Sp1/Sp3 

ratios maybe critical for VEGF gene regulation. By using Sp protein deficient SL2 

cells, upregulation of the VEGF promoter activity with E2 treatment was observed 

in cells cotransfected with ERα and Sp1 expression plasmid whereas 

downregulation of the same promoter activity was observed when cells were 

cotransfected with ERα and Sp3 expression plasmid (320, 321). 

1.4.5 Nongenomic ER Activity  

Evidence is accumulating that estrogens exert nongenomic actions that 

are too rapid to be accounted for by the activation of RNA and protein synthesis. 

Nongenomic actions are a common property of steroid hormones and are 

frequently associated with the activation of various protein-kinase cascades 

(198).  

The nongenomic mechanism of estrogen action can be grouped into two 

types as shown in Figure 1-9 and 1-11. First, some models propose that the rapid 

membrane events are mediated by the classical ERα, which initiates signaling 

cascades by associating with membrane structures including G proteins, 

caveolins, and receptor tyrosine kinases. In the second type of model, the ERα is 
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not involved and another membrane-associated estrogen-binding protein is 

believed to mediate the response to estrogen. 

1.4.5.1 ER-mediated Nongenomic Action 

Mitogen Activated Protein Kinase (MAPK) 

Mitogen activated protein kinases (MAPKs) are important enzymes in 

signal transduction and are highly conserved among eukaryotes. In mammalian 

cells, MAPKs include the extracellular signal-regulated kinase (ERK) 1/2, the p38 

kinase and the stress-activated protein kinase (SAPK) or c-Jun NH2-terminal 

kinase (JNK) cascades (58, 245). ERK primarily responds to mitogenic signals, 

while JNK and p38 are predominantly activated by stress signals. 

Although MAPKs are a diverse group of kinases, they share an 

evolutionarily conserved model of activation, which consists of the sequential 

phosphorylation of three kinases. The MAPK kinase kinase (MAPKKK/MEKK) 

phosphorylates the serine/threonine residues on MAPK kinase (MAPKK/MEK). 

The phosphorylated MAPKK in turn activates MAPK through phosphorylation 

(58). A hallmark of MAPK is a dual-phosphorylation Thr-X-Tyr motif in the 

activation loop and both threonine and tyrosine phosphorylation are required for 

the full activity of MAPK (181). MAP kinase phosphatase (MKP) can 

dephosphorylate the threonine/tyrosine and thereby attenuate MAPK-dependent 

responses (106). 
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It has been reported that exposure to estrogens leads to rapid activation of 

the ERK 1/2 module in various cell types. In nerve cells, membrane-impermeable 

E2 rapidly induces ERK 1/2 activation, and results in c-Fos-dependent activation 

of immediate early genes (359). It has also been found that in MCF-7 breast 

cancer cells, E2 activates ERK1/2 in an ER-dependent manner (88); however, 

the upstream component involved in E2-dependent activation of this pathway is 

still unclear. Recently a study showed that in MCF-7 breast cancer cells, 

E2-induced ERK activation is mediated by a heregulin/human epidermal growth 

factor receptor-2 (ErbB2)/PKCδ/Ras pathway. In this model, HRG (Heregulin) is 

synthesized and secreted into extracellular environment upon E2 stimulation. 

HRG binds to ErbB2 resulting in activation of PKCδ, which in turn activates Ras 

and initiates downstream MAPK signaling (157). As mentioned in section 1.4.3, 

interactions between ERα, shc, and IGF-IR are also involved in E2-dependent 

activation of MAPK in MCF-7 cells. 

The p38 kinase is activated by estrogen in endothelial cells (273). In this 

cell type, E2 rapidly activates p38, leading to MAPKAP-2 kinase activation and 

phosphorylation of Hsp27. Through this pathway, E2 preserves stress fiber 

formation, and actin and membrane integrity. Moreover, E2-induced p38 

activation prevents hypoxia-induced apoptosis, and induces the migration of 

endothelial cells and the formation of primitive capillary tubes (273).  

In contrast to the other MAPK modules, E2 inhibits the JNK activity in 

breast cancer cells. In MCF-7 and ZR-75 cells, paclitaxel (taxol) or UV irradiation 
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induce apoptosis through activation of JNK. However, E2 inhibits taxol- or 

UV-stimulated JNK activity, therefore abrogating Bcl-2 and Bcl-xl phosphorylation 

and caspase activation (274). These molecular events may play a role in 

E2-dependent prevention of chemotherapy or radiation induced apoptosis in 

breast cancer cells. 

Phosphatidylinositol 3-Kinase (PI3K) 

ERα physically and functionally interacts with the regulatory subunit (p85α) 

of the lipid kinase PI3K (see section 1.4.3), and triggers activation of the catalytic 

subunit and increased intracellular production of phosphoinositides (311). PI3K 

phosphorylates the D-3 position of the phosphatidylinositol ring, catalyzing the 

synthesis of lipid mediators that act as second messengers transferring the 

signaling cascade to intracellular protein kinases. One of the principal targets of 

this cascade is the serine-threonine protein kinase Akt/protein kinase B. 

Activation of Akt mediates many of the downstream cellular effects of PI3K 

triggered by E2. For example, in vascular endothelial cells, E2 induces eNOS in 

an ERα-dependent manner via the AKT pathway (311). Activation of PI3K by 

estrogens is also important in breast cancer cells, where E2 rapidly triggers 

association of ERα with Src and p85 (50). This ternary complex probably favors 

hormone activation of Src- and PI3K-dependent pathways, which converge on 

cell cycle progression (50). There is evidence that PI3K activation by estrogen 

can also occur in the absence of ER. For example, estrogen activates PI3K in 

ER-negative MDA-MB-435 and MDA-MB-231 breast cancer cell lines and this 
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activation can be inhibited by Src kinase inhibitor PP2 but not by antiestrogen ICI 

182,780, suggesting that ER-independent pathway exists for PI3K activation 

(341). 

Other Signaling Pathways 

Protein kinase A (PKA) plays a regulatory role in mammary tumorigenesis. 

Cholera toxin (CT), a PKA activator, induces breast cancer cell growth in vitro 

and in vivo (304) and constitutive activation of PKA is associated with increased 

tamoxifen resistance in breast cancer cells (217). PKA can prevent 

ubiquitin-proteasome-dependent ERα degradation inducted by the ligand-binding 

(342). 

Estrogen rapidly induces cAMP levels and subsequently activates PKA in 

breast cancer and uterine cells through activation of adenylyl cyclase (18); 

however, the mechanism of estrogen-induced adenylate cyclase is still unknown. 

In rat pulmonary vascular smooth muscle cells, calcium removal blocked 

induction of cAMP by E2, suggesting that the intracellular calcium may have an 

important role.  

Although protein kinase C (PKC) has been identified as a target of 

nongenomic actions of E2, little is known about the mechanism (156, 330). Both 

G-protein inhibitor GDPβS and phospholipase C inhibitor U73122 block 

E2-induced PKC activity, suggesting that this process is dependent on G proteins 

as well as phospholipase C (330). Estrogen causes a rapid increase of 
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intracellular calcium levels (221), and presumably this process leads to the 

activation of calcium calmodulin-dependent kinases (CaMKs). Qin and coworkers 

reported that in MCF-7 breast cancer cells, E2 stimulates CaMKIV activity but not 

CaMKII (265), suggesting a certain specificity in E2-dependent activation of 

calcium signaling. 

1.4.5.2 ER-independent Activation of Non-genomic Pathway by Estrogens 

Several reports suggest that of E2 activation of G proteins by E2 is 

mediated directly through an orphan G protein-coupled receptor, GPR30. A 

recent report showed that E2 bound with high affinity to membranes of SKBR3 

breast cancer cells, which lack ERα and ERβ but express GPR30, and this 

resulted in activation of cAMP-dependent responses (334). Membranes from 

human embryonic kidney cells (HEK293 cells), which lack ERα, ERβ and GPR30, 

regain E2-binding activity when cells stably transfected with GPR30. GPR30 

binding is selective for E2 and the ER antagonists tamoxifen and ICI 182,780 

(105). However, it was not determined whether E2-GPR30 interactions contribute 

to the overall E2-dependent signaling or the associated downstream responses 

in breast cancer cells. 

In contrast, Revankar et al. identified GPR30 in the endoplasmic reticulum 

of COS7 monkey kidney cells expressing GPR30 linked to a fluorescent marker, 

as well as expression of endogenous GPR30 in several other cell lines (277). 

However, the process of how newly synthesized GPCRs exit the endoplasmic 
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reticulum and move to the plasma membrane was not fully characterized. GPCR 

processing in the endoplasmic reticulum is considered critical for eventual 

signaling activity and E2-initiated G protein signaling in the endoplasmic 

reticulum would be a unique mechanism to explain some of the physiological 

effects associated with E2 (199).  

 

1.5 Research Objectives 

1.5.1 Objective 1 

Treatment of mammalian cells with mitogens, cytokines and differentiation 

inducing agents is accompanied by alterations in expression of multiple genes 

that play integral roles in mediating cell-specific responses (325, 326). For 

example, immediate-early genes such as c-fos are rapidly induced (0.3 - 2 hr) in 

several mammalian cell lines after treatment with mitogens. c-fos protein is a 

nuclear transcription factor that forms part of the activating protein-1 (AP-1)
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complex and regulates AP-1-dependent gene expression. The early growth 

response-1 (Egr-1) gene is also a member of the immediate-early gene group of 

transcription factors and at least 4 Egr genes have been identified. Egr-1 protein 

contains a highly conserved DNA-binding domain composed of three zinc fingers, 

and binds GC-rich promoter DNA sequences (66, 355). Egr-1 modulates 

transcription of multiple genes and the overall genomic and cellular responses to 

Egr-1 are complex and dependent on both promoter- and cell-context. 

In prostate cancer, Egr-1 plays a role in cancer progression. Expression 

levels of Egr-1 mRNA and protein are much higher in prostate adenocarcinoma 

compared to levels in normal prostate tissue (332). Moreover, levels of Egr-1 

protein expression correlate with Gleason scores and inversely correlate with the 

degree of differentiation of carcinoma cells (95, 332). Abdulkadir and co-workers 

used the transgenic mouse model to study the function of Egr-1 over-expression 

in prostate tumors in vivo. Their data showed that tumor formation was 

significantly delayed in Egr-1 deficient mice, but tumor initiation and tumor growth 

rates were not affected by loss of Egr-1(5). Baron and co-workers using Egr-1 

antisense oligonucleotides and successfully inhibited transformation of prostate 

cancer cells (26). These results indicated a unique role for Egr-1 in regulating the 

transition from localized carcinoma in situ to invasive carcinoma. Egr-1 is induced 

in some but not all cancer cell lines after treatment with serum, ultraviolet light or 

phorbol esters, and there were differences in Egr-1 inducibility even among 

ER-positive MCF-7 (inducible), ZR-75 and T47D breast cancer cell lines (137). 
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Egr-1, like several other immediate-early genes is induced by E2 in the rodent 

uterus and in MCF-7 breast cancer cells (67, 329). Pratt and coworkers reported 

that E2 activates Egr-1 expression in MCF-7 cells (263), and this is accompanied 

by rapid autophosphorylation of raf-1 suggesting that hormonal regulation of 

Egr-1 may involve rapid non-genomic pathways of estrogen action which have 

been extensively described in multiple cell types (189, 358). The -600 to +12 

region of the Egr-1 promoter contains several potential E2-responsive motifs 

including a distal GC-rich motif that could be activated by nuclear ERα/Sp1, and 

multiple SREs (SRE1-4) and cAMP response element (CRE) that can be 

hormonally activated through non-genomic pathways. The first objective of this 

study was to investigate the molecular mechanism of E2-dependent activation of 

Egr-1 in MCF-7 breast cancer cells and identify which cis-response elements and 

trans-acting factors in the Egr-1 promoter are required for E2 induced 

transactivation.   

1.5.2 Objective 2 

Chicken ovalbumin upstream promoter transcription factors (COUP-TFs) 

are orphan receptors and members of the nuclear receptor superfamily. Two 

genes called COUP-TFI (also termed EAR3) and COUP-TFII (also termed ARP-1) 

have been identified in mammals. These receptors are closely related 

transcription factors that are widely expressed and are involved in the regulation 

of several important biological processes, such as neurogenesis, organogenesis, 
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cell fate determination, and metabolic homeostasis (242). Both genes show an 

exceptional homology and overlapping expression patterns, suggesting that they 

may serve redundant functions. However, each factor possesses its own distinct 

expression profile during development (197). A null mutation of COUP-TFI 

resulted in defects in neurogenesis, axon guidance, and arborization (267), 

whereas deletion of COUP-TFII resulted in striking defects in angiogenesis, 

vascular remodeling, and fetal heart development (248). 

Like most nuclear receptors, as transcription factors, COUP-TFI regulates 

transcription by binding to a variety of response elements, such as DR1, DR3, 

DR4 DR5 and DR7 containing the AGGTCA motif in target gene promoters. 

COUP-TFI was originally identified as an activator of the chicken ovalbumin gene. 

In the arrestin gene promoter, a DR-7 element mediated the positive 

transcriptional effect of COUP-TF (200) and recently COUP-TFI was shown to 

activate aldosterone synthase (CYP11B2) expression by binding to the -129/-124 

element of human CYP11B2 promoter (306). However, in the other genes 

COUP-TFI activated transcription through protein-protein interactions with other 

transcription factors. For example in the HNF-1α gene COUP-TFI interacted with 

HNF-4 in the promoter (213) and in the Egr-1 gene COUP-TF enhances 

transcription by recruiting coactivator SRC-1 through its interaction with Sp-1 

(260). It has also been reported that COUP-TFI can function as a transcriptional 

repressor of many target genes and several mechanisms have been proposed to 

explain the COUP-TF-mediated repression. COUP-TFs inhibit the transcription of 
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other nuclear receptor such as retinoic acid receptor and thyroid hormone 

receptor by competing for binding to the response elements of these receptors, 

thus acting as passive repressors of their transcriptional activation (343). Another 

mechanism of passive repression by COUP-TFs involves their ability to 

heterodimerize with the 9-cis retinoic acid receptor, reducing its availability for 

other nuclear receptors that use it as a partner (384). Furthermore, COUP-TFI 

represses basal transcriptional activity by interacting with transcriptional 

corepressors, such as N-CoR and SMRT (308).  

It has also been reported that COUP-TFI enhanced human ER activity as 

a transcription coactivator. The formation of a tight ERα-COUP-TFI intermediate 

complex resulted in an increased recruitment of ERK2/p42 MAPK, 

phosphorylation of ERα on Ser 118 and enhanced transcriptional activity (215). 

However, the functional domains of COUP-TFI required for enhancement of ERα 

activity, and interactions with ERα have not been determined. The second 

objective of this study was to investigate COUP-TFI coactivation activity on ER 

and ER/Sp1 genomic transactivation pathway and also identify the functional 

domains of COUP-TFI required for this enhanced activity, and for interactions 

with ERα and Sp1. 
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CHAPTER II 

MATERIALS AND METHODS 

2.1 Chemicals, Cells, and Antibodies   

MCF-7, ZR-75, and MDA-MB-231 breast cancer cells, HeLa, and COS-7 

cells were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA). MCF-7 and MDA-MB-231 cells were routinely maintained in 

DME/F12 medium with phenol red and supplemented with 5% fetal bovine serum 

(FBS) plus antibiotic antimycotic solution (Sigma, St. Louis, MO). COS-7 and 

HeLa cells were maintained in Dulbecco’s Modified Eagle Media (DMEM) (Gibco 

Invitrogen Corporation, Carlsbad, CA) medium with phenol red and 

supplemented with 5% FBS plus antibiotic antimycotic solution. ZR-75 cells were 

maintained in RPMI 1640 media (Sigma) supplemented with 2.2 g/L sodium 

bicarbonate, 2.38 g/L HEPES, 0.11 g/L sodium pyruvate, 4.5 g/L glucose, and 

7.5 % FBS plus antibiotic antimycotic solution. Cells were cultured and grown in 

an air-carbon dioxide (95:5) atmosphere at 37°C. For transient transfection 

studies, cells were grown for 1 day in DME/F12 medium without phenol red and 

2.5% FBS stripped with dextran-coated charcoal. ICI 182780 was kindly provided 

by Dr. Alan Wakeling (AstraZenaca Pharmaceuticals, Macclesfield, UK). The 

kinase inhibitors PD98059, LY294002, SB202190 and SP600125 were 

purchased from Cal-Biochem (La Jolla, CA). ERα, Sp1, Elk-1, actin, 

phospho-Elk-1, and SRF antibodies were obtained from Santa Cruz 
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Biotechnology, Inc. (Santa Cruz, CA). Myc-tag and Egr-1 antibodies were 

obtained from Cell Signaling Technology (Beverly, MA). His-tag antibody was 

obtained from Invitrogen (Carlsbad, CA). All other chemicals and biochemicals 

were the highest quality available from commercial sources. 

 

2.2 Cloning and Plasmids  

2.2.1 Egr-1 Experiment 

Wild-type human ERα (ERα) expression plasmid was provided by Dr. 

Ming-Jer Tsai (Baylor College of Medicine, Houston, TX). The SRF-luc construct 

contains five tandems SRF elements linked to bacterial luciferase and was 

purchased from Stratagene (La Jolla, CA). Dominant negative (dn) Elk-1 was 

provided by Dr. Roger Davis (University of Massachusetts, Worcester, MA). This 

construct encodes amino acid residues 1 - 168 of Elk-1 and lacks the activation 

domain. The plasmid Gal-Elk-1C was obtained from Dr. Roger Treisman 

(Imperial Cancer Research Center, London, UK). pEgr1-CAT plasmid, which 

contains the -600 to +12 5’ flanking sequence from the human Egr-1 gene was 

kindly provided by Dr. Kathy Sakamoto (UCLA School of Medicine, Los Angeles, 

CA). pEgr-1A (-600/+12), pEgr-1B (-460/+12), pEgr-1C (-164/+12), pEgr-1D 

(-480/-285), pEgr-1E (-480/-324), and pEgr-1F (-480/-348) were made by PCR 

amplification using pEgr1-CAT as template. The PCR products were purified and 

ligated into pGL2 basic vector (Promega Corp., Madison, WI). Site-directed 
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mutagenesis was performed using the two-step overlap extension PCR method. 

Oligonucleotides used for site-directed mutagenesis in this study are listed as 

Table 2-1.  

 
 
 

Table 2-1 Oligonucleotides used for site-directed mutagenesis. 

pEgr-1Em1  5’ GCA GCA CCT TCC TTG GAG TGG C 3’ 

pEgr-1Em2  5’ GAA CAA CCC TTG CTT GGG CAG CAC 3’ 

pEgr-1Em3  5’ GAT CCC CCG CCT AGC TAA CCC TTA TTT GG 3’ 

Elk-1c (S383A)  5’ GAG CAC CCT GGC TCC CAAT TGC GC 3’ 

5’ TGC GCC CCG TGC CCC GGC CAA GC 3’ Elk-1C (S389A) 

Note. Mutations are underlined and substituted bases are indicated in bold. 

2.2.2 COUP-TFI Experiment 

Taf1-ERα and Null-ERα expression plasmids were provided by Dr. D. 

McDonnell (Duke University, Durham, NC). The human ER deletion construct 

19c-ERα was provided by Dr. Pierre Chambon (Institut de Genetique et de 

Biologie Moleculaire et Cellulaire, Illkirch, France). The SRC-1 expression 

plasmid was graciously provided by Dr. B. O'Malley (Baylor College of Medicine, 

Houston, TX). The pERE3 reporter containing three consensus ERE sites linked 

to a luciferase gene was created by cloning an oligonucleotide with three ERE 

elements into
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BamHI-HindIII cut pXP-2 plasmid (298). The wild-type mouse COUP-TFI 

expression vector (pCR3.1-COUP-TFI) was originally provided by Dr. Ming-Jer 

Tsai (Baylor College of Medicine) and used as the PCR template for further 

cloning. The COUP-TFI expression plasmids used in the transfection assay 

including WT, N-terminal deletion mutants (dN1, and dN2), and C-terminal 

deletion mutants (dC1 and dC2) were generated by PCR amplification and 

ligated into pCDNA3.1/His or pCDNA3.1/HIS/-Myc vectors (Invitrogen). The 

COUP-TFI dN3 mutant were generated by PCR amplification and cloned into pM 

vector (BD Biosciences Clontech, Palo Alto, CA). For mammalian two-hybrid 

assay, the expression plasmids of GAL4-DBD-ERα chimeras including pM-ER, 

pM-ER (A/B) and pM-ER (C/F) were made by Dr. B. Saville in this lab as 

previously described (298). The VP-16-COUP-TFI chimera expression plasmid 

was generated by PCR amplification and ligted into pACT vector (Promega). The 

expression plasmids of point mutation of COUP-TFI (m83, m103 and m138) were 

generated by site-directed mutagenesis using the two-step overlap extension 

PCR method and ligated into pCDNA3.1/His vector. Oligonucleotide primers 

used for cloning or site-directed mutagenesis in this study are listed in Table 2-2.  
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Table 2-2 Summary of primers used for cloning the COUP-TFI constructs. 

Clones Primers 

F, 5’ GCGGCCGCATGGCAATGGTAGTTAG 3’ 
R, 5' GCTGCTCGAGGGAACACTGGATGGACATGT 3' 

WT 

F, 5' TATAGGTACCTGGTTCAGGCCAGAGCCAGCAGCA 3'
R, 5' GCTGCTCGAGGGAACACTGGATGGACATGT 3' 

dN1 

F, 5' TAGCGGTACCTAGGAGCGTCCGCAGGAACTTAAC 3'
R, 5' GCTGCTCGAGGGAACACTGGATGGACATGT 3' 

dN2 

F, 5’ TCTAGAATGGAAGCGGTTCAGCGAGGAA 3’ 
R, 5’ GCGGCCGCCTAGGAACACTGGATGG 3’ 

dN3 

F, 5’ AGCTAAGCTTATGGCAATGGTAGTTAGCAG 3’ 
R, 5’ AGCTCTCGAGCAGCAGTTTGCCAAAGCGGC 3’ 

dC1 

F’ 5’ AGCTAAGCTTATGGCAATGGTAGTTAGCAG 3’ 
R’ 5’ AGCTCTCGAGCAGCGGCATGGAGCAC 3’ 

dC2 

F, 5’ ACGCGTCAATGGCAATGGTAGTTAG 
R, 5’ TCTAGACTAGGAACACTGGATGG 

VP16-COUP 

F, 5’ GCACATCGAGGCCGTGGTGTGCG 3’ 
R, 5' CGCACACCACGGCCTCGATGTGC 3' 

m83 COUP-TFI 

F, 5’ CTGCGAGGGCGCCAAAAGTTTCT 3’ 
R, 5' AGAAACTTTTGGCGCCCTCGCAG 3' 

m103 COUP-TFI 

F, 5’ GTGCCAATACGCCCGCCTCAAGAAG 3’ 
m138 COUP-TFI 

R, 5' CTTCTTGAGGCGGGCGTATTGGCAC 3' 

Mutations are underlined and substituted bases are indicated in bold.
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2.3 Transient Transfection and Luciferase Assay  

2.3.1 Egr-1 Experiment 

For transfection experiments, 175,000 MCF-7 cells were initially seeded in 

12-well plates. Twenty-four h after seeding, MCF-7 cells were transfected by the 

calcium phosphate method with Egr-1 promoter-luciferase reporter constructs, 

ERα expression vector and pCDNA3/His/lacZ (Invitrogen) that was used as a 

standard reference control plasmid for determining transfection efficiencies. After 

5 h, cells were shocked with 25% glycerol and washed with PBS. Fresh 

DME/F12 without phenol red and charcoal-stripped FBS containing DMSO or 1 

nM E2 in DMSO were added to the cells and incubated for 24 h.  

2.3.2 COUP-TFI Experiment 

MCF-7, MDA-MB231, HeLa, COS-7 and ZR-75 cells were seeded in 

DME/F-12 medium without phenol red containing 2.5 % 

dextran/charcoal-stripped FBS. After 24 h cells were transfected with GeneJuice 

transfection reagent (Novagen, Madison, WI) according to manufacture's 

recommendation. Five hours after transfection, cells were replaced with fresh 

DME/F12 without phenol red and treated with DMSO or 10 nM E2 for 36 h. 

Cells from each experiment were then harvested in 100 μl of 1X Reporter 

lysis buffer (Promega). Luciferase assays were performed on 30 μl of the cell 

extract using the Luciferase assay system (Promega). Light emission was 
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detected on a Lumicount luminometer (Packard, Meriden, CT). β-Galactosidase 

assays were performed on 20 μl of cell extract using the luminescent 

Galacton-Plus assay kit (Tropix, Bedford, MA). The luciferase activity observed in 

each treatment group was normalized to β-gal activity obtained from the same 

sample to correct for transfection efficiencies. Data are expressed as fold 

induction (by E2 or other chemicals) compared to the solvent (DMSO) control.  

 

2.4 Western Blot Assay   

Cells were seeded into 60 mm tissue culture plates in DME/F-12 medium 

without phenol red containing 2.5% charcoal-stripped FBS. After 24 h, cells were 

treated with 10 nM E2 and harvested at designated time points and lysed in 

ice-cold lysis buffer (50 mM HEPES [pH 7.5], 500 mM NaCl, 10% [vol/vol] 

glycerol, 1% Triton X-100, 1.5 mM MgCl2, 1 mM EGTA) supplemented with 

protease inhibitor cocktail (Sigma). Equal amounts of protein from each treatment 

group were boiled in 1x Laemmli buffer (50 mM Tris-HCl, 2% sodium dodecyl 

sulfate [SDS], 0.1% bromphenol blue, 175 mM β-mercaptoethenol), separated by 

SDS-10% polyacrylamide gel electrophoresis (SDS-PAGE), and transferred to 

polyvinylidene difluoride (PVDF) membrane. Membranes were blocked with 

Blotto (5% milk, Tris-buffered saline [10 mM Tris-HCl, pH 8.0, 150 mM NaCl], and 

0.05% Tween 20) and probed with primary antibodies. Following incubation with 
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peroxidase-conjugated secondary antibody, immunoglobulins were visualized 

using the ECL detection system (Perkin Elmer Foster City, CA). 

 

2.5 Nuclear Extract Preparation and EMSA 

Cells were seeded in 100 mm tissue culture plates using DME/F12 without 

phenol red, supplemented with 2.5% charcoal-stripped FBS. After 24 h, cells 

were treated for 1 h with DMSO or 10 nM E2. Nuclear extracts were obtained 

using the NE-PER nuclear and cytoplasmic extraction kit (Pierce) according to 

the manufacturer's instructions. Nuclear extracts obtained from different 

treatment groups were incubated for 20 min in HEGD buffer with poly-(dI-dC), 

unlabeled oligonucleotides or antibodies for supershift assays. The mixture was 

then incubated for additional 20 min after addition of 32P-labeled oligonucleotide. 

Reaction mixtures were separated on 5% polyacrylamide gels 

(acrylamide:bis-acrylamide 30:0.8) at 140 V in 1X TBE (0.09 M Tris-HCl, 0.09 M 

boric acid and 2 mM EDTA, pH 8.3). Gels were dried and protein-DNA complexes 

were visualized using a Storm 860 instrument (Amersham Biosciences, 

Piscataway, NJ). Oligonucleotides used for EMSA in this study are summarized 

as follows (mutations are underlined and substituted bases are indicated in bold). 

SRE3  5’ AGG ATC CCC CGC CGG AAC AAC CCT TAT TTG GGC AG 3’

mTCF 5’ AGG ATC CCC CGC CTA GCT AAC CCT TAT TTG GGC AG 3’ 

5’ AGG ATC CCC CGC CGG AAC AAC CCT TGC TTG GGC AG 3’mSRF 
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2.6 RT-PCR Assay  

Total RNA was extracted using Nucleospin RNA purification kit (BD 

Biosciences Clontech), following the manufacturer’s instructions. An aliquot of 

750 ng RNA was used as the template for cDNA synthesis by incubating with 

oligo-d(T) primer and multiscribe reverse transcriptase (Perkin Elmer) at 48°C for 

40 min. PCR amplification was performed with Taq PCR Master Mix (Promega, 

Madison, WI). The following conditions were used for the PCR assays: one cycle 

of 2 min at 95°C; 34 cycles of 30 sec at 95°C; 30 sec at 57.5°C; 1 min at 72°C; 

one cycle of 5 min at 72°C. PCR products were analyzed by electrophoresis on 

1.5% agarose gels containing ethidium bromide. Oligonucleotide primers used 

for PCR in this study include the following 

F’ 5’ GAG CCG AGC GAA CAA CCC TAC GAG CAC CTG 
R’ 5’ GCG CTG AGG ATG AAG AGG TTG GAG GGT TGG 

Egr-1 

F’ 5’ TGT GTC CGT CGT GGA TCT GA 
R’ 5’ CCT GCT TCA CCA CCT TCT TGA 

GADPH 

F, 5’ GCT TCA ACG CAG ACT ACG AG 
c-fos 

R, 5’ TAG AAG GAC CCA GAT AGG TC 
 

2.7 Coimmunoprecipitation Assay 

COS-7 cells were seeded into 60 mm tissue culture plates in phenol 

red-free DME/F-12 medium containing 2.5% charcoal-stripped FBS. After 24 h., 

transient transfections were performed by using GeneJuice transfection reagent 

(Novagen) according to the manufacturer's protocol. After 4-6 h., transfected cells 
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were treated with 10 nM E2 for 24h. Cells were harvested and lysed by using 1 

ml of RIPA buffer (1x PBS, 1% Nonidet P-40 or Igepal CA-630, 0.5% sodium 

deoxycholate, 0.1% SDS, 10 mg/ml PMSF in isopropanol, aprotinin, 100 mM 

sodium orthovanadate), and cellular debris was removed by centrifugation at 

10,000xg for 10 min at 4ºC. The supernatant was transferred to a fresh 

microcentrifuge tube and precleared by adding 20 µl of protein A-agarose 

conjugate slurry (Sigma) and incubated at 4ºC for 1h. After centrifugation for 1 

min, the supernatant was transferred to another new microcentrifuge tube, and 

2.5 µg of rabbit polyclonal anti-ERα antibody (Santa Cruz) was added and 

incubated at 4 ºC for 1 hr. After incubation, 20 µl of protein A-agarose conjugate 

slurry (Sigma) was added and incubated at 4ºC for another 1 h. The 

immunoprecipitate was collected by centrifugation, gently washed with 500 µl 

RIPA buffer (3X), and resuspended and denatured in 50 µl of 2x Laemmli buffer. 

The immunoprecipitated sample was analyzed in a western blot assay.  

 

2.8 Statistical Analysis  

Statistical significance was determined by ANOVA and Student's t-test, 

and the levels of probability are noted. The results are expressed as means ± SD 

for at least three separate (replicate) experiments for each treatment.
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CHAPTER III 

RESULTS 

3.1 Egr-1 Is Activated by E2 in MCF-7 Cells 

3.1.1 Deletion and Mutational Analysis of the Egr-1 Gene Promoter 

The results in Figure 3-1 A show that E2 induced Egr-1 protein levels by 

approximately 8.2-fold, and this complements results of previous studies in 

MCF-7 cells which show that E2 induces Egr-1 mRNA levels (263). E2 did not 

induce luciferase activity in MCF-7 cells transfected with pEgr-1A alone; however, 

in cells cotransfected with ERα expression plasmid (500 ng), E2 induced 

luciferase activity (> 7-fold), and this response was inhibited by the antiestrogen 

ICI 182780 (Fig. 3-1 B). Thus, hormone-responsiveness in MCF-7 cells was 

observed only after cotransfection with ERα. Similar results have previously been 

reported for multiple E2-responsive plasmids activated through nuclear or 

extranuclear pathways of estrogen action, and this is related to limiting levels of 

ERα in transfected cells that overexpress the plasmids (88-90, 297, 331). 

However, it was also observed that higher concentrations of E2 also significantly 

induced luciferase activity in MCF-7 cells transfected only with pEgr-1A (no hERα 

cotransfection) (Fig. 3-1 C). This has also been reported for hormone-dependent 

activation of constructs containing c-fos promoter inserts which are activated 

through kinase-dependent pathways in MCF-7 cells (88, 89). 

     



 98

The -600 to +12 region of the Egr-1 promoter contains several potential 

E2-responsive motifs including a distal GC-rich motif that could be activated by 

ERα/Sp1 (nuclear), multiple SREs (SRE1-4), and cAMP response element (CRE) 

that can be hormonally activated through non-genomic (extranuclear) pathways 

(51, 85, 88, 189, 294). Transfection studies in MCF-7 cells with pEgr-1A (-600 to 

+12), pEgr-1B (-460 to +12), and pEgr-1C (-164 to +12) (Fig. 3-2 A) show that the 

upstream GC-rich and downstream CRE and SRE1 motifs are not necessary for 

hormone-inducibility suggesting the SREs 2 – 4 are necessary for this response. 

The E2-responsiveness of several 3'-deletion constructs containing SREs 2 – 4 

(pEgr-1D, -480 to -285), SRE4 and 3 (pEgr-1E, -480 to -324), and SRE4 

(pEgr-1F, -480 to -376) were also investigated in MCF-7 cells (Fig. 3-2 B) and 

induction by E2 was observed only for the former two constructs. These results 

suggest that SRE3 was required for E2-induced transactivation. Mutation 

analysis of SRE3 was determined using constructs containing selective 

mutations in the SRF (SRE2 and SRE3) and TCF (SRE3) motifs. E2-induced 

transactivation was observed in cells transfected with pEgr-1Em1 which 

contained a mutation in an adjacent SRF binding site. However, induction was 

not observed in cells transfected with constructs containing SRE3 mutations in 

the SRF or TCF sites (pEgr-1Em2 and pEgr-1Em3) (Fig. 3-2 C). These results 

indicate that SRE3 is the major E2-responsive motif in the Egr-1 gene promoter 

and that TCF and SRF motifs are required. 
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Fig. 3-1. Hormone-responsiveness of Egr-1 in MCF-7 cells.  (A) Induction of 
Egr-1 protein by E2. MCF-7 cells were treated with 10 nM E2 for different times 
and levels of Egr-1 protein were determined by Western blot analysis as 
described in the Materials and Methods. Actin protein was used as a loading 
control, and these cells were not cotransfected with ERα. (B) Hormone activation 
of pEgr-1A. MCF-7 cells were transfected with pEgr-1A with or without ERα 
expression plasmid, treated with DMSO, E2, ICI 182780, or their combination, 
and luciferase activity was determined as described in the Materials and Methods. 
Results are expressed as means ± SD for three replicate determinations for each 
treatment group, and significant (p < 0.05) induction by E2 (*) or inhibition by ICI 
182780 (**) is indicated. (C) Activation of pEgr-1A in the absence of 
cotransfected ERα. Cells were transfected with pEgr-1A, treated with 1 – 1000 
nM E2, and luciferase activity was determined as described in the Materials and 
Methods. Results are expressed as means ± SD for three replicate 
determinations for each treatment group, and significant (p < 0.05) induction by 
E2 (*) is indicated.. 
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Fig. 3-1. continued. 
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Fig. 3-2. Deletion and mutation analysis of the Egr-1 gene promoter.  Deletion (A, 
B) and mutation (C) analysis of pEgr-1A. MCF-7 cells were transfected with 
pEgr-1 constructs and ERα expression plasmid, treated with DMSO or 1 nM E2, 
and luciferase activity was determined as described in the Materials and Methods. 
Results are expressed as means ± SD for three replicate determinations for each 
treatment group, and significant (p < 0.05) induction by E2 is indicated by an 
asterisk.
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Fig. 3-2. continued. 
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3.1.2 Protein Interactions with SRE3 

Nuclear extracts from DMSO and E2-treated MCF-7 cells were incubated 

with [32P]SRE3 and analyzed in a gel mobility shift assay (Fig. 3-3). In this gel, 

two major specifically-bound retarded bands were formed (see arrow) using 

DMSO and E2-treated extracts (lanes 2 and 6). Coincubation of both extracts 

with [32P]SRE3 and Elk-1 (lanes 3 and 7) or phospho-Elk-1 (lanes 4 and 8) 

antibodies gave supershifted bands (SS →) indicating that both forms of Elk-1 

were associated with the SRE oligonucleotide. Although the overall intensities of 

the retarded bands were comparable using both E2- and solvent (DMSO)-treated 

nuclear extracts, the supershifted phospho-Elk-1 complex was more intense 

using the hormone-treated extracts (lane 4 vs. lane 8). In competition 

experiments with unlabeled oligonucleotides (lanes 9 - 11), mutant 

oligonucleotides in the TCF (m1-SRE3) and SRF (m2-SRE3) sites only slightly 

decreased the more and less mobile retarded bands, respectively. In contrast, 

competition with the wild-type SRE3 oligonucleotide resulted in complete loss of 

both retarded bands. Antibody supershift experiments were also carried out using 

[32P]SRE3 and nuclear extracts from DMSO- and E2-treated cells with SRF 

antibody. SRF antibody can also induce formation of a supershifted complex in 

both treatment groups (data not shown). These data are consistent with 

E2-induced phosphorylation of Elk-1 and interaction of SRF and phospho-Elk1 
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Fig. 3-3. Gel mobility shift assay of SRE3-protein interactions.             
Interactions of nuclear extracts with [32P]SRE3. [32P]SRE3 was incubated with 
nuclear extracts from MCF-7 cells treated with DMSO or E2 and coincubated with 
Elk-1, phospho-Elk-I antibodies, or non-specific IgG or unlabeled 
oligonucleotides (100-fold excess), and analyzed by gel mobility shift assay as 
described in the Materials and Methods. Retarded and supershifted bands are 
indicated with arrows.   
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on SRE3 in the Egr-1 gene promoter, and this was comparable with SRF/Elk-1 

interactions with the SRE in the c-fos gene promoter (88). 

3.1.3 Role of Elk-1 in Activation of Egr-1 Gene Expression 

The role of Elk-1 in activation of Egr-1 was further investigated in the 

MCF-7 cells transfected with pEfg-1D and increasing amounts of dominant 

negative (dn) expression plasmid for Elk-1 (50 - 500 ng) (Fig. 3-4 A). dn-Elk-1 

inhibits E2-induced activation of pEgr-1D and confirms the role of Elk-1 in 

activation of SRE3. GAL4-Elk-C contains the C-terminal region of Elk-1 (amino 

acids 307 - 428) fused to the DNA binding domain of the yeast GAL4 proteins. 

The Elk-C region can serve as a transactivation domain (206, 338), and in the 

presence of cotransfected ERα, E2 induces reporter gene activity in MCF-7 cells 

transfected with GAL4-Elk-C and a construct containing 5 copies of the GAL4 

response element linked to a bacterial luciferase reporter gene (pGAL45) (Fig. 

3-4 B). This construct is also induced by E2 alone (ca. 2-fold), but is enhanced by 

cotransfection with ERα due to overexpression of the reporter construct and 

limiting levels of endogenous ERα (88). This hormone-induced response was 

inhibited by the MAPK kinase inhibitor PD98059 but not by 20 μM SB202190 or 

25 μM SP600125 which inhibit p38 and jun N-terminal kinase, respectively. 

These results are consistent with hormonal activation of the ras-MAPK pathway 

in breast cancer cells (219, 220). The results illustrated in Figure 3-4 C compared 

the differences in hormone-induced activation of wild-type Elk-C and constructs 
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containing S383A and S389A mutations. E2 activates wild-type GAL4-ElkC and 

partially activates the S389A mutant but not the S383A mutant, and this pattern 

of activation was similar to that observed for serum activation of Elk-1 in NIH 3T3 

cells (206). The results in Figure 3-4 D demonstrate that E2 induces 

phosphorylation of Elk-1, and this is inhibited by PD98059 but not SB02190, 

confirming the role of MAPK in this response. 

However, previous studies indicate that the SRE in the c-fos gene 

promoter is also activated through phosphatidylinositol-3-kinase (PI3-K) which is 

upregulated by E2 in MCF-7 cells (88). Results in Figure 3-5 A show that the 

MAPK inhibitor PD98059 inhibits E2-induced transactivation in MCF-7 cells 

transfected with pEgr-1E, whereas this response is not blocked by LY294002, an 

inhibitor or PI3-K. As a positive control, LY294002 but not PD98059 inhibited 

E2-dependent activation of a construct containing 5 SRF elements (SRF-luc) in 

MCF-7 cells (Fig. 3-5 B) as previously reported (89). Induction of Egr-1 mRNA 

levels by E2 (Fig. 3-5 C) were also inhibited by PD98059 and not LY294002 

confirming that hormonal activation of Egr-1 is dependent on ERα and 

kinase-dependent activation of MAPK. In contrast, hormone-dependent 

activation of c-fos is due to activation of both MAPK and PI3-K pathways (88, 89), 

and inhibitors of these pathways decrease induction of c-fos mRNA in MCF-7 

cells (Fig. 3-5 C). 
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Fig. 3-4. Role of Elk-1 phosphorylation in activation of Egr-1.  (A) Effects of 
dnElk-1. MCF-7 cells were transfected with pEgr-1D, treated with DMSO or 1 nM 
E2, cotransfected with different amounts of dnElk-1 expression plasmid, and 
luciferase activity was determined as described in the Materials and Methods. 
Significant (p < 0.05) inhibition of E2-induced luciferase activity by dnElk-1 is 
indicated by an asterisk. (B) Hormone activation of GAL4-Elk-1C/pGAL45. MCF-7 
cells were transfected with GAL4-Elk-1C/pGAL45, ERα expression plasmid, 
DMSO, 10 nM E2 and kinase inhibitors (50 μM PD98059, 20 μM SB202190, and 
25 μM SP600125), and luciferase activities were determined as described in the 
Materials and Methods. Significant (p < 0.05) inhibition of E2-induced activity is 
indicated (**). (C) Activation of GAL4-Elk-1C. MCF-7 cells were transfected with 
pGAL45, wild-type and mutant GAL4-Elk-1C, (±) ERα expression plasmid, 
treated with DMSO or 10 nM E2, and luciferase activity was determined as 
described in the Materials and Methods. Significant (p < 0.05) induction by E2 is 
indicated by an asterisk. (D) Phosphorylation of Elk-1. MCF-7 cells were treated 
with DMSO, 10 nM E2 alone, or in combination with 50 μM PD98059 or 20 μM 
SB202190, and whole cell lysates were examined by Western blot analysis for 
Elk-1 and phospho-Elk-1 proteins. Similar results were observed in duplicate 
experiments. Results in (A), (B) and (C) are means ± SD for three replicate 
experiments for each treatment group.
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Fig. 3-4. continued. 
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Fig. 3-5. Effects of PD98059 and LY294002 on hormone-induced activation of 
Egr-1 and comparative SRE sequences.  (A) Activation of pEgr-1E. MCF-7 cells 
were transfected with pEgr-1E, treated with DMSO, 10 nM E2 alone or in 
combination with 25 μM PD98059 or 50 μM LY294002, and luciferase activity 
was determined as described in the Materials and Methods. Results are means ± 
SD for three replicate experiments for each treatment group, and significant (p < 
0.05) inhibition in cotreatment groups is indicated (*). (B) Induction of SRF-luc by 
E2. MCF-7 cells were transfected with SRF-luc, treated with E2, DMSO or kinase 
inhibitor as indicated in Fig. 3-5 A (above), and luciferase activity determined as 
described in the Materials and Methods. Results are means ± SD for three 
replicate determinations for each treatment group, and significant (p < 0.05) 
induction (*) or inhibition (**) is indicated. (C) Induction of pEgr-1 and c-fos mRNA. 
MCF-7 cells were treated with DMSO, 10 nM E2 alone or in combination with 25 - 
50 μM PD98059 or 25 - 50 μM LY294002, and induction responses were 
determined by RT-PCR as described in the Materials and Methods. Similar 
results were observed in duplicate experiments.   

     



 110

B. 

E2 + PDE2 + LYE2DMSO

0

1

2

3

4

5

6 *

**

pSRF-Luc

 
 

C. 

GAPDH

Egr-1

DMSO E2
+ PD 
25 μM

+ PD 
50 μM

+ LY 
25 μM

+ LY 
50 μM

E2
+ PD 
25 μM

+ PD 
50 μM

+ LY 
25 μM

+ LY 
50 μM

c-Fos

 
 
Fig. 3-5. continued. 
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3.2 COUP-TFI Coactivates ERα-Mediated Transactivation 

3.2.1 Coactivation of ERα by COUP-TFI 

Coactivation of ERα-dependent transactivation by COUP-TFI was initially 

examined in ERα-positive MCF-7 breast cancer cells. MCF-7 cells were 

transfected with pERE3, which contains three tandem EREs in a minimal 

TATA-luciferase construct, and ERα expression plasmid. The transfected pERE3 

construct is overexpressed in the transfected cells and minimal E2-inducibility is 

observed in MCF-7 cells in the absence of co-transfected ERα. This system is 

ideal for investigating coactivation of ERα and determining domains of ERα and 

coactivators required for E2-dependent transactivation in a breast cancer cell 

context. The results in Figures 3-6 A show that E2 causes a 1.6-fold increase in 

reporter gene activity in MCF-7 cells transfected with 2.5 ng ERα expression 

plasmid, and cotransfection with 50, 100 and 200 ng COUP-TFI expression 

plasmid resulted in a 7.9-, 5.5- and 9-fold enhancement of E2-induced luciferase 

activity. COUP-TFI alone also increased basal activity and this modified the 

overall enhanced activity by COUP-TFI. To determine the cell specificity of 

coactivation by COUP-TFI, we also tested ERα-negative breast (MDA-MB 231) 

and non-breast cancer (COS-7 and HeLa) cells. In MDA-MB 231, COS-7 and 

HeLa cells, E2-induced luciferase activity was observed only after cells 

transfected with ERα, and COUP-TFI expression significantly enhanced 

E2-dependent activity up to 30.7-,10.3- and 3.7-fold respectively (Figs. 3-6 B, C  
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Fig. 3-6 Coactivation of ERα by COUP-TFI. (A) MCF-7, (B) MDA-MB-231, (C) 
COS-7 and (D) HeLa cells were transfected with pERE3, ERα, β-galactosidase 
and increasing amounts of pCDNA3-COUP-TFI (0, 50, 100 and 200 ng) 
expression plasmid. After transfection, cells were treated with DMSO or 10 nM 
E2 for 36 h., and luciferase activity normalized to β-galacosidase activity was 
determined as described in the Materials and Methods and presented as relative 
luciferase units (RLU). Significant (p<0.05) induction by E2 (*) or coactivation of 
E2-induced activity by COUP-TFI (**) is indicated. 
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Fig. 3-6. continued. 
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and D). These results show that COUP-TFI significantly coactivated 

ERα-mediated transactivation in ERα-positive and negative breast cancer cells 

and in ERα-negative COS-7 and HeLa cells and suggest that this coactivation 

response is primarily due to COUP-TFI and commonly expressed cofactors.  

3.2.2 Coactivation of Variant ERα by COUP-TFI 

ERα contains two major activation domains and we therefore investigated 

the coactivation activity of COUP-TFI with three ERα variants as shown in Figure 

3-7 A. The Taf1-ERα contains three mutations in helix 12 (D538N, E542Q, and 

D545N) that block AF2-dependent interaction with coactivators and inactivates 

AF-2-dependent transcriptional activation. The 19c-ERα is an A/B domain 

deletion mutant which lacks AF1. The Null-ERα which contains mutations on AF2 

and deletion of AF1 has the minimal hormone response (74). 

When COS-7 cells transfected with pERE3 and COUP-TFI plasmid alone, 

COUP-TFI did not affect basal luciferase activity after treatment with E2 (Fig. 3-7 

B), suggesting that enhancement of E2-induced luciferase activity by COUP-TFI 

is ERα dependent. In cells transfected with Taf1-ERα and pERE3, E2 induced a 

3.8-fold increase in reporter gene activity and cotransfection with 50 and 100 ng 

COUP-TFI expression plasmid significantly enhanced E2-induced luciferase 

activity. COUP-TFI coactivation of Taf1-ERα was comparable to that observed in 

cells transfected with wild-type ERα and COUP-TFI (Fig. 3-7 C). E2 also induced 

luciferase activity in COS-7 cells transfected with pERE3 and 19c-ERα;  
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Fig. 3-7 Coactivation of mutant ERα by COUP-TFI. (A) ERα variants. COS-7 cells 
transfected without ERα (B) or with Taf1-ERα (C), 19c-ERα (D), Null-hERa 
variant (E). After transfection cells were treated with DMSO or 10 nM E2 for 36 h., 
luciferase activity normalized to β-galacosidase activity was determined as 
described in the Materials and Methods. Fold induction was calculated relative to 
activity observed in cells treated with DMSO. Significant (p<0.05) induction by E2 
(*) or coactivation of E2-induced activity by COUP-TFI (**) is indicated.  
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Fig. 3-7. continued. 
 

     



 117

 
cotransfection with COUP-TFI also significantly enhanced E2-induced luciferase 

activity as shown in Figure 3-7 D. However, cells cotransfected pERE3, 

COUP-TFI and null-ERα, only minimal coactivation activity of COUP-TFI was 

observed (Fig.3-7 E). These data suggest that the functional helix 12 on AF-2 is 

not required for coactivation by COUP-TFI when the functional AF-1 of ERα is 

intact. However, when the AF-1 domain of ERα is deleted (i.e. 19c-ERα), the 

intact AF2 function is required for coactivation by COUP-TFI, and mutation of 

helix 12 amino acids (i.e. null-ERα) resulted in loss of coactivation activity. 

Metivier and coworkers previously reported that interactions between 

COUP-TFI and ERα enhanced the phosphorylation of ERα at Ser118 by 

increasing the affinity of ERα for interactions with ERK2, resulting in enhanced 

ERα transcriptional activity by COUP-TFI (215). However when COS-7 cells were 

transfected with pERE3 and an m118-ERα mutant which contains a Ser/Ala point 

mutation on Ser118 of ERα, E2 induced a 3.8-fold increase in reporter gene 

activity and cotransfection with 100 ng COUP-TFI expression plasmid 

significantly enhances E2-induced luciferase activity by 25-fold (Fig. 3-8 A). 

Furthermore, in COS-7 cells transfected with ERα, COUP-TFI and pERE3, 

treatment with the MAPK inhibitor PD98059, did not affect the enhancement of 

ERα-mediated transactivation by COUP-TFI (Fig. 3-8 B). These results show that 

mutation of the critical MAPK-dependent phosphorylation site (S118) in ERα did 

not result in loss of COUP-TFI coactivation activity, suggesting that there must be 
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another mechanism of ERα coactivation by COUP-TFI other than recruitment of 

ERK2/p42 MAPK and phosphorylation of the Ser 118 as previously reported in 

CHO-K1 cells (215).  

3.2.3 Interactions of ERα with COUP-TFI  

Interactions between COUP-TFI and ERα were investigated in a 

mammalian two-hybrid assay. HeLa cells were transfected with expression 

vectors for the GAL4 DBD (pM) or the chimeras of DBD fused to ERα (pM-ER) in 

the presence of the VP16 activation domain alone (VP16) or VP16 fused to the 

COUP-TFI (VP16–COUP),and pGAL45 (five tandem GAL4 response elements 

linked to a luciferase reporter gene). The results (Fig. 3-9 A) show that in the 

absence or present of E2 stimulation when cells transfected with pM-ER and 

VP16-COUP, the luciferase activity was significantly increased compared to the 

control luciferase values obtained with cells transfected with pM in the presence 

of VP16 or VP16–COUP, or pM-ER with VP16. The results show that in the 

absence of ligand VP16-COUP interacted with pM-ER and after addition of E2 

this interaction was increased. Thus results of the mammalian two-hybrid 

suggest that the interactions of COUP-TFI and ERα are ligand-independent but 

are also enhanced by E2.  

In this study we have shown that coactivation of ERα by COUP-TFI 

requires either AF-1 or AF-2 of ERα (Figs. 3-7 C-E). Therefore we used the 

mammalian two-hybrid assay to investigate interactions of COUP-TFI with 
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different domains of ERα in HeLa cells using VP-COUP and GAL4 DBD fusion 

proteins with the N-terminal A/B domains of ERα (pM-ER A/B) or with the C to F 

domains of ERα (pM-ER C/F). When cells were transfected with VP-COUP and 

pM-ER A/B, the luciferase activity was significantly increased compared to the 

control luciferase value in cells treated with DMSO or E2, suggesting that 

COUP-TFI interacts with A/B domain of ERα and the interactions are 

ligand-independent (Fig. 3-9 B). Furthermore, when VP-COUP was 

cotransfected with pM-ER E/F, the luciferase activity was only significant 

increased when cells were treated with E2, suggesting that COUP-TFI interacts 

with E/F domains of ERα and the interactions are ligand-dependent (Fig. 3-9 C). 

Interactions between ERα and COUP-TFI were also investigated in 

coimmunoprecipitation studies. His-tagged full-length COUP-TFI and ERα were 

cotransfected in COS-7 cells and treated with 10 nM E2. After 24-h, the cells 

were lysed and immunoprecipitated with an ERα antibody, and the presence of 

COUP-TFI in the immunoprecipitate was determined by Western blotting with a 

monoclonal antibody against His-tag. The results (Fig 3-9 D) show that 

COUP-TFI is coimmunoprecipitated by ERα antibodies; however COUP-TFI was 

not immunoprecipitated by ERα antibodies in cells transfected with either ERα or 

COUP-TFI alone or using control rabbit IgG Ab for immunoprecipitation (data not 

shown). These data further confirmed that COUP-TFI interacts with ERα in 

mammalian cells. 
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Fig. 3-8 Coactivation of ERα by COUP-TFI is not dependent on the ERK1/2 
pathway. (A) Coactivation of Taf1-ERα by COUP-TFI. COS-7 cells were 
transfected with pERE3, COUP-TFI, β-galactosidase and Taf1-ERα or serine 118 
ERα point mutant (m118-ER) expression plasmid. After transfection, cells were 
treated with DMSO or 10 nM E2 for 36 h., and luciferase activity normalized to 
β-galacosidase activity was determined as described in the Materials and 
Methods. (B) Effect of MAPK inhibitor PD 98059. COS-7 cells were transfected 
with pERE3, COUP-TFI, β-galactosidase and ERα expression plasmid as 
indicated. After transfection cells were treated with DMSO, 10 nM E2 or cotreated 
10 nM E2 with 20 μM PD 98059 for 36 h., and luciferase activity normalized to 
β-galactosidase activity was determined as described in the Materials and 
Methods. Fold induction was calculated relative to activity observed in cells 
treated with DMSO. Significant (p<0.05) induction by E2 (*) or coactivation of 
E2-induced activity by COUP-TFI (**) are indicated.  
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Fig. 3-9 Interactions of COUP-TFI and multiple regions of ERα. Interactions of 
COUP-TFI with wild-type ERα (A), ERα A/B domains variant (B) or ERα C/F 
domains variant(C) in mammalian two-hybrid assay. HeLa cells were 
cotransfected with 5XGAL reporter plasmid, β-galactosidase, either pVP16 (Vp16) 
or pVp16-COUP-TFI (VP16-COUP) and pM, pM-ER, pM-ER A/B or pM-ER C/F 
as indicated. After transfection cells were treated with DMSO or 10 nM E2 for 36 
h., and luciferase activity normalized to β-galacosidase activity was determined 
as described in the Materials and Methods and presented as relative luciferase 
units (RLU). Significant (p<0.05) interactions (*) are indicated. (D) Interactions of 
COUP-TFI and ERα in a co-immunoprecipitation assay. His-tagged COUP-TFI 
was transfected into COS-7 cells with or without ERα After transfection, cells 
were treated with 10 nM E2 for 24h., and cell extracts were immunoprecipitated 
(IP) with anti-ERα antibody and precipitates were then analyzed by Western blot 
(WB) using anti-His tag and anti-ERα antibodies as described in the Materials 
and Methods. 
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Figure 3-9 continued 
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3.2.4 Coactivation of ERα by COUP-TFI Deletion Mutants 

Previous studies in HeLa and rat urogenital mesenchymal (rUGM) cells 

showed that the DNA binding domain and the C terminus 35 amino acids of 

COUP-TFI are important for activation of Egr-1 (260). In contrast, the extreme C 

terminus region of COUP-TFI can act as a silencing domain and repress 

transcriptional activity by interactions with the SMRT and N-CoR (308). Domains 

of COUP-TFI required for coactivation of ERα were determined in MCF-7 and 

COS-7 cells cotransfected with ERα, pERE3, and wild-type or deletion mutants of 

COUP-TFI (Fig. 3-10 A). The mutants include dN1, dN2 and dN3 with N-terminal 

deletions of amino acids 1-72, 1-108 and 1-150 respectively; the C-terminal 

mutants dC1 and dC2 containing deletions of amino acids 370-420 and 269-420 

respectively. Analysis of the cellular localization of transfected COUP-TFI 

mutants by western immunoblots indicates that the deletion mutants also 

accumulate in the nucleus with only minimal levels detected in cytosolic extracts 

(Fig 3-10 B). 

The results in Figures 3-11 A and 3-11 B show that the overall patterns of 

coactivation of ERα by wild-type and variant COUP-TFI were similar in MCF-7 

and COS-7 cells. Decreased coactivation was observed in both cell lines 

transfected with dC1, dC2 and dN2. However, in MCF-7 cells some coactivation 

was observed whereas in COS-7 cells these mutations completely abrogated the 

coactivation response. In contrast dN1 coactivated and dN3 was inactive as a  
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Fig. 3-10 Multiple regions on COUP-TFI are required for coactivation of ERα. (A) 
Truncation mutants of COUP-TFI. (B) Cytosolic or nuclear localization of 
COUP-TFI deletion mutants. COS-7 cells were transfected with His-tagged 
COUP-TFI deletion mutants expressing plasmid, treated with 10 nM E2 for 36 h, 
harvested and fractionated for cytosolic (C) and nuclear (N) protein as described 
in Materials and Methods. 
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Fig. 3-11 Coactivation of ERα by COUP-TFI deletion mutants. (A) MCF-7 or (B) 
COS-7 cells were transfected with pERE3, ERα, β-galactosidase and various 
truncation mutants of COUP-TFI expression plasmid. After transfection cells were 
treated with DMSO or 10 nM E2 for 36 h, luciferase activity normalized to 
β-galacosidase activity was determined as described in the Materials and 
Methods. Fold induction was calculated relative to activity observed in cells 
treated with DMSO. Significant (p<0.05) induction by E2 (*) or coactivation of 
E2-induced activity by COUP-TFI (**) is indicated. 
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coactivator in both cell lines. These data suggest that both the C-terminal aa 

370-420 and DNA binding domain of COUP-TFI are important for its activity as a 

coactivator of ERα.  

3.2.5 Coactivation of ERα by COUP-TFI Zinc-Finger Motif Mutants 

The role of the DBD of COUP-TFI in its activity as a coactivator of ERα 

was also investigated. There are two C4-type zinc-finger motifs in the DBD of 

COUP-TFI and three mutant constructs of COUP-TFI with Cys/Ala point 

mutations in the zinc finger motifs (m83, m103 and m138) were generated by 

site-direct mutagenesis (Fig. 3-12 A). The results of coactivation studies with 

wild-type and point mutant COUP-TFI constructs (Fig. 3-13) show that 

coactivation was decreased in cells transfected with the mutant constructs, 

suggesting that both C4-type zinc finger motifs on COUP-TFI are important for 

coactivation of ERα by COUP-TFI. Analysis of the cellular localization of 

transfected COUP-TFI mutants by western blots indicates that three point 

mutants (m83, m103 and m138) accumulated in the nucleus (Fig. 3-12 B). These 

data suggest that the loss of coactivation activity of COUP-TFI mutants is not 

caused by their failure to accumulate in the nucleus. 

The interactions between ERα and COUP-TFI point mutants were also 

investigated in coimmunoprecipitation studies. Three His-tagged DBD mutant 

constructs (m83, m103 and m138) were cotransfected along with ERα into COS-7 cells. 

Results of co-immunoprecipitation studies (Fig. 3-14) showed that ERα interacted with 
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lower affinity with the DBD mutants compared to interactions with wild-type COUP-TFI. 

These data suggest that the zinc finger motifs of COUP-TFI also play an important role 

in the interaction of this protein with ERα.   

3.2.6 Cooperative Coactivation of COUP-TFI with SRC-1 

Coactivators are critical nuclear proteins required for the functional activity 

of NRs, and they serve as bridging molecules between NRs and the basal 

transcriptional machinery (356). Coactivators may also directly affect chromatin 

structure or recruit other coactivators which modify chromatin structure and 

facilitate activation of target genes (20). Previous studies have shown that SRC-1 

interacts with COUP-TFI for activation of Egr-1 expression in HeLa cells and 

SRC-1 also interacts with and coactivates ERα-mediated transactivation, and this 

response is AF2-dependent (260). Therefore, we investigated the cooperative 

coactivation of ERα by COUP-TFI and SRC-1 in COS-7 cells transfected with 

ERα and pERE3 (Fig. 3-15). The results show that transfection of SRC-1 or 

COUP-TFI alone coactivated ERα-dependent transactivation by 6.7-fold or 

7.9-fold respectively and cotransfection with SRC-1 plus COUP-TFI expression 

plasmids gave greater than additive response and enhanced transactivation by 

18.1-fold indicating that COUP-TFI and SRC-1 cooperatively coactivated ERα. 

However, cotransfection with SRC-1 and the “inactivated” COUP-TFI deletion 

mutant dC1 in which aa 370-420 (c-terminal) have been deleted, show that the 

enhanced coactivation by SRC-1 (8.4-fold) was not significantly higher than 

observed in cells transfected with SRC-1 alone. These data suggest that the  

     



 128

A. 

Zn
C

C

C

C
Zn

C

C

C

C
Zn

C

C

C

C
Zn

C

C

C

C

C

C

A

C
Zn

C

C

C

C

C

C

A

C
Zn

C

C

C

C

A

C

C

C
Zn

C

C

C

C

A

C

C

C
Zn

C

C

C

C

Zn
C

C

C

C

A

C

C

C
Zn

C

C

C

C

A

C

C

C

WT m103

m83 m138

 
 
B. 

C N C NNCNC C N CNCNC N

WT m83 m138m103

Sp1

His-tag

C N C NNCNC C N CNCNC N

WT m83 m138m103

Sp1

His-tag 
 

 
Fig.3-12 Zinc finger motifs in the DNA binding domain of COUP-TFI are important 
for coactivation of ERα.  (A) Three different point mutations were made in the 
zinc finger motifs of COUP-TFI (C83A, C103A, C138A). (B) Cytosolic and 
nuclear localization of COUP-TFI variants. COS-7 cells were transfected with 
wild-type or mutant His-tagged COUP-TFI expressing plasmid, treated with 10 
nM E2 for 36 h, harvested and fractionated for cytosolic (C) and nuclear (N) 
protein as described in Materials and Methods. 
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Fig. 3-13 Coactivation of ERα by DBD point mutants of COUP-TFI  
COS-7 cells were transfected with pERE3, ERα, β-galactosidase and various 
zinc finger mutants of COUP-TFI expression plasmid. After transfection cells 
were treated with DMSO or 10 nM E2 for 36 h., and luciferase activity normalized 
to β-galacosidase activity was determined as described in the Materials and 
Methods. Fold induction was calculated relative to activity observed in cells 
treated with DMSO. Significant (p<0.05) induction by E2 (*) or coactivation of 
E2-induced activity by COUP-TFI (**) is indicated. 
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Fig. 3-14 The zinc finger motif of COUP-TFI is critical for protein-protein 
interactions with ERα. Wild-type or mutants His-tagged COUP-TFI were 
transfected into COS-7 cells with or without ERα. After transfection, cells were 
treated with 10 nM E2 for 24h., and cell extracts were immunoprecipitated (IP) 
with anti-ERα antibody and precipitates were then analyzed by Western blot (WB) 
using anti-His tag and anti-ERα antibodies as described in the Materials and 
Methods. 
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Fig. 3-15 Cooperative coactivation of ERα by COUP-TFI and SRC1.          
COS-7 cells were cotransfected with pERE3, ERα, β-galactosidase , COUP-TFI 
variants and SRC1 as indicated; cells were treated with DMSO or 10 nM E2 for 
36 h., Fold induction was calculated relative to activity observed in cells treated 
with DMSO. Significant (p<0.05) induction by E2 (*) or coactivation of E2-induced 
activity by COUP-TFI (**) is indicated. 
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C-terminal region of COUP-TFI is required for cooperative coactivation with 

SRC-1. 

3.2.7 Coactivation of ERα/Sp1 by COUP-TFI  

Several hormone-responsive genes in breast cancer cells are regulated 

through interactions of ERα/Sp1 with GC-rich promoter elements [285-298]. 

Results in Figure 3-16 show that E2 significantly induced luciferase activity in 

ZR-75 cells transfected with pSp13, a construct containing three consensus 

GC-rich Sp1 binding sites linked to luciferase. In cells also cotransfected with 

COUP-TFI expression plasmid (25, 50 or 100 ng) there was a significant increase 

in basal and E2-induced luciferase activity and there was also a > 3-fold 

enhanced induction response in cells cotransfected with 50 ng COUP-TFI 

expression plasmid. This represents one of the first examples of the coactivation 

of ERα/Sp1 in breast cancer cells.
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Fig. 3-16 Coactivation of ERα/Sp1 by COUP-TFI.  ZR-75 cells transfected with 
pSp13, ERα, β-galactosidase and increasing amounts of pCDNA3-COUP-TFI (0, 
25, 50 and 100 ng) expression plasmid. After transfection cells were treated with 
DMSO or 10 nM E2 for 36 h., luciferase activity normalized to β-galacosidase 
activity was determined as described in the Materials and Methods and 
presented as relative luciferase units (RLU). Fold induction was calculated 
relative to activity observed in cells treated with DMSO. Significant (p<0.05) 
induction by E2 (*) or coactivation of ERα/Sp1 by COUP-TFI (**) is indicated. 
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CHAPTER IV 

DISCUSSION AND CONCLUSION 

4.1 Mechanism of Induction of Egr-1 by E2 in MCF-7 cells 

Egr-1 is an immediate-early gene induced by mitogens in mammalian cells, 

and Egr-1 acts as a transcription factor that modulates expression of several 

genes (69, 72, 325). Several studies also suggest that Egr-1 can act as a tumor 

suppressor gene in some cells. For example, in a subclone of human HT1080 

fibrosarcoma cells, overexpression of Egr-1 inhibited transformed growth and 

[3H]thymidine uptake and suppressed the rate of tumor growth in athymic nude 

mice bearing HT1080 xenografts (138). Expression of Egr-1 was also relatively 

high in non-tumorigenic MCF-10A and 184A1N4 immortalized mammary 

epithelial cells, but low to non-detectable in ER-negative and ER-positive (ZR-75, 

T47D and MCF-7) breast cancer cells lines. A similar pattern of Egr-1 expression 

was also observed in rat mammary tissue (high) and mammary tumors (low), 

suggesting that loss of Egr-1 expression may be required for development of 

breast cancer. 

Pratt and coworkers previously reported that E2 induced Egr-1 gene 

expression in MCF-7 cells; this was accompanied by rapid autophosphorylation 

of raf-1. In this study, E2 also induced Egr-1 gene expression (mRNA and protein) 

in MCF-7 cells (Figs. 3-1 A and 3-5 B), and the mechanism of this response was 

further investigated using a series of constructs containing Egr-1 promoter inserts. 
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The -600 to +12 region of the Egr-1 gene promoter contains a GC-rich site, 

multiple SREs, and a cAMP response element (CRE). Previous studies indicate 

that both SRE and CRE motifs are hormone-responsive through ERα-dependent 

extranuclear induction of the src-ras-MAPK and PKA pathways (51, 85, 88, 219, 

220). In contrast, the more distal GC-rich Sp1 binding site could be activated by 

the non-classical nuclear ERα/Sp1 pathway (261). Deletion analysis (5'- and 3'-) 

of the Egr-1 gene promoter (Figs. 3-2 A and 3-2 B) indicates that SRE3 and 

SRE4 are E2-responsive and further mutation analysis (Fig. 3-2 C) demonstrates 

that E2-responsiveness is linked to the TCF and SRF motifs within SRE3. 

Previous studies in this laboratory showed that E2 also induced c-fos gene 

expression in MCF-7 cells through activation of a proximal SRE through the 

ras-MAPK pathway (88). Results in Figures 3-3 and 3-4 confirm that 

hormone-dependent activation of SRE3 in the Egr-1 promoter is also 

accompanied by Elk-1 phosphorylation and is inhibited by dominant negative 

Elk-1 expression. Thus, both immediate-early genes Egr-1 and c-fos are induced 

by E2 through activation of ras-MAPK by extranuclear pathways in breast cancer 

cells (88). 

Recent studies have shown that Egr-1 is regulated, in part, through the 

MAPK pathway in several cell lines (93, 151, 283). For example, in rat granulosa 

cells, gonadotropin-dependent upregulation of Egr-1 is dependent on multiple 

factors including MAPK and protein kinase A-dependent phosphorylation of 

factors associated with SRE1 and other proximal motifs (283). Activation of the 
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MAPK pathway is also required for light-induced upregulation of Egr-1 in the 

suprachiasmatic nucleus of mice (93) and hyperoxia-induced expression of Egr-1 

in mouse alveolar carcinoma cells (151). In the latter cell line, the MAPK inhibitor 

PD98059 blocked hyperoxia-induced expression of Egr-1, whereas PI3-K and 

p38 MAPK inhibitors had no effect. In the rat anterior pituitary gland and primary 

neonatal rat cardiomyocytes, hormonal activation of Egr-1 was MAPK-dependent 

and in cardiomyocytes, SREs were identified as putative hormone-responsive 

motifs (75, 203). In breast cancer cells, activation of PI3-K by E2 has been 

identified as an important pathway for proliferation of MCF-7 cells (50, 89, 328). 

Moreover, E2-mediated induction of c-fos through the SRE involved 

simultaneous activation of src-MAPK and src-PI3-K pathways where PI3-K 

activates the serum response factor (50, 88). We therefore investigated the role 

of PI3-K in the activation of Egr-1 mRNA expression by E2 (Fig. 3-5 C) and 

luciferase activity in cells transfected with pEgr-1E (Fig. 3-5 A). The results show 

that for both responses, E2-induced transactivation was inhibited by PD98059 

but not by the PI3-K inhibitor LY294002. Since E2 activates both MAPK and 

PI3-K pathways in breast cancer cells (49, 88, 93, 151, 220), the differential 

effects of the latter pathway on activation of Egr-1 and fos through their 

respective SREs may be due, in part, to promoter context.     

Ling and coworkers (195) investigated interactions of wild-type and variant 

Elk-1 and SRF with different SREs to form transcriptional-active ternary 

complexes. One type of SRE which is characteristic of the motif in the c-fos 
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promoter contains a "strong" SRF site (CArG) and a weak TCF (ets) site (Fig. 

4-1). In this model, SRF binds the SRE and recruits Elk-1, and both MAPK and 

PI3-K inhibitors block SRE-dependent transactivation. Another type of combined 

ets and CArG (CECI) motif has a high affinity TCF (or ets) site next to a weak 

CArG (SRF) site (195) (Fig. 4-1). In this model, Elk-1 binds the SRE and 

subsequently recruits SRF to form the transcriptional-active ternary complex. The 

TCF site in the Egr-1 promoter is identical to the corresponding "strong" motif in 

the CECI promoter. Thus, hormone-induced transactivation of Egr-1 requires 

MAPK-dependent activation of Elk-1 which interacts with a "strong" TCF site, and 

subsequent recruitment of SRF is not dependent on activation through the PI3-K 

pathway. Differential activation of c-fos and Egr-1 is also consistent with the 

growth-promoting activities of both c-fos and the PI3-K pathway in breast cancer 

cells (50, 89, 328), whereas Egr-1 is associated with suppression of breast 

cancer cell growth (138). In contrast, there is evidence that Egr-1 may enhance 

formation and growth of prostate cancer (26), and current studies are 

investigating the mechanisms that distinguish between the differential effects of 

Egr-1 in hormone-dependent breast and prostate cancer. 
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Fig. 4-1 Comparative SREs.  The SREs in the c-fos, CECI and Egr-1 gene 
promoters are given and the Ets (Elk-1 site) and SRF motifs are indicated [367]. 
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4.2 Coactivation of E2-Induced Transactivation by COUP-TFI 

The NR superfamily of transcription factors contains lignad-activated and 

orphan receptors that interact with genomic cis-element in target gene promoters 

to induce or repress gene expression (27, 123, 205, 235). Steroid hormone 

receptors such as ERα have been extensively used as models for determining 

the mechanisms of ligand-dependent receptor-mediated transactivation, which 

requires the assembly and recruitment of a nuclear complex of 

coactivators/coregulatory proteins (8, 9, 216, 235, 276). The p160/SRC family 

including SRC1/NCoA1, TIF2/GRIP1 and pCIP/AIB1/RAC3/ACTR/TRAM-1 was 

first discovered as coactivators of NRs that specifically interact with AF-2 of 

ligand-bound NRs (211). Sequence analysis of SRC proteins identified a basic 

helix-loop-helix (bHLH) domain and Per-Arnt-Sim (PAS) domains in the 

amino-terminal region, a centrally located receptor-interacting domain (RID) and 

a C-terminal transcriptional activation domain (AD) (Fig. 1-8). The RID which 

contains three conserved LXXLL motifs (NR box) appear to contribute to the 

specificity of coactivator-NR interaction. The histone acetyltransferase (HAT) 

activity was identified in C-terminal region of SRC-1. There are also activation 

domains that can interact with the CREB-binding protein (CBP) in C-terminal AD 

of SRC family (211). One mechanism by which the SRC family coactivates NRs 

resulted from studies on the interactions and recruitment of the CBP/p300 

coactivators which have intrinsic HAT activity that mediates the acetylation of 

nucleosome of histones, a covalent modification generally associated with the 
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enhancement of transcription [145,146]. Other proteins with the ability to modify 

histones or remodel chromatin structure include CARM1 (62), an arginine 

methytransferase, and ATP-dependent remodeling factors BRG1 and hBrm (84, 

143). These proteins have also been identified as coactivators of NRs. The 

multiprotein Mediator complexes known as the TRAP and DRIP complexes are a 

class of NR coactivators which also enhance transactivation by interactions with 

DNA-bound NRs and the RNA pol II transcriptional machinery to stabilize the 

formation of transcription PICs at the promoter [161]. DRIP205 and DRIP150 

have been shown to coactivate ERα-mediated transactivation in ZR-75 breast 

cancer cells (188, 368). Coactivation of ERα by DRIP205 does not require NR 

boxes and multiple domains of DRIP205 play a role in coactivation of ERα and in 

interactions with ERα (188, 368). Coactivation of ERα by DRIP150 also does not 

require NR boxes and a novel sequence (aa795-804) with putative α-helical 

structure is required for coactivation of ERα by DRIP150 (188, 368). Some 

unexpected molecules such as steroid-receptor-RNA activator-1 (SRA1), an 

RNA transcript, has been reported as a ligand-independent ERα coactivator in 

COS-1 cells (184). P68 (Ddx5) and p72 (Ddx17) which are RNA helicases have 

also been reported to act as transcriptional coactivators for ERα through ERα 

AF-1 by association with SRA and the AF-2 coactivator SRC1/TIF2 in MCF-7 and 

COS-1 cells (357). Coactivators identified to date are remarkable in both their 

number and diversity, suggesting that NR coactivation may involve more than 

one class of coactivators and the potential complexities associated with multiple 
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pathways are consistent with the subtle ligand-, tissue- and gene-specific action 

of NRs.  

COUP-TFI, one of the most studied of the orphan receptors, is involved in 

regulation of several important biological processes, such as neurogenesis, 

organogenesis, cell fate determination, and metabolic homeostasis (204, 205). 

The target genes for COUP-TF are summarized in Table 4-1. COUP-TFI acts as 

a transcription factor via COUP-TFI homodimers or as a heterodimer with RXR. 

In addition COUP-TFI interacts with other NRs such as RAR, TR, VDR,PPAR, 

and HNF4 and binds to a wide variety of response elements that contain 

imperfect AGGTCA direct repeats separated by a variable number of nucleotides 

(70, 343). COUP-TFI was initially identified as an activator of the chicken 

ovalbumin gene (290). In P19 embryonal carcinoma cells, COUP-TFI 

up-regulated vitronectin mRNA level and stimulated the vitronectin promoter 

activity in cells which overexpressed COUP-TFI (10). Recent studies showed that 

COUP-TFI activated transcription of the human CYP11B2 gene by binding to the 

-129/-114 promoter region of CYP11B2 in human adrenocortical H295R cells 

(306). Furthermore, there is increasing evidence showing that COUP-TF 

activates transcription through protein-protein interactions with DNA-bound 

transcription factors without a requirement for DNA binding. For example, 

COUP-TFI enhanced mRNA and protein expression levels of NGFI-A gene, also 

known as Egr-1 or Zif268, in HeLa and rUGM cells by interactions with Sp1. Both 

the DBD and the C terminus region of COUP-TFI are important for the NGFI-A 
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activation (260). COUP-TFI can also activate transcription as coactivators of 

other nuclear receptors. For example in HeLa cells, COUP-TFI interacts with 

another orphan receptor, hepatic nuclear factor 4 (HNF-4), for induction of 

phosphoenolpyruvate carboxykinase (PEPCK) gene transcription by 

glucocorticoids and the E/F domains of COUP-TFI are required for coactivation 

of HNF-4 (324). Recently, studies form different laboratories have shown that 

there is cross-talk between COUP-TFI and ERα where COUP-TFI modulates 

ERα-mediated gene expression (167, 169, 215, 252, 309). Melivler and 

coworkers reported that COUP-TFI formed a tight complex with ERα and 

enhanced ERα-dependent activity (215). The formation of a tight ERα-COUP-TFI 

intermediate complex resulted in an increased recruitment of ERK2/p42 MAPK to 

this complex resulting in phosphorylation of the ERα on Ser 118 in the A/B 

(N-terminal) region of ERα and this enhanced transcriptional activity of ERα. 

Coactivation of ERα by COUP-TFI can only take place in AF1 permissive cells 

such as HepG2, COS-7 and PC3 cells (i.e. cells in which ERα activity is driven 

mainly by AF1). Mutation of S118 of ERα impaired the effects of COUP-TFI on 

ERα-dependent activity (215). 
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Table 4-1 Target genes for COUP-TFs (307). 

Gonads LH receptor, FSH receptor ↓ 

Adrenal cortex CYP17 (17α-hydroxylase/17,20-lyaseP450) ↓ 

 CYP11B2 (Aldosterone synthase P450) ↑ 

 CYP19 (Aromatase P450) ↓ 

 DAX-1 ↓ 

Pituitary gland Oxytocin ↓ 

Cerebellum PCP-2 (Purkinje cell protein-2) ↓ 

Livers Angiotensinogen ↓ 

 HNF-1 (Hepatocyte nuclear factor-1) ↑ 

Heart ANF (Atrial natriuretic factor) ↑ 

Calreticulin (Ca2+ binding chaperone of the endoplasmic 
reticulum) ↑  

 NHE-1 (Na+/H+ exchanger-1) ↑ 

Adipose tissue PEPCK ↑ 

 LPL (Lipoprotein lipase) ↑ 

Prostate NGFI-A ↑ 

Others CaMKIV (Ca2+/ calmodulin-dependent protein kinase IV) ↓ 

 Vitronectin ↑ 

The arrows (↑) and (↓) indicate that COUP-TFs upregulate and down-regulate 

target genes, respectively. 
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The results of this study show that COUP-TFI coactivated ERα in cells 

transfected with pERE3 not only in COS-7 (AF-1 permissive) but also in MCF-7, 

HeLa and MDA-MB-231 cells (AF-2 permissive). Furthermore, in COS-7 cells 

cotransfected with pERE3, COUP-TFI and the S118A mutant of ERα, COUP-TFI 

enhanced E2-induced luciferase reporter activity (Fig. 3-8 A). Treatment of 

COS-7 cells with the MAPK inhibitor PD98059 did not affect the coactivation of 

E2-induced transactivation by COUP-TFI (Fig. 3-8 B). These data suggest that 

there is another mechanism of coactivation of ERα by COUP-TFI other than 

recruitment of ERK2/p42 MAPK and phosphorylation of the Ser 118 as 

previously reported by Melivler and coworkers (215). Results of this study clearly 

demonstrate that coactivation of ERα by COUP-TFI in both AF-1 and AF-2 

permissive cells (Figs.3-6 A-D), and mutation of the critical MAPK-dependent 

phosphorylation site (S118) in ERα does not result in loss of COUP-TFI 

coactivation activity.  

COUP-TFI, unlike most coactivators which are recruited by AF-2 of ERα, 

did not require the critical helix 12 region of ERα AF-2 for its coactivation of 

ERα-mediated transactivation in COS-7 cells since E2-induced activity in cells 

transfected with Taf-1ERα (Fig 3-7 C). COUP-TFI has minimal effect on 

coactivation of ERα when cells were transfected with pERE3 and null-ERα mutant 

which is an AF-1 deletion mutant also containing three point mutation on helix 12 

(Fig. 3-7 E), suggesting that the AF-1 of ERα is involved in coactivation by 

COUP-TFI. However, when COS-7 cells were transfected with 19c-ERα an AF-1 
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deletion mutant and pERE3, interestingly COUP-TFI has the same magnitude of 

ERα coactivation compared to cells transfected with wild-type ERα (Fig 3-7 D). 

These results suggest that the AF-2 of ERα is required for coactivation of ERα by 

COUP-TFI but only when AF-1 of ERα is deleted. The requirements of AF-1 or 

AF-2 of ERα for activity of COUP-TFI as a coactivator were further 

investigatigated for the roles of these regions of ERα for interactions with 

COUP-TFI. The results from mammalian two-hybrid assays showed that 

COUP-TFI interacts with the A/B domains of ERα in cells treated with DMSO and 

E2, suggesting that the interactions of COUP-TFI and A/B domains of ERα are 

ligand-independent (Fig. 3-9 B). COUP-TFI also interacts with the C/F domains 

of ERα but only when cells are stimulated with E2 (Fig. 3-9 C), suggesting that 

the interactions between COUP-TFI and AF-2 ERα are also induced by E2. In 

summary, both A/B domains which contain AF-1 and C/F domains which contain 

AF-2 of ERα are involved in coactivation function and physical interactions with 

COUP-TFI. 

We also investigated the functional and physical interactions of several 

N-terminal and point mutants of COUP-TF1 in transfection and 

co-immunoprecipitation assays (Figs. 3-11, 3-13 and 3-14). Deletion of amino 

acid 1-72 (dN1) did not affect the functional activity of COUP-TF1 as a 

coactivators, however, deletion of amino acids 1-108 resulted in loss of activity 

(Figs. 3-11 A and B). These results suggest that coactivation of ERα by 

COUP-TF1 in COS-7 and MCF-7 cells requires an intact DBD of COUP-TFI 
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and/or a small fragment of the A/B domain. A previous report in CHO cells also 

showed that the DBD of COUP-TFI was required for coactivation of ERα (215) 

and these results were consistent with those observed in COS-7 and MCF-7 cells 

(Fig. 3-11 A and B). The DBD of COUP-TF1 is similar to other nuclear receptors 

and contains two zinc finger motifs with multiple cysteine residues coordinated by 

zinc ions (Fig. 3-12 A). The importance of the zinc finger motifs in the activity of 

COUP-TFI as a coactivator was further investigating using cysteine mutants of 

COUP-TFI at amino acids 83 and 103 (in zinc finger 1) and 138 (zinc finger 2). In 

transfection studies, these COUP-TF1 point mutations (C83A, C103A and 

C138A) resulted in loss of coactivation activity for ERα (Fig. 3-13); moreover, in 

co-immunoprecipitation assays, these point mutations also reduced the 

interactions between COUP-TFI and ERα. The results form functional activity 

and physical interactions assays of COUP-TFI zinc-finger mutants suggest that 

zinc finger motifs of COUP-TFI are important for coactivation and interactions 

with ERα. 

Cooperative or synergistic coactivator-NR interactions involving two or 

more coactivators were previously reported (84, 112, 170, 357). CARM1 and 

PRMT1 enhanced ERα action only in the presence of GRIP1 (60, 170); 

CBP/p300 further increased coactivation of ERα by GRIP1 in CV-1 cells, and this 

was dependent on binding of both CBP/p300 and CARM1 to two different 

domains on GRIP1. Another study showed that ligand-dependent coactivation of 

ERα by SNURF cooperatively coactivated ERα with TATA-binding protein (TBP) 
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in ZR-75 breast cancer cells. Loss of cooperatively enhancement of 

ERα-mediated transactivation by cotransfection of TBP and RING domain mutant 

of SNURF resulted from interactions of TBP with the C-terminal RING domain of 

SNURF. Moreover, TBP did not cooperatively coactivate ERα in cells transfected 

with Δ1-20 SNURF (interacts with ERα but not DNA) or Δ31-65 SNURF (interacts 

with DNA but not ERα), suggesting that cooperative coactivation of ERα by 

TBP/SNURF is dependent on domains of SNURF that bind TBP, ERα, and DNA 

(298). Furthermore, coactivation of ERα in MCF-7 cells by SRC-1 and the RNA 

coactivator SRA are synergistically enhanced by p72, an RNA binding DEAD box 

protein that interacts with AF1-of ERα (357). COUP-TFI has been reported to 

cooperate with SRC-1 or p300 to enhance the transactivation of NGFI-A in HeLa 

cells (260). Also COUP-TFI associated with GRIP1 or SRC-1 to coactivate 

HNF-4-mediated transactivation of PEPCK in HeLa cells and the C-terminal 15 

amino acids are required for protein-protein interactions between COUP-TFI and 

the coactivators identified in a yeast two-hybrid assay (324). The results form this 

study showed that the deletion of C-terminal amino acids 370-420 (i.e. dC1 

COUP-TFI mutant) resulted in loss of coactivation activity (Fig. 3-11), however, 

this COUP-TFI mutant still interacted with ERα. These results are consistent with 

previous reports that the C-terminal region of COUP-TFI is important for 

coactivation with HNF-4 in HeLa cells (324). The function of C-terminal amino 

acids 370-420 was further investigated in cooperative coactivation with SRC-1 in 

COS-7 cells transfected with pERE3. In this study, (Fig. 3-15) it was shown that 
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SRC-1 and COUP-TFI cooperatively enhanced ERα-dependent transactivation; 

however, deletion of C-terminal region of COUP-TFI abolishes this cooperative 

activity, suggesting that aa 370-420 of COUP-TFI which are predicted to form a 

α-helix structure are important for interactions with SRC-1. 

ERα/Sp1-mediated transactivation has been linked to hormone activation 

of several genes involved in cell cycle progression, DNA synthesis and 

metabolism of purines and pyrimidines [285-298]. In vitro studies show that ERα 

interacts with both Sp1 and Sp3, and the C-terminal DBD of Sp1 is the major 

interaction site for ERα (299). Recently Kim et al used the FRET technique to 

investigate the interactions between ERα and Sp1 in living MCF-7 breast cancer 

cells. Results from FRET analysis showed that ERα interacts with Sp1 in living 

breast cancer cells and the interactions are ligand-dependent (162). COUP-TFI 

has been shown to interact with Sp1 in GST-pull down assay and activate 

NGFI-A expression through Sp1 GC-rich promoter elements in HeLa and rUGM 

cells (260). Only a few coactivators of ERα such as DRIP205, and DRIP150 have 

been reported as coactivators for ERα/Sp1 in ZR-75 breast cancer cells and 

research on identification of ERα/Sp1 coactivaors is in progress. The results of 

transfection assays in ZR-75 cells showed that COUP-TFI increased the basal 

luciferase activity of pSp13 (Fig. 3-16) which is consistent with previous reports 

showed that COUP-TFI interacted with Sp1 and up-regulated NGFI-A gene 

expression through interactions with Sp1 in HeLa and rug cells; furthermore 

COUP-TFI also enhanced E2-induced luciferase activity, suggesting that 
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coactivation of ERα/Sp1 by COUP-TFI was also observed in ZR-75 cells 

transfected with pSp13 (Fig. 3-16). The molecular mechanisms of this response 

are currently being investigated.  

In conclusion, we have shown here that COUP-TFI interacts with ERα and 

functions as a coactivator for ERα-mediated transactivation. The DNA binding 

domain of COUP-TFI is important for interactions with ERα and is also critical for 

its coactivation activity. COUP-TFI also functions as a coactivator for ERα/Sp1 

pathway in ZR-75 breast cancer cells.  

 
 

     



 150

REFERENCES 

1. Breast cancer and breastfeeding: collaborative reanalysis of individual 
data from 47 epidemiological studies in 30 countries, including 50302 
women with breast cancer and 96973 women without the disease. 2002. 
Lancet 360:187-195. 

2. Cancer Facts & Figures 2005. 2005. American Cancer Society. 

3. Nuclear Receptor Superfamily of proteins 20 years after cloning. 2005. 
Mol Endocrinol 19:cover. 

4. Aasland, R., A. F. Stewart, and T. Gibson. 1996. The SANT domain: a 
putative DNA-binding domain in the SWI-SNF and ADA complexes, the 
transcriptional co-repressor N-CoR and TFIIIB. Trends Biochem Sci 
21:87-88. 

5. Abdulkadir, S. A., Z. Qu, E. Garabedian, S. K. Song, T. J. Peters, J. 
Svaren, J. M. Carbone, C. K. Naughton, W. J. Catalona, J. J. 
Ackerman, J. I. Gordon, P. A. Humphrey, and J. Milbrandt. 2001. 
Impaired prostate tumorigenesis in Egr1-deficient mice. Nat Med 
7:101-107. 

6. Acconcia, F., P. Ascenzi, A. Bocedi, E. Spisni, V. Tomasi, A. 
Trentalance, P. Visca, and M. Marino. 2005. Palmitoylation-dependent 
estrogen receptor alpha membrane localization: regulation by 
17beta-estradiol. Mol Biol Cell 16:231-237. 

7. Acconcia, F., P. Ascenzi, G. Fabozzi, P. Visca, and M. Marino. 2004. 
S-palmitoylation modulates human estrogen receptor-alpha functions. 
Biochem Biophys Res Commun 316:878-883. 

8. Acevedo, M. L., and W. L. Kraus. 2003. Mediator and p300/CBP-steroid 
receptor coactivator complexes have distinct roles, but function 
synergistically, during estrogen receptor alpha-dependent transcription 
with chromatin templates. Mol Cell Biol 23:335-348. 

     



 151

9. Acevedo, M. L., K. C. Lee, J. D. Stender, B. S. Katzenellenbogen, and 
W. L. Kraus. 2004. Selective recognition of distinct classes of coactivators 
by a ligand-inducible activation domain. Mol Cell 13:725-738. 

10. Adam, F., T. Sourisseau, R. Metivier, Y. Le Page, C. Desbois, D.  
Michel, and G. Salbert. 2000. COUP-TFI (chicken ovalbumin upstream 
promoter-transcription factor I) regulates cell migration and axogenesis in 
differentiating P19 embryonal carcinoma cells. Mol Endocrinol 
14:1918-1933. 

11. Ait-Si-Ali, S., D. Carlisi, S. Ramirez, L. C. Upegui-Gonzalez, A. Duquet, 
P. Robin, B. Rudkin, A. Harel-Bellan, and D. Trouche. 1999. 
Phosphorylation by p44 MAP Kinase/ERK1 stimulates CBP histone acetyl 
transferase activity in vitro. Biochem Biophys Res Commun 262:157-162. 

12. Ait-Si-Ali, S., S. Ramirez, F. X. Barre, F. Dkhissi, L. Magnaghi-Jaulin,  
J. A. Girault, P. Robin, M. Knibiehler, L. L. Pritchard, B. Ducommun, D. 
Trouche, and A. Harel-Bellan. 1998. Histone acetyltransferase activity of 
CBP is controlled by cycle-dependent kinases and oncoprotein E1A. 
Nature 396:184-186. 

13. Albright, S. R., and R. Tjian. 2000. TAFs revisited: more data reveal new 
twists and confirm old ideas. Gene 242:1-13. 

14. Ali, S., D. Metzger, J. M. Bornert, and P. Chambon. 1993. Modulation of 
transcriptional activation by ligand-dependent phosphorylation of the 
human oestrogen receptor A/B region. Embo J 12:1153-1160. 

15. Allred, D. C., S. K. Mohsin, and S. A. Fuqua. 2001. Histological and 
biological evolution of human premalignant breast disease. Endocr Relat 
Cancer 8:47-61. 

16. Altschuler, D., K. Yamamoto, and E. G. Lapetina. 1994. Insulin-like 
growth factor-1-mediated association of p85 phosphatidylinositol 3-kinase 
with pp 185: requirement of SH2 domains for in vivo interaction. Mol 
Endocrinol 8:1139-1146. 

17. Aranda, A., and A. Pascual. 2001. Nuclear hormone receptors and gene 

     



 152

expression. Physiol Rev 81:1269-1304. 

18. Aronica, S. M., W. L. Kraus, and B. S. Katzenellenbogen. 1994. 
Estrogen action via the cAMP signaling pathway: stimulation of adenylate 
cyclase and cAMP-regulated gene transcription. Proc Natl Acad Sci U S A 
91:8517-8521. 

19. Baek, S. H., K. A. Ohgi, D. W. Rose, E. H. Koo, C. K. Glass, and M. G. 
Rosenfeld. 2002. Exchange of N-CoR corepressor and Tip60 coactivator 
complexes links gene expression by NF-kappaB and beta-amyloid 
precursor protein. Cell 110:55-67. 

20. Baek, S. H., and M. G. Rosenfeld. 2004. Nuclear receptor coregulators: 
their modification codes and regulatory mechanism by translocation. 
Biochem Biophys Res Commun 319:707-714. 

21. Ballare, C., M. Uhrig, T. Bechtold, E. Sancho, M. Di Domenico, A. 
Migliaccio, F. Auricchio, and M. Beato. 2003. Two domains of the 
progesterone receptor interact with the estrogen receptor and are required 
for progesterone activation of the c-Src/Erk pathway in mammalian cells. 
Mol Cell Biol 23:1994-2008. 

22. Banerjee, A. C., A. J. Recupero, A. Mal, A. M. Piotrkowski, D. M.  
Wang,  and M. L. Harter. 1994. The adenovirus E1A 289R and 243R 
proteins inhibit the phosphorylation of p300. Oncogene 9:1733-1737. 

23. Barettino, D., M. M. Vivanco Ruiz, and H. G. Stunnenberg. 1994. 
Characterization of the ligand-dependent transactivation domain of thyroid 
hormone receptor. Embo J 13:3039-3049. 

24. Barkhem, T., B. Carlsson, Y. Nilsson, E. Enmark, J. Gustafsson, and  
S. Nilsson. 1998. Differential response of estrogen receptor alpha and 
estrogen receptor beta to partial estrogen agonists/antagonists. Mol 
Pharmacol 54:105-112. 

25. Barletta, F., C. W. Wong, C. McNally, B. S. Komm, B. 
Katzenellenbogen, and B. J. Cheskis. 2004. Characterization of the 
interactions of estrogen receptor and MNAR in the activation of cSrc. Mol 

     



 153

Endocrinol 18:1096-1108. 

26. Baron, V., G. De Gregorio, A. Krones-Herzig, T. Virolle, A. Calogero, R. 
Urcis, and D. Mercola. 2003. Inhibition of Egr-1 expression reverses 
transformation of prostate cancer cells in vitro and in vivo. Oncogene 
22:4194-4204. 

27. Beato, M., P. Herrlich, and G. Schutz. 1995. Steroid hormone receptors: 
many actors in search of a plot. Cell 83:851-857. 

28. Berkey, C. S., A. L. Frazier, J. D. Gardner, and G. A. Colditz. 1999. 
Adolescence and breast carcinoma risk. Cancer 85:2400-2409. 

29. Bernstein, L. 2002. Epidemiology of endocrine-related risk factors for 
breast cancer. J Mammary Gland Biol Neoplasia 7:3-15. 

30. Bjornstrom, L., and M. Sjoberg. 2005. Mechanisms of estrogen receptor 
signaling: convergence of genomic and nongenomic actions on target 
genes. Mol Endocrinol 19:833-842. 

31. Black, B. E., J. M. Holaska, L. Levesque, B. Ossareh-Nazari, C. 
Gwizdek, C. Dargemont, and B. M. Paschal. 2001. NXT1 is necessary 
for the terminal step of Crm1-mediated nuclear export. J Cell Biol 
152:141-155. 

32. Blanquart, C., O. Barbier, J. C. Fruchart, B. Staels, and C. Glineur. 
2002. Peroxisome proliferator-activated receptor alpha (PPARalpha) 
turnover by the ubiquitin-proteasome system controls the ligand-induced 
expression level of its target genes. J Biol Chem 277:37254-37259. 

33. Bocchinfuso, W. P., and K. S. Korach. 1997. Mammary gland 
development and tumorigenesis in estrogen receptor knockout mice. J 
Mammary Gland Biol Neoplasia 2:323-334. 

34. Bocquel, M. T., V. Kumar, C. Stricker, P. Chambon, and H.  
Gronemeyer. 1989. The contribution of the N- and C-terminal regions of 
steroid receptors to activation of transcription is both receptor and 

     



 154

cell-specific. Nucleic Acids Res 17:2581-2595. 

35. Boney, C. M., P. A. Gruppuso, R. A. Faris, and A. R. Frackelton, Jr. 
2000. The critical role of Shc in insulin-like growth factor-I-mediated 
mitogenesis and differentiation in 3T3-L1 preadipocytes. Mol Endocrinol 
14:805-813. 

36. Boonyaratanakornkit, V., M. P. Scott, V. Ribon, L. Sherman, S. M. 
Anderson, J. L. Maller, W. T. Miller, and D. P. Edwards. 2001. 
Progesterone receptor contains a proline-rich motif that directly interacts 
with SH3 domains and activates c-Src family tyrosine kinases. Mol Cell 
8:269-280. 

37. Boudjelal, M., J. J. Voorhees, and G. J. Fisher. 2002. Retinoid signaling 
is attenuated by proteasome-mediated degradation of retinoid receptors in 
human keratinocyte HaCaT cells. Exp Cell Res 274:130-137. 

38. Boudjelal, M., Z. Wang, J. J. Voorhees, and G. J. Fisher. 2000. 
Ubiquitin/proteasome pathway regulates levels of retinoic acid receptor 
gamma and retinoid X receptor alpha in human keratinocytes. Cancer Res 
60:2247-2252. 

39. Bourguet, W., P. Germain, and H. Gronemeyer. 2000. Nuclear receptor 
ligand-binding domains: three-dimensional structures, molecular 
interactions and pharmacological implications. Trends Pharmacol Sci 
21:381-388. 

40. Bourguet, W., M. Ruff, P. Chambon, H. Gronemeyer, and D. Moras. 
1995. Crystal structure of the ligand-binding domain of the human nuclear 
receptor RXR-alpha. Nature 375:377-382. 

41. Brinton, L. A., C. Schairer, R. N. Hoover, and J. F. Fraumeni, Jr. 1988. 
Menstrual factors and risk of breast cancer. Cancer Invest 6:245-254. 

42. Brouillard, F., and C. E. Cremisi. 2003. Concomitant increase of histone 
acetyltransferase activity and degradation of p300 during retinoic 
acid-induced differentiation of F9 cells. J Biol Chem 278:39509-39516. 

     



 155

43. Brzozowski, A. M., A. C. Pike, Z. Dauter, R. E. Hubbard, T. Bonn, O. 
Engstrom, L. Ohman, G. L. Greene, J. A. Gustafsson, and M. Carlquist. 
1997. Molecular basis of agonism and antagonism in the oestrogen 
receptor. Nature 389:753-758. 

44. Burnside, J., D. S. Darling, F. E. Carr, and W. W. Chin. 1989. Thyroid 
hormone regulation of the rat glycoprotein hormone alpha-subunit gene 
promoter activity. J Biol Chem 264:6886-6891. 

45. Butler, J. E., and J. T. Kadonaga. 2002. The RNA polymerase II core 
promoter: a key component in the regulation of gene expression. Genes 
Dev 16:2583-2592. 

46. Cabodi, S., L. Moro, G. Baj, M. Smeriglio, P. Di Stefano, S. Gippone, N. 
Surico, L. Silengo, E. Turco, G. Tarone, and P. Defilippi. 2004. p130Cas 
interacts with estrogen receptor alpha and modulates non-genomic 
estrogen signaling in breast cancer cells. J Cell Sci 117:1603-1611. 

47. Cairns, B. R., R. S. Levinson, K. R. Yamamoto, and R. D. Kornberg. 
1996. Essential role of Swp73p in the function of yeast Swi/Snf complex. 
Genes Dev 10:2131-2144. 

48. Castoria, G., M. V. Barone, M. Di Domenico, A. Bilancio, D. Ametrano, 
A. Migliaccio, and F. Auricchio. 1999. Non-transcriptional action of 
oestradiol and progestin triggers DNA synthesis. Embo J 18:2500-2510. 

49. Castoria, G., M. Lombardi, M. V. Barone, A. Bilancio, M. Di Domenico, 
A. De Falco, L. Varricchio, D. Bottero, M. Nanayakkara, A. Migliaccio, 
and F. Auricchio. 2004. Rapid signalling pathway activation by androgens 
in epithelial and stromal cells. Steroids 69:517-522. 

50. Castoria, G., A. Migliaccio, A. Bilancio, M. Di Domenico, A. de Falco, 
M. Lombardi, R. Fiorentino, L. Varricchio, M. V. Barone, and F. 
Auricchio. 2001. PI3-kinase in concert with Src promotes the S-phase 
entry of oestradiol-stimulated MCF-7 cells. Embo J 20:6050-6059. 

51. Castro-Rivera, E., I. Samudio, and S. Safe. 2001. Estrogen regulation of 
cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple 

     



 156

enhancer elements. J Biol Chem 276:30853-30861. 

52. Cavailles, V., S. Dauvois, F. L'Horset, G. Lopez, S. Hoare, P. J. 
Kushner, and M. G. Parker. 1995. Nuclear factor RIP140 modulates 
transcriptional activation by the estrogen receptor. Embo J 14:3741-3751. 

53. Cavalieri, E., K. Frenkel, J. G. Liehr, E. Rogan, and D. Roy. 2000. 
Estrogens as endogenous genotoxic agents--DNA adducts and mutations. 
J Natl Cancer Inst Monogr:75-93. 

54. Chakravarti, D., V. J. LaMorte, M. C. Nelson, T. Nakajima, I. G. 
Schulman, H. Juguilon, M. Montminy, and R. M. Evans. 1996. Role of 
CBP/P300 in nuclear receptor signalling. Nature 383:99-103. 

55. Chambliss, K. L., L. Simon, I. S. Yuhanna, C. Mineo, and P. W. Shaul. 
2005. Dissecting the basis of nongenomic activation of endothelial nitric 
oxide synthase by estradiol: role of ERalpha domains with known nuclear 
functions. Mol Endocrinol 19:277-289. 

56. Chambliss, K. L., I. S. Yuhanna, R. G. Anderson, M. E. Mendelsohn, 
and P. W. Shaul. 2002. ERbeta has nongenomic action in caveolae. Mol 
Endocrinol 16:938-946. 

57. Chambliss, K. L., I. S. Yuhanna, C. Mineo, P. Liu, Z. German, T. S. 
Sherman, M. E. Mendelsohn, R. G. Anderson, and P. W. Shaul. 2000. 
Estrogen receptor alpha and endothelial nitric oxide synthase are 
organized into a functional signaling module in caveolae. Circ Res 
87:E44-52. 

58. Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling 
cascades. Nature 410:37-40. 

59. Chawla, S., G. E. Hardingham, D. R. Quinn, and H. Bading. 1998. CBP: 
a signal-regulated transcriptional coactivator controlled by nuclear calcium 
and CaM kinase IV. Science 281:1505-1509. 

60. Chen, D., S. M. Huang, and M. R. Stallcup. 2000. Synergistic, p160 

     



 157

coactivator-dependent enhancement of estrogen receptor function by 
CARM1 and p300. J Biol Chem 275:40810-40816. 

61. Chen, D., H. Ma, H. Hong, S. S. Koh, S. M. Huang, B. T. Schurter, D. W. 
Aswad, and M. R. Stallcup. 1999. Regulation of transcription by a protein 
methyltransferase. Science 284:2174-2177. 

62. Chen, H., R. J. Lin, W. Xie, D. Wilpitz, and R. M. Evans. 1999. 
Regulation of hormone-induced histone hyperacetylation and gene 
activation via acetylation of an acetylase. Cell 98:675-686. 

63. Chen, H., Z. Smit-McBride, S. Lewis, M. Sharif, and M. L. Privalsky. 
1993. Nuclear hormone receptors involved in neoplasia: erb A exhibits a 
novel DNA sequence specificity determined by amino acids outside of the 
zinc-finger domain. Mol Cell Biol 13:2366-2376. 

64. Chen, H. W., and M. L. Privalsky. 1993. The erbA oncogene represses 
the actions of both retinoid X and retinoid A receptors but does so by 
distinct mechanisms. Mol Cell Biol 13:5970-5980. 

65. Chen, J. D., and R. M. Evans. 1995. A transcriptional co-repressor that 
interacts with nuclear hormone receptors. Nature 377:454-457. 

66. Christy, B., and D. Nathans. 1989. DNA binding site of the growth 
factor-inducible protein Zif268. Proc Natl Acad Sci U S A 86:8737-8741. 

67. Cicatiello, L., V. Sica, F. Bresciani, and A. Weisz. 1993. Identification of 
a specific pattern of "immediate-early" gene activation induced by 
estrogen during mitogenic stimulation of rat uterine cells. Receptor 
3:17-30. 

68. Clemons, M., and P. Goss. 2001. Estrogen and the risk of breast cancer. 
N Engl J Med 344:276-285. 

69. Cohen, D. R., and T. Curran. 1989. The structure and function of the fos 
proto-oncogene. Crit Rev Oncog 1:65-88. 

     



 158

70. Cooney, A. J., S. Y. Tsai, B. W. O'Malley, and M. J. Tsai. 1992. Chicken 
ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind 
to different GGTCA response elements, allowing COUP-TF to repress 
hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid 
receptors. Mol Cell Biol 12:4153-4163. 

71. Couse, J. F., J. Lindzey, K. Grandien, J. A. Gustafsson, and K. S. 
Korach. 1997. Tissue distribution and quantitative analysis of estrogen 
receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) 
messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. 
Endocrinology 138:4613-4621. 

72. Curran, T., and B. R. Franza, Jr. 1988. Fos and Jun: the AP-1  
connection. Cell 55:395-397. 

73. Cuzick, J., T. Powles, U. Veronesi, J. Forbes, R. Edwards, S. Ashley, 
and P. Boyle. 2003. Overview of the main outcomes in breast-cancer 
prevention trials. Lancet 361:296-300. 

74. Danielian, P. S., R. White, J. A. Lees, and M. G. Parker. 1992. 
Identification of a conserved region required for hormone dependent 
transcriptional activation by steroid hormone receptors. Embo J 
11:1025-1033. 

75. de Jager, T., T. Pelzer, S. Muller-Botz, A. Imam, J. Muck, and L.  
Neyses. 2001. Mechanisms of estrogen receptor action in the 
myocardium. Rapid gene activation via the ERK1/2 pathway and serum 
response elements. J Biol Chem 276:27873-27880. 

76. de The, H., M. M. Vivanco-Ruiz, P. Tiollais, H. Stunnenberg, and A. 
Dejean. 1990. Identification of a retinoic acid responsive element in the 
retinoic acid receptor beta gene. Nature 343:177-180. 

77. Delage-Mourroux, R., P. G. Martini, I. Choi, D. M. Kraichely, J. 
Hoeksema, and B. S. Katzenellenbogen. 2000. Analysis of estrogen 
receptor interaction with a repressor of estrogen receptor activity (REA) 
and the regulation of estrogen receptor transcriptional activity by REA. J 
Biol Chem 275:35848-35856. 

     



 159

78. DeLuca, H. F., and C. Zierold. 1998. Mechanisms and functions of 
vitamin D. Nutr Rev 56:S4-10; discussion S 54-75. 

79. Deng, C. X., and S. G. Brodie. 2000. Roles of BRCA1 and its interacting 
proteins. Bioessays 22:728-737. 

80. Deroo, B. J., C. Rentsch, S. Sampath, J. Young, D. B. DeFranco, and  
T. K. Archer. 2002. Proteasomal inhibition enhances glucocorticoid 
receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol 
22:4113-4123. 

81. Dilworth, F. J., and P. Chambon. 2001. Nuclear receptors coordinate the 
activities of chromatin remodeling complexes and coactivators to facilitate 
initiation of transcription. Oncogene 20:3047-3054. 

82. Dilworth, F. J., C. Fromental-Ramain, K. Yamamoto, and P. Chambon. 
2000. ATP-driven chromatin remodeling activity and histone 
acetyltransferases act sequentially during transactivation by RAR/RXR In 
vitro. Mol Cell 6:1049-1058. 

83. Dimitrakakis, C., J. Zhou, and C. A. Bondy. 2002. Androgens and 
mammary growth and neoplasia. Fertil Steril 77 Suppl 4:S26-33. 

84. DiRenzo, J., Y. Shang, M. Phelan, S. Sif, M. Myers, R. Kingston, and  
M. Brown. 2000. BRG-1 is recruited to estrogen-responsive promoters 
and cooperates with factors involved in histone acetylation. Mol Cell Biol 
20:7541-7549. 

85. Dong, L., W. Wang, F. Wang, M. Stoner, J. C. Reed, M. Harigai, I. 
Samudio, M. P. Kladde, C. Vyhlidal, and S. Safe. 1999. Mechanisms of 
transcriptional activation of bcl-2 gene expression by 17beta-estradiol in 
breast cancer cells. J Biol Chem 274:32099-32107. 

86. Dotzlaw, H., U. Moehren, S. Mink, A. C. Cato, J. A. Iniguez Lluhi, and  
A. Baniahmad. 2002. The amino terminus of the human AR is target for 
corepressor action and antihormone agonism. Mol Endocrinol 
16:661-673. 

     



 160

87. Duan, R., W. Porter, and S. Safe. 1998. Estrogen-induced c-fos 
protooncogene expression in MCF-7 human breast cancer cells: role of 
estrogen receptor Sp1 complex formation. Endocrinology 139:1981-1990. 

88. Duan, R., W. Xie, R. C. Burghardt, and S. Safe. 2001. Estrogen 
receptor-mediated activation of the serum response element in MCF-7 
cells through MAPK-dependent phosphorylation of Elk-1. J Biol Chem 
276:11590-11598. 

89. Duan, R., W. Xie, X. Li, A. McDougal, and S. Safe. 2002. Estrogen 
regulation of c-fos gene expression through 
phosphatidylinositol-3-kinase-dependent activation of serum response 
factor in MCF-7 breast cancer cells. Biochem Biophys Res Commun 
294:384-394. 

90. Dubik, D., and R. P. Shiu. 1988. Transcriptional regulation of c-myc 
oncogene expression by estrogen in hormone-responsive human breast 
cancer cells. J Biol Chem 263:12705-12708. 

91. Dubik, D., and R. P. Shiu. 1992. Mechanism of estrogen activation of 
c-myc oncogene expression. Oncogene 7:1587-1594. 

92. Dumitrescu, R. G., and I. Cotarla. 2005. Understanding breast cancer 
risk -- where do we stand in 2005? J Cell Mol Med 9:208-221. 

93. Dziema, H., B. Oatis, G. Q. Butcher, R. Yates, K. R. Hoyt, and K. 
Obrietan. 2003. The ERK/MAP kinase pathway couples light to 
immediate-early gene expression in the suprachiasmatic nucleus. Eur J 
Neurosci 17:1617-1627. 

94. Edwards, B. K., H. L. Howe, L. A. Ries, M. J. Thun, H. M. Rosenberg,  
R. Yancik, P. A. Wingo, A. Jemal, and E. G. Feigal. 2002. Annual report 
to the nation on the status of cancer, 1973-1999, featuring implications of 
age and aging on U.S. cancer burden. Cancer 94:2766-2792. 

95. Eid, M. A., M. V. Kumar, K. A. Iczkowski, D. G. Bostwick, and D. J. 
Tindall. 1998. Expression of early growth response genes in human 
prostate cancer. Cancer Res 58:2461-2468. 

     



 161

96. Endoh, H., K. Maruyama, Y. Masuhiro, Y. Kobayashi, M. Goto, H. Tai,  
J. Yanagisawa, D. Metzger, S. Hashimoto, and S. Kato. 1999. 
Purification and identification of p68 RNA helicase acting as a 
transcriptional coactivator specific for the activation function 1 of human 
estrogen receptor alpha. Mol Cell Biol 19:5363-5372. 

97. Enmark, E., M. Pelto-Huikko, K. Grandien, S. Lagercrantz, J. 
Lagercrantz, G. Fried, M. Nordenskjold, and J. A. Gustafsson. 1997. 
Human estrogen receptor beta-gene structure, chromosomal localization, 
and expression pattern. J Clin Endocrinol Metab 82:4258-4265. 

98. Escriva, H., F. Delaunay, and V. Laudet. 2000. Ligand binding and 
nuclear receptor evolution. Bioessays 22:717-727. 

99. Ewertz, M., S. W. Duffy, H. O. Adami, G. Kvale, E. Lund, O. Meirik, A. 
Mellemgaard, I. Soini, and H. Tulinius. 1990. Age at first birth, parity and 
risk of breast cancer: a meta-analysis of 8 studies from the Nordic 
countries. Int J Cancer 46:597-603. 

100. Fan, M., H. Nakshatri, and K. P. Nephew. 2004. Inhibiting proteasomal 
proteolysis sustains estrogen receptor-alpha activation. Mol Endocrinol 
18:2603-2615. 

101. Farooqui, M., P. J. Franco, J. Thompson, H. Kagechika, R. A. 
Chandraratna, L. Banaszak, and L. N. Wei. 2003. Effects of retinoid 
ligands on RIP140: molecular interaction with retinoid receptors and 
biological activity. Biochemistry 42:971-979. 

102. Farsetti, A., B. Desvergne, P. Hallenbeck, J. Robbins, and V. M. 
Nikodem. 1992. Characterization of myelin basic protein thyroid hormone 
response element and its function in the context of native and 
heterologous promoter. J Biol Chem 267:15784-15788. 

103. Feigelson, H. S., and B. E. Henderson. 1996. Estrogens and breast 
cancer. Carcinogenesis 17:2279-2284. 

104. Fernandes, I., Y. Bastien, T. Wai, K. Nygard, R. Lin, O. Cormier, H. S. 
Lee, F. Eng, N. R. Bertos, N. Pelletier, S. Mader, V. K. Han, X. J. Yang, 

     



 162

and J. H. White. 2003. Ligand-dependent nuclear receptor corepressor 
LCoR functions by histone deacetylase-dependent and -independent 
mechanisms. Mol Cell 11:139-150. 

105. Filardo, E. J., J. A. Quinn, A. R. Frackelton, Jr., and K. I. Bland. 2002. 
Estrogen action via the G protein-coupled receptor, GPR30: stimulation of 
adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth 
factor receptor-to-MAPK signaling axis. Mol Endocrinol 16:70-84. 

106. Fjeld, C. C., A. E. Rice, Y. Kim, K. R. Gee, and J. M. Denu. 2000. 
Mechanistic basis for catalytic activation of mitogen-activated protein 
kinase phosphatase 3 by extracellular signal-regulated kinase. J Biol 
Chem 275:6749-6757. 

107. Ford, D., D. F. Easton, M. Stratton, S. Narod, D. Goldgar, P. Devilee, D. 
T. Bishop, B. Weber, G. Lenoir, J. Chang-Claude, H. Sobol, M. D. Teare, 
J. Struewing, A. Arason, S. Scherneck, J. Peto, T. R. Rebbeck, P. 
Tonin, S. Neuhausen, R. Barkardottir, J. Eyfjord, H. Lynch, B. A. 
Ponder, S. A. Gayther, M. Zelada-Hedman, and et al. 1998. Genetic 
heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes 
in breast cancer families. The Breast Cancer Linkage Consortium. Am J 
Hum Genet 62:676-689. 

108. Freeman, B. C., and K. R. Yamamoto. 2002. Disassembly of 
transcriptional regulatory complexes by molecular chaperones. Science 
296:2232-2235. 

109. Fryer, C. J., and T. K. Archer. 1998. Chromatin remodelling by the 
glucocorticoid receptor requires the BRG1 complex. Nature 393:88-91. 

110. Garber, J. E., A. M. Goldstein, A. F. Kantor, M. G. Dreyfus, J. F. 
Fraumeni, Jr., and F. P. Li. 1991. Follow-up study of twenty-four families 
with Li-Fraumeni syndrome. Cancer Res 51:6094-6097. 

111. Gaub, M. P., M. Bellard, I. Scheuer, P. Chambon, and P.  
Sassone-Corsi. 1990. Activation of the ovalbumin gene by the estrogen 
receptor involves the fos-jun complex. Cell 63:1267-1276. 

     



 163

112. Gonzalez, M. I., and D. M. Robins. 2001. Oct-1 preferentially interacts 
with androgen receptor in a DNA-dependent manner that facilitates 
recruitment of SRC-1. J Biol Chem 276:6420-6428. 

113. Gottlicher, M., S. Heck, and P. Herrlich. 1998. Transcriptional cross-talk, 
the second mode of steroid hormone receptor action. J Mol Med 
76:480-489. 

114. Gronemeyer, H., J. A. Gustafsson, and V. Laudet. 2004. Principles for 
modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 
3:950-964. 

115. Gruber, D. M., and J. C. Huber. 2001. Tissue specificity: the clinical 
importance of steroid metabolites in hormone replacement therapy. 
Maturitas 37:151-157. 

116. Guenther, M. G., O. Barak, and M. A. Lazar. 2001. The SMRT and 
N-CoR corepressors are activating cofactors for histone deacetylase 3. 
Mol Cell Biol 21:6091-6101. 

117. Guenther, M. G., W. S. Lane, W. Fischle, E. Verdin, M. A. Lazar, and R. 
Shiekhattar. 2000. A core SMRT corepressor complex containing HDAC3 
and TBL1, a WD40-repeat protein linked to deafness. Genes Dev 
14:1048-1057. 

118. Hall, J. M., J. F. Couse, and K. S. Korach. 2001. The multifaceted 
mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 
276:36869-36872. 

119. Hankinson, S. E., G. A. Colditz, and W. C. Willett. 2004. Towards an 
integrated model for breast cancer etiology: the lifelong interplay of genes, 
lifestyle, and hormones. Breast Cancer Res 6:213-218. 

120. Hansen, J. C. 2002. Conformational dynamics of the chromatin fiber in 
solution: determinants, mechanisms, and functions. Annu Rev Biophys 
Biomol Struct 31:361-392. 

     



 164

121. Harding, P. P., and G. Duester. 1992. Retinoic acid activation and thyroid 
hormone repression of the human alcohol dehydrogenase gene ADH3. J 
Biol Chem 267:14145-14150. 

122. Haussler, M. R., C. A. Haussler, P. W. Jurutka, P. D. Thompson, J. C. 
Hsieh, L. S. Remus, S. H. Selznick, and G. K. Whitfield. 1997. The 
vitamin D hormone and its nuclear receptor: molecular actions and 
disease states. J Endocrinol 154 Suppl:S57-73. 

123. Heimann, R., D. Ferguson, C. Powers, W. M. Recant, R. R. 
Weichselbaum, and S. Hellman. 1996. Angiogenesis as a predictor of 
long-term survival for patients with node-negative breast cancer. J Natl 
Cancer Inst 88:1764-1769. 

124. Hentschke, M., U. Susens, and U. Borgmeyer. 2002. Domains of 
ERRgamma that mediate homodimerization and interaction with factors 
stimulating DNA binding. Eur J Biochem 269:4086-4097. 

125. Hewitt, S. C., B. J. Deroo, and K. S. Korach. 2005. Signal transduction. 
A new mediator for an old hormone? Science 307:1572-1573. 

126. Hoberg, J. E., F. Yeung, and M. W. Mayo. 2004. SMRT derepression by 
the IkappaB kinase alpha: a prerequisite to NF-kappaB transcription and 
survival. Mol Cell 16:245-255. 

127. Hoffmann, B., J. M. Lehmann, X. K. Zhang, T. Hermann, M. Husmann, 
G. Graupner, and M. Pfahl. 1990. A retinoic acid receptor-specific 
element controls the retinoic acid receptor-beta promoter. Mol Endocrinol 
4:1727-1736. 

128. Holland, P. A., W. F. Knox, C. S. Potten, A. Howell, E. Anderson, A. D. 
Baildam, and N. J. Bundred. 1997. Assessment of hormone dependence 
of comedo ductal carcinoma in situ of the breast. J Natl Cancer Inst 
89:1059-1065. 

129. Hong, S. H., and M. L. Privalsky. 2000. The SMRT corepressor is 
regulated by a MEK-1 kinase pathway: inhibition of corepressor function is 
associated with SMRT phosphorylation and nuclear export. Mol Cell Biol 

     



 165

20:6612-6625. 

130. Horlein, A. J., A. M. Naar, T. Heinzel, J. Torchia, B. Gloss, R.  
Kurokawa, A. Ryan, Y. Kamei, M. Soderstrom, C. K. Glass, and et al. 
1995. Ligand-independent repression by the thyroid hormone receptor 
mediated by a nuclear receptor co-repressor. Nature 377:397-404. 

131. Horn, P. J., L. M. Carruthers, C. Logie, D. A. Hill, M. J. Solomon, P. A. 
Wade, A. N. Imbalzano, J. C. Hansen, and C. L. Peterson. 2002. 
Phosphorylation of linker histones regulates ATP-dependent chromatin 
remodeling enzymes. Nat Struct Biol 9:263-267. 

132. Horn, P. J., and C. L. Peterson. 2002. Molecular biology. Chromatin 
higher order folding--wrapping up transcription. Science 297:1824-1827. 

133. Hsieh, J. C., Y. Shimizu, S. Minoshima, N. Shimizu, C. A. Haussler, P. 
W. Jurutka, and M. R. Haussler. 1998. Novel nuclear localization signal 
between the two DNA-binding zinc fingers in the human vitamin D receptor. 
J Cell Biochem 70:94-109. 

134. Hsu, M. H., C. N. Palmer, W. Song, K. J. Griffin, and E. F. Johnson. 
1998. A carboxyl-terminal extension of the zinc finger domain contributes 
to the specificity and polarity of peroxisome proliferator-activated receptor 
DNA binding. J Biol Chem 273:27988-27997. 

135. Hu, X., and M. A. Lazar. 1999. The CoRNR motif controls the recruitment 
of corepressors by nuclear hormone receptors. Nature 402:93-96. 

136. Hu, X., and M. A. Lazar. 2000. Transcriptional repression by nuclear 
hormone receptors. Trends Endocrinol Metab 11:6-10. 

137. Huang, R. P., Y. Fan, I. de Belle, C. Niemeyer, M. M. Gottardis, D. 
Mercola, and E. D. Adamson. 1997. Decreased Egr-1 expression in 
human, mouse and rat mammary cells and tissues correlates with tumor 
formation. Int J Cancer 72:102-109. 

138. Huang, R. P., C. Liu, Y. Fan, D. Mercola, and E. D. Adamson. 1995. 

     



 166

Egr-1 negatively regulates human tumor cell growth via the DNA-binding 
domain. Cancer Res 55:5054-5062. 

139. Huang, S. M., C. J. Huang, W. M. Wang, J. C. Kang, and W. C. Hsu. 
2004. The enhancement of nuclear receptor transcriptional activation by a 
mouse actin-binding protein, alpha actinin 2. J Mol Endocrinol 32:481-496. 

140. Huang, Z., S. E. Hankinson, G. A. Colditz, M. J. Stampfer, D. J. Hunter, 
J. E. Manson, C. H. Hennekens, B. Rosner, F. E. Speizer, and W. C. 
Willett. 1997. Dual effects of weight and weight gain on breast cancer risk. 
Jama 278:1407-1411. 

141. Hulka, B. S., and P. G. Moorman. 2001. Breast cancer: hormones and 
other risk factors. Maturitas 38:103-113; discussion 113-106. 

142. Hunter, D. J., D. Spiegelman, H. O. Adami, P. A. van den Brandt, A. R. 
Folsom, R. A. Goldbohm, S. Graham, G. R. Howe, L. H. Kushi, J. R. 
Marshall, A. B. Miller, F. E. Speizer, W. Willett, A. Wolk, and S. S. Yaun. 
1997. Non-dietary factors as risk factors for breast cancer, and as effect 
modifiers of the association of fat intake and risk of breast cancer. Cancer 
Causes Control 8:49-56. 

143. Ichinose, H., J. M. Garnier, P. Chambon, and R. Losson. 1997. 
Ligand-dependent interaction between the estrogen receptor and the 
human homologues of SWI2/SNF2. Gene 188:95-100. 

144. Ito, T., T. Ikehara, T. Nakagawa, W. L. Kraus, and M. Muramatsu. 2000. 
p300-mediated acetylation facilitates the transfer of histone H2A-H2B 
dimers from nucleosomes to a histone chaperone. Genes Dev 
14:1899-1907. 

145. Iwao, K., H. Kawasaki, K. Taira, and K. K. Yokoyama. 1999. 
Ubiquitination of the transcriptional coactivator p300 during retinic acid 
induced differentiation. Nucleic Acids Symp Ser:207-208. 

146. Jacq, X., C. Brou, Y. Lutz, I. Davidson, P. Chambon, and L. Tora. 1994. 
Human TAFII30 is present in a distinct TFIID complex and is required for 
transcriptional activation by the estrogen receptor. Cell 79:107-117. 

     



 167

147. Janknecht, R., and A. Nordheim. 1996. MAP kinase-dependent 
transcriptional coactivation by Elk-1 and its cofactor CBP. Biochem 
Biophys Res Commun 228:831-837. 

148. Jenuwein, T., and C. D. Allis. 2001. Translating the histone code. 
Science 293:1074-1080. 

149. Joel, P. B., A. M. Traish, and D. A. Lannigan. 1998. Estradiol-induced 
phosphorylation of serine 118 in the estrogen receptor is independent of 
p42/p44 mitogen-activated protein kinase. J Biol Chem 273:13317-13323. 

150. Jonas, B. A., and M. L. Privalsky. 2004. SMRT and N-CoR corepressors 
are regulated by distinct kinase signaling pathways. J Biol Chem 
279:54676-54686. 

151. Jones, N., and F. H. Agani. 2003. Hyperoxia induces Egr-1 expression 
through activation of extracellular signal-regulated kinase 1/2 pathway. J 
Cell Physiol 196:326-333. 

152. Juge-Aubry, C. E., E. Hammar, C. Siegrist-Kaiser, A. Pernin, A. 
Takeshita, W. W. Chin, A. G. Burger, and C. A. Meier. 1999. Regulation 
of the transcriptional activity of the peroxisome proliferator-activated 
receptor alpha by phosphorylation of a ligand-independent trans-activating 
domain. J Biol Chem 274:10505-10510. 

153. Kanno, Y., M. Suzuki, T. Nakahama, and Y. Inouye. 2005. 
Characterization of nuclear localization signals and cytoplasmic retention 
region in the nuclear receptor CAR. Biochim Biophys Acta 1745:215-222. 

154. Karin, M. 1995. The regulation of AP-1 activity by mitogen-activated 
protein kinases. J Biol Chem 270:16483-16486. 

155. Kato, S., H. Endoh, Y. Masuhiro, T. Kitamoto, S. Uchiyama, H. Sasaki, 
S. Masushige, Y. Gotoh, E. Nishida, H. Kawashima, D. Metzger, and P. 
Chambon. 1995. Activation of the estrogen receptor through 
phosphorylation by mitogen-activated protein kinase. Science 
270:1491-1494. 

     



 168

156. Kelly, M. J., A. H. Lagrange, E. J. Wagner, and O. K. Ronnekleiv. 1999. 
Rapid effects of estrogen to modulate G protein-coupled receptors via 
activation of protein kinase A and protein kinase C pathways. Steroids 
64:64-75. 

157. Keshamouni, V. G., R. R. Mattingly, and K. B. Reddy. 2002. Mechanism 
of 17-beta-estradiol-induced Erk1/2 activation in breast cancer cells. A role 
for HER2 AND PKC-delta. J Biol Chem 277:22558-22565. 

158. Key, T., P. Appleby, I. Barnes, and G. Reeves. 2002. Endogenous sex 
hormones and breast cancer in postmenopausal women: reanalysis of 
nine prospective studies. J Natl Cancer Inst 94:606-616. 

159. Key, T. J., P. N. Appleby, G. K. Reeves, A. Roddam, J. F. Dorgan, C. 
Longcope, F. Z. Stanczyk, H. E. Stephenson, Jr., R. T. Falk, R. Miller, A. 
Schatzkin, D. S. Allen, I. S. Fentiman, T. J. Key, D. Y. Wang, M. 
Dowsett, H. V. Thomas, S. E. Hankinson, P. Toniolo, A. 
Akhmedkhanov, K. Koenig, R. E. Shore, A. Zeleniuch-Jacquotte, F. 
Berrino, P. Muti, A. Micheli, V. Krogh, S. Sieri, V. Pala, E. Venturelli, G. 
Secreto, E. Barrett-Connor, G. A. Laughlin, M. Kabuto, S. Akiba, R. G. 
Stevens, K. Neriishi, C. E. Land, J. A. Cauley, L. H. Kuller, S. R. 
Cummings, K. J. Helzlsouer, A. J. Alberg, T. L. Bush, G. W. Comstock, 
G. B. Gordon, S. R. Miller, and C. Longcope. 2003. Body mass index, 
serum sex hormones, and breast cancer risk in postmenopausal women. J 
Natl Cancer Inst 95:1218-1226. 

160. Key, T. J., P. K. Verkasalo, and E. Banks. 2001. Epidemiology of breast 
cancer. Lancet Oncol 2:133-140. 

161. Khan, S., M. Abdelrahim, I. Samudio, and S. Safe. 2003. Estrogen 
receptor/Sp1 complexes are required for induction of cad gene expression 
by 17beta-estradiol in breast cancer cells. Endocrinology 144:2325-2335. 

162. Kim, K., R. Barhoumi, R. Burghardt, and S. Safe. 2005. Analysis of 
estrogen receptor alpha-Sp1 interactions in breast cancer cells by 
fluorescence resonance energy transfer. Mol Endocrinol 19:843-854. 

163. Kim, K., N. Thu, B. Saville, and S. Safe. 2003. Domains of estrogen 
receptor alpha (ERalpha) required for ERalpha/Sp1-mediated activation of 

     



 169

GC-rich promoters by estrogens and antiestrogens in breast cancer cells. 
Mol Endocrinol 17:804-817. 

164. Kingston, R. E., and G. J. Narlikar. 1999. ATP-dependent remodeling 
and acetylation as regulators of chromatin fluidity. Genes Dev 
13:2339-2352. 

165. Kitabayashi, I., R. Eckner, Z. Arany, R. Chiu, G. Gachelin, D. M. 
Livingston, and K. K. Yokoyama. 1995. Phosphorylation of the 
adenovirus E1A-associated 300 kDa protein in response to retinoic acid 
and E1A during the differentiation of F9 cells. Embo J 14:3496-3509. 

166. Klein-Hitpass, L., M. Schorpp, U. Wagner, and G. U. Ryffel. 1986. An 
estrogen-responsive element derived from the 5' flanking region of the 
Xenopus vitellogenin A2 gene functions in transfected human cells. Cell 
46:1053-1061. 

167. Klinge, C. M. 1999. Role of estrogen receptor ligand and estrogen 
response element sequence on interaction with chicken ovalbumin 
upstream promoter transcription factor (COUP-TF). J Steroid Biochem Mol 
Biol 71:1-19. 

168. Klinge, C. M. 2000. Estrogen receptor interaction with co-activators and 
co-repressors. Steroids 65:227-251. 

169. Klinge, C. M., B. F. Silver, M. D. Driscoll, G. Sathya, R. A. Bambara, 
and R. Hilf. 1997. Chicken ovalbumin upstream promoter-transcription 
factor interacts with estrogen receptor, binds to estrogen response 
elements and half-sites, and inhibits estrogen-induced gene expression. J 
Biol Chem 272:31465-31474. 

170. Koh, S. S., D. Chen, Y. H. Lee, and M. R. Stallcup. 2001. Synergistic 
enhancement of nuclear receptor function by p160 coactivators and two 
coactivators with protein methyltransferase activities. J Biol Chem 
276:1089-1098. 

171. Kong, E. H., A. C. Pike, and R. E. Hubbard. 2003. Structure and 
mechanism of the oestrogen receptor. Biochem Soc Trans 31:56-59. 

     



 170

172. Kousteni, S., T. Bellido, L. I. Plotkin, C. A. O'Brien, D. L. Bodenner, L. 
Han, K. Han, G. B. DiGregorio, J. A. Katzenellenbogen, B. S. 
Katzenellenbogen, P. K. Roberson, R. S. Weinstein, R. L. Jilka, and S. 
C. Manolagas. 2001. Nongenotropic, sex-nonspecific signaling through 
the estrogen or androgen receptors: dissociation from transcriptional 
activity. Cell 104:719-730. 

173. Kousteni, S., L. Han, J. R. Chen, M. Almeida, L. I. Plotkin, T. Bellido, 
and S. C. Manolagas. 2003. Kinase-mediated regulation of common 
transcription factors accounts for the bone-protective effects of sex 
steroids. J Clin Invest 111:1651-1664. 

174. Kouzarides, T. 2000. Acetylation: a regulatory modification to rival 
phosphorylation? Embo J 19:1176-1179. 

175. Kraus, W. L., E. T. Manning, and J. T. Kadonaga. 1999. Biochemical 
analysis of distinct activation functions in p300 that enhance transcription 
initiation with chromatin templates. Mol Cell Biol 19:8123-8135. 

176. Kraus, W. L., and J. Wong. 2002. Nuclear receptor-dependent 
transcription with chromatin. Is it all about enzymes? Eur J Biochem 
269:2275-2283. 

177. Krishnan, V., X. Wang, and S. Safe. 1994. Estrogen receptor-Sp1 
complexes mediate estrogen-induced cathepsin D gene expression in 
MCF-7 human breast cancer cells. J Biol Chem 269:15912-15917. 

178. Kuiper, G. G., B. Carlsson, K. Grandien, E. Enmark, J. Haggblad, S. 
Nilsson, and J. A. Gustafsson. 1997. Comparison of the ligand binding 
specificity and transcript tissue distribution of estrogen receptors alpha 
and beta. Endocrinology 138:863-870. 

179. Kuiper, G. G., E. Enmark, M. Pelto-Huikko, S. Nilsson, and J. A. 
Gustafsson. 1996. Cloning of a novel receptor expressed in rat prostate 
and ovary. Proc Natl Acad Sci U S A 93:5925-5930. 

180. Kumar, V., S. Green, G. Stack, M. Berry, J. R. Jin, and P. Chambon. 
1987. Functional domains of the human estrogen receptor. Cell 

     



 171

51:941-951. 

181. Kyriakis, J. M., and J. Avruch. 2001. Mammalian mitogen-activated 
protein kinase signal transduction pathways activated by stress and 
inflammation. Physiol Rev 81:807-869. 

182. Lagerros, Y. T., S. F. Hsieh, and C. C. Hsieh. 2004. Physical activity in 
adolescence and young adulthood and breast cancer risk: a quantitative 
review. Eur J Cancer Prev 13:5-12. 

183. Lamothe, B., D. Bucchini, J. Jami, and R. L. Joshi. 1995. Interaction of 
p85 subunit of PI 3-kinase with insulin and IGF-1 receptors analysed by 
using the two-hybrid system. FEBS Lett 373:51-55. 

184. Lanz, R. B., N. J. McKenna, S. A. Onate, U. Albrecht, J. Wong, S. Y. 
Tsai, M. J. Tsai, and B. W. O'Malley. 1999. A steroid receptor coactivator, 
SRA, functions as an RNA and is present in an SRC-1 complex. Cell 
97:17-27. 

185. Lavigne, J. A., J. E. Goodman, T. Fonong, S. Odwin, P. He, D. W. 
Roberts, and J. D. Yager. 2001. The effects of 
catechol-O-methyltransferase inhibition on estrogen metabolite and 
oxidative DNA damage levels in estradiol-treated MCF-7 cells. Cancer 
Res 61:7488-7494. 

186. Lee, C. H., C. Chinpaisal, and L. N. Wei. 1998. Cloning and 
characterization of mouse RIP140, a corepressor for nuclear orphan 
receptor TR2. Mol Cell Biol 18:6745-6755. 

187. Lee, I. M. 1999. Antioxidant vitamins in the prevention of cancer. Proc 
Assoc Am Physicians 111:10-15. 

188. Lee, J. E., K. Kim, J. C. Sacchettini, C. V. Smith, and S. Safe. 2005. 
DRIP150 coactivation of estrogen receptor alpha in ZR-75 breast cancer 
cells is independent of LXXLL motifs. J Biol Chem 280:8819-8830. 

189. Levin, E. R. 2002. Cellular functions of plasma membrane estrogen 

     



 172

receptors. Steroids 67:471-475. 

190. Leygue, E., H. Dotzlaw, P. H. Watson, and L. C. Murphy. 1998. Altered 
estrogen receptor alpha and beta messenger RNA expression during 
human breast tumorigenesis. Cancer Res 58:3197-3201. 

191. Li, J., J. Wang, J. Wang, Z. Nawaz, J. M. Liu, J. Qin, and J. Wong.  
2000. Both corepressor proteins SMRT and N-CoR exist in large protein 
complexes containing HDAC3. Embo J 19:4342-4350. 

192. Li, Q., A. Imhof, T. N. Collingwood, F. D. Urnov, and A. P. Wolffe. 1999. 
p300 stimulates transcription instigated by ligand-bound thyroid hormone 
receptor at a step subsequent to chromatin disruption. Embo J 
18:5634-5652. 

193. Liao, G., L. Y. Chen, A. Zhang, A. Godavarthy, F. Xia, J. C. Ghosh, H.  
Li, and J. D. Chen. 2003. Regulation of androgen receptor activity by the 
nuclear receptor corepressor SMRT. J Biol Chem 278:5052-5061. 

194. Liehr, J. G. 2000. Is estradiol a genotoxic mutagenic carcinogen? Endocr 
Rev 21:40-54. 

195. Ling, Y., A. G. West, E. C. Roberts, J. H. Lakey, and A. D. Sharrocks. 
1998. Interaction of transcription factors with serum response factor. 
Identification of the Elk-1 binding surface. J Biol Chem 273:10506-10514. 

196. Liu, Q., J. Wuu, M. Lambe, S. F. Hsieh, A. Ekbom, and C. C. Hsieh. 
2002. Transient increase in breast cancer risk after giving birth: 
postpartum period with the highest risk (Sweden). Cancer Causes Control 
13:299-305. 

197. Liu, Y., and J. F. Chiu. 1994. Transactivation and repression of the 
alpha-fetoprotein gene promoter by retinoid X receptor and chicken 
ovalbumin upstream promoter transcription factor. Nucleic Acids Res 
22:1079-1086. 

198. Losel, R., and M. Wehling. 2003. Nongenomic actions of steroid 

     



 173

hormones. Nat Rev Mol Cell Biol 4:46-56. 

199. Lu, M., L. Staszewski, F. Echeverri, H. Xu, and B. D. Moyer. 2004. 
Endoplasmic reticulum degradation impedes olfactory G-protein coupled 
receptor functional expression. BMC Cell Biol 5:34. 

200. Lu, X. P., G. Salbert, and M. Pfahl. 1994. An evolutionary conserved 
COUP-TF binding element in a neural-specific gene and COUP-TF 
expression patterns support a major role for COUP-TF in neural 
development. Mol Endocrinol 8:1774-1788. 

201. Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. 
Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 
A resolution. Nature 389:251-260. 

202. Malik, S., and R. G. Roeder. 2000. Transcriptional regulation through 
Mediator-like coactivators in yeast and metazoan cells. Trends Biochem 
Sci 25:277-283. 

203. Man, P. S., and D. A. Carter. 2003. Oestrogenic regulation of an egr-1 
transgene in rat anterior pituitary. J Mol Endocrinol 30:187-196. 

204. Mangelsdorf, D. J., and R. M. Evans. 1995. The RXR heterodimers and 
orphan receptors. Cell 83:841-850. 

205. Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. 
Umesono, B. Blumberg, P. Kastner, M. Mark, P. Chambon, and R. M. 
Evans. 1995. The nuclear receptor superfamily: the second decade. Cell 
83:835-839. 

206. Marais, R., J. Wynne, and R. Treisman. 1993. The SRF accessory 
protein Elk-1 contains a growth factor-regulated transcriptional activation 
domain. Cell 73:381-393. 

207. Marimuthu, A., W. Feng, T. Tagami, H. Nguyen, J. L. Jameson, R. J. 
Fletterick, J. D. Baxter, and B. L. West. 2002. TR surfaces and 
conformations required to bind nuclear receptor corepressor. Mol 

     



 174

Endocrinol 16:271-286. 

208. Martini, P. G., and B. S. Katzenellenbogen. 2001. Regulation of 
prothymosin alpha gene expression by estrogen in estrogen 
receptor-containing breast cancer cells via upstream half-palindromic 
estrogen response element motifs. Endocrinology 142:3493-3501. 

209. McInerney, E. M., D. W. Rose, S. E. Flynn, S. Westin, T. M. Mullen, A. 
Krones, J. Inostroza, J. Torchia, R. T. Nolte, N. Assa-Munt, M. V. 
Milburn, C. K. Glass, and M. G. Rosenfeld. 1998. Determinants of 
coactivator LXXLL motif specificity in nuclear receptor transcriptional 
activation. Genes Dev 12:3357-3368. 

210. McInerney, E. M., M. J. Tsai, B. W. O'Malley, and B. S. 
Katzenellenbogen. 1996. Analysis of estrogen receptor transcriptional 
enhancement by a nuclear hormone receptor coactivator. Proc Natl Acad 
Sci U S A 93:10069-10073. 

211. McKenna, N. J., R. B. Lanz, and B. W. O'Malley. 1999. Nuclear receptor 
coregulators: cellular and molecular biology. Endocr Rev 20:321-344. 

212. McKenna, N. J., and B. W. O'Malley. 2002. Combinatorial control of gene 
expression by nuclear receptors and coregulators. Cell 108:465-474. 

213. McNair, A., S. Cereghini, H. Brand, T. Smith, C. Breillat, and F.  
Gannon. 2000. Synergistic activation of the Atlantic salmon hepatocyte 
nuclear factor (HNF) 1 promoter by the orphan nuclear receptors HNF4 
and chicken ovalbumin upstream promoter transcription factor I 
(COUP-TFI). Biochem J 352 Pt 2:557-564. 

214. Melvin, V. S., S. C. Roemer, M. E. Churchill, and D. P. Edwards. 2002. 
The C-terminal extension (CTE) of the nuclear hormone receptor DNA 
binding domain determines interactions and functional response to the 
HMGB-1/-2 co-regulatory proteins. J Biol Chem 277:25115-25124. 

215. Metivier, R., F. A. Gay, M. R. Hubner, G. Flouriot, G. Salbert, F. Gannon, 
O. Kah, and F. Pakdel. 2002. Formation of an hER alpha-COUP-TFI 
complex enhances hER alpha AF-1 through Ser118 phosphorylation by 

     



 175

MAPK. Embo J 21:3443-3453. 

216. Metivier, R., G. Penot, M. R. Hubner, G. Reid, H. Brand, M. Kos, and F. 
Gannon. 2003. Estrogen receptor-alpha directs ordered, cyclical, and 
combinatorial recruitment of cofactors on a natural target promoter. Cell 
115:751-763. 

217. Michalides, R., A. Griekspoor, A. Balkenende, D. Verwoerd, L. 
Janssen, K. Jalink, A. Floore, A. Velds, L. van't Veer, and J. Neefjes. 
2004. Tamoxifen resistance by a conformational arrest of the estrogen 
receptor alpha after PKA activation in breast cancer. Cancer Cell 
5:597-605. 

218. Migliaccio, A., G. Castoria, M. Di Domenico, A. de Falco, A. Bilancio, 
M. Lombardi, M. V. Barone, D. Ametrano, M. S. Zannini, C. 
Abbondanza, and F. Auricchio. 2000. Steroid-induced androgen 
receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell 
proliferation. Embo J 19:5406-5417. 

219. Migliaccio, A., M. Di Domenico, G. Castoria, A. de Falco, P. Bontempo, 
E. Nola, and F. Auricchio. 1996. Tyrosine kinase/p21ras/MAP-kinase 
pathway activation by estradiol-receptor complex in MCF-7 cells. Embo J 
15:1292-1300. 

220. Migliaccio, A., D. Piccolo, G. Castoria, M. Di Domenico, A. Bilancio, M. 
Lombardi, W. Gong, M. Beato, and F. Auricchio. 1998. Activation of the 
Src/p21ras/Erk pathway by progesterone receptor via cross-talk with 
estrogen receptor. Embo J 17:2008-2018. 

221. Morley, P., J. F. Whitfield, B. C. Vanderhyden, B. K. Tsang, and J. L. 
Schwartz. 1992. A new, nongenomic estrogen action: the rapid release of 
intracellular calcium. Endocrinology 131:1305-1312. 

222. Mowen, K. A., J. Tang, W. Zhu, B. T. Schurter, K. Shuai, H. R. 
Herschman, and M. David. 2001. Arginine methylation of STAT1 
modulates IFNalpha/beta-induced transcription. Cell 104:731-741. 

223. Muchardt, C., and M. Yaniv. 1999. ATP-dependent chromatin  

     



 176

remodelling: SWI/SNF and Co. are on the job. J Mol Biol 293:187-198. 

224. Murphy, M. J., Jr. 1998. Molecular action and clinical relevance of
aromatase inhibitors. Oncologist 3:129-130. 

225. Nagaich, A. K., D. A. Walker, R. Wolford, and G. L. Hager. 2004. Rapid 
periodic binding and displacement of the glucocorticoid receptor during 
chromatin remodeling. Mol Cell 14:163-174. 

226. Nakajima, T., C. Uchida, S. F. Anderson, J. D. Parvin, and M. 
Montminy. 1997. Analysis of a cAMP-responsive activator reveals a 
two-component mechanism for transcriptional induction via 
signal-dependent factors. Genes Dev 11:738-747. 

227. Nelson, C. C., S. C. Hendy, and P. J. Romaniuk. 1995. Relationship 
between P-box amino acid sequence and DNA binding specificity of the 
thyroid hormone receptor. The effects of half-site sequence in everted 
repeats. J Biol Chem 270:16981-16987. 

228. Ngwenya, S., and S. Safe. 2003. Cell context-dependent differences in 
the induction of E2F-1 gene expression by 17 beta-estradiol in MCF-7 and 
ZR-75 cells. Endocrinology 144:1675-1685. 

229. Nilsson, S., S. Makela, E. Treuter, M. Tujague, J. Thomsen, G. 
Andersson, E. Enmark, K. Pettersson, M. Warner, and J. A. 
Gustafsson. 2001. Mechanisms of estrogen action. Physiol Rev 
81:1535-1565. 

230. Nolte, R. T., G. B. Wisely, S. Westin, J. E. Cobb, M. H. Lambert, R. 
Kurokawa, M. G. Rosenfeld, T. M. Willson, C. K. Glass, and M. V. 
Milburn. 1998. Ligand binding and co-activator assembly of the 
peroxisome proliferator-activated receptor-gamma. Nature 395:137-143. 

231. Norfleet, A. M., M. L. Thomas, B. Gametchu, and C. S. Watson. 1999. 
Estrogen receptor-alpha detected on the plasma membrane of 
aldehyde-fixed GH3/B6/F10 rat pituitary tumor cells by enzyme-linked 
immunocytochemistry. Endocrinology 140:3805-3814. 

     



 177

232. O'Lone, R., M. C. Frith, E. K. Karlsson, and U. Hansen. 2004. Genomic 
targets of nuclear estrogen receptors. Mol Endocrinol 18:1859-1875. 

233. Ogryzko, V. V., T. Kotani, X. Zhang, R. L. Schiltz, T. Howard, X. J. Yang, 
B. H. Howard, J. Qin, and Y. Nakatani. 1998. Histone-like TAFs within 
the PCAF histone acetylase complex. Cell 94:35-44. 

234. Okobia, M. N., and C. H. Bunker. 2003. Molecular epidemiology of breast 
cancer: a review. Afr J Reprod Health 7:17-28. 

235. Olefsky, J. M. 2001. Nuclear receptor minireview series. J Biol Chem 
276:36863-36864. 

236. Onate, S. A., V. Boonyaratanakornkit, T. E. Spencer, S. Y. Tsai, M. J. 
Tsai, D. P. Edwards, and B. W. O'Malley. 1998. The steroid receptor 
coactivator-1 contains multiple receptor interacting and activation domains 
that cooperatively enhance the activation function 1 (AF1) and AF2 
domains of steroid receptors. J Biol Chem 273:12101-12108. 

237. Onland-Moret, N. C., R. Kaaks, P. A. van Noord, S. Rinaldi, T. Key, D.  
E. Grobbee, and P. H. Peeters. 2003. Urinary endogenous sex hormone 
levels and the risk of postmenopausal breast cancer. Br J Cancer 
88:1394-1399. 

238. Orphanides, G., T. Lagrange, and D. Reinberg. 1996. The general 
transcription factors of RNA polymerase II. Genes Dev 10:2657-2683. 

239. Osawa, Y., T. Higashiyama, Y. Shimizu, and C. Yarborough. 1993. 
Multiple functions of aromatase and the active site structure; aromatase is 
the placental estrogen 2-hydroxylase. J Steroid Biochem Mol Biol 
44:469-480. 

240. Paech, K., P. Webb, G. G. Kuiper, S. Nilsson, J. Gustafsson, P. J. 
Kushner, and T. S. Scanlan. 1997. Differential ligand activation of 
estrogen receptors ERalpha and ERbeta at AP1 sites. Science 
277:1508-1510. 

     



 178

241. Pappas, T. C., B. Gametchu, and C. S. Watson. 1995. Membrane 
estrogen receptors identified by multiple antibody labeling and 
impeded-ligand binding. Faseb J 9:404-410. 

242. Park, J. I., S. Y. Tsai, and M. J. Tsai. 2003. Molecular mechanism of 
chicken ovalbumin upstream promoter-transcription factor (COUP-TF) 
actions. Keio J Med 52:174-181. 

243. Parkin, D. M. 2004. International variation. Oncogene 23:6329-6340. 

244. Parkin, D. M., P. Pisani, and J. Ferlay. 1999. Global cancer statistics. CA 
Cancer J Clin 49:33-64, 31. 

245. Pearson, G., F. Robinson, T. Beers Gibson, B. E. Xu, M. Karandikar, K. 
Berman, and M. H. Cobb. 2001. Mitogen-activated protein (MAP) kinase 
pathways: regulation and physiological functions. Endocr Rev 22:153-183. 

246. Pelicci, G., L. Dente, A. De Giuseppe, B. Verducci-Galletti, S. Giuli, S. 
Mele, C. Vetriani, M. Giorgio, P. P. Pandolfi, G. Cesareni, and P. G. 
Pelicci. 1996. A family of Shc related proteins with conserved PTB, CH1 
and SH2 regions. Oncogene 13:633-641. 

247. Pelicci, G., L. Lanfrancone, A. E. Salcini, A. Romano, S. Mele, M. 
Grazia Borrello, O. Segatto, P. P. Di Fiore, and P. G. Pelicci. 1995. 
Constitutive phosphorylation of Shc proteins in human tumors. Oncogene 
11:899-907. 

248. Pereira, F. A., Y. Qiu, G. Zhou, M. J. Tsai, and S. Y. Tsai. 1999. The 
orphan nuclear receptor COUP-TFII is required for angiogenesis and 
heart development. Genes Dev 13:1037-1049. 

249. Perissi, V., A. Aggarwal, C. K. Glass, D. W. Rose, and M. G. Rosenfeld. 
2004. A corepressor/coactivator exchange complex required for 
transcriptional activation by nuclear receptors and other regulated 
transcription factors. Cell 116:511-526. 

250. Perissi, V., and M. G. Rosenfeld. 2005. Controlling nuclear receptors: the 

     



 179

circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6:542-554. 

251. Perusinghe, N. P., P. Monaghan, M. J. O'Hare, S. Ashley, and B. A. 
Gusterson. 1992. Effects of growth factors on proliferation on basal and 
luminal cells in human breast epithelial explants in serum-free culture. In 
Vitro Cell Dev Biol 28A:90-96. 

252. Petit, F. G., R. Metivier, Y. Valotaire, and F. Pakdel. 1999. Synergism 
between a half-site and an imperfect estrogen-responsive element, and 
cooperation with COUP-TFI are required for estrogen receptor (ER) to 
achieve a maximal estrogen-stimulation of rainbow trout ER gene. Eur J 
Biochem 259:385-395. 

253. Petz, L. N., and A. M. Nardulli. 2000. Sp1 binding sites and an estrogen 
response element half-site are involved in regulation of the human 
progesterone receptor A promoter. Mol Endocrinol 14:972-985. 

254. Philips, A., D. Chalbos, and H. Rochefort. 1993. Estradiol increases and 
anti-estrogens antagonize the growth factor-induced activator protein-1 
activity in MCF7 breast cancer cells without affecting c-fos and c-jun 
synthesis. J Biol Chem 268:14103-14108. 

255. Germain, P., W. Bourguet, C. Rochette-Egly, and H. Gronemeyer.   
2003. Nuclear receptor superfamily: Principles of singnaling. Pure Appl 
Chem 75:1619–1664. 

 

256. Pietras, R. J., and C. M. Szego. 1977. Specific binding sites for oestrogen 
at the outer surfaces of isolated endometrial cells. Nature 265:69-72. 

257. Pike, A. C., A. M. Brzozowski, R. E. Hubbard, T. Bonn, A. G. Thorsell, 
O. Engstrom, J. Ljunggren, J. A. Gustafsson, and M. Carlquist. 1999. 
Structure of the ligand-binding domain of oestrogen receptor beta in the 
presence of a partial agonist and a full antagonist. Embo J 18:4608-4618. 

258. Pike, A. C., A. M. Brzozowski, J. Walton, R. E. Hubbard, A. G. Thorsell, 
Y. L. Li, J. A. Gustafsson, and M. Carlquist. 2001. Structural insights into 
the mode of action of a pure antiestrogen. Structure 9:145-153. 

     



 180

259. Pike, M. C., D. V. Spicer, L. Dahmoush, and M. F. Press. 1993. 
Estrogens, progestogens, normal breast cell proliferation, and breast 
cancer risk. Epidemiol Rev 15:17-35. 

260. Pipaon, C., S. Y. Tsai, and M. J. Tsai. 1999. COUP-TF upregulates 
NGFI-A gene expression through an Sp1 binding site. Mol Cell Biol 
19:2734-2745. 

261. Porter, W., B. Saville, D. Hoivik, and S. Safe. 1997. Functional synergy 
between the transcription factor Sp1 and the estrogen receptor. Mol 
Endocrinol 11:1569-1580. 

262. Porter, W., F. Wang, W. Wang, R. Duan, and S. Safe. 1996. Role of 
estrogen receptor/Sp1 complexes in estrogen-induced heat shock protein 
27 gene expression. Mol Endocrinol 10:1371-1378. 

263. Pratt, M. A., A. Satkunaratnam, and D. M. Novosad. 1998. Estrogen 
activates raf-1 kinase and induces expression of Egr-1 in MCF-7 breast 
cancer cells. Mol Cell Biochem 189:119-125. 

264. Puigserver, P., Z. Wu, C. W. Park, R. Graves, M. Wright, and B. M. 
Spiegelman. 1998. A cold-inducible coactivator of nuclear receptors 
linked to adaptive thermogenesis. Cell 92:829-839. 

265. Qin, C., T. Nguyen, J. Stewart, I. Samudio, R. Burghardt, and S. Safe. 
2002. Estrogen up-regulation of p53 gene expression in MCF-7 breast 
cancer cells is mediated by calmodulin kinase IV-dependent activation of a 
nuclear factor kappaB/CCAAT-binding transcription factor-1 complex. Mol 
Endocrinol 16:1793-1809. 

266. Qin, C., P. Singh, and S. Safe. 1999. Transcriptional activation of 
insulin-like growth factor-binding protein-4 by 17beta-estradiol in MCF-7 
cells: role of estrogen receptor-Sp1 complexes. Endocrinology 
140:2501-2508. 

267. Qiu, Y., F. A. Pereira, F. J. DeMayo, J. P. Lydon, S. Y. Tsai, and M. J. 
Tsai. 1997. Null mutation of mCOUP-TFI results in defects in 
morphogenesis of the glossopharyngeal ganglion, axonal projection, and 

     



 181

arborization. Genes Dev 11:1925-1937. 

268. Rastinejad, F., T. Wagner, Q. Zhao, and S. Khorasanizadeh. 2000. 
Structure of the RXR-RAR DNA-binding complex on the retinoic acid 
response element DR1. Embo J 19:1045-1054. 

269. Ravichandran, K. S. 2001. Signaling via Shc family adapter proteins. 
Oncogene 20:6322-6330. 

270. Razandi, M., G. Alton, A. Pedram, S. Ghonshani, P. Webb, and E. R. 
Levin. 2003. Identification of a structural determinant necessary for the 
localization and function of estrogen receptor alpha at the plasma 
membrane. Mol Cell Biol 23:1633-1646. 

271. Razandi, M., P. Oh, A. Pedram, J. Schnitzer, and E. R. Levin. 2002. 
ERs associate with and regulate the production of caveolin: implications 
for signaling and cellular actions. Mol Endocrinol 16:100-115. 

272. Razandi, M., A. Pedram, G. L. Greene, and E. R. Levin. 1999. Cell 
membrane and nuclear estrogen receptors (ERs) originate from a single 
transcript: studies of ERalpha and ERbeta expressed in Chinese hamster 
ovary cells. Mol Endocrinol 13:307-319. 

273. Razandi, M., A. Pedram, and E. R. Levin. 2000. Estrogen signals to the 
preservation of endothelial cell form and function. J Biol Chem 
275:38540-38546. 

274. Razandi, M., A. Pedram, and E. R. Levin. 2000. Plasma membrane 
estrogen receptors signal to antiapoptosis in breast cancer. Mol 
Endocrinol 14:1434-1447. 

275. Razandi, M., A. Pedram, I. Merchenthaler, G. L. Greene, and E. R. 
Levin. 2004. Plasma membrane estrogen receptors exist and functions as 
dimers. Mol Endocrinol 18:2854-2865. 

276. Reid, G., M. R. Hubner, R. Metivier, H. Brand, S. Denger, D. Manu, J. 
Beaudouin, J. Ellenberg, and F. Gannon. 2003. Cyclic, 

     



 182

proteasome-mediated turnover of unliganded and liganded ERalpha on 
responsive promoters is an integral feature of estrogen signaling. Mol Cell 
11:695-707. 

277. Revankar, C. M., D. F. Cimino, L. A. Sklar, J. B. Arterburn, and E. R. 
Prossnitz. 2005. A transmembrane intracellular estrogen receptor 
mediates rapid cell signaling. Science 307:1625-1630. 

278. Robyr, D., A. P. Wolffe, and W. Wahli. 2000. Nuclear hormone receptor 
coregulators in action: diversity for shared tasks. Mol Endocrinol 
14:329-347. 

279. Rogatsky, I., J. M. Trowbridge, and M. J. Garabedian. 1999. 
Potentiation of human estrogen receptor alpha transcriptional activation 
through phosphorylation of serines 104 and 106 by the cyclin A-CDK2 
complex. J Biol Chem 274:22296-22302. 

280. Rosenfeld, M. G., and C. K. Glass. 2001. Coregulator codes of 
transcriptional regulation by nuclear receptors. J Biol Chem 
276:36865-36868. 

281. Rothman, N., S. Wacholder, N. E. Caporaso, M. Garcia-Closas, K. 
Buetow, and J. F. Fraumeni, Jr. 2001. The use of common genetic 
polymorphisms to enhance the epidemiologic study of environmental 
carcinogens. Biochim Biophys Acta 1471:C1-10. 

282. Rozakis-Adcock, M., J. McGlade, G. Mbamalu, G. Pelicci, R. Daly, W. 
Li, A. Batzer, S. Thomas, J. Brugge, P. G. Pelicci, and et al. 1992. 
Association of the Shc and Grb2/Sem5 SH2-containing proteins is 
implicated in activation of the Ras pathway by tyrosine kinases. Nature 
360:689-692. 

283. Russell, D. L., K. M. Doyle, I. Gonzales-Robayna, C. Pipaon, and J. S. 
Richards. 2003. Egr-1 induction in rat granulosa cells by 
follicle-stimulating hormone and luteinizing hormone: combinatorial 
regulation by transcription factors cyclic adenosine 3',5'-monophosphate 
regulatory element binding protein, serum response factor, sp1, and early 
growth response factor-1. Mol Endocrinol 17:520-533. 

     



 183

284. Russo, I. H., and J. Russo. 1998. Role of hormones in mammary cancer 
initiation and progression. J Mammary Gland Biol Neoplasia 3:49-61. 

285. Russo, I. H., and J. Russo. 2000. Hormonal approach to breast cancer 
prevention. J Cell Biochem Suppl 34:1-6. 

286. Russo, J., Y. F. Hu, X. Yang, and I. H. Russo. 2000. Developmental, 
cellular, and molecular basis of human breast cancer. J Natl Cancer Inst 
Monogr:17-37. 

287. Russo, J., M. J. Mills, M. J. Moussalli, and I. H. Russo. 1989. Influence 
of human breast development on the growth properties of primary cultures. 
In Vitro Cell Dev Biol 25:643-649. 

288. Russo, J., R. Moral, G. A. Balogh, D. Mailo, and I. H. Russo. 2005. The 
protective role of pregnancy in breast cancer. Breast Cancer Res 
7:131-142. 

289. Saadatian-Elahi, M., T. Norat, J. Goudable, and E. Riboli. 2004. 
Biomarkers of dietary fatty acid intake and the risk of breast cancer: a 
meta-analysis. Int J Cancer 111:584-591. 

290. Sagami, I., S. Y. Tsai, H. Wang, M. J. Tsai, and B. W. O'Malley. 1986. 
Identification of two factors required for transcription of the ovalbumin 
gene. Mol Cell Biol 6:4259-4267. 

291. Salghetti, S. E., M. Muratani, H. Wijnen, B. Futcher, and W. P. Tansey. 
2000. Functional overlap of sequences that activate transcription and 
signal ubiquitin-mediated proteolysis. Proc Natl Acad Sci U S A 
97:3118-3123. 

292. Salvatori, L., P. Pallante, L. Ravenna, P. Chinzari, L. Frati, M. A.  
Russo, and E. Petrangeli. 2003. Oestrogens and selective oestrogen 
receptor (ER) modulators regulate EGF receptor gene expression through 
human ER alpha and beta subtypes via an Sp1 site. Oncogene 
22:4875-4881. 

     



 184

293. Santen, R. J., D. Leszczynski, N. Tilson-Mallet, P. D. Feil, C. Wright, A. 
Manni, and S. J. Santner. 1986. Enzymatic control of estrogen production 
in human breast cancer: relative significance of aromatase versus 
sulfatase pathways. Ann N Y Acad Sci 464:126-137. 

294. Santen, R. J., R. X. Song, R. McPherson, R. Kumar, L. Adam, M. H. 
Jeng, and W. Yue. 2002. The role of mitogen-activated protein (MAP) 
kinase in breast cancer. J Steroid Biochem Mol Biol 80:239-256. 

295. Santini, D., C. Ceccarelli, M. Taffurelli, S. Pileri, and D. Marrano. 1996. 
Differentiation pathways in primary invasive breast carcinoma as 
suggested by intermediate filament and biopathological marker expression. 
J Pathol 179:386-391. 

296. Sasaki, S., L. A. Lesoon-Wood, A. Dey, T. Kuwata, B. D. Weintraub, G. 
Humphrey, W. M. Yang, E. Seto, P. M. Yen, B. H. Howard, and K. Ozato. 
1999. Ligand-induced recruitment of a histone deacetylase in the 
negative-feedback regulation of the thyrotropin beta gene. Embo J 
18:5389-5398. 

297. Sathya, G., W. Li, C. M. Klinge, J. H. Anolik, R. Hilf, and R. A. Bambara. 
1997. Effects of multiple estrogen responsive elements, their spacing, and 
location on estrogen response of reporter genes. Mol Endocrinol 
11:1994-2003. 

298. Saville, B., H. Poukka, M. Wormke, O. A. Janne, J. J. Palvimo, M. 
Stoner, I. Samudio, and S. Safe. 2002. Cooperative coactivation of 
estrogen receptor alpha in ZR-75 human breast cancer cells by SNURF 
and TATA-binding protein. J Biol Chem 277:2485-2497. 

299. Saville, B., M. Wormke, F. Wang, T. Nguyen, E. Enmark, G. Kuiper, J.  
A. Gustafsson, and S. Safe. 2000. Ligand-, cell-, and estrogen receptor 
subtype (alpha/beta)-dependent activation at GC-rich (Sp1) promoter 
elements. J Biol Chem 275:5379-5387. 

300. Schurter, B. T., S. S. Koh, D. Chen, G. J. Bunick, J. M. Harp, B. L. 
Hanson, A. Henschen-Edman, D. R. Mackay, M. R. Stallcup, and D. W. 
Aswad. 2001. Methylation of histone H3 by coactivator-associated 
arginine methyltransferase 1. Biochemistry 40:5747-5756. 

     



 185

301. Seol, W., H. S. Choi, and D. D. Moore. 1996. An orphan nuclear hormone 
receptor that lacks a DNA binding domain and heterodimerizes with other 
receptors. Science 272:1336-1339. 

302. Shaul, P. W., and R. G. Anderson. 1998. Role of plasmalemmal caveolae 
in signal transduction. Am J Physiol 275:L843-851. 

303. Shaulian, E., and M. Karin. 2002. AP-1 as a regulator of cell life and 
death. Nat Cell Biol 4:E131-136. 

304. Sheffield, L. G., and C. W. Welsch. 1985. Cholera-toxin-enhanced 
growth of human breast cancer cell lines in vitro and in vivo: interaction 
with estrogen. Int J Cancer 36:479-483. 

305. Shiau, A. K., D. Barstad, P. M. Loria, L. Cheng, P. J. Kushner, D. A. 
Agard, and G. L. Greene. 1998. The structural basis of estrogen 
receptor/coactivator recognition and the antagonism of this interaction by 
tamoxifen. Cell 95:927-937. 

306. Shibata, H., S. Kobayashi, I. Kurihara, N. Suda, K. Yokota, A. Murai, Y. 
Ikeda, I. Saito, W. E. Rainey, and T. Saruta. 2004. COUP-TF and 
transcriptional co-regulators in adrenal steroidogenesis. Endocr Res 
30:795-801. 

307. Shibata, H., I. Kurihara, S. Kobayashi, K. Yokota, N. Suda, I. Saito, and 
T. Saruta. 2003. Regulation of differential COUP-TF-coregulator 
interactions in adrenal cortical steroidogenesis. J Steroid Biochem Mol 
Biol 85:449-456. 

308. Shibata, H., Z. Nawaz, S. Y. Tsai, B. W. O'Malley, and M. J. Tsai. 1997. 
Gene silencing by chicken ovalbumin upstream promoter-transcription 
factor I (COUP-TFI) is mediated by transcriptional corepressors, nuclear 
receptor-corepressor (N-CoR) and silencing mediator for retinoic acid 
receptor and thyroid hormone receptor (SMRT). Mol Endocrinol 
11:714-724. 

309. Shigeta, H., R. R. Newbold, J. A. McLachlan, and C. Teng. 1996. 
Estrogenic effect on the expression of estrogen receptor, COUP-TF, and 

     



 186

lactoferrin mRNA in developing mouse tissues. Mol Reprod Dev 45:21-30. 

310. Simental, J. A., M. Sar, M. V. Lane, F. S. French, and E. M. Wilson. 
1991. Transcriptional activation and nuclear targeting signals of the 
human androgen receptor. J Biol Chem 266:510-518. 

311. Simoncini, T., A. Hafezi-Moghadam, D. P. Brazil, K. Ley, W. W. Chin, 
and J. K. Liao. 2000. Interaction of oestrogen receptor with the regulatory 
subunit of phosphatidylinositol-3-OH kinase. Nature 407:538-541. 

312. Singletary, K. W., and S. M. Gapstur. 2001. Alcohol and breast cancer: 
review of epidemiologic and experimental evidence and potential 
mechanisms. Jama 286:2143-2151. 

313. Smith-Warner, S. A., D. Spiegelman, S. S. Yaun, P. A. van den Brandt, 
A. R. Folsom, R. A. Goldbohm, S. Graham, L. Holmberg, G. R. Howe, J. 
R. Marshall, A. B. Miller, J. D. Potter, F. E. Speizer, W. C. Willett, A. 
Wolk, and D. J. Hunter. 1998. Alcohol and breast cancer in women: a 
pooled analysis of cohort studies. Jama 279:535-540. 

314. Smith, C. L., S. A. Onate, M. J. Tsai, and B. W. O'Malley. 1996. CREB 
binding protein acts synergistically with steroid receptor coactivator-1 to 
enhance steroid receptor-dependent transcription. Proc Natl Acad Sci U S 
A 93:8884-8888. 

315. Soares, R., S. Guo, F. Gartner, F. C. Schmitt, and J. Russo. 2003. 17 
beta -estradiol-mediated vessel assembly and stabilization in tumor 
angiogenesis requires TGF beta and EGFR crosstalk. Angiogenesis 
6:271-281. 

316. Song, R. X., C. J. Barnes, Z. Zhang, Y. Bao, R. Kumar, and R. J. 
Santen. 2004. The role of Shc and insulin-like growth factor 1 receptor in 
mediating the translocation of estrogen receptor alpha to the plasma 
membrane. Proc Natl Acad Sci U S A 101:2076-2081. 

317. Song, R. X., R. A. McPherson, L. Adam, Y. Bao, M. Shupnik, R. Kumar, 
and R. J. Santen. 2002. Linkage of rapid estrogen action to MAPK 
activation by ERalpha-Shc association and Shc pathway activation. Mol 

     



 187

Endocrinol 16:116-127. 

318. Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. 
Mizzen, N. J. McKenna, S. A. Onate, S. Y. Tsai, M. J. Tsai, and B. W. 
O'Malley. 1997. Steroid receptor coactivator-1 is a histone 
acetyltransferase. Nature 389:194-198. 

319. Stewart, S. L., J. B. King, T. D. Thompson, C. Friedman, and P. A. 
Wingo. 2004. Cancer mortality surveillance--United States, 1990-2000. 
MMWR Surveill Summ 53:1-108. 

320. Stoner, M., F. Wang, M. Wormke, T. Nguyen, I. Samudio, C. Vyhlidal, D. 
Marme, G. Finkenzeller, and S. Safe. 2000. Inhibition of vascular 
endothelial growth factor expression in HEC1A endometrial cancer cells 
through interactions of estrogen receptor alpha and Sp3 proteins. J Biol 
Chem 275:22769-22779. 

321. Stoner, M., M. Wormke, B. Saville, I. Samudio, C. Qin, M. Abdelrahim, 
and S. Safe. 2004. Estrogen regulation of vascular endothelial growth 
factor gene expression in ZR-75 breast cancer cells through interaction of 
estrogen receptor alpha and SP proteins. Oncogene 23:1052-1063. 

322. Stunnenberg, H. G. 1993. Mechanisms of transactivation by retinoic acid 
receptors. Bioessays 15:309-315. 

323. Sugimura, T. 2000. Nutrition and dietary carcinogens. Carcinogenesis 
21:387-395. 

324. Sugiyama, T., J. C. Wang, D. K. Scott, and D. K. Granner. 2000. 
Transcription activation by the orphan nuclear receptor, chicken ovalbumin 
upstream promoter-transcription factor I (COUP-TFI). Definition of the 
domain involved in the glucocorticoid response of the 
phosphoenolpyruvate carboxykinase gene. J Biol Chem 275:3446-3454. 

325. Sukhatme, V. P. 1990. Early transcriptional events in cell growth: the Egr 
family. J Am Soc Nephrol 1:859-866. 

     



 188

326. Sukhatme, V. P., S. Kartha, F. G. Toback, R. Taub, R. G. Hoover, and C. 
H. Tsai-Morris. 1987. A novel early growth response gene rapidly induced 
by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res 
1:343-355. 

327. Sun, G., W. Porter, and S. Safe. 1998. Estrogen-induced retinoic acid 
receptor alpha 1 gene expression: role of estrogen receptor-Sp1 complex. 
Mol Endocrinol 12:882-890. 

328. Sun, M., J. E. Paciga, R. I. Feldman, Z. Yuan, D. Coppola, Y. Y. Lu, S.  
A. Shelley, S. V. Nicosia, and J. Q. Cheng. 2001. 
Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, 
regulates and is induced by estrogen receptor alpha (ERalpha) via 
interaction between ERalpha and PI3K. Cancer Res 61:5985-5991. 

329. Suva, L. J., S. C. Harm, R. M. Gardner, and M. A. Thiede. 1991. In vivo 
regulation of Zif268 messenger RNA expression by 17 beta-estradiol in 
the rat uterus. Mol Endocrinol 5:829-835. 

330. Sylvia, V. L., J. Walton, D. Lopez, D. D. Dean, B. D. Boyan, and Z. 
Schwartz. 2001. 17 beta-estradiol-BSA conjugates and 17 beta-estradiol 
regulate growth plate chondrocytes by common membrane associated 
mechanisms involving PKC dependent and independent signal 
transduction. J Cell Biochem 81:413-429. 

331. Tariq, S. M., M. Stevens, S. Matthews, S. Ridout, R. Twiselton, and D. 
W. Hide. 1996. Cohort study of peanut and tree nut sensitisation by age of 
4 years. Bmj 313:514-517. 

332. Thigpen, A. E., K. M. Cala, J. M. Guileyardo, K. H. Molberg, J. D. 
McConnell, and D. W. Russell. 1996. Increased expression of early 
growth response-1 messenger ribonucleic acid in prostatic 
adenocarcinoma. J Urol 155:975-981. 

333. Thomas, D. B. 1993. Breast cancer in men. Epidemiol Rev 15:220-231. 

334. Thomas, P., Y. Pang, E. J. Filardo, and J. Dong. 2005. Identity of an 
estrogen membrane receptor coupled to a G protein in human breast 

     



 189

cancer cells. Endocrinology 146:624-632. 

335. Tomita, A., D. R. Buchholz, and Y. B. Shi. 2004. Recruitment of 
N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid 
hormone receptor for gene repression during frog development. Mol Cell 
Biol 24:3337-3346. 

336. Tora, L., M. P. Gaub, S. Mader, A. Dierich, M. Bellard, and P. Chambon. 
1988. Cell-specific activity of a GGTCA half-palindromic 
oestrogen-responsive element in the chicken ovalbumin gene promoter. 
Embo J 7:3771-3778. 

337. Tora, L., H. Gronemeyer, B. Turcotte, M. P. Gaub, and P. Chambon. 
1988. The N-terminal region of the chicken progesterone receptor 
specifies target gene activation. Nature 333:185-188. 

338. Treisman, R. 1996. Regulation of transcription by MAP kinase cascades. 
Curr Opin Cell Biol 8:205-215. 

339. Treuter, E., T. Albrektsen, L. Johansson, J. Leers, and J. A. 
Gustafsson. 1998. A regulatory role for RIP140 in nuclear receptor 
activation. Mol Endocrinol 12:864-881. 

340. Tsai, C. C., and J. D. Fondell. 2004. Nuclear receptor recruitment of 
histone-modifying enzymes to target gene promoters. Vitam Horm 
68:93-122. 

341. Tsai, E. M., S. C. Wang, J. N. Lee, and M. C. Hung. 2001. Akt activation 
by estrogen in estrogen receptor-negative breast cancer cells. Cancer 
Res 61:8390-8392. 

342. Tsai, H. W., J. A. Katzenellenbogen, B. S. Katzenellenbogen, and M.  
A. Shupnik. 2004. Protein kinase A activation of estrogen receptor alpha 
transcription does not require proteasome activity and protects the 
receptor from ligand-mediated degradation. Endocrinology 
145:2730-2738. 

     



 190

343. Tsai, S. Y., and M. J. Tsai. 1997. Chick ovalbumin upstream 
promoter-transcription factors (COUP-TFs): coming of age. Endocr Rev 
18:229-240. 

344. Tucker, C. L., and S. Fields. 2001. A yeast sensor of ligand binding. Nat 
Biotechnol 19:1042-1046. 

345. Tzukerman, M., X. K. Zhang, and M. Pfahl. 1991. Inhibition of estrogen 
receptor activity by the tumor promoter 
12-O-tetradeconylphorbol-13-acetate: a molecular analysis. Mol 
Endocrinol 5:1983-1992. 

346. Umayahara, Y., R. Kawamori, H. Watada, E. Imano, N. Iwama, T. 
Morishima, Y. Yamasaki, Y. Kajimoto, and T. Kamada. 1994. Estrogen 
regulation of the insulin-like growth factor I gene transcription involves an 
AP-1 enhancer. J Biol Chem 269:16433-16442. 

347. Umesono, K., K. K. Murakami, C. C. Thompson, and R. M. Evans. 
1991. Direct repeats as selective response elements for the thyroid 
hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255-1266. 

348. Uppenberg, J., C. Svensson, M. Jaki, G. Bertilsson, L. Jendeberg, and 
A. Berkenstam. 1998. Crystal structure of the ligand binding domain of 
the human nuclear receptor PPARgamma. J Biol Chem 273:31108-31112. 

349. Urnov, F. D., and A. P. Wolffe. 2001. Chromatin remodeling and 
transcriptional activation: the cast (in order of appearance). Oncogene 
20:2991-3006. 

350. Urnov, F. D., and A. P. Wolffe. 2001. A necessary good: nuclear hormone 
receptors and their chromatin templates. Mol Endocrinol 15:1-16. 

351. Velie, E., M. Kulldorff, C. Schairer, G. Block, D. Albanes, and A. 
Schatzkin. 2000. Dietary fat, fat subtypes, and breast cancer in 
postmenopausal women: a prospective cohort study. J Natl Cancer Inst 
92:833-839. 

     



 191

352. Vo, N., C. Fjeld, and R. H. Goodman. 2001. Acetylation of nuclear 
hormone receptor-interacting protein RIP140 regulates binding of the 
transcriptional corepressor CtBP. Mol Cell Biol 21:6181-6188. 

353. Vyhlidal, C., I. Samudio, M. P. Kladde, and S. Safe. 2000. 
Transcriptional activation of transforming growth factor alpha by estradiol: 
requirement for both a GC-rich site and an estrogen response element 
half-site. J Mol Endocrinol 24:329-338. 

354. Wang, C., M. Fu, R. H. Angeletti, L. Siconolfi-Baez, A. T. Reutens, C. 
Albanese, M. P. Lisanti, B. S. Katzenellenbogen, S. Kato, T. Hopp, S. A. 
Fuqua, G. N. Lopez, P. J. Kushner, and R. G. Pestell. 2001. Direct 
acetylation of the estrogen receptor alpha hinge region by p300 regulates 
transactivation and hormone sensitivity. J Biol Chem 276:18375-18383. 

355. Wang, Z. Y., and T. F. Deuel. 1992. An S1 nuclease-sensitive 
homopurine/homopyrimidine domain in the PDGF A-chain promoter 
contains a novel binding site for the growth factor-inducible protein EGR-1. 
Biochem Biophys Res Commun 188:433-439. 

356. Warnmark, A., T. Almlof, J. Leers, J. A. Gustafsson, and E. Treuter. 
2001. Differential recruitment of the mammalian mediator subunit 
TRAP220 by estrogen receptors ERalpha and ERbeta. J Biol Chem 
276:23397-23404. 

357. Watanabe, M., J. Yanagisawa, H. Kitagawa, K. Takeyama, S. Ogawa, Y. 
Arao, M. Suzawa, Y. Kobayashi, T. Yano, H. Yoshikawa, Y. Masuhiro, 
and S. Kato. 2001. A subfamily of RNA-binding DEAD-box proteins acts 
as an estrogen receptor alpha coactivator through the N-terminal 
activation domain (AF-1) with an RNA coactivator, SRA. Embo J 
20:1341-1352. 

358. Watson, C. S., C. H. Campbell, and B. Gametchu. 2002. The dynamic 
and elusive membrane estrogen receptor-alpha. Steroids 67:429-437. 

359. Watters, J. J., J. S. Campbell, M. J. Cunningham, E. G. Krebs, and D. 
M. Dorsa. 1997. Rapid membrane effects of steroids in neuroblastoma 
cells: effects of estrogen on mitogen activated protein kinase signalling 
cascade and c-fos immediate early gene transcription. Endocrinology 

     



 192

138:4030-4033. 

360. Weatherman, R. V., R. J. Fletterick, and T. S. Scanlan. 1999. 
Nuclear-receptor ligands and ligand-binding domains. Annu Rev Biochem 
68:559-581. 

361. Webb, P., G. N. Lopez, R. M. Uht, and P. J. Kushner. 1995. Tamoxifen 
activation of the estrogen receptor/AP-1 pathway: potential origin for the 
cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 
9:443-456. 

362. Webb, P., P. Nguyen, J. Shinsako, C. Anderson, W. Feng, M. P. 
Nguyen, D. Chen, S. M. Huang, S. Subramanian, E. McKinerney, B. S. 
Katzenellenbogen, M. R. Stallcup, and P. J. Kushner. 1998. Estrogen 
receptor activation function 1 works by binding p160 coactivator proteins. 
Mol Endocrinol 12:1605-1618. 

363. Webb, P., P. Nguyen, C. Valentine, G. N. Lopez, G. R. Kwok, E. 
McInerney, B. S. Katzenellenbogen, E. Enmark, J. A. Gustafsson, S. 
Nilsson, and P. J. Kushner. 1999. The estrogen receptor enhances AP-1 
activity by two distinct mechanisms with different requirements for receptor 
transactivation functions. Mol Endocrinol 13:1672-1685. 

364. Wei, L. N., X. Hu, D. Chandra, E. Seto, and M. Farooqui. 2000. 
Receptor-interacting protein 140 directly recruits histone deacetylases for 
gene silencing. J Biol Chem 275:40782-40787. 

365. White, J. H., I. Fernandes, S. Mader, and X. J. Yang. 2004. Corepressor 
recruitment by agonist-bound nuclear receptors. Vitam Horm 68:123-143. 

366. Wiseman, B. S., and Z. Werb. 2002. Stromal effects on mammary gland 
development and breast cancer. Science 296:1046-1049. 

367. Wong, C. W., C. McNally, E. Nickbarg, B. S. Komm, and B. J. Cheskis. 
2002. Estrogen receptor-interacting protein that modulates its nongenomic 
activity-crosstalk with Src/Erk phosphorylation cascade. Proc Natl Acad 
Sci U S A 99:14783-14788. 

     



 193

368. Wu, Q., R. Burghardt, and S. Safe. 2004. Vitamin D-interacting protein 
205 (DRIP205) coactivation of estrogen receptor alpha (ERalpha) involves 
multiple domains of both proteins. J Biol Chem 279:53602-53612. 

369. Wu, X., H. Li, and J. D. Chen. 2001. The human homologue of the yeast 
DNA repair and TFIIH regulator MMS19 is an AF-1-specific coactivator of 
estrogen receptor. J Biol Chem 276:23962-23968. 

370. Xie, W., R. Duan, I. Chen, I. Samudio, and S. Safe. 2000. Transcriptional 
activation of thymidylate synthase by 17beta-estradiol in MCF-7 human 
breast cancer cells. Endocrinology 141:2439-2449. 

371. Xie, W., R. Duan, and S. Safe. 1999. Estrogen induces adenosine 
deaminase gene expression in MCF-7 human breast cancer cells: role of 
estrogen receptor-Sp1 interactions. Endocrinology 140:219-227. 

372. Xu, L., R. M. Lavinsky, J. S. Dasen, S. E. Flynn, E. M. McInerney, T. M. 
Mullen, T. Heinzel, D. Szeto, E. Korzus, R. Kurokawa, A. K. Aggarwal, 
D. W. Rose, C. K. Glass, and M. G. Rosenfeld. 1998. Signal-specific 
co-activator domain requirements for Pit-1 activation. Nature 395:301-306. 

373. Xu, W., H. Chen, K. Du, H. Asahara, M. Tini, B. M. Emerson, M. 
Montminy, and R. M. Evans. 2001. A transcriptional switch mediated by 
cofactor methylation. Science 294:2507-2511. 

374. Yaciuk, P., and E. Moran. 1991. Analysis with specific polyclonal 
antiserum indicates that the E1A-associated 300-kDa product is a stable 
nuclear phosphoprotein that undergoes cell cycle phase-specific 
modification. Mol Cell Biol 11:5389-5397. 

375. Yager, J. D., and N. E. Davidson. 2006. Estrogen carcinogenesis in 
breast cancer. N Engl J Med 354:270-282. 

376. Yamamoto, K., D. Altschuler, E. Wood, K. Horlick, S. Jacobs, and E. G. 
Lapetina. 1992. Association of phosphorylated insulin-like growth factor-I 
receptor with the SH2 domains of phosphatidylinositol 3-kinase p85. J Biol 
Chem 267:11337-11343. 

     



 194

377. Yoshinaga, S. K., C. L. Peterson, I. Herskowitz, and K. R. Yamamoto. 
1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional 
enhancement by steroid receptors. Science 258:1598-1604. 

378. Yu, J., Y. Li, T. Ishizuka, M. G. Guenther, and M. A. Lazar. 2003. A SANT 
motif in the SMRT corepressor interprets the histone code and promotes 
histone deacetylation. Embo J 22:3403-3410. 

379. Yuan, L. W., and J. E. Gambee. 2000. Phosphorylation of p300 at serine 
89 by protein kinase C. J Biol Chem 275:40946-40951. 

380. Yue, W., R. J. Santen, J. P. Wang, Y. Li, M. F. Verderame, W. P. 
Bocchinfuso, K. S. Korach, P. Devanesan, R. Todorovic, E. G. Rogan, 
and E. L. Cavalieri. 2003. Genotoxic metabolites of estradiol in breast: 
potential mechanism of estradiol induced carcinogenesis. J Steroid 
Biochem Mol Biol 86:477-486. 

381. Zanaria, E., F. Muscatelli, B. Bardoni, T. M. Strom, S. Guioli, W. Guo,  
E. Lalli, C. Moser, A. P. Walker, E. R. McCabe, and et al. 1994. An 
unusual member of the nuclear hormone receptor superfamily responsible 
for X-linked adrenal hypoplasia congenita. Nature 372:635-641. 

382. Zechel, C., X. Q. Shen, J. Y. Chen, Z. P. Chen, P. Chambon, and H. 
Gronemeyer. 1994. The dimerization interfaces formed between the DNA 
binding domains of RXR, RAR and TR determine the binding specificity 
and polarity of the full-length receptors to direct repeats. Embo J 
13:1425-1433. 

383. Zhang, J., M. Kalkum, B. T. Chait, and R. G. Roeder. 2002. The 
N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK 
pathway through the integral subunit GPS2. Mol Cell 9:611-623. 

384. Zhang, X. K., and M. Pfahl. 1993. Hetero- and homodimeric receptors in 
thyroid hormone and vitamin A action. Receptor 3:183-191. 

385. Zhang, Z., B. Maier, R. J. Santen, and R. X. Song. 2002. Membrane 
association of estrogen receptor alpha mediates estrogen effect on MAPK 
activation. Biochem Biophys Res Commun 294:926-933. 

     



 195

386. Zhao, Q., S. A. Chasse, S. Devarakonda, M. L. Sierk, B. Ahvazi, and F. 
Rastinejad. 2000. Structural basis of RXR-DNA interactions. J Mol Biol 
296:509-520. 

387. Zheng, W., D. R. Gustafson, R. Sinha, J. R. Cerhan, D. Moore, C. P. 
Hong, K. E. Anderson, L. H. Kushi, T. A. Sellers, and A. R. Folsom. 
1998. Well-done meat intake and the risk of breast cancer. J Natl Cancer 
Inst 90:1724-1729. 

388. Ziegler, R. G., R. N. Hoover, M. C. Pike, A. Hildesheim, A. M. Nomura, 
D. W. West, A. H. Wu-Williams, L. N. Kolonel, P. L. Horn-Ross, J. F. 
Rosenthal, and M. B. Hyer. 1993. Migration patterns and breast cancer 
risk in Asian-American women. J Natl Cancer Inst 85:1819-1827. 

 
 

     



 196

VITA 

 
Name: Chien-Cheng Chen 
 
Address: Department of Veterinary Physiology and Pharmacology 

4466 TAMU, College Station, TX 77843 
 
Email Address: bhchen112@hotmail.com 

 
 
Education: Texas A&M University     August 2006 

Ph.D., Toxicology 
 

National Taiwan University May 1996 
Master of Science, Agricultural Chemistry 

 
National Taiwan University  May 1994 
Bachelor of Science, Agricultural Chemistry 

 
 

     


	CHAPTER I 
	INTRODUCTION 
	1.1 Cancer  
	1.2 Nuclear Receptor Superfamily 
	1.3 Mechanism of Transcriptional Regulation by NRs 
	1.4 Mechanism of ER Mediated Transcription Activity 
	 
	   
	1.5 Research Objectives 
	CHAPTER II 
	MATERIALS AND METHODS 
	2.1 Chemicals, Cells, and Antibodies   
	 
	2.2 Cloning and Plasmids  
	2.3 Transient Transfection and Luciferase Assay  
	 
	2.4 Western Blot Assay   
	 
	2.5 Nuclear Extract Preparation and EMSA 
	2.6 RT-PCR Assay  
	 
	2.7 Coimmunoprecipitation Assay 
	 
	2.8 Statistical Analysis  

	CHAPTER III 
	RESULTS 
	3.1 Egr-1 Is Activated by E2 in MCF-7 Cells 
	 3.2 COUP-TFI Coactivates ERα-Mediated Transactivation 

	CHAPTER IV 
	DISCUSSION AND CONCLUSION 
	4.1 Mechanism of Induction of Egr-1 by E2 in MCF-7 cells 

	REFERENCES 
	 VITA 


