
ESSAYS IN GAME THEORY AND INSTITUTIONS

A Dissertation

by

BIRENDRA KUMAR RAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2006

Major Subject: Economics



ESSAYS IN GAME THEORY AND INSTITUTIONS

A Dissertation

by

BIRENDRA KUMAR RAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Rajiv Sarin
Committee Members, Timothy J. Gronberg

Manuelita Ureta
R. Dante DeBlassie

Head of Department, Amy J. Glass

August 2006

Major Subject: Economics



iii

ABSTRACT

Essays in Game Theory and Institutions. (August 2006)

Birendra Kumar Rai, B.Tech., Indian Institute of Technology, Bombay

Chair of Advisory Committee: Dr. Rajiv Sarin

This dissertation is a compilation of essays highlighting the usefulness of game

theory in understanding socio-economic phenomena. The second chapter tries to

provide a reason for the strict codes of conduct that have been imposed on unmar-

ried girls in almost every society at some point of time in its history using tools

from classical game theory. If men prefer to marry submissive women, then par-

ents of girls will have an incentive to signal the submissiveness of their daughters

in various ways in order to attract better matches. At the same time, parents will

find it costlier to signal the submissiveness of girls who are not really submissive.

This line of reasoning thus helps us interpret phenomena such as veiling, foot-

binding, and sequestration of women in general as signals of submissiveness.

The third chapter attempts to rationalize some of the ad hoc rules proposed

for dividing a bankrupt estate using tools from evolutionary game theory. The ad

hoc rules differ from each other because of the axioms that are imposed in addition

to efficiency and claims boundedness. Efficiency requires that the estate be com-

pletely divided between the claimants, and claims boundedness requires that no

claimant be awarded more than her initial contribution. This dissertation tries to

show that an ad hoc rule can be rationalized as the unique self-enforcing long run

outcome of Young’s [46] evolutionary bargaining model by using certain intuitive

rules for the Nash demand game.

In the fourth chapter I present a simple model of conflict over inputs in an
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economy with ill-defined property rights. Agents produce output from the land

they hold, which in turn can be allocated to consumption or the production of

guns. There is no agency to enforce rights over the initial land holdings, and the

future holdings of land are determined using a contest success function that de-

pends on the guns produced by both agents. I characterize the equilibria in which

only one, both, and none of the agents produce guns, as a function of the total land

and the inequality of initial land holdings for general forms of utility, production,

cost, and contest success functions.



v

To Amma and Babuji



vi

ACKNOWLEDGMENTS

I would like to thank Rajiv Sarin for providing me the opportunity to pursue

graduate studies in economics. This dissertation would not have been possible

without his constant guidance, and support. I am especially grateful for his im-

mense patience and belief in me. Timothy Gronberg taught me how to think about

economic issues. I believe it is only after several years that I will be able to fully

comprehend the impact he has had on my thought process. John Van Huyck has

been the source of great knowledge, and inspiration and has provided me the vi-

sion for my future work.

Manuelita Ureta has been much more than a teacher. Over the last three years

she has taught me, cared for me, worried for me, and helped me overcome every

obstacle I have faced. Anirban has been a true friend in all my ups and downs.

I owe special thanks to Chad who has made me a better economist and a better

person. Deeku has been double-deeku to me and I can not thank him enough.

Tapas, Ohm, Nadim, and Adarsh have cared for me like their kid brother. Azza has

questioned me, confused me, and in the process re-energized me. It is because of

the love and sacrifices of Binay, Shailendra, Shailesh, Arpana, Kamini, and Neetu

that I have been able to devote all my attention to my work. Ajit has unknowingly

influenced me greatly. Tyffanne, Christi, Pat, Jennifer, and Jana made me feel they

were in the department only to help me.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . 1

II OF VEILS AND WEDDING RINGS . . . . . . . . . . . . . . . 3

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
B. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1. Complete Information About Type . . . . . . . . . . . 10
2. Incomplete Information About Type . . . . . . . . . . 11

a. Separating Equilibria . . . . . . . . . . . . . . . . 11
b. Pooling Equilibria . . . . . . . . . . . . . . . . . . 15

C. Refinements of Equilibria . . . . . . . . . . . . . . . . . . . 19
1. Unique Equilibrium for Low Prior . . . . . . . . . . . 20
2. Unique Equilibrium for Medium Prior . . . . . . . . . 21
3. Unique Equilibrium for High Prior . . . . . . . . . . . 22

D. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

III EVOLUTION OF DIVISION RULES . . . . . . . . . . . . . . . 27

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
B. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1. The Unperturbed Dynamic . . . . . . . . . . . . . . . 36
2. The Perturbed Dynamic . . . . . . . . . . . . . . . . . 38
3. Stochastic Stability . . . . . . . . . . . . . . . . . . . . 41
4. The Minimal Tree . . . . . . . . . . . . . . . . . . . . . 41

C. The Long Run Equilibrium . . . . . . . . . . . . . . . . . . 43
1. The Transition (x→ x+) . . . . . . . . . . . . . . . . . 46
2. The Transition (x− ← x) . . . . . . . . . . . . . . . . . 48

D. Importance of Rules of the Demand Game . . . . . . . . . 51
1. The Usual Demand Game . . . . . . . . . . . . . . . . 51
2. Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3. Efficiency and Claims Boundedness . . . . . . . . . . 55
4. Why Not Proportional? . . . . . . . . . . . . . . . . . . 58

E. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

IV INEQUALITY, INSECURE PROPERTY, AND CONFLICT . . . 61



viii

CHAPTER Page

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1. Existence and Uniqueness of Equilibrium . . . . . . . 66
C. Equilibria with Same Utility, Production, and Cost

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
1. Guns and Welfare . . . . . . . . . . . . . . . . . . . . . 73
2. Effect of β . . . . . . . . . . . . . . . . . . . . . . . . . . 76

D. Effect of Heterogeneity . . . . . . . . . . . . . . . . . . . . . 79
1. Heterogeneous Production Functions . . . . . . . . . . 79
2. Heterogeneous Cost Functions . . . . . . . . . . . . . 82

E. History Dependence . . . . . . . . . . . . . . . . . . . . . . 83
1. Heterogeneous Production Functions . . . . . . . . . . 83
2. Heterogeneous Cost Functions . . . . . . . . . . . . . 86
3. An Example . . . . . . . . . . . . . . . . . . . . . . . . 87

a. Heterogeneous Production Functions . . . . . . . 87
b. Heterogeneous Cost Functions . . . . . . . . . . . 88

F. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

V CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



ix

LIST OF FIGURES

FIGURE Page

1 The relevant games . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2 The relevant games with efficiency . . . . . . . . . . . . . . . . . . . 54



1

CHAPTER I

INTRODUCTION

The disappointments with the classical game theory literature that assumed per-

fect rationality on part of the agents has over the years given way to models that

assume economic agents are boundedly rational. It is only in very simple strategic

situations that we can hope the assumption of perfect rationality will give behav-

iorally sound predictions. The questions I raise in my dissertation and the tools I

use to address them reflect this realization.

The second chapter tries to provide a reason for the strict codes of conduct

that have been imposed on unmarried girls in almost every society at some point

of time in its history using tools from classical game theory. If men prefer to marry

submissive women then parents of girls will have an incentive to signal the sub-

missiveness of their daughters in various ways in order to attract better matches.

At the same time, parents will find it costlier to signal the submissiveness of girls

that are not really submissive. This line of reasoning thus helps us interpret phe-

nomena such as veiling, foot-binding, and sequestration of women in general, as

signals of submissiveness. The undefeated equilibria of the underlying game lead

to a unique separating outcome when the frequency of obedient and submissive

girls is not quite high; and to a unique pooling equilibrium when this frequency is

sufficiently high.

The third chapter attempts to rationalize the adhoc rules proposed in the lit-

erature for dividing a bankrupt estate using tools from evolutionary game theory.

The adhoc rules differ from each other because of the axioms that are imposed

This dissertation follows the style of Journal of Economic Theory.
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in addition to efficiency and claims boundedness. Efficiency requires that the estate

be completely divided between the claimants, and claims boundedness requires

that no claimant be awarded more than her initial contribution. The paper tries to

show that an adhoc rule can be rationalized as the unique self-enforcing long run

outcome of Young’s [46] evolutionary bargaining model by using certain intuitive

rules for the Nash demand game. If the agents bargain in the framework of the

usual demand game, the long run stochastically stable equilibrium turns out to be

equal division of the estate. If, in addition to the usual rules, demanding more

than one’s initial claim leads to a zero payoff (claims boundedness) then the long

run equilibrium corresponds to the constrained equal awards rule. If the rules

of the demand game capture both efficiency and claims boundedness, then the

long run equilibrium corresponds to the division proposed by the truncated claims

proportional rule.

In the fourth chapter I present a simple model of conflict over inputs in an

economy with ill-defined property rights. The economy consists of two agents ini-

tially holding unequal amounts of the total available land. The agents produce

output from the land they hold which in turn can be allocated to consumption or

the production of guns. There is no agency to enforce rights over the initial land

holdings and the future holdings of land are determined using a contest success

function which depends on the guns produced by both agents. Agents maximize

the weighted sum of utility from current consumption and the utility from future

land holding. I characterize equilibria in which only one, both, and none of the

agents produces guns, as a function of the total land and the inequality of initial

land holdings for general forms of utility, production, cost, and contest success

functions. The final chapter provides concluding remarks and raises some ques-

tions for future research.
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CHAPTER II

OF VEILS AND WEDDING RINGS

A. Introduction

Women have been viewed and valued very differently across cultures throughout

our history. Even today these differentials are enormous within and across coun-

tries. It would be fair to say that parents in several cultures try hard to inculcate

the traits of submissiveness and obedience in their unmarried daughters (Cheung

[9], Ebrey and Watson [15], O’Faolain and Martines [37], Hill [23], Klapisch-Zuber

[25], Stone [42]). Apart from the behavioral indoctrination, different cultures have

come up with novel ways to alter the manner in which girls interact with the space

and society around them. Some of the enduring features include the sequestration

of girls, the veil in Islamic countries, the now extinct foot-binding in China, and

genital mutilation in several parts of Africa.

Marriage is probably the most social event in the life of a girl in traditional

societies. The importance of the measures parents take to prepare their daughters

for marriage can be gauged by the beliefs regarding an ideal wife and the severity

of punishment for transgressions after marriage. The prescriptions for an ideal

spouse have hardly ever stressed a man who is obedient to the women, but in

all cultures at some time in their history the ideal woman has been one who is

obedient to her husband. Similarly, there is hardly any evidence of a society that

imposes greater controls on the premarital sexual behavior of men. At all times in

history adulterous women have been at least as strongly punished as adulterous

men (Murstein [30]). The legal codes of present day Syria, Jordan, Morocco, and

Haiti do not recognize a man killing his wife as a murderer if the wife is accused of
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adultery. In Brazil and Colombia similar laws have been struck down over the past

two decades. It is estimated that nearly two thousand women become the victims

of ’honor killings’ by their close kin every year, sometimes for ’crimes’ such as

talking to men other than their relatives. It is difficult to deny that the breach of

the marriage contract by women has been considered a bigger crime, than a breach

by men.

Providing her husband with a child has been one of the main functions of a

married girl in traditional societies. We assume that men will prefer those women

as marriage partners who can establish the credentials for post marital fidelity.

This is because men do not have absolute certainty regarding the paternity of a

child, and they care more about their ’own’ children. This argument has a long

history starting from the ancient Greco-Roman philosophers, and carried on by

medieval theologians and ideologues to the modern evolutionary biologists, an-

thropologists, and economists (Alexander and Tinkle [1981], Klapisch-Zuber [25],

O’Faolain and Martines [37]).

Although girls in traditional societies are confined both before and after mar-

riage, the main purpose of confinement seems to differ. Parents confine their

daughters prior to marriage to signal her credentials for post marital fidelity. Hus-

bands confine their wives after marriage to avoid moral hazard. It seems more rea-

sonable to analyze premarital confinement as a signaling game, whereas a principal-

agent model suits the analysis of post marital confinement.

The mechanics of the Gale-Shapely matching algorithm involve sequential

proposals from one side and rejection/acceptance from the other side of the mar-

ket given the rankings of all players (Roth and Sotomayor [39]). The primary focus

of matching literature is to determine the set of stable matchings. We, instead,

intend to elaborate on the process through which the players come up with their
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rankings and show that parents confine their daughters so that men would rank

them higher. As a clarification, imagine the approach graduate schools might take

to deal with a large number of applicants. In the first stage, the committee might

come up with rules of thumb, like anyone with an undergraduate GPA of less than

2.0 would not be admitted. Once the list has been shortened by using one or sev-

eral such arbitrary (but undoubtedly useful) criterion, the committee might then

review each application and come up with the final admissions in the second stage

of decision making. Our efforts could be thought of as explorations of only the

first stage of admissions process and the main aim is to show that restrictions on

women are equilibrium outcomes of a suitably defined game. The second stage

which involves determining the exact pairings and their properties has been dealt

with extensively by the matching literature and we do not pursue it here (Becker

[6]).

It is widely accepted in the sociology and anthropology literature on cross-

cultural studies that within communities that do confine females, rich families con-

fine their girls and women more severely than the poor ones (Broude [8]). Purely

economic motivations can explain why women of poor families are less confined;

but they do not explain why women of rich families are more confined. If labor

markets are not sufficiently developed, or the production technology is not favor-

able for women to earn high returns, women of rich families may not work. But

this does not imply that rich men would ’choose’ to confine the women in their

families in various ways. Therefore, for the sake of clarity, we consider an econ-

omy in which women only have reproductive value and no productive value.

If we are willing to accept that women have a comparative advantage in rear-

ing young children and household work we might be able to explain why married

women spend more time indoors. But this does not explain why they would not
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be allowed to interact with other men. In any case this line of reasoning does not

help us to understand why girls are confined prior to marriage. Therefore, we only

try to explore premarital confinement of girls by their parents and argue that this

obviates the reasons for post marital confinement. Parents of girls usually start

placing restrictions on her around the onset of puberty and maintain it till her

marriage (Broude [8]). Different girls might get married at different ages but we

assume only qualitative differences in the extent of claustration and thus avoid the

dynamic issues that might arise (Noldeke and van Damme [36]).

It is assumed that there exist temperamental differences among girls in the

degree to which to they are submissive/obedient at the time parents start confin-

ing them. The extent of confinement by parents positively affects their degree of

obedience. It is also assumed that the costs incurred by the parents of a girl in this

process are psychic in nature with the cost of confinement to any extent being less

for a more obedient girl than for a less obedient girl. There is asymmetric informa-

tion in the sense that potential suitors can only (perfectly and costlessly) observe

the extent of confinement but not the true nature of a girl.

We abstract from any transfers associated with marriage. Each man is as-

sumed to care more about his ’own’ children which in turn motivates him to con-

sider the likelihood that a girl will remain fidel after marriage and sire ’his’ chil-

dren. This concern of men is formalized by assuming that the value of a girl to a

potential suitor depends on her inherent character and extent of confinement. A

suitor is valued by the parents of a girl because of the resources he can provide to

their daughter and her children. The utility derived by the parents of a girl is thus

assumed to be the wealth of the suitor net of their psychic costs incurred in raising

her. Men decide whether to propose to a girl or not, and the girl’s parents choose

whether to accept the proposal or not. We employ sequential equilibrium as the
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solution concept for the game and discuss the nature and meaning of the equilibria

that emerge.

B. The Model

The inherent nature of girls (their submissiveness/obedience) when parents start

confining is assumed to be of two types t ∈ (h, l), with a common prior, P (h) = q.

The extent to which parents of a girl confine her is denoted by e. The confinement

of a girl reflects not only the physical constraints on her movement, association,

and interaction with other men but also the moral and behavioral education and

indoctrination by family members. Confinement in this model plays a role similar

to education in job signaling models. The cost of confinement to the extent e for a

type-t girl is given by c(t, e), with c(t, 0) = 0, ce(t, e) > 0, cee(t, e) > 0, ct(t, e) < 0

, and cet(t, e) < 0 for all e ≥ 0. Thus, there is no cost to the parents if they do not

confine their daughter, marginal costs of confinement are positive and increasing

with increases in the extent of confinement for both types of girls, and the marginal

cost of confining type-l girl is greater than that of type-h girl, at all levels of con-

finement. The net utility to the parents of a girl of a proposal from a suitor having

wealth w is [w − c(t, e)].

The value of the girl-(t, e) to potential suitors is [αv(t, e)] with the constant

α ∈ (0, 1), and v(h, e) > v(l, e) for all e, and ve(t, e) > 0 for both t and all e. This

value function of men defined over girls primarily reflects the likelihood of the

child from the girl being his own. This should not be taken to imply that girls

or their parents do not care about the nature and character of suitors. However,

we presume it would add little in our efforts to explain why it is men that often

set up extensive and sometimes excessive mechanisms to confine women. Also,
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the value function should be thought of as reflecting the ’perceived’ value to men

from marrying the girl-(t, e). The positive partial effect of confinement ignores the

possibility that extreme confinement might lead a girl to become more rebellious

and less obedient. The indifference curves of parents of girls are upward sloping

and convex in the and the (e, w) space. The value functions of girls as perceived by

men are linear in the (e, w) space.

It is assumed that every man will have to bear some unavoidable cost of pro-

viding for the girl he ends up marrying and the resulting children, irrespective of

the type of the girl and her level of confinement. It might well be the case that

the expenditure by a man on his wife is determined endogenously. However, we

presume that men enter the marriage market with a rough idea of how much they

would have to spend on their future wife and any adjustments to this expenditure

can be done only after he actually gets married. Further assume that the abso-

lute amount of this expenditure is increasing in the wealth of men. A convenient

way to formalize this is to assume that the fixed cost equals a constant fraction of

wealth. As a result the resources spent by different men will be different for the

same girl. The utility function of men is thus assumed to be

um(t, e, w) =





α · v(t, e) + (1− α).w if married to girl − (t, e)

w if unmarried

(2.1)

The timing of the game is as follows: nature determines the type of each girl

with P (h) being q, parents choose the extent of confinement of girls, men observe

the extent of confinement and update their beliefs regarding the type of each girl,

decide upon the girls they would be willing to propose to, and then parents of girls

decide whether to accept an offer or not. We are assuming that it is the parents of
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the girl who ultimately decide her match.

The value of a girl known to be of type-t with certainty is [αv(t, e)]. If type is

private information then µ(h|e) is the common assessment by suitors that the girl

is of type-h after having observed her extent of confinement e. The expected value

of girl-(t, e) to suitors is α[µ(h|e).v(h, e)+(1−µ(h|e)).v(l, e)]. I make the simplifying

assumption that men would not mind proposing to those girls that leave them at

least as well off as in the unmarried state. Thus a girl-(t, e) would receive proposals

only from men having wealth w such that

α.[µ(h|e).v(h, e) + (1− µ(h|e)).v(l, e)] + (1− α).w ≥ w (2.2)

This helps us define the critical suitor wealth function, the wealthiest man will-

ing to propose to a girl of unknown type, as a function of her observable level of

confinement.We have

wc(e) = µ(h|e).v(h, e) + (1− µ(h|e)).v(l, e) (2.3)

where wc(e) will be linear in e with an intercept and slope between the intercepts

and slopes of v(l, e) and v(h, e). Without loss of generality it can be assumed that

for any girl-(t, e) there exist men with wealth w ≥ wc(e). This ensures that we will

always have equilibria in which each girl would get a proposal. Also, a continu-

ous distribution of wealth actually simplifies the analysis because with a discrete

number of wealth classes we will have to characterize the equilibria as a function

of the ’levels’ of wealth associated with those discrete classes.

d(e|w) is an indicator function which equals 1 if the suitor having wealth w

would be willing to propose to a girl who has been confined to the extent e, and

equals 0 otherwise. Sequential Equilibrium (Kreps and Wilson [27]) will be used

as the solution concept for this signaling game.
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Since we have allowed girls to be of only two types there will be bunching

of all girls at a single level of confinement in a pooling equilibrium, and at two

levels of confinement in the separating equilibrium. Thus, each parent would op-

timally want to match their daughter to the same man in the pooling equilibrium.

Similarly, in the separating equilibrium, the optimal suitor for daughters of one

set of parents would be a particular man, and the remaining parents would prefer

to match with another particular man. This feature of the equilibrium can not be

eliminated even by allowing the type of girls to be a continuum unless we make

additional assumptions on the measures of types of girls and wealth of men. We

take this to imply that men use the type and confinement of women as a prelim-

inary and crude sorting device to decompose the set of all women into two non-

overlapping sets- one comprising of girls they would be willing to propose to, and

the other consisting of girls they would not propose to. As mentioned earlier, the

aim of this paper is to show that parents of girl would confine their daughters lest

resourceful men put them in the set they will not propose to.

1. Complete Information About Type

We start our analysis with the complete information case where we assume that the

type of a girl is common knowledge. Parents of girl-(t, e) will accept the proposal

from the critical suitor in order to maximize their utility. Since the critical suitor’s

wealth is increasing in e parents of a girl choose the optimal extent of confining her

by maximizing the net benefit, i. e.,

maxe [v(t, e)− c(t, e)] (2.4)

With complete information regarding types the optimal extent of confinement

is denoted as e∗(t), and the critical suitor’s wealth w∗(t) = v(t, e∗(t)). The as-
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sumptions on the value function of girls and the cost function suggest that the

net marginal benefits for type-h parents are greater than that for the type-l par-

ents, for any given e. The optimal extent of confinement is reached when the net

marginal benefits of confinement become zero. We thus expect type-h parents to

optimally choose a greater level of confinement for their daughters. The girl-(t, e)

offers the same confidence of paternity to every man. Since rich men spend greater

amount of resources in absolute terms they will in turn demand a greater level of

confidence, which will be reflected in their decision of proposing to relatively high

(t, e)-girls.

2. Incomplete Information About Type

We now assume that the type of a girl is private information and only the extent of

confinement is publicly observable. The parents of type-l girls can always ensure

themselves of a proposal from the suitor having wealth w∗(l). The worst that can

happen to a parent of type-h girl is suitors believing that their daughter is instead

type-l. In such a case the optimal level of confinement chosen by parents of this

type-h girl will be denoted by e∗(h→ l).

a. Separating Equilibria

The characterization of separating sequential equilibrium involves the considera-

tion of both the no-envy and envy cases. In the no-envy case type-l parents do not

find it profitable to mimic the confinement choice made by the type-h parents; in

the envy case they do, unless the type-h parents choose a sufficiently high level

of confinement. In the no-envy case the indifference curve of type-l parents pass-

ing through (e∗(l), w∗(l)) intersects the indifference curve of type-h parents passing



12

through point (e∗(l), w∗(l)) intersects at an e > e∗(h); in the envy case these indiffer-

ence curves intersect at an e < e∗(h). The strategy of parents of girls in the no-envy

separating equilibrium, wherein the type-l girls can not profitably pretend to be

type-h, thus involves

[e(l) = e∗(l), e(h) = e∗(h)] (2.5)

The beliefs of men after observing these choices of e are

µ(h|e∗(l)) = 0 and µ(h|e∗(h)) = 1 (2.6)

d(e|w) =





1 if e = e∗(l) and w ≤ w∗(l)

1 if e = e∗(h) and w ≤ w∗(h)

0 otherwise

(2.7)

The simple interpretation of these strategies is that if a girl is confined more,

she is more desirable. In order to completely characterize this separating equi-

librium we need to specify the beliefs of men for out of equilibrium choices of e,

which will in turn determine the rest of their strategy. One set of beliefs that satis-

fies the required conditions is that the girl is of type-h only if she has been confined

to an extent at least as high as e∗(h). Formally

µ(h|e) =





1 if e ≥ e∗(h)

0 otherwise

(2.8)

The strategy of men in the no-envy case can now be fully specified as
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d(e|w) =





1 if e ≤ e∗(h) and w ≤ w∗(l)

1 if e ≥ e∗(h) and w ≤ w∗(h)

0 otherwise

(2.9)

Intuitively this means that a girl who has been confined to a greater extent will

receive proposals from all those who are willing to propose to the less confined

girl, and in addition some more proposals from wealthier men. Since e∗(h) is the

best response by the type-h parents in response to the value placed on high type

girls (v(h, e)), it is also the best response in this case. Similarly, e∗(l) is the best

response of the type-l parents in response to the value placed on their girls as their

maximum payoff [w∗(l) − c(l, e∗(l))] among all the choices of e < e∗(h) is realized

by choosing e = e∗(l).

In the envy case, by definition, the h-type parents will not be able to distin-

guish their daughters from the l-types by choosing e∗(h). The maximum level of

confinement which type-l parents will have an incentive to mimic leaves them ex-

actly as well off as they are when their type is perfectly known to be l. Parents of

type-h will be able to signal their high type only by choosing an e ≥ es > e∗(h).

The strategies of parents of girls will thus be

[e(l) = e∗(l), e(h) = es] (2.10)

The equilibrium beliefs of men would be

µ(h|e∗(l)) = 0 and µ(h|es) = 1 (2.11)

An intuitive specification of out of equilibrium beliefs of men is
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µ(h|e) =





1 if e ≥ es

0 if e < es

(2.12)

This implies that men, while trying not to be deceived by type-l parents posing as

type-h, will form beliefs such that only if the extent of confinement is greater than

the minimum level of confinement that certainly differentiates the types, would

they be willing to accept a girl as type-h. Finally, the complete strategy profile of

men would be

d(e|w) =





1 if e < es and w ≤ w∗(l)

1 if e ≥ es and w ≤ v(h, es)

0 otherwise

(2.13)

Men having w ≤ w∗(l) will propose to both types of girls. The type-h girls would

be able to attract additional proposals from men having wealth w ∈ [w∗(l), v(h, es)].

As discussed above, the l-type parents have two equally good options: choos-

ing e∗(l) and receiving a proposal from the suitor having wealth w∗(l), or choosing

es which raises the maximum offer to v(h, es). We shall always assume in this paper

that any indifference is resolved in favor of the lower extent of confinement. The

choices of e > es for h-type parents are clearly inferior to es as they lead them to

lower indifference curves. Since the indifference curve of the l-type parents pass-

ing through (es, v(h, es)) is tangent to their value function (v(l, e)), hence the less

steep indifference curves of type-h parents passing through (es, v(h, es)) lies above

v(l, e) for e < es. The choices of e < es are thus inferior for type-h parents as any

such choice of e will lead the men to believe that they are of type-l, and thus the
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best these choices can do is allow them to reach an indifference curve that is tan-

gent to v(l, e). Thus, the best response of h-type parents to the strategy of men is to

choose e = es.

There exist other separating equilibria involving a different choice of e by the

type-h parents. For e slightly greater than es such that [v(h, es+) − c(h, es+)] >

[v(l, e)− c(h, e)], the type-h parents prefer to signal the high quality of their daugh-

ters by choosing es+. Substituting es+ for es in the beliefs and strategy of men in the

previous separating equilibrium, along with the strategy [e(l) = e∗(l), e(h) = es+]

for parents of girls, completely specifies this equilibrium.

An example of the separating equilibrium that differs from the one in envy

case off the equilibrium path involves modifying the beliefs of suitors such that it

leaves the optimal strategies of parents (e(l) = e∗(l), e(h) = e∗(h)) unchanged. We

need to ensure that both types of parents will end up on lower indifference curves

if they deviate from their equilibrium strategies. This can be accomplished by

allowing men to attach a strictly positive but sufficiently low probability (q′) that

the girl is type-h after observing an e ∈ (e∗(h), es) such that for all e ∈ (e∗(h), es)

the critical suitor wealth function w(e|q′) lies strictly below the indifference curve

of type-l parents passing through the point (e∗(l), w∗(l)).

b. Pooling Equilibria

Pooling equilibria emerge in both the envy and no-envy cases and the steps used

in characterizing them are same. Hence, we only discuss the more interesting envy

case. The worst that could happen to an h-type girl is that men believe her to be of

type-l. The parents of type-l will have the incentive to pool only if pooling allows

them to reach an indifference curve higher than the one they can attain when their

type is perfectly known or believed by the suitors to be l. The utility that both
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types can ensure by responding optimally when they are believed to be type-l

irrespective of their true type will be termed as their reservation utility (Banks

1991).

The minimum (maximum) e at which pooling is possible is the maximum

(minimum) of the minimum (maximum) level at which the two types are willing

to pool. Pooling equilibria are not possible below a certain value of the prior. All

values of e in the set [emin
p , emax

p ] can support a pooling equilibrium similar to the

one described below. We can characterize these equilibria completely by replacing

e∗p by any value of e ∈ [emin
p , emax

p ].

In the pooling equilibrium parents of both types of girls choose the same ex-

tent of confinement, say e∗p. Therefore, the updated belief of suitors will be the

same as their prior belief. This in turn implies that the expected benefit each girl,

having been confined to the extent e∗p, provides to any suitor is α[q.v(h, e∗p) + (1 −
q).v(l, e∗p)]. The point (e∗p, w∗

p) lies on the line that gives critical suitor’s wealth,

wp(e) = [q.v(h, e) + (1 − q).v(l, e)], where the indifference curves of both types in-

tersect. This point also determines the wealth level of the critical suitor in this

case. All men with wealth w ≤ q.v(h, e∗p) + (1 − q).v(l, e∗p) = w∗
p, will be better off

proposing to any girl. We can specify the equilibrium strategy of men as follows.

d(e|w) = 1 if e = e∗p and w ≤ w∗
p (2.14)

We still need to specify the beliefs of men, (µ(h|e)) for out of equilibrium choices

of e by parents of girls, which will in turn determine the remaining part of men’s

strategy. The simplest belief that men might have is that any extent of confinement

other than e∗p implies that the girl is of type-l. Thus, if the beliefs of men are
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µ(h|e) =





q if e = e∗p

0 if e 6= e∗p

(2.15)

then their strategy would be

d(e|w) =





1 if e = e∗p and w ≤ w∗
p

1 if e 6= e∗p and w ≤ w∗(l)

0 otherwise

(2.16)

This implies that all men with w ≤ w∗
p will propose to any girl whose level of

confinement is observed to be e∗p. On the other hand, if the level of confinement

is anything other than e∗p, men take it as an unambiguous signal that the girl is

of type-l, and only men with w ≤ w∗(l) offer a proposal. Now we need to argue

that given the strategies and beliefs of men e∗p is indeed the optimal choice by both

types of parents.

The parents of girl-(t, e) always choose e to maximize [w(e) − c(t, e)]. In this

case, the belief structure of men suggests that parents choose either e∗p or the extent

of confinement that maximizes [v(l, e) − c(t, e)]. Given the shape of indifference

curves and value functions, type-h parents would choose e∗p since their indiffer-

ence curve passing through (e∗p, w
∗
p) lies above the value function for type-l girls.

Similarly, type-l parents will also be better off choosing e = e∗p since the best al-

ternate option (e∗(l)) leaves them on the lower indifference curve passing through

(e∗(l), w∗(l)).

Yet another category of pooling equilibria can be generated by holding e at e∗p

but varying the beliefs and strategies of men for out of equilibrium choices of e as
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follows.

µ(h|e) =





q if e = e∗p

q if e ≥ eh
p

0 if e ≤ eh
p except for e = e∗p

(2.17)

where eh
p is the extent of confinement at which the indifference curve of the

type-h parents through the point (e∗p, w
∗
p) crosses the wealth function given by

w = q.v(h, e) + (1 − q).v(l, e). The intuition for this specification comes from the

observation that the parents of type-h are indifferent between (e∗p, w
∗
p) and (eh

p , w
h
p )

but the type-l parents strictly prefer (e∗p, w
∗
p) over (eh

p , w
h
p ). This structure of beliefs

implies that if a girl is confined to an extent greater than a sufficiently high level

(eh
p) then men take it as a signal of her extreme desirability that forces her parents

to ’protect’ her from undesirable men. On the other hand, if she is confined any

less than eh
p but not at the socially prevalent extent (e∗p) then it is believed to signal

that she is not obedient enough or not good enough, thereby reflecting her l-type.

The resulting strategy of suitors is

d(e|w) =





1 if e = e∗p and w ≤ w∗
p

1 if e ≥ eh
p and w ≤ w∗

p

1 if e ≤ eh
p except for e = e∗p and w ≤ w∗(l)

0 otherwise

(2.18)

If a girl is confined to the socially prescribed level e∗p then all men with w ≤ w∗
p

propose to her. The same holds true if a girl is confined at a sufficiently higher
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level, i.e., if e ≥ eh
p . (Although men believe that if the girl is confined sufficiently

more she must be of type-h, the strategy specifying that only men with w ≤ w∗
p

propose to her constitutes an equilibrium, because the equilibrium strategy of all

parents is to confine their daughters to the socially prescribed extent.) If she is

confined less than the sufficiently high level but not at the socially prescribed one,

she is considered to be of type-l and only those men with w ≤ w∗(l) propose to her.

The type-h(l) parents are worse (better) off in the e∗p pooling equilibrium as

compared to the complete information equilibrium. However, only in the envy

case there exists a critical value of the common prior, q, above which type-h parents

are better off in pooling equilibria rather than the separating equilibrium.

C. Refinements of Equilibria

The previous sections describe the various equilibria that can possibly emerge.

Several refinement criterion have been proposed for signaling games to isolate the

plausible equilibria. Since we have considered only two types of girls (senders)

the Intuitive Criterion (Banks and Sobel [5], Cho and Kreps [10]) will provide us

with a unique prediction from all the possible sequential equilibria. It has been

argued that apart from the discontinuity in the unique predicted outcome as the

prior goes from a value very close to unity, to exactly unity, the logical foundations

of forward induction as embodied in the Intuitive Criterion are myopic and thus

inconsistent with perfect rationality. We will therefore compare the final prediction

of the Intuitive Criterion with those obtained from the concept of Undefeated equi-

librium (Mailath et al. [28]) that tries to overcome these shortcomings. We divide

the following discussion into three parts differentiated by low values of the prior

that allow no pooling equilibrium, medium values of the prior that provide the
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type-h parents with highest utility in the separating outcome, and finally high val-

ues of the prior that provide the type-h parents with highest utility in the pooling

equilibrium.

1. Unique Equilibrium for Low Prior

If the maximum level of e at which type-l is willing to pool is lower than the

minimum e at which type-h would be willing to pool, then no pooling equilib-

ria are possible. Thus, in the envy case, we will have separating equilibria with

[e(l) = e∗(l), e(h) ≥ es] and

µ(h|e) =





1 if e ≥ e(h)

0 otherwise

(2.19)

Consider any separating equilibrium in the envy case with e(h) > es. (The

same arguments apply in the no-envy case with es replaced by e∗(h).) This implies

that es will be an off the equilibrium path message with µ(h|es) = 0. But es is a

dominated choice for the type-l parents, and so if es is observed then µ(h|es) = 1.

If so, type-h parents will deviate to es as it provides them with a higher utility,

thereby upsetting the proposed equilibrium. This line of reasoning suggested by

the Intuitive criterion will lead to the unique predicted outcome [e(l) = e∗(l), e(h) =

es] and

µ(h|e) =





1 if e ≥ es

0 otherwise

(2.20)

The Undefeated Equilibrium concept will also select this same outcome as its
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unique prediction in this case; but the logic is different. The intuitive criterion elim-

inated the separating equilibria having confinement of type-h girls greater than es

on the basis of unreasonable out of equilibrium beliefs by arguing that the out

of equilibrium message es is a dominated choice for the type-l parents but still

men attach a positive probability to this message having been sent by them. The

logic of undefeated equilibrium while eliminating the separating equilibria with

e(h) > es, utilizes the fact that there exists another sequential equilibrium in which

es is sent by at least one of the two types of senders. Moreover, it is that very type

(the h-type) which prefers this alternative es equilibrium. Since the beliefs of men

in the e(h) > es equilibrium are not consistent with the beliefs in the e(h) = es

equilibrium, the es equilibrium is said to defeat the e(h) > es equilibria. The only

undefeated equilibrium this process of elimination gives is the es separating equi-

librium, same as the one predicted by the Intuitive Criterion.

2. Unique Equilibrium for Medium Prior

We now consider the case where the prior is high enough to allow pooling but

not high enough to make any pooling equilibria at any prior in this range more

attractive to type-h parents, than the Riley separating equilibrium. For this range

of the priors, we have argued earlier that both pooling and separating equilibria

are possible. Separating equilibria with e(h) > es fail the intuitive criterion by

a reasoning similar to the one employed in the case of low priors. In order to

understand why all the pooling equilibria also fail the intuitive criterion, consider

a candidate pooling equilibrium in the envy case with [e(l) = e(h) = e∗p] and
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µ(h|e) =





q if e = e∗p

0 if e 6= e∗p

(2.21)

This implies that es will be an out of equilibrium message. The specification of

the e∗p pooling equilibrium under study requires µ(l|es) > 0. But es is a dominated

choice for type-l parents, and so if es is observed the receivers must attribute it

to the h-types. This in turn implies that µ(l|es) = 0. If so, the h-types will have

an incentive to deviate to es as it leads them to a higher indifference curve, thus

upsetting the proposed equilibrium. Hence, the only equilibrium consistent with

the intuitive criterion is the Riley separating outcome with e(h) > es.

The undefeated criterion will give the same result in this case as well. Let

pooling at e∗p be the equilibrium under consideration which involves µ(l|es) > 0.

The only sequential equilibrium in which es is sent as an equilibrium message has

the h-types sending it. Also, it is only the h-types that prefer this Riley outcome

over the pooling equilibrium with e = e∗p, and it has µ(l|es) = 0. All the pooling

equilibria are thus defeated by the Riley separating equilibrium. It also defeats all

the other separating equilibria with e(h) > es. Hence, in the case of medium priors

also, both the intuitive and the undefeated criterion select the Riley separating

equilibrium as the unique prediction.

3. Unique Equilibrium for High Prior

We now consider the case where the prior is high enough not only to allow pooling

but also to make some pooling equilibria, at each value of the prior in this range,

more attractive to type-h parents than the Riley separating equilibrium. This is

the most interesting of the three cases as it clarifies the logical inconsistencies of



23

forward induction. Consider the pooling equilibrium with [e(l) = e(h) = e∗p] and

µ(h|e) =





q if e = e∗p

0 if e 6= e∗p

(2.22)

Any level of confinement eoeq ∈ (e
′
, e”) will be an out of equilibrium message.

Regardless of the beliefs men will form after observing eoeq, the l-types would be

worse off by sending it compared to the e∗p pooling equilibrium. If men instead

believe that eoeq was sent by the h-types, then their best response would be to

offer v(h, eoeq), and this would yield a higher utility to the h-type parents than

they were getting in the e∗p pooling equilibrium under study. Thus, h-types would

deviate from e∗p to eoeq, thereby upsetting the pooling equilibrium. This is where the

argument of Intuitive Criterion ends while eliminating the e∗p pooling equilibrium

because it involves unreasonable beliefs at out of equilibrium messages eoeq.

Is the reasoning employed above sound? If men believe that it is the h-type

parents sending eoeq, then they will indeed be better off by sending it. But, if all

players in the game are assumed to understand the underlying logic of intuitive

criterion then the l-type parents should realize that after observing e∗p men will

conclude that it must have been sent by the l-types. The crux of undefeated cri-

terion is that beliefs at off equilibrium path information sets can not be adjusted

while keeping beliefs on the equilibrium path unchanged. Thus, the l-type parents

cannot ensure that their daughters will receive proposals from men having wealth

w ∈ [w∗(l), wp(e
∗
p)]. Moreover, if they were to deviate to eoeq then these l-types

would definitely get proposals from men having w > w∗(l). And if they do choose

eoeq, then it no longer remains an unambiguous signal of an h-type girl.

What is the logical end of this thought process? More importantly, what would
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be ’reasonable’ beliefs after a deviation from the equilibrium path is observed. The

undefeated criterion suggests that the beliefs that should be formed after observing

an out of equilibrium message should be consistent with the one that is formed

when this message is sent as an equilibrium message in some other sequential

equilibrium. The Riley separating equilibrium will defeat all the other separating

equilibria as in the previous two cases. Now, let the Riley equilibrium be under

consideration and the pooling at e∗p be the alternate equilibrium. With respect to

the Riley equilibrium, e∗p is an out of equilibrium message with µ(h|e∗p) = µ(h|e∗p) =

q. Since both types prefer the alternative pooling equilibrium to the separating

equilibrium under study, the beliefs in the separating equilibrium after observing

e∗p should be consistent with the beliefs in the alternate pooling equilibrium. But,

they are inconsistent; the separating equilibrium specifies µ(l|e∗p) = 0. Hence, the

alternate equilibrium (pooling at e∗p) defeats the equilibrium under study (the Riley

separating equilibrium).

The only equilibrium that might be undefeated in this case can be a pool-

ing equilibrium. For a given q in this range of priors, let the equilibrium under

study be the pooling equilibrium at ep > e∗p(h)). Consider the pooling equilib-

rium that provides the h-types with highest utility e∗p(h) as the alternate sequential

equilibrium. With respect to the ep equilibrium, e∗p(h) is an out of equilibrium

message which is preferred by both types. The e∗p(h) pooling equilibrium has

µ(h|e∗p(h)) = µ(h|e∗p(h)) = q. But, if e∗p(h) is observed, the beliefs in the ep pool-

ing equilibrium assign zero probability to h-types. This inconsistency implies that

the alternate pooling equilibrium defeats the ep pooling equilibrium. Next, let the

equilibrium under study be the pooling equilibrium at ep < e∗p(h)) with pooling

at e∗p(h) again being the alternate equilibrium. It is only the h-types that prefer

the alternate equilibrium over equilibrium under study. But, the ep equilibrium
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will involve µ(h|e∗p(h)) < 1. Thus beliefs at an out of equilibrium message in the

equilibrium under study are inconsistent with the beliefs at this message when it

is an equilibrium message. This inconsistency again leads us to conclude that the

pooling equilibria at ep < e∗p(h) are defeated by the pooling equilibrium at e∗p(h).

Now, let the equilibrium under study be the e∗p(h) pooling equilibrium. Any

pooling equilibrium towards the right of this point can not be a candidate alternate

equilibrium as it is not preferred by either of the types. Pooling equilibria towards

the left of e∗p(h) are only preferred by l-types. Moreover, if any e < e∗p(h) is ob-

served, then the e∗p(h) pooling equilibrium will assign this deviation to the l-types

(by construction, it assigns any deviation from the equilibrium only to l-types).

Thus, the beliefs in the e∗p(h) pooling equilibrium are consistent according to the

undefeated criterion, making it the unique prediction.

The intuitive criterion always selects the Riley separating equilibrium as its

unique predicted outcome. The undefeated criterion selects that equilibrium which

provides the highest payoff to the h-types; the Riley separating equilibrium for low

and medium values of the prior, and the e∗p(h) pooling equilibrium for high values

of the prior.

D. Conclusion

The refinement based on undefeated criterion suggets that when the frequency of

h-type girls is very low, the parents of these girls will try to separate their daughters

from the l-types. When the frequency of h-type girls becomes sufficiently high, h-

type parents make no efforts to separate as the expected value of a girl to men is

very close to the value of h-type girls. The implication of the model that pooling

will take place at increasingly higher levels of confinement as the frequency of
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high type girls increases might seem counterintuitive. However, it might be the

case that the marginal value of confinement as perceived by men is endogenous,

and decreases with an increase in the frequency of high types. This modification

will lead to pooling at lower levels of confinement. A crucial question is how to

determine the prior in a society. Is it a statistic based upon past observations in

the society that can only change with the behavior of the population? Or, can

exogenous factors lead to changes in the prior without affecting the behavioral

patterns? These questions have to be answered before we can see how our model

performs because while comparing the confinement of women across societies we

would have to categorize them according to low, medium, or high prior societies.

The equilibria suggest that under the assumptions of the model parents of

girls can never confine their daughters enough to satisfy the concerns of richest of

men. In our model these men will not even offer proposals to any girl. We interpret

this as suggesting that if they get married they will have an incentive to guard their

wives. This might be the reason for continued confinement of girls married to rich

men when these men do have the option of not doing so.
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CHAPTER III

EVOLUTION OF DIVISION RULES

A. Introduction

...the unjust is what violates the proportion;
for the proportional is intermediate,

and the just is proportional.

Nicomachean Ethics, Aristotle

The literature on non-cooperative bargaining has primarily focused on the ques-

tion of how agents would divide a given amount of surplus. The simplest game

theoretic representation of the problem is the Nash demand game involving two

agents and certain rules to map demands of agents into payoffs. The multiplicity

of Nash equilibria in the demand game led to the development of the axiomatic ap-

proach (Nash [32], [33]) and extensive form non-cooperative models (Rubinstein

[40]) to select one out of the several Nash equilibria.

The surplus over which bargaining takes place is assumed to be exogenous

in most of the studies. However, even in the most common examples alluded

to in the bargaining literature(landlords and tenants, workers and management),

the surplus is created, and the involved parties have an idea of their claims over

the surplus. This paper deals with situations that could be termed as bargaining

under the shadow of claims. It only deals with those bargaining problems where

the initial claims of both parties are unambiguous and common knowledge, and

the final surplus is not large enough to honor all the initial claims completely. The

simplest example is bargaining among creditors to divide up a bankrupt estate.

The model considered in this paper has two populations of equal size, each

characterized by an exogenous level of claim (cl, ch). Every period N pairs are
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formed with each pair comprising of one low and one high claimant. During each

period, agents in every pair bargain over the same amount e(≤ [cl +ch] = 1) within

the framework of a modified Nash demand game. The agents are assumed to be

myopic best responders, who sometimes exhibit inertia, and sometimes experi-

ment with non-best response strategies. The paper tries to analyze the long run

outcome of this dynamic process. Specifically, it aims to come up with a possible

explanation for the ad hoc division rules (in particular, proportionality) from non-

cooperative bargaining in this evolutionary setting (a framework similar to Young

[46]).

Young [46] embeds the demand game in an evolutionary framework and uti-

lizes the idea of stochastic stability to select the unique long run equilibrium. He

specifies the evolutionary dynamic in a manner that makes the Nash equilibria of

the demand game non-absorbing thereby allowing for transitions among the var-

ious equilibria; and then identifies that Nash equilibrium which, in some sense,

is easy to get to but difficult to escape. Binmore, Samuelson and Young (BSY [7])

clarify the role of the various adaptive dynamics that have been employed in the

literature to model the behavior of agents in evolutionary models of bargaining.

They also provide an alternative way to identify the long run stochastically stable

equilibria. However, Young [46] and BSY [7] assume the surplus to be exogenous

and do not deal with the claims of the involved parties.

Moulin [29] provides an excellent survey of the ad hoc division rules that have

been proposed in the literature to divide an amount of surplus that is no more than

the total amount that went into creating it. The constrained equal awards rule di-

vides the remaining estate equally subject to the constraint that no claimant gets

more than her initial contribution. The most common way of dividing a surplus

that is insufficient to completely satisfy all the (well defined) original contributions
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is to divide it proportionally to the initial contributions. The use of proportional-

ity is widespread in both formal and informal (Ellickson [16]) environments. The

bankruptcy laws of most countries dictate compensating creditors within a partic-

ular priority class proportionally to their initial contributions. The York-Antwerp

Rules guiding maritime commerce have proportionality as the motivation behind

the general average rule that is used to divide the cargo losses suffered during

travel (Knight [26]). The truncated claims proportional rule is derived from the

proportional rule through a simple modification. It first redefines the claim of an

agent to be the minimum of her initial contribution and the size of the estate; and

then divides the estate proportionally to the redefined (truncated) claims.

The existing literature (Aumann and Maschler [3], Thomson [43]) has looked

extensively into the connection between the ad hoc division rules, the axiomatic

and the cooperative bargaining solutions. There exist a few studies that try to

come up with non-cooperative games that will have the division suggested by a

particular ad hoc division rule as the equilibrium. For example, Dagan, Serrano,

and Volij [14] assume that there exists a socially accepted rule to solve claims prob-

lems involving two agents. Under this assumption, they devise a non-cooperative

game involving any finite number of agents which has the n-person generalization

of this bilateral rule as its subgame perfect equilibrium. It is important to note that

they do not answer how the society comes up with the particular bilateral rule.

Ellingsen and Robles [17] and Troeger [45] develop an evolutionary model in

which two agents bargain (in the non-cooperative framework of the Nash demand

game) over a surplus that is created by one agent’s investment. However, they aim

to establish that evolution eliminates the hold up problem. To understand what is

unique about a division rule from a non-cooperative perspective, should we focus

on the ex-ante incentives for investors that a particular rule for dividing the surplus
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would create? Or, should we focus on the bargaining after the surplus is realized; or,

both? Ellingsen and Robles [17] show that efficient investment can be sustained in

the long run even if the ultimatum game (with the investor being the responder)

is used to model the bargaining interaction. Thus, it seems that several rules of

the demand game can lead to efficient investment in the long run. At the same

time, each set of rules for the demand game leads to a different division of the

surplus. Hence, our analysis focuses on the bargaining interaction and assumes

investments to be exogenously given. (It must be emphasized that both Ellingsen

and Robles [17] and Troeger [45] allow only one agent to invest and the return

function is riskless).

Gachter and Riedl [20] report that experimental subjects acting as a third party

allocate the remaining estate (which is less than the sum of initial claims) in propor-

tion to the initial claims. But, when two subjects having different initial claims en-

gage in unstructured anonymous bargaining over the remaining estate, the results

are statistically different from the division that is proportional to initial claims.

This result motivates us to look deeper into the psychological differences that arise

when a person is asked to act as a third party versus when he happens to be a

bargainer himself.

Having considered the results of Troeger [45] and Gachter and Riedl [20], this

paper takes off by first asking: what must be the considerations of a third party

that suggests proportional division of a bankrupt estate; then tries to come up

with the rules for the Nash demand game that reflect these considerations; and

finally establishes the long run prediction of the evolutionary process using these

rules for the demand game. It is shown that several of the ad hoc division rules

can be obtained as the unique long run prediction of the evolutionary model by

suitably changing the rules of the demand game. The reason behind the inability
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to obtain some of the ad hoc rules (that include the proportional rule) as the long

run outcome will be discussed.

The structure of the paper is as follows. Section 2 describes the model in detail.

A modified set of rules for the demand give is also given. Section 3 of the paper

illustrates in detail the steps involved in finding out the long run stochastically

stable equilibrium. Section 4 shows the importance of rules of the demand game

in determining the long run outcome. If the agents bargain in the framework of the

usual demand game, the long run stochastically stable equilibrium turns out to be

equal division of the estate. If, in addition to the usual rules, demanding more than

one’s initial claim leads to a zero payoff (claims boundedness) then the long run

equilibrium corresponds to the constrained equal awards rule. If the rules further

specify that agents will obtain positive payoffs only if the sum of their demands

equals the estate size (efficiency), then the long run divisions are those prescribed

by the truncated claims proportional rule

To motivate the analysis in Sections 4.2 and 4.3, suppose we ask a person to

act as a third party and divide an amount e ≤ 1 between two agents who had

initially contributed cl = 0.4, and ch = 0.6. Two things will most likely be observed.

First, the division proposed by the third party will never give any agent more

than her initial contribution for any e ≤ 1. For example, if e = 0.9, no person

acting as a neutral third party will violate claims boundedness (i.e., suggest giving

the low (high) claimant more than 0.4(0.6)). Second, the proposed divisions will

be efficient (for example, the third party is unlikely to suggest the division [0.4, 0.4]

for e = 0.9, and let the remaining amount go waste). Instead of asking why third

parties behave in this manner, the paper takes these two presumptions as helpful

cues to come up with the rules that should be used to structure the bargaining

between the two agents.
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The rules that capture both efficiency and claims boundedness lead to the

emergence of truncated-proportional division as the unique long run outcome. Con-

sider the case with (cl, ch, e) = (0.4, 0.6, 0.5). The maximum feasible payoff to the

high claimant is e = 0.5, and she will end up losing atleast [ch −min(ch, e)] = 0.1.

This is referred to as the sunk claim as it is beyond recovery. The equilibrium di-

vision turns out to be as if the claims of agents have been truncated from cj to

min(cj, e), and then the estate is being divided proportionally to these truncated

claims.

The emergence of truncated-proportionality clarifies the reason behind the fail-

ure to obtain exact-proportionality as the long run outcome within this framework.

This framework disregards claims that become sunk. On the other hand, propor-

tionality requires dividing the leftover estate in proportion to the original contribu-

tions, even when a part of the contribution is beyond recovery for one or both the

agents. It is only when the remaining estate is large enough to feasibly compensate

even the high claimant, that exact-proportionality is the stochastically stable long

run equilibrium.

B. The Model

The model considers a family of economies with each economy indexed by the

tuple (cl, ch, e), where e ≤ (cl + ch) = 1. Each economy in this family is assumed

to consist of two distinct populations (low claimants and high claimants). The size

of each population is N. Each bargaining pair consists of a L-claimant and a H-

claimant. The decision of agents regarding whether to contribute, and if so how

much, is not modeled explicitly. Only one level of investment for each population

is considered. In every pair the low (high) claimant is assumed to have contributed
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cl (ch). The agents come together in the form of a bargaining pair only after the

realization of bankruptcy to decide upon the division of the remaining estate. It is

assumed that for every pair during each time period in a particular economy, the

size of the pie that remains after bankruptcy equals e ∈ (0, 1]. Thus, in a particular

economy (belonging to the family) cl, ch, and e take the same numerical values

across all pairs for all time periods. For example, there will be an economy in the

family with (cl, ch, e) = (0.4, 0.6, 0.5). So, in this economy during each time period

N pairs are formed with the low (high) claimant in each pair having contributed

0.4 (0.6). Every such pair during each time period has to decide how to divide 0.5.

The interest lies in figuring out the unique long run division that will emerge in

each economy in the family, and then comparing them to the ad hoc division rules

for claims problems.

A seemingly serious drawback of the set up is the assumption of fixed values

of cl, ch, and e for a particular economy, irrespective of pairings and time. The

first move towards greater realism might be to let e vary. However, if we allow

e to take different values, then there will be no simple way of specifying the best

response dynamic. For example, let (cl, ch) = (0.4, 0.6) for all pairs at all times in

an economy; but let e take two values 0.5 or 0.9. Should the two agents in a pair

that are bargaining over e = 0.5 during the current period be allowed to draw

inferences from the past play in cases with e = 0.9? If not, and players respond

only according to the plays in the previous period that had e = 0.5, then allowing

for two values of e does not help in any way. Troeger [45] takes this route when

he assumes that agents in a pair state their current optimal demands by consulting

the distribution of past demands in only those cases that had the same amount of

surplus to be divided as this pair has in the current period. (This question does not

even arise in Young [46] and BSY [7] as the bargaining always takes place over one
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unit of exogenously given surplus). Unfortunately, it is very difficult to model the

other case where we wish to allow agents to best respond to all the observed cases.

Thus, the assumption of fixed values of cl, ch, and e for a particular economy is

partly for innocuous convenience and partly because of the lack of a simple theory

to model learning across similar (but not the same) situations.

The bargaining interaction of a pair is modeled as a modified Nash demand

game– the blame game. The demand game involves the two agents in a pair stat-

ing their demands simultaneously. The rules of the game specify what happens

in case the sum of demands does or does not exceed the pie to be divided. The

usual specification involves the agents being awarded their demands in case the

sum of their demands does not exceed the pie, and the agents obtaining nothing

if the sum of their demands exceeds the pie. Let dl (dh) be the demand of the low

(high) claimant, and xl (xh) be her payoff. Demands greater than e are ruled out.

The rules of the blame game try to capture the fact that the bargainers have well

defined initial contributions. The rules are first described in words and then de-

fined formally.

1) The agents are awarded their demands in case the sum of their demands does

not exceed e.

2) If sum of the demands exceeds e, then two cases have to be considered.

a) If both agents demand more or both demand less than their original

contributions, then both get zero. This reflects the thought that we can

not pin down the responsibility for the sum of demands exceeding the

estate size on either agent.

b) If one demands more than her claim and the other less than her claim,

then the former receives zero and the latter receives her demand.
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(xl, xh) =





(dl, dh) if dl + dh ≤ e

(0, 0) if dl + dh > e, dl > cl, dh > ch

(0, 0) if dl + dh > e, dl ≤ cl, dh ≤ ch

(dl, 0) if dl + dh > e, dl ≤ cl, dh > ch

(0, dh) if dl + dh > e, dl > cl, dh ≤ ch

(3.1)

Pairs of demands of the form (d∗l , d
∗
h) = (d∗l , e− d∗l ) that completely exhaust the pie

constitute the Nash equilibria. Let D∗
l denote the range of equilibrium payoffs to

the low-claimant. Formally,

d∗l ∈ D∗
l =





[0, e] if e ≤ cl

[0, cl] if cl < e ≤ ch

[e− ch, cl] if ch < e

(3.2)

The minimum equilibrium payoff to the lower claimant is the remainder that will

be left if the higher claimant is fully compensated, subject to the constraint that it

should be positive. Similarly, the maximum payoff to the lower claimant equals

her original contribution, subject to the constraint that e > cl. This reveals that the

equilibria of the modified demand game incorporate some elements of forward

induction type of reasoning. The general expression is

d∗l ∈ D∗
l = [(D∗

l )min, (D∗
l )max] = [max(0, e− ch), min(e, cl)] (3.3)

and

d∗h = (e− d∗l ) (3.4)

In a one shot interaction the modified Nash demand game has multiple pure strat-
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egy Nash equilibria 1with the equilibrium payoff to the low claimant varying from

(D∗
l )min = max(0, e− ch) to (D∗

l )max = min(e, cl). The technique developed by Fos-

ter and Young [18] is utilized to find the stochastically stable equilibria. In order to

do so several assumptions have to be made which are described next.

1. The Unperturbed Dynamic

The agents make their demands from the discrete and finite set [δ, 2δ, . . . , e−δ] hav-

ing cardinality K (assuming e = (K + 1)δ), where δ can be thought of as the least

count of the monetary scale used in the economy. With a discrete strategy space,

any efficient division of e will be of the form ((K + 1 − k)δ, kδ), where k ∈ [1, K].

An efficient division ((K + 1 − k)δ, kδ) that happens to be a Nash equilibrium of

the blame game will be referred to as the k-equilibrium. The low (high) claimants

will be relatively better off in an equilibrium with low (high) value of k. Evolution

of the process occurs in discrete time. Assuming both populations are of equal

size N , in each time period N random bargaining pairs consisting of a high and

a low claimant will be formed. Each pair has complete knowledge of the origi-

nal contributions, and faces the same problem of dividing e within the framework

of the modified demand game. The state at the end of period t is st = (nl, nh)t,

where nj is a K dimensional vector representing the number of agents in popula-

tion j ∈ (L,H) playing the pure strategy k ∈ [1, K]. The unperturbed adjustment

dynamic is assumed to be the best response dynamic such that the current period

demand of every agent maximizes her expected payoff given the previous period

distribution of demands in the opponents’ population. This dynamic specification

1It is only when e = 1 that there exists a unique Nash equilibrium for the one
shot game with each agent demanding her original contribution, a result that mo-
tivated the choice of rules for the demand game.
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can be concisely represented as a Markov chain M(0,0) on the finite state space S

consisting of all pairs s = (nl, nh) ∈ RK × RK , with
∑

nl
k =

∑
nh

k = N . The tran-

sition matrix for the process is denoted by T(0,0) = [pij], where pij is the probability

that the process lands in state i at time (t + 1) given it was in state j at time t. The

process is time homogeneous as the transition probabilities do not depend on time.

Restricting the demands of the agents to the finite set [δ, 2δ, . . . , e − δ] allows

us to proceed with the calculation of the stochastically stable equilibria by making

the underlying Markov chain, M(0,0), finite. It also ensures that the best response

of agents in the blame game will be a function and not a correspondence. Best

response functions are more likely to lead to singleton absorbing sets for M(0,0)

thereby resulting in the blame game being weakly acyclic.

The best response behavior of agents has at least two unpleasant implications

regarding the evolution of the process, given the motivation of this study. First,

suppose the process starts with all low claimants playing the same pure strategy

k, and all high claimants playing the same pure strategy k‘, with k 6= (K + 1− k‘).

Given this initial state, under the best response dynamic, the process will keep

cycling and the two populations will end up mis-coordinating for ever. Second,

the pure strategy strict Nash equilibria will be recurrent states as the probability

that the process returns to this state at some time in future, given that it is (or, was)

in this state, is unity. Our interest lies in the long run behavior summarized by the

stationary probability distribution over states. A probability distribution over the

states is stationary if, once realized at some time, the probability distribution over

states at all subsequent times remains the same. Since the recurrent class is not

unique, the stationary distribution depends on the initial state. Let v(0,0)(s|s0) be

the relative frequency of the occurrence of state s till time t, given the initial state
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is s0. Then,

lim
t→∞

v(0,0)(s|s0) = µ(0,0)(s|s0) (3.5)

In other words, the process is non-ergodic and can converge to any of the sev-

eral pure strategy Nash equilibria 2 depending on the initial state, and once the

process reaches any such state it gets stuck there. As a result, issues pertaining to

equilibrium selection in the long run can not be addressed. Both of these prob-

lems (perpetual mis-coordination and initial state dependence) can be eliminated

if deviations from best response behavior on part of the agents are introduced.

2. The Perturbed Dynamic

Following BSY [7], a perturbed best response dynamic is defined that first incor-

porates inertia to eliminate continual mis-coordination; and then allows the agents

to play experimental non-best response strategies to overcome initial state depen-

dence of the long run outcome. Let the probability that an agent states the same

demand as in the previous period be λ ∈ (0, 1), and the probability with which

she best responds be (1− λ). We can now define the time homogeneous transition

matrix T(λ,0). It can be proved that there always exists a λmin ∈ (0, 1) that will get

rid of the perpetual mis-coordination. When inertia is added to the best response

dynamic the blame game becomes weakly acyclic. In other words, only the pure

strategy Nash equilibria [47] will be the absorbing sets 3 of M(λ,0). Intuitively, even

a small amount of inertia breaks the cycle of mis-coordination by moving the state

2If there exist absorbing sets that are not singletons, then it is also possible that
the process reaches an absorbing set without actually converging to a pure strategy
Nash equilibrium.

3Since the absorbing sets are singletons, we can now refer to them as the ab-
sorbing states
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from the corners to the interior of the state space. The process will be aperiodic but

not irreducible for all λ ∈ (0, 1). As every Nash equilibrium is still an absorbing

state, the stationary distribution still depends on the initial state, and no meaning-

ful discussion of equilibrium selection is as yet possible. Formally,

lim
t→∞

v(λ,0)(s|s0) = µ(λ,0)(s|s0) (3.6)

To make the Nash equilibria non-absorbing it is further assumed that when an

agent goes on to state a demand that is different from the one in previous period,

then she experiments with probability ε > 0. While experimenting, the agent is

equally likely to state any demand from the feasible set. Thus, in each period an

agent responds inertially with probability λ, plays a best response with probability

(1 − λ)(1 − ε), and engages in random experimentation with probability (1 − λ)ε.

The time homogeneous transition matrix for the resulting process is denoted by

T(λ,ε).

The strategies an agent is allowed to play while experimenting might alter the

equilibrium that will be selected as the (ultra) long run outcome. If the experimen-

tal strategies are chosen at random from the set of feasible strategies then every

state is accessible from every other state in a finite number of periods. The process

becomes irreducible, with the unique recurrent class being the whole state space.

Also, the process is aperiodic because there does not exist any state to which the

process will continually return with a fixed time period (greater than one). This

helps us in two ways. Irreducibility implies that the process can potentially escape

even a Nash equilibrium because in presence of experimentation Nash equilibria

cease to be the absorbing states. Irreducibility, together with aperiodicity, implies

that the stationary probability distribution over states will be unique and indepen-

dent of the initial state.
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It might be reasonable to assume that agents engage in state dependent ex-

perimentation. If agents experiment rationally then they will never play a strat-

egy which (if established as the equilibrium) would give them a lower payoff

than what they obtain in the currently established equilibrium. The time homo-

geneous transition matrix for this specification will be denoted by T(λ,εR). This

process is aperiodic but we do need to argue that it is irreducible. Recall that the

low claimants receive their maximum payoff in the 1-equilibrium, and the high

claimants receive their maximum payoff in the K-equilibrium. Suppose, the pro-

cess is in the k-equilibrium at time t, with 1 < k < K. There is a positive probabil-

ity that all low (high) claimants rationally experiment in period (t + 1) by playing

the strategy 1 (K) which (if established as the equilibrium) will provide them their

maximum possible payoff. Now, in period (t+2) there will be a positive probability

that all agents in both populations best respond. This will lead each low claimant

to play strategy K, and each high claimant to play strategy 1. At this point agents

in both populations are playing their minimum payoff strategies. With rational

experimentation, every state now becomes accessible. Thus, even with rational

experimentation the process is irreducible for every ε > 0 and will have a unique

stationary distribution that is independent of the initial state. However, the two

stationary distributions can be different. Formally,

lim
t→∞

v(λ,ε)(s|s0) = µ(λ,ε)(s) (3.7)

lim
t→∞

v(λ,εR)(s|s0) = µ(λ,εR)(s) (3.8)
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3. Stochastic Stability

Stochastic stability relates to the limit of the stationary distribution as the proba-

bility of experimentation goes to zero. The state s is stochastically stable if

lim
ε→0

µ(λ,ε)(s) > 0 (3.9)

The stochastically stable states are those that are most likely to be observed in the

long run as experimental play by agents becomes exceedingly rare. The states that

can be reached via experimental play by few agents, but escaped only if a large

number of agents experiment, are the prime candidates for being the stochasti-

cally stable states. The predictive power of the analysis is greater the fewer is the

number of states that receive positive probability weight under the above limit.

The algorithm for identifying the stochastically stable states first requires cal-

culating the stationary distribution of the process for an arbitrary ε > 0, and then

finding the states that receive positive probability weight as ε approaches zero.

The limiting operation is easy but the usual technique for calculating the station-

ary distribution is very cumbersome if the state space is large as it involves solving

a huge system of equations.

The next section begins with some useful definitions from graph theory and

describes how to identify the stochastically stable state(s) in a relatively straight-

forward manner using directed graphs (Friedlin and Wentzell [19], Young [46] and

[47]).

4. The Minimal Tree

A graph comprises of two types of elements: nodes and edges. An edge connects

a pair of nodes. A graph in which the edges have a sense of direction are called
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directed graphs. A path is a collection of alternate nodes and edges such that

each node in this collection is incident to a minimum of zero and a maximum of

two edges in this collection. The (in) out-degree of a node is the number of edges

directed (in) out-ward at the node. A path in which all the interior nodes have in

and out degree of one is called a directed path. A node is reachable from some

other node in the graph if there is a directed path that starts at the latter and ends

at the former. A cycle in a graph is a collection of alternate nodes and edges such

that each node in this collection has in and out degree of one. A graph is acyclic

if it contains no cycles, and unicyclic if it contains exactly one cycle. The graph is

connected if it is possible to establish a path from any node to any other node in

the graph. A tree is a connected acyclic graph. Rooted trees are directed acyclic

graphs with (|S| − 1) edges such that each edge is directed towards the root node,

and from every node there is one and only one directed path to the root node.

However, there can be several trees rooted at the same node. A weighted graph

associates a real number with every edge in the graph. The weight of a path in a

weighted graph is the sum of the weights of the edges in the path.

Let G0 be the complete directed graph constructed by using each of the K ab-

sorbing states (i.e., each of the pure strategy Nash equilibria) of the time homoge-

nous Markov chain M(0,0) as a node. The weight on the directed edge (k → k‘) is

taken to be the minimum number of experimenting agents required to move the

process from the k-equilibrium to the k‘-equilibrium, often referred to as the resis-

tance of this transition. Consider any one of the trees rooted at node k ∈ [1, K].

It will feature a directed path having K − 1 directed edges. The resistance of this

rooted tree is defined as the sum of the resistances of the edges along its path. The

resistance of each tree, rooted at each of the K nodes, can be calculated in a similar

manner. Let Γ0 represent the collection of all the trees in G0. The stochastically
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stable state(s) is the one that serves as the root of the tree having minimal resis-

tance (the minimal tree) among all the rooted trees in Γ0 (Friedlin and Wentzell,

[19]). However, if K is large then figuring out the minimal tree by explicitly cal-

culating the resistance of each rooted tree becomes very tedious. The following

section relies heavily on Young [47] and BSY [7] in establishing that the stochasti-

cally stable division of a bankrupt estate corresponds to the divisions proposed by

the constrained equal awards rule, if the underlying interaction is assumed to be

the blame game described in Section 2.

C. The Long Run Equilibrium

It has been argued in the previous section that the absorbing sets of M(λ,0) are sin-

gletons. This implies that M(λ,0) satisfies the no cycling condition (BSY [7]). Since

every finite time-homogenous process reaches an absorbing set, M(λ,0) will even-

tually reach a Nash equilibrium, as only the Nash equilibria are the (singleton)

absorbing sets of M(λ,0). Since we are only interested in identifying the stochasti-

cally stable equilibria we need to focus solely on M(λ,ε) as ε tends to zero. This in

turn implies that the minimal tree will be rooted at a Nash equilibrium. Hence, all

we need to do is to find the tree rooted at a Nash equilibrium that has minimum

total resistance. Those Nash equilibria that serve as the root of the trees having

minimum total resistance will be the stochastically stable states of M(λ,ε).

The equilibria of the blame game have been illustrated at the beginning of

Section 2 for continuous strategy space. When the strategy space is discrete and
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demands are restricted to lie between δ and (e− δ), the Nash equilibria are

d∗l ∈ D∗
l =





[δ, e− δ] if e ≤ cl

[δ, cl] if cl < e ≤ ch

[e− ch, cl] if ch < e

(3.10)

Recall that d∗l denotes an equilibrium payoff to the low claimant, and D∗
l denotes

the set of equilibrium payoffs to the low claimant in the blame game.

In the following discussion only those strategies that are integral multiples of

δ will be considered. Suppose, the process is currently in the equilibrium (x, e−x).

Let

X+ = [d∗l : d∗l > x] and X− = [d∗l : d∗l < x] (3.11)

Thus, x+ ∈ X+ represents an equilibrium payoff to the lower claimant higher than

x. The interest lies in figuring out the equilibrium that is most easily accessible

from the current equilibrium at x. This most likely transition can either be on

the left or on the right of x. We separately figure out the most easily accessible

equilibrium to the right of x, and the most easily accessible equilibrium to the left

of x. The easier of these two will in turn be termed as the most easily accessible

equilibrium from the equilibrium at x. The relevant 2 × 2 games that need to be

considered are shown in Figure 1. The game labeled x+ > x has two pure strategy

Nash equilibria: (x, e − x) and (x+, e − x+). Suppose the economy is currently in

the equilibrium (x, e − x). The equilibrium (x+, e − x+) can emerge if a sufficient

number of L-claimants experiment with the higher demand of x+. The 2× 2 game

helps us calculate the fraction of agents in the L-population that should randomly

experiment with the higher demand of x+ such that the best response for agents in

the H-population is to demand e− x+.
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Fig. 1. The relevant games

Let fl[x → x+] denote the minimum fraction of L-agents that need to experi-

ment and demand x+ > x such that the best response for H-agents is to demand

(e− x+). Formally,

fl.(e− x+) + (1− fl).(e− x+) = fl.0 + (1− fl).(e− x) (3.12)

⇒ fl[x→ x+] =
x+ − x

e− x
(3.13)

Similarly, let fh[(e− x)→ (e− x+)] denote the minimum fraction of H-agents that

will have to experiment with (e− x+) such that the best response for L-agents is to

demand x+. We have

fh.x
− + (1− fh).x

− = fh.0 + (1− fh).x (3.14)
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⇒ fh[(e− x)→ (e− x+)] =
x

x+
(3.15)

1. The Transition (x→ x+)

The main proposition is arrived at through a sequence of simple results. Let (x+
l , e−

x+
l ) be the equilibrium towards the right of x that is most easily accessible as a re-

sult of experiments initiated by agents in the L-population. Then

Result 1(a) The least costly transition initiated by L-claimants towards x+ > x is the

local transition. This is because

x+
l = argminx+ fl[x→ x+] = argminx+ (

x+ − x

e− x
)

⇒ x+
l = (x+)min = (x + δ) (3.16)

Result 1(b) The resistance to the most likely transition towards x+ > x initiated by

experiments on part of L-claimants is

fl[x→ x+
l ] =

δ

e− x
(3.17)

Result 2(a) The least costly transition initiated by H-claimants towards x+ > x is the

extreme transition. This is because

x+
h = argminx+ fh[(e− x)→ (e− x+)] = argminx+ (

x

x+
)
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⇒ x+
h = (x+)max =





e− δ if e ≤ cl

cl if e > cl

(3.18)

Result 2(b) The resistance to the most likely transition towards x+ > x initiated by

experiments of H-claimants is

fh[(e− x)→ (e− x+
h )] =





x
e−δ

if e ≤ cl

x
cl

if e > cl

(3.19)

Result 3(a) The most likely transition from the equilibrium at x towards the right will

be to the equilibrium at x++, where

x++ =





x + δ if fl[x→ x+
l ] ≤ fh[(e− x)→ (e− x+

h )]

e− δ if fl[x→ x+
l ] > fh[(e− x)→ (e− x+

h )] & e ≤ cl

cl if fl[x→ x+
l ] > fh[(e− x)→ (e− x+

h )] & e > cl

(3.20)

Result 3(b) The resistance for the least costly transition for the equilibrium at x will be

r+(x) =





δ
e−x

if fl[x→ x+
l ] ≤ fh[(e− x)→ (e− x+

h )]

x
e−δ

if fl[x→ x+
l ] > fh[(e− x)→ (e− x+

h )] & e ≤ cl

x
cl

if fl[x→ x+
l ] > fh[(e− x)→ (e− x+

h )] & e > cl

(3.21)

Result 4 The least costly transition towards the right will be the local transition initiated

by experiments of L-agents.

For this result to be true it has to be proved that the most likely transition to-

wards the right of any established equilibrium which is initiated by experiments
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of L-claimants requires less number of experimenting agents than the most likely

transition initiated by H-claimants. Formally, we require

fl[x→ x+
l ] ≤ fh[(e− x)→ (e− x+

h )]⇒





x(e− x) ≥ δ(e− δ) if e ≤ cl

x(e− x) ≥ δcl if e > cl

(3.22)

It can be easily verified that both these inequalities hold true. The term [x(e − x)]

is the Nash product at the current equilibrium (x, e − x). If e ≤ cl, the minimum

value of Nash product [δ(e− δ)] occurs when d∗l is δ, or e− δ. Hence, x(e− x) will

not be less than δ(e−δ) if e ≤ cl. If e > cl, then x(e−x) ≥ δ(e−δ) ≥ δcl. The second

part of this inequality holds because e− δ ≥ cl. The first part holds because δ(e− δ)

is the minimum value of the Nash product. This completes the proof of Result 4.

2. The Transition (x− ← x)

The procedure for calculating the equilibrium towards the left of the current equi-

librium x that requires fewest experiments is the same. Calculations show that

fl[x
− ← x] = (

e− x

e− x−
) (3.23)

fh[(e− x−)← (e− x)] = (
x− x−

x
) (3.24)

Result 5 The least costly transition initiated by L-claimants towards x− < x is the jump

to the left most extreme. This is because

x−l = argminx− fl[x
− ← x] = argminx− (

e− x

e− x−
)
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⇒ x−l = (x−)min =





δ if e ≤ ch

e− ch if e > ch

(3.25)

Result 6 The least costly transition initiated by H-claimants towards x− < x is the local

transition to (x− δ). This holds because

x−h = argminx− fh[(e− x−)← (e− x)] = argminx− (
x− x−

x
)

⇒ x−h = (x−)max = (x− δ) (3.26)

Result 7 The least costly transition from any equilibrium x towards the left will be the

local transition initiated by the experiments of H-claimants.

To establish this result it has to be proved that fh[(e− x−)← (e− x)] ≤ fl[x
−
l ← x].

Note that

fh[(e− x−)← (e− x)] ≤ fl[x
−
l ← x]⇒





x(e− x) ≥ δ(e− δ) if e ≤ ch

x(e− x) ≥ δch if e > ch

(3.27)

The two inequalities indeed hold true as can be easily verified. The most likely

transition towards left is again the local transition. However, it is initiated by the

experiments of H-claimants. The resistance for moving from any equilibrium to-

wards the most easily accessible equilibrium on left thus becomes

r−(x) =
δ

x
(3.28)

Result 8 It is easily verified that r+(x) is monotonically increasing in x, and r−(x) is
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monotonically decreasing in x. r+(x) < r−(x) for all x that support a Nash equilibrium

if e > 2cl. r+ intersects r−(x) at 1
2
e if e ≤ 2cl. From an existing equilibrium x the least

costly transition is to the equilibrium at (x + (−)δ) if r+(x) < (>) r−(x).

Proposition 1 The stochastically stable equilibrium corresponds to the constrained equal

awards rule if bargaining among the claimants takes place under the rules of the blame

game .

The minimal tree is given by the lower envelope of [r+(x), r−(x)] when all least cost

transitions are local (Young [47]). This minimal tree is rooted at 1
2
e or cl depending

upon whether e is smaller or greater than 2cl. The constrained equal awards rule

divides the estate equally subject to the constraint that no claimant gets more than

her original contribution. Both agents get half of the estate if the estate is less than

2cl; the low claimant gets cl if the estate is more than 2cl. Hence, the stochastically

stable equilibrium exactly corresponds to the constrained equal awards rule. If we

only allow for rational experimentation by agents then all transitions that involve

a jump to an extreme will apriori be ruled out. However, the stochastically sta-

ble equilibrium remains unchanged as the least costly transitions for the demand

game considered in this section always happen to be the local transitions initiated

by rational experiments.

It is worth noting that Proposition 1 can also be obtained by a different choice

of rules for the demand game. Consider the usual Nash demand game. Suppose,

we add to it the rule that an agent demanding more than her initial contribution

gets nothing, irrespective of the demand of her opponent. This can be interpreted

as imposing claims boundedness on the final payoffs. The reader can verify that

the Nash equilibria of the one shot demand game that imposes claims boundedness
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to the usual demand game are the same as those of the blame game. This gives us

the following corollary to Proposition 1.

Corollary 1 The stochastically stable equilibrium corresponds to the constrained equal

awards rule if the requirement of claims boundedness is added to the rules of the usual

Nash demand game.

D. Importance of Rules of the Demand Game

The rules of the demand game determine the payoffs resulting from the demands

of agents and consequentially affect the analysis in two important ways. First, the

rules determine the set of Nash equilibria of the one-shot demand game. Second,

they bear upon the criterion that determines the most likely transition from an es-

tablished equilibrium. This section analyzes the long run behavior of the process

under some reasonable rules of the demand game. First the usual demand game

is considered, and then the rules are modified to incorporate the idea of efficiency

and claims boundedness as discussed in Section 1.

1. The Usual Demand Game

Let us consider the same basic set up as in the previous section with the only

change being that the rules of the underlying game are those used in the usual

Nash demand game.

1) Agents are awarded their demands if the sum of their demands does not

exceed e.

2) They obtain nothing if the sum of their demands exceeds e.
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For any e ∈ (δ, 1], the Nash equilibrium strategy vector will be of the form

(x, e− x) = (d∗l , d
∗
h) = (d∗l , e− d∗l ), where d∗l ∈ [δ, e− δ]. The search for the minimal

tree will involve the consideration of exactly the same two games shown in Figure

1. The analysis is much easier because the equilibrium payoffs to the agents no

longer vary with the value of e in relation to cl and ch. Note that the minimum

value of the nash product will be [δ(e − δ)], at x = δ, and (e − δ). Thus, the nash

product at any x ∈ [2δ, e−2δ] will be greater than the Nash product at the extremes.

This leads to the following simple result.

Result Local transitions initiated by rational experiments are least costly. Formally,

x(e− x) ≥ δ(e− δ)⇒ fl[x→ x+
l ] ≤ fh[(e− x)→ (e− x+

h )]

⇒ x++ = (x + δ) and r+(x) =
δ

e− x
(3.29)

Similarly,

x(e− x) ≥ δ(e− δ)⇒ fh[(e− x)← (e− x−h )] ≤ fl[x← x−l ]

⇒ x−− = (x− δ) and r−(x) =
δ

x
(3.30)

Proposition 2 Equal division is the stochastically stable equilibrium if we employ the

rules of the usual demand game.

The lower envelope of [r+(x), r−(x)] gives the minimal tree, and the intersection

of the two curves (if it exists) serves as root of the minimal tree since all least cost

transitions are local. The minimal tree is rooted at 1
2
e, and thus equal division is
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the stochastically stable equilibrium. This is because

r+(x) = r−(x) ⇒ δ

e− xss

=
δ

xss

⇒ xss =
1

2
e (3.31)

2. Efficiency

Within the same dynamic framework, now consider the following rules for the de-

mand game.

1) Agents are awarded their demands if the sum of demands equals e.

2) They obtain nothing if the sum of demands exceeds or falls short of e.

It is straightforward to see that the Nash equilibria of this demand game in a one-

shot interaction will be of the form (d∗l , e − d∗l ). Since all the off-diagonal payoffs

are zero, we will have to redo the analysis for identifying the stochastically stable

equilibrium by considering the two games shown in Figure 2. All the notations

carry the same meaning as in Section 3. We have

fl[x→ x+] =
(e− x)

(e− x) + (e− x+)
⇒ x+

l = (x+)min = (x + δ) (3.32)

fh[x→ x+] =
x

x + x+
⇒ x+

h = (x+)max = (e− δ) (3.33)

The least costly transition from any x towards the right will be the transition to the

extreme right initiated by the H-claimants experimenting with their lowest payoff

strategy. This is because fl[x→ x+
l ] ≥ fh[x→ x+

h ], for all x ∈ [δ, e− δ].
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Fig. 2. The relevant games with efficiency

Similar calculations for the transitions towards left of x give

fl[x
− ← x] =

(e− x)

(e− x) + (e− x−)
⇒ x−l = (x−)min = δ (3.34)

fh[x
− ← x] =

x

x + x−
⇒ x−h = (x−)max = (x− δ) (3.35)

The least costly transition from any x towards the left will be the transition to the

extreme left initiated by the L-claimants experimenting with their lowest payoff

strategy. This is because fl[x → x−l ] < fh[x → x−h ], for all x ∈ [δ, e − δ]. Thus, the

resistance functions are

r+(x) =
x

x + (x+)max

=
x

x + (e− δ)
(3.36)

r−(x) =
(e− x)

(e− x) + (e− (x−)min)
=

(e− x)

(e− x) + (e− δ)
(3.37)
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Given an existing equilibrium at x, the least costly transition will be to the equilib-

rium on extreme right if

r+(x) ≤ r−(x)⇒ x

(x+)max

≤ (e− x)

(e− (x−)min)
=

(e− x)

(e− x)max

(3.38)

The kalai-Smorodinsky solution for this bargaining problem would be the payoff

vector (xks, e− xks), such that

xks

xmax

=
(e− xks)

(e− x)max

(3.39)

Thus, if the existing equilibrium provides the low claimant a payoff lower (higher)

than what she would get in the Kalai-Smorodinsky solution, then the least costly

transition will be to the equilibrium on extreme right (left). It is clear from the

above calculations that r+(x) and r−(x) intersect at xks. We might be tempted to

conclude that the lower envelope of [r+(x), r−(x)] gives the minimal tree which

in turn is rooted at xks, and thus the stochastically stable equilibrium should be

(xks, e − xks) = (1
2
e, 1

2
e). It was mentioned earlier that this reasoning is applicable

only when the least costly transitions are local. However, Proposition 10 of BSY [7]

tells us that the stochastically stable equilibrium is indeed (xks, e− xks) = (1
2
e, 1

2
e).

The result is summarized in the following proposition.

Proposition 3 Equal division of the bankrupt estate is the stochastically stable equilib-

rium if the rules of the demand game ask for efficiency.

3. Efficiency and Claims Boundedness

Efficiency alone is not enough for proportionality to emerge. Consider the follow-

ing set of rules that are designed to capture both claims boundedness and effi-
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ciency.

(xl, xh) =





(dl, dh) if dl + dh = e

(dl, 0) if dl + dh = e, dl ≤ cl, dh > ch

(0, dh) if dl + dh = e, dl > cl, dh ≤ ch

(0, 0) if dl + dh 6= e

(3.40)

The set of Nash equilibria will consist of some allocations in which one agent gets

zero payoff. Since such equilibria will be trivially easy to escape, stochastic sta-

bility calculations will be unaffected if these equilibria are ignored. The subset of

Nash equilibria with strictly positive payoffs to the low claimants are given by

d∗l ∈





[δ, e− δ] if e ≤ cl

[δ, cl] if cl < e ≤ ch

[e− ch, cl] if ch < e

(3.41)

The relevant games that need to be considered are again those illustrated in Figure

2. Following the same procedure and using the same notations we have

fl[x→ x+] =
(e− x)

(e− x) + (e− x+)
⇒ x+

l = (x+)min = (x + δ) (3.42)

fh[x→ x+] =
x

x + x+
⇒ x+

h = (x+)max =





e− δ if e ≤ cl

cl if cl < e

(3.43)
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Similarly,

fl[x
− ← x] =

(e− x)

(e− x) + (e− x−)
⇒ x−l = (x−)min =





δ if e ≤ ch

e− ch if ch < e

(3.44)

fh[x
− ← x] =

x

x + x−
⇒ x−h = (x−)max = (x− δ) (3.45)

It turns out that from any x the most likely transitions in either direction are the

extreme transitions for all possible cases. Formally, fl[x → x+
l ] ≥ fh[x → x+

h ] and

fh[x
−
h ← x] ≥ fl[x

−
l ← x]

This further implies that the resistances take the same form as in the previous case.

It was established in the previous case that from any established equilibrium at

x the most likely transition will be to the extreme right (left) if the low claimants

are receiving a lower (higher) payoff than suggested by the kalai-Smorodinsky

solution. The Kalai-Smorodinsky division, which will also be the stochastically

stable equilibrium, is

(xss
l , xss

h ) =





(1
2
e, 1

2
e) if e ≤ cl

([ cl

cl+e
]e, [ e

cl+e
]e) if cl < e ≤ cl

(cle, che) if ch < e

(3.46)

The stochastically stable equilibria exactly correspond to the truncated claims pro-

portional rule. This rule first truncates the claim of each agent from cj to min(cj, e);

and then divides the estate proportionally to the truncated claims. This result in

summarized in the following proposition.

Proposition 4 The division suggested by the truncated claims proportional rule is the
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stochastically stable equilibrium if the rules of the demand game require both efficiency and

claims boundedness.

4. Why Not Proportional?

The results obtained in the previous section help us understand why the propor-

tional division does not emerge as the stochastically stable equilibrium. For ease

of exposition let us consider an example with cl = 0.4, ch = 0.6, and e = 0.5. Since

ch > e, the high claimant will definitely end up loosing the amount of (ch − e),

henceforth referred to as the sunk claim. (It is easy to see that one, both, or none of

the agents might have some sunk claims depending on the particular values of cl,

ch, and e). If we consider this particular set of values then the proportional divi-

sion would be (2, 3). The usual demand game (Section 3.3), the modified demand

game (Section 3.1-2), and the demand game requiring absolute efficiency (Section

4.1) will predict (2.5, 2.5) as the stable division. The demand game requiring both

absolute efficiency and claims boundedness (Section 4.2) will predict (20
9
, 25

9
).

In all the formulations of the demand game the agents were restricted to de-

mand no more than e, for obvious reasons. Irrespective of the rules of the demand

game, that part of an agent’s claim which is sunk will never figure in the calcula-

tions. However, as discussed earlier, when someone is asked to act as a third party

his prescriptions will, in all likelihood, satisfy claims boundedness. More impor-

tantly, there is nothing to prevent this third party from giving serious thought to

the original contribution of the high claimant (0.6), and not just the maximum fea-

sible payoff satisfying claims boundedness (min(0.6, 0.5) = 0.5). This suggests the

following conjecture.

Conjecture 1 An ad hoc division rule that uses the initial claims of agents while dividing
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the estate can not be obtained as the unique stochastically stable equilibrium by any choice

of rules for the demand game.

Most of the the division rules truncate the claims from cj to min(cj, e), either

directly or indirectly. It is transparent that even if some cj > e, the proportional

rule still uses the original contributions (ch, cl) to divide the remaining estate. This

implies that the proportional rule does take into account the sunk claims which in

turn makes it impossible to obtain it as the stochastically stable equilibrium in the

evolutionary framework of this paper. It can not be denied that proportional di-

vision possesses certain properties that make it very attractive.For example, using

proportional division ensures that there is no benefit to an agent from splitting her

claim into several smaller claims, or merging her claim with the claims of other

agents (Moulin [29]). However, this transfer-proofness of proportional division

rule is vacuous when there are only two claimants.

E. Conclusion

The main question the paper tries to address is how to divide up scarce resources

when the involved parties have claims over it. A simple example is the question

of dividing up a bankrupt estate among the creditors. The existing literature has

tried to come up with ad hoc rules from the perspective of a neutral third party.

Proportional division is the most prominent of the several ad hoc rules. The ad

hoc rules differ from each other because of the axioms that are imposed in addi-

tion to efficiency and claims boundedness. Efficiency requires that the estate be

completely divided between the claimants, and claims boundedness requires that

no claimant be awarded more than her initial contribution. This paper tries to ex-
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plore if a rule will emerge in the long run if agents are asked to bargain amongst

themselves. It thus deals with bargaining problems with verifiable initial claims

of both parties. The surplus over which bargaining takes place is assumed to be

insufficient to honor all the claims completely.

It is shown that an ad hoc rule can be rationalized as the unique self-enforcing

long run outcome of Young’s [46] evolutionary bargaining model by adding cer-

tain intuitive rules to the usual Nash demand game. If the agents bargain in the

framework of the usual demand game, the long run stochastically stable equilib-

rium turns out to be equal division of the estate. If, in addition to the usual rules,

demanding more than one’s initial claim leads to a zero payoff (claims bounded-

ness) then the long run equilibrium corresponds to the constrained equal awards

rule. If the rules capture both claims boundedness and efficiency, then the long run

divisions are those prescribed by the truncated claims proportional rule.

Proportional division of a bankrupt estate among the creditors seems so just

and obvious that it is rarely debated. If we ask a person to act as an arbiter in such

a case, the answer will most likely be to divide the estate proportionally to initial

contributions. However, the inability of the framework to account for sunk claims

stops us short of obtaining exact proportionality.
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CHAPTER IV

INEQUALITY, INSECURE PROPERTY, AND CONFLICT

A. Introduction

Over the last two decades there has been an increasing interest in analyzing models

of conflict in economies in which property rights are not well defined or difficult

to enforce. The focus of this literature has been to characterize the equilibrium

level of investments made by the agents in the economy to secure a fraction of the

total output or the total inputs available in the economy using a non-cooperative

game theoretic framework. Such investments are socially unproductive and lead

to welfare losses which could be prevented if property rights were enforceable.

These studies are related to the rent seeking literature wherein agents compete

to win a prize (or a share of the prize) by making investments which are directly

unproductive but determine the probability with which an agent obtains the prize.

Skaperdas [41] provides the canonical static model of conflict in an economy

of two agents where the output depends on the simultaneous choice of productive

inputs by both the agents out of their exogenously given equal endowments. The

remaining endowment is invested in activities that are directly unproductive but

influence the share of output an agent obtains. Neary [34] generalizes this model

by incorporating inequalities in the initial endowments of the agents. Muthoo [31]

analyzes a repeated game wherein agents produce their own output and have to

decide whether to steal the other agent’s output, given exogenous probabilities of

successfully doing so. He concludes that if the agents are sufficiently patient then

there exists a subgame perfect Nash equilibrium in which no agent tries to steal

the other agents’ output and thereby shows that respect for property rights can
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emerge even in the absence of an external enforcement agency.

Our interest lies in analyzing conflict over inputs in the production process

and not the output. This is a crucial difference since a conflict over output, even

in a repeated setting, does not affect the initial conditions in subsequent periods,

but a conflict over inputs does. Grossman and Kim [21] consider a static model

of conflict over inputs between two agents endowed with unequal amounts of the

input that can be used to first produce defensive weapons, and then to produce

output or offensive weapons. Their aim is to highlight that there exist equilibria in

which both agents will invest in producing defensive weapons but not offensive

weapons. Hirshleifer [24] considers a semi-dynamic model in which the fraction

of the total input available in the economy an agent controls in the current period

depends on his investment in weapons during the previous period. The focus

of his paper is to analyze the conditions under which the economy converges to

equilibrium allocations.

In this paper, we try to provide a static model of conflict in which agents care

about current consumption and future shares of input. We believe this simple for-

mulation better captures the realities of a situation of conflict over inputs. Specifi-

cally, we consider an economy of two agents, initially holding unequal amounts of

the total available land. The agents produce output from the land they hold which

in turn can be allocated to consumption or the production of guns. The future

holdings of land are determined by the guns produced by both agents according

to an exogenously assumed functional form. (This is referred to as the contest suc-

cess function in the literature on conflict and rent seeking). Agents maximize the

weighted sum of utility from current consumption and the utility from future land

holding by simultaneously choosing how much to invest in guns. We character-

ize equilibria in which only one, both, and none of the agents produces guns, as a
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function of the total land and the inequality of initial land holdings.

Section 2 describes the set up of the model in detail and proves the existence

and uniqueness of Nash equilibrium for general forms of utility function, pro-

duction function, cost function for producing guns, and the contest success func-

tion. Given the total amount of land in the economy (L) and its initial distribution

(θ, (1 − θ)) between the two agents, four types of equilibria are possible- guns by

none, guns by only one, and guns by both. In Section 3 we analyze the mapping

between an (L, θ) pair and the type of equilibrium that arises when agents have

the same utility, production, and cost functions. It also provides some compara-

tive static results regarding the amount of guns being produced and the effect of

higher valuations of future land holdings relative to current consumption. Section

4 considers the effect of simple forms of heterogeneities in the production and cost

functions across the two agents. The discussion till Section 4 utilizes a contest suc-

cess function that assumes agents share the land equally if none of them produces

guns. Section 5 provides a condensed analysis of the problem using a contest suc-

cess function that assumes that land holdings of agents do not change if none of

them produces guns. Section 6 concludes and provides a brief discussion of the re-

lation between the model used in this paper, the models employed in the literature

on conflict, and the rent seeking literature.

B. The Model

L(> 0) is the total amount of land in the economy. θ ∈ (0, 0.5] is the fraction of the

total land initially held by the poor agent. Thus the poor agent controls θL units

and the rich agent controls (1 − θ)L units of land initially. Land is the only input

in production. Each agent decides how to allocate his output to consumption and
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production of guns. The cost of producing g units of guns is given by c(g). Guns

determine the future distribution of land between the two agents. The final fraction

of land held by the poor agent is given by the contest success function fp(gp, gr),

with fp(gp, gr)+fr(gp, gr) = 1. Each agent derives utility from current consumption

and the amount of land he will hold in the future. β(> 0) is the weight agents put

on utility from future land holdings. λy > 0 and λc > 0 reflect the difference in

the technology of producing output and guns between the two agents. The total

utility of poor agent is denoted by Vp and that of rich agent by Vr, where

Vp[gp, gr] = up[λyyp(θL)− λccp(gp)] + βLfp[gp, gr] (4.1)

Vr[gp, gr] = ur[yr((1− θ)L)− cr(gr)] + βLfr[gp, gr] (4.2)

The aim of the paper is to characterize the amount of guns being produced in

equilibrium as it reflects the welfare loss in the economy due to the absence of well

defined property rights. We are interested in obtaining results for general forms

of utility function, cost function, production function and the contest success func-

tion.

Assumption 1: u′ ≥ 0, u′(0) =∞, u′′ < 0, u′′′ > 0, y′ > 0, y′′ ≤ 0, c′ > 0, and c′′ ≥ 0.

The marginal utility of consumption is positive and decreasing for all levels of con-

sumption. The marginal utility of consumption is assumed to be infinite at c = 0

to ensure that both agents devote a strictly positive amount of their output to con-

sumption for all values of L and θ under consideration. The production function

is weakly concave, and the cost of producing guns is weakly convex.
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Assumption 2(a): 0 < fi < 1, ∂fi

∂gi
> 0, ∂2fi

∂g2
i

< 0, ∂fi

∂gj
< 0, ∂2fi

∂gj∂gi
≥ 0 if gi ≥ gj ,

f(g, g) = 0.5, ∂fi

∂gi
=

∂fj

∂gj
at(g, g), ∂

∂gi
[

∂fi
∂gi
∂fj
∂gj

] ≤ 0.

Guns affect the future distribution of land. The future land holding of both agents

is positive because we assume that infinite investment in guns is required by an

agent to capture all the land, for any given finite investment in guns by the other

agent. The marginal effect of guns is assumed to be positive but decreasing in one’s

own investment in guns for all levels of guns of the other agent. For any given

amount of one’s own guns, one’s future land holding decreases as guns of the

other agent increase. Agents share the land equally if they have the same amount

of guns. An example of a contest success function that satisfies these assumptions

is

fp(gp, gr; α) =
0.5α + h(gp)

α + h(gp) + h(gr)

where α > 0 is a constant and h(·) is a increasing and concave function. The

higher is α, the lower will be the effectiveness of guns in determining the final

land holdings. Most of the contest success functions used in the conflict and rent

seeking literatures are special cases of this specification (Amegashie [2]).

It might be argued that if both agents do not produce any guns then the final

fractions held by the two agents should equal the initial fractions. This leads us to

consider an alternative specification of the contest success function whose proper-

ties are summarized below.

Assumption 2(b): 0 < f θ
i < 1, ∂fθ

i

∂gi
> 0, ∂2fθ

i

∂g2
i

< 0, ∂fθ
i

∂gj
< 0, fp(0, 0) = θ, ∂fθ

p

∂θ
> 0,

∂
∂θ

[
∂fθ

p

∂gp
] < 0, ∂

∂θ
[∂fθ

r

∂gr
] > 0, ∂

∂gi
[

∂fθ
i

∂gi

∂fθ
j

∂gj

] < 0, ∂2fθ
p

∂gr∂gp
< 0 if gp < gr, ∂fθ

r

∂gr
→ 0, ifθ → 0.
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An example of a contest success function that satisfies Assumption 2(b) is

f θ
p (gp, gr; θ, α) =

θα + h(gp)

α + h(gp) + h(gr)

This contest success function embodies history dependence in the final shares and

has not been studied in the literature on conflict to the best of our knowledge.

Corchon [11] uses a function based on the same idea of history dependence to

analyze rent seeking expenditures in a model where agents have unequal prior

probabilities of obtaining the prize.

1. Existence and Uniqueness of Equilibrium

The poor agent chooses gp ∈ [0, c−1
p [ 1

λy
yp(θL)]] to maximize Vp taking gr as given.

Similarly, the rich agent chooses gr ∈ [0, c−1
r [yr((1− θ)L)]] to maximize Vr taking gp

as given. The optimal values (g∗p, g
∗
r) constitute the Nash equilibrium. Note that

∂Vp

∂gp

= − λcu
′
p[λyyp(θL)− λccp(gp)].c

′
p(gp) + βL

∂fp

∂gp

∀ gp, gr (4.3)

The term λcu
′
p[yp(θL) − cp(gp)].c

′
p(gp) gives the marginal cost of allocating output

to guns. βL∂fp

∂gp
gives the corresponding marginal benefit. (For the sake of brevity

we will not write the arguments whenever unnecessary. We will however keep

the subscripts to distinguish the agents.) The marginal total utility from allocating

output to guns is decreasing with respect to one’s own investment in guns, as

∂2Vp

∂g2
p

= − λc[u
′
p.c

′′
p − λcu

′′
p.(c

′
p)

2] + βL
∂2fp

∂g2
p

< 0 ∀ gp, gr (4.4)

Also,

∂2Vp

∂gr∂gp

= βL
∂2fp

∂gr∂gp

∀ gp, gr (4.5)
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Similarly,

∂Vr

∂gr

= − u′r.c
′
r + βL

∂fr

∂gr

∀ gp, gr (4.6)

∂2Vr

∂g2
r

= − [u′r.c
′′
r − u′′r .(c

′
r)

2] + βL
∂2fr

∂g2
r

< 0 ∀ gp, gr (4.7)

∂2Vr

∂gp∂gr

= βL
∂2fr

∂gp∂gr

∀ gp, gr (4.8)

Since, fp + fr = 1

∂fp

∂gp

+
∂fr

∂gp

=
∂fp

∂gr

+
∂fr

∂gr

=
∂2fp

∂gr∂gp

+
∂2fr

∂gp∂gr

= 0 (4.9)

Proposition 1: There exists a unique Nash equilibrium (g∗p, g
∗
r) for any given (L, θ)

pair.

Proof: The strategy set of both agents is compact and convex. The payoff function

is continuous and concave in a player’s own strategy (∂2Vi

∂g2
i

< 0). Moreover, the

Jacobian of the implicit form of the best response functions given by

J(gp, gr) =



−[u′p.c

′′
p − u′′p.(c

′
p)

2] + βL∂2fp

∂g2
p

βL ∂2fp

∂gr∂gp

βL ∂2fr

∂gp∂gr
− [u′r.c

′′
r − u′′r .(c

′
r)

2] + βL∂2fr

∂g2
r




is clearly negative definite as both the diagonal elements are negative, and the de-

terminant of J(gp, gr) is positive. Hence, there exists a unique Nash equilibrium

for any given (L, θ) pair (Rosen, [38]). The proposition also holds for the contest

success functions of the type f θ
p (·). We can characterize the equilibria that emerge

for the various feasible (L, θ) pairs based upon whether only one, both, or none of

the agents invest in guns. The model can thus lead to the following four types of
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equilibria.

No guns (g∗p = 0, g∗r = 0): For a given (L, θ) pair, the no guns equilibrium will arise

if even after consuming all the output the marginal cost of guns is no less than the

marginal benefit of guns for both agents. Or,

∂Vp

∂gp

|(gp=0,gr=0) ≤ 0 and
∂Vr

∂gr

|(gp=0,gr=0) ≤ 0 (4.10)

Guns by rich only (g∗p = 0, g∗r > 0): For some (L, θ) pairs it is possible that the rich

agent finds it worthwhile to forego consumption and allocate some of his output

to guns, but the poor agent does not. The (L, θ) pairs that can sustain this type of

equilibrium can be fully described by

∂Vp

∂gp

|(gp=0,gr>0) ≤ 0 and
∂Vr

∂gr

|(gp=0,gr>0) = 0 (4.11)

Guns by poor only (g∗p > 0, g∗r = 0): This equilibrium will characterized by

∂Vp

∂gp

|(gp>0,gr=0) = 0 and
∂Vr

∂gr

|(gp>0,gr=0) ≤ 0 (4.12)

Guns by both (g∗p > 0, g∗r > 0): The equilibrium in which both agents produce

guns is given by

∂Vp

∂gp

|(gp>0,gr>0) = 0 and
∂Vr

∂gr

|(gp>0,gr>0) = 0 (4.13)



69

C. Equilibria with Same Utility, Production, and Cost Functions

We first present the results for the baseline model in which both agents have the

same utility, production, and cost functions, i.e., λy = λc = 1.

Lemma 1: There does not exist an equilibrium in which only the poor agent pro-

duces guns.

Proof: The first order conditions that characterize the equilibrium in which only

the poor agent produces guns are given in equation (4.12). These conditions re-

duce to the following two equations.

u′r[yr((1− θ)Lpg)]c
′
r(0) ≥ βLpg

∂fr

∂gr

(4.14)

u′p[yp(θLpg)− cp(gp)]c
′
p(gp) = βLpg

∂fp

∂gp

(4.15)

Note that, g∗p > g∗r implies ∂fr

∂gr
> ∂fp

∂gp
. Similarly, [yr((1 − θ)Lpg)] > [yp((θLpg) −

cp(gp))] and c′p(gp) > c′r(0) imply u′r[yr((1 − θ)Lpg)]c
′
r(0) < u′p[yp(θLpg) −

cp(gp)]c
′
p(gp). Hence, the two first order conditions can not hold simultaneously.

This in turn proves that there can not exist an equilibrium in which only the poor

agent produces guns.

Let Lng(θ) be the maximum value of total land in the economy till which no

agent produces guns for a given θ. The collection of Lng(θ) values for all θ ∈ (0, 0.5]

constitutes the upper boundary of the no-guns region in the (L, θ) space. One im-

plication of Lemma (1) is that at a given value of θ the rich agent will produce

strictly positive amount of guns for all L > Lng(θ). The poor agent will also start

producing guns for this value of θ once the total land in the economy reaches a

critical value denoted by Lbg(θ) ≥ Lng(θ). The collection of Lbg(θ) values for all
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θ ∈ (0, 0.5] constitutes the lower boundary of the region in the (L, θ) space in which

both agents produce guns. We characterize these boundaries in the following two

lemmas.

Lemma 2: The upper boundary of the no-guns region in (L, θ) space is upward

sloping and convex.

Proof: The boundary of the no guns region in the (L, θ) space is defined implicitly

by

∂Vr

∂gr

= 0 ⇒ u′r[yr((1− θ)L)].c′r(0) = kβL (4.16)

where, k = ∂fp

∂gp
|(0,0) = ∂fr

∂gr
|(0,0) = constant. Total differentiation of equation (4.15)

with respect to L, and θ gives

[(1− θ)u′′r .y
′
r.c

′
r(0)− kβ] · dLng + [−Lngu

′′
r .y

′
r.c

′
r(0)] · dθ = 0 (4.17)

⇒ ∂Lng(θ)

∂θ
=

Lngu
′′
r .y

′
r.c

′
r(0)

[(1− θ)u′′r .y′r.c′r(0)− kβ]
> 0 ∀ θ ∈ (0, 0.5] (4.18)

Thus, the boundary of the no-guns region is upward sloping. This boundary is

convex, as

∂2Lng(θ)

∂θ2
=

kβL2
ng(u

′′′
r .(y′r)

2 + u′′r .y
′′
r ) + Lng(u

′′
r .y

′
r.cr(0))2

[(1− θ)u′′r .y′r.c′r(0)− kβ]2
> 0 (4.19)

Lemma 3: The lower boundary of the region in which both agents produce guns

is downward sloping. The amount of guns along this boundary decreases as in-

equality decreases.
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Proof: For each θ ∈ (0, 0.5], the maximum amount of land that can sustain a Nash

equilibrium in which only the rich agent produces guns is implicitly defined by

∂Vr

∂gr

|gp=0,gr>0 = 0 and
∂Vp

∂gp

|(gp=0,gr>0) = 0 (4.20)

It has been proved in Lemma (1) that for any given θ ∈ (0, 0.5] if L ≤ Lng(θ), then

no agent produces guns. If L > Lng, the rich agent allocates a strictly positive

amount to guns but the poor agent may still not find it worthwhile to invest in

guns as it is possible that ∂Vp

∂gp
|(gp=0,gr>0) < 0. As we keep increasing L, we reach a

critical value of L equal to Lbg(θ) such that in equilibrium ∂Vp

∂gp
|(gp=0,gr>0) becomes

zero and ∂Vr

∂gr
|(gp=0,gr>0) is also zero. At this point the poor agent will also start in-

vesting in guns. The pairs [Lbg(θ), θ] define the boundary of the region in (L, θ)

space above which the equilibrium involves both agents investing in guns.

The [Lng(θ), θ] boundary was completely determined by only one equation (4.15).

g∗p and g∗r were both zero along the upper boundary of the no-guns region. The first

order condition of the rich agent (∂Vr

∂gr
|(gp=0,gr=0) = 0) was sufficient to determine Lng

as a function of θ, because

∂Vr

∂gr

|(gp=0,gr=0) = 0 ⇒ ∂Vp

∂gp

|(gp=0,gr=0) < 0

It is important to note that [Lbg(θ), θ] boundary above which the poor agent

also invests in guns can not be analogously characterized by using only the first

order condition of the poor agent (∂Vp

∂gp
|(gp=0,gr>0) = 0). This is because the equi-

librium investment in guns by the rich agent (g∗r) can vary along this boundary,

unlike the [Lng(θ), θ] boundary along which g∗r is always zero. Hence, we need the

first order condition of both agents. Equation (19) defines this boundary. It should
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be interpreted as a system of two equations in three unknowns (L, θ, gr). The two

equalities in equation (4.19) can be rewritten as

u′r[yr((1− θ)Lpg)− cr(gr)]c
′
r(gr)− βLpg

∂fr

∂gr

= 0 (4.21)

and

u′p[yp(θLpg)]c
′
p(0)− βLpg

∂fp

∂gp

= 0 (4.22)

The collection of (L, θ, gr) values that satisfy the above two equations define the

boundary in (L, θ) space above which the poor agent also invests in guns. Suppose,

(L1, θ1, g1
r) is one such point. If we change θ slightly, both L and gr will (potentially)

vary to ensure that the two equalities still hold. This operation can be summarized

by the total differentiation of each equation with respect to L, θ, and gr as given

below.

[(1−θ)u′′r .c
′
r.y

′
r−β

∂fr

∂gr

] ·dLpg +[u′r.c
′′
r −u′′r .(c

′
r)

2−βLpg
∂2fr

∂g2
r

] ·dgr = [Lpgu
′′
r .c

′
r.y

′
r] ·dθ

(4.23)

[θu′′p.y
′
p.c

′
p − β

∂fp

∂gp

] · dLpg + [−βLpg
∂2fp

∂gr∂gp

] · dgr = [−Lpgu
′′
p.y

′
p.c

′
p] · dθ (4.24)

Define

∆1 =




(1− θ)u′′r .c
′
r.y

′
r − β ∂fr

∂gr
u′r.c

′′
r − u′′r .(c

′
r)

2 − βLpg
∂2fr

∂g2
r

θu′′p.y
′
p.c

′
p − β ∂fp

∂gp
− βLpg

∂2fp

∂gr∂gp



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∆θ
1(Lpg) =




Lpgu
′′
r .c

′
r.y

′
r u′r.c

′′
r − u′′r .(c

′
r)

2 − βLpg
∂2fr

∂g2
r

−Lpgu
′′
p.y

′
p.c

′
p − βLpg

∂2fp

∂gr∂gp




∆θ
1(gr) =




(1− θ)u′′r .c
′
r.y

′
r − β ∂fr

∂gr
Lpgu

′′
r .c

′
r.y

′
r

θu′′p.y
′
p.c

′
p − β ∂fp

∂gp
− Lpgu

′′
p.y

′
p.c

′
p




The determinant of ∆θ
1(Lpg), and ∆θ

1(gr) is unambiguously negative. The determi-

nant of ∆1 is positive under a weak assumption. Using Cramer’s rule we obtain

∂Lpg

∂θ
=
|∆θ

1(Lpg)|
|∆1| < 0 &

∂gr

∂θ
=
| ∆θ

1(gr) |
| ∆1 | < 0 along the (Lpg, θ) boundary.

(4.25)

1. Guns and Welfare

We now give comparative static results on the amount of guns that are produced

as the total land or the inequality in initial land holdings changes.

Lemma 4: For L ∈ (Lng, Lbg), the rich agent produces more guns with an increase

in L holding θ constant, but less guns with an increase in θ holding constant.

Proof: Consider an economy characterized by an (L, θ) pair such that Lng < L <

Lbg. In this economy only the rich agent would be producing guns. Moreover, for

small changes in L, or θ the poor agent will still not produce guns. The effect of an

increase in land while holding inequality constant (or, vice versa) can be obtained

by the appropriate total differentiation of the first order condition of the rich agent.

The first order condition of the rich agent for all θ and L ∈ (Lng, Lbg) is
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u′r[yr((1− θ)L)− cr(gr)]c
′
r(gr)− βL

∂fr

∂gr

= 0 (4.26)

Total differentiation of this equation with respect to L and gr, and θ and gr gives

∂gr

∂L
=

[β ∂fr

∂gr
− (1− θ)u′′r .c

′
r.y

′
r]

[u′r.c′′r − u′′r .(c′r)2 − βL∂2fr

∂g2
r
]

> 0 (4.27)

And,

∂gr

∂θ
=

[Lu′′r .c
′
r.y

′
r]

[u′r.c′′r − u′′r .(c′r)2 − βL∂2fr

∂g2
r
]

< 0 (4.28)

Lemma 5: For L > Lbg, an increase in land for a given level of inequality leads to

higher production of guns by the rich agent. The effect on the poor agents’ pro-

duction of guns is not necessarily monotonic.

Proof: The first order conditions that characterize an equilibrium involving pro-

duction of guns by both agents are given by equation (13), and can be rewritten

as

u′r[yr((1−θ)L)−cr(gr)]c
′
r(gr)−βL

∂fr

∂gr

= 0 & u′p[yp(θL)−cp(gp)]c
′
p(gp)−βL

∂fp

∂gp

= 0

(4.29)

Total differentiation of this system with respect to gr, gp, and L gives

[u′r.c
′′
r −u′′r .(c

′
r)

2−βL
∂2fr

∂g2
r

] ·dgr +[−βL
∂2fr

∂gp∂gr

] ·dgp = [−(1−θ)u′′r .c
′
r.y

′
r +β

∂fr

∂gr

] ·dL

(4.30)

[−βL
∂2fp

∂gr∂gp

]·dgr+[u′p.c
′′
p−u′′p.(c

′
p)

2−βL
∂2fr

∂g2
r

]·dgp = [−θu′′p.y
′
p.c

′
p+β

∂fp

∂gp

]·dL (4.31)
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We can now define

∆2 =




u′r.c
′′
r − u′′r .(c

′
r)

2 − βL∂2fr

∂g2
r

− βL ∂2fr

∂gp∂gr

−βL ∂2fp

∂gr∂gp
u′p.c

′′
p − u′′p.(c

′
p)

2 − βL∂2fr

∂g2
r




∆L
2 (gr) =



−(1− θ)u′′r .c

′
r.y

′
r + β ∂fr

∂gr
− βL ∂2fr

∂gp∂gr

−θu′′p.y
′
p.c

′
p + β ∂fp

∂gp
u′p.c

′′
p − u′′p.(c

′
p)

2 − βL∂2fr

∂g2
r




∆L
2 (gp) =




u′r.c
′′
r − u′′r .(c

′
r)

2 − βL∂2fr

∂g2
r

− (1− θ)u′′r .c
′
r.y

′
r + β ∂fr

∂gr

−βL ∂2fp

∂gr∂gp
− θu′′p.y

′
p.c

′
p + β ∂fp

∂gp




The determinant of ∆2, and ∆L
2 (gr) is always positive, but that of ∆L

2 (gp) is difficult

to establish. We have

∂gr

∂L
=
|∆L

2 (gr)|
|∆2| > 0 and

∂gp

∂L
=
|∆L

2 (gp)|
|∆2| > or < 0 (4.32)

Lemma 6: For all L > Lbg, an increase in θ (equality) for a given L leads to higher

production of guns by the poor agent.

Proof: The first order conditions that characterize an equilibrium involving pro-

duction of guns by both agents are given by equation (26). Total differentiation of

this system with respect to gr, gp, and θ gives

[u′r.c
′′
r − u′′r .(c

′
r)

2 − βL
∂2fr

∂g2
r

] · dgr + [−βL
∂2fr

∂gp∂gr

] · dgp = [Lu′′r .y
′
r.c

′
r] · dθ (4.33)
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[−βL
∂2fp

∂gr∂gp

] · dgr + [u′p.c
′′
p − u′′p.(c

′
p)

2 − βL
∂2fr

∂g2
r

] · dgp = [−Lu′′p.y
′
p.c

′
p] · dθ (4.34)

Let us define

∆θ
2(gr) =




Lu′′r .y
′
r.c

′
r − βL ∂2fr

∂gp∂gr

−Lu′′p.y
′
p.c

′
p u′p.c

′′
p − u′′p.(c

′
p)

2 − βL∂2fr

∂g2
r




∆θ
2(gp) =




u′r.c
′′
r − u′′r .(c

′
r)

2 − βL∂2fr

∂g2
r

Lu′′r .y
′
r.c

′
r

−βL ∂2fp

∂gr∂gp
− Lu′′p.y

′
p.c

′
p




The determinant of ∆θ
2(gp) is positive but that of ∆θ

2(gr) does not have an unam-

biguous sign. Thus

∂gr

∂θ
=

8

g
|∆θ

2(gr)||∆2| > or < 0 and
∂gp

∂θ
=
|∆θ

2(gp)|
|∆2| > 0 (4.35)

It would be interesting to know the degree of welfare loss in the economy as

measured by the fraction of total output spent on the production of guns. Unfortu-

nately, the results in this section show that it is difficult to determine whether the

production of guns is increasing or decreasing with changes in total and inequality

for all the possible values. This is the drawback of using general forms of utility,

production, cost, and contest success functions.

2. Effect of β

Lemma 7: Higher weight on future land holdings lowers the upper boundary of

the no-guns region.
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Proof: This follows from implicitly differentiating equation () with respect to β

and L, holding θ constant.

∂Lng(θ)

∂β
=

kLng

[(1− θ)u′′r .y′r.c′r(0)− kβ]
< 0 ∀ θ ∈ (0, 0.5] (4.36)

Lemma 8: At a given (L, θ) such that Lng < L < Lbg, the amount of guns produced

by the rich agent will increase if β increases.

Proof: This follows immediately from the total differentiation of the first order

condition of the rich agent (equation 21) with respect to gr and β, while holding L

and θ constant.

∂gr

∂β
=

[L∂fr

∂gr
]

[u′r.c′′r − u′′r .(c′r)2 − βLpg
∂2fr

∂g2
r
]

> 0 (4.37)

Lemma 9: An increase in β lowers the lower boundary of the region in which both

agents produce guns.

Proof: We need to show that if β increases then the value of L that satisfies equal-

ities in equations (20)and(21) decreases, for any given θ. Total differential of this

system with respect to L, gr, and β gives

[(1−θ)u′′r .c
′
r.y

′
r−β

∂fr

∂gr

]·dLpg+[u′r.c
′′
r−u′′r .(c

′
r)

2−βLpg
∂2fr

∂g2
r

]·dgr = [Lpg
∂fr

∂gr

]·dβ (4.38)

[θu′′p.y
′
p.c

′
p − β

∂fp

∂gp

] · dLpg + [−βLpg
∂2fp

∂gr∂gp

] · dgr = [Lpg
∂fp

∂gp

] · dβ (4.39)

Define,
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∆β
1 (Lpg) =




Lpg
∂fr

∂gr
u′r.c

′′
r − u′′r .(c

′
r)

2 − βLpg
∂2fr

∂g2
r

Lpg
∂fp

∂gp
− βLpg

∂2fp

∂gr∂gp




The determinant of ∆β
1 (Lpg) is always negative, and thus

∂Lpg

∂β
=
|∆β

1 (Lpg)|
|∆1| < 0 (4.40)

Lemma 10: For L > Lbg, an increase in β holding L and θ constant leads to higher

production of guns by both agents.

Proof: The first order conditions that characterize an equilibrium in which both

agents produce guns are given in equation (26). Total differentiation of this system

with respect to gr, gp, and β gives

[u′r.c
′′
r − u′′r .(c

′
r)

2 − βL
∂2fr

∂g2
r

] · dgr + [−βL
∂2fr

∂gp∂gr

] · dgp = [L
∂fr

∂gr

] · dβ (4.41)

[−βL
∂2fp

∂gr∂gp

] · dgr + [u′p.c
′′
p − u′′p.(c

′
p)

2 − βL
∂2fr

∂g2
r

] · dgp = [L
∂fp

∂gp

] · dβ (4.42)

Define

∆β
2 (gr) =




L∂fr

∂gr
− βL ∂2fr

∂gp∂gr

L∂fp

∂gp
u′p.c

′′
p − u′′p.(c

′
p)

2 − βL∂2fr

∂g2
r




∆β
2 (gp) =




u′r.c
′′
r − u′′r .(c

′
r)

2 − βL∂2fr

∂g2
r

L∂fr

∂gr

−βL ∂2fp

∂gr∂gp
L∂fp

∂gp




The determinant of ∆β
2 (gr), and ∆β

2 (gp) is positive. Thus,
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∂gr

∂β
=
|∆β

2 (gr)|
|∆2| > 0 and

∂gp

∂β
=
|∆β

2 (gp)|
|∆2| > 0 (4.43)

D. Effect of Heterogeneity

We now try to analyze the effect of simple forms of heterogeneity in production

function and cost function across the agents. In order to simplify the analysis we

will consider heterogeneity in only one of the functions at a time. The major aim is

once again to come up with the characterization of the equilibrium.

1. Heterogeneous Production Functions

Let the production function of the poorly endowed agent be λyyp(·), and that of

the rich agent be yr(·), with yp(·) = yr(·) as before. We interpret λy as a parameter

that reflects the technological difference between the two agents. By Proposition 1,

there exists a unique Nash equilibrium for a given (L, θ) pair, and any given λy > 0.

We make the additional assumption that yp(·)(= yr(·)) is a linear function of its ar-

gument. However, all the results in this section hold for any concave production

function. It is easy to show that for a given λ > 1, there exists θy = 1
1+λy

∈ (0, 0.5),

such that for all θ > θy the poorly endowed agent has a greater output than the

richly endowed agent. When λy ≤ 1, the poorly endowed agent never produces

more output for all θ ∈ (0, 0.5), and all L > 0. The immediate implication is that

for θ > θy as L increases the poorly endowed agent will start producing guns first.

The boundary of the no guns region now consists of two distinct curves as sum-

marized in the following lemma.

Lemma 11: For λy > 1, the upper boundary of the no guns region is upward
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sloping and convex for 0 < θ < θy, and downward sloping and convex for θy <

θ < 0.5.

Proof: From the discussion above, the upper boundary of the no-guns region is

defined by

u′r[((1− θ)Lr
ng)].c

′
r(0) = kβLr

ng if θ ≤ θy (4.44)

and

u′p[λy(θL
p
ng)].c

′
p(0) = kβLp

ng if θ ≥ θy (4.45)

This boundary is convex and increasing in θ for θ < θy (see Lemma (2)). Although

convex, it is decreasing in θ for θ > θy since

∂Lp
ng(θ)

∂θ
=

−λyL
p
ngu

′′
p.c

′
p(0)

[λy(θL
p
ng)u′′p.c′p(0)− kβ]

< 0 ∀ θ ∈ (0, 0.5] (4.46)

and

∂2Lp
ng(θ)

∂θ2
=

λ2
yL

p
ng[kβLp

ng(u
′′′
p .c′p(0)) + (u′′pc

′
p(0))2]

[λy(θL
p
ng)u′′p.c′p(0)− kβ]2

> 0 ∀ θ ∈ (0, 0.5] (4.47)

From the analysis of the previous section we can conclude that for any θ < θy there

exists an Lp
bg > Lr

ng such that the poor agent also produces guns for all L > Lp
bg.

Similarly, for any θ > θy there exists an Lr
bg > Lp

ng such that the rich agent also pro-

duces guns for all L > Lr. The combination of Lp
bg(θ|θ < θy) and Lr

bg(θ|θ > θy) de-

fines the boundary above which both agents produce guns. The following lemma

characterizes this boundary.

Lemma 12: The boundary above which both agents produce guns is downward
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sloping for θ < θy, and upward sloping for θ > θy, for any given λy > 1.

Proof: For a given θ ∈ (0, 0.5) and λy > 1, the minimum amount of land above

which both agents produce guns is implicitly defined by

∂Vr

∂gr

|(gp=0,gr>0) = 0 &
∂Vp

∂gp

|(gp=0,gr>0) = 0 for θ < θy (4.48)

and

∂Vr

∂gr

|gp>0,gr=0 = 0 &
∂Vp

∂gp

|(gp>0,gr=0) = 0 for θ > θy (4.49)

The first set of conditions determine the boundary for the case where the poor

agent is the last to produce guns. The first set of conditions defined for θ < θy

are exactly similar to the set of equalities in equation (20). Hence, the required

boundary will be downward sloping for θ < θy, and the amount of guns being

produced by the rich agent will be decreasing along the boundary (see Lemma (3)).

The second set of equalities defined for θ > θy can be rewritten as

u′r[(1−θ)Lr
bg]c

′
r(0)−βLr

bg

∂fr

∂gr

= 0 & u′p[λyθL
r
bg−cp(gp)]c

′
p(gp)−βLr

bg

∂fp

∂gp

= 0 (4.50)

Total differential of this system with respect to Lr
bg, gp, and θ gives

[(1− θ)u′′r .c
′
r(0)− β

∂fr

∂gr

] · dLr
bg + [−βLr

bg

∂2fr

∂gp∂gr

] · dgp = [Lr
bgu

′′
r .c

′
r(0)] · dθ (4.51)

[λyθu
′′
p.c

′
p−β

∂fp

∂gp

]·dLr
bg+[u′p.c

′′
p−u′′p.(c

′
p)

2−βLr
bg

∂2fp

∂g2
p

]·dgr = [−λyL
r
bgu

′′
p.c

′
p]·dθ (4.52)

Using Cramer’s rule to solve the above two equations gives
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∂Lr
bg

∂θ
> 0 &

∂gp

∂θ
> 0 along the (Lr

bg(θ > θy), θ) boundary. (4.53)

2. Heterogeneous Cost Functions

Let the cost function of the poorly endowed agent be λccp(·), and that of the rich

agent be cr(·), with cp(·) = cr(·) as before. We interpret λc as a parameter that re-

flects the difference in the technology of producing guns. By Proposition 1, there

exists a unique Nash equilibrium for a given (L, θ) pair, and any given λc > 0. If

λc > 1, then the poorly endowed agent has a cost disadvantage as well and the

nature of results obtained in Section (3) does not change. However,

Lemma 13: For a given λc < 1, there exists a θc ∈ (0, 0.5) such that for all θ > θc the

poor agent starts producing guns before the rich agent as L increases.

Proof: Suppose the rich agent starts producing guns before the poor agent for all

θ ∈ (0, 0.5). The value Lr
ng(θ) at which this happens for a given θ will then be

implicitly given by

u′r[yr((1− θ)Lr
ng]c

′
r(0)− kβLr

ng = 0 (4.54)

If the poor agent were to start producing guns before the rich agent for all θ ∈
(0, 0.5) then the Lp

ng at which this for a given θ will be implicitly given by

λcu
′
p[yp(θL

p
ng)]c

′
p(0)− kβLp

ng = 0 (4.55)

It can be verified that ∂Lr
ng

∂θ
> 0, whereas ∂Lp

ng

∂θ
< 0. Moreover, Lr

ng(θ → 0) < Lp
ng(θ →

0), but Lp
ng(θ = 0.5) < Lr

ng(θ = 0.5). Hence, we conclude that for any λc < 1 there

exists a θc ∈ (0, 0.5) such that Lp
ng(θc) = Lr

ng(θc), Lr
ng(θ|θ < θc) < Lp

ng(θ|θ < θc), and
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Lp
ng(θ|θ > θc) < Lr

ng(θ|θ > θc).

Lemma 14: The lower boundary of the region in which both agents produce guns

is downward sloping for θ < θc, and upward sloping for θ > θc, for any given

λc < 1. (The proof is similar to that of Lemma (12)).

E. History Dependence

The analysis till now has assumed that if none of the agents produces guns then

they share the land equally in future irrespective of the heterogeneity in initial

land holdings. In this section we characterize the equilibria for various (L, θ) pairs

under the assumption that the final land holdings are the same as the initial land

holdings if no agent produces guns. Specifically, we make the following assump-

tions.

Assumption 2(b): 0 < f θ
i < 1, ∂fθ

i

∂gi
> 0, ∂2fθ

i

∂g2
i

< 0, ∂fθ
i

∂gj
< 0, f θ

p (0, 0) = θ, ∂fθ
p

∂θ
> 0,

∂
∂θ

[
∂fθ

p

∂gp
] < 0, ∂

∂θ
[∂fθ

r

∂gr
] > 0, ∂

∂gi
[

∂fθ
i

∂gi

∂fθ
j

∂gj

] < 0, ∂2fθ
p

∂gr∂gp
< 0 if gp < gr, ∂fθ

r

∂gr
→ 0, if θ → 0.

We again assume that up(·) = ur(·), yp(·) = yr(·), and cp(·) = cr(·). λy represents

the difference in production technology, and λc the difference in the technology of

producing guns.

1. Heterogeneous Production Functions

Let the production function of the richly endowed agent be yr(·), and that of the

poorly endowed agent be λyyp(·). Proposition 1 still holds and thus there exists a

unique Nash equilibrium for any feasible (L, θ) pair. It is difficult to separate the
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(L, θ) space into regions that support one of the four possible types of equilibria.

We will focus our attention on determining the effect of λy.

Conjecture 1: For θ sufficiently close to zero, the poorly endowed agent starts

producing guns at a lower value of L than the richly endowed agent, for all λy > 0.

Proof: Suppose the richly endowed agent starts producing guns first, for all θ ∈
(0, 0.5]. If so, the upper boundary of the no-guns region will be given by

∂Vr

∂gr

|(gp=0,gr>0) = 0 (4.56)

⇒ u′r[yr((1− θ)Lr
ng]c

′
r(0)− βLr

ng

∂f θ
r

∂gr

= 0 (4.57)

Since, ∂fθ
r

∂gr
→ 0 as θ → 0 (by Assumption 2(b)), Lr

ng → ∞ as θ → 0.

Next, suppose the poorly endowed agent starts producing guns first, for all θ ∈
(0, 0.5]. The upper boundary of the no-guns region will then be given by

∂Vp

∂gp

|(gp>0,gr=0) = 0 (4.58)

⇒ u′p[λyyp(θL
p
ng)]c

′
r(0)− βLp

ng

∂f θ
p

∂gp

= 0 (4.59)

Since, ∂fθ
p

∂gp
→ 1 as θ → 0 (by Assumption 2(b)), Lp

ng will be a finite number as

θ → 0. This proves the conjecture.

Conjecture 2: Higher values of λy > 0 make it more likely that the poorly endowed

agent starts producing guns at a lower value of L than the richly endowed agent,
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for all θ ∈ (0, 0.5].

Proof: The lower Lp
ng for a given θ, the more likely it will be that the poorly en-

dowed agent is the first to produce guns. We begin by showing that an increase in

λy lowers the (Lp
ng, θ) boundary. Equation (46) gives

∂Lp
ng

∂λy

=
−u′′p.yp.c

′
p(0)

[λyθu′′p.y′p.c′p(0)− β
∂fθ

p

∂gp
]

< 0 (4.60)

For λy = 1, Lp
ng(θ = 0.5) = Lp

ng(θ = 0.5). The (Lr
ng, θ) boundary does not get af-

fected by changes in λy. Thus, if λy > 1 then the poorly endowed agent will be the

first to produce guns for θ sufficiently close to 0.5.

We have characterized the (Lr
ng, θ), and the (Lp

ng, θ) boundaries in the previous con-

jecture. Now we will show that both these boundaries are downward sloping

when θ is close to zero, and convex for all θ ∈ (0, 0.5] and all λy > 0. Equation

(54) gives

∂Lr
ng

∂θ
=

Lr
ngu

′′
r .y

′
r.c

′
r(0) + βLr

ng
∂
∂θ

[∂fθ
r

∂gr
]

[(1− θ)u′′r .y′r.c′r(0)− β ∂fθ
r

∂gr
]

(4.61)

The sign of ∂Lr
ng

∂θ
can not be determined without assuming particular functional

forms. However, the slope is negative when θ is close to zero. Moreover, the

(Lr
ng, θ) boundary is convex since ∂2Lr

ng

∂θ2 can be shown to be strictly positive.

Similarly, equation (55) gives

∂Lp
ng

∂θ
=
−λyL

p
ngu

′′
p.y

′
p.c

′
p(0) + βLp

ng
∂
∂θ

[
∂fθ

p

∂gp
]

[λyθu′′p.y′p.c′p(0)− β
∂fθ

p

∂gp
]

(4.62)

The sign of ∂Lp
ng

∂θ
is difficult to determine. The (Lp

ng, θ) boundary is also convex as
∂2Lr

ng

∂θ2 given by
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λyβ(Lp
ng)

2c′p(0)[λyu
′′′
p .(y′p)

2 + u′′p.y
′′
p ][

∂fθ
p

∂gp
− θ ∂

∂θ
[
∂fθ

p

∂gp
]] + L[λyu

′′
p.y

′
p.c

′
p(0)− β ∂

∂θ
[
∂fθ

p

∂gp
]]2

[λyθu′′p.y′p.c′p(0)− β
∂fθ

p

∂gp
]2

(4.63)

is strictly positive.

2. Heterogeneous Cost Functions

Let the cost function for producing guns be cr(·) and λccp(·) for the richly and the

poorly endowed agent, respectively. As before, cr(·) = cp(·), and λc > 0. We will

argue that a lower λc makes it more likely that the poorly endowed agent will

produce guns first. The (Lr
ng, θ) boundary and its properties will be the same as in

the previous case since while allowing for heterogeneity we are only altering the

poorly endowed agent’s specification. Now, suppose the poorly endowed agent

starts producing guns first, for all θ ∈ (0, 0.5]. The upper boundary of the no-guns

region will then be given by

∂Vp

∂gp

|gp>0,gr=0 = 0

⇒ λcu
′
p[yp(θL

p
ng)]c

′
r(0)− βLp

ng

∂f θ
p

∂gp

= 0 (4.64)

Since, ∂fθ
p

∂gp
→ 1 as θ → 0 (by Assumption 2(b)), Lp

ng will be a finite number as

θ → 0. This helps us conclude that when θ is close to zero the poorly endowed

agent will start producing guns at a lower value of L as compared to the richly en-

dowed agent. The following derivative summarizes the effect of λc on the (Lp
ng, θ)

boundary.
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∂Lp
ng

∂λc

=
−u′p.c

′
p(0)

[λcθu′′p.y′p.c′p(0)− β
∂fθ

p

∂gp
]

> 0 (4.65)

It is easy to verify that Lp
ng(θ = 0.5) = Lr

ng(θ = 0.5) if λc = 1. The above derivative

thus implies that for λc < 1 the poorly endowed agent will be the first to produce

guns for values of θ close to 0.5.

3. An Example

It is difficult to characterize the equilibria for various values of θ away from 0 and

0.5 under the assumption that the final land holdings are the same as the initial

land holdings if no agent produces guns, for all concave utility functions, concave

production functions, and convex cost functions. We now try to do so for a partic-

ular case by assuming u(x) = xγ , y(x) = x, where 0 < α < 1. The results in this

section hold for all concave production functions of the form y(x) = xδ.

a. Heterogeneous Production Functions

Proposition 1: (i) The poorly endowed agent starts producing guns at a lower

value of L than the richly endowed agent for all θ ∈ (0, 0.5) if λy ≥ 1. (ii) For

every given λy < 1, there exists a θy ∈ (0, 0.5) such that the rich agent is the first to

produce guns for all θ ∈ (0, θy); the rich agent produces guns first for θ ∈ (θy, 0.5].

Proof: Suppose the richly endowed agent starts producing guns first, for all θ ∈
(0, 0.5].

−α[(1− θ)Lr
ng]

α−1c′r(0) + βLr
ngθ = 0 ⇒ Lr

ng(θ) = [
α(1− θ)α−1c′r(0)

βθ
]

1
2−α (4.66)
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Next, suppose the poorly endowed agent starts producing guns first, for all θ ∈
(0, 0.5]. The upper boundary of the no-guns region will then be given by

−α[λyθL
p
ng]

α−1c′p(0) + βLp
ng(1− θ) = 0 ⇒ Lp

ng(θ) = [
α(λyθ)

α−1c′p(0)

β(1− θ)
]

1
2−α (4.67)

Note that, Lp
ng(θ) ≤ Lr

ng(θ) for all θ ∈ (0, 0.5] if

λα−1
y θ ≤ (1− θ) ⇒ λy ≥ 1 (4.68)

Let us now consider the case of λy < 1. For any given λy < 1, Lp
ng(θ) ≤ Lr

ng(θ) if

λα−1
y θ ≤ (1− θ) ⇒ θ ≤ 1

1 + λα−1
y

= θy (4.69)

Moreover, since λy < 1, θy ∈ (0, 0.5). We can characterize the lower boundary of the

region in (L, θ) space in which both agents produce guns in the manner described

in Lemma (12).

b. Heterogeneous Cost Functions

Proposition 2: (i) The poorly endowed agent starts producing guns at a lower

value of L than the richly endowed agent for all θ ∈ (0, 0.5) if λc ≤ 1. (ii) For

every given λc > 1, there exists a θc ∈ (0, 0.5) such that the rich agent is the first to

produce guns for all θ ∈ (0, θc); the rich agent produces guns first for θ ∈ (θc, 0.5].

Proof: Suppose the richly endowed agent starts producing guns first, for all θ ∈
(0, 0.5]. The boundary of the no guns region will be given by

−α[(1− θ)Lr
ng]

α−1c′r(0) + βLr
ngθ = 0 ⇒ Lr

ng(θ) = [
α(1− θ)α−1c′r(0)

βθc′r(0)
]

1
2−α (4.70)
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Next, suppose the poorly endowed agent starts producing guns first, for all θ ∈
(0, 0.5]. The upper boundary of the no-guns region will then be given by

−λcα[θLp
ng]

α−1c′p(0) + βLp
ng(1− θ) = 0 ⇒ Lp

ng(θ) = [
λcαθα−1c′p(0)

β(1− θ)
]

1
2−α (4.71)

Note that, Lp
ng(θ) ≤ Lr

ng(θ) for all θ ∈ (0, 0.5] if

λ
1
α
c θ ≤ (1− θ) ⇒ λc ≤ 1 (4.72)

Let us now consider the case of λc > 1. For any given λc > 1, Lp
ng(θ) ≤ Lr

ng(θ) if

λ
1
α
c θ ≤ (1− θ) ⇒ θ ≤ 1

1 + λ
1
α
c

= θc (4.73)

Since λc > 1, θc ∈ (0, 0.5). Once again, we can characterize the lower boundary

of the region in (L, θ) space in which both agents produce guns in the manner

described in Lemma (12).

F. Conclusion

The literature on conflict can be classified along several dimensions- whether the

conflict is over output or inputs, whether the output is produced jointly or sepa-

rately by the agents, whether the framework is static, repeated or dynamic, whether

the model is one of complete or incomplete information, whether the agents make

simultaneous or sequential choices, and so on. In this paper we have analyzed

a static model of conflict over an inexhaustible input between two agents where

agents make simultaneous choices. Our model distinguishes itself from those an-

alyzed in the literature till date on account of its generality and the analysis of

history dependent contest success function.
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The rent seeking literature can be thought of as the precursor to the literature

on conflict. The standard rent seeking model involves several agents expending

resources to win a pie of fixed size. The objective of this literature has been to

characterize the existence of equilibrium levels of expenditures by the agents. The

expected utility of an agent in a general model of rent seeking is given by

EUi(gi, G−i) = pi(gi, G−i).ui(ei + L− gi) + (1− pi(gi, G−i)).ui(ei − gi)

where ei is the endowment of agent i, L is the pie agents are competing over, gi

is the expenditure by agent i to increase his chances of obtaining the pie, and pi is

the probability with which agent i obtains the pie, i.e., the contest success function.

The various studies can be characterized depending upon whether agents are risk

neutral or not, whether the agents are homogeneous or heterogeneous, whether

the endowment constraint is binding or not, whether the number of agents in the

rent seeking context is fixed or there is free entry, whether agents make sequential

or simultaneous expenditures, what is the form of the contest success function, and

so on. The interested reader can refer to Nitzan [35], Tollison [44], and Cornes and

Hartley [12], [13] for details. For a comparison of rent seeking and conflict models

please refer to Hausken [22]. The rent seeking models with homogeneous risk

neutral agents are special cases of the model given in the present paper because

the two will be strategically similar as

EUi(gi, G−i) = (ei − gi) + pi(gi, G−i).L

This formulation is similar to the one studied in the present paper with the

additional assumption that utility from current consumption is linear. However,
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the analysis of such a model will be slightly different from the one presented in this

paper as there will exist additional equilibria involving no consumption by either

one or both the agents. The unwelcome tradeoff we have to face while charac-

terizing the equilibria using general forms of utility production, cost, and contest

success functions is that we are unable to provide clear cut welfare calculations

which is central to the rent seeking literature.
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CHAPTER V

CONCLUSION

Game theoretic analysis of strategic interactions has become an integral part of the

economics literature. The essays in this dissertation illustrate the versatility of eco-

nomic reasoning. The second chapter provides a reason for the strict codes of con-

duct that have been imposed on unmarried girls in almost every society at some

point of time in its history using tools from classical game theory. The third chap-

ter rationalizes some of the adhoc rules proposed for dividing a bankrupt estate

from an evolutionary perspective. The fourth chapter presents a simple model of

conflict over inputs in an economy with ill-defined property rights. These studies

leave some related issues unanswered, and also give rise to several methodological

questions.

The signaling game presented in Chapter II assumes that all the men attach the

same prior probability to a girl being submissive. The common prior assumption

is frequently used in signaling games but there does not exist a strong conceptual

foundation for it. Another damaging criticism is the use of refinements to elimi-

nate some of the Nash equilibria. Cognitive limitations of individuals do not justify

the use of high rationality solution concepts in one shot games and there is over-

whelming laboratory evidence to support this. However, it can be expected that if

individuals face similar situations over time then they might be able to approach

an equilibrium through a process of trial and error. The third chapter on evolution

of division rules takes this approach. The assumption that agents repeatedly face

exactly the same situation is undeniably an oversimplification. We need models

of learning across situations that are similar but not exactly the same. The liter-

ature on stochastic stability is built around the assumption that it is the errors or
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experiments by agents that help select the long run equilibria from the set of possi-

ble stage game equilibria. The fact that different specifications of the error process

often lead to the selection of different equilibria as the long run outcomes casts

doubt on the generality of the results. It would be desirable to supplement the the-

oretical results of this chapter with experimental evidence regarding what division

people consider as fair in a situation like bankruptcy. The model of conflict pre-

sented in chapter IV questions the accepted wisdom underlying folk-theorem type

of arguments by showing that an increase in valuation of future leads to increased

conflict. The reason is that most the models used to elucidate the folk theorem em-

ploy repetitions of the same stage game where the initial conditions in successive

periods are independent of the outcomes in preceding periods. I hope to address

these questions in my future work.



94

REFERENCES

[1] R.D. Alexander, D.W. Tinkle, Natural Selection and Social Behavior, Chiron

Press, Concord, MA, 1981.

[2] J.A. Amegashie, A Contest Success Function with a Tractable Noise Parame-

ter, Public Choice 126 (2006), 135-144.

[3] R. Aumann, M. Maschler, Game Theoretic Analysis of a Bankruptcy Problem

from the Talmud, Journal of Economic Theory 36 (1985), 195-213.

[4] J.S. Banks, Signaling Games in Political Science, Harwood Academic, New

York, 1991.

[5] J.S. Banks, J. Sobel, Equilibrium Selection in Signaling Games, Econometrica

55 (1987), 647-661.

[6] G.S. Becker, A Treatise on the Family, Harvard University Press, Cambridge,

MA, 1991.

[7] K. Binmore, L. Samuelson, H.P. Young, Equilibrium Selection in Bargaining

Models, Games and Economic Behavior 45 (2003), 296-328.

[8] G.J. Broude, Marriage, Family, and Relationships: A Cross-Cultural Encyclo-

pedia, ABC-CLIO, Santa Barbara, CA, 1994.

[9] S.N.S. Cheung, The Enforcement of Property Rights in Children, and the Mar-

riage Contract, Economic Journal 82 (1972), 641-57.

[10] I.K. Cho, D. Kreps, Signaling Games and Stable Equilibria, Quarterly Journal

of Economics 102 (1987), 179-221.



95

[11] L.C. Corchon, On the Allocative Effects of Rent Seeking, Journal of Public

Economic Theory 2 (2000), 483-491.

[12] R. Cornes, R. Hartley, Risk Aversion, Heterogeneity, and Contests, Public

Choice 117 (2003), 1-25.

[13] R. Cornes, R. Hartley, Asymmetric Contests with General Technologies, Eco-

nomic Theory 26 (2005), 923-946.

[14] N. Dagan, R. Serrano, O. Volij, A Non-cooperative View of Consistent

Bankruptcy Rules, Games and Economic Behavior 18 (1997), 55-72.

[15] P.B. Ebrey, R.S. Watson, Marriage and Inequality in Chinese Society, Univer-

sity of California Press, Los Angeles, CA, 1991.

[16] R.C. Ellickson, Order Without Law: How Neighbors Settle Disputes, Harvard

University Press, Cambridge, MA, 1991.

[17] T. Ellingsen, J. Robles, Does Evolution Solve the Hold-Up Problem, Games

and Economic Behavior 39 (2002), 28-53.

[18] D.P. Foster, H.P. Young, Stochastic Evolutionary Game Dynamics, Theoretical

Population Biology 38 (1990), 219-232.

[19] M.I. Friedlin, A.D. Wentzell, Random Perturbations of Dynamical Systems,

Springer-Verlag, New York, NY, 1984.

[20] S. Gachter, A. Riedl, Dividing Justly in Bargaining Problems with Claims, Tin-

bergen Institute Discussion Paper, 2004.

[21] H.I. Grossman, M. Kim, Swords or Plowshares? A Theory of the Security of

Claims to Property, Journal of Political Economy 103 (1995), 1275-1288.



96

[22] K. Hausken, Production and Conflict Models Versus Rent-Seeking Models,

Public Choice 123 (2005), 59-93.

[23] B. Hill, Eighteenth-Century Women: An Anthology, George Allen & Unwin,

London, UK, 1984.

[24] J. Hirshleifer, Anarchy and Its Breakdown, Journal of Political Economy 103

(1995), 26-52.

[25] C. Klapisch-Zuber, A History of Women in the West: Silences of the Middle

Ages, Harvard University Press, Cambridge, MA, 1992.

[26] J. Knight, Institutions and Social Conflict, Cambridge University Press, Cam-

bridge, MA, 1992.

[27] D. Kreps, R. Wilson, Sequential Equilibria, Econometrica 50 (1982), 863-894.

[28] G.J. Mailath, M. Okuno-Fufiwara, A. Postlewaite, Belief-Based Refinements

in Signaling Games, Journal of Economic Theory 60 (1993), 241-276.

[29] H. Moulin, Fair Division and Collective Welfare, MIT Press, Cambridge, MA,

2003.

[30] B.I. Murstein, Love, Sex, and Marriage Through the Ages, Springer, New

York, NY, 1974.

[31] A. Muthoo, A Model of Origins of Basic Property Rights, Games and Eco-

nomic Behavior 49 (2004), 288-312.

[32] J. Nash, The Bargaining Problem, Econometrica 18 (1950), 155-162.

[33] J. Nash, Two-Person Cooperative Games, Econometrica 21 (1953), 128-140.



97

[34] H.M. Neary, Equilibrium Structure in a Model of Conflict, Economic Inquiry

35 (1997), 480-494.

[35] S. Nitzan, Modelling Rent-Seeking Contests, European Journal of Political

Economy 10 (1994), 41-60.

[36] G. Noldeke, E. V. Damme, Signaling in a Dynamic Labor Market, Review of

Economic Studies, 57 (1990), 1-23.

[37] J. O’Faolain, L. Martines, Not in God’s Image: Women in History from Greeks

to the Victorians, Harper and Row, New York, NY, 1973.

[38] J.B. Rosen, Existence and Uniqueness of Equilibrium Points for Concave n-

Person Games, Econometrica 33 (1965), 520-534.

[39] A.E. Roth , M.A.O. Sotomayor, Two-Sided Matching: A Study in Game-

Theoretic Modeling and Analysis, Cambridge University Press, Cambridge,

MA, 1990.

[40] A. Rubinstein, Perfect Equilibrium in a Bargaining Model, Econometrica 50

(1982), 97-110.

[41] S. Skaperdas, Cooperation, Conflict, and Power in the Absence of Property

Rights, American Economic Review 82 (1992), 720-739.

[42] L. Stone, The Family, Sex and Marriage in England 1500-1800, Harper

Colophon, New York, NY, 1979.

[43] W. Thomson, Axiomatic and Game-theoretic Analyses of Bankruptcy and

Taxation Problems: A survey, Mathematical Social Sciences 45 (2004), 249-297.

[44] R.V. Tollison, Rent Seeking: A Survey, Kyklos 35 (1982), 575-602.



98

[45] T. Troeger, Why Sunk Costs Matter for Bargaining Outcomes: An Evolution-

ary Approach, Journal of Economic Theory 102 (2002), 375-402.

[46] H.P. Young, An Evolutionary Model of Bargaining, Journal of Economic The-

ory 59 (1993), 145-168.

[47] H.P. Young, Individual Strategy and Social Structure, Princeton University

Press, Princeton, NJ, 1998.



99

VITA

Birendra Kumar Rai received his Bachelor of Technology degree in chemical en-

gineering from the Indian Institute of Technology, Bombay, in 2000. He entered

the economics program at Texas A&M University in August 2001 and received his

Ph.D. in August 2006. His research interests include game theory and experimen-

tal economics.

Mr. Rai may be reached at Max Planck Institute of Economics, Strategic Inter-

action Group, Kahlaische Strabe 10, D-07745 Jena, Germany. His e-mail adress is

brai77@gmail.com.


