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ABSTRACT 

 

Improved Formulations, Heuristics and Metaheuristics for the Dynamic Demand 

Coordinated Lot-sizing Problem. (August 2006) 

Arunachalam Narayanan, B.E., Anna University, India; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. E. Powell Robinson  

 

 

 Coordinated lot sizing problems, which assume a joint setup is shared by a product 

family, are commonly encountered in supply chain contexts. Total system costs include a 

joint set-up charge each time period any item in the product family is replenished, an item 

set-up cost for each item replenished in each time period, and inventory holding costs. Silver 

(1979) and subsequent researchers note the occurrence of coordinated replenishment 

problems within manufacturing, procurement, and transportation contexts. Due to their 

mathematical complexity and importance in industry, coordinated lot-size problems are 

frequently studied in the operations management literature. 

In this research, we address both uncapacitated and capacitated variants of the 

problem. For each variant we propose new problem formulations, one or more construction 

heuristics, and a simulated annealing metaheuristic (SAM).  

We first propose new tight mathematical formulations for the uncapacitated problem 

and document their improved computational efficiency over earlier models. We then 

develop two forward-pass heuristics, a two-phase heuristic, and SAM to solve the 

uncapacitated version of the problem. The two-phase and SAM find solutions with an 

average optimality gap of 0.56% and 0.2% respectively.  The corresponding average 

computational requirements are less than 0.05 and 0.18 CPU seconds.  

Next, we propose tight mathematical formulations for the capacitated problem and 

evaluate their performance against existing approaches. We then extend the two-phase 

heuristic to solve this more general capacitated version. We further embed the six-phase 

heuristic in a SAM framework, which improves heuristic performance at minimal additional 

computational expense. The metaheuristic finds solutions with an average optimality gap of 
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0.43% and within an average time of 0.25 CPU seconds. This represents an improvement 

over those reported in the literature. 

Overall the heuristics provide a general approach to the dynamic demand lot-size 

problem that is capable of being applied as a stand-alone solver, an algorithm embedded 

with supply chain planning software, or as an upper-bounding procedure within an 

optimization based algorithm. 

Finally, this research investigates the performance of alternative coordinated lot-

sizing procedures when implemented in a rolling schedule environment. We find the 

perturbation metaheuristic to be the most suitable heuristic for implementation in rolling 

schedules. 
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CHAPTER I
*
 

 

INTRODUCTION 
 

 

The coordinated (or) joint lot-size problem determines the time-phased 

replenishment schedule that minimizes the sum of ordering and inventory costs.  A family 

setup cost is incurred each time one or more items in a product family are replenished, and a 

minor setup cost is charged for each item replenished.  Item demand is assumed to be 

dynamic but deterministic over the planning horizon and must be met without backorders. 

 Coordinated lot-size problems are often encountered in supply chain management.  

Silver (1979) provides several examples of coordinated replenishment including scheduling 

a packaging line to produce various sizes and types of containers (production), purchasing 

multiple items from a common supplier (procurement), and shipping items that share a 

common mode of transportation (transportation). Stowers and Palekar (1997), provide two 

examples problems, one in a chemical processing plant, where the mix and quantity of 

products are decided and a second in the manufacturing of plastic dies, where a coordinated 

lot-sizing problem is solved to determine the economic lot size of the die.  

Shapiro, Rosenfield and Stecke (2002) discuss a flexible manufacturing system that 

requires a setup cost when changing from one part family to another and a tool adjustment 

cost for changing between items within the product family.  Robinson and Lawrence (2004) 

describe the production of industrial lubricants, which requires a setup cost each time a 

product family is made and a packaging line changeover for each different item produced.  

They also discuss the coordinated shipment of vaccines from a manufacturing facility to a 

distribution center. Here, each shipment requires a dedicated refrigerated truck (major setup  

 

 

                                                 
This dissertation follows the style of Manufacturing & Service Operations Management. 
 



2 

cost) and due to quality and security concerns, each vaccine type shipped incurs a minor 

setup cost associated with product labeling, packaging, temperature control, and paper 

processing for FDA regulatory compliance. 

 

1.1 Background and motivation 

Due to their mathematical complexity and importance in industry, coordinated lot-size 

problems are frequently studied in the operations management literature.  However, while 

effective heuristic and exact algorithms exist for the uncapacitated variant of the problem, 

the more mathematically challenging problem with capacity constraints remains virtually 

unsolved. The mathematical structure is NP-complete. 

Only Erenguc and Mercan (1990), Robinson and Lawrence (2004), Gao and 

Robinson (2004) and Federgruen, Meissner and Tzur (2004) propose algorithms and report 

computational experience for the coordinated capacitated lot sizing problem (CCLSP). In 

each case, the authors note the computational difficulty of finding optimal solutions and 

suggest that the literature will develop mainly in the direction of effective and 

computationally feasible heuristic procedures. Of all the heuristics developed, Federgruen et 

al.'s (2004) progressive interval/ expanding horizon heuristic provides the best results, but 

their approach is reasonable for only small problem sizes. 

CCLSP is a generalization of the capacitated and uncapacitated, single-item, multi-

item and coordinated lot-sizing problem. Hence, an effective heuristic for the coordinated 

replenishment problem provides a general solution methodology that could be used in 

requirements planning software as a one-stop solution approach for a variety of commonly 

encountered lot-sizing problems. 

 

1.2 Scope of the dissertation 

In this research, we focus on developing efficient and effective heuristics for both 

uncapacitated and capacitated variants of the coordinated replenishment problem. We start 

this study by developing new forward-pass and construction heuristics for the uncapacitated 

version of the coordinated lot-sizing problem. To evaluate the heuristic we need an efficient 
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method to obtain the performance benchmark, like the optimal solution and its run time to 

achieve it. For achieving this we propose new mathematical formulations for each type of 

the coordinated lot-sizing problem. We then test these formulations against a wide range of 

parameter settings and document their improved computational efficiency over earlier 

mathematical representations of the problem.  

Next, we extend the best performing construction heuristic, namely the two-phase 

heuristic, to solve the more mathematically challenging problem with capacity constraints. 

We also embed this new six-phase heuristic in a simulated annealing metaheuristic (SAM) 

framework to improve its performance. Then the resulting heuristics are evaluated against 

the existing optimality based procedures under all experimental designs proposed in 

literature. 

Finally, this research investigates the performance of these alternative coordinated 

lot-sizing procedures in a rolling horizon environment. Prior research for single and multiple 

item problems (Blackburn and Millen 1980, Zhao et al. 2001) show that the relative ranking 

among the lot-sizing procedures change when applied to rolling schedules. But there is no 

published research for such a comparison among coordinated lot-sizing rules under rolling 

horizon. We intend to fill this void in this research. 

 

1.3 Organization of the dissertation 

In Chapter II, we briefly review the literature for dynamic demand lot-sizing procedures in 

static and rolling horizons. Chapters III and IV focus on the uncapacitated version of the 

joint replenishment problem. In Chapter III, we propose and compare the alternative MIP 

representations for the coordinated uncapacitated replenishment problem against the 

mathematical formulations in literature. In Chapter IV we present and evaluate the 

performance of two new forward pass heuristics, a two-phase construction heuristic and 

simulated annealing metaheuristic. 

 Chapters V and VI focus on the capacitated version of the coordinated replenishment 

problem. In Chapter V, we evaluate alternative MIP formulations to identify the most 

efficient mathematical problem representation for use in general purpose optimization 
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software. Chapter VI describes a new six-phase heuristic and a simulated annealing 

metaheuristic for the capacitated problem. We asses the performance of these heuristics by 

conducting computational studies involving all the experimental designs presented in the 

literature for the joint replenishment problem. 

 In Chapter VII, for the first time, we evaluate the performance of alternative 

coordinated lot sizing rules in rolling schedule environment. Finally, chapter VIII presents 

the conclusions and implications of this research. 
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CHAPTER II 

 

LITERATURE REVIEW 
 

 

Dynamic demand lot-sizing problems are studied under two distinct planning 

environments, static and rolling horizon. In static or fixed horizon problem, the demand 

information is available for the entire horizon. On the other hand, in rolling schedule 

environment demand data is available only for a limited portion called the planning horizon. 

Due to the imperfect information about future demand, only a subset of the replenishment 

decisions is implemented and the problem is re-solved when new demands are appended to 

the horizon (Baker, 1977 and Blackburn and Millen, 1982a). This study involves the 

dynamic demand coordinated lot-sizing problem.  

 

2.1 Coordinated lot-sizing problem: Static horizon 

As illustrated in Figure 2.1, the dynamic demand coordinated capacitated lot-sizing problem 

(CCLSP) is a generalization of the single-item uncapacitated lot-sizing problem (ULSP), the 

single-item capacitated lot-sizing problem (CLSP), multiple-item uncapacitated lot-sizing 

problem (MULSP), multiple-item capacitated lot-sizing problem (MCLSP) and coordinated 

uncapacitated lot-sizing problem (CULSP). Karimi et al. (2003) and Robinson and 

Lawrence (2004) provide recent review of the literature on these problem classes.  Earlier 

literature surveys are by Bahl, Ritzman, and Gupta (1987) for the ULSP, CLSP, and MCLSP 

and Aksoy and Erenguc (1988) for the CULSP.  Drexl and Kimms (1997) provide a broad 

survey of the lot-sizing and scheduling literature.  We summarize the literature most closely 

related to the research reported here. 

 

2.1.1 Single-item uncapacitated lot-sizing problem (ULSP) 

The ULSP, as introduced by Wagner and Whitin (1958), optimizes the timing and quantity 

of production lot-sizes for a single-item, assuming discrete dynamic demand and an 

unlimited product supply in each production period.  System costs include per-unit inventory 
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Coordinated capacitated lot-

sizing problem (CCLSP) 

Multi item capacitated 

lot sizing problem 
(MCLSP) 

Single item 
capacitated lot sizing 
problem (CLSP) 

Multi item lot sizing 
problem 

Coordinated uncapacitated lot 
sizing problem (CULSP) 

Multi item 
uncapacitated lot sizing 
problem (MULSP) 

Single item 
uncapacitated lot sizing 

problem (ULSP) 

No family setup Unlimited capacity 

Unlimited 
capacity 

Single item Single item 

Limited  
capacity 

No family setup 

holding costs, fixed and variable production costs.  Wagner and Whitin (1958) present a 

dynamic programming algorithm of O (T2) for its solution, where T is the number of time 

periods in the planning horizon. Backlogging of demand is not allowed.  Zangwill (1966a) 

extends the model to permit demand backlogging.  Evans (1985a) provides an efficient 

computer implementation of the Wagner and Whitin’s solution methodology.  Federgruen 

and Tzur (1991), Wagelmans et al. (1992), and Aggarwal and Park (1993) provide O (T) and 

O (T log T n) algorithms for the problem under varying cost assumptions.  The algorithmic 

approaches described in the above literature employ dynamic programming.  The ULSP 

problem continues to receive attention both as an important problem class in its own right, 

and as a sub problem in more general planning models. 

 

 

Figure 2.1: Taxonomy of dynamic-demand lot-sizing problem 
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2.1.2 Multi-item uncapacitated lot-sizing problem (MULSP) 

Due to the lack of coupling capacity constraints among items, the MULSP is decomposed by 

item and solved as a set of independent ULSPs.  Hence, all approaches for the ULSP could 

be used to solve this class of problems. 

 

2.1.3 Single-item capacitated lot-sizing problem (CLSP) 

Appending capacity constraints for labor, equipment, storage space, or other factors 

generalizes the formulation to the CLSP, but results in NP-hard or NP-complete problems 

depending upon specific objective function and capacity assumptions (Florian, Lenstra, and 

Rinnooy Kan, 1980 and Bitran and Yanasse, 1982).  Consequently, optimization-based 

research focuses on special cases of the CLSP for which specialized solution approaches can 

be developed. 

 Florian and Klein (1971) describe the structure of optimal solutions of the single-

item CLSP both with and without backlogging, and develop shortest route algorithms 

running in O (T4) for problems with equal capacities in every time period.  For a related 

problem with bounds specified on inventory rather than production, Love (1973) develops 

an O (T3) algorithm. 

Baker, Dixon, Magazine and Silver (1978) study the single-item CLSP with time 

varying capacity and no backlogging.  They identify and exploit special mathematical 

properties of the optimal solution in a tree search algorithm. Specifically, if there is positive 

inventory carried over from a previous period, then production is either at capacity or zero.  

On the other hand, if there is positive production at a level less than capacity, then incoming 

inventory is zero.  Experimental results indicate that the computational effort is practical 

only for a reasonable sized problem and in the worst-case the algorithm is combinatorially 

not good. 

Lambert and Luss (1982) extend Florian and Klein’s approach to time-dependent 

upper bounds by defining capacity in terms of the largest common divisor, c; thus ct = ntc 

where nt is a nonnegative integer for t = 1,2,…,T.  Their approach leads to an efficient 

algorithm when ever N = maxt(nt) is relative small. The computational effort is O (N2
T

4). 
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Erenguc and Aksoy (1990) describe a branch and bound algorithm for a single-item lot 

sizing problem with limitations on inventory storage and regular and overtime production 

capacity.  The procedure is based on solving a finite number of linear knapsack problems 

with bounded variables.  Problems with up to 12 time periods are solved in less than one 

second CPU time. Several other exact and polynomial time algorithms were developed for 

general and special cases of CLSP (Chung and Lin, 1988, Lotfi and Yoon, 1994, Kirca, 

1990 and Chung, Flynn, and Lin, 1994) 

 

2.1.4 Multi item capacitated lot-sizing problem (MCLSP) 

The MCLSP considers a family of items that share a common constrained resource. Manne 

(1958) provides a linear programming formulation in which decision variables represent 

possible production sequences.  The optimal linear programming solution, which does not 

guarantee integer valued production sequences, provides a good approximate solution when 

the number of items is relatively large when compared to the number of time periods.  

Dzielinski and Gomory (1965) recognize that Manne’s linear programming formulation 

leads to computational difficulties for practical-sized problems.  To overcome this obstacle, 

they apply Dantzig and Wolfe decomposition principles and a method for creating 

alternative setup sequences by solving a Wagner and Whitin (1958) type problem.  Lasdon 

and Terjung (1968) improve upon Dzielinski and Gomory’s method by using a column 

generation technique and compact inverse techniques to implicitly represent the generalized 

upper-bound constraints during simplex implementation. Kleindorfer and Newson (1975) 

study the Lagrangian dual of the MCLSP that is obtained by relaxing the capacity 

constraints.  Bitran and Matsuo (1986) provide an error bound on Manne’s linear 

programming approximation, and note that its quality is a function of the number of items, 

the length of the planning horizon and the set-up costs. 

Several authors study alternative MIP formulations of the MCLSP in an effort to 

obtain tighter linear programming relaxations of the problem.  Barany, Van Roy, and 

Wolsey (1984), Leung, Magnanti, and Vachani (1989), and Wolsey (1989) explore the 

polyhedral structure of the integer programming formulation of MCLSP to identify stronger 
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formulations for the problem.  Martin (1987) proposes variable redefinition as an approach 

for alternating the tightness of the linear programming relaxation of MCLSP sub-problems 

to obtain improved solution performance.  Eppen and Martin (1987) provide several 

examples of variable redefinition for CLSP and MCLSP problems.  Billington, McClain, 

and Thomas (1983), Evans (1985b), Hindi (1995a, 1995b) and Armentano, Franca, and de 

Toledo (1999) also provide mathematical programming approaches to the problem.   

Newson (1975a, 1975b), Van Nunen and Wessels (1978), and Karni and Roll (1982) 

approach the problem as a series of uncapacitated single-item problems, and then adjust the 

production schedules to achieve feasibility. Lagrangian relaxation heuristics are proposed by 

Thizy and Van Wassenhove (1985), Trigeiro (1987), Trigeiro, Thomas, and McClain 

(1989), Diaby, Bahl, Karwan, and Zionts (1992a, 1992b), Campbell and Mabert (1991), and 

Millar and Yang (1994).  Millar and Yang (1993) present a Lagrangian decomposition 

technique.  Pratsini (2000) develops a savings heuristic for MCLSP with setup time and 

learning. 

Several researchers propose construction heuristics based on consolidating 

production lot-sizes across time periods under a maximum savings objective criterion.  

Eisenhut (1975) develops a forward-pass heuristic based on the part period balance 

algorithm, but fails to insure capacity feasibility.  Lambrecht and Vanderveken (1979) 

modify the Silver-Meal (1973) heuristic to consider multiple items and apply it with a 

backtracking subroutine which splits and shifts production into earlier time periods when 

necessary to obtain capacity feasibility.  Dixon and Silver (1981) also utilize a variant of the 

Silver-Meal (1973) forward-pass heuristic, but guarantee solution feasibility by insuring that 

sufficient capacity is available in the remaining time periods of the planning horizon prior to 

lot-size consolidation.  They also suggest several performance improvements based on lot-

size elimination, merging, interchange and the properties of an optimal solution. 

 Dogramaci et al. (1981) propose a forward-pass and a four-phase "greedy-period" 

heuristic for MCLSP.  The forward-pass algorithm extends Eisenhut (1975) and Lambrecht 

and Vanderveken (1979) by providing upper and lower bounds for order lot-sizes.  The 

"greedy-period" heuristic attacks the planning horizon not necessarily from period 1 but 
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from the periods offering the greatest marginal cost reduction.  Experimental results confirm 

the superiority of this greedy-period approach over earlier forward-pass algorithms. Karni 

and Roll (1982) propose a heuristic that begins with the lower bound solution provided by 

ignoring the capacity constraint and solving the independent ULSP problems.  If the 

combined ULSPs are capacity feasible, the solution is optimal; otherwise a five component 

shifting heuristic is employed to obtain feasibility at minimum cost. 

Maes and Van Wassenhove (1988) conduct an extensive computational study on the 

existing MCLSP heuristics and provides general guidelines on the limitations and usefulness 

of these heuristics. Based on the result they also discuss the effect of parameter settings such 

as time between orders (TBO) on the performance of the heuristics.  

 

2.1.5 Coordinated uncapacitated lot-sizing problem (CULSP) 

Coordinated uncapacitated lot-sizing problems, which assume a joint setup is shared across a 

product family, are commonly encountered in transportation, procurement, and 

manufacturing contexts.  The objective is to minimize total system costs while serving all 

customer demand from current production, inventory, and/or backorders.  Total system costs 

include a joint setup charge for each time period any item in the product family is 

replenished, an item setup cost for each item replenished in each time period, inventory 

holding costs, and backorder costs.  The CULSP is shown to be NP-complete by Arkin et al. 

(1989) and Joneja (1990). However, numerous researchers seek to exploit the specialized 

mathematical structure of CUSLP with specialized exact algorithms. 

The traditional approach for solving CULSP is dynamic programming algorithm (see 

Zangwill 1966b, Veinott 1969, Kao 1979) in which computation time increase exponentially 

with problem size.  Kao (1979) solve problem sizes containing 12 time periods and 2 

products using dynamic programming.  Silver (1979) demonstrates that dynamic 

programming is computationally reasonable when only few items are considered.  Haseborg 

(1982) investigates the optimality of joint ordering policies to mitigate the impact of the 

number of items.   
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Erenguc (1988) solves problems with 12 time periods and 20 items by a combined 

branch-and-bound/dynamic programming procedure based on Veinott’s (1969) “major setup 

pattern” concepts.  The algorithm branches on major setup time periods to determine when 

production may occur and then solves independent ULSP problems to determine each item’s 

replenishment schedule.   Joneja (1990) indicates that the CULSP is NP-complete and 

develops a ‘cost covering’ heuristic that places a joint order when the total holding cost of 

all the candidate items exceeds their total ordering cost plus the joint cost.  To test the 

quality of the heuristic solutions, Joneja proposes an integer programming formulation of 

CULSP for which the linear relaxation provides a very tight lower bound.  

Kirca (1995) studies Joneja’s integer programming formulation and provides an 

efficient branch and bound procedure for its solution.  The procedure is based on 

heuristically solving the dual of the linear relaxation to obtain a lower bound on the original 

problem.  An upper bound solution is constructed using complementary slackness 

conditions.  The complementary slackness violations identify the major setup time period on 

which to branch.  Computational experiments illustrate the large-scale capability of the 

procedures.  The procedures effectively solve problems with 24 time periods and 50 items.   

Federgruen and Tzur (1994) develop a new a class of heuristics called the partitioning 

heuristic for coordinated lot sizing problem.  They describe an efficient branch and bound 

technique whose upper bound is generated by a new greedy-add heuristic and the tight lower 

bound is provided by the partitioning heuristic. 

Robinson and Gao (1996) propose a tight arborescent fixed charge network 

programming formulation of the problem with backlogging, and extend Erlenkotter’s (1978) 

dual ascent based B&B procedures for its solution.  The RG procedure begins by 

heuristically solving the dual of the LP realization of DJRP with a dual-ascent procedure.  

Next, using complementary slackness conditions, a primal feasible solution is constructed 

for DJRP.  As necessary, a dual adjustment procedure attempts to reduce any 

complementary slackness violations and improve upon the incumbent solution.  They report 

finding optimal solutions to problems with up to 24 (36) time periods and 40 (20) items. 

Other specialized approaches include branch and cut algorithms and Dantzig Wolfe 
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decomposition (Raghavan 1993). These exact algorithms have not attained widespread 

application due to their mathematical complexity and inability to efficiently solve the large-

scale problems encountered in industry.  Hence, several researchers have attempted to 

develop efficient and effective heuristic solution approaches for CULSP. 

Fogarty and Barringer (1987) propose a dynamic programming heuristic for the 

CULSP which, assumes all items are replenished every time a major setup occurs.  Atkins 

and Iyogun (1988) extend the Silver and Meal (1973) heuristic to the problem, while Iyogun 

(1991) proposes an extension of the part-period balancing method (De Matteis and 

Mendoza, 1968).  Silver and Kelle (1988) describe an improvement procedure applicable to 

any feasible heuristic solution which, considers whether a cost saving could be achieved by 

incorporating the production of each item in its previous production lot-size.   

Boctor, Laporte and Renaud (BLR, 2004) evaluate the performance of the best 

known heuristics and a new perturbation metaheuristic (PM) for solving CULSP.  The 

heuristics include the Fogarty and Barringer (FB, 1987) heuristic with the Silver and Kelle 

(SK, 1988) improvement procedure (FB-SK), Atkins and Iyogun's (1988) extension of the 

Silver-Meal (1973) heuristic, Iyogun's (1991) modification of the part-period balancing 

method, and Federgruen and Tzur's (1994) greedy-add heuristic.  Computational results 

indicate that the PM heuristic, which is based on FB, is the most effective heuristic approach 

to the problem. 

 

Research Extensions 

As noted by Silver and Kelle (1988), the quality of the FB heuristic solutions are expected to 

be highest when item setup costs are relatively low compared to the joint setup cost and unit 

carrying costs.  Consequently, though not explicitly addressed in BLR one would expect 

similar results to hold for the perturbation metaheuristic as it is based on FB.  Hence, to 

better understand the effectiveness and limitations of these heuristics, we conduct additional 

computational studies with an expanded set of test problems and investigate new heuristic 

approaches for the CULSP. These new approaches and the computational study are 

presented in Chapter IV.   
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To evaluate the performance of a heuristic we need an efficient method to obtain the 

benchmark/optimal solutions. Boctor et al. (BLR, 2004) develop two new mathematical 

formulations for the uncapacitated problem to obtain optimal solutions in general purpose 

optimization software. Their experimental studies document the improved computational 

efficiency of their formulations versus the classical problem formulation seen in Federgruen 

et al. (1994). There are two other mathematical formulations (Kirca, 1995 and Robinson and 

Gao, 1996) for the CULSP, but they were not evaluated in BLR's experimental study. This 

research more fully explores the limitations and potential capabilities of BLR's formulations. 

In Chapter III, we first investigate the tightness of the two BLR formulations and 

propose disaggregating the variable upper bound constraints of each formulation to more 

tightly constrain the joint setup variables to take on integer values in the linear programming 

(LP) relaxation. We then evaluate the computational efficiency of the original and revised 

formulations versus Robinson and Gao's (RG, 1996) plant location type formulation. Kirca's 

(1995) formulation was not included in the study, since Gao, Altay and Robinson (2004) in 

their comparative study find the RG formulation to be most efficient formulation for general 

purpose optimization software. 

 

2.1.6 Coordinated capacitated lot-sizing problem (CCLSP) 

The CCLSP contains both the joint capacity constraints that complicate solution of the 

MCLSP and the family setup decision variables that complicate the mathematical structure 

of the CULSP.  The resulting mathematical structure is NP-complete.  Erenguc and Mercan 

(1990) consider multiple product families assuming that labor is a sunk cost and therefore, 

not relevant in the problem formulation.  Capacity is consumed during item run time and 

product family and item setup.  Backorders are not allowed.  The problem is solved with a 

branch-and-bound algorithm that uses linear under-estimators for setup and run times to 

obtain linear sub problems for lower bounding and a shift heuristic that finds feasible 

solutions for upper bounding.  Computational results for problems with up to eight items, 10 

time periods, and four families are reported.  
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Robinson and Lawrence (2004) propose a Lagrangian heuristic for the single-product 

family CCLSP with backorders.  Computational experiments, over a wide range of 

environmental parameters, reveal heuristic solutions with average optimality gaps of 0.44%, 

3.9%, and 4.72% at the 5%, 45% and 85% capacity utilization levels, respectively.  Optimal 

solutions to 12-period problems with an 85% capacity utilization level and more than two 

items could not be found within 100 minutes of CPU time by general-purpose optimization 

software.  

Altay (2001) propose and develop a cross decomposition approach to the coordinated 

replenishment problem. Their implementation shows that the problem is easier to solve 

when setup costs are negligible and becomes substantially difficult when the ratio of joint 

setup cost to total cost increase. Their results also indicate the difficulty in attaining 

computationally efficient optimal solutions. Gao and Robinson (2004) present a tight MIP 

formulation and a Lagrangian dual-ascent heuristic for the CCLSP. They find solutions 

within an average 0.67% from optimality for their set of test problems but the performance 

of the heuristic drops as the capacity utilization and the joint setup cost increase. 

 Federgruen, Meissner and Tzur (2004) develop a strict partitioning (SP) and a 

progressive interval/ expanding horizon (EH) heuristic for the capacitated problem. They 

show that the time-between orders (TBO) for items and family along with capacity 

utilization are the major factors that effect the performance of the heuristic. The SP 

heuristics runs faster, but they have a high average optimality gap of 14.7%. The EH 

heuristics provides solutions with an average optimality gap of 1.2% for a difficult set of test 

problems, but they have a major drawback. The EH heuristic's computational time increase 

drastically with problem size. A 25 item-10 period problem requires approximately 5 hours 

and 30 minutes to solve, in comparison, a problem with 10 item and 10 periods requires just 

30 seconds.  

 

Research Extensions 

The results in the literature highlight the difficulty of finding both good heuristic and 

optimal solutions for the CCLSP problem and justify the development of alternative 
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heuristic approaches for the problem. As stated earlier, to evaluate the performance of a 

heuristic one needs an efficient approach to obtain optimal solutions using general purpose 

optimization software. It is interesting to note that Robinson and Lawrence (2004), Gao and 

Robinson (2004) and Federgruen et al. (2004) use different MIP formulations to benchmark 

their heuristics. In Chapter V, we evaluate these different formulations along with three 

others to determine the most efficient mathematical model for solving CCLSP in 

optimization software like CPLEX and Xpress-MP. 

 In Chapter VI, we develop two new heuristics, a six-phase construction heuristic and 

simulated annealing metaheuristic, for solving the CCLSP. We then evaluate their 

performance against current approaches to the problem by conducting four computational 

studies, three of which are based on previous literature. 

 

2.2 Coordinated lot-sizing problem: Rolling horizon 

Due to the lack of information about future demand, the coordinated lot-sizing schedules are 

implemented on rolling schedule basis. Based on the limited demand information master 

production schedule (MPS) is constructed. The imminent decisions are implemented and 

then the schedule is rolled forward as new demand data becomes available (Blackburn and 

Millen, 1982a). As a result, the production schedule is updated moving through time. In this 

scenario, an optimal replenishment schedule with respect to a planning horizon may not 

necessarily be a component of a schedule that would minimize total costs over a period of 

time (Simpson, 1999). Moreover orders may be rescheduled during subsequent planning 

cycles, resulting in schedule instability or "nervousness". 

 Yeung et al. (1998) and Robinson et al. (2005) provide a recent review of literature 

that examines the multi-item lot-sizing rules and MPS parameters that affect the 

performance of requirements planning systems. Instead of duplicating these reviews, we 

present the literature that closely relates to our computational study. 

 The following Figure 2.2 depicts some of the basic definitions used in rolling 

horizon or MRP literature, 
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Figure 2.2: Illustration of MPS parameters in rolling horizon environment 

 

 

 The above figure shows the rolling schedule process for two successive planning 

cycles. The portion of the planning horizon whose order schedules cannot be changed is 

known as frozen interval. Re-planning periodicity is the interval between two consecutive 

planning cycles.  

Baker (1977) conducts an experimental study to investigate the importance of MPS 

design parameters in rolling schedules. The findings indicate that the ideal planning horizon 

length should be equal to integer multiples of natural order cycles (or) time between orders 

(TBO). Sridharan et al. (1987) explore the effect of freezing method, frozen interval length 

and planning horizon length on MPS performance. They also show the tradeoff between 

system cost and instability, longer the freezing horizon ensures system stability whereas 

shorter freezing horizon ensures cheaper schedules. Sridharan et al. (1988) also evaluate the 
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performance of freezing parameters on MRP system nervousness. Their results indicate the 

superiority of order based freezing method over period based in a single-level requirement 

planning system with respect to cost and schedule instability. Furthermore, they also show 

that shorter planning horizons are favored for the stability of MPS schedule.  

Subsequent researchers (Sridharan and Berry 1990, Zhao and Lee 1996, Zhao and 

Lam 1997 and Zhao et al., 2001) build on the work by Sridharan et al. (1987, 1988). Their 

results corroborate the initial findings in different MPS settings, such as multi-level and 

stochastic demand problems. In general, the findings could be summarized as follows, 

longer planning horizon reduces the schedule cost but at the same time increases schedule 

instability, on the other hand shorter planning horizon favors stability rather than schedule 

cost. Schedule costs are lower with shorter frozen intervals. Schedule instability is 

substantially high when the frozen interval length is less than 50% of the planning horizon 

and there is marked improvement in stability as the freeze interval approaches the planning 

horizon. Re-planning at the end of frozen interval reduces both system cost and nervousness.  

Blackburn and Millen (1980) evaluate the performance of lot-sizing heuristics such 

as Wagner-Whitin (1958), Silver-Meal (1973) and part period balancing (De Matteis et al. 

1968) heuristics in single level systems. The result indicates that simpler heuristic can 

perform better than optimization based algorithms such as Wagner-Whitin. Blackburn and 

Millen (1982a, 1982b) study the performance of lot-sizing rules in multi-level MRP 

systems. Several other researchers have evaluated the relative performance of different lot-

sizing rules and optimal methods for multi-item and multi-level MRP systems, with respect 

to total cost and system nervousness. (Sridharan et al. 1987, 1988, Zhao and Lam, 1997, 

Simpson 1999, 2001 and Zhao et al., 2001). Stadtler (2000) provide new modifications of 

exact algorithms for ULSP such as Wagner-Whitin so that they could perform in par with 

simple lot-sizing heuristics such as Silver-Meal in a rolling schedule environment.  

 

Research Extensions 

There is no literature investigating alternative coordinated lot-sizing heuristic application in 

a rolling horizon environment. In Chapter VII, we fill this gap by conducting a simulation 
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study to evaluate the performance of existing uncapacitated coordinated lot-sizing heuristics 

and the new approaches developed in this research.  
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CHAPTER III 

 

FORMULATIONS FOR COORDINATED UNCAPACITATED LOT-

SIZING PROBLEM (CULSP)
*
 

 
 

Boctor, Laporte and Renaud's (2004) mathematical programming formulations for 

uncapacitated problem represent a significant contribution to the coordinated lot-sizing 

literature.  Experimental studies document the improved computational efficiency of their 

formulations versus the classical problem formulation.  This research more fully explores 

the limitations and potential capabilities of the Boctor, Laporte and Renaud (BLR) 

formulations. We first investigate the tightness of the two BLR problem formulations and 

propose disaggregating the variable upper bound constraints of each formulation to more 

tightly constrain the joint setup variables to take on integer values in the linear programming 

(LP) relaxation.  We then evaluate the computational efficiency of the original and revised 

formulations versus Robinson and Gao's (RG 1996) plant location type formulation, which 

is known to promote efficient solution by both general-purpose optimization software and 

special purpose dual-based algorithms.  The performance metrics are the tightness of the LP 

relaxation, the proportion of the LP solutions which are integer and thus optimal for the 

mixed-integer programming (MIP) problem, and the computational requirements for finding 

optimal solutions.  Each formulation is tested in a backorder and no backorder environment.   

We first present the benchmark RG formulation and then the original BLR 

formulations (BLR1 and BLR2) and their respective tight formulations (BLR1' and BLR2').   

BLR1 and BLR2 refer to DJRP2 and DJRP3, respectively, in the Boctor et al. (2004) paper. 

 

 

                                                 
* Part of this chapter is reprinted with permission from “More on ‘Models and algorithms for the dynamic-
demand joint replenishment problem’ ” by Narayanan A. and E.P. Robinson, International Journal of 

Production Research, 44 (2), 15 January 2006, 383-397. © 2006 by Taylor & Francis Group. This article could 
be accessed online at http://www.tandf.co.uk/journals 
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3.1 RG problem formulation 

The RG formulation exploits the hierarchical linkages among the joint setup, item setup and 

assignment variables to constrain the setup variables to take on a value of a value of 0 or 1 in 

the optimal solution of its LP relaxation.  Let i = 1, 2, ..., I,  q = 1, 2, ..., T, and t = 1, 2, ..., T, 

represent items, replenishment time periods, and demand time periods, respectively.  Define: 

dit, the demand for item type i in period t; Sq, the joint setup cost in time q; siq, setup cost for 

item i in period q; hit, the per unit inventory holding cost for item i in period t; and 

∑ −
== 1t

qr iriqt hh is the per unit inventory holding cost for serving demand for item i in period t 

from a replenishment order in period q.  The decision variables include: Zq = 1 if a joint 

setup occurs in period q, and 0 otherwise; Yiq = 1 if item i is replenished period q, and 0 

otherwise; and Xiqt is the portion of demand for item i in period t that is served from a 

replenishment order in period q.  The RG formulation of CULSP assuming backorders are 

not allowed is:  

  (RG) itiqt
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Subject to 
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q
iqtX  (i = 1, …, I, t = 1, …, T)    (3.2) 

Yiq ≤ Zq  (i = 1, …, I, q = 1, …, T)    (3.3) 

  Xiqt ≤ Yiq  (i = 1, …, I, q = 1, …, T,  t = q, …, T)  (3.4) 

Zq = 0 or 1 (q = 1, …, T)      (3.5) 

Yiq = 0 or 1 (i = 1, …, I, q = 1, …, T)    (3.6) 

Xiqt = 0 or 1 (i = 1, …, I, q = 1, …, T, t = q, …, T)   (3.7) 

 

Constraints (3.2) insure that each item's demand is satisfied in each period.  Constraints (3.3) 

prevent an item setup from occurring unless there is a joint setup, while constraints (3.4) 

prohibit replenishment unless the item setup charge is incurred.  Constraints (3.5), (3.6), and 
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(3.7) force decision variables to take on feasible solution values.  The above model is 

extended to consider backorders by changing the summation in constraint (3.2) to consider q 

= 1, …, T; and altering the last summation in the objective to include t = 1, …, T and q = 1, 

…, T; and defining constraint sets (3.4) and (3.7) to consider Xiqt  from t = 1 to T. 

 

3.2 BLR1 and BLR1' problem formulations 

As in Kirca (1995), BLR1 views the problem as multiple Wagner and Whitin (1958) 

problems that are linked by a complicating joint setup decision variable.  The formulation 

exploits the 'exact requirements' property of Wagner and Whitin (1958) to provide a more 

compact model than the classical formulation discussed in Boctor et al. (2004).    Assign the 

binary decision variable wiqt the value of 1 if and only if a replenishment order in time q for 

item i covers all the demand from period q to period t.  Define ciqt as the sum of the item 

setup and inventory holding costs for producing item i in period q and covering its demand 

from period q through t, i.e., ∑ ∑+=
−
=+= t

qr
r

qk irikiqiqt dhsc 1
1 )( .  BLR1 is formulated as:   
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 (q = 1, …, T)     (3.10) 

iqtw = 0 or 1 (i = 1, …, I, q = 1, …, T, t = 1, …,T)   (3.11) 

   Zq = 0 or 1 (q = 1, …, T)      (3.12) 

 

BLR1's unique and most effective modeling feature is the compact structure of constraint set 

(3.9), which insures that all demand is met.  The weakest feature is constraint set (3.10), 

which attempts to force joint setups in any time period where one or more individual items 

are produced.  Constraint (3.10) provides a weak bound on Zq whenever fewer than I items 
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are setup in period q due to the aggregation across items.  Specifically, for given values of 

wiqt, ( ) IwZ
I

i

T

qt iqtq ∑ ∑= =
=

1
 in the optimal solution of the LP relaxation of BLR1.  In 

addition, from constraint (3.9), we know that when item i is replenished in period q there is a 

strong tendency for 1=∑ =
T

qt iqtw  and 0 otherwise.  Hence, constraint set (3.10) forces Zq to 

take on the value of 1 if and only if every item is ordered in time q.  We denote BLR1 as a 

"weak" formulation of CULSP. 

Replacing constraint set (3.10) with disaggregated constraint set (3.10') yields the 

tight formulation BLR1', where  

  q

T

qt
iqt Zw ≤∑

=

  (i = 1, …, I, q = 1, …, T)   (3.10') 

This formulation more tightly constrains the joint setup variable Zq to take on a value of 1 

when any item is replenished in time q.  For the cost of I additional constraints, BLR1' 

provides a potentially tighter bound on Zq and consequently a tighter lower bound on the 

optimal value of CULSP.   

 

3.3 BLR2 and BLR2' problem formulations 

The BLR2 formulation is similar to the RG formulation, but the item setup decision 

variable, Yiq, is cleverly eliminated by linking the item setup costs, Yiq, to their respective 

assignment decision variables, Xiqq, in the objective function.  The formulation for BLR2 is:  
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Subject to 
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iqtX   (i = 1, …, I, t = 1, …, T)   (3.14) 

q
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i
iqq IZX ≤∑
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  (q = 1, …, T)     (3.15) 

iqqiqt XX ≤   (i = 1, …, I, q = 1, …, T-1, t = q+1, …,T) (3.16) 
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iqtX  = 0 or 1  (i = 1, …, I, q = 1, …, T, t = q, …,T)  (3.17) 

qZ  = 0 or 1  (q = 1, …, T)     (3.18) 

 

Disaggregating constraint set (3.15) by item to yield constraint set (3.15') yields BLR2', the 

tight formulation of BLR2, where 

qiqq ZX ≤   (i = 1, …, I, q = 1, …, T)   (3.15') 

Similar to the RG model, the formulation can handle backorders by altering: the summation 

in constraint (3.14) to q = 1, …, T; the last summation in the objective to include t = 1, …, T 

and q = 1, …, T; the definition of t in constraint set (3.16) to range from t = 1, …, T  and q = 

1, …, T; and the range of t in constraint set (3.17) to t = 1, …, T. 

 

3.4 Experimental design 

The experimental design is similar to that in Erenguc (1988), Robinson and Gao 

(1996), and Boctor et al. (2004) but with an expanded set of test problems.  The 

experimental factors include: the number of items, I ∈ {5, 10, 20, 40}, planning horizon 

length, T ∈ {6, 12, 18, 24, 48}, joint setup cost, Sq ∈ {60, 120, 480, 960}, and demand 

density, DD ∈ {0.50, 1.0}, where demand density is the fraction of time periods 

experiencing demand for an individual item.  

In all problems, demand, dit, is assumed to be normally distributed and it varies by 

item and time period.  Odd numbered items have a mean demand of 50 units and a standard 

deviation of 20 units: even numbered items have a mean demand of 100 units and a standard 

deviation of 20 units.  When DD = 0.50 only 50% of the periods for each item experience 

demand.  Unit production costs are assumed to be equal to zero, inventory holding cost per 

unit per time period is $1, and backorder costs are $1.50 per unit per time period. 

Erenguc (1988), Robinson and Gao (1996), and Silver and Kelle (1988) find that the 

ratio of total item setup costs to joint setup cost impacts problem solution difficulty.  To 

study this factor, we draw the joint and item setup costs from normal distributions.  The 

product family setup cost, Sq, is selected from the set {$60, $120, $480, $960} with a 
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standard deviation of $36.  Within a test problem, Sq is constant across all time periods.  

Item setup costs, siq , are drawn from a distribution with a mean = $60 and a standard 

deviation = $18, where siq varies by item but is constant in all time periods within a test 

problem.   The mean setup cost ratio ranges from 0.3125 to 40, where the setup cost ratio is 

defined as q

I

i
iq Ss∑

=1

. 

Utilizing a full factorial design results in 160 combinations of factor settings each of 

which is solved 10 times using randomly generated demands.  This yields 1600 test problem 

instances.  The study is conducted using XpressMP Version 2003F (Xpress Optimizer 

Version 14.24), a state-of-the-art general-purpose optimization software package, on a 

personal computer running a Pentium® 4 at 1.9 gigahertz.   

 

3.5 Experimental results 

Tables 3.1 and 3.2 contain the experimental results by experimental factor for the scenarios 

without backorders and with backorders, respectively.  Each entry in the table represents the 

average results for ten randomly generated test problems except for the last row which 

provides overall average results.  The first value in each cell is associated with DD = 0.5 and 

the value in parenthesis is for DD = 1.0.   

The last row of Table 1 indicates that although disaggregating the constraint sets 

adds IT -1 constraints to the formulations, computational times decrease substantially. 

Specifically, CPU times for BLR1 drop from 4.70(4.06) to 0.52(0.53) and times for BLR2 

drop from 1.84 to 0.78 for DD =0.5. When DD = 1.0, a subset of the test problems of size 40 

x 24 and 40 x 48 could not be solved by BLR2 within 600 CPU seconds. However, BLR2′ 

found solutions in average times of 1.05 and 6.28 CPU seconds, respectively.  The enhanced  
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Table 3.1: Computational times and quality of the LP relaxation with no backorders. 

Experimental
Factor 

 RG 

   seconds
 †

 

      BLR1 

     seconds
†
 

    BLR1′ 

   seconds
†
  

      BLR2 

     seconds
†
  

  BLR2′ 

  Seconds
†
 

    BLR1/BLR2                     

LP Gap
† 

    BLR1′/BLR2′ 

     & RG LP Gap
† 

I x T   5 x 6 0.02 (0.10) 0.02 (0.03) 0.02 (0.02) 0.02 (0.03) 0.02 (0.02) 12.46% (4.26%) 0.000% (0.000%)

          5 x 12 0.03 (0.04) 0.04 (0.05) 0.02 (0.03) 0.05 (0.07) 0.04 (0.04) 18.18% (5.33%) 0.000% (0.000%)

          5 x 18 0.05 (0.05) 0.08 (0.10) 0.05 (0.05) 0.09 (0.14) 0.06 (0.06) 19.82% (5.68%) 0.000% (0.001%)

          5 x 24 0.08 (0.06) 0.18 (0.21) 0.08 (0.09) 0.15 (0.23) 0.09 (0.09) 20.40% (5.82%) 0.000% (0.000%)

          5 x 48 0.39 (0.04) 1.58 (1.92) 0.54 (0.60) 0.87 (1.39) 0.50 (0.55) 23.05% (5.96%) 0.000% (0.000%)

         10 x 6 0.02 (0.06) 0.03 (0.03) 0.02 (0.02) 0.03 (0.04) 0.03 (0.03) 15.87% (3.49%) 0.000% (0.000%)

         10 x 12 0.06 (0.13) 0.11 (0.08) 0.05 (0.06) 0.10 (0.11) 0.06 (0.06) 20.46% (4.08%) 0.001% (0.000%)

         10 x 18 0.10 (0.26) 0.27 (0.22) 0.09 (0.09) 0.20 (0.26) 0.12 (0.10) 21.67% (4.28%) 0.000% (0.000%)

         10 x 24 0.20 (0.09) 0.70 (0.54) 0.18 (0.17) 0.42 (0.54) 0.22 (0.19) 22.31% (4.33%) 0.002% (0.000%)

         10 x 48 1.13 (0.12) 6.33 (6.07) 1.25 (1.38) 2.82 (4.63) 1.42 (1.44) 23.14% (4.43%) 0.003% (0.003%)

         20 x 6 0.04 (0.27) 0.06 (0.08) 0.03 (0.03) 0.05 (0.07) 0.04 (0.03) 13.07% (3.72%) 0.000% (0.000%)

         20 x 12 0.09 (0.67) 0.24 (0.22) 0.07 (0.07) 0.18 (0.28) 0.10 (0.09) 16.72% (4.12%) 0.000% (0.000%)

         20 x 18 0.25 (0.10) 0.82 (0.68) 0.19 (0.17) 0.52 (0.92) 0.30 (0.21) 18.39% (4.35%) 0.002% (0.000%)

         20 x 24 0.59 (0.21) 2.15 (1.56) 0.39 (0.33) 1.22 (1.86) 0.67 (0.41) 19.43% (4.34%) 0.002% (0.000%)

         20 x 48 3.48 (0.50) 20.92 (13.75) 2.67 (2.19) 7.90 (13.07) 4.56 (2.32) 20.65% (4.41%) 0.004% (0.000%)

         40 x 6 0.06 (1.60) 0.13 (0.24) 0.05 (0.06) 0.11 (0.55) 0.06 (0.06) 11.09% (3.50%) 0.000% (0.000%)

         40 x 12 0.20 (0.59) 0.66 (1.21) 0.14 (0.14) 0.56 (4.76) 0.20 (0.19) 12.98% (3.61%) 0.000% (0.000%)

         40 x 18 0.52 (1.58) 2.13 (2.96) 0.31 (0.32) 1.30 (48.74) 0.46 (0.46) 13.93% (3.69%) 0.000% (0.000%)

         40 x 24 0.95 (2.72) 5.21 (6.31) 0.60 (0.68) 3.09 (***) 0.88 (1.05) 14.56% (3.75%) 0.000% (0.001%)

         40 x 48 4.90 (7.46) 52.29 (44.95) 3.74 (4.21) 17.25 (***) 5.77 (6.28) 15.28% (3.80%) 0.000% (0.000%)
 

Sq      $ 60         0.56 (0.68) 1.02 (1.06) 0.44 (0.47) 0.82 (0.92) 0.62 (0.55) 6.92% (1.97%) 0.000% (0.000%)
  $120 0.54 (0.69) 1.43 (1.45) 0.45 (0.48) 1.01 (1.21) 0.60 (0.57) 12.69% (3.67%) 0.000% (0.000%)
  $480 0.58 (0.71) 4.57 (4.06) 0.51 (0.52) 1.75 (4.52) 0.69 (0.61) 24.47% (5.80%) 0.000% (0.000%)
  $960 0.95 (1.25) 11.77 (9.67) 0.70 (0.68) 3.81 (***) 1.22 (1.01) 26.61% (5.95%) 0.002% (0.001%)

 

Average 0.66 (0.83) 4.70 (4.06) 0.52 (0.53) 1.84 (***) 0.78(0.68) 17.68% (4.35%) 0.001% (0.000%)
                       †

- The first value represents problems with DD = 0.50 and the value within parenthesis is for DD = 1.0 

                   *** - Some or all instances couldn't find and verify optimal solution in 600 CPU seconds.
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performances of the revised formulations are due to the improvement in the lower bound 

provided by the LP relaxation of BLR1′ and BLR2′. The last two columns in Table 1 

indicate average LP optimality gaps of 17.68% (4.35%) for the weak formulations compared 

to 0.001% (0.000%) for the tight formulations. Furthermore, the solution values of the LP 

relaxations of the weak formulations are integer and thus optimal in only 2.5% (2.5%) of the 

test problems, while 97.75% (99.15%) of the tight LP relaxation solutions are optimal. It is 

worth noting that the LP solutions and objective function values of BLR1=BLR2 and BLR1' 

=BLR2'. 

The findings for the three tight formulations reveal that RG, BLR1' and BLR2' have 

equally tight LP relaxations and LP solutions. However, solution of RG and BLR2' requires 

approximately 42 and 40% more computational resources respectively than required by 

BLR1'. In addition, the computational times for solving RG increase with demand density, 

while BLR1' is invariant and BLR2' decreases. 

The impact of problem size on CPU time is as expected. Increasing either I or T 

increases the computational requirements for all problem formulations. Similarly, increasing 

T increases all LP gaps, but increasing I provides mixed results. Finally, confirming the 

results in Erenguc (1988) and Robinson and Gao (1996), longer solution times and larger LP 

gaps are associated with higher levels of the joint set-up cost, Sq. 

Table 3.2 contains the experimental results for the tight formulations BLR2' and 

RG when backorders are allowed. BLR1' is not included in the analysis since the 

formulation is not capable of handling backorders. Assuming backorder are allowed, RG is 

the most efficient formulation with average solution times of 1.48(1.44) versus 1.73(1.92) 

for BLR2'. When compared with the no backorder scenario, solution times approximately 

double for problems with backorders for both RG and BLR2' due to the increased number of 

assignment variables, Xiqt. Solutions times for the backorder case increase with higher values 

of I, T and Sq. 

General conclusions from the experiments reveal that the three tight formulations can 

effectively solve large-scale CULSP problems. When backorders are not allowed, the 

ranking of the formulations in terms of computational efficiency is BLR1', BLR2', RG, 
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Table 3.2: Computational times and quality of the LP relaxation: with backorders. 
 

Experimental 
Factor 

 RG 

   seconds
 †

 

        BLR2′ 

        seconds
†
 

    BLR2′ 

     & RG LP Gap
† 

I x T   5 x 6 0.03 (0.03) 0.02 (0.03) 0.000% (0.000%)

          5 x 12 0.05 (0.06) 0.05 (0.07) 0.000% (0.005%)

          5 x 18 0.10 (0.12) 0.13 (0.17) 0.000% (0.003%)

          5 x 24 0.17 (0.17) 0.18 (0.21) 0.000% (0.002%)

          5 x 48 0.79 (0.76) 1.10 (1.22) 0.000% (0.001%)

         10 x 6 0.03 (0.04) 0.03 (0.03) 0.000% (0.000%)

         10 x 12 0.11 (0.10) 0.11 (0.11) 0.003% (0.000%)

         10 x 18 0.29 (0.24) 0.30 (0.25) 0.002% (0.000%)

         10 x 24 0.37 (0.42) 0.41 (0.47) 0.000% (0.002%)

         10 x 48 1.71 (1.56) 2.28 (2.31) 0.000% (0.000%)

         20 x 6 0.06 (0.06) 0.06 (0.06) 0.000% (0.000%)

         20 x 12 0.24 (0.21) 0.21 (0.21) 0.000% (0.000%)

         20 x 18 0.92 (0.55) 0.81 (0.59) 0.002% (0.001%)

         20 x 24 0.95 (1.22) 0.96 (1.32) 0.001% (0.004%)

         20 x 48 8.11 (9.10) 8.13 (11.29) 0.002% (0.005%)

         40 x 6 0.11 (0.11) 0.10 (0.10) 0.000% (0.000%)

         40 x 12 0.45 (0.43) 0.41 (0.46) 0.000% (0.000%)

         40 x 18 0.98 (0.84) 0.96 (1.00) 0.000% (0.000%)

         40 x 24 1.91 (2.47) 1.97 (2.41) 0.000% (0.001%)

         40 x 48 12.25 (10.28) 16.32 (16.24) 0.000% (0.000%)
 

Sq         $ 60          1.08 (1.01) 1.43 (1.42) 0.000% (0.000%)
            $120 1.22 (1.00) 1.60 (1.44) 0.000% (0.000%)
            $480 1.63 (1.32) 1.79 (1.78) 0.002% (0.003%)
            $960 1.99 (2.42) 2.09 (3.07) 0.000% (0.002%)

 

Average 1.48 (1.44) 1.73(1.92) 0.000%(0.001%)
†
- The first value represents problems with DD = 0.50 and the value within parenthesis is for DD = 1.0 

 

 

BLR1 and BLR2. However, in a backorder environment the rankings are RG and BLR2'. 

The broader findings of the study are threefold. First, the research clearly illustrates the 

importance of tightly constraining set-up decision variables in order to improve the quality 

of the LP relaxation and reduce computational time when applying general-purpose 

software. While this modeling feature is generally well known in the literature (Denizel et 
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al. 1996), the specific impact on the CULSP problem formulation is documented in this 

research. Second, the BLR1', BLR2', and RG problem formulations have identical LP 

solutions and LP objective function values, varying capabilities in representing problem 

features (e.g. backorders), and different computational efficiencies. These results encourage 

the development and evaluation of other formulations for the CULSP and other dynamic-

demand lot-sizing problem classes in an attempt to discover a broader set of ‘tight’ 

formulations and the unique characteristics of each. Finally, the new BLR1' and BLR2' 

formulations provide additional research opportunities. Where Robinson and Gao (1996) 

exploit the special mathematical structure of their formulation to obtain an efficient dual-

based optimization procedure, BLR1' and BLR2' provide new mathematical structures upon 

which other computationally efficient algorithms can potentially be built. 
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CHAPTER IV 

 

HEURISTICS FOR COORDINATED UNCAPACITATED LOT-SIZING 

PROBLEM (CULSP) 
*
 

 
 

Boctor et al. (2004) evaluate the performance of several well-known and a new 

perturbation metaheuristic (PM) for solving the coordinated uncapacitated lot-sizing 

problem (CULSP).  The heuristics include the Fogarty and Barringer (1987) heuristic with 

the Silver and Kelle (1988) improvement procedure (FB-SK), Atkins and Iyogun's (1988) 

extension of the Silver-Meal (1973) heuristic, Iyogun's (1991) modification of the part-

period balancing method, and Federgruen and Tzur's (1994) greedy-add heuristic.  

Experimental results indicate the superiority of the FB-SK heuristic over those tested.  

However, the perturbation metaheuristic, which utilizes the FB-SK heuristic, finds the 

highest quality solutions.    

This research develops and evaluates two forward-pass heuristics, a two-phase 

heuristic and a simulated annealing metaheuristic (SAM) for the CULSP.  The heuristics 

extend the concepts proposed by Eisenhut (1975), Lambrecht and Vanderveken (1979), 

Dixon and Silver (1981), and Dogramaci et al. (1981) for the multi-item capacitated lot-size 

problem (MCLSP) to solve the CULSP.  While the item replenishment decisions are 

economically coupled by shared capacitated resource in the MCLSP, the CULSP optimal 

item replenishment schedules are coupled by the product family’s joint setup costs.  The 

interplay between joint and individual item fixed costs in the CULSP results in a more 

generalized cost function than that for the MCLSP, which increases algorithm complexity 

and necessitates more generalized algorithms.  SAM utilizes the two-phase heuristic to 

generate an initial solution and as the neighborhood search procedure.   

 

                                                 
* Part of this chapter is reprinted with permission from “Effective heuristics for the dynamic demand joint 
replenishment problem ” by Robinson E.P., A. Narayanan and L-L. Gao, Journal of Operational Research 

Society (forthcoming; published online : April 19th, 2006). © 2006 by Operational Research Society Ltd. This 
article could be accessed online at http://www.palgrave-journals.com/jors  
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4.1 Forward-pass heuristics 

A forward-pass heuristic attempts to reduce total schedule costs by shifting replenishment 

orders into earlier time periods when the setup cost saving exceeds the increase in inventory 

holding costs.  The heuristic builds a production schedule beginning in period 1 and then 

rolls forward through time.  Two forward-pass heuristics are proposed – one applies a 

modified Eisenhut (1975) decision criterion and the other uses a modified Lambrecht and 

Vanderveken (LV) (1979) decision criterion.  We first develop the decision criterion for 

selecting which order to reschedule into period 1 and then outline the steps of the forward-

pass heuristics.  For presentation clarity, we assume the setup and holding cost parameters 

are constant over time.  Extensions to model time varying costs are straight-forward. 

For the single-item dynamic demand lot-sizing problem, Silver and Meal (1973) 

define Ci(t) as the average cost per time period for satisfying the demand for item i from 

time 1 through time t, where, 

 ttIstC iii ))(()( +=     t ≤  T,      (4.1) 

is  is the item setup cost, and )(tI i  = ∑
=

−
t

j

iji djh

1

)1( is the inventory holding cost.   

We extend the concept to the CULSP by defining C(t) as the cost per time period for 

serving all item demand through time t from a replenishment in time period 1, where  

  ∑+=
I

i

i tCtStC )()( .      (4.2) 

 

Modified Eisenhut Decision Criterion  

Eisenhut (1975) proposes using the coefficient, )(
'

tCi , provided by an approximation of the 

first derivative of equation (4.1) as a decision criterion for lot-size aggregation, where 

( ) 2'
)()( tstItC iii −≈      (4.3)  

 

If )(
'

tCi  < 0, total cost can be reduced by rescheduling item i’s replenishment quantities 

through period t into period 1.  Hence, at the optimal t, inventory costs approach but are less 
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than the setup cost, which is analogous to the decision criterion applied in the part period 

balancing algorithm.  We restate equation (4.3) on a per unit basis as 

    ( ) itiii dttIstU
2)()( −=     (4.4) 

where )(tU i > 0 indicates that costs can be reduced by shifting the order quantities for item i 

through period t into period 1. 

 Extending Eisenhut’s decision criterion to the CULSP yields the following per unit 

savings coefficient for rescheduling all of the product family’s orders through period t into 

period 1  

  ∑∑ 







+=

i

itit

i

i ddtUtStU )()( 2      (4.5) 

U(t) > 0 implies that costs can be reduced by rescheduling all of the product family’s orders 

through period t into period 1.  During the calculation of (4.4) if there is no setup for item i 

in period 1, then si = 0 since we are not saving a setup.  Similarly, S = 0 in (4.5) if a joint 

setup is not scheduled in period 1.   

 

Modified LV Decision Criterion 

LV recognizes that the minimum cost lot-size in period 1 for item i will satisfy demand over 

t periods if )(tCi  < )1( −tCi  and )(tCi < )1( +tCi .  LV, as do Dogramaci et al. (1981), uses 

the following coefficient to denote the cost savings derived from rescheduling item i’s 

orders through time t into the period 1 lot-size  

( ) ititiiii dttdthtIstV )1()1()1()( 2 −−−−+=     (4.6) 

The analogous savings coefficient for the CULSP is 

∑∑ 



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


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itit

i

i ddtVttStV )()1()(     (4.7) 

 

Forward-Pass Heuristic 

The difference in the two forward-pass heuristics rests solely on the decision criterion 

employed.  We briefly outline the heuristic using the Eisenhut decision criterion.   
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Step 1.    Initialization. Initialize the order schedule matrix, A, where ita = dit is the order 

quantity for item i in time period t.  Set the current period as r = 1.   

Step 2.   Calculation of savings matrix. For the current order schedule matrix, construct the 

item cost savings matrix, U = { }titU i ,|)( ∀ , and the product family cost savings 

coefficients, U(t) for all t.  

Step 3.   Forward-pass.  Include all requirements for time period 1 in the replenishment 

schedule for period 1.  Next, schedule the order(s) associated with Max{Ui(t) > 0, 

U(t) > 0} into period 1 and update the order schedule matrix accordingly.  

Continue rescheduling orders into period 1 until no further savings are possible. 

Step 4.   Roll.  If r = T, stop. Otherwise set r = r + 1. Re-index period r + 1 as new period 1 

for establishing the updated order schedule matrix.  Go to Step 2. 

 

4.2 Two-phase heuristic  

In the forward-pass heuristic, an earlier order decision may adversely impact the quality of 

later decisions without any recourse for future schedule adjustments.  To overcome this 

limitation, Dogramaci et al. (1981) propose solving the MCLSP by building orders in the 

time periods offering the greatest cost reduction, not necessarily from period 1.  We extend 

this concept and develop a two-phase heuristic for solving the CULSP.  The heuristic is 

based on two savings coefficients.  The savings coefficient, ),( '
ttCi , for shifting item i’s 

order from period t into setup period '
t , ( '

t < t), is  

),()1(),( '
''

'
ttIssYttC iitititi −+−=     (4.8) 

where Yit’ = 1 if an order is scheduled for item i in period '
t , 'its is the item’s setup cost in 

time '
t , and the inventory carrying cost from time '

t to time t is itii ahttttI )(),( '' −= .  The 

savings coefficient, ),( '
ttC , for re-scheduling the product family from t into '

t is 

   ),( '
ttC  = ∑

∈

++−
Ii

ittt ttCSSZ ),()1( '
''    (4.9) 

where, Zt’ = 1 if an order is scheduled for the product family in period '
t and St’ is the joint 

family setup cost in period '
t .  The heuristic begins by initializing the order schedule matrix 
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by setting ait = dit for every item and time period.  Next, the two-phase procedure is 

implemented as follows: 

 

Phase I:  Left-Shift Orders Earlier in Time 

Phase I reduces schedule cost by rescheduling orders into earlier time periods, i.e., left-

shifting orders, when economically attractive.   

Step 1.  Compute savings : For the current order schedule matrix, calculate 

),( '
ttCi and ),( '

ttC for all i, t, and '
t < t.  If all ),( '

ttCi ≤ 0 and ),( '
ttC ≤ 0, stop.  

Step 2.  Left-Shift. Select the Maximum { ),( '
ttCi , ),( '

ttC } for all i, t, and '
t < t for left-

shifting into time period '
t  and update the order schedule matrix. Go to Step 1. 

  

Phase II:  Right-Shift Orders Later in Time 

Phase II reduces costs by rescheduling orders into later time periods, thereby lowering 

inventory costs.  Dogramaci et al.'s (1981) right-shift procedure examines adjacent setup 

periods and attempts to shift order quantities from the earlier period to the later period if 

inventory costs can be reduced.   However, during computational testing we observed 

several instances were costs could be further reduced by right-shifting orders into periods 

without a positive order quantity.  This is due to unique joint fixed cost structure of CULSP.  

Consequently, we propose a more comprehensive procedure, which evaluates the economic 

impact of right-shifting orders into time t irrespective of whether there is currently an item 

order scheduled in time t or not. 

The maximum quantity of item i that can be shifted from period t' to t, 'itv , is:   

           )11(''' −+−−= ttot'periodfromiitemforementnet requirdav ititit  (4.10) 

The procedures for calculating the net requirement for item i from period t’ +1 to t -1 is 

detailed in the Appendix A. 

For 'itv > 0, the resulting cost savings is ''' )1()'(),'( itititititii XsYsttvhttH +−−−= , 

where 'itX  = 1 if the full lot-size is shifted and 0, otherwise.  For 'itv = 0, 0),'( =ttH i .  The 
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cost savings for right-shifting the entire product family from t' to t is 

),'()1(),'(
1

' ttHZSSttH
I

i
ittt ∑

=

+−−= .   

 

Phase II consists of four steps. 

Step 1.    Initialize. Set t =T.  

Step 2.    Calculate savings.  For i = 1, 2, …,I and t' = 1, 2, …, t-1 compute 'itv , ),'( ttH i  

and ),'( ttH .  If all 0),'( ≤ttH i and 0),'( ≤ttH go to Step 4.   

Step 3. Right-shift.  Select the Maximum { ),'( ttH i , ),'( ttH } for all i and t' for right-

shifting into period t and update order schedule matrix.  Go to Step 2. 

Step 4.   Backtrack.  If t = 1 stop, otherwise set t = t – 1 and go to Step 2.   

 

4.3 Simulated annealing metaheuristic (SAM) 

Traditional heuristics, such as the two-phase and FB-SK heuristics, tend to converge to a 

local optimum within a restricted neighborhood of the problem's state space leaving 

neighborhoods containing potentially improved solutions unexplored.   In such cases, 

metaheuristics, which are generalized procedures that orchestrate the search process to 

escape from local optima and perform a more robust search of the problem's feasible region 

(Hillier and Lieberman 2005), are attractive.  A variety of metaheuristic techniques, 

including simulated annealing, tabu search and genetic algorithms, are implemented to solve 

difficult combinatorial problems. Boctor et al. (2004) propose a perturbation metaheuristic 

for CULSP.  This research develops a simulated annealing metaheuristic for the problem.   

The simulated annealing metaheuristic, introduced by Kirkpatrick et al. (1983), 

mimics physical annealing processes to escape from local optima solutions.  The SAM 

escapes entrapment at local optima by applying transition probabilities, which define the 

probability of moving from the current solution to a neighboring candidate solution.  A 

move's transition probability depends on the difference between the objective values of the 

current solution, Ĉ , and the candidate (or neighborhood) solution, C', and the current 

temperature, nθ .  The transition probability, Pr, is:  
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


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
= − nCC

eMinPr
θ)ˆ( '

,1    (4.11) 

If C' < Ĉ , the transition probability is 1 and we replace the current solution with the 

candidate solution and set Ĉ = C'.  When C' > Ĉ , the candidate solution, C', is accepted with 

probability Pr. 

 The metaheuristic is initiated with a relatively high temperature, which increases the 

probability of accepting candidate solutions and escaping from the local optima early in the 

algorithm's implementation.  However as the search continues, the temperature is reduced 

making it less likely to replace the current solution with an inferior candidate in the final 

iterations of the search.  The algorithm variant applied in this research holds the temperature 

constant for three iterations before it is reduced. This increases the probability of jumping to 

new neighborhoods during each cooling cycle versus an algorithm in which the temperature 

is decreased after each transition opportunity. 

 The cooling schedule used in this experiment is,  

nθ  = 8.0*1−nθ       (4.12) 

where 1−nθ  is the temperature from previous iteration.  The search stops when the 

temperature reaches 1 or when the objective function value of the best found solution does 

not improve for φ successive iterations.  During preliminary experiments, several values of φ 

and oθ were tested with φ = 50 and oθ  = 1000 providing the best results.  The steps of the 

SAM follow. 

Step 1: Initialization.  Set n = 0 and oθ = 1000.  Apply the two-phase heuristic to obtain an 

initial problem solution.  Set Ĉ equal to the objective function value of the heuristic 

solution. Set the best known solution CB = Ĉ  and the iteration counter, count = 1.  

Step 2: Neighborhood generation.  Randomly choose a value of q ε {1, 2, …,T}. Alter the 

status of the joint setup decision variable in period q and reassign orders as 

necessary.     

Step 3: Neighborhood Improvement.  Attempt to improve this solution by applying the two-

phase heuristic, while maintaining the status of the perturbed family setup in period 
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q.  The resulting solution provides a new candidate solution and a candidate 

objective function value C'. 

Step 4: Neighborhood search.  Compute the transition probability and replace the current 

solution with the candidate solution if the probability Pr is greater than or equal to a 

randomly generated number between [0, 1]; otherwise reject the candidate solution.  

If Ĉ < CB update the best known solution and set CB = Ĉ and reset count = 1.  

Otherwise, set count = count + 1.  Repeat Steps 2 - 4 three times. 

Step 5: Update cooling temperature:  Set n = n + 1. Update the temperature using (4.12).  

Step 6: Termination.  If count ≥ φ or nθ  ≤ 1, stop and report the best found solution.  

Otherwise, go to step 2. 

 

4.4 Summary of benchmark heuristics for CULSP  

This heuristics proposed in this research for solving the CULSP are compared against the 

FB-SK, Robinson and Gao's (RG) heuristic and perturbation metaheuristic.  The FB-SK 

heuristic is the most effective standalone heuristic emerging from experiments in Boctor et 

al. (2004), while perturbation metaheuristic improved upon the performance of FB-SK 

procedure.  The RG heuristic, while promising, has not been previously evaluated against 

other heuristics reported in the literature.  The section briefly describes the FB-SK, 

perturbation and RG heuristics. 

 

FB-SK heuristic 

The FB-SK combines the Fogarty and Barringer (1987) heuristic with an improvement 

procedure suggested by Silver and Kelle (1988).  The Fogarty and Barringer (FB) heuristic 

employ dynamic programming logic analogous to the Wagner and Whitin (1958) procedure.  

The method recognizes that the economic impact of the joint replenishment cost is equally 

shared across items only if all items are ordered in the same time period.   Following this 

strategy, when a replenishment is made, it should exactly cover all item demands until the 

next replenishment period.  Hence, the solution is primarily characterized by the periods 

experiencing a joint replenishment.  Boctor et al. (2004) summarize the FB dynamic 

programming heuristic as follows where, tf  is the total replenishment cost for the first t 
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periods and qtc is the total cost for replenishment in period q, which covers the demand for 

all items through period t. 

}min{ 1 qtqt cff += −  for t = 2, …, T and q ≤ T  
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The dynamic program starts by calculating f1 and then iteratively calculates ft  for all t 

= 2,…, T.  The order schedule with the minimum value for fT  is the solution of the FB 

heuristic. 

Silver and Kelle (1988) note that when the item setup cost is high relative to its 

holding cost, replenishing the item in only a subset of the scheduled replenishment periods 

may reduce costs.  The SK improvement procedure successively considers each item in each 

scheduled replenishment period to see if cost savings are possible by shifting the item's 

production into an earlier scheduled replenishment period.  The combined FB-SK procedure 

is shown to be the most effective known heuristic by Boctor et al. (2004).  

 

RG heuristic 

The RG heuristic applies a dual-ascent heuristic to solve the dual of the LP relaxation of the 

Robinson and Gao (1996) problem formulation.  A primal feasible solution for CULSP is 

constructed from the dual LP solution using complementary slackness conditions.  A dual 

adjustment procedure is then applied as necessary in an attempt to reduce any 

complementary slackness violations and improve upon the incumbent solution.  The RG 

heuristic stops when the dual adjustment procedure fails to find improved solutions.  
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Perturbation metaheuristic (PM) 

The perturbation metaheuristic contains four basic components: (1) the FB-SK heuristic, (2) 

a perturbation procedure to jump to other regions of the solution state space, (3) a greedy 

drop heuristic for eliminating joint setups, and (4) the SK improvement procedure.  The PM 

procedure is as follows. 

Step 1. Initial solution: Obtain an initial feasible solution using the FB-SK heuristic. 

Step 2. Solution perturbation: Run the following procedure λ times. Randomly generate a 

time period, q ε {1, 2, …,T}. Alter the status of the joint setup decision variable in 

period q and reassign orders as necessary.  

Step 3. Solution improvement:  Apply a greedy drop procedure to eliminate any joint setup 

whose removal results in a cost savings.  When no further cost savings are possible, 

run the SK improvement procedure.  If the order schedule has lower cost than the 

current best solution, update the best known solution.  Next, go to Step 2 until the 

stopping criterion is reached. 

Stopping criterion: Steps 2 and 3 are applied until the best known solution doesn’t improve 

for φ consecutive iterations. 

As in Boctor et al. (2004) we implement the algorithm with λ = 3 and φ = 6T. 

 

4.5 Experimental design 

The experimental design is modeled after Narayanan and Robinson (2006), which extends 

the test problem sets in Erenguc (1988), Robinson and Gao (1996) and Boctor et al. (2004).  

The experimental factors include the joint setup cost St, number of items I, planning horizon 

length T, and demand density DD.   

 The number of items is represented at four levels where, I ∈ {5, 10, 20, 40} and the 

planning horizon length is taken from the set T ∈ {6, 12, 18, 24, 48}.  Item demand per time 

period is randomly generated from a normal distribution with a mean of 50 units and a 

standard deviation of 20 units for odd-numbered items and a mean of 100 units and a 

standard deviation of 20 units for even-numbered items.  DD ∈ {50%, 100%}, where DD  = 

50% indicates that each item has a demand occurrence in 50% of the time periods, with the 
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exception of the first period, which has positive demand for all items.  When DD = 100%, 

each item has positive demand in all time periods. The inventory holding cost is $1.00 per 

unit per period. Unit production costs are assumed to be constant in all time periods and 

hence set to zero in the experiments. 

Erenguc (1988), Silver and Kelle (1988), Joneja (1990) and Robinson and Gao 

(1996) found that relatively higher joint setup costs increase the problem difficulty.  

Consequently, we study a variety of (item setup cost)/(joint setup cost) ratios.  The item 

setup costs are drawn from a normal distribution with a mean of $60 and a standard 

deviation of $18.  The setup cost varies across items, but is constant in all time periods for a 

specified item within a test problem.  The joint setup cost, which is also constant for all time 

periods within a test problem, is drawn from a normal distribution with a mean St ∈ {$60, 

$120, $480, $960} and a standard deviation of $36.  This provides a mean setup cost ratio, 

ti it Ss /∑ , ranging from 0.3125 to 40.      

We utilize a full factorial design with 160 different combinations of factor settings.  

For each combination of factors, ten test problems are randomly generated.  Each test 

problem is solved by the five heuristics, two metaheuristics, and Xpress-MP version 2003F 

(Xpress Optimizer v14.24).  Xpress-MP provides optimal solutions using the RG 

formulation described in Chapter III for benchmarking.  The experiments are conducted on a 

personal computer running a Pentium® 4 processor at 1.9 GHz with the Windows 2000 

Professional operating system.   

 

4.6 Experimental results 

The following notation is used to present the experimental results. 

FP-E:    Forward-pass heuristic using the Eisenhut decision criterion  

FP-LV:   Forward-pass heuristic using the LV decision criterion 

FB-SK:   Fogarty-Barringer heuristic with the Silver-Kelle procedure 

RG:         Robinson and Gao dual ascent and adjustment heuristic 

TP:    Two-phase heuristic 

PM:    Perturbation metaheuristic initialized by FB-SK  
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SAM:    Simulated annealing metaheuristic initialized by TP  

The results are summarized by demand density in Table 4.1, where each cell is 

associated with 800 test problems.  Overall, the forward-pass heuristics perform slightly 

better when demand density is 100% versus 50%.  However, the other procedures perform 

substantially better when demand density is 50%. 

The FP-E heuristic performs slightly better than the FP-LV heuristic based on the 

average optimality gaps and the number of optimal solutions found.  Preliminary 

computational experiments revealed the FP-E and FP-LV provide higher quality solutions 

than the Atkins and Iyogun (1988) and Iyogun (1991) forward-pass heuristics tested in 

Boctor et al. (2004).  Hence, they were not included in the experiments. 

    

Table 4.1:  Experimental results for CULSP heuristic procedures 

Average Optimality 
Gap* 

Maximum Optimality 
Gap* 

Std. Dev of 
Optimality Gap* 

No. of Optimal 
Solutions* 

 

50% DD† 100% DD† 50% DD† 100% DD† 50% DD† 100% DD† 50% DD† 100% DD† 

Stand-alone heuristics       

FP-E  1.64% 1.21% 14.11% 12.64% 1.90% 1.35% 75 94 

FP-LV  1.76% 1.30% 14.11% 11.52% 2.12% 1.15% 40 30 

FB-SK 0.51% 1.33% 12.43% 12.64% 0.85% 1.65% 257 245 

RG 0.93% 2.97% 16.44% 35.43% 1.89% 6.06% 452 273 

TP 0.34% 0.78% 8.20% 9.12% 0.87% 1.18% 457 145 

Metaheuristics       

PM 0.46% 1.28% 6.83% 9.56% 0.69% 1.56% 271 246 

SAM 0.08% 0.33% 3.46% 3.95% 0.27% 0.56% 579 261 
†
  Each cell represents the average results for 800 test problems 

* Optimality gap = (heuristic objective value – optimal objective value)/ optimal objective value 
 

 

The performance of the TP heuristic is better than the FP-E, FP-LV, FB-SK and RG 

stand-alone heuristics based on the average, maximum, and standard deviation of the 

solution optimality gaps and the number of optimal solutions found for the 50% demand 

density.  The FB-SK is the second best performing heuristic.  A t-test† shows that there is 

                                                 
† Ho : µFB_SK – µTP  ≤  0 ; Ha : µFB_SK – µTP  > 0 . Using the averages and standard deviations listed in Table 4.1, 

we compute the value of t' for t-test. t' > t (p-value : 0.001) for both demand densities, hence we reject H0.    
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significant (p-value 0.001) evidence that TP performs better than FB-SK. While the RG 

heuristic found the most optimal solutions, RG solutions exhibit by far the largest standard 

deviation and maximum optimality gaps, especially when demand density is 100%.  This 

highly variable performance makes RG the least suitable for industry application. 

The SAM outperforms all the other procedures finding 840 optimal solutions for the 

1600 test problems.  The average, maximum, and standard deviations of the optimality gaps 

are extremely tight when compared to the other procedures and considering the difficulty of 

the combinatorial problems.  The SAM is particularly effective on the 50% demand density 

problems.   

The SAM improves the average TP optimality gap by 77.7% when DD = 50% and 

by 57.7% when DD = 100%.  The analogous reduction in the FB-SK gaps by the PM is 

9.8% and 3.8%, respectively.  To better understand the relative effectiveness of the SAM 

versus the PM, we initialized the SAM using the FB-SK solution and initialized PM using 

the TP heuristic, and then ran both metaheuristics to evaluate the improvement in the initial 

solutions.  The SAM improves upon the FB-SK initial solution on average by 72%, while 

PM only improves the initial TP solution by 40%.  These results indicate the superiority of 

the SAM over the PM for this problem class. A t-test‡ also shows that there is significant (p-

value 0.001) evidence that SAM performs better than PM. 

Table 4.2 presents the results by factor and setup cost ratio.  The optimality gap of 

the best performing procedure is given in bold face for each factor setting.  Performance 

tends to improve with an increase in the number of items for the FP-LV, RG, and TP 

heuristics, while the results are mixed for the other procedures.  Increasing the length of the 

planning horizon tends to increase the optimality gaps for the RG, PM and SAM procedures, 

while the TP solution quality improves.  The other procedures' solutions do not reveal a 

discernable pattern.   

The FB-SK and PM procedures show declining solution quality with lower joint 

setup costs and higher setup cost ratios (i.e., lower joint setup costs relative to item setup  

                                                 
‡ Ho : µPM – µSAM  ≤  0 ; Ha : µPM – µSAM  > 0 . Using the averages and standard deviations listed in Table 4.1, 

we compute the value of t' for t-test. t' > t (p-value : 0.001) for both demand densities, hence we reject H0.    
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Table 4.2: Summary of average optimality gaps by experimental factors* 

Experimental 
Factor 

FP-E FP-LV FB-SK RG TP PM SAM 

Items 5 2.79(1.61) 3.52(1.87) 0.62(1.05) 1.11(5.04) 0.60(1.00) 0.42(1.01) 0.12(0.39)

 10 1.69(0.96) 1.55(1.09) 0.56(1.29) 1.24(4.51) 0.54(1.16) 0.55(1.22) 0.10(0.52)

 20 1.24(1.03) 1.17(1.13) 0.35(1.19) 0.90(1.94) 0.18(0.56) 0.35(1.17) 0.07(0.18)

 40 0.84(1.26) 0.79(1.11) 0.51(1.79) 0.47(0.40) 0.04(0.42) 0.51(1.72) 0.02(0.23)

 

Joint Setup  $60 1.15(1.55) 0.99(1.09) 0.75(2.08) 0.04(0.17) 0.04(0.23) 0.75(2.02) 0.02(0.13)

Cost $120 1.47(1.56) 1.32(1.14) 0.77(1.85) 0.11(0.27) 0.09(0.18) 0.76(1.78) 0.03(0.12)

 $480 1.51(0.94) 1.95(1.26) 0.25(1.10) 1.12(4.21) 0.39(0.97) 0.22(1.04) 0.05(0.43)

 $960 2.43(0.81) 2.76(1.71) 0.27(0.29) 2.45(7.23) 0.84(1.75) 0.09(0.28) 0.21(0.63)

 

Periods 6 1.49(0.94) 1.66(1.19) 0.56(1.20) 0.30(0.40) 0.36(0.91) 0.44(0.98) 0.00(0.03)

 12 1.57(1.20) 1.77(1.31) 0.46(1.32) 0.87(2.32) 0.34(0.77) 0.43(1.29) 0.01(0.25)

 18 1.83(1.28) 1.80(1.37) 0.50(1.36) 1.03(3.47) 0.35(0.77) 0.46(1.36) 0.04(0.39)

 24 1.67(1.31) 1.81(1.33) 0.54(1.39) 1.13(4.04) 0.33(0.74) 0.47(1.39) 0.12(0.41)

 48 1.62(1.34) 1.75(1.31) 0.48(1.38) 1.32(4.63) 0.32(0.73) 0.48(1.38) 0.22(0.56)
 

Setup Cost 0.3125 3.83(1.18) 5.55(2.62) 0.76(0.00) 2.25(8.74) 1.28(1.87) 0.07(0.00) 0.36(0.47)
Ratio 0.625 2.49(0.25) 3.37(1.11) 0.11(0.01) 2.32(11.76) 1.17(2.18) 0.05(0.01) 0.16(1.09)

 1.25 1.68(0.32) 1.67(1.22) 0.07(0.02) 2.41(5.78) 0.55(1.29) 0.07(0.02) 0.14(0.32)
 2.5 1.92(1.84) 1.75(1.89) 0.33(1.16) 0.95(0.75) 0.07(0.55) 0.33(1.15) 0.03(0.23)

 5 1.48(1.92) 1.15(1.26) 0.81(2.89) 0.07(0.17) 0.12(0.48) 0.80(2.75) 0.04(0.24)

 10 0.87(1.33) 0.86(0.82) 0.93(2.38) 0.03(0.18) 0.06(0.18) 0.93(2.24) 0.03(0.14)

 20 0.69(1.04) 0.66(0.82) 0.54(1.44) 0.01(0.22) 0.01(0.10) 0.54(1.43) 0.01(0.09)

 40 0.70(1.09) 0.72(0.81) 0.66(1.43) 0.01(0.18) 0.01(0.09) 0.65(1.41) 0.01(0.08)
*Table entries are for DD = 50%(DD= 100%)        



43 

   

costs).  This result is as expected since the FB-SK and PM procedures are anchored on the 

assumptions that every item is setup in each joint replenishment period, which is more 

characteristic of optimal solutions for problems with higher joint setup costs and lower setup 

cost ratios.  These results extend those in Boctor et al. (2004) to fully clarify the limitations 

of FB-based heuristics.  The FP-LV, RG, TP, and SAM exhibit an opposite tendency where 

improved solution quality is associated with lower joint setup costs and higher setup cost 

ratios.  As illustrated in the table, the PM outperforms the SAM at the highest joint setup 

cost setting and the three lowest setup cost ratios where the joint setup costs dominates the 

item setup costs. 

 A final observation from Table 4.2 relates to the relative improvement of the 

metaheuristics on their initial starting solutions.  For the PM, the FB-SK solutions are 

noticeably improved when I = 5, St' = $960, T = 6, and the setup cost ratio = 0.3125.  At all 

other factor settings, the PM provides very little, if any, improvement over the FB-SK 

starting solution.  In contrast, the SAM provides a substantially improved solution at every 

factor level. 

The findings indicate that the forward-pass heuristics (FP-E and FP-LV) are capable 

of finding high quality solutions averaging approximately 1.42% and 1.53% from 

optimality, respectively.  However, the new two-phase heuristic finds solutions with an 

average 0.56% optimality gap, which improves upon the 0.92% optimality gap associated 

with the FB-SK heuristic, the best known procedure in the prior literature.  The Simulated 

Annealing Metaheuristic with a 0.2% optimality gap also improved upon the 0.87% 

optimality gap associated with the Perturbation Metaheuristic reported in earlier research. 

Computational times for all of the stand alone heuristics average less than 0.05 CPU 

seconds.  The SAM averages 0.18 CPU seconds with a maximum of 1.8 CPU seconds.   

Considering that SAM and TP solutions average 0.2% and 0.56% from optimality, they are 

both highly efficient and effective procedures for solving the CULSP.  
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CHAPTER V 

 

FORMULATIONS FOR COORDINATED CAPACITATED LOT-

SIZING PROBLEM (CCLSP) 

 
  

In this chapter we describe six mathematical formulations for the coordinated 

capacitated lot-sizing problem (CCLSP) and evaluate their relative performance in general 

purpose optimization software. The formulations include those proposed by Federgruen et 

al. (FMT, 2004), Robinson and Lawrence (RL 2004), Gao and Robinson (GR 2004) and 

new extensions of GR and BLR1' formulations. The BLR1' refer to most efficient tight 

formulation for the uncapacitated problem in Narayanan and Robinson (2006). 

 

5.1 FMT problem formulation 

Federgruen et al. (2004) extend their network formulation for CULSP (Federgruen et al. 

1994) to represent the capacitated problem. For i = 1, …, I and t = 1, … , T, define, dit, the 

demand for the item i in period t; sit, setup cost for item i in period t; St , joint (family) setup 

cost in period t ; cit, variable per unit order cost for item i in period t; hit, the per unit 

inventory holding cost for item i in period t and Pt, rated capacity for period t. The aggregate 

demand in period t, is represented by Dt, where ∑
=

=
I

i

itt dD
1

. Let 0

tI  be the minimum 

aggregate inventory at the end of period t, such that there exists a feasible replenishment 

schedule for the planning horizon from t+1, …, T.  These values are calculated by recursion 

starting from end period T and moving backwards by using the following definition,  

0

tI  = ( )+

+++ +− 0

11

0

1 ttt IPD  for all t = 1, …, T  with 0

TI  = 0. The decision variables include: 

xit , order size of item i in period t; Iit , ending inventory of item i in period t; Yit = 1 if item i 

is replenished in period t and Zt = 1 if a joint setup occurs in period t. 
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The FMT formulation is as follows, 
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    (5.1) 

Subject to: 

 itititit dxII −+= −1   (i = 1, …, I; t = 1, …, T )  (5.2) 

 ittit YPx ≤    (i = 1, …, I; t = 1, …, T)  (5.3) 

 tt

N

i

it ZPx∑
=

≤
1

   (t = 1, …, T)    (5.4) 

 tit ZY ≤    (i = 1, …, I; t = 1, …, T)  (5.5) 

0

1

t

I

i

it II∑
=

≥    (t = 1, …, T)    (5.6) 

 0,0 ≥≥ itit IX , Yit  = 0 or 1 (i = 1, …, I; t = 1, …, T)  (5.7) 

 Zt = 0 or 1   (t = 1, …, T)    (5.8) 

 

Constraint set (5.2) ensures that the demand is served. Constraint sets (5.3) and (5.5) 

prohibit replenishment unless the setup charges are incurred. Constraint set (5.4) represents 

the capacity constraints and constraint set (5.6) incorporates the aggregate inventory 

condition in the formulation. Constraints (5.7) and (5.8) force decision variables to take on 

feasible solution values. 

 

5.2 RL problem formulation 

Robinson and Lawrence (RL, 2004) extend the Robinson and Gao’s (RG, 1996) 

uncapacitated formulation for the coordinated lot sizing problem. RG formulation for the 

CULSP is a tight fixed-charged arborescent network model which allows backorders. The 

RG formulation exploits the hierarchical linkages among the joint setup, item setup and 

assignment variables to constrain the setup variables to take on a value of 0 or 1 in the 

optimal solution of its LP relaxation. Let i = 1,2, …, I,  t' = 1,2, …, T, and t = 1,2, …, T, 

represent items, replenishment time periods, and demand time periods, respectively.  Define: 
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St', the joint setup cost in time t'; sit', setup cost for item i in period t'; cit' is the variable per 

unit order cost associated with replenishing item i in period t' and ∑
−

=
=

1

''

t

tr irtit hh , the per unit 

inventory holding cost for serving demand for item i in period t from a replenishment order 

in period t'.  The total unit cost for supplying demand for item i in time t from a production 

in period t' is Cit't = cit' + hit't.  The decision variables include: Zt' = 1 if a joint setup occurs in 

period t', and 0 otherwise; Yit' = 1 if item i is replenished in period t', and 0 otherwise; and 

Xit't is the portion of demand for item i in period t that is served from a replenishment order 

in period t'.  The RL’s CCLSP formulation, assuming backorders are not allowed, is:  

tit
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Subject to 

1
1'

' =∑
=

t

t

titX   (i = 1, …, I, t = 1, …, T)   (5.10) 

Yit' ≤ Zt'   (i = 1, …, I, t' = 1, …, T)   (5.11) 

  Xit't ≤ Yit'   (i = 1, …, I, t' = 1, …, T,  t = t', …, T) (5.12) 

  
'

' 1

' t

T

tt

I

i

ittit PdX ≤∑∑
= =

   (t' = 1, …, T)     (5.13) 

  Zt' = 0 or 1  (t' = 1, …, T)     (5.14) 

Yit' = 0 or 1  (i = 1, …, I, t' = 1, …, T)   (5.15) 

0 ≤  Xit't ≤ 1  (i = 1, …, I, t' = 1, …, T, t = t', …, T)  (5.16) 

 

Constraint set (5.10) insures that each item's demand is satisfied in each period.  Constraint 

set (5.11) prevents an item setup from occurring unless there is a joint setup, while 

constraint set (5.12) prohibits replenishment unless the item setup charge is incurred.  

Constraint set (5.13) represents the capacity constraint introduced by Robinson and 

Lawrence (2004). Constraints (5.14), (5.15), and (5.16) force decision variables to take on 

feasible solution values.  The above model is extended to consider backorders by changing 

the summation in constraint (5.10) to consider t' = 1, …, T; and altering the last summation 
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in the objective function to include t' = 1, …, T  and t = 1, …, T; and defining constraint sets 

(5.13) and (5.16) to consider Xit't from t = 1, …, T. 

 

5.3 GR and GR
ext

 problem formulations 

Gao and Robinson (GR 2004), propose replacing constraint set (5.13) with the following 

constraint, 

  
''

' 1
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T
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  (t' = 1, …, T)     (5.13') 

where the binary decision variable Zt', for the joint setup is incorporated into the right-hand 

side of the constraint set. This formulation yields the convex envelop relaxation (E(GR)) as 

shown below, which provide a tighter LP relaxation than RL formulation’s convex envelop 

(E(RL)) .  
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The construction of convex envelop relaxation is based on the results in Denizel et al. 

(1996).  

 

We include an additional inventory constraint similar to constraint set (5.6) in FMT to obtain 

GRext , extension of the tight GR formulation. The aggregate inventory constraint and its 

parameters are as follows, 

0

1' 1 1
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ittit IdX ≥∑∑∑
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    (q = 1, …, T)     (5.17) 
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where 0

qI   is the minimum aggregate inventory at the end of period q , calculated as 0

qI  = 

( )+

+++ +− 0

111 qqq IPD   with 0
TI  = 0 and ∑

=

++ =
I

i

iqq dD
1

11 . Our preliminary analysis shows that 

this constraint reduces the computational requirements for solving the GR formulation using 

general purpose optimization software. 

 

5.4 BLR1'
cap

 and BLR1'
cap-ext

 problem formulations 

BLR1', as proposed by Narayanan and Robinson (2006) for the CULSP, views the problem 

as multiple Wagner and Whitin (1958) problems that are linked by a complicating joint 

setup decision variable. Since BLR1' is shown to be the most efficient formulation for 

solving the uncapacitated problem in general purpose optimization software, we explore its 

application in a capacitated environment.  

Define wiqt as the fraction of all the demand for item i from period t' to period t that 

is served from a replenishment order in period t' and titC ' as the sum of the variable per unit 

order and inventory holding costs for producing item i in period t' and covering its demand 

from period t' through t , where ∑ ∑+=

−

=
+=

t

tq

q

tk iqikittit dhcC
1'

1

''' ))( . The binary decision 

variable Yit' is introduced into the original BLR1' formulation to decouple the item and 

family setup constraints. The capacitated BLR1' formulation (BLR1'cap) is as follows, 
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0 ≤ titw ' ≤  1   (i = 1, …, I, t' = 1, …, T, t = 1, …,T) (5.23) 

'itY  = 0 or 1   (i = 1, …, I, t' = 1, …, T)  (5.24) 

   Zt' = 0 or 1   (t' = 1, …, T)    (5.25) 

 

The unique and most effective modeling feature is the compact structure of 

constraint set (5.19), which insures that all demand is met.  Constraint sets (5.20) and (5.21) 

make sure the appropriate setup costs are incurred when an item is produced.  Constraint set 

(5.22) represents the capacity constraint. Constraints (5.23), (5.24) and (5.25) force decision 

variables to take on feasible solution values. 

Like GRext , we include the aggregate inventory constraint (5.26) as shown below to  

obtain extended version, BLR1'cap-ext. 

 

0

1' 1 1 1'

' q

q

t

T

qt

I

i

t

tr

irtit Idw ≥







∑ ∑ ∑ ∑

= += = +=

   (q = 1, …, T)    (5.26) 

 

We evaluate this as a separate formulation in our experimental design in order to test 

the effectiveness of the additional constraint. 

 

5.5 Experimental design 

The experimental design is similar to Federgruen et al. (2004) and Narayanan and Robinson 

(2006). The base set of problems has I = 10 items and horizon of T = 12 periods. The 

demand, dit, is assumed to be normally distributed and varies by item and time period.  Odd 

numbered items have a mean demand of 50 units and a standard deviation of 20 units; even 

numbered items have a mean demand of 100 units and a standard deviation of 20 units. We 

consider two levels of demand density DD ∈ {0.50, 1.0}, where demand density is the 

fraction of time periods experiencing demand for an individual item. When DD = 0.50 only 

50% of the periods for each item experience demand and mean demand in the normal 

distribution is doubled, so that the average demand over the horizon remains constant 
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irrespective of the demand density. Unit production costs are assumed to be equal to zero, 

inventory holding cost per unit per time period is $1 

 Capacity utilization (CU), defined as the ratio of total demand divided by the total 

available capacity over the planning horizon, is evaluated at four levels where, CU ∈ {0.2, 

0.4, 0.6, 0.8}. The available capacity per time period, Pt', is constant for all t'.  For a 

specified value of CU, the value of Pt'  is calculated by first generating the test problem's 

demand stream, and then solving for ( )CUTdP
I

i

T

t

itt */
1 1

' 

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
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
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= =

.  For each item i, the minor 

setup cost, 'its is indirectly computed by first choosing the "Time Between Orders" (TBO) 

which is given by hdsit '2 , where h is the per unit inventory holding cost and d is the 

average demand for the item over the planning horizon. The TBO-values for the items are 

generated from a uniform distribution on the interval [2, 6]. The joint setup cost, St' is also 

computed from the TBO, hDSt '2 , where D is the average total demand for the family 

over the planning horizon. The joint setup TBO-values are evaluated at three levels, major 

TBO  ∈ {low, medium and high}. The low TBO-values are generated from a uniform 

distribution on the interval [1, 3], when medium the interval is set at [2, 6] and the high TBO 

interval is [5, 10]. Within a test problem St' and 'its are constant across all time periods.  

 We utilize a full factorial design, which results in 24 different combinations of factor 

settings i.e., 2 levels of DD, 4 levels of CU and 3 levels of major TBOs.  For each 

combination of these factors, three test problems are randomly generated.  Each test problem 

is solved using the six different formulations presented in this chapter. The experiments are 

conducted on a personal computer running a Pentium® 4 processor at 1.9 GHz with the 

Windows 2000 Professional operating system, and solved using Xpress-MP version 2005A 

(Xpress Optimizer v16.01.02), a state-of-the art general purpose optimization software. Each 

formulation is solved with a preset time limit of two hours. In the instances that could not be 

solved to optimality within two hours, the MIP gap at termination from Xpress-MP is noted. 

The MIP (end) gap, expressed as a percentage of the incumbent (LB) solution i.e. (best 

integer solution –LB)/LB, serves as a metric towards finding and verifying optimality.  
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5.6 Experimental results 

The results are summarized by demand density in Table 5.1. The metrics used for evaluating 

the performance of the various capacitated formulations are LP gap, which is defined as 

(optimal objective value – objective value of the LP relaxation)/optimal objective value, 

MIP solution time, number of unsolved problems and the average MIP end gap of unsolved 

problems. Each cell in the table represents the average of 36 problems for the corresponding 

demand density. Only the GR formulation solves all the 72 problems to optimality, while 

one problem remains unsolved for BLR1'cap-ext and RL at the end of the two-hour pre-set 

time limit. FMT formulation could not solve 42% (30 out of 72) of the problems to 

optimality. 

 Even though the LP gap of the RL formulation is over 5 times weaker than the GR 

and BLR1'cap formulations, their MIPs solve relatively faster in an optimization software 

except for one outlier. This is because the LP of the RL formulation is much easier to solve 

than others. The effect of aggregate inventory constraint (a surrogate constraint for the MIP 

problem) is evident in BLR1'cap but not in GR formulation. The BLR1'cap-ext solves more 

problems to optimality than its counterpart, BLR1'cap. 

It is worth noting that GR, BLR1'cap and their extensions have equally tight LP 

relaxation, but their MIP solution times are different. GR formulations dominate the 

performance when the demand is lumpy (DD=0.5), and the BLR1'cap formulations dominate 

the performance in non-lumpy demand situations (DD=1.0).  

 Tables 5.2 and 5.3 provide the summary results by experimental factors; these tables 

provide further insight into the relative performance of these formulations with respect to 

CU and major TBOs, which is an indirect measure of joint setup costs. For the FMT 

formulation the LP relaxation becomes progressively tighter as major TBOs increases, 

whereas the exact opposite happens to the arborescent network formulations like RL and 

GR. When the joint setup costs are low (low major TBOs), the coordinated problems are 

generally easier to solve using RL, GR or BLR1'cap formulations.  
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Table 5.1: Summary of CCLSP formulations performance by demand density 

Average LP Gap Average MIP time in 
seconds 

No. of problems 
not solved to 

optimality 
 

Average end 
(MIP) gap of 

unsolved problems  

DD=0.5 DD=0.1 DD=0.5 DD=0.1 DD=0.5 DD=0.1 DD=0.5 DD=0.1 

FMT 55.40% 55.04% 548.04* 6159.31* 2 28 3.25% 8.32% 

RL 14.67% 17.80% 357.73* 102.77 1 0 0.83% - 

GR 3.85% 3.19% 465.98 96.46 0 0 - - 

GRext 3.85% 3.19% 554.28* 90.19 2 0 3.57% - 

BLR1'cap 3.85% 3.19% 1157.35* 44.89 4 0 2.90% - 

BLR1'cap-ext 3.85% 3.19% 553* 49.90 1 0 2.72% - 

* - indicates that one or more problem instances could not be solved to optimality within the pre-set 
time limit of 2 hours. 

 

 All formulations are sensitive to demand lumpiness (DD), the performance of the 

FMT deteriorates when we move from a lumpy to a non-lumpy situation, while the inverse 

happens in the case of other formulations. At DD=1.0, FMT. couldn't solve 28 of the 36 

problems to optimality. 

Expect for one outlier, the MIP solution times of the weaker RL outperforms the 

tighter GR under all experimental settings for DD=0.5. Even in DD=1.0 the MIP solution 

times of RL are very competitive and it does not reflect the vast difference in the LP gap. As 

stated earlier, this counter-intuitive result could be attributed to the relative easiness of LP 

problem of RL formulation. BLR1'cap and BLR1'cap-ext performs better than GR under all 

experimental settings for DD=1.0, the inverse is true for DD=0.5. The impact of the 

aggregate inventory constraint is still not apparent from this detailed summary, in some 

factor settings it aids both GR and BLR1' but the effect is not consistent. 

The effect of CU is also not evident from this result. At lower CU the problems are 

to easier to solve, while at moderate to high CU, interaction effects with joint set-up costs 

sets-in and there is no clear evidence of its impact in performance. FMT is an exception to 

this inference.  
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Table 5.2: Summary results of CCSLP formulations by experimental factors for Demand Density = 0.5 
 

Experimental 
Factors 

Time in seconds 
 

LP Gap 
 

CU Major 
TBO 

FMT 
 

RL 
 

GR 
 

GRext 
 

BLR1'cap 
 

BLR1'cap-ext 
 

FMT RL 
 

GR/GRext/BLR1'cap/ 
BLR1'cap-ext  

Low 2.48 0.29 0.37 0.36 0.51 0.51 87.55% 0.20% 0.20% 
Med 2.39 0.83 1.10 1.15 1.38 1.39 73.96% 1.31% 0.89% 0.2 

High 4.45 4.14 4.84 4.43 5.03 5.64 54.03% 10.06% 6.13% 
           

Low 2.31 0.95 0.74 1.20 1.21 1.14 76.63% 1.09% 0.90% 
Med 3.77 2.94 3.53 5.67 4.71 6.37 56.28% 9.10% 2.14% 0.4 
High 6.19 9.16 10.52 14.94 19.73 16.46 32.68% 24.36% 2.97% 

           
Low 3.42 3.85 4.23 4.36 5.42 6.05 68.17% 3.22% 1.76% 
Med 1226.56 3110.72* 2501.08 1458.79 3487.93* 2807.79 47.27% 18.69% 5.61% 0.6 
High 2721.08* 321.49 648.57 2587.11* 7240.57* 1149.02 28.92% 37.78% 9.01% 

           
Low 13.10 7.36 14.06 9.48 21.80 27.06 61.46% 6.80% 3.18% 
Med 2571.13* 752.38 2304.38 2518.71* 2512.05* 2506.04* 40.35% 23.46% 5.64% 0.8 
High 29.21 78.69 98.36 45.16 587.86 117.20 23.62% 40.02% 7.79% 

           
Average 548.84 357.73 465.98 554.28 1157.35 553.72 54.24% 14.67% 3.85% 

* - indicates that one or more problem instances could not be solved to optimality within the pre-set time limit of 2 hours. 
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Table 5.3: Summary results of CCSLP formulations by experimental factors for Demand Density = 1.0 
 

Experimental 
Factors 

 

Average Time in Seconds 
 

Average LP Gap 

CU 
Major 
TBO 

FMT 
 

RL 
 

GR 
 

GRext 
 

BLR1'cap 
 

BLR1'cap-ext 
 

FMT RL 
 

GR/GRext/BLR1'cap/ 
BLR1'cap-ext  

Low 5064.94* 0.07 0.10 0.10 0.07 0.08 88.09% 0.00% 0.00% 
Med 6.34 2.55 3.08 3.82 1.77 2.08 74.33% 2.27% 1.31% 0.2 

High 5.41 15.01 14.93 19.85 9.19 13.51 54.31% 12.80% 7.32% 
           

Low 7640.47* 12.23 16.35 13.47 8.47 8.78 78.07% 3.49% 1.21% 
Med 7394.77* 34.44 30.87 43.95 21.10 16.79 57.45% 12.81% 1.95% 0.4 
High 6974.41* 108.30 144.45 60.68 39.10 75.23 33.55% 28.35% 2.86% 

           
Low 7604.91* 56.40 49.64 64.27 30.30 35.68 70.01% 7.90% 2.16% 
Med 7780.15* 121.72 120.91 87.77 62.05 69.80 48.50% 25.19% 4.97% 0.6 
High 8012.75* 427.18 413.53 425.19 87.82 99.39 28.78% 44.25% 7.53% 

           
Low 7551.59* 143.06 89.12 104.33 70.75 79.64 64.42% 9.74% 2.33% 
Med 7885.45* 160.78 131.77 124.64 126.00 90.23 41.36% 25.86% 3.02% 0.8 
High 7990.53* 151.49 142.72 134.20 82.07 107.53 21.65% 40.91% 3.58% 

           
Average 6159.31 102.77 96.46 90.19 44.89 49.90 55.04% 17.80% 3.19% 

* - indicates that one or more problem instances could not be solved to optimality within the pre-set time limit of 2 hours.   
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The experimental design reveals that the tight GR formulation is still one of the most 

efficient CCLSP formulation for use in general purpose optimization software. The new 

BLR1'cap and its extensions is another set of tight CCLSP formulations but their 

computational performance is sensitive to the lumpiness of the demand stream. The FMT 

formulation which is used as a benchmark in Federgruen et al. (2004) is a poor choice to use 

in optimization software like Xpress-MP or CPLEX. It should also be noted that even 

though one formulation outperforms the rest in general purpose software, each one has a 

specialized structure which can be exploited to develop customized heuristics or 

optimization approaches. Federgruen et al. (2004) utilizes the network structure in the 

formulation to develop progressive interval heuristics, Robinson and Lawrence (2004) use 

Lagrangian based algorithms to develop specialized heuristics based on their formulation, 

and Gao and Robinson (2004) develop a Lagrangian/dual-ascent based heuristic to solve the 

capacitated problem. The mathematical structure of the new BLR1'cap and BLR1'cap-ext 

formulations are yet to be exploited and provide additional research opportunities. Finally, 

the aggregate inventory constraint is used only in the progressive interval heuristic and the 

effect of this surrogate constraint in the Lagrangian based heuristics is not known. This also 

presents another venue for research in CCSLP.  
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CHAPTER VI 
 

HEURISTICS FOR COORDINATED CAPACITATED LOT-SIZING 

PROBLEM (CCLSP) 

 
 

The CCLSP contains both the joint capacity constraints that complicate solution of 

the MCLSP and the family setup decision variables that complicate the mathematical 

structure of the CULSP.  The resulting mathematical structure is NP-complete.  Several 

optimization based heuristics are proposed for the CCLSP including Lagrangian relaxation 

(Robinson and Lawrence 2004), Lagrangian/dual-ascent (Gao and Robinson 2004) and new 

class of progressive interval heuristics (Federgruen et al. 2004). However the research 

findings highlight the difficulty of finding both good heuristic and optimal solutions for the 

CCLSP problem. The best known procedure is the expanding horizon (EH) progressive 

interval heuristics, but its performance rapidly deteriorates as the size of the problem 

increases. For example, it takes approximately 5.5 hours to solve a 25 item-10 period 

problem, whereas it requires only 30 seconds for a problem with 10 items and 10 periods. 

The current state of the art heuristic performance justifies the development of alternative 

heuristic approaches for this problem.  

 In this research, we move away from the optimization based techniques and consider 

construction and metaheuristic approaches to the problem. The construction heuristics were 

successfully applied to the MCLSP when requirements planning software was at its 

preliminary phase, but as the computing power increased literature has grown towards 

optimization based approaches. Construction heuristics are also proposed for the 

uncapacitated coordinated lot-sizing problem (Fogarty and Barringer 1987, Silver and Kelle 

1988, Atkins and Iyogun 1988, Iyogun 1991 and Federgruen and Tzur 1991). More recently, 

Boctor et al. (2004) developed a metaheuristic for the uncapacitated problem. We have also 

developed and tested two new forward-pass heuristics, a two-phase construction heuristic 

and a simulated annealing metaheuristic for the uncapacitated problem (Chapter IV).  
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 As a part of this research, we extended both the forward-pass and greedy-period 

construction heuristics for the uncapacitated problem to handle capacity constraints.  The 

preliminary results indicate the superiority of the greedy-period approach, which directs our 

efforts in this area.  Recognizing that CCLSP generalizes the ULSP, CLSP, MCLSP, and 

CULSP classes, the research objective is to develop heuristics for the CCLSP that also 

provides high quality solutions at minimal computational effort for all these problem classes. 

We extend the two-phase greedy heuristic to create a six-phase construction heuristic, 

develop a simulated annealing metaheuristic (SAM) based on the six-phase approach for the 

capacitated problem, and then evaluate their performance under a wide range of parameter 

settings. 

 

6.1 Six-phase heuristic  

The six-phase heuristic builds upon the basic concepts of the two-phase greedy heuristic and 

Dogramaci et al.'s (1981) construction heuristic for multi-item capacitated problem, by 

incorporating extensions and refinements necessary to consider the impact of the shared 

family setup on both cost and capacity. The heuristic contains three major subroutines that 

are implemented in six-phases.  The three subroutines are:  

Subroutine I: Cost minimizing left-shift.  This procedure attempts to reduce costs 

by rescheduling production for individual items or the product family into earlier time 

periods (left-shifting) subject to aggregate capacity availability when considering only those 

time periods with a scheduled product family setup (i.e., open time periods). 

Subroutine II: Feasibility seeking left-shift.  The subroutine moves production into 

earlier time periods as necessary to guarantee capacity feasibility in each period, while 

minimizing the increase in cost.  At the conclusion of this subroutine, the problem is 

capacity feasible. 

Subroutine III: Cost minimizing right-shift.  This procedure attempts to reduce 

schedule costs by right-shifting production as late as possible while still maintaining 

capacity feasibility. 

The six-phase heuristic begins by verifying that the problem is "aggregate" capacity 

feasible, i.e., there is sufficient potential capacity to supply all the demand over the planning 
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horizon without backordering.  An initial production schedule is then established with lot-

sizes itit da =  for all i and t, where itd  is the demand of item i in time period t stated in 

capacity units.  Next, the six-phase heuristic is implemented as follows: 

Phase 1.  Run Subroutine I to generate a lower cost production schedule if possible. 

Phase 2.  Run Subroutine II to insure that the production schedule is capacity feasible. 

Phase 3.  Since the schedule changes during Phase 2 may generate new opportunities for 

cost reduction, Phase 2 is followed by another application of Subroutine I.  

Phase 4.  The application of Subroutine I in Phase 3 may destroy individual time period 

capacity feasibility.  Hence, Subroutine II is invoked to guarantee feasibility. 

Phase 5.  Run Subroutine III in an attempt to decrease costs by moving production as late as 

possible in the planning horizon without violating capacity constraints. 

Phase 6.  Run Subroutine I to search for additional potential cost reductions.  However in 

this final phase, only lot-size consolidations that do not violate individual time period 

capacity constraints are permitted.  Hence at the conclusion of this phase, the 

heuristic terminates with a capacity feasible solution.  

 

Subroutine I: Cost minimizing left-shift   

The subroutine begins with a problem that is aggregate capacity feasible, but may violate 

capacity constraints in individual time periods.  A cost reducing procedure iteratively left-

shifts the cost minimizing lot-size(s) of either an individual item or a family of items from 

period t into period t' < t until no further savings are possible.  The procedure only considers 

left-shifting production into open periods (i.e., those with a scheduled family setup).  The 

savings, ),( '
ttCi , for left-shifting item i’s production from period t into '

t  is:  

),()1(),( '

''

'
ttIssYttC iitititi −+−=  for ait > 0 and, 0 otherwise.  

where Yit’  = 1 if an order is scheduled for item i in period '
t , its is the item’s setup cost in 

period t, the inventory carrying cost from period '
t to period t is itii ahttttI )(),( '' −= , hi is 

the unit inventory carrying cost per period for item i and ita  is the current production 

quantity for item i in period t.  The savings associated with re-scheduling the family of items 

from period t into period '
t  is 
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where, Zt’ = 1 if a family setup is scheduled in period '
t  and 0 otherwise, and St is the 

product family setup cost in period t.  

The maximum quantity that can be left-shifted into period t', 'tE , is the unallocated 

capacity in open periods from 1 to t' less the capacity shortage in periods t' +1 to t-1.   

Defining jP  as the rated capacity in period j, the unallocated capacity in open period j is  

∑
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I

i

jijjj ZaPe

1

)(~   

where, je~ > 0 indicates capacity is available and je~ < 0 indicates that the current production 

schedule exceeds the rated capacity of period j.  The capacity shortage in period t' +1 to t-1 

that must be supplied from period t' or earlier is 

 }~...~,...,~~~,~~,~,0{)1,1'( 11'3'2'1'2'1'1' −+++++++ +++++=−+ tttttttt eeeeeeeeMinttG  

 where 0)1,1'( <−+ ttG signals a shortage.  Therefore, the maximum quantity that can be 

left-shifted into period t' is  
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The steps of the subroutine follow. 

 

Steps of Subroutine I: Cost minimizing left-shift 

Step 1.  Compute unallocated capacities.  Compute the unallocated capacity, et, in each 

period t for the current production schedule, where  

∑
=

−=
I

i

ittt aPe

1

, for t = 1, 2 … T 

Step 2. Compute item and family savings. Calculate ),( '
ttCi  and ),( ' ttC  for all i,  t' < t, and 

t for which Et' > 0. Each item lot-size with ),( '
ttCi  > 0 and ait ≤  Et' and each family 

of items with ),( ' ttC  > 0 and ∑
=

≤
I

i

tit Ea
1

' are candidates for left-shifting from period 
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t into period t'.  In addition, a product family cannot be left-shifted from period t if 

removing the capacity violates aggregate capacity feasibility when considering the 

opened production periods.  Specifically, the following must hold  

    0~~
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+==
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2a. Item Saving Adjustment.  It is possible that shifting a production lot-size into period t' 

may violate the period's available capacity.  In this case, some of the production 

quantity must be moved forward into a period(s) earlier than t' causing additional 

inventory holding costs.  The quantity moved forward, ft', is 

ft' = },0{ ' itt aeMin −  

where ita is the quantity being rescheduled from period t to period t'.  The adjusted 

item cost savings is '),'(),'( tii CfttCttAC −= , where 'tCf is the minimum potential 

increase in inventory holding cost (see Appendix B for details).  The adjusted cost 

savings is the maximum potential savings obtained by left-shifting item i into period 

t'.   

2b. Family Saving Adjustment.  Rescheduling a family of items into an earlier time 

period may require two types of capacity related inventory cost adjustments. 

Type 1 Cost Adjustment, CNt.  When rescheduling a family of items from 

period t to t', we eliminate the family setup and thereby the capacity in period 

t.  Part of this capacity, Nt, may have been used to satisfy demand in periods 

greater than time t, which must now be supplied from a period(s) earlier than 

t, thereby increasing inventory holding costs.  Specifically, Nt is expressed as: 

}),1(},~,0{{ TtGeMaxMinN tt +=  

where, }~,0{ teMax is the available capacity in period t that can be used to 

satisfy demand in periods t+1 to T, and ),1( TtG +  is the capacity shortage in 

periods t +1 to T that is currently supplied from production in period t or 

earlier.  Mathematically,  

 }~...~,...,~~~,~~,~,0{),1( 1321211 Tttttttt eeeeeeeeMinTtG +++++=+ +++++++ . 
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Two cases are possible. 

Case 1: ),1( TtGN t +≥ .  In this case, ),1( TtG +  was entirely 

supplied by period t.  The computation of CNt, the minimum possible 

increase in inventory costs, is detailed in Appendix B. 

Case 2: ),1( TtGN t +< .  In this situation, only a part of ),1( TtG + is 

supplied by period t with the remainder tNTtG −+ ),1(  units coming 

from an earlier period(s).  In this case, we first temporarily adjust the 

available capacity as necessary in the open periods from 1 to t-1 to 

account for the quantity tNTtG −+ ),1(  (see Appendix C for details), 

and then compute the cost adjustment, CNt, as described in Appendix 

B. 

Type 2 Cost Adjustment, CFt’.  Left-shifting the product family into period t' 

may exceed the period's capacity.  In this situation, a portion of the 

production must be moved into a period earlier than t' thereby, incurring 

additional inventory holding costs.  The quantity moved forward is 

Ft'  = },0{
1

' ∑
=

−
I

i

itt aeMin . 

The minimum possible increase in inventory holding costs for moving Ft' 

units forward is CFt’ (see Appendix B for calculations). 

The adjusted family cost savings, '),'(),'( tt CFCNttCttAC −−= , is the maximum 

potential savings from left-shifting the product family from period t to t'.   

Step 3.  Left Shift Phase.  If all ),( '
ttACi ≤ 0 and ),'( ttAC ≤ 0, STOP, otherwise select the 

Maximum{ ),( '
ttACi , ),'( ttAC } for all i, t' < t, and t for left-shifting.  If the 

maximum savings calls for left-shifting item i, update the order schedules by setting 

ititit
aaa += ''  and 0=ita .  Otherwise, the maximum saving is associated with left-

shifting a product family, so set ititit
aaa += '' and 0=ita  for all i.  Go to Step 1.  
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Subroutine II: Feasibility seeking left-shift 

Subroutine II left-shifts production earlier in time as necessary to guarantee capacity 

feasibility in each time period while minimizing the increase in the schedule's cost.  

 

Steps of Subroutine II: Feasibility seeking left-shift 

Step 1. Initialize. Set t = T. 

Step 2. Check individual time periods for feasibility. If the production in period t is within 

the capacity limit, i.e., et ≥  0, go to Step 6.  Otherwise, continue. 

Step 3. Insure sufficient capacity is available in earlier opened time periods.  If sufficient 

capacity is available to cover the shortage in time t, |et|, then continue.  Otherwise, 

schedule a family setup in the time period(s) immediately prior to t until sufficient 

capacity is available to cover the shortage. 

Step 4. Compute the marginal cost of rescheduling. For each item i scheduled in period t, 

calculate the cost of producing the item in the immediate preceding open time period 

t'.  The amount rescheduled, rit, is either ita or |et| according to the following two 

cases. 

Case 1. If |et| > ait, then rit = ait.  The marginal cost of rescheduling item i 

from period t to t' is ititititii ssYrhttttMC −−+−= '')1()'(),'(  

Case 2. If |et| ≤  ait, at least |et| units must be transferred for feasibility.  

However, assuming sufficient capacity is available in earlier time periods, the 

entire lot size, ait, could be rescheduled into period t' if it results in lower 

incremental cost.  The value of rit yielding the minimum cost in the following 

equation is rescheduled. 


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Step5.  Left-shift phase.  Select the Minimum { ),'( ttMCi } for all i and t' < t and reschedule 

it's production by setting ititit
raa += ''  

and ititit raa −= .  Next, update the 
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available capacity in periods t' and t by setting ittt ree −= '' and ittt ree += .  If te  < 

0, go to Step 4 otherwise go to Step 6. 

Step 6. Roll back. If t = 1 stop, otherwise set t = t – 1 and go to Step 2. 

 

Subroutine III: Cost minimizing right-shift 

Subroutine III attempts to reduce costs by shifting production as late as possible subject to 

capacity availability.  The procedure begins at time t = T and iteratively works backward.  

For each period t with 0>te , the cost savings associated with shifting earlier production 

into period t from t' is calculated.  The shift resulting in the maximum savings is 

implemented.  The procedure continues shifting production into period t until 0=te  or 

further savings are not possible.  The algorithm then moves to period t -1 and continues.  A 

single item or a product family is candidate for right-shifting.  The maximum quantity of 

item i that can be shifted from period t' to t, 'itv , is the minimum of the unallocated capacity 

in period t, et, and the quantity available to transfer out of period t' as detailed in the 

following equation.   
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The net requirement for item i in time period t’ is ]0)),([(
1'

1

' iq

t

q

iqit dadMax −−∑
−

=

.  The 

procedures for calculating the net requirement for item i from period t’ +1 to t -1 is detailed 

in Appendix A. 

For 'itv > 0, the resulting cost savings is ''' )'(),'( itititititii XsYsttvhttH +−−= , where 

'itX  = 1 if the complete lot-size is shifted and 0, otherwise.  For 'itv = 0, 0),'( =ttH i .  A 

family of items is feasible for right shifting when t

I

i
it ev ≤∑

=1
' with a cost savings 

of ),'(),'(
1

'' ttHZSXSttH
I

i
itttt ∑

=

+−= , where 'tX = 1 if the whole product family is shifted 

from t' to t.  The steps of the subroutine follow.    
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Steps of Subroutine III: Cost minimizing right-shift 

Step 1.    Initialize. Set t = T.  

Step 2. Check for capacity availability. If 0≤te  go to Step 5. 

Step 3.    Identify potential cost saving.  For i = 1, 2, …,I and t' = 1, 2, …, t-1 compute 'itv  

and ),'( ttH i . If t

I

i

it ev ≤∑
=1

' then compute ),'( ttH .  If all 0),'( ≤ttH i and 

0),'( ≤ttH go to Step 5.   

Step 4. Right-shift phase.  Select the Maximum { ),'( ttH i , ),'( ttH } for all i and t' for 

right-shifting into period t.  If the maximum savings is for right-shifting item i, 

update ''' ititit vaa −= , ititit vaa += , ''' ittt vee +=  and 'ittt vee −= .  Otherwise, the 

maximum savings is associated with rescheduling a product family, so set 

''' ititit vaa −=  and ititit vaa +=  for all i,  ∑
=

+=
I

i

ittt vee
1

''' , and ∑
=

−=
I

i

ittt vee
1

' .  If 

0≤te , go to Step 5 otherwise, go to Step 3. 

Step 5.   Roll back.  If t = 1 stop, otherwise set t = t – 1 and go to Step 2.   

 

6.2 Simulated annealing metaheuristic for CCLSP  

The CCLSP metaheuristic extends the simulated annealing metaheuristic (SAM) concepts in 

CULSP to consider limited capacity. The six-phase heuristic provides a feasible starting 

solution. Next we ensure capacity feasibility while generating new neighborhoods. Finally 

we use six-phase heuristic in the neighborhood improvement procedure. During preliminary 

experiments, several values of starting ( oθ : initial temperature) and stopping (φ : number of 

successive iterations without improvement) criterions were tested, with φ = 3T and oθ  = 

1000 providing the best results.  The steps for the CCLSP SAM follow. 

 

Step 1: Initialization.  Set n=0 and oθ = 1000.  Solve the six-phase heuristic to obtain an 

initial problem solution.  Set Ĉ equal to the objective function value of the six-phase 

heuristic solution. Set CB =  Ĉ  and the iteration counter, count = 1.  
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Step 2: Neighborhood generation.  Randomly choose a value of t ε {1, 2, …,T} and attempt 

to change neighborhoods by perturbing the current solution as follows. 

Case 1: If the current solution replenishes any items in period t, reschedule all the 

items in t into the preceding open replenishment period if there is sufficient 

aggregate capacity, otherwise generate another time period t for evaluation. 

Case 2: If the current solution does not have any items scheduled in period t, then 

reschedule the plausible items in the preceding open replenishment period 

into period t.   

Step 3: Neighborhood Improvement. Attempt to improve the perturbed solution generated in 

Case 1 or 2 by applying the six-phase heuristic, while maintaining the status of the 

perturbed joint setup in period t.  The resulting solution provides a new candidate 

solution with an objective function value C'. 

Step 4: Neighborhood search.  Compute the transition probability Pr using equation (4.11). 

Replace the current solution with the candidate solution if the probability Pr is 

greater than or equal to a randomly generated number between [0, 1]; otherwise 

reject the candidate solution.  If Ĉ < CB update the best known solution and set =   CB 

= Ĉ and reset count = 1.  Otherwise, set count = count + 1.  Repeat Steps 2-4 five 

times. 

Step 5: Update cooling temperature:  Set n=n+1. Update the temperature using (4.12).  

Step 6: Termination.  If count ≥  3T or nθ  ≤  1, stop and report the best found solution. 

Otherwise, go to step 2. 

 

6.3 Experimental design and results 

To evaluate the performance of the two heuristics we conducted four different 

computational experiments. They are based on the experimental design of Robinson and 

Lawrence (RL, 2004), Gao and Robinson (GR, 2004), Federgruen et al. (FMT, 2004) and a 

new experimental design to study the effectiveness of the heuristic as a standalone procedure 

for solving a wide range of lot sizing problem classes as described in Chapter II. 
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6.3.1 Experimental design 1: based on RL 

The experimental factors include number of items, capacity utilization and minor (item) 

setup cost. The number of items is taken from the set N ∈ {2, 4, 6, 10, 20, 30, 40} and the 

planning horizon length is set constant at T=12 periods for all the problems generated in this 

design. The item demand is randomly generated from a uniform distribution on the interval 

[50, 150]. If the demand generated for an item at a particular time period is less than 60 

units, it is set to zero representing a zero period demand. In this manner, demand lumpiness 

is incorporated into the problem set. Since it is based on a uniform distribution, on an 

average 90% of the time periods for any item have positive demand.  

 Minor setup costs are set at two levels, sit ∈ {$100, $300}. The major setup costs 

range from $190 to $1920, with large values associated to problems with more items. This 

reduces the effect of minor setup costs on the problem. This approach is similar to the 

experimental design described in Erenguc (1988). The capacity utilization (CU) is tested at 

three levels, CU ∈ {0.05, 0.45, 0.85}. The CU=0.05 represents the uncapacitated problem, 

while CU=0.45 and CU=0.85 represent moderate and high capacity situations. Based on CU 

the available capacity Pt is computed as discussed in Section 5.5. For a particular problem, 

Pt is constant across all time periods. 

 We evaluate the performance of heuristics by considering all possible combinations 

of experimental factors.  Ten random problems are generated for each of these 

combinations, resulting in 420 problems. Each problem is solved by both the six-phase and 

SAM, which are coded in C++.  To obtain optimal problem solutions for performance 

benchmarking, each test problem is also solved with Xpress-MP Version 2005A (Xpress 

Optimizer Version 16.01.02), a state of the art optimization software package, using the GR 

formulation described in Section 5.3.  All problems are solved on a personal computer 

running a Pentium® 4 processor at 1.9 gigahertz.  

 

Experimental Results 

 Tables 6.1, 6.2 and 6.3 summarize the results by capacity utilization and 

experimental factors. Each cell in the table represents the average result of ten random 

problems. Overall SAM finds better solutions than both six-phase and RL heuristics. Six-
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phase performs better than RL in case of moderate and tight capacity situations, while the 

inverse is true for uncapacitated problems. 

At CU=0.05, six-phase and SAM finds solutions with an average optimality gap of 

0.81% and 0.05% respectively, compared to 0.44% of RL, while at CU=0.45, they find 

solutions with a gap of 1.48% and 0.46% compared to 3.91% of RL.  For tightly capacitated 

problem, CU=0.85, RL could not obtain the benchmark solution for problems with more 

than 10 items. They used the weak RL formulation, discussed in Section 5.2, with an older 

version of the IBM OSL to obtain the optimal solutions. Since we use the tight GR 

formulation, we obtain optimal solutions for most of the test problems within the pre-set 

time limit of two hours. In case of problems which could not be solved to optimality, the 

best found integer solution was chosen as the benchmark. It should be noted that these 

unsolved problems had maximum MIP gap of only 0.45%, justifying the use of these 

solutions as a benchmark. At CU = 0.85, the six-phase and SAM finds solutions with an 

average optimality gap of 2.30% and 1.02%, compared to the gap of 4.72% reported by RL. 

 For SAM, the problems with higher minor setup cost ($300) are more difficult to 

solve than with lower setup cost. This corroborates the results in RL and is also true for six-

phase heuristic, except for some uncapacitated instances. The problems also become 

difficult to solve as the CU increases. The impact of the number of items on the optimality 

gap is not clearly evident from this result, but the solution time required in solving increases 

with the number of items (size of the problem). 

The Xpress-MP solution times increases exponentially as the capacity utilization 

increases, requiring more than two hours to obtain and verify optimality in some instances 

when CU=0.85, whereas the solution time of six-phase and SAM are fairly constant. The 

six-phase heuristic requires just milliseconds to solve the problems, while SAM requires an 

average 0.13 seconds to obtain the solutions. In contrast, the heuristic based on Lagrangian 

relaxation is not able to obtain solutions for tightly constrained (CU=0.85) problems with 

more than 10 items within their pre-set time limit of 100 minutes. Neither exact nor average 

comparisons of run-time could be made as these heuristics were solved in different 

machines, nevertheless the efficiency of six-phase and SAM is evident from these results. 

 



 

   

6
8
 

 

Table 6.1: Summary results for the RL experimental design: CU = 0.05 

Average Optimality 
Gap† 

Time for the heuristic 
(sec) Number  of 

Items 
Minor 

setup cost 
Major setup 

cost 
Six-phase‡ SAM‡ Six-phase‡ SAM‡ 

Xpress-MP 

time (sec) ‡ 

2 100 190 1.18% 0.00% 0.00 0.02 0.03 

2 300 190 0.71% 0.00% 0.00 0.02 0.04 

4 100 310 1.33% 0.09% 0.00 0.03 0.07 

4 300 310 1.07% 0.00% 0.00 0.03 0.07 

6 100 360 1.14% 0.00% 0.00 0.04 0.17 

6 300 360 0.23% 0.02% 0.00 0.04 0.19 

10 100 620 0.42% 0.00% 0.00 0.06 0.13 

10 300 620 0.62% 0.01% 0.00 0.07 0.32 

20 100 1120 1.38% 0.00% 0.00 0.14 0.58 

20 300 1120 0.77% 0.21% 0.00 0.14 1.51 

30 100 1520 0.62% 0.00% 0.00 0.24 1.76 

30 300 1520 0.65% 0.17% 0.00 0.23 5.72 

40 100 1920 0.76% 0.00% 0.00 0.31 1.79 

40 300 1920 0.50% 0.14% 0.00 0.35 11.10 

Average   0.81%* 0.05%* 0.00 0.12 1.68 

* Robinson and Lawrence (2004) reported an average gap of 0.44% and they use a different set of random seeds to generate the test 
problems 

† (heuristic objective value – optimal objective value)/ optimal objective value 
‡ Each cell represents the average results for 10 test problems 
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Table 6.2: Summary results for the RL experimental design: CU = 0.45 

Average Optimality 
Gap† 

Time for the heuristic 
(sec) Number  of 

Items 
Minor 

setup cost 
Major setup 

cost 
Six-phase‡ SAM‡ Six-phase‡ SAM‡ 

Xpress-MP 

time (sec) ‡ 

2 100 190 1.56% 0.00% 0.00 0.02 0.33 

2 300 190 2.67% 0.44% 0.00 0.03 0.71 

4 100 310 1.33% 0.00% 0.00 0.03 0.48 

4 300 310 2.06% 0.74% 0.00 0.04 2.92 

6 100 360 0.77% 0.00% 0.00 0.05 0.48 

6 300 360 1.89% 1.11% 0.00 0.06 4.49 

10 100 620 0.64% 0.00% 0.00 0.07 0.40 

10 300 620 1.86% 0.94% 0.00 0.09 8.15 

20 100 1120 1.37% 0.00% 0.00 0.17 1.34 

20 300 1120 1.76% 1.14% 0.00 0.20 30.07 

30 100 1520 0.62% 0.00% 0.00 0.26 2.10 

30 300 1520 2.00% 1.08% 0.01 0.35 51.13 

40 100 1920 0.76% 0.00% 0.00 0.43 3.80 

40 300 1920 1.44% 0.98% 0.02 0.48 67.23 

Average   1.48%* 0.46%* 0.00 0.16 12.40 

* Robinson and Lawrence (2004) reported an average gap of 3.91% and they use a different set of random seeds to generate the test 
problems 

† (heuristic objective value – optimal objective value)/ optimal objective value 
‡ Each cell represents the average results for 10 test problems 
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Table 6.3: Summary results for the RL experimental design: CU = 0.85 

Average Optimality 
Gap† 

Time for the heuristic 
(sec) Number  of 

Items 
Minor 

setup cost 
Major setup 

cost 
Six-phase‡ SAM‡ Six-phase‡ SAM‡ 

Xpress-MP 

time (sec) ‡ 

2 100 190 0.66% 0.27% 0.00 0.02 0.65 

2 300 190 6.09% 1.61% 0.00 0.01 1.00 

4 100 310 0.75% 0.39% 0.00 0.03 2.82 

4 300 310 4.15% 2.60% 0.00 0.02 6.60 

6 100 360 0.72% 0.42% 0.00 0.05 5.25 

6 300 360 4.76% 1.87% 0.00 0.02 28.27 

10 100 620 0.76% 0.28% 0.01 0.08 11.86 

10 300 620 4.08% 2.09% 0.01 0.03 860.11 

20 100 1120 0.23% 0.15% 0.01 0.20 34.62 

20 300 1120 3.78% 1.65% 0.02 0.06 3418.14** 

30 100 1520 0.15% 0.07% 0.03 0.30 134.83 

30 300 1520 2.91% 1.58% 0.03 0.10 6014.60** 

40 100 1920 0.05% 0.05% 0.04 0.50 151.73 

40 300 1920 3.07% 1.25% 0.05 0.15 5508.31** 

Average   2.30%* 1.02%* 0.01 0.11 1155.63 

* Only a portion of this dataset (up to 10 item problems) was solved Robinson and Lawrence (2004) and they reported an average gap of 
4.72% for the solved instances. Different set of random seeds were used to generate the test problems. 

** indicates that one or more problem instances could not be solved to optimality within the pre-set time limit of 2 hours. 
† (heuristic objective value – optimal objective value)/ optimal objective value 
‡ Each cell represents the average results for 10 test problems 
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It is interesting to note the SAM runs slightly faster in tight capacity situations, this 

is directly related to number of feasible neighborhoods it can generate in a problem. In 

tightly capacitated problems, the number of feasible neighborhoods it can generate is far less 

than number of neighborhoods in uncapacitated or moderately capacitated instances.  

 Based on this experimental design, SAM improves the average solution gap of six-

phase heuristic by 66% and is shown to be a better solution approach to the CCLSP than the 

Lagrangian relaxation based heuristic described in Robinson and Lawrence (2004).  

 

6.3.2 Experimental design 2: based on GR 

The experimental design follows Erenguc (1988) and Robinson and Gao (1996) with the 

necessary extensions to consider capacity.  The experimental factors include the number of 

items, planning horizon length, family setup cost, and capacity utilization.  

The number of items is represented at three levels where, I ∈ {10, 20, 40}.  The 

planning horizon length is taken from the set, T ∈ {12, 18, 24}.  In all test problems, 

demand, dit, is assumed to be normally distributed and varies by item and time period.  Odd 

numbered items have a mean demand of 50 units and a standard deviation of 20 units; even 

numbered items have a mean demand of 100 units and a standard deviation of 20 units.  We 

assume demand occurs in 50% of the time periods.  Without loss of generality, unit 

production costs are assumed to be equal to zero and inventory holding cost per unit per 

time period is $1. 

Robinson and Lawrence (2004) find that the ratio of joint/family setup cost to item 

setup costs affect the run-time and quality of the heuristic solution.  To study this factor, we 

draw the product family and item setup costs from normal distributions.  The joint setup 

cost, St', is represented at three different levels where the mean is an element of the set 

{$120, $480, $960} and the standard deviation is $36.  Within a test problem St' is constant 

across all time periods.  Item setup costs, sit' , are drawn from a distribution with a mean = 

$60 and a standard deviation = $18, where sit' varies by item but is constant across all time 

periods for a specific item within a test problem.   The mean setup cost ratio per time period 

ranges from 0.05 to 1.6, where the setup cost ratio is ∑
=

I

i
itt sS

1
'' . 
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Capacity utilization (CU) is evaluated at four levels where, CU ∈ {0.2, 0.4, 0.6, 0.8}.  

The available capacity per time period, Pt', is constant for all t' and is computed as discussed 

in Section 5.5. Since backorders are not permitted in the model, problem data sets must be 

aggregate capacity feasible in each time period.  That is 0
1'

'
11'

' ≥− ∑∑∑
===

j

t

it

I

i

j

t

t dP for all j = 1, 

2, …T.  In a few problem instances with CU ≥  0.8, aggregate capacity violations occur in 

the early time periods.  These violations are remedied by increasing the available capacity in 

the associated time period(s). 

For each combination of experimental factors, ten test problems are randomly 

generated resulting in a total of 1080 solved problems.  Only five problems were generated 

in Gao and Robinson (2004), while we generate ten test problems to mitigate the effect of 

different random seeds. Each problem is solved by the six-phase heuristic, SAM and Xpress-

MP version 2003F (Xpress Optimizer Version 14.24), a state-of-the-art optimization 

software package, using the tight GR formulation (Section 5.3). The study is conducted on a 

personal computer running a Pentium® 4 processor at 1.9 gigahertz. 

 

Experimental results 

The experimental results for the heuristics are encouraging.  The metrics used are average 

optimality gap, defined by (heuristic solution value – optimal solution value)/optimal 

solution value) and heuristic run times. The computer used to run the GR's Lagrangian/dual 

ascent heuristic is a Pentium® 4 at 2.2 gigahertz which is similar to the one used in this 

study. Hence the CPU times for the problem solution are compared.  

 The average optimality gaps of six-phase, SAM and GR heuristic are 0.48%, 0.26% 

and 0.67%. The standard deviation of the optimality gaps for six-phase and SAM are 0.81% 

and 0.53%, with maximum gaps of 7.58% and 6.87% respectively. Six-phase finds optimal 

solutions for 29% of the problems (318 out of 1080), with 77% of the problems (834 out of 

1080) lying below the average gap of GR heuristic. SAM finds optimal solutions for 43% of 

the problems (460 out of 1080), with 87% of the problems (938 out of 1080) lying below the 

average gap of GR heuristic. In comparison, GR finds optimal solutions for at least 47% of 

the problem, but the maximum gap and standard deviations are not reported. GR 
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performance decreases as the capacity constraint becomes tighter, as evident from the higher 

average optimality gaps. 

The computational requirements for the six-phase heuristic average 0.03 CPU 

seconds with a maximum of only 0.328 CPU seconds. SAM requires an average of 0.42 

CPU seconds with a maximum of 2.515 CPU seconds. The GR heuristic requires an average 

of 1.05 CPU seconds; they do not report the maximum solution time. For comparison 

purposes, to find and verify the optimal solution Xpress-MP requires 51.7 CPU seconds on 

average, with a maximum of 9565 CPU seconds (2.65 hours).   

Table 6.4 summarizes the results by experimental factor.  The optimality gap of all 

the heuristics is positively correlated with the product family setup costs, and capacity 

utilization.  SAM and GR results are also positively correlated with the number of time 

periods in the planning horizon. Heuristic performances are negatively correlated with the 

number of items.  The number of items and the capacity utilization have the greatest impact 

on the quality of the heuristic solutions for SAM and GR, while the joint setup cost and 

number of items drives six-phase heuristic performance. SAM's performance is also 

influenced by the number of time periods to a greater extent when compared to other 

heuristics.  

As expected, the computational requirements are positively correlated with the 

number of items and length of the planning horizon for all the heuristics.  The requirements 

remain fairly constant with joint setup and capacity utilization for the six-phase and SAM 

heuristic. Increasing values of CU and joint setup cost tend to require more computational 

time for the GR heuristic, thereby demonstrating the limitations of Lagrangian/dual-ascent 

procedure.  The six-phase heuristic's computational requirements are less than 2% of the 

time required by Xpress-MP to find optimal solutions under all factor level summaries, 

while SAM's requirements are slightly higher than 10% for some factor level summaries.   
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Table 6.4: Summary results for the GR experimental design  

 
Experimental 

Factor 
Average Optimality Gap* Time for the heuristic (sec) Xpress-

MP time 
(sec) 

 Six-phase SAM GR† Six-phase SAM GR†  

I= 10 0.89% 0.49% 1.10% 0.01 0.15 0.67 51.68 

I= 20 0.44% 0.23% 0.34% 0.02 0.32 0.89 90.90 

I= 40 0.12% 0.07% 0.10% 0.06 0.80 0.43 12.55 

        

T =   12 0.46% 0.17% 0.57% 0.01 0.10 0.30 3.77 

T =   18 0.50% 0.29% 0.66% 0.02 0.35 0.86 19.95 

T =   24 0.45% 0.33% 0.77% 0.06 0.81 1.98 131.41 

        

St = 120 0.16% 0.11% 0.33% 0.03 0.42 0.05 2.66 

St = 480 0.41% 0.22% 0.68% 0.03 0.42 0.33 18.72 

St = 960 0.87% 0.46% 0.98% 0.02 0.42 2.76 133.75 

        

CU= 0.2 0.31% 0.04% 0.01% 0.02 0.37 0.03 1.22 

CU= 0.4 0.44% 0.16% 0.25% 0.02 0.42 0.11 4.39 

CU= 0.6 0.51% 0.34% 1.04% 0.04 0.43 1.90 38.37 

CU= 0.8 0.67% 0.51% 1.36% 0.03 0.46 2.15 162.85 

        

Overall 
Average 

0.48% 0.26% 0.67% 0.03 0.42 1.05 51.7 

* Opt. Gap = (heuristic objective value- opt. objective value)/opt. objective value, the bold gaps indicate the 
best performing heuristic for the corresponding experimental factor. 
† GR uses a different random seed to generate the test problems  

 

SAM performs better than six-phase and GR heuristic at almost every level of 

experimental setting (indicated by bold entries in Table 6.4), except at CU = 0.20, where 

GR's Lagrangian / dual ascent is the best performing heuristic. SAM improves on the 

optimality gap of six-phase heuristic by an average of 46% for this experimental design. The 

amount of improvement decreases as CU and length of planning horizon (T) increases, while 

the inverse is true for joint setup cost.  

Table 6.5 provides the average computational results for the ten randomly generated 

test problems associated with each combination of parameter settings.  The majority of the 

lower optimality gaps for SAM are associated with lower CU and to some extent to the 
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lower joint setup cost.  Figure 6.1 indicates a two-way interaction between capacity 

utilization and the number of items.  In general, higher quality solutions are associated with 

a greater numbers of items, with an increasing optimality gap moving to higher levels of 

capacity utilization.  This result is explained by viewing a larger number of items as 

increased granularity, which permits the items to more effectively fit within a capacity 

constrained resource. Similar observations are made by Gao and Robinson (2004).  The 

poorest heuristic performance for both six-phase and SAM is for problems with I = 10 and St 

= $960, while in SAM it is also associated with the highest capacity utilization.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Effect of capacity utilization and number of items on heuristic optimality 

gaps 

 

 

As the number of items increases, the effect of joint setup cost decreases, because 

this cost is shared among the items and its distinct influence on the cost structure diminishes.  
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Table 6.5: Expanded summary results‡ of six-phase and SAM heuristic for the GR experimental design  
 

St = 120 St = 480 St = 960 Experimental 
Factors Average Opt. 

Gap* 
Heuristic time 

(sec) 
Average Opt. 

Gap* 
Heuristic time 

(sec)* 
Average Opt. 

Gap 
Heuristic time 

(sec)* 

T CU I Six-
phase 

SAM Six-
phase 

SAM 

MIP 
time 

(sec)† 

Six-
phase 

SAM Six-
phase 

SAM 

MIP 
time  

(sec)† Six-
phase 

SAM Six-
phase 

SAM 

MIP 
time  

(sec)† 

12 0.2 10 0.07% 0.04% 0.00 0.03 0.09 0.61% 0.00% 0.00 0.03 0.10 0.59% 0.00% 0.00 0.03 0.14 
  20 0.02% 0.02% 0.00 0.07 0.19 0.10% 0.00% 0.00 0.07 0.36 0.93% 0.00% 0.00 0.07 0.32 
  40 0.04% 0.01% 0.01 0.15 0.41 0.12% 0.03% 0.01 0.19 0.55 0.15% 0.03% 0.01 0.15 1.11 
 0.4 10 0.07% 0.00% 0.00 0.04 0.08 0.63% 0.09% 0.00 0.04 1.97 2.35% 0.71% 0.00 0.03 4.37 
  20 0.02% 0.02% 0.00 0.07 0.17 0.10% 0.00% 0.00 0.07 0.34 1.25% 0.43% 0.00 0.08 0.75 
  40 0.04% 0.02% 0.02 0.18 0.40 0.12% 0.01% 0.02 0.17 0.51 0.15% 0.05% 0.01 0.18 1.09 
 0.6 10 0.05% 0.05% 0.00 0.03 0.43 0.41% 0.31% 0.00 0.04 6.00 1.31% 0.50% 0.01 0.04 9.21 
  20 0.02% 0.01% 0.01 0.08 0.17 0.50% 0.13% 0.01 0.11 4.06 0.84% 0.40% 0.00 0.09 11.55 
  40 0.04% 0.01% 0.02 0.20 0.41 0.03% 0.01% 0.01 0.17 0.88 0.36% 0.18% 0.01 0.18 11.34 
 0.8 10 0.61% 0.51% 0.00 0.03 1.73 0.99% 0.55% 0.00 0.03 10.13 2.21% 0.69% 0.00 0.03 13.86 
  20 0.22% 0.10% 0.01 0.09 1.60 0.36% 0.26% 0.01 0.09 5.69 0.83% 0.72% 0.00 0.09 29.79 
  40 0.11% 0.05% 0.01 0.25 2.17 0.08% 0.05% 0.02 0.23 2.48 0.20% 0.11% 0.01 0.19 11.25 
                  

18 0.2 10 0.07% 0.05% 0.00 0.10 0.20 0.80% 0.00% 0.00 0.11 0.35 1.07% 0.08% 0.01 0.12 0.46 
  20 0.09% 0.01% 0.01 0.24 0.44 0.12% 0.03% 0.01 0.21 0.94 0.38% 0.08% 0.01 0.23 2.79 
  40 0.03% 0.02% 0.03 0.60 1.00 0.06% 0.03% 0.04 0.61 1.35 0.18% 0.04% 0.02 0.61 2.68 
 0.4 10 0.12% 0.03% 0.01 0.13 0.21 0.84% 0.25% 0.00 0.14 3.79 1.71% 0.74% 0.00 0.13 13.21 
  20 0.09% 0.02% 0.01 0.22 0.42 0.12% 0.02% 0.01 0.29 1.43 0.54% 0.16% 0.01 0.25 5.95 
  40 0.03% 0.02% 0.04 0.63 0.95 0.06% 0.02% 0.04 0.65 1.25 0.18% 0.01% 0.03 0.76 3.61 
 0.6 10 0.16% 0.02% 0.01 0.15 1.02 1.03% 0.98% 0.01 0.12 21.67 1.53% 1.40% 0.01 0.11 55.40 
  20 0.05% 0.05% 0.03 0.24 0.45 0.66% 0.26% 0.02 0.30 13.39 1.16% 0.77% 0.01 0.22 77.96 
  40 0.03% 0.02% 0.09 0.63 1.06 0.04% 0.04% 0.08 0.60 2.04 0.45% 0.23% 0.08 0.77 32.38 
 0.8 10 1.16% 0.80% 0.01 0.14 7.10 1.32% 1.01% 0.00 0.11 60.72 1.99% 1.62% 0.00 0.10 124.60 
  20 0.34% 0.27% 0.02 0.33 6.63 0.55% 0.42% 0.02 0.27 29.38 0.58% 0.54% 0.01 0.22 182.68 
  40 0.20% 0.17% 0.06 0.78 6.14 0.15% 0.12% 0.06 0.81 8.02 0.17% 0.12% 0.06 0.71 46.50 
                  
‡

Each cell represents the average measure of ten random problems 
* Opt. Gap = (heuristic objective value- opt. objective value)/opt. objective value  
† Time for Xpress-MP to find and verify the optimal solution using the tight GR formulation
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Table 6.5 (continued)  
 

St = 120 St = 480 St = 960 Experimental 
Factors Average Opt. 

Gap* 
Heuristic time 

(sec) 
Average Opt. 

Gap* 
Heuristic time 

(sec) 
Average Opt. 

Gap* 
Heuristic time 

(sec) 

T CU I Six-
phase 

SAM Six-
phase 

SAM 

MIP 
time 

(sec)† 

Six-
phase 

SAM Six-
phase 

SAM 

MIP 
time  

(sec)† Six-
phase 

SAM Six-
phase 

SAM 

MIP 
time  

(sec)† 

24 0.2 10 0.17% 0.07% 0.01 0.30 0.42 0.59% 0.20% 0.01 0.26 0.69 0.79% 0.14% 0.01 0.25 1.09 
  20 0.08% 0.02% 0.03 0.58 0.83 0.24% 0.09% 0.02 0.53 1.70 0.79% 0.02% 0.01 0.65 4.19 
  40 0.02% 0.01% 0.08 1.28 1.92 0.04% 0.04% 0.08 1.24 2.60 0.18% 0.06% 0.04 1.36 6.13 
 0.4 10 0.25% 0.06% 0.01 0.43 0.50 0.62% 0.24% 0.00 0.27 7.30 1.28% 0.80% 0.01 0.29 38.29 
  20 0.08% 0.02% 0.03 0.58 0.87 0.19% 0.06% 0.02 0.61 2.76 0.85% 0.33% 0.02 0.64 17.96 
  40 0.02% 0.01% 0.09 1.47 1.82 0.04% 0.02% 0.10 1.47 2.47 0.18% 0.07% 0.05 1.61 6.06 
 0.6 10 0.13% 0.06% 0.02 0.30 2.06 0.61% 0.51% 0.02 0.29 122.15 2.00% 1.70% 0.02 0.25 304.28 
  20 0.05% 0.04% 0.07 0.60 1.29 0.51% 0.34% 0.05 0.74 31.26 1.37% 0.94% 0.06 0.62 237.25 
  40 0.02% 0.02% 0.24 1.37 1.91 0.02% 0.02% 0.16 1.50 3.61 0.37% 0.23% 0.10 1.75 82.77 
 0.8 10 0.84% 0.68% 0.01 0.31 16.26 1.40% 1.33% 0.01 0.27 241.64 1.52% 1.52% 0.02 0.23 789.06 
  20 0.39% 0.38% 0.04 0.72 21.75 0.50% 0.43% 0.06 0.66 66.91 0.82% 0.80% 0.04 0.58 2508.09 
  40 0.18% 0.16% 0.14 1.90 12.51 0.14% 0.13% 0.16 1.79 13.50 0.19% 0.19% 0.14 1.59 176.78 
                  
‡

Each cell represents the average measure of ten random problems 
* Opt. Gap = (heuristic objective value- opt. objective value)/opt. objective value  
† Time for Xpress-MP to find and verify the optimal solution using the tight GR formulation
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Hence, inventory costs, which are a smaller portion of total schedule costs at higher setup 

cost levels, are the major determinant of algorithm performance. Therefore, scheduling a 

family in a non-optimal time period, results in a lower percent optimality gap for higher 

values of family setup cost. 

Finally, SAM improves the solution of six-phase heuristic at every treatment level 

(108 combinations of experimental factors) and its average gap and solution time is less than 

GR's Lagrangian/dual-ascent heuristic. Therefore based on this experimental design, SAM is 

a better heuristic for CCLSP. 

 

6.3.3 Experimental design 2: based on FMT 

Prior research (Maes and Van Wassenhove, 1988) suggests that problem difficulty is 

impacted by the natural time between orders (TBO). The above experiments consist of 

problems with relatively low TBOs. Hence, to verify the effect of TBO on six-phase and 

SAM, we conduct a fourth study based on the experimental design of Federgruen et al. 

(FMT, 2004).  

The experimental factors in this design include the three levels of capacity 

utilization, CU ∈ {0.5, 0.75, 0.9}, three levels of item TBOs ( hdsit '2 ) and three levels 

of family TBOs ( hDS t '2 ), where d is the average demand for the item and D is the 

average demand for the family over the planning horizon. The item and family TBOs are 

used to generate the respective setup costs, which are constant across all time periods for a 

test problem.  The three levels of the TBOs are {low, medium and high}. The low TBO-

values are generated from a uniform distribution on the interval [1, 3]. The medium TBO-

values are generated from a uniform distribution on the interval [2, 6] and the high item 

TBO-values are generated from a uniform distribution on the interval [5, 10]. The available 

capacity Pt' is computed from the CU as discussed in previous sections. 

 Individual demand values are randomly generated from a normal distribution with 

mean 100 and standard deviation of 10.  The inventory holding cost per unit per period is 

$1.00. The base set of problems in this study has 10 items and 15 periods. A full factorial 

design leads to 27 treatments; we randomly generate five test problems for each combination 
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of factors, resulting in a total of 135 test problems. In previous experimental designs we 

generated ten test problems, while in this test we restrict to five because of its complexity, as 

most problems in this experiment requires more than an hour to obtain optimal solutions. 

Each problem is solved by six-phase, SAM and Xpress-MP version 2003F (Xpress 

Optimizer Version 14.24). Due to the difficulty of obtaining optimal solutions we tested the 

capability of the tight GR and GRext formulations to find and verify optimal solutions for 

this experimental design. The GRext formulation was found to be the most efficient 

formulation for this dataset and hence it is used for benchmarking the performance. 

 

Experimental results 

The average optimality gap of SAM is 2.08%, taking less than 0.10 CPU seconds on average 

to solve test problems. The average optimality gap of six-phase is 9.92%, taking just 0.006 

CPU seconds on average to solve this dataset. The standard deviation of the optimality gap 

for SAM was 1.97%.  Sixty-five percent of the problems (88 out of 135) had gaps less than 

the average optimality gap of SAM. In comparison, the Expanding horizon (EH) heuristic of 

Federgruen et al. (2004) has an average gap of 1.2% and requires 16.6 CPU seconds on an 

average. Analogous time for the MIP software (Xpress-MP) to find and verify an optimal 

solution is 4251.45 CPU seconds. In the optimization software the problems were 

terminated after 2 hours of run time and the best integer solution obtained is used for 

calculating the optimality gap. Of the unsolved problems only 18 of the 135 had a MIP gap 

of more than 1% and the average MIP gap was 0.87%.  

 The EH heuristic of Federgruen et al. (2004) performs better than six-phase and 

SAM for the CCLSP in terms of optimality gaps for this set of small test problems. However 

the solution time increases significantly with the problem size, rendering the EH procedure 

ineffective for interesting sized problems. For instance, a 25 item-10 period problem, with 

CU of 0.75, medium item and family TBOs, requires a run time of 20,335 CPU seconds or 

5.65 hours (Table 3 in Federgruen et al. 2004). In contrast, the same EH heuristic requires 

180 seconds for a problem with 10 items and 25 periods. EH procedure does not provide a 

feasible approach for solving large sized problems commonly encountered in industry. On 

the other hand, SAM and the six-phase heuristic handle large problems within a reasonable 
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amount of CPU time and with no degradation in heuristic performance. For example, SAM 

requires just three seconds to solve a problem with 40 items and 24 time periods (Section 

6.3.2 and 6.3.3).  

The computational study in Federgruen et al. (2004) considered a small set of test 

problems because of the computational limitation of EH heuristic and the inability of FMT 

(Section 5.1) to find optimal problem solutions for benchmarking. They run the weak FMT 

formulation for 6 hours to obtain a reasonable benchmark estimate, while we ran our tight 

GRext  formulation for only 2 hours to obtain a better estimate for the same dataset. 

Federgruen et al. (2004) also report the performance of another heuristic called the strict 

partitioning (SP) heuristic. This heuristic is runs much faster than EH, requiring less than 

one CPU second to solve each test problem, but the average optimality gap of SP heuristic is 

14.7%.  

 It is seen that even though SAM has higher average optimality gap than EH, it has its 

unique advantage in terms of computation requirements. To investigate the performance of 

SAM and six-phase we present Tables 6.6 and 6.7, which summarize the result for the two 

heuristics by experimental factors. 

    

 

Table 6.6: Summary results for the FMT experimental design  

Low Medium High 

Major TBO Six-
phase 

SAM 
Xpress

-MP
‡
 

Six-
phase 

SAM 
Xpress

-MP
‡
 

Six-
phase 

SAM 
Xpress

-MP
‡
 

low item TBO† 1.72% 1.18% - 1.09% 0.58% - 0.38% 0.19% - 

CPU time (sec) 0.00 0.14 1938 0.01 0.12 2569 0.01 0.11 3346* 

medium item TBO† 10.09% 2.98% - 5.35% 1.59% - 2.23% 0.63% - 

CPU time (sec) 0.01 0.10 3376 0.00 0.11 3843* 0.01 0.10 4285* 

high item TBO† 29.99% 5.71% - 20.81% 3.86% - 11.04% 1.97% - 

CPU time (sec)‡ 0.00 0.07 5983* 0.01 0.08 6012* 0.01 0.07 6914* 

† - Each cell in the row represents Average Optimality gap ((heuristic objective value- optimal objective 
value)/optimality objective value) of five test problems 
‡ - Optimal or Best integer solution obtained from Xpress-MP using GRext formulation  
* - indicates that one or more problem instances could not be solved to optimality within the pre-set time limit 
of 2 hours, the average MIP gap of unsolved problems is 0.82% 
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The results indicate that problems with high item TBOs are relatively more difficult 

to solve with six-phase construction heuristic. These results are consistent with the 

observation made by Maes and Van Wassenhove (1988) that construction heuristics are not 

effective with problems having high item TBO.  The SAM brings the gap of such problems 

down by as much as 80% on average.  

Table 6.7 provides an expanded summary of the results by all three experimental 

factors and it sheds further light into the performance of the construction and metaheuristic 

for this experimental study. 

The results indicate the heuristic's optimality gap is positively correlated with item 

TBO and negatively correlated with family (joint setup) TBO.  The computational 

requirements of Xpress-MP are positively correlated with all three experimental factors. The 

worst case performance for both heuristics occurs at high item TBO levels. At this level the 

effect of family setup is inconsequential and it reduces to a multi-item problem rather than a 

coordinated lot sizing problem. SAM's maximum average optimality gap for a particular 

combination of experimental factors is 6.96%. It occurs at high item TBO, with low family 

TBO and medium capacity utilization, which is strongly reflective of a MCLSP. 

SAM's performance is also affected by capacity utilization. The optimality gap 

increases as we move from low to high CU, the case of low item TBO is an exception to 

this. This effect of CU on metaheuristics is also seen in previous experimental designs and is 

attributed to the ability of generating feasible neighborhoods, which is inversely correlated 

with CU. Still the improvement of the metaheuristic over six-phase is substantial at high CU 

(approx. 52%).
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Table 6.7: Expanded summary results for the FMT experimental design 

† Average Optimality gap for the heuristic = (heuristic objective value- optimal objective value)/optimality objective value 
* - indicates that one or more problem instances could not be solved to optimality within the pre-set time limit of 2 hours 

Capacity utilization (CU) 0.5 0.75 0.90 

TBO Family low medium high low medium high low medium high 

Six-phase 1.83% 1.44% 0.52% 1.99% 0.77% 0.27% 1.34% 1.06% 0.35% Average 
Optimality 

Gap† 
SAM 0.67% 0.48% 0.16% 1.65% 0.68% 0.27% 1.21% 0.58% 0.15% 

Six-phase 0.000 0.000 0.000 0.003 0.006 0.006 0.009 0.009 0.009 

SAM 0.24 0.20 0.20 0.13 0.11 0.10 0.04 0.04 0.03 

Low Item 
TBO 

CPU Time 
(sec) 

Xpress-MP 23 128 613 400 2014 2727 5391* 5564* 6698* 

            

Six-phase 9.64% 5.52% 2.42% 11.59% 5.70% 2.31% 9.04% 4.82% 1.97% Average 
Optimality 

Gap† 
SAM 2.44% 1.44% 0.55% 2.86% 1.49% 0.57% 3.65% 1.85% 0.76% 

Six-phase 0.003 0.003 0.009 0.006 0.009 0.009 0.006 0.003 0.009 

SAM 0.18 0.21 0.19 0.09 0.10 0.09 0.03 0.02 0.02 

Medium 
Item TBO 

CPU Time 
(sec) 

Xpress-MP 
 

246 762 559 2516 3394* 4920* 7366* 7372* 7375* 

            
Six-phase 38.02% 26.95% 14.52% 35.39% 23.31% 11.81% 16.55% 12.17% 6.78% Average 

Optimality 
Gap† 

 

SAM 3.84% 2.05% 1.07% 6.96% 4.48% 2.01% 6.34% 5.06% 2.83% 

Six-phase 0.003 0.000 0.006 0.003 0.006 0.009 0.006 0.006 0.009 

SAM 0.13 0.13 0.13 0.05 0.07 0.07 0.03 0.03 0.02 

High Item 
TBO 

CPU Time 
(sec) 

Xpress-MP 3074* 3163* 5921* 7402*   7489* 7412* 7474* 7383* 7410* 
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6.3.4 Experimental design 4: All classes of dynamic demand lot-sizing problem 

This experimental design also follows that in Erenguc (1988), Robinson and Gao (1996) and 

Gao and Robinson (2004) with the necessary extensions to consider a variety of dynamic 

demand lot-sizing problems.  The test problems consider a wide range of parameter settings 

and are robust enough to permit evaluation of the heuristic's performance on the ULSP, 

CLSP, MULSP, MCLSP, CULSP, and CCLSP classes. The experimental factors include 

different levels of capacity utilization, family setup cost, number of items and planning 

horizon length. 

We assume that demand for each item occurs in 50% of the time periods and 

randomly generate the periods experiencing demand.  Individual demand values are 

randomly generated from a normal distribution with a mean (standard deviation) of 50(20) 

units for odd-numbered items and 100(20) units for even-numbered items.  The inventory 

holding cost per unit per period is $1.00. The number of items is represented at five levels 

where, I ∈ {1, 5, 10, 20, 40} and the planning horizon length is taken from the set T ∈ {12, 

18, 24}. 

Robinson and Lawrence (2004) and Robinson and Gao (1996) indicates that the 

setup cost ratio (family setup cost divided by the sum of the item setup costs) may impact 

the quality of the heuristic solutions. Consequently, we study a variety of setup cost ratios in 

the experiments.  In all test problems, the item setup costs, sit' are drawn from a normal 

distribution with a mean of $60 and a standard deviation of $18.This setup cost varies across 

items, but is constant in all time periods for a specified item and test problem.  The family 

setup cost, S t' which is constant in all time periods for a test problem, is drawn from a 

normal distribution with a mean of {$0, $60, $120, $480 or $960} and a standard deviation 

of $36.  When the mean is S t' = $0.00, the standard deviation is set at $0.00.  This provides 

mean setup cost ratios ranging from 0 to 16. 

Capacity utilization (CU) is considered at seven levels, CU ∈ {0.05, 0.2, 0.4, 0.6, 

0.8, 0.9}.  This covers a range of capacity intensity, where CU = 0.05 approximates an 

uncapacitated environment and CU = 0.9 represents a heavily utilized resource.  The 

resource's capacity per time period, Pt'  is calculated as discussed in Section 5.5.  Backorders 

are not permitted in the model; hence necessary adjustments are made to make the problem 
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aggregate capacity feasible in each period t (details are described in Section 6.3.2.). 

However, this adjustment is small in all cases and does not significantly alter the capacity 

utilization level. 

The experimental design results in 450 combinations of experimental factors.  For 

each factor combination, ten problems are randomly generated resulting in a total of 4500 

test problems.  The problems are solved by both the SAM and six-phase heuristic, which are 

coded in C++.  Each test problem is also solved with Xpress-MP version 2003F (Xpress 

Optimizer Version 14.24), a state of the art optimization software package using the tight 

GR formulation, shown in Section 5.3.  All computations are carried out in a personal 

computer running a Pentium® 4 processor at 1.9 gigahertz. 

 

Experimental results 

The experimental results for the SAM and six-phase heuristics indicate the capability of 

these heuristics as a one-stop solution approach for solving a variety of dynamic-demand 

problem classes.  Table 6.8 provides the summary results for the 4500 test problems where 

the performance metric is the heuristic's optimality gap.  The optimality gap for the SAM is 

0.37%, corresponding to a 37% improvement over six-phase heuristic's optimality gap.  The 

SAM found optimal solutions for 56% (2525 out of 4500) of the test problems versus only 

44% (1980 out of 4500) for the six-phase heuristic.  Seventy-seven percent of the SA 

heuristic solutions have optimality gaps lower than the average optimality gap of 0.37% and 

the standard deviation of the optimality gap is 0.84%.  These results demonstrate that both 

SAM and six-phase are capable of consistently finding exceptionally high quality heuristic 

solutions.   

In addition, the metaheuristic improves upon the quality of the initial solution 

provided by the six-phase heuristic at minimal computational cost.  The computational 

resource requirements for the SAM average only 0.26 CPU seconds with a maximum of 

3.06 CPU seconds.  In contrast, the average requirement to find and verify optimal solutions 

using Xpress-MP's is 281.51 CPU seconds. However, Xpress-MP failed to find and verify 

an optimal solution for six test problems within 24 hours CPU time.  At termination, the 
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optimality gap for these problems averaged 0.15%.  Hence, we utilized the best found 

solutions at that point to evaluate the heuristic's performance.    

 

 

Table 6.8: Summary results for the 4500 test problems by heuristic procedures for 

experimental design 4  

 Six-phase 

heuristic 

SAM 

Average optimality gap 0.59% 0.37% 

Standard deviation of the optimality gap 1.17% 0.84% 

Maximum optimality gap 11.96% 8.56% 

Number of optimal solutions found 1980 2525 

Number of solutions within the 0.37% of optimal 3020 3450 

Average computational time in CPU seconds 0.016  0.260 

Maximum computational time in CPU seconds 0.266 3.060 

 

 

Summary of the results by experimental factors is provided in Table 6.9. As in 

experimental design 2, the optimality gaps of SAM and six-phase heuristics are positively 

correlated with the length of planning horizon and capacity utilization.  With the exception 

of single-item problems, the gaps are negatively correlated with number of items.   

The performance of the six-phase heuristic is positively correlated with family setup-

cost (excluding when the family setup cost is $0.00), while SAM's performance is not 

significantly affected by family setup cost.  The number of items and the capacity utilization 

have the greatest impact on the quality of the solutions found by each heuristic.  

The impact of experimental factors on the run-time of the heuristics is as seen in the 

results of GR experimental design (Section 6.3.2).  The SAM requires on average less than 

10% of the computational resources required by Xpress-MP to find optimal solutions under 

most factor level settings.  However, the SAM requires less than 1% of XpressMP's 

computational requirements for the more difficult problems to solve to optimality.  
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Table 6.9: Summary results by experimental factors for experimental design 4  

Average Optimality 

Gap† 

Time for the heuristic 

(sec) 

Experimental 

Factors 

Six-phase SAM 

Improvement* 

Six-phase SAM 

Xpress-MP 

time (sec) 

I = 1 0.28% 0.02% 92.86% 0.001 0.029 1.01 
I =  5 1.30% 0.88% 32.31% 0.003 0.074 54.96 
I = 10 0.76% 0.51% 32.89% 0.006 0.140 166.56 
I = 20 0.45% 0.32% 28.89% 0.017 0.305 1029.75** 
I = 40 0.17% 0.12% 29.41% 0.053 0.767 155.27 
       
T = 12 0.51% 0.27% 47.06% 0.004 0.059 2.72 
T = 18 0.61% 0.40% 34.43% 0.012 0.208 24.90 
T = 24 0.66% 0.45% 31.82% 0.032 0.522 816.92** 
       
St =   0 0.51% 0.41% 19.61% 0.017 0.271 148.50 
St =   60 0.44% 0.34% 22.73% 0.017 0.267 196.68 
St = 120 0.46% 0.31% 32.61% 0.016 0.265 176.51 
St = 480 0.67% 0.35% 47.76% 0.016 0.259 284.72 
St = 960 0.88% 0.46% 47.73% 0.013 0.252 601.15** 
       
CU= 0.05 0.26% 0.02% 92.31% 0.012 0.245 0.65 
CU= 0.2 0.33% 0.04% 87.88% 0.012 0.253 0.71 
CU= 0.4 0.47% 0.15% 68.09% 0.014 0.268 3.03 
CU= 0.6 0.47% 0.31% 34.04% 0.018 0.282 17.28 
CU= 0.8 0.79% 0.62% 21.52% 0.022 0.314 67.69 
CU= 0.9 1.22% 1.09% 10.66% 0.019 0.217 1599.72** 

†- (heuristic objective value- optimal objective value)/optimality objective value  

*- Improvement of the SAM optimality gap over Six-phase optimality gap 

**-indicates that one or more problem instances could not be solved to optimality within the pre-set time limit 
 

  

 

Table 6.9 also indicates the percent improvement of the SA solution over six-phase 

heuristic solution under all factor level summaries.  Capacity utilization has the greatest 

impact on the effectiveness of the SAM over six-phase heuristic.  The improvement drops 

from 92% to 11% when moving from uncapacitated to tightly capacitated problems.  This 

finding is understood considering that in a tight capacity constrained environment, such as 

CU = 0.9, a setup must occur in almost every time period.  Since the SAM's neighborhood 

transition scheme is based on perturbing the timing of the family replenishment time 

periods, there are not as many potential neighboring state spaces to explore for 
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improvement.  This finding highlights a general performance characteristic of 

metaheuristics, such as SAM, when applied to solve capacitated dynamic-demand lot-sizing 

problems.  However, the metaheuristic's improvement is still substantial even at higher 

capacity utilization levels. 

 The improvement of SAM over six-phase heuristic is not affected by the number of 

items, with the exception of single-item problem.  However, the relative improvement of the 

SAM's solutions increase at higher family setup cost levels.  This also appears related to the 

number of possible neighborhood generation moves, where at higher values of the major 

setup cost there are fewer established family setups and hence more potential opportunities 

to jump to neighboring areas of the feasible region.  The amount of improvement decreases 

as length of planning horizon (T) increases. It also holds true for the GR's experimental 

design.  

 

Table 6.10: Heuristic performance by problem class 

Average Optimality 

Gap† 

Time for the heuristic 

(sec) 
Problem 

Class 
Six-phase SAM 

Improvement* 

Six-phase SAM 

Xpress-MP 

time (sec) 

ULSP 0.32% 0.01% 96.88% 0.001 0.031 0.031 

CLSP 0.28% 0.02% 92.86% 0.001 0.029 1.013 

MULSP 0.19% 0.01%           94.74% 0.008 0.151 0.234 

MCLSP 0.42% 0.24% 42.86% 0.010 0.163 83.053 

CULSP 0.26% 0.02% 92.31% 0.012 0.245 0.645 

CCLSP 0.59% 0.37% 37.29% 0.016 0.263 281.512 

 †- (heuristic objective value- optimal objective value)/optimality objective value  

 *- Improvement of the SAM optimality gap over Six-phase optimality gap 

 

 

Table 6.10 breaks the experimental results out by problem class.  The six-phase 

heuristic finds high quality solution across all problem classes in less than 0.01 CPU 

seconds. But SAM still improves the optimality gap of the six-phase heuristic significantly, 

ranging from a 37.29% to a 96.88% improvement.  As expected the largest percentage 
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improvements are associated with the uncapacitated problem classes.  The results indicate 

that SAM effectively and efficiently solves the most commonly encountered dynamic-

demand lot-size problems.  Its optimality gaps range from 0.01% to 0.37% across the 

problem classes.   

The consistent high quality solutions across problem classes and the low 

computational requirements for obtaining them make these heuristics ideal candidates for 

industrial application within requirements planning systems.  

 

6.4 Summary 

The four computational experiments show that the six-phase heuristic performs better than 

the Lagrangian relaxation based heuristics (Robinson and Lawrence, 2004 and Gao and 

Robinson, 2004) for the capacitated coordinated lot-sizing problem, but its performance 

drops significantly as the item TBO level increases. On the other hand, the simulated 

annealing metaheuristic (SAM) not only improves the six-phase heuristic's performance but 

also provides a good estimate of the optimality gap at higher levels of TBO. The EH 

heuristic of Federgruen et al. (2004) provides the best known optimality gap for the capacity 

constrained coordinated problem but it is not practical to implement  in a supply chain 

planning system, as the computational requirements of this heuristic is highly sensitive to 

the problem size. In contrast, SAM's CPU requirements are relatively invariant the problem 

size. We also tested the SAM on one of nation's leading direct (catalogue based) marketers 

dataset of 239 items and 26 periods and were able to obtain results in less than 14 seconds. 

These results strongly suggest the potential application of SAM as a highly efficient and 

effective solver in logistics, operations, and supply chain planning software. 
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CHAPTER VII 

 

EVALUATION OF COORDINATED LOT SIZING HEURISTICS 

UNDER ROLLING HORIZON  

 
  

Our experimental design is derived from both the MPS rolling schedule and the 

coordinated lot-sizing literature, as there is no published research for this class of problem in 

the rolling horizon literature. The environmental factors are based on Robinson et al. (2006) 

and Federgruen et al. (2004) while the MPS design parameters are based on Zhao et al. 

(2001) and the performance metrics are based on the study by Sridharan et al. (1988) and 

Sahin et al. (2004). In this study, we also introduce additional improvements to the 

experimental factors and performance metrics.  

 

7.1 Experimental design 

The experimental design consists of four basic components; environmental factors, MPS 

design factors, coordinated uncapacitated lot-sizing heuristics and the simulation procedure. 

 

7.1.1 Environmental factors 

Four environmental factors, namely, number of items, major (family) TBO, minor TBO and 

demand lumpiness are considered for this computational study. The number of items is 

taken from the set I ∈ {4, 8, 12}. The demand generation follows Robinson et al. (2006) 

with necessary modifications to suit this computational study. Demand, dit, is generated 

from a normal distribution and varies by item and time period.  The even numbered items 

have a mean demand of 50 units and a standard deviation of 20 units and odd numbered 

items have a mean demand of 100 units and a standard deviation of 20 units. The demand 

density or lumpiness is tested at three levels, DD ∈ {0.50, 0.75, 1.0}. When DD=0.50 only 

50% of the time periods experience demand, similarly at DD=0.75 only 75% of the periods 

experience demand, while the rest of time periods have zero demand. The mean of the 

normal distribution that generates the non-zero portion of the demand stream is adjusted, 
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such that they retain the overall average demand. For example, at DD=0.75, the mean 

demand of normal distribution for odd and even numbered items are increased to 67 and 

133, thereby maintaining the overall average at 50 and 100 units respectively. 

The generation of time between orders (TBO) is based on Maes and Wassenhove 

(1988) and Federgruen et al. (2004). The major TBO ( )hDS t '2  is used to generate the 

joint setup cost St', where D, is the average demand for the product family and h is the 

holding cost per unit per time period, which is set at $1.00. The item setup cost sit' is 

generated from the minor TBO ( )hdsit '2 , where d represents the average demand for the 

item. Each TBO is evaluated at three levels, {low, medium, high}, whose values are taken 

from a uniform distribution on the intervals [1, 3], [2, 6] and [5, 10] respectively.  

 

7.1.2 MPS design factors 

We use two factors, planning horizon length and frozen interval length, to design our MPS 

scheduling policy. The planning horizon length (PH) is set as an integer multiple, K ∈ {2, 4, 

8} of natural order cycle, N, i.e. PH = K*N. The natural order cycle length, N, for the 

coordinated lot-sizing problem is calculated using the expression hDsS
I

i

itt 







+∑

=1

''2  

presented in Ballou (1998). The frozen interval length, n is defined as a portion F of 

planning horizon length, i.e. n = F*PH. It is evaluated at four levels, F∈ {0.25, 0.5, 0.75, 1}. 

We assume re-planning is done at the end of the frozen interval which provides both lower 

schedule cost and stability (Sridharan et al. 1990, Zhao and Lee 1996, Zhao and Lam 1997). 

 

7.1.3 Coordinated uncapacitated lot-sizing heuristics 

The nine lot sizing procedures considered in this computational study are: 

Four Forward pass heuristics 

FP-E:     Forward-pass heuristic using the modified Eisenhut decision criterion  

FP-E-WR: FP-E with the right-shift improvement routine of two phase heuristic 

FP-LV:    Forward-pass heuristic using the modified LV decision criterion 
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FP-LV-WR:    FP-LV with the right-shift improvement routine of two phase 

heuristic 

Three FB based heuristics 

FB:  Fogarty-Barringer heuristic 

FB-SK     Fogarty-Barringer heuristic with the Silver-Kelle procedure 

PM:    Boctor et al.'s perturbation metaheuristic initialized by FB-SK  

Two Two-phase based heuristics 

TP:     Two-phase heuristic 

SAM:     Simulated annealing metaheuristic initialized by TP  

The detailed descriptions of these heuristics are provided in Chapter IV. 

 

7.1.4 Simulation procedure 

We carry out a full factorial design, resulting in 972 combinations of experimental factors, 

which include both environmental and MPS design factors. For each combination we 

generate ten random problems. Each problem is then solved by the nine CULSP heuristics 

listed in Section 7.1.3, resulting in a total of 87,480 data points for analysis. All the 

heuristics were coded in C++ and the simulation study is conducted in a laptop running 

Pentium® M processor at 1.7 GHz. Prior research (Blackburn et al. 1986 and Sridharan et 

al. 1987) show that experimental run length of 300 time periods eliminates both 

initialization and termination effects; in this research we use a run length of 400 time 

periods. Figure 7.1 illustrates the rolling schedule policy for two successive planning cycles.  

 

7.2 Performance metrics 

In order to evaluate the performance of the heuristic with respect to total cost, we use a 

measure called cost error. In Sridharan et al. (1987) the cost error is measured as a 

percentage increase in the total schedule cost over an optimal cost, which was obtained by 

solving the problem over the entire set of demand data for the simulation experiment. 

Simpson (2001) argues that such a benchmark solution looses meaning since none of the lot-

sizing heuristics under rolling schedule environment could reproduce that total schedule 
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cost. Moreover the computational requirements for finding an optimal schedule for 400 time 

period multi-item problem is impractical due to the large problem size. Simpson (2001) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Illustration of MPS parameters for the simulation study involving coordinating 

lot sizing heuristics 

 

 

suggests the use of constrained application of an optimal algorithm, in which the generated 

replenishment orders are not permitted to span a length of time longer than the planning 

horizon. Similarly, we attempted to recursively solve each planning horizon to optimality 

and apply that replenishment schedule policy in rolling schedule to obtain the total schedule 

cost for benchmarking. Unfortunately even such an attempt resulted in extreme 

computational requirements, especially in cases of high item TBOs. Therefore we use a 

relative cost measure to calculate cost error. The cost error for this experiment is calculated 

as [(C1-C2)/C2] *100, where C1 is the total cost of rolling schedule for a heuristic and C2 is 
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the lowest total cost rolling schedule  recorded among the nine CULSP heuristics evaluated 

in this study. 

 Schedule instability is evaluated using three error measures. Type 1 error measures 

system nervousness in terms of number of units rescheduled as a percentage of total number 

of units in all planning cycles. A similar measure was used in Sridharan et al. (1988). As in 

Sahin et al. (2004), we define Type 2 error as a metric that tracks changes in the timing of 

replenishment orders (item setups) as a percentage of the maximum number of orders that 

can be executed over the simulation run. We define a new instability metric, Type 3 error for 

this experiment. Type 3 error tracks changes in the timing of joint (product family) setups as 

a percentage of the maximum number of joint setups that can be executed in a simulation 

run. All three error measures are calculated as follows, 

Type 1 = TQQQ
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where i is the index of item, j is the index of planning cycle, t is the time period, Mj  is the 

starting period of planning cycle j, j

itQ is the replenishment order scheduled for item i in time 

period t during planning cycle j, j

itY  = 1 if an order is scheduled for item i in time t during 

planning cycle j, j

tZ = 1 if a joint setup is scheduled in period t during planning cycle j, TQ 

is the total number of units in all planning cycles, U is the maximum number of item setups 

that can be executed over the simulation run and V  is the maximum number of joint setups 

that can be executed in a simulation run. 

 

7.3 Experimental results 

The experimental results for the 87,480 test problems are discussed in two distinct parts: 

impact on cost error and impact on schedule instability. 
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7.3.1 Impact of experimental factors on cost error performance 

Table 7.1 provides the summary result of 9,720 problems for each CULSP heuristic. The 

results indicate the dominance of perturbation metaheuristic (PM), which has an average gap 

of 0.37%. SAM ranks second with an average gap if 0.67%.  We also see that the right-shift 

routine improves the performance of both forward pass heuristics. Among the stand alone 

construction heuristics, FB-SK performs better than FB and two-phase (TP) heuristic, but 

the performance FB and FB-SK are highly sensitive to demand lumpiness. It is interesting to 

note that the performance of forward pass and FB based heuristic improves with decrease in 

demand lumpiness, i.e. as demand density (DD) increase the cost error decreases, whereas 

the exact opposite happens for TP based heuristics. A similar result was shown for static 

horizon problem in Robinson et al. (2006). 

 The summary results by experimental factors for forward pass, FB and TP based 

heuristics are presented in Tables 7.2, 7.3 and 7.4 respectively. 

 

Forward Pass heuristics 

In forward pass heuristics without the right shift routine, the cost error drops as major TBO 

increases. The major TBO indirectly reflects the joint setup cost, hence the forward pass 

heuristics perform better when this cost is high. This contradicts the findings for forward 

pass heuristics in static horizon (Table 4.2). The same impact of the major TBO is seen in 

forward pass heuristics with right-shift routine, except for non-lumpy demand situation. In 

contrast, the cost errors increase with the minor TBO (item setup cost). This is due to the 

mechanics of forward pass heuristics; whose costs saving maneuvers are myopic in nature 

hence the item setups are inherently dominant over joint setup cost. There is a distinct 

interaction effect between number of items and demand density for forward pass heuristics. 

For most lumpy demand cases the cost error increase with the number of items but it 

decreases with the number of items for non-lumpy demand situation. The cost error of 

forward pass heuristic improves with DD across all experimental factors, expect for lower 

number of items.  
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Table 7.1: Summary results by demand density for the 9,720 problems: cost error 
 

 Average Cost Error Std. dev of Cost Error 
 

Max Cost Error No. of best solutions 

DD 50% 75% 100% 50% 75% 100% 50% 75% 100% 50% 75% 100% 

Forward Pass heuristics 

FP-E 5.03% 4.35% 3.72% 5.15% 5.33% 6.13% 23.74% 28.09% 39.53% 260 326 272 

FP-E-WR 4.00% 2.92% 2.30% 3.61% 3.72% 5.22% 21.18% 28.09% 39.53% 322 425 380 

FP-LV 9.81% 6.24% 3.67% 7.68% 6.43% 4.96% 34.20% 30.63% 32.63% 48 30 116 

FP-LV-WR 9.35% 4.94% 1.99% 6.97% 4.96% 4.18% 32.92% 30.60% 32.60% 48 117 675 

FB based heuristics 

FB 3.49% 0.63% 0.41% 5.21% 0.99% 0.95% 35.86% 7.95% 7.31% 524 991 1668 

FB-SK 2.90% 0.48% 0.36% 4.88% 0.88% 0.87% 31.13% 5.67% 6.27% 892 1429 1940 

PM 0.44% 0.32% 0.36% 0.85% 0.73% 0.87% 5.91% 5.67% 6.26% 1790 2109 2073 

Two phase based heuristics 

TP 1.56% 1.89% 2.15% 0.85% 0.86% 1.00% 5.41% 6.12% 7.72% 132 114 135 

SAM 0.56% 0.70% 0.74% 0.76% 0.77% 0.85% 5.40% 5.67% 6.26% 1167 728 526 
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Table 7.2: Summary results of cost error by experimental factors: Forward pass heuristics 
 
 

Experimental 
Factors 

FP-E FP-E-WR FP-LV FP-LV-WR 

DD 50% 75% 100% 50% 75% 100% 50% 75% 100% 50% 75% 100% 

4 4.11% 3.79% 4.03% 3.69% 3.38% 3.72% 9.07% 5.55% 3.46% 8.90% 5.07% 2.99% 
8 5.39% 4.47% 3.68% 4.21% 2.73% 1.93% 9.82% 6.02% 3.63% 9.29% 4.44% 1.62% Item 

12 5.60% 4.77% 3.43% 4.10% 2.64% 1.25% 10.55% 7.17% 3.91% 9.87% 5.32% 1.37% 
              

Low 8.03% 7.19% 5.62% 5.78% 3.96% 2.26% 12.78% 9.58% 5.60% 11.81% 6.77% 2.10% 
Med 4.17% 3.52% 3.17% 3.37% 2.50% 2.29% 9.56% 5.58% 3.19% 9.18% 4.58% 1.89% 

Major 
TBO 

High 2.89% 2.32% 2.36% 2.85% 2.29% 2.35% 7.10% 3.57% 2.21% 7.08% 3.48% 1.98% 
              

Low 2.69% 2.13% 1.82% 2.64% 1.95% 1.79% 4.18% 2.93% 1.96% 4.17% 2.70% 1.53% 
Med 4.39% 3.95% 3.59% 3.65% 2.78% 2.32% 8.34% 5.61% 3.49% 8.03% 4.57% 1.93% 

Minor 
TBO 

High 8.02% 6.96% 5.73% 5.70% 4.02% 2.79% 16.93% 10.19% 5.55% 15.87% 7.55% 2.52% 
              

2 4.37% 4.32% 4.49% 3.50% 3.07% 3.23% 9.43% 6.66% 4.29% 8.97% 5.40% 2.88% 
4 5.16% 4.32% 3.71% 4.06% 2.81% 2.21% 9.88% 5.86% 3.68% 9.41% 4.50% 1.88% PH 
8 5.56% 4.40% 2.94% 4.43% 2.87% 1.46% 10.14% 6.21% 3.03% 9.69% 4.93% 1.23% 

              
0.25 4.58% 3.44% 2.42% 3.37% 1.69% 0.60% 8.92% 5.19% 2.50% 8.35% 3.47% 0.42% 
0.50 4.36% 3.31% 2.35% 3.25% 1.73% 0.67% 8.68% 5.06% 2.45% 8.18% 3.61% 0.51% 
0.75 4.05% 3.08% 2.28% 3.04% 1.75% 0.95% 8.81% 5.03% 2.36% 8.38% 3.85% 0.81% 

F 

1.00 7.14% 7.54% 7.81% 6.33% 6.49% 6.99% 12.85% 9.69% 7.36% 12.51% 8.84% 6.23% 
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A counterintuitive result is seen for the impact of planning horizon length on cost error 

performance for forward pass heuristics. The traditional result, of longer planning horizon 

length leading to lower schedule cost, is true only for non-lumpy (DD=1.0) demand 

distribution, while there is no significant impact seen in lumpy demand cases.  The impact of 

freezing horizon on cost error is as expected, but the effect is not prominent. 

The right shift subroutine of two-phase heuristic consistently improves the 

performance of the corresponding forward pass heuristic for all experimental factors. 

 

FB based heuristics 

The relative ranking among the FB based heuristics does not change with respect to the 

rolling horizon environment; PM performs better than FB-SK, which in turn performs better 

than FB across all experimental factors. The most important driver of cost error seems to be 

demand density and its interaction with other design factors. PM's cost errors are fairly low 

across all experimental factors, with 0.88% being the maximum average cost error for 

shorter planning horizon at DD=1.0. Low number of items and high lumpy demand pattern 

produces the worst case measure for FB and FB-SK heuristic. PM improves the solution of 

FB-SK by an average of 92% for such cases. The cost error increases with the item and 

family TBOs for FB and FB-SK methods in lumpy demand cases. This is a counterintuitive 

result since FB based procedures are anchored on the assumptions that every item is setup in 

each joint replenishment period, which is more characteristic of optimal solutions for 

problems with higher joint setup costs (higher major TBOs). On the other hand such 

counterintuitive results are not seen in PM and non-lumpy demand cases, where the 

performance is rather invariant across the TBO values. 

 As expected, the longer planning horizon produces the least error measure. In 

contrast, the effect of frozen interval length is unexpected for PM and non-lumpy demand 

cases. In these situations the lowest cost error is obtained for longer frozen intervals. 
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Table 7.3: Summary results of cost error by experimental factors: FB based heuristics 
 
 

Experimental 
Factors 

FB FB-SK PM 

DD 50% 75% 100% 50% 75% 100% 50% 75% 100% 

4 8.60% 0.94% 0.36% 7.72% 0.88% 0.36% 0.55% 0.46% 0.36% 
8 1.09% 0.70% 0.75% 0.65% 0.47% 0.64% 0.48% 0.42% 0.64% Item 

12 0.77% 0.24% 0.11% 0.34% 0.08% 0.08% 0.30% 0.07% 0.08% 
           

Low 2.71% 0.80% 0.48% 1.56% 0.43% 0.36% 0.76% 0.31% 0.35% 
Med 2.78% 0.53% 0.40% 2.39% 0.46% 0.38% 0.36% 0.32% 0.38% 

Major 
TBO 

High 4.98% 0.55% 0.34% 4.75% 0.54% 0.34% 0.20% 0.33% 0.34% 
           

Low 2.63% 0.56% 0.46% 2.59% 0.49% 0.44% 0.28% 0.38% 0.44% 
Med 3.53% 0.72% 0.43% 3.00% 0.53% 0.36% 0.55% 0.36% 0.35% 

Minor 
TBO 

High 4.31% 0.59% 0.33% 3.11% 0.40% 0.29% 0.50% 0.21% 0.28% 
           

2 4.39% 1.22% 1.00% 3.73% 0.98% 0.88% 0.82% 0.76% 0.88% 
4 3.16% 0.40% 0.20% 2.62% 0.31% 0.19% 0.30% 0.16% 0.18% PH 
8 2.91% 0.25% 0.03% 2.36% 0.14% 0.02% 0.21% 0.04% 0.02% 

           
0.25 3.00% 0.67% 0.58% 2.61% 0.54% 0.53% 0.51% 0.42% 0.53% 
0.50 3.08% 0.68% 0.59% 2.67% 0.57% 0.55% 0.52% 0.45% 0.54% 
0.75 3.50% 0.68% 0.40% 2.91% 0.52% 0.36% 0.54% 0.37% 0.35% 

F 

1.00 4.37% 0.47% 0.06% 3.42% 0.27% 0.01% 0.20% 0.03% 0.00% 
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TP based heuristics 

Most of the findings regarding the effect of environmental factors on TP based heuristics in 

static horizon holds true for rolling horizon environment. The cost error metric increases 

with demand density and major TBO (joint setup cost). The only surprising result is the 

effect of the number of items. In static horizon the cost error measure decreases with the 

increase in number of items while such a result is not seen in rolling schedules. 

 The MPS design policy parameters do not affect the performance of TP heuristic 

significantly, but on the other hand a counterintuitive result is seen for the frozen interval 

length in SAM. Lower schedule cost errors are produced for longer frozen intervals. 

 

  

Table 7.4: Summary results of cost error by experimental factors: TP based heuristics 
 
 

Experimental 
Factors 

TP SAM 

DD 50% 75% 100% 50% 75% 100% 

4 1.41% 1.61% 1.74% 0.71% 0.78% 0.61% 
8 1.61% 2.06% 2.48% 0.52% 0.76% 1.00% Item 

12 1.67% 2.00% 2.24% 0.45% 0.56% 0.61% 
        

Low 1.27% 1.46% 1.91% 0.26% 0.41% 0.64% 
Med 1.63% 1.97% 2.25% 0.63% 0.76% 0.77% 

Major 
TBO 

High 1.79% 2.24% 2.30% 0.80% 0.94% 0.81% 
        

Low 1.46% 1.85% 2.13% 0.66% 0.82% 0.82% 
Med 1.47% 1.89% 2.16% 0.58% 0.68% 0.72% 

Minor 
TBO 

High 1.76% 1.93% 2.17% 0.45% 0.60% 0.68% 
        

2 1.52% 1.76% 1.97% 0.60% 0.73% 0.87% 
4 1.55% 1.88% 2.29% 0.28% 0.36% 0.40% PH 
8 1.62% 2.04% 2.20% 0.81% 1.01% 0.95% 

        
0.25 1.67% 2.05% 2.38% 0.64% 0.84% 0.95% 
0.50 1.69% 2.02% 2.29% 0.64% 0.85% 0.93% 
0.75 1.53% 1.84% 2.09% 0.64% 0.74% 0.72% 

F 

1.00 1.35% 1.65% 1.87% 0.33% 0.38% 0.36% 
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 Of all the results, the most important finding is the dominance of PM over SAM 

across all experimental factors in rolling schedule implementation. A t-test§  further shows 

that there is significant (p-value 0.001) evidence that PM performs better than SAM. The 

only setting in which SAM edges PM is at lower joint setup cost, which was seen in static 

horizon experiments (Table 4.2). To verify this result we evaluate the heuristics under a 

different set of experimental factors, and their results are discussed in Section 7.4.  

In order to understand the interaction effects of design factors on cost error metric, 

we analyze the results using the ANOVA procedure. To satisfy the assumptions of ANOVA, 

we apply the transformation of 1/x2 suggested by Yeo and Johnson (2000) on the dependent 

variable (cost error). The two best heuristics, PM and SAM, are considered for this analysis. 

The ANOVA results are presented in Table 7.5. 

As illustrated in Table 7.5, the choice of heuristic followed by MPS design factors 

and number of items emerged as important main effects. The interaction effects such as 

PH*Heuristic, Major TBO*Heuristic, Item*PH, PH*F, DD*Heuristic have the dominant 

impact. Almost all of the 2-way and 3-way interactions were significant, but the F-ratio 

values for most of the interactions are low, indicating little impact on the cost error metric. 

The interesting finding from the ANOVA analysis is that, the performance of SAM and PM 

with respect to schedule cost are greatly affected by MPS design policies rather than 

environmental factors such as setup costs and demand lumpiness. Also the choice of 

heuristic plays a major role in determining the cost of rolling schedules for coordinated lot 

sizing problems, a result seen earlier in our analysis. 

However, some of these ANOVA results might not apply to other procedures like 

forward pass and FB-SK heuristics. For these procedures, Tables 7.2 and 7.3 clearly show 

that the environmental factors such as items, DD and TBOs have greater impact on cost 

error than MPS design policies.  

 

 

                                                 
§ Ho : µSAM – µPM  ≤  0 ; Ha : µSAM – µPM  > 0 . Using the averages and standard deviations ( =SAMy 0.6678, 

Std. dev.SAM= 0.799; =PMy 0.3727, Std. dev.PM= 0.824; sample size = 9720), we compute the value of t' for 

t-test. t' > t (p-value : 0.001), hence we reject H0.    
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Table 7.5: ANOVA results for cost error † 

 
Dependent Variables‡ DF F Sig 

ITEM 2 492.32 0.000 
MAJOR 2 139.03 0.000 
MINOR 2 33.06 0.000 
DD 2 35.83 0.000 
PH 2 548.30 0.000 
F 3 1184.27 0.000 
HEURISTIC 1 6622.68 0.000 
ITEM * MAJOR 4 38.31 0.000 
ITEM * MINOR 4 12.83 0.000 
ITEM * DD 4 13.02 0.000 
ITEM * PH 4 772.79 0.000 
ITEM * F 6 214.80 0.000 
ITEM * HEURISTIC 2 121.90 0.000 
MAJOR * MINOR 4 11.39 0.000 
MAJOR * DD 4 24.64 0.000 
MAJOR * PH 4 43.39 0.000 
MAJOR * F 6 7.35 0.000 
MAJOR * HEURISTIC 2 1222.26 0.000 
MINOR * DD 4 16.54 0.000 
MINOR * PH 4 44.27 0.000 
MINOR * F 6 17.57 0.000 
MINOR * HEURISTIC 2 104.90 0.000 
DD * PH 4 8.24 0.000 
DD * F 6 32.75 0.000 
DD * HEURISTIC 2 370.44 0.000 
PH * F 6 565.67 0.000 
PH * HEURISTIC 2 4052.73 0.000 
F * HEURISTIC 3 5.89 0.001 
ITEM * MAJOR * F 8 34.41 0.000 
ITEM * MINOR * DD 4 56.00 0.000 
ITEM * MINOR * PH 8 16.05 0.000 
ITEM * MINOR * F 8 17.28 0.000 
ITEM * DD * F 8 52.57 0.000 
ITEM * PH * F 4 34.12 0.000 
ITEM * PH * HEURISTIC 12 99.28 0.000 
ITEM * F * HEURISTIC 4 102.67 0.000 
MAJOR * MINOR * F 8 23.57 0.000 
MAJOR * DD * PH 4 52.56 0.000 
MAJOR * PH * F 4 277.13 0.000 
MAJOR * F * HEURISTIC 4 105.62 0.000 
MINOR * PH * F 4 104.81 0.000 
DD * PH * HEURISTIC 12 19.84 0.000 
DD * F * HEURISTIC 4 19.93 0.000 

Adjusted R2 = 0.672, intercept was included in the model 
†
 Based on Yeo and Johnson(2000) suggestions, inverse of square root transformation of cost error 

was considered to satisfy the assumptions of ANOVA.  
 ‡ Heuristics considered are SAM and PM. All 3-way interactions were considered, only partial results 
of the 3-way interaction are presented in the table (with F > 15) 
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Simpson (1999) points out one disadvantage of using a relative cost measure in cost 

error calculation. If all the lot-sizing heuristics included in the study react the same way to a 

particular factor level, then the effect would go unnoticed in the analysis. We know that the 

CULSP heuristics included in our study react differently to environmental factors (Table 

4.2), but we have no such evidence for MPS design policies. This could be the reason for 

some of the unexpected results with respect to planning horizon and frozen interval length. 

Hence there is a need to find a common benchmark, which is computationally reasonable, to 

unambiguously identify the effect of MPS design policies on cost error performance for 

coordinated lot-sizing heuristics. But the relative ranking among the heuristics will not be 

affected by the change in calculation of this metric. 

 

7.3.2 Impact of experimental factors on schedule instability 

Table 7.6 provides the summary results for schedule instability for the CULSP heuristics. 

Each cell in the table represents the average of 3,240 test problems. As expected, the 

forward pass heuristics produces the most stable rolling schedule, followed by forward pass 

procedures with right shift routine. The metaheuristics provide the most unstable schedules, 

especially SAM which has the worst schedule instability performance. An interesting result 

is the value of the Type 3 metric for forward pass heuristics such as FP-E and FP-LV. The 

findings indicate that there are no joint setup reschedules in our entire simulation study for 

these procedures. In some situations, a firm may not have the ability to change a joint setup, 

such as when a truck or vessel is chartered for shipment, but can change the number of units 

loaded in them, in such scenarios forward pass heuristics could be the best procedure to 

adopt for its rolling schedule policies. 

 We consider only Type 1 error measure for the rest of our analysis, since the 

correlation results in Table 7.7 shows it to be a good substitute for Type 2 and 3 instability 

measures. Type 2 has the highest correlation with other error measures, but it was not chosen 

as Type 1 measure has more details and higher range than its counterparts. 

Tables 7.8, 7.9 and 7.10 presents the expanded summary results of schedule 

instability for forward pass, FB and TP based heuristics by experimental factors. 
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Table 7.6: Summary results by demand density for the 9,720 problems: schedule instability 
 
 

 
Type 1 errorA Type 2 errorB Type 3 errorC 

DD 50% 75% 100% 50% 75% 100% 50% 75% 100% 

Forward Pass heuristics        

FP-E 16.89% 18.67% 20.54% 0.70% 0.41% 0.13% 0.00% 0.00% 0.00% 

FP-E-WR 21.25% 27.93% 31.48% 1.53% 2.29% 2.27% 1.02% 2.08% 2.29% 

FP-LV 13.37% 16.81% 19.68% 0.87% 0.51% 0.21% 0.00% 0.00% 0.00% 

FP-LV-WR 15.47% 25.65% 33.50% 1.35% 2.46% 2.87% 0.58% 2.16% 2.82% 

FB based heuristics        

FB 25.26% 26.89% 24.24% 2.66% 3.20% 2.98% 2.58% 3.19% 2.98% 

FB-SK 25.33% 26.56% 24.24% 2.63% 3.09% 2.95% 2.62% 3.12% 2.96% 

PM 26.60% 27.18% 24.68% 2.88% 3.21% 3.02% 2.97% 3.26% 3.04% 

Two phase based heuristics        

TP 23.10% 25.16% 27.43% 2.18% 2.46% 2.71% 2.17% 2.46% 2.71% 

SAM 33.56% 37.81% 40.87% 3.72% 4.47% 5.06% 4.02% 4.60% 5.12% 
A Based on demand/unit change 
 B Based on item/minor setup change 
C  Based on family/joint setup change  
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Table 7.7: Correlation results for schedule instability measures 
 

SI Type 1  Type 2  Type 3  

Type 1 1 0.855* 0.843* 

Type 2  1 0.992* 

Type 3   1 

* Correlation is significant at the 0.01 level (2-tailed), sample size = 87,480 

 

Forward pass heuristics 

The results indicate the dominance of forward pass procedures over its counterparts with 

right shift subroutine in schedule stability. Non-lumpy (or) high density demand stream 

distinctly produce more unstable schedules, this is explained by the presence of increasing 

number of time periods having positive item demand. Schedule stability increases with the 

number of items only for the case of forward pass heuristics with the Eisenhut criterion. The 

major and minor TBOs affect the schedule stability for the forward pass heuristics with the 

right shift subroutine, while it is not true for its predecessors. The stability of rolling 

schedules is positively correlated with joint setups (major TBOs) and is negatively 

correlated with item setups (minor TBOs). 

  As expected, the stability of the rolling schedule increases with the length of frozen 

interval. On the other hand, we see a surprising result for the effect of planning horizon on 

schedule stability. Longer planning horizons produces the most stable schedules for forward 

pass heuristics; this contradicts the findings in literature for multi-item problems. Such an 

effect is not evident across all DD for heuristics with right-shift subroutine.  

 

FB based heuristics 

Among the environmental factors, the number of items has the greatest impact on schedule 

instability. The stability of rolling schedules decreases with an increase in number of items. 

The schedule stability also decreases with an increase in major and minor TBOs, but their  
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Table 7.8: Summary results of schedule instability (Type 1 error) by experimental factors: Forward pass heuristics 
 

 

Experimental 
Factors 

FP-E FP-E-WR FP-LV FP-LV-WR 

DD 50% 75% 100% 50% 75% 100% 50% 75% 100% 50% 75% 100% 

4 18.70% 25.24% 30.78% 19.72% 27.03% 32.26% 16.62% 22.63% 27.02% 17.22% 24.67% 29.84% 
8 17.85% 17.75% 19.85% 22.65% 28.10% 32.73% 12.13% 13.26% 18.86% 14.08% 23.31% 34.36% Item 

12 14.13% 13.03% 10.98% 21.37% 28.65% 29.45% 11.37% 14.55% 13.18% 15.13% 28.96% 36.31% 
              

Low 15.46% 17.59% 19.76% 25.07% 37.43% 43.55% 12.18% 16.08% 19.15% 16.40% 34.08% 44.23% 
Med 17.14% 18.80% 21.07% 20.39% 26.23% 29.93% 13.65% 17.31% 19.78% 15.66% 24.97% 32.77% 

Major 
TBO 

High 18.07% 19.63% 20.77% 18.28% 20.11% 20.97% 14.29% 17.05% 20.12% 14.36% 17.90% 23.51% 
              

Low 16.38% 17.13% 19.35% 16.41% 17.62% 19.46% 13.83% 17.37% 18.54% 13.83% 17.78% 20.23% 
Med 16.96% 18.49% 20.50% 19.23% 25.65% 29.47% 13.72% 17.42% 19.62% 14.52% 23.44% 31.86% 

Minor 
TBO 

High 17.35% 20.40% 21.75% 28.11% 40.51% 45.51% 12.58% 15.66% 20.88% 18.06% 35.72% 48.42% 
              

2 23.86% 25.49% 28.92% 25.32% 26.89% 28.24% 20.84% 27.13% 27.95% 22.60% 29.88% 27.75% 
4 17.27% 19.65% 22.28% 22.28% 31.12% 36.74% 12.77% 14.95% 21.63% 15.19% 24.67% 39.63% PH 
8 9.56% 10.88% 10.41% 16.14% 25.76% 29.46% 6.52% 8.37% 9.46% 8.62% 22.39% 33.13% 

              
0.25 30.64% 33.87% 36.89% 43.89% 62.22% 70.50% 25.79% 30.91% 35.63% 32.00% 57.33% 78.11% 
0.50 22.07% 24.08% 26.04% 25.75% 31.77% 34.88% 16.84% 21.27% 25.07% 18.59% 28.93% 36.25% 
0.75 14.87% 16.73% 19.21% 15.35% 17.71% 20.54% 10.86% 15.08% 18.03% 11.31% 16.33% 19.65% 

F 

1.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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Table 7.9: Summary results of schedule instability (Type 1 error) by experimental factors: FB based heuristics 
 

 
Experimental 

Factors 
FB FB-SK PM 

DD 50% 75% 100% 50% 75% 100% 50% 75% 100% 

4 19.85% 20.14% 18.86% 20.55% 20.10% 18.85% 21.71% 20.25% 18.91% 
8 26.67% 29.15% 25.22% 26.63% 28.74% 25.24% 28.11% 29.90% 26.11% Item 

12 29.27% 31.37% 28.64% 28.82% 30.85% 28.63% 29.97% 31.40% 29.00% 
           

Low 23.53% 25.88% 22.32% 23.66% 25.13% 22.36% 25.67% 26.58% 23.61% 
Med 25.81% 27.02% 23.70% 25.72% 26.76% 23.67% 26.59% 27.29% 23.72% 

Major 
TBO 

High 26.45% 27.76% 26.70% 26.62% 27.80% 26.70% 27.53% 27.68% 26.70% 
           

Low 24.31% 25.70% 22.63% 24.33% 25.53% 22.68% 25.01% 25.75% 22.76% 
Med 25.31% 27.65% 24.21% 25.32% 27.11% 24.24% 26.41% 28.08% 24.89% 

Minor 
TBO 

High 26.17% 27.31% 25.88% 26.35% 27.04% 25.82% 28.36% 27.72% 26.38% 
           

2 15.44% 9.98% 6.06% 15.19% 9.55% 6.16% 11.09% 9.07% 6.16% 
4 31.25% 29.19% 21.55% 31.25% 28.87% 21.50% 32.31% 30.07% 22.45% PH 
8 29.10% 41.50% 45.11% 29.56% 41.27% 45.07% 36.39% 42.41% 45.41% 

           
0.25 64.32% 71.61% 63.56% 65.38% 71.09% 63.64% 71.95% 73.43% 64.99% 
0.50 28.83% 30.24% 28.54% 28.56% 29.66% 28.51% 28.58% 29.99% 28.87% 
0.75 7.90% 5.70% 4.86% 7.39% 5.49% 4.82% 5.86% 5.31% 4.85% 

F 

1.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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effect is not prominent. The results for demand density do not reveal any discernable 

pattern.   

Shorter planning horizons and longer frozen intervals produce more stable schedules 

for all FB based heuristics. Also we see a marked improvement in stability, when the frozen 

interval length is more than 50% of the planning horizon. This supports the results in multi-

item literature (Sridharan et al. 1987). 

 

TP based heuristics 

Table 7.10 presents the expanded summary results of schedule instability for TP based 

heuristics by experimental factors. SAM produces the most unstable schedules for all test 

problems evaluated in this study. As in FB based heuristics, the number of items has the 

greatest impact on schedule stability. The schedule instability is positively correlated with 

all environmental factors, namely the number of items, demand density, major and minor 

TBOs. When compared to the two-phase heuristic, these effects are magnified in SAM.  

 The effects of frozen interval and planning horizon on schedule stability are expected 

with few surprises in the two-phase heuristics. For the most part, shorter planning horizon 

produces more stable schedules than longer ones, but this is not true for every level of PH in 

two-phase heuristic. Like FB based heuristics, we see a substantial improvement in schedule 

stability as the frozen interval approaches the length of planning horizon.  

In order to identify the interaction effects of design factors on schedule stability we 

analyze the results using an ANOVA procedure. For dependent variable (Type 1 error 

measure of schedule instability), we apply the transformation of ln(x+1) suggested by Yeo 

and Johnson (2000) to satisfy the assumptions of ANOVA. PM and SAM are considered for 

this analysis, since they produce the least cost error measures. The ANOVA results are 

given in Table 7.11. 

The major drivers of schedule instability are MPS design factors, such as PH and F, 

number of items and select interaction effects involving MPS design parameters. This shows 

that for heuristics such SAM and PM, the MPS design parameters have the major impact on 

 

 



108 

 

Table 7.10: Summary results of schedule instability (Type 1 error) by experimental factors: 
TP based heuristics 

 
Experimental 

Factors 
TP SAM 

DD 50% 75% 100% 50% 75% 100% 

4 19.17% 19.94% 21.57% 23.94% 24.74% 26.63% 
8 25.30% 27.85% 30.49% 35.38% 40.28% 40.70% Item 

12 24.84% 27.68% 30.23% 41.36% 48.43% 55.26% 
        

Low 21.69% 23.71% 26.38% 30.06% 32.71% 36.28% 
Med 23.13% 25.26% 27.56% 33.48% 37.88% 41.09% 

Major 
TBO 

High 24.48% 26.50% 28.35% 37.14% 42.85% 45.23% 
        

Low 23.07% 25.05% 26.57% 31.51% 35.42% 38.47% 
Med 22.95% 25.27% 27.45% 33.22% 38.38% 40.60% 

Minor 
TBO 

High 23.29% 25.15% 28.25% 35.94% 39.63% 43.53% 
        

2 15.34% 14.17% 13.70% 12.06% 9.51% 6.37% 
4 30.61% 33.69% 36.96% 37.19% 39.20% 37.42% PH 
8 23.36% 27.62% 31.62% 51.43% 64.73% 78.82% 

        
0.25 59.14% 66.24% 72.82% 94.47% 108.78% 119.56% 
0.50 26.14% 27.31% 29.98% 33.14% 36.50% 38.21% 
0.75 7.13% 7.08% 6.90% 6.63% 5.97% 5.69% 

F 

1.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

 
  

 

both cost error and schedule instability.  The number of items is the only main 

environmental factor that affects the metaheuristics on both performance metrics. The rest of 

the environmental factors come to play only in interaction effects. Almost all of the 2-way 

and 3-way interactions are significant, but most of their F-values indicate only marginal 

impact on the variance. Among the interactions, effects involving MPS design parameters 

and number of items such as, PH*F, Item*F, Item*PH, Item*PH*Heuristic provide the 

dominant effect on schedule instability. Even though the analysis was conducted for 

metaheuristics, similar results could be seen for the other CULSP heuristics in Tables 7.7 

and 7.9.  
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Table 7.11: ANOVA results for schedule instability (Type 1 error) † 

 

Dependent Variables‡ DF F Sig 
ITEM 2 9807.58 0.000 
MAJOR 2 13.52 0.000 
MINOR 2 15.09 0.000 
DD 2 620.99 0.000 
PH 2 40433.19 0.000 
F 3 120069.69 0.000 
HEURISTIC 1 630.78 0.000 
ITEM * MAJOR 4 37.23 0.000 
ITEM * MINOR 4 3.86 0.004 
ITEM * DD 4 61.08 0.000 
ITEM * PH 4 3160.70 0.000 
ITEM * F 6 1633.40 0.000 
ITEM * HEURISTIC 2 69.21 0.000 
MAJOR * MINOR 4 1.54 0.188 
MAJOR * DD 4 74.92 0.000 
MAJOR * PH 4 69.68 0.000 
MAJOR * F 6 96.88 0.000 
MAJOR * HEURISTIC 2 2.69 0.068 
MINOR * DD 4 18.70 0.000 
MINOR * PH 4 2.06 0.083 
MINOR * F 6 89.28 0.000 
MINOR * HEURISTIC 2 0.70 0.499 
DD * PH 4 497.55 0.000 
DD * F 6 103.12 0.000 
DD * HEURISTIC 2 17.23 0.000 
PH * F 6 5517.74 0.000 
PH * HEURISTIC 2 161.20 0.000 
F * HEURISTIC 3 156.40 0.000 
ITEM * MAJOR * MINOR 6 31.48 0.000 
ITEM * MAJOR * DD 8 22.91 0.000 
ITEM * MAJOR * F 8 20.14 0.000 
ITEM * MAJOR * HEURISTIC 12 20.05 0.000 
ITEM * DD * F 8 58.48 0.000 
ITEM * DD * HEURISTIC 12 25.59 0.000 
ITEM * PH * HEURISTIC 12 1417.13 0.000 
MAJOR * MINOR * DD 6 15.35 0.000 
MAJOR * MINOR * HEURISTIC 12 19.94 0.000 
MAJOR * DD * F 8 58.07 0.000 
MAJOR * PH * HEURISTIC 12 15.68 0.000 
DD * PH * HEURISTIC 12 118.15 0.000 

Adjusted R2 = 0.966, intercept was included in the model 
†
 Based on Yeo and Johnson(2000) suggestions, ln(x+1) transformation of Type 1 error metric was 

considered to satisfy the assumptions of ANOVA.  
 ‡ Heuristics considered are SAM and PM. All 3-way interactions were considered, only partial results 
of the 3-way interaction are presented in the table (with F > 15) 
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Finally figure 7.2 shows the relative trade-off between cost and instability of rolling 

schedules. FP-LV produces the most stable schedule, but has the worst performance with 

respect to cost error. In contrast, PM, which has the least measure of cost error, is at least 

50% more unstable than FP-LV. Six of the nine CULSP heuristics have more or less same 

level of instability in their rolling schedules. Among them, the perturbation metaheuristic 

stands out as it produces the least cost schedules. SAM which ranks a close second on cost 

error produces the most unstable schedules for rolling horizon problems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2: Cost error (vs) schedule instability 

 

 

An important result of the computational study is that, PM outperforms SAM in 

rolling horizon environment. It is surprising since SAM was the best performing heuristic in 

static horizon (Table 4.2).  To further verify this result we conduct another computational 

study involving these two metaheuristics using a different dataset which has a unique mix of 

all levels of item TBO. 
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7.4 Experimental design: ABC dataset 

The four basic design components; environmental factors, MPS design factors, coordinated 

uncapacitated lot-sizing heuristics and the simulation procedure are described in this section. 

 

7.4.1 Environmental factors 

All test problems have 10 items. The first two items have a low TBO (A-items); the next 

three items 3-5 have a medium TBO (B-items) and the last five items (6-10) have a high 

TBO (C items). The item setup costs, sit', are drawn from a normal distribution with a mean 

of $350 and a standard deviation of $35.  The setup cost varies across items, but is constant 

in all time periods for a specified item within a test problem. The ABC stratification is 

obtained by varying the average demand of the individual items. The average demand for 

the product family per time period is 1000 units. The first two items have an average 

demand of 400 units each, while the next three have an average demand of 50 units and the 

final five have an average demand of 5 units each. As in Robinson et al. (2006) we consider 

two levels of demand density, DD ∈ {0.50, 1.0}. The joint setup costs are obtained from the 

major TBO which is evaluated at three levels, major TBO ∈ {low, medium, high}. Details 

regarding the generation of TBO values are explained in Section 7.1.1.  

 

7.4.2 MPS design factors 

Similar to the previous computational study, we consider three levels of planning horizon 

length, PH ∈ {2, 4, 8} and four levels of frozen interval length, F ∈ {0.25, 0.5, 0.75, 1}. PH 

represents the integer multiples of natural cycle, whose computational details are presented 

in Section 7.1.2, while F represents the portion of planning horizon that is frozen. 

 

7.4.3 Coordinated uncapacitated lot-sizing heuristics 

SAM and PM are considered for this computational study 

 

7.4.4 Simulation procedure 

We utilize a full factorial design, resulting in 72 combinations of experimental factors. For 

each combination, ten test problems are randomly generated.  To avoid initialization and 
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termination effects, each test problem has a run length of 400 time periods. The study is 

conducted on a personal laptop running Pentium® M processor at 1.70Ghz.  

 

7.5 Performance metrics 

We use the cost error and Type 1 schedule instability error measure defined in Section 7.2 

for this analysis. 

 

7.6 Experimental results: ABC dataset 

Table 7.12 summarizes the experimental results for SAM and PM by experimental factors 

and performance metrics. SAM has the least cost solutions for 363 problems, while PM 

finds for 394 problems (out of 720). 

 
 
 

Table 7.12: Summary results by experimental factors for ABC dataset: SAM vs. PM 
 

Experimental 
Factors 

Cost Error Schedule Instability† 

 SAM PM SAM PM 

Overall 
Average 0.36% 0.42% 39.72% 27.40% 
      

Low 0.07% 1.14% 32.40% 29.04% 
Med 0.36% 0.12% 39.42% 26.53% 

Major 
TBO 

High 0.66% 0.02% 47.34% 26.63% 
      

2 0.10% 0.28% 13.00% 13.35% 
4 0.30% 0.45% 45.53% 31.62% PH 
8 0.69% 0.54% 60.63% 37.23% 

      
0.25 0.35% 0.50% 112.48% 73.52% 
0.50 0.38% 0.45% 37.88% 29.37% 
0.75 0.42% 0.40% 8.52% 6.71% 

F 

1.00 0.25% 0.36% 0.00% 0.00% 
      

50% 0.33% 0.50% 30.12% 24.85% 
DD 

100% 0.40% 0.35% 49.32% 29.95% 

  †
Type 1 measure is used 
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For this computational study, SAM performs marginally better than PM in terms of 

schedule cost error, but the impact of the environmental factors on the metaheuristics is 

evident in this result. As in static horizon (Chapter IV), SAM performs better at lower levels 

of the joint setup cost (low major TBOs), while PM performs better at higher cost levels. 

The cost error increases with demand lumpiness for PM, whereas it decreases for SAM.  

The effect of MPS design parameters on cost error contradicts the results in the 

literature. Shorter planning horizon and longer frozen interval length produces the least cost 

error. The use of relative cost measure may explain some of this unexpected result with 

respect to MPS design parameters. (Simpson 1999) 

  Again SAM produces the most unstable rolling schedules. The environmental 

factors have no significant effect on schedule instability for PM, while this is not true for 

SAM, whose instability increases with major TBO and DD. The effect of MPS design 

parameters on schedule instability is as expected; shorter planning horizon and longer frozen 

intervals produce the more stable rolling schedules. 

Based on the two computational studies, PM appears to be a better choice for 

implementation in rolling schedules. SAM outperforms PM only in special cases, but its 

unstable schedules potentially outweigh the benefit we obtain from marginal cost savings. 

Forward pass heuristics such as FP-E and FP-LV could find applications in unique 

situations, where changes in joint setups are discouraged in rolling schedules.  
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CHAPTER VIII 

SUMMARY AND CONCLUSION  
 
  

We developed new efficient mathematical formulations and heuristics for both 

uncapacitated and capacitated variants of the coordinated replenishment problem. 

This research proposed two new formulations (BLR1' and BLR2') for the 

uncapacitated problem and evaluated their computational efficiency along with the tight 

formulation of Robinson and Gao (1996). All three formulations yield equally tight LP 

objective function values. The most efficiently solved formulation for the case with no 

backorders, BLR1', solves problems 8.34 times more efficiently than its associated weak 

formulation BLR1. The RG and BLR2' formulations can efficiently model and solve the 

backorder problem. BLR1' and BLR2' provide new tight formulations for CULSP and invite 

the development of algorithms which exploit their specialized mathematical structures, 

thereby providing an important avenue for future research. 

For the CULSP, we have developed two new forward-pass heuristics, a two phase 

heuristic and a simulated annealing metaheuristic. The findings indicate that the two 

forward-pass heuristics (FP-E and FP-LV) are capable of finding high quality solutions 

averaging approximately 1.42% and 1.53% from optimality, respectively.  However, the 

new two-phase heuristic finds solutions with an average 0.56% optimality gap, which 

improves upon the 0.92% optimality gap associated with the FB-SK heuristic, the best 

known procedure in the prior literature.  The simulated annealing metaheuristic with a 0.2% 

optimality gap also improved upon the 0.87% optimality gap associated with the 

perturbation metaheuristic reported in earlier research. Overall, the two-phase heuristic and 

simulated annealing metaheuristic provides highly efficient and effective procedures for 

solving the combinatorial complex CULSP.    

We developed a new mathematical representation of the capacitated variant of the 

coordinated lot-sizing problem. The new formulation and its extensions provide another set 

of tight CCLSP formulation but its performance is sensitive to the lumpiness of the demand 

stream. We find that the Gao and Robinson (2004) formulation is the most efficient CCLSP 
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formulation for use in general purpose optimization software. Our result also indicates the 

classical formulation found in Federgruen et al. (2004), which is used as a benchmark in 

some capacitated coordinated literature, is a poor choice for use in optimization software 

like Xpress-MP or CPLEX.  

 CCLSP's mathematical complexity, which contains both complicating capacity 

constraints and joint setup costs, has thwarted past research efforts in their attempt to design 

effective heuristic and optimization-based approaches for the problem. In this research we 

develop a computationally efficient six-phase construction heuristic and simulated annealing 

metaheuristic (SAM) for the single-family CCLSP without backorders.  The heuristic 

procedures integrate, synthesize and extend fundamental concepts from the literature for 

solving dynamic demand lot-size problems into a comprehensive algorithm capable of 

solving, in addition to the CCLSP, the ULSP, CLSP, MCLSP and CULSP classes.  Over a 

wide range of parameter values, the six-phase heuristic finds solutions with an average 

optimality gap of 0.92% and in an average of 0.03 CPU seconds. But its performance drops 

significantly with the increase in item TBO.  On the other hand SAM not only improves the 

solution of six-phase by an average of more than 50%, but also finds reasonable optimality 

gaps at high item TBOs. For a set of 6135 test problems, spanning all experimental designs 

in coordinated capacitated literature, the metaheuristic finds solutions with an average 

optimality gap of 0.43% and in an average time of 0.25 CPU seconds. 

The high quality of the heuristic solutions and the computational efficiency of 

finding them, document the potential application of the six-phase heuristic and SAM in 

industrial settings.  Considering that data is seldom 100% accurate in practice, questions the 

validity of investing the extra computational resources required to find optimal solutions 

when high quality heuristic solution can be consistently found in only a fraction of the time.  

We envision these heuristics being applied as a stand alone solver, embedded with 

requirements planning software, and as an upper bounding procedure for complex 

optimization based algorithms. 

We evaluated alternative coordinated lot-size procedures in a rolling schedule 

environment. The simulation study indicates that, the perturbation metaheuristic (PM) is the 

most suitable heuristic for implementation in rolling schedules. SAM, which is the best 
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performing CULSP heuristic in static horizon, outperforms PM only in special cases. SAM's 

unstable schedules outweigh the benefit we obtain from marginal cost savings. Forward pass 

heuristics such as FP-E and FP-LV could find applications in unique situations, where 

product family schedule stability is important. The research also calls for the development of 

tight lower bounds on the lowest possible cost schedule; so that the impact of MPS design 

policies, on the cost of coordinated rolling schedules policy, could be unambiguously 

identified.  As we see in this study, the relative ranking among the uncapacitated heuristics 

change when we move from fixed horizon to rolling schedule environment. Hence this 

research also motivates the evaluation of capacitated coordinated lot-sizing rules in rolling 

schedule environment. 
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APPENDIX A 

SUBROUTINE TO CALCULATE NET REQUIREMENT 

The subroutine calculates the procedure for calculating the net requirement for item i from 

period t' +1 to period t-1. 

 

 

 

 

Calculate Requirement (i, t', t) 
 

Set buffer = 0 and requirement = 0 
For k = t'+1 to t-1  

 If  dik> aik 

  Case1 : buffer < dik - aik 
   requirement = requirement + dik  -  aik – buffer 
   buffer = 0 
  Case 2: buffer > dik - aik 

   buffer = buffer + aik - dik   

 Else 
  buffer = buffer + aik - dik    
 End If 
 k = k -1 
Loop 
Return requirement 

 

 

1 … t'-1 t' t'+1 … t-1 t t+1 … T 
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APPENDIX B 

 

SUBROUTINE TO CALCULATE COST ADJUSTMENT 
 

This procedure calculates the incremental inventory carrying costs, INCR, associated with 

left-shifting quantity LSQ into an earlier time period labeled as TIME.  The procedure 

receives as input for LSQ either ft', Ft' or Nt, and returns as INCR the value Cft', CFt', or CNt, 

respectively.  The procedure assumes the item with the lowest inventory holding cost is 

rescheduled earlier in time hence; the procedure returns the lowest possible incremental 

increase in costs.  

Procedure 

INCR = 0 
While (LSQ > 0) 
 INCR = INCR + min {hi}*LSQ 

If TIMEZ =1 

  If TIMEe  > 0 

   Case 1 : LSQ > TIMEe  

    LSQ = LSQ - TIMEe ; set TIMEe  = 0 

   Case 2 : TIMEe > LSQ 

    TIMEe  = TIMEe  - LSQ; set LSQ = 0 

  Else 

The shortage TIMEe  is accounted for in the immediate open 

period (i.e) Let TIME* be the immediate open period, then set  

TIMETIMETIME eee −= **  and TIMEe = 0 

  End If 
 End If  
 TIME = TIME - 1 
Loop 
Return INCR 

 
Note :  This procedure is called as a subroutine and used as part of the cost calculation 

associated with left-shifting a candidate quantity into earlier time periods.  All calculations 

that alter the value of available capacities, TIMEe , are valid only for the specific item and 

time period being evaluated when the procedure is called.  The original values of TIMEe  are 

restored before computing the cost adjustment for another period or item. 
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APPENDIX C 

MODIFIED SUBROUTINE TO CALCULATE COST ADJUSTMENT 

 

This procedure is similar to the one in Appendix B.  However, the objective is to only 

update the values of TIMEe  and INCR is not calculated.  The procedure receives 

tNTtG −+ ),1(  as input for LSQ.     
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