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ABSTRACT

Computational Role of Disinhibition

in Brain Function. (August 2006)

Yingwei Yu, B.E., Beihang University, China

Chair of Advisory Committee: Dr. Yoonsuck Choe

Neurons are connected to form functional networks in the brain. When neurons are

combined in sequence, nontrivial effects arise. One example is disinhibition; that is,

inhibition to another inhibitory factor. Disinhibition may be serving an important

purpose because a large number of local circuits in the brain contain disinhibitory

connections. However, their exact functional role is not well understood.

The objective of this dissertation is to analyze the computational role of dis-

inhibition in brain function, especially in visual perception and attentional control.

My approach is to propose computational models of disinhibition and then map the

model to the local circuits in the brain to explain psychological phenomena. Several

computational models are proposed in this dissertation to account for disinhibition.

(1) A static inverse difference of Gaussian filter (IDoG) is derived to account explic-

itly for the spatial effects of disinhibition. IDoG can explain a number of complex

brightness-contrast illusions, such as the periphery problem in the Hermann grid and

the White’s effect. The IDoG model can also be used to explain orientation per-

ception of multiple lines as in the modified version of Poggendorff illusion. (2) A

spatio-temporal model (IDoGS) in early vision is derived and it successfully explains

the scintillating grid illusion, which is a stationary display giving rise to a striking,

dynamic, scintillating effect. (3) An interconnected Cohen-Grossberg neural network

model (iCGNN) is proposed to address the dynamics of disinhibitory neural networks
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with a layered structure. I derive a set of sufficient conditions for such an intercon-

nected system to reach asymptotic stability. (4) A computational model combining

recurrent and feed-forward disinhibition is designed to account for input-modulation

in temporal selective attention.

The main contribution of this research is that it developed a unified framework of

disinhibition to model several different kinds of neural circuits to account for various

perceptual and attentional phenomena. Investigating the role of disinhibition in the

brain can provide us with a deeper understanding of how the brain can give rise to

intelligent and complex functions.



v

To my grandmother Herling Chen (1923-1996).
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CHAPTER I

INTRODUCTION

Neurons are connected to form functional networks, and networks are connected to

form a system, the brain. The interaction between two connected neurons can be cat-

egorized as either excitatory or inhibitory. Through those interactions in space and

time, neurons are tightly coupled into a whole system, and exhibit complex behavior.

A repeatedly observed pattern of local circuits is disinhibition. Disinhibition is basi-

cally inhibition of another inhibitory factor. There is a large number of disinhibitory

circuits in the brain, such as in the retina, the thalamus, the cortex, the basal ganglia,

and the cerebellum. What is the computational role of disinhibition? What is the

function of disinhibition in visual perception? What is the function of disinhibition

in attention? These questions are the main motivations for my dissertation research.

A. Motivation

Visual perception is an important function of the brain. Human visual perception

may not always reflect the real world, and in such a case of misinterpretation, we

say we have visual illusion. Visual illusions are important phenomena because of

their potential to shed light on the underlying functional organization of the visual

system. My research is motivated by two interesting brightness-contrast (B-C) visual

illusions. One is the Hermann grid, and the other is a variation of the Hermann grid

– the scintillating grid. I will introduce the two illusions in the following.

The journal model is IEEE Transactions on Neural Networks.
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Fig. 1. The Hermann grid illusion. Hermann grid contains some tiled black blocks

and white streets. The intersections look darker than the streets.

1. The periphery problem in the Hermann grid

Hermann grid consists of tiled black blocks and white streets as shown in figure 1.

Illusory dark spots can be perceived at the intersection of the white street. The

illusory dark spots are due to lateral inhibition in the retina and in the lateral genic-

ulate nucleus (LGN) [2]. Lateral inhibition is the effect observed in the receptive field

where the surrounding area inhibits the central area. The lateral inhibition process

in the Hermann grid is demonstrated in figure 2. Due to the fact that the neuron

at the intersection receives more inhibition than those in the streets, the intersection

appears much darker than the streets.

However, lateral inhibition alone cannot account for all subtleties in the visual

illusion. For example, in the Hermann grid illusion, although the illusory spots are

explained pretty well by feedforward lateral inhibition, it cannot explain why the pe-

riphery appears brighter than the illusory dark spots. The purely lateral inhibitory
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Fig. 2. The Hermann grid and lateral inhibition. Let us assume the neurons

in the white area receive 100 unit as the initial input, and neurons in the dark

block receive 0 input. Let the feedforward inhibition rate be 0.1. As a result,

the response of the neuron in the intersection is 60 (= 100 − 0.1 × 100 × 4),

which is significantly lower than the response of the neuron in the street, 80

(= 100− 0.1× 100× 2). This figure demonstrates why there are illusory dark

spots in the center of the intersections.

mechanism fails to address our perceived experience of the periphery (figure 3). The

reason for this failure is that the center of lateral inhibition in the peripheral area

receives inhibition from all the surrounding directions, resulting in a weaker response

than the intersections in the grid which only receive inhibition from four directions.

The question that arose from this observation was whether a more elaborate mecha-

nism exists in early visual processing, besides lateral inhibition.

2. The scintillating grid illusion

Another interesting visual illusion is the scintillating grid, which is a variation of the

Hermann grid. The scintillating grid consists of bright discs superimposed on inter-

sections of orthogonal gray bars on a dark background (figure 4) [3]. In this illusion,
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Fig. 3. The periphery problem in the Hermann grid. The center of lateral

inhibition in the peripheral area (to the left) receives inhibition from all the

surrounding directions which results in a weaker response than the intersections

in the grid (to the right) which only receive inhibition from four directions. The

neurons on the right are configured the same as in figure 2. The neuron in the

center of the left side marked “20” receives inhibition from all the surrounding

directions, and 20 (= 100−0.1×100×8) is its final response. According to the

feedforward lateral inhibition model, the neurons in the periphery have a lower

response than those in the street (the neuron marked with “80”) and those at

the intersection (the neuron marked with “60”). This result is contrary to our

perception, because we perceive the periphery as brighter.

illusory dark spots are perceived as scintillating within the white discs. Several im-

portant spatiotemporal properties of the illusion have been discovered and reported

in recent years. For example, the discs that are closer to a fixation show less scin-

tillation [3], and the illusion is greatly reduced or even abolished both with steady

fixation and by reducing the contrast between the constituent grid elements [3].

What kind of neural process could be responsible for such a dynamic illusion?

The scintillating grid can be seen as a variation of the Hermann grid illusion where

the brightness level of the intersecting bars is reduced. The illusory dark spots in
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Fig. 4. The scintillating grid illusion. The scintillating grid illusion consists of

bright discs superimposed on intersections of orthogonal gray bars on a dark

background. In this illusion, illusory dark spots are perceived as scintillating

within the white discs. See text for more details about this illusion (redrawn

from [3]).

Hermann grid can be explained by feedforward lateral inhibition, commonly modeled

with Difference of Gaussian (DoG) filters [2]. Thus, DoG filters may seem to be a

plausible mechanism contributing to the scintillating grid illusion. However, DoG

filters are not exactly fit to explain the complexities of the scintillating grid illusion

because of the following reasons. (1) The DoG model cannot account for the change in

the strength of scintillation over different brightness and contrast conditions, as shown

in the experiments of Schrauf et al. [3]. (2) Furthermore, DoG cannot explain the

basic scintillation effect which has a temporal dimension to it. Thus, the feedforward

lateral mechanism represented by DoG fails to fully explain the scintillating effect.

The two above visual illusions (one in the previous section) suggests that there are

other inhibitory mechanisms which are not captured by the lateral inhibition model.
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Fig. 5. Type I disinhibition. The input to node i is ei, and the output through

its axon is ri. The link between each pair of nodes is inhibitory, and all the

axons project back to other neurons. This type of disinhibition is recurrent.

Lines with filled arrows represent excitatory synapses, while those with unfilled

arrows inhibitory synapses.

One possible inhibition mechanism that can give rise to such effects is disinhibition.

In the next section, I will introduce the concept of disinhibition and its categories.

The explanation to the above two visual illusions will be fully discussed in Chapter

IV and V, respectively.

B. The main research question: Role of disinhibition in the brain

Generally, disinhibition can be defined as inhibition of inhibitors. Based on the con-

nectivity, in my observation, disinhibition can be categorized into recurrent negative

feedback connection (I will call this type I disinhibition hence forth), negative feed-

forward connections (type II disinhibition), or a hybrid structure containing both of

these (type III disinhibition).

Type I disinhibition refers to the structure where neurons receive recurrent in-

hibitory feedbacks from each other. Figure 5 gives an illustration of this kind of

disinhibition. Here neurons are mutually cross inhibited. This type of disinhibition is

found in the early visual pathway, such as in the optical cells in the Limulus [4; 1; 5].
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e
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Fig. 6. Type II disinhibition. The input to node i is ei, and the output of its

axon is ri. The link between each pair of nodes is inhibitory, and all the axons

project in the same direction, i.e., there is no cycle in the graph. This type

of disinhibition is feedforward. Lines with filled arrows represent excitatory

synapses, while those with unfilled arrows inhibitory synapses.

The second type, feedforward structure (type II disinhibition), is illustrated in

figure 6. In this structure, no pathway can come back to a neuron visited earlier, i.e.

no cycle can be found. This type of feedforward disinhibition is found in the basal

ganglia [6].

The third type is hybrid structure (type III disinhibition) which combines the

recurrent and the feedforward topology. A sample of such a connection schema is

shown in figure 7. Neurons numbered 1 to 4 have recurrent connections, while neuron

5 and 6 feedforward connections. An example of such a connection type in the brain

is the thalamocortical circuit. It contains recurrent network layer (thalamic reticular

nucleus neurons), and feedforward layers (relay cells and cortical neurons) [7; 8; 9].

Disinhibition can be widely found in the brain. For example, in the retina, bipo-

lar cells are interconnected by amacrine cells, through which bipolar cells are mutually

inhibited (type I disinhibition). In the thalamus, the thalamic reticular neurons are
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Fig. 7. Type III disinhibition. Neurons numbered 1 to 4 have recurrent connec-

tions, while neuron 5 and 6 feedforward connections. The input to node i is ei,

and the output of its axon is ri.

mutually connected with each others with inhibitory synapses (type I disinhibition).

Moreover, the inhibition of the reticular cell to the relay cell can be disinhibited by

a second reticular cell, thus demonstrating type III disinhibition. In the cerebellum,

feedforward disinhibition is widely observed, e.g. a series of inhibitory pathway (type

II disinhibition) including basket cells, Purkinje cells, interpositus nucleus, and in-

ferior olive [10]. The inhibitory pathways in basal ganglia also demonstrate type II

disinhibition, from striatum to GPe (external segment of the globus pallidus) and

STN (subthalamic nucleus), etc. (See Chapter 10, [11].) Finally, in the visual cor-

tex, disinhibition between simple cells and complex cells are found to significantly

affect angle perception. Here only a few are listed, but there are many more disin-

hibitory circuits in the brain. Thus, studying the role of disinhibition in the brain can

help us gain insights into how the complex behavior (e.g., visual illusions) of various

brain organizations can be realized through simple excitation and inhibition between

neurons.
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C. Approach

In order to analyze the computational role of disinhibition in brain function, first

we need a general computational model to describe the disinhibition effect. As a

first step in analyzing a non-linear system, an equilibrium point equation (IDoG

model, Chapter III) is derived from the Hartline-Ratliff equation of disinhibition in

the Limulus retina [4] (Chapter II). A further extended model (IDoGS, see Chapter

III) is proposed to address the temporal behavior of disinhibition together with a

self-inhibition mechanism.

I will apply the computational models to a set of basic circuits to study the

local circuits where it has a disinhibitory circuit, e.g. the retina, the cortex, the

thalamus, etc. and treat the neural system as a non-linear system in general, so that

we can analyze its behavior through a system approach (Chapter VIII). For example,

stability, and controllability will be analyzed to understand the computational role of

disinhibition.

D. Outline

The organization of this dissertation is illustrated in figure 8. The next chapter will

introduce the background of my research (Chapter II). The computational models of

disinhibition (Chapter III) are the core of the research. I will apply the framework to

different subsystems in the brain, such as in the early visual pathway including the

retina (Chapter IV and V) and the primary visual cortex (Chapter VI), the thalamus

(Chapter VII and VIII), and the basal ganglia (Chapter VIII). Furthermore, I will

model and frame disinhibition in a nonlinear system perspective, then analyze it

under a system approach (Chapter VIII) by studying issues such as stability and

controllability. Finally, Chapter IX concludes the whole dissertation.
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(Chapter IV, V)
Thalamus

(Chapter VI)
Primary Visual Cortex

(Chapter VIII)
System Analysis: Stability, Controllability, and Computability

(Chapter III)
Computational Models of Disinhibition

Basal GangliaRetina
(Chapter VII, VIII) (Chapter VIII)

Fig. 8. Outline. This dissertation is organized into three layers as shown above. The

base of the research is to build a computational model of disinhibition and

apply it to various brain subsystems as shown in the second layer. The top

layer contains a framework for disinhibition in a nonlinear system perspective,

under a system approach based on observations and results from the second

layer.
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CHAPTER II

BACKGROUND

In this chapter, I will first introduce various disinhibition phenomena at different

levels of brain organization (section A). The Hartline-Ratliff equation (section B)

and a Fourier model (section C) of disinhibition will be introduced next. Based on

the Hartline-Ratliff equation, a general model of disinhibition (Inverse DoG filter;

IDoG) will be derived in Chapter III.

A. Various disinhibition phenomena at different levels of brain organization

Disinhibition can be found at various levels of brain organization, such as in the

retina, the simple cells in the visual cortex, the thalamus, the basal ganglia, and the

cerebellum.

In the early visual pathway, anatomical and physiological observations show that

the center-surround property in early visual processing involves a recurrent inhibition,

i.e. disinhibition (type I). For example, Hartline and colleagues used Limulus (horse-

shoe crab) optical cells to demonstrate disinhibition and self-inhibition in the retina

[1]. Disinhibition in the early visual pathway has been discovered in mammals and

other vertebrates as well. For example, disinhibition has been found in the retina

of cats [12; 13], tiger salamanders [14], and mice [15]. The amacrine cells can vigor-

ously rectify the signals in the retina [16]. For example, [13] has shown that the A2

amacrine cells in the cat retina contribute to lateral inhibition among ganglion cells,

and they can play a role in disinhibition.

In the primary visual cortex, as shown in figure 9, it is suggested that the horizon-

tal neuronal connectivity between the orientation detectors are recurrent, and thus, it

has a disinhibitory effect [17]. Examples of the disinhibition effect in the early visual
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Excitatory
Inhibitory

Fig. 9. A possible configuration of lateral inhibition between orientation

detectors. The synapse with filled arrow is excitatory, and the synapse with

unfilled arrow is inhibitory (c.f. [17]).

pathway include the brightness contrast (B-C) visual illusions [18] (e.g. Hermann

grid and Mach band, discussed in chapters IV and V) and orientation illusion [19]

(e.g. modified Poggendorff illusions in chapter VI).

Deeper inside the brain, disinhibitory circuits have been observed in the thala-

mus. The thalamus (chapter VIII) consists of relay cells and the thalamic reticular

nucleus (TRN). The thalamic reticular nucleus is a collection of GABAergic neurons

that form a shell surrounding the dorsal and the lateral aspect of the thalamus. The

neurons in TRN are recurrently connected, and their inhibition mechanism is disin-

hibition in two senses [20]: (1) A TRN cell, say R1, inhibits another, R2, and R2

inhibits the relay cell; (2) and there exists mutual inhibition among TRN cells (see

Chapter VIII).

In the motor pathway, for example in the cerebellum, disinhibition is found in a

series of inhibitory neurons. The feedforward pathway includes basket cells, Purkinje

cells, interpositus nucleus, and inferior olive [10]. Similar type I disinhibition also

exists in the basal ganglia, e.g. the pathway from the striatum to the external segment

of the globus pallidus (GPe) and substantia nigra (STN), etc. (see also Chapter 10

in [11]).
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B. Hartline-Ratliff equation

The Hartline-Ratliff equation [1], the first computational model of disinhibition based

on the Limulus optical cells, describes the equilibrium state of a recurrent disin-

hibitory network. Thus, it serves as a good starting point to study the dynamics of

disinhibition.

Experiments by Hartline and Ratliff on Limulus optical cells showed that the

disinhibition effect is recurrent (figure 10). The final response of a specific neuron

can be considered as the overall effect of the response from itself and from all other

neurons. The response resulting from a light stimulus can be enhanced or reduced

due to the interactions through inhibition from its neighbors.

The Hartline-Ratliff equation describing disinhibition in Limulus can be summa-

rized as follows [1; 5; 21]:

rm = εm −Ksrm −
∑

km←n(rn − tm←n), (2.1)

where rm is the response, Ks the self-inhibition constant, εm excitation of the m-

th ommatidia, km←n the inhibitory weight from other ommatidium, and tm←n the

threshold. The Hartline-Ratliff equation describes the equilibrium state for a single

neuron. I will further extend the equation to calculate neural activity in a large-scale

network in a more convenient way (Chapter III).

C. Fourier model

Brodie et al. [22] extended the Hartline-Ratliff equation to derive a spatiotemporal

filter, where the input was assumed to be a sinusoidal grating in the form of I(x, t) =

e−i(ξx+ωt) with spatial frequency ξ and temporal frequency ω (as shown in figure 11).
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Fig. 10. Lateral inhibition in Limulus optical cells (Redrawn from [1]). The

figure shows the disinhibition effect in Limulus optical cells. A. The retina

of Limulus. Point light is presented to three locations (1, 2 and 3). B. The

result of lighting position 1 and 2. The top trace shows the spike train of the

neuron at 1, and the two bars below show the duration of stimulation to cell

1 and 2. When position 2 is excited, the neuron response of position 1 gets

inhibited. C. Both 1 and 2 are illuminated, and after a short time, position 3

is lighted. The top two traces show the spike trains of cell 1 and cell 2. The

three bars below are input duration to the three cells. As demonstrated in

the figure, when position 3 is lighted, neurons at position 2 get inhibited by

3, so its ability to inhibit others get reduced. As a result, the firing rate of

neuron at position 1 gets increased during the time neuron at position 3 is

excited. This effect is called disinhibition.

The output R(x, t) can then be written as

R(x, t) = F (ξ, ω)ei(ξx+ωt), (2.2)

where

F (ξ, ω) =
∫ ∫

e−i(ξx+ωt)φ(x, t)dxdt, (2.3)

and φ(x, t) is the response of the system to a spatiotemporal impulse (a vertical line

at x = 0 flashed at the instant t = 0).

This model is perfect for explaining the Limulus retina as a filter with a single

spatial frequency channel, which means that only a fixed spatial frequency input is
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Fig. 11. Sinusoidal input. The single spatial frequency input stimulus as shown

was used in Brodie’s experiments.

allowed [22]. Because of this, their model cannot be applied to a complex input (e.g.,

visual illusions such as the Hermann grid illusion), as various (or even infinite in many

cases) spatial frequencies could coexist in the input. On the other hand, even if we

decompose the input into multiple single frequency sources, all the final response from

these sources cannot be directly added up: Supposing the system function is f(x),

where x is the input, if we decompose x into x1 and x2, we have f(x) = f(x1 + x2),

but f(x1+x2) 6= f(x1)+f(x2). This is due to the non-linearity of the neural network,

whose output is not a simple sum of the inputs. Moreover, the sinusoidal input signal

assumed in equation 2.2 is continuous, so it is not suitable for inputs with discrete

values (i.e. discontinuities).
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D. Summary

In this chapter, I introduced some local circuits inside the brain that include disinhi-

bition. I also introduced the Hartline-Ratliff equation and Brodie’s Fourier model of

disinhibition. However, those models have their own limitations. The Hartline-Ratliff

equation is for single neuron’s equilibrium, while Brodie’s model is not flexible enough

to deal with multiple spatial frequency input. Hence, their models of disinhibition

cannot be directly applied to complex images, such as the Hermann grid or the scin-

tillating grid. In the following chapter, I will build upon the Hartline-Ratliff equation

and derive a filter that can avoid these problems.
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CHAPTER III

COMPUTATIONAL MODELS OF DISINHIBITION*

In this chapter, I will introduce computational models of disinhibition in the form

of inverse difference of Gaussians (IDoG, section A), which addresses the spatial

properties of disinhibition. In section B, I will introduce a spatio-temporal filter,

IDoG with self-inhibition (IDoGS).

A. Spatial disinhibitory filter: The IDoG model

Rearranging the Hartline-Ratliff equation (2.1) and generalizing to n inputs, the

responses of n cells can be expressed in a simple matrix form as shown below by

assuming the threshold and the self-inhibitory constant to be zero (at this point,

we only care for spatial properties of visual illusion, so the assumption of zero self-

inhibition rate is reasonable):

r = e + Wr, (3.1)

where r is the output vector, e the input vector and W the weight matrix:

r =



r1

r2

.

rn


, e =



e1

e2

.

en


. (3.2)

* Parts of this chapter have been reprinted with permission from “A neural model of
scintillating grid illusion: Disinhibition and self-inhibition in early vision” by Yingwei
Yu and Yoonsuck Choe, 2006. Neural Computation, vol. 18, pp. 501-524. Copyright
2006 by MIT Press.
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The weight matrix W can be assigned its weights following the classic two-mechanism

DoG distribution by Marr and Hildreth [23]:

Wij =


w(|i, j|) when i 6= j

0 when i = j

, (3.3)

w(x) = DoG(x) = kce
−(x/σc)2 − kse

−(x/σs)2 , (3.4)

where |i, j| is the Euclidean distance between neuron i and j; kc and ks the scaling

constants that determine the relative scale of the excitatory and inhibitory distribu-

tions; and σc and σs their widths.

The response vector r can finally be derived from equation 3.1 as follows:

r = (I−W)−1e. (3.5)

Figure 12 shows a single row (corresponding to a neuron in the center) of the

weight matrix (I−W)−1 plotted in 2D. Empirically, with DoG profile, it is invertible

in all of our experiments in the later chapters. This weight matrix is a symmetric

Toeplitz matrix. The complexity of the inverse operation for the symmetric Toeplitz

matrix is O(n log n) as reported by Heinig and Rost [24], thus, computation of rela-

tively large weight matrices can still be efficient. The plot shows that the neuron in

the center can have an excitatory influence far away.

Any recurrent lateral inhibitory neural network automatically implements disin-

hibition (i.e., Type I disinhibition, see section I.B), and IDoG model should be able

to model. When there is no recurrent feedback (e.g., the “on” and “off” ganglia cells

in retina), the feedforward model (e.g., DoG filter) should be sufficient.
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A B

C

Fig. 12. An inverse DoG filter (IDOG). The filter (i.e., the connection weights)

of the central neuron is shown. A. A 2D plot of the filter. B. A 3D mesh plot

of the filter. C. The plot of the central row of the filter. Note the multiple

concentric rippling tails.

B. Spatio-temporal disinhibitory filter: The IDoGS model

The IDoG model can be further extended with self-inhibition. This kind of mechanism

adds dynamics to the filter, which can be used to model visual illusions such as the

scintillating grid [25], as will be introduced in Chapter V. We can simply add a
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self-inhibition factor in the matrix W to obtain such a feature, as follows.

Wij =


w(|i, j|) when i 6= j

−Ks(t) when i = j

, (3.6)

where Ks(t) is the self-inhibition rate at time t.

e(t)
1/s

y(t)

r(t)

−

T s

Fig. 13. The dynamics of self-inhibition. The input signal is e(t), the output r(t),

and the feedback y(t). The block 1/s is an integrator, and the feedback block

Ts is described by equation 3.9.

For the convenience of calculation, we assume Ks(t) here approximately equals

the self-inhibition rate of a single cell (the dynamics are illustrated in figure 13). The

exact derivation of Ks(t) is as follows [22]:

Ks(t) =
y(t)

r(t)
, (3.7)

where y(t) is the amount of self-inhibition at time t, and r(t) the response at time

t for this cell. We know that the Laplace transform y(s) of y(t) has the following

property:

y(s) = r(s)Ts(s), (3.8)

Ts(s) =
k

1 + sτ
, (3.9)

where k is the maximum value Ks(t) can reach, and τ the time constant of decay. By
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assuming that the input e(t) is a step input to this cell, the Laplace transform of e(t)

can be written as:

e(s) =
I0

s
, (3.10)

where I0 is a constant representing the strength of the light stimulus. The response

r(t) of this cell can be calculated in the following manner:

r(s) =

(
I0

s
− r(s)

k

1 + sτ

)
1

s
. (3.11)

Solving this equation, we get

r(s) =
I0

s

sτ + 1

τs2 + s + k
. (3.12)

By substituting r(s) and T (s) in equation 3.8 with equations 3.9 and 3.12, we get

y(s) =
I0

s

(sτ + 1)

(τs2 + s + k)

k

(1 + sτ)
. (3.13)

Then, by inverse Laplace transform, we can get y(t) and r(t), and finally the exact

expression for Ks(t) can be obtained by evaluating equation 3.7. The exact formula

for Ks(t) can be derived as follows:

Ks(t) =
y(t)

r(t)
, (3.14)

where y(t) is the amount of self-inhibition at time t, and r(t) the response at time

t for this cell. We know that the Laplace transform r(s) of r(t) has the following

property:

r(s)s = e(s)− r(s)Ts(s), (3.15)

Ts(s) =
k

1 + τ
, (3.16)

where Ts(s) is a transfer function, k the maximum value Ks(t) can reach, τ the time
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constant, and e(s) the Laplace transform of the step input of this cell:

e(s) =
1

s
. (3.17)

By rearranging equation 3.15, we can solve for r(s) to obtain

r(s) = e(s)
1

s + Ts

. (3.18)

Therefore, r(t) can be treated as the step input function e(t) convolved with an

impulse response function:

r(t) = e(t) ∗ f(t), (3.19)

where “∗” is the convolution operator, and

f(t) = L−1
[

1

s + Ts

]
(3.20)

where L−1 is the inverse Laplace transform operator. Solving equation 3.20, we get

f(t) as a superposition of two exponential functions:

f(t) =
1

C
(C1 exp(C2t) + C2 exp(C1t)) , (3.21)

where C =
√

1− 4τk, C1 = (C + 1)/2, and C2 = (C − 1)/2. The function y(t) can

also be obtained in a similar manner as shown above:

y(s) = r(s)Ts(s). (3.22)

By substituting r(s) with the right-hand side in equation 3.18, we have

y(s) = e(s)
Ts

s + Ts

. (3.23)

Therefore, y(t) can also be treated as the step input function e(t) convolved with an
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Fig. 14. The impulse response functions f(t) and g(t). The final form of

self-inhibition function Ks(t) can be calculated as a division of two convo-

lutions of these functions as shown in equation 3.26

impulse response function g(t) in time domain:

y(t) = e(t) ∗ g(t) (3.24)

where g(t) is a sine-modulated, exponentially decaying function:

g(t) = L−1
[

Ts

s + Ts

]
= 6

√
5 exp(−5t) sin(

√
5t). (3.25)

Hence the final form of Ks(t) can then be calculated as a division of two convo-

lutions as follows:

Ks(t) =
e(t) ∗ g(t)

e(t) ∗ f(t)
. (3.26)

Figure 14 shows the impulse response functions f(t) and g(t). The above derivation

gives the exact formula in equation 3.7.

Figure 15 shows several curves plotting the self-inhibition rate under different

parameter conditions. As discovered in the Limulus [1; 5], self-inhibition is strong

(k = 3), while lateral contribution is weak (0.1 or less). These values were experimen-

tally determined by Hartline and Ratliff [1; 5], where τ was left as a free parameter.
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Fig. 15. Self-inhibition rate. Evolution of the self-inhibition rate Ks(t) (y-axis)

over time (x-axis) is shown for various parameter configurations (see equa-

tions 3.7–3.9). The parameter k defines the peak value of the curve, and τ

determines how quickly the curve converges to a steady state. For all com-

putational simulations in this dissertation, the values k = 3 and τ = 0.3 were

used.

Figure 16 shows a single row of the weight matrix W, corresponding to a weight

matrix (when reverse serialized) of a single cell in the center of the 2D retina, at

various time points. The plot shows that the cell in the center can be influenced by

the inputs from locations far away, outside of its classical receptive field area, and the

range and magnitude of influence dynamically change over time.

C. Summary

DoG filter only accounts for feedforward lateral inhibition. If we add recurrent feed-

back to the neural networks with DoG profile, then it will automatically implement

disinhibition. In this chapter, I derived two computational models of disinhibition:

IDoG and IDoGS. Each model has its own specialty. The IDoG model is a spatial

model of disinhibition, and it calculates the equilibrium state of a single layer neural

network. The IDoGS is a spatiotemporal model of disinhibition and self-inhibition.
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Fig. 16. Inversed DoG with self-inhibition filter (IDoGS) at various time

points. The filter (i.e., the connection weights) of the central optical cell is

shown at different time steps (k = 3, τ = 0.3). The self-inhibition rate evolved

over time as follows: A Ks(t) = 0.0299, B Ks(t) = 0.1463, C Ks(t) = 0.2855,

D Ks(t) = 0.5438, E Ks(t) = 0.9890, and F Ks(t) = 2.5940. Initially, a

large ripple extends over a long distance from the center (beyond the classical

receptive field), but as time goes on the long-range influence diminishes. In

other words, the effective receptive field size reduced over time due to the

change in self-inhibition rate.
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The next few chapters (Chapters IV-VII) will employ these two model to predict static

and dynamic perception. These two computational models gave a general framework

of disinhibition, and they made the analysis of disinhibition in brain function math-

ematically accessible.
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CHAPTER IV

ROLE OF SPATIAL DISINHIBITION IN STATIC BRIGHTNESS-CONTRAST

PERCEPTION*

Brightness-contrast (B-C) illusions allow us to understand the basic processes in the

early visual pathway, and many of them can be explained by disinhibition. B-C

illusions can become very complex, and a complete explanation may have to be based

on a multi-stage, multi-channel model, with considerations of top-down influences [26;

27; 28]. In the following, however, we will focus on the very early stages of visual

processing, and see how far we can exploit low-level mechanisms observed in biological

vision systems toward explaining B-C illusions.

In the Hermann grid, the illusory dark spots at the intersections in the Hermann

grid (Figure 17A) are due to lateral inhibition [2]. Lateral inhibition is the effect

observed in the receptive field where the surrounding area inhibits the central area.

The visual signal in the eye is generated by the photoreceptor cells, and then it is

passed through bipolar, horizontal, and amacrine cells and finally sent to LGN. When

the stimulus is given in the receptive field, the central receptors produce an excitatory

signal, while the cells in the surrounding area send inhibition through the bipolar cells

to the central area [29]. Difference of Gaussian (or DoG), filter [23] is commonly used

to simulate such a process.

However, DoG filters alone cannot account for more complex visual B-C illusions.

For example in the Hermann grid illusion, although the illusory spots are explained

* Parts of this chapter have been reprinted with permission from “Explaining low
level brightness-contrast visual illusion using disinhibition” by Yingwei Yu, Takashi
Yamauchi, and Yoonsuck Choe, 2004. In A. J. Ijspeert, M. Murata, and N. Wakamiya,
editors, Biologically Inspired Approaches to Advanced Information Technology, Lec-
ture Notes in Computer Sciences 3141, pp.166-175. Copyright 2004 by Springer.
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pretty well by the conventional DoG model, it cannot explain why the periphery

(figure 17A, to the left) appears brighter than the illusory dark spots (figure 17A, to

the right). The output is counter to our perceived experience. The reason for this

failure is that the center of DoG in the peripheral area receives inhibition from all

the surrounding directions which results in a weaker response than the intersections

in the grid which only receive inhibition from four directions. Moreover, the White’s

effect [30] (figure 19A) cannot be explained using the conventional DoG filter. As

shown in figure 19B, the output using conventional DoG filters gives an opposite

result: The left gray patch on the black strip has a lower output value than the one

on the white strip. On the contrary, we perceive that the left gray patch on the black

strip as brighter than the one on the right.

Anatomical and physiological observations show that the center-surround prop-

erty in early visual processing may not be strictly feedforward, involving lateral inhi-

bition and, moreover, disinhibition. Note that disinhibition has been found in verte-

brate retina such as in tiger salamanders [14] and in mice [31], and it can effectively

reduce the amount of inhibition in case we have a large area of bright input. This

might be a potential solution to the unsolved visual illusion problems above.

A. The Hermann grid illusion

Figure 17B and C show Hermann grid under DoG filter. When the size of the “on”

center (positive Gaussian) in DoG profile matches the width of the streets in the grid,

it shows the strongest illusory effect [2]. Hence, for any given receptive field size, there

exists a corresponding size of Hermann grid that optimally gives rise to the illusion.

Figure 17C shows the brightness level of the middle row in Figure 17B, where the

dark illusory spots are clearly visible (P1, P2 and P3).
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A B

C

Fig. 17. The Hermann grid illusion under DoG filter. A. The Hermann grid

illusion. The intersections look darker than the streets. B. The output using

a conventional DoG filter. C. Quantified brightness level in B. To measure the

average response, the column-wise sum of rows 27 to 29 was computed. Note

that the illusory spots (at positions P1, P2 and P3) have a brightness value

much higher than the periphery. The conventional DoG operation cannot

explain why we perceive the periphery to be brighter than the dark illusory

spots.
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A B

C

Fig. 18. The Hermann grid illusion under IDoG filter. A. The Hermann grid

illusion. B. The output response of IDoG. C. The prediction using the IDoG

filter (from B). The illusory spots are at position P1, P2 and P3, which have a

brightness value lower than the periphery. (The curve shows the column-wise

sum of rows 27 to 29.)



31

To account for the peripheral brightness in the Hermann grid, the IDoG filter

was used. Our IDoG filter which explicitly models disinhibition provides a plausible

explanation to this problem. Figure 18 shows the result of applying our filter to the

Hermann grid image: C is the plot of the column-wise sum (rows 27-29) of the filter

response in B. The periphery is indeed brighter than the dark illusory spots, showing

that disinhibition (and hence IDoG) can account for the perceived brightness in this

particular example.

As shown in the figure 18B, the IDoG filter can capture the brightness-contrast

phenomenon in three spatial scales: (1) in the high spatial frequency scale (about 4

pixels), the contrast at the borders of black blocks are enhanced; (2) in the moderate

spatial frequency scale (about 8 pixels), illusory dark spots appear; and (3) in the

low spatial frequency scale (about 20 pixels), the periphery is brighter than the black

blocks and the illusory dark spots. Compared to IDoG, the feedforward DoG filter can

only preserve the brightness-contrast in one spatial scale. As shown in figure 17B,

the results by DoG filter only predicted the illusory dark spots (moderate spatial

frequency), but missed the brightness-contrast information in both high and low

spatial frequencies.

B. The White’s effect

The White’s effect [30] is shown in figure 20A: The gray patch on the black vertical

strip appears brighter than the gray patch on the right. As shown in figure 19, DoG

cannot explain this illusion. Disinhibition plays an important role in this illusion:

While the gray patch on the black strip receives inhibition from the two surrounding

white strips, compared to the gray patch on the right side, disinhibition is relatively

stronger. Because of this, the gray patch on the right appears darker than that on
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the left (figure 20C).

C. The Mach band

Compared to the conventional DoG filter, one advantage of the IDoG model is that it

preserves the different level of brightness and also enhances the contrast at the edge.

As demonstrated in figure 21, the four shades of gray are clearly separated using

IDoG. These different shades are not preserved using a conventional DoG filter. Note

that this can be simply because the sum of the DoG matrix equals zero, and scaling

up kc in equation 3.4 can correct the problem. However, there is one subtle point not

captured in the conventional DoG approach: the wrinkle (figure 21E) near the Mach

bands observed in Limulus experiments [32]. Compared to the IDoG result, we can

clearly see that this wrinkle is absent in the DoG output (figure 21C).

D. Summary

We have shown that certain limitations of DoG filters can be overcome by explicitly

modeling disinhibition, and that a disinhibitory filter (IDoG) can be used to explain

several brightness-contrast illusions (e.g., the Hermann grid, the White’s effect, and

the Mach band). The functional benefit of disinhibition in the early visual pathway

is to preserve brightness and enhance contrast in multiple spatial scales as shown in

the Hermann grid and the Mach band experiments.

In the next chapter, we will apply the dynamic model of disinhibition, IDoGS,

to predict the scintillating grid illusion, which is a variation of the Hermann grid

illusion.
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A B

C

Fig. 19. The White’s effect under DoG filter. A. The White’s effect. The

gray patch on the left has the same gray level as the one on the right, but

we perceive the left to be brighter than the right. B. The output using a

conventional DoG filter. C. The brightness level of the two gray patches

calculated using conventional DoG filter. As in the previous figure, rows of

10 to 19 in the output were added to get the average response. Note that the

left patch has a lower average value (below zero) than the right patch (above

zero). The result contradicts our perceived brightness.
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A B

C

Fig. 20. The White’s effect and prediction under IDoG filter. A. The White’s

effect stimulus. B. The output using IDoG. C. The prediction using the IDoG

model. The gray patch on the left results in a higher value than that in the

right. The curve shows the column-wise sum of rows 11 to 19.
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A B

C D E

Fig. 21. The Mach band under DoG and IDoG. A. The Mach band input image.

B. The output using a conventional DoG filter. The different brightness levels

are not preserved. C. An expanded view of the inset in B. D. The output

using IDoG. The different brightness levels are preserved. E. An expanded

view of the inset in D, which shows wrinkles near luminance edge, unlike in

C.



36

CHAPTER V

ROLE OF SPATIO-TEMPORAL DISINHIBITION IN DYNAMIC

BRIGHTNESS-CONTRAST PERCEPTION*

In the previous chapter I used the IDoG model to predict static brightness-contrast

perception, such as the Hermann grid or the White’s effect. In this chapter, I will

analyze in detail an interesting visual illusion, scintillating grid, which is a static

figure that can give rise to a dynamic brightness-contrast perception. To explain this

phenomenon, I employed a dynamic model of disinhibition, IDoGS, to explain the

striking visual effect.

A. Scintillating grid illusion

As we introduced in Chapter I, section A.2, the scintillating grid illusion consists of

bright discs superimposed on intersections of orthogonal gray bars on a dark back-

ground (figure 22A) [3]. Several important properties of the illusion have been discov-

ered and reported in recent years: (1) The discs that are closer to a fixation show less

scintillation [3], which might be due to the fact that receptive fields in the periphery

are larger than those in the fovea. As shown in figure 23, if the periphery of the

scintillating grid is correspondingly scaled up, the scintillation effect is diminished.

Note that the diminishing effect is not due to the polar arrangement alone, as can

be seen in figure 22B. (2) The illusion is greatly reduced or even abolished both with

steady fixation and by reducing the contrast between the constituent grid elements

* Parts of this chapter have been reprinted with permission from “A neural model of
scintillating grid illusion: Disinhibition and self-inhibition in early vision” by Yingwei
Yu and Yoonsuck Choe, 2006. Neural Computation, vol. 18, pp. 501-524. Copyright
2006 by MIT Press.
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A Scintillating Grid B Scintillating grid in polar arrangement

Fig. 22. The scintillating grid illusion and its polar variation. A The original

scintillating grid illusion is shown (redrawn from [3]). B A polar variation of

the illusion is shown. The scintillating effect is still strongly present in the

polar arrangement (cf. [34]).

[3]. (3) As speed of motion is increased (either efferent eye-movement or afferent grid

movement), the strength of scintillation decreased [33]. (4) The presentation dura-

tion of the grid also plays a role in determining the strength of illusion. The strength

first increases when the presentation time is less than about 220 ms, but it slowly

decreases once the presentation duration is extended beyond that [33].

What kind of neural process may be responsible for such a dynamic illusion?

Anatomical and physiological observations show that the center-surround property

in early visual processing involves disinhibition and self-inhibition, inhibition of the

cell itself [1; 12; 13; 14; 15; 16]. For self-inhibition, it is found that depolarization

of a rod bipolar cell in the rat retina evokes a feedback response to the same cell

[35], thus indicating that a mechanism similar to those in the Limulus may exist in
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Fig. 23. A variation without the scintillating effect. The grids toward the

periphery are significantly scaled up, which results in the abolishment of the

scintillating effect when stared in the middle. This is because the scintillating

grid illusion highly depends on the size of the receptive fields. In the fovea,

the receptive field size is small and in the periphery, the receptive field size is

relatively larger. (Note that Kitaoka [34] presented a similar plot, but there

the periphery was not significantly scaled up such that the scintillating effect

was preserved.)

mammalian vision. Other computational models also suggested that self-inhibition

may exist in cells sensitive to light-dark contrast [36]. Disinhibition can effectively

reduce the amount of inhibition in the case where there is a large area of bright

input, and self-inhibition can give rise to oscillations in the response over time. Thus,

the combination of those two mechanisms, i.e., disinhibition and self-inhibition, may

provide an explanation to the intriguing Scintillating grid illusion.
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B. Methods

To match the behavior of the model to psychophysical data, we need to measure

the degree of the illusory effect in the scintillating grid. More specifically, we are

interested in the change over time in the relative contrast of the disc vs. the gray

bars:

S(t) = C(t)− C(0), (5.1)

where S(t) is the perceived strength t time units from the last eye movement or the

time of initial presentation of the scintillating grid stimulus (time t in our model is

on an arbitrary scale) , and C(t) is the contrast between the disc and the gray bars

in the center row of the response matrix:

C(t) =
Rdisc(t)−Rmin(t)

Rbar(t)−Rmin(t)
, (5.2)

where Rdisc(t) is the response at the center of the disc region, Rbar(t) the response at

the center of either of the gray bar regions, and Rmin(t) the minimum response in the

output at time t. In other words, the function of perceived strength of illusion S(t) is

defined as the relative disc-to-bar contrast at time t as compared to its initial value

at time 0.

Using this measure, in the experiments below, we tested our model under various

experimental conditions, mirroring those in [3; 33]. In all calculations, the effect of

illusion was measured on an image consisting of a single isolated grid element of

size 30 × 30 pixels. The disc at the center had a diameter of 8, and the bars had

a width of 6. The model parameters k = 3 and τ = 0.3 were fixed throughout all

experiments and so was the pattern where the background luminance was set to 10,

the gray bar to 50, and the white disc to 100, unless stated otherwise. Dependent

on the experimental condition under consideration, the model parameters (receptive



40

field size ρ) and/or the stimulus conditions (such as the duration of exposure to the

stimulus and/or brightness of different components of the grid) were varied. The

units of the receptive field size, the width of the bar, and the diameter of the disc

were all equivalent; in pixels on the receptor surface, where each pixel corresponds to

one photo receptor. The details of the variations are provided in the experiments

section below.

C. Experiments and results

1. Experiment 1: Perceived brightness as a function of receptive field size

In the scintillating grid illusion, the scintillating effect is most strongly present in the

periphery of the visual field. As we stated earlier, this may be due to the fact that

the receptive field size is larger in the periphery than in the fovea, thus matching the

scale of the grid. If there is a mismatch in the scale of the grid and the receptive field

size, the illusory dark spot would not appear. For example in figure 23, the input is

scaled up in the periphery, thus creating a mismatch between the peripheral receptive

field size and the scale of the grid. As a result, the scintillating effect is abolished.

Conversely, if the receptive field size is reduced in size with no change to the input,

the perceived scintillation would diminish (as it happens in the center of gaze in the

original scintillating grid: figure 22).

To verify this point, we tested our model with different receptive field sizes while

the input grid size was fixed. As shown in figure 24A, smaller receptive fields results

in almost no darkening effect in the white disc.

In sum, these results could be an explanation to why there is no scintillating

effect in figure 23. In the original configuration, the peripheral receptive fields were

large enough to give rise to the dark spot, however, in the new configuration, they



41

are not large enough, and thus no dark spot can be perceived.

2. Experiment 2: Perceived brightness as a function of time

In this experiment, the response of the model at different time steps was measured. In

figure 25A–E, five snapshots are shown. In the beginning, the dark spot can clearly be

observed in the center of the disc, but as time goes on, it gradually becomes brighter.

Figure 25F plots the relative brightness of the disc compared to the bars as a function

of time, which shows a rapid increase to a steady state. Such a transition from dark

to bright corresponds to a single scintillation (Note that the opposite effect, bright

to dark, is achieved by refreshing of the neurons via saccades). Figure 25G shows

the actual response level in a horizontal cross section of the response matrix shown

in figure 25A–E. Initially, the response to the disc area shown as the sunken plateau

in the middle is relatively low compared to that to the gray bars represented by the

flanking areas (bottom trace, white ribbon). However, as time passes by the difference

in response between the two areas dramatically increases (top trace, black ribbon).

Again, the results show a nice transition from a perception of a dark spot to that of

a bright disc.

3. Experiment 3: Strength of scintillation as a function of luminance

The strength in perceived illusion can be affected by changes in the luminance of the

constituent parts of the scintillating grid, such as the gray bar, disc, and the dark

background (figure 26A and C) [3]. Figure 26B and D show a variation in response

in our model under such stimulus conditions. Our results show a close similarity

to the experimental results by Schrauf et al. [3]. As the luminance of the gray bar

increases, the strength of illusion increases, but after reaching about 40% of the disc

brightness, the strength gradually declines (figure 26B), consistent with experimental
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Fig. 24. Response under various receptive field sizes. The response of our

model to a single grid element in the scintillating grid is shown, under var-

ious receptive field sizes at t = 0.01. A–E The responses of the model are

shown, when the receptive field size was increased from ρ = 3 to 6, 9, 12,

and 15. Initially, the disc in the center is bright (simulating the fovea), but

as ρ increases, it becomes darker (simulating the periphery). F The relative

brightness level of the central disc compared to the gray bar C(t) is shown

(equation 5.2). The contrast decreases as ρ increases, indicating that the disc

in the center becomes relatively darker than the gray bar region. The con-

trast drops abruptly until around ρ = 6 and then gradually decreases. G The

normalized responses of the horizontal cross section of A–F are shown. For

normalization, the darkest part and the gray bar region of the horizontal cross

section were scaled between 0.0 and 1.0. When ρ is small (=3), the disc in

the center is very bright (the plateau in the middle in the black ribbon), but

it becomes dark relative to the gray bars as ρ increases (white ribbon).
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Fig. 25. Response at various time points. The response of the model to an

isolated scintillating grid element is shown over time. The parameters used

for this simulation were: receptive field size = 6 (represents the periphery),

k = 3, and τ = 0.3. The plots demonstrate a single blinking effect of the

white disc. A In the beginning when the self-inhibition rate is small, the

illusory dark spot can be seen in the central disc (Ks(t) = 0.0495). B–E

As time goes on, the illusory dark spot disappears as the self-inhibition rate

increases Ks(t) = 0.04521, Ks(t) = 2.4107, Ks(t) = 3.2140, and Ks(t) = 3,

respectively. F The relative brightness level of the central disc compared

to the gray bar C(t) is shown (equation 5.2). The results demonstrate an

increase in the relative perceived brightness of the center disc as time pro-

gresses. G The normalized response of the horizontal cross section of the

A–E are shown. Normalization was done as described in figure 24G. In the

beginning (t = 0.01), the disc region in the middle is almost level with the

flanking gray bar region (white ribbon near the bottom). However, as time

goes on, the plateau in the middle rises, signifying that the disc in the center

is becoming perceived as brighter.
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results (figure 26A). Such a decrease is due to disinhibition, which cannot be explained

by DoG [18].

When the luminance of the disc was increased, the model (figure 26D, right)

demonstrated a similar increase in the scintillating effect as in the human experiment

(figure 26C, right). When the disc has a luminance lower than the bar, Hermann

grid illusion occurs [3]. Both the human data (figure 26C, left) and the model results

(figure 26D, left) showed an increase in the Hermann grid effect when the disc became

darker.

Note that disinhibition plays an important role here, especially for the bar lu-

minance experiments (figure 26A–B). In standard DoG, which lacks the recurrent

inhibitory interaction, the illusory effect will monotonically increase with the increase

in the luminance of the gray bars. However, with disinhibition, the increasing illusory

effect will reach a critical point followed by a decline. (See the section V.D for more

discussion.)

4. Experiment 4: Strength of scintillation as a function of motion speed and

presentation duration

As we have seen above, the scintillating effect has both a spatial and a temporal

component. Combining these two may give rise to a more complex effect. Schrauf et

al. demonstrated that such an effect in fact exists [33]. They conducted experiments

under three conditions: (1) smooth pursuit movements executed across a stationary

grid (efferent condition); (2) grid motion at an equivalent speed while the eyes are

held stationary (afferent condition); (3) brief exposure of a stationary grid while the

eyes remained stationary. For conditions 1 and 2, both afferent and efferent motion

produced very similar results: The strength of scintillation gradually decreased as

the speed of motion increased (figure 27A). For condition 3, the strength of illusion
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Fig. 26. Strength of scintillation under various luminance conditions. A

Mean rated strength of scintillation in human experiments is shown as a func-

tion of disc luminance [3]. B Scintillation effect in the model is shown as

a function of bar luminance. C Mean rated strength of scintillation in hu-

man experiments is plotted as a function of bar luminance [3]. The plot

shows results from two separate experiments: Hermann grid on the left, and

scintillating grid on the right. D Hermann grid and scintillation effects in

the model are plotted as functions of disc luminance. Under both condi-

tions, the model results closely resemble those in human experiments. For

B and D, the strength of the scintillation effect in the model was calculated

as S = C(∞) − C(0), where C(∞) is the steady state value of C(t) (see

equation 5.1). The illusion strength in the Hermann grid portion in D was

calculated as S = 1/C(∞)− 1. The reciprocal was used because in the Her-

mann grid, the intersection is darker than the bars, whereas in the scintillating

grid, it is the other way around (disc is brighter than the bars).
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abruptly increases, coming to a peak at around 200 ms and then slowly decreases (fig-

ure 27C). We tested our model under these conditions, to verify if temporal dynamics

induced by self-inhibition can accurately account for the experimental results.

First, we tested the model when either the input or the eye was moving (assuming

that condition 1 and 2 above are equivalent). In our experiments, instead of directly

moving the stimulus, we estimated the effect of motion in the following manner. Let

v be the corresponding speed of motion, either afferent of efferent. From this, we can

calculate the amount of time elapsed before the stimulus (or the eye) move on to a

new location. For a unit distance, the elapsed time t is simply an inverse function of

motion speed v, thus the effect of illusion can be calculated as S(v−1). Figure 27B

shows the results from our model, which closely reflects the experimental results in

figure 27A.

Next, we tested the effect of stimulus flash duration on our model behavior.

Figure 27D shows our model’s prediction of the brightness as a function of the pre-

sentation duration. In this case, given a duration of d, the strength of illusion can be

calculated as S(d). The perceived strength initially increases abruptly up till around

t = 1.5, then it slowly decreases until it reaches a steady level. Again, the compu-

tational results closely reflect those in human experiments (figure 27C). The initial

increase might be due to the fact that the presentation time is within the time period

required for one scintillation, and the slow decline may be due to no new scintilla-

tion being produced after the first cycle as the eyes were fixated, so that the overall

perception of the scintillating strength declines.

In summary, our model based on disinhibition and self-inhibition was able to

accurately replicate experimental data under various temporal conditions.
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Fig. 27. Strength of scintillation under varying speed and presentation du-

ration. A Mean rated strength of the illusion as a function of the speed of

stimulus movement is shown [33]. B Scintillation effect as a function of the

speed of motion (v) in the model is shown. The receptive field size was 6, and

the strength of scintillation was calculated as S(v−1) = C(v−1) − C(0). C

Mean rated strength of the illusion as a function of the duration of exposure

is shown [33]. D Scintillation effect as a function of presentation duration (t)

in the model is shown. The receptive field size was 6, and the strength of

scintillation was computed as S(t) = C(t) − C(0). In both cases A–B and

C–D, the curves show a very similar trend.
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D. Discussion

The main contribution of this part of the dissertation was to provide, to our knowl-

edge, the first neurophysiologically grounded computational model to explain the

scintillating grid illusion. We have demonstrated that disinhibition and self-inhibition

are sufficient mechanisms to explain a broad range of spatio-temporal phenomena

observed in psychophysical experiments with the scintillating grid. DoG filter failed

to account for the change in the strength of scintillation, because it does not incor-

porate the disinhibition mechanism nor the dynamics of self-inhibition. Disinhibition

can effectively reduce the amount of inhibition in the case where there is a large area

of bright input [18]. Therefore, DoG filter without disinhibition mechanism cannot

explain why the dark illusory spots in the scintillating grid are perceived to be much

darker than those in the Herman grid. The reason is, DoG filter predicts that the

white bars in the Hermann grid should give stronger inhibition to its intersection

than the gray bars in the scintillating grid to its disc. Thus, according to DoG, the

intersection in the Herman grid should appear darker than that in the scintillating

grid, which is contrary to the fact. However, with a disinhibition mechanism, since

disinhibition is stronger in the Hermann grid than in the scintillating grid (because

the bars are brighter in the Hermann grid, there is more disinhibition), the inhibition

in the center of the Hermann grid is weaker than that in the scintillating grid. Thus,

the center appears brighter (because of weaker inhibition) in the Hermann grid than

in the scintillating grid, due to disinhibition. Regarding the issue of dynamics, the

lack of self-inhibition mechanism in DoG filter makes it fail to explain the temporal

properties of the scintillation.

There are certain issues with our model which may require further discussion.

In our simulations, we used a step input with an abrupt stimulus onset. In a usual



49

viewing condition, the scintillating grid as a whole is presented and when the gaze

moves around the scintillating effect is generated. All the while, the input is con-

tinuously present, without any discontinuous stimulus onset. Thus, the difference in

the mode of stimulus presentation could be a potential issue. However, as Schrauf

[33] observed, what causes the scintillation effect is not the saccadic eye movement

per se, but the transient stimulation which the movement brings about. Thus, such

a transient stimulation can be modeled as a step input, and the results of our model

may well be an accurate reflection of the real phenomena.

Another concern is about the way we measured the strength of the scintillation

effect in the model. In our model, we were mostly concerned about the change in the

perceived brightness of the disc over time (equation 5.1), whereas in psychophysical

experiments, other measures of the effect have been incorporated, such as the per-

ceived number of scintillating dark spots [33]. However, one observation is that the

refresh rate of the stimulus depends on the number of saccades in a given amount

of time. Considering that a single saccade triggers an abrupt stimulus onset, we can

model multiple saccades as a series of step inputs in our simulations. Since our model

perceives one scintillation per stimulus onset, the frequency of flickering reported in

the model can be modulated exactly by changing the number of stimulus onsets in

our simulations. A related issue is the usage of a single grid element (instead of

a whole array) in our experiments. It may seem that the scintillation effect would

require at least a small array (say 2× 2) of grid elements. However, as McAnany and

Levine have shown [37], even a single grid element can elicit the scintillating effect

quite robustly, thus, the stimulus condition in our simulations may be sufficient to

model the target phenomenon.

Besides technical issues as discussed above, there are more fundamental ques-

tions that need to be addressed. Our model was largely motivated by the pioneering
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work by Hartline et al. in the late fifties. However, the animal model they used

was the Limulus, an invertebrate with compound eyes, thus the applicability of our

extended model in human visual phenomena may be questionable. However, dis-

inhibition and self-inhibition, the two main mechanisms in the Limulus, have been

discovered in mammals and other vertebrates as we mentioned in the introduction.

Mathematically, the recurrent inhibitory influence in the disinhibition mechanism

and the self-inhibitory feedback are the same in both the limulus and in mammals.

Therefore, our model based on the Limulus may generalize to human vision.

Finally, an important question is whether our bottom-up model accounts for the

full range of phenomena in the scintillating grid illusion. Why should the scintillating

effect only originate from such a low level in the visual pathway? In fact recent exper-

iments have shown that part of the scintillating effect can arise based on top-down,

covert attention [38]. The implication of Van Rullen and Dong’s study [38] is that

even though the scintillation effect can originate in the retina, it can be modulated by

later stages in the visual hierarchy. This is somewhat expected because researchers

have found that the receptive field properties (which may include the size) can be

effectively modulated by attention (for a review, see [39]). It is unclear how exactly

such a mechanism can affect brightness-contrast phenomena which depend on the

receptive field size at such a very low level, thus it may require further investigation.

Schrauf and Spillmann [40] also pointed out a possible involvement of a later stage,

by studying the illusion in stereo-depth. But, as they admitted, the major component

of the illusion may be retinal in origin. Regardless of these issues, modeling spatio-

temporal properties at the retinal level may be worthwhile, by serving as a firm initial

stepping stone upon which a more complete theory can be constructed.
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E. Summary

In this chapter, I presented a neural model of the scintillating grid illusion, based

on disinhibition and self-inhibition in early vision. The two mechanisms inspired by

neurophysiology were found to be sufficient in explaining the multi-facetted spatio-

temporal properties of the modeled phenomena. I expect the IDoGS model to be

extendible to the latest results that indicate a higher-level involvement in the illusion,

such as that of attention.
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CHAPTER VI

ROLE OF DISINHIBITION IN ORIENTATION PERCEPTION*

Besides the misinterpretation of the brightness-contrast level, human vision may mis-

interpret the location or orientation of visual objects. The Poggendorff illusion is

a good example to demonstrate this category of visual illusion. As shown in fig-

ure 28A and B, our perception of an angle is usually greater than the actual angle

(expansion effect), but when there are multiple lines and thus multiple angles, the

expansion effect can either be enhanced or reduced. In this chapter, we will examine

the interference effect in a modified Poggendorff illusion (figure 28C and D).

A. Poggendorff illusion

In the original Poggendorff illusion (see, e.g., [41; 42]), the top and the bottom por-

tions of the penetrating thin line are perceived as misaligned (Figure 28A). Figure 28B

shows how such a perception of misalignment can occur. The line on top forms an

angle α with the horizontal bar, but the perceived angle α′ is greater than α. As a

result, the line on top in Figure 28A is perceived to be collinear with line 4 at the

bottom, instead of line 3 which is physically collinear. However, when an additional

bar is added, the illusory angular expansion effect is altered: the effect is either re-

duced (Figure 28C) or enhanced (Figure 28D) depending on the orientation of the

newly added bar. Understanding the functional organization and the low-level neu-

rophysiology underlying such a nontrivial interaction is the main aim of this chapter.

* This chapter is a significantly expanded version of [19] “Angular disinhibition effect
in a modified Poggendorff illusion” by Yingwei Yu and Yoonsuck Choe, in Proc.
26th Annual Conference of the Cognitive Science Society, Kenneth D. Forbus, Dedre
Gentner, and Terry Regier, Eds., 2004, pp. 1500-1505.
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Fig. 28. The Poggendorff Illusion. A The original Poggendorff illusion is shown.

The five lines below the horizontal bar are labeled 1 to 5 from top to bottom.

Line 3 is physically collinear with the line on top. However, line 4 is perceived

to be collinear. B The actual angle α (= 30o) and the perceived angle α′

(> 30o) are shown. The solid line shows the straight line penetrating the bar.

The dashed line below shows the perceived direction in which the line on top

seemingly extends to. C The Poggendorff figure with an additional bar at 50o

is shown. In this case, line 2 is perceived to be collinear (i.e., α′ < 30o). D

The Poggendorff figure with an additional bar at 20o is shown. For this case,

unlike in C, line 5 is perceived to be collinear (α′ > 30o). (The angle α′ in

this case is slightly greater than in the original Poggendorff figure.)
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Neurophysiologically, in the original case where only two orientations interact,

lateral inhibition between orientation-tuned cells in the visual cortex can explain the

exaggeration of perceived angle. However, as we have seen in Figures 28C and D,

with an additional orientation response, lateral inhibition is not enough to explain

the resulting interference effect. Our observation is that this complex response is

due to disinhibition [4; 1; 5; 21; 22]. Unlike models using simple lateral inhibition,

we explicitly accounted for disinhibition in our computational model to describe the

complex interactions between multiple orientation cells. The resulting model based

on the neurophysiology of the early visual system was able to accurately predict the

perceptual performance in the modified Poggendorff illusion.

The rest of the chapter is organized as follows. The next section demonstrates our

experimental methods. Then, a neurophysiological motivation for our computational

model is presented, followed by a detailed mathematical description of the model.

Next, the results from computational experiments with the model is presented and

compared to psychophysical data we gathered, followed by discussion and summary.

B. Methods

To quantify the interference effect in the modified Poggendorff illusion, we conducted

a psychological experiment. Two subjects with normal vision participated in the

experiment. A CRT display panel with a 1600× 1200 resolution was used to display

the stimuli at a distance of 30 cm. The computer program displayed two thick bars

and one thin line on the screen, similar to the stimuli in Figure 28C. The first thick bar

was fixed in the center of the screen at 0o, with a width of 100 pixels. The thin line,

5 pixels in width, intersected the horizontal bar at a fixed angle of 30o. The second

thick bar, 100 pixels in width, intersected at the same point as the other two, whereas
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the angle was varied from trial to trial. The stimulus display program also displayed

up to 10 thin lines (all at 30o) below the horizontal bar, from which the subjects were

asked to choose the one that is the most collinear to the thin line above the bar. The

subjects were allowed to click on the line of choice, and then the perceived angle was

recorded for each click. Afterward, a new stimulus was generated. A total of 101

trials were recorded for each subject. The experimental results are reported later in

“Results” section VI.D, together with computational results.

C. Model

Let us first consider how orientation columns in the visual cortex interact in response

to several intersecting lines. For each line at the intersection, there are corresponding

orientation columns that respond maximally, which can be approximated by a Gaus-

sian response distribution. As multiple simple cells are activated by different lines

at the intersection, the response levels will interact with each other through lateral

connections. Thus, there are two issues we want to address in our model: (1) what

exactly is the activation profile (or the response distribution) of the orientation-tuned

cells, and (2) how these cells interact with each other through lateral connections.

1. Activation profile of orientation columns

Each simple cell in the primary visual cortex responds maximally to visual stim-

uli with a particular orientation, say θ. The response of these cells yθ to different

orientations x can be modeled as a Gaussian function:

yθ(x) = y0 +
a

σ
√

π/2
e−2

(x−θ)2

σ2 , (6.1)
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where y0 is the response offset; θ the center (or mean); σ the standard deviation; and

a a scaling constant [43].

It also comes to our attention that the cell tuned to a certain orientation, say α,

should respond to the opposite orientation, which is +180o. However, experiments

have shown that the peak at the position +180o is somewhat smaller than the peak

at α [44]. To accurately model this, we need two Gaussian curves to fit the response

of a cell to a full range of orientations from −180o to 180o.

The fitting curve can be written as follows:

yθ(x) = y0 +
a

σ
√

π/2
e−2

(x−θ)2

σ2 +
ak

σ
√

π/2
e−2

(x−θ−π)2

σ2 , (6.2)

where k is the degree of activation for the opposite direction (k < 1). All other terms

have the same definition as in Equation 6.1. Such an asymmetric response enables the

simple cells to be sensitive to the direction, as well as the orientation of the stimulus.

Using the equation, we can now visualize the response profile of simple cells

tuned to orientations ranging from 0o to 360o. Figure 29A shows the responses of

orientation columns tuned to 90o, given inputs of two different orientations, 0o and

30o. Figure 29B shows the responses of the same set of orientation columns to inputs

of two orientations, 0o and 150o. From these two figures, we can observe that for

each specific orientation input, the excitation is tuned at that value with a peak in

the Gaussian curve, and at the same time, the opposite direction-tuned cell shows a

lower peak response. The asymmetry in responses occurs in both acute (Figure 29A)

and obtuse angles (Figure 29B). Note that even though the difference in orientation

between 0o vs. 30o (Figure 29A) and 0o vs. 150o (Figure 29B) is 30o in both cases,

the response profile greatly differs in the 0o vs. the 150o case.

Next, we will investigate how response profiles in multiple orientation columns
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Fig. 29. Activation profile. (A) The activation of simple cells in response to an

acute angle is shown. The dashed curve is the response of the cells in an

orientation column (x-axis) to a horizontal line of 0o, and the solid curve that

to a 30o line. (B) The activation of simple cells in response to an obtuse

angle is shown. The dashed curve is the response of the cells in an orientation

column to a horizontal line of 0o, while the solid curve is the response to a

150o line.
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Fig. 30. A possible configuration of lateral inhibition between orientation

detectors. The lines with unfilled arrows illustrate mutual inhibition between

cells, and the lines with filled arrow are excitatory synapses. (Adapted from

[45].)

can interact.

2. Column level inhibition and disinhibition

Our observation that angular enlargement sometimes seems to be weakened when

there are more than two bars or lines in the Poggendorff illusion (Figure 28) led us to

hypothesize about the potential role of a recurrent inhibition effect, i.e., disinhibition.

Figure 30 shows the recurrent feedback network structure proposed by Carpenter and

Blakemore [45] which can account for the observed properties of angle expansion.

They suggested that the horizontal neuronal connectivity between the orientation

detectors are recurrent in humans, and thus it can implement disinhibition.

3. Applying disinhibition to orientation cells

Orientation sensitive cells in the cat visual cortex are known to inhibit each other

[46; 47; 48]. From this, we can postulate that a group of cells tuned to the same

orientation representing different lines (e.g., intersecting lines) may compete with

each other through inhibition.
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Now let us consider the mathematical description for inhibition at the col-

umn level. Suppose there are n lines with orientations {θ(1), θ(2), ...θ(n)} inter-

secting at one point. Let the initial responses of orientation columns to each line be

{e1, e2, ..., en}, where ei is the column response vector to input line i. In the orien-

tation column for the i-th line input, let α be the position in the orientation column

whose cell is tuned to the orientation α. The initial excitation ei(α) can be calculated

as

ei(α) = diyθ(i)(α) (6.3)

where di is the width of the i-th input line, θ(i) the orientation of the i-th input line.

In this way, we can calculate the initial excitation e of the cell which is tuned to α,

responding to the i-th input line.

By the definition of disinhibition, the final response ri of orientation columns i

can be obtained as follows:

ri = ei −Wri, (6.4)

where W is a constant matrix of inhibition strengths (or weights), controlled by a

parameter: Wij = η if i 6= j, and 0 otherwise. From this, we can rearrange the terms

to derive the response equation which accounts for the disinhibition effect:

ri = (I + W)−1ei, (6.5)

where I is the identity matrix.

By applying disinhibition, the response of the columns to the lines should shift a

little depending on the strength of the response to each line. Thus, the final perceived

line orientation γ can be obtained by finding the maximum response within each
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Fig. 31. The variations of perceived angle between two intersecting lines.

The x-axis corresponds to the angle AOB (inset), from 0o to 180o. The y-axis

is the difference between the perceived angle and the actual angle. The solid

line is the result predicted by our model, and the data points ∗ and + are

data from human subjects in experiments by Blakemore et al. [49]. The curve

was generated in two iterations with the following parameters: η = 0.009 and

σ = 1.0 for the first pass; η = 0.005 and σ = 0.5 for the second. The other

parameters remained the same for both iterations: y0 = 0.0 and k = 0.5.

column after the inhibition process:

γi = arg max
α∈C

ri(α), (6.6)

where γi is the perceived orientation for the i-th line, ri(α) is the response of i-

th orientation column’s neuron tuned to orientation α, and C is the set of all the

orientations within each column (from 0o to 180o) in layer 4 of the visual cortex.
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D. Results

1. Experiment 1: Angle expansion without additional context

To test our computational model in the simplest stimulus configuration, we used stim-

uli consisting of one thick bar and one thin line. The thick bar was fixed at 0o, and the

thin line was rotated to various orientations while the perceived angle was measured

in the model. The enlargement effect of the angle varied depending on the orientation

of the thin line. As shown in Figure 31, we can observe that there are three major

characteristics of this varying effect. First, for the acute angles, there is an increase

in the angle of the perceived compared to the actual angle, but for the obtuse angles,

the perceived is less than the actual angle. Second, the peak is around 20o for the

largest positive displacement, and around 160o for the largest negative displacement.

Third, there is a clear asymmetry in the magnitude of the displacement between the

acute angles and the obtuse angles: the peak at 20o is greater in magnitude than the

dip at 160o. As compared in Figure 31, these computational results are consistent

with results obtained in psychophysical experiment by Blakemore et al. [49]

2. Experiment 2: modified Poggendorff illusion

Disinhibition effect is the key observation leading to our extension to the angular

expansion model, which is based on lateral inhibition alone. Because of disinhibition,

when more than two lines or bars intersect, the perceived angle of the thin line will

deviate from the case where only two lines or bars are present. The computational

model is compliant with the human experiment. In the human experiment, the widths

of thick bars were twenty times that of the thin line, so we kept the same ratio to

address the thickness of the input lines in the model. The thick bars were assigned

40 units in width, while the thin line 2 units. The thickness of input lines can be
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controlled by the constant a in equation 6.3. The offset y0 in equation 6.3 was set

to 0 in all experiments. Other parameters in equation 6.3 are free parameters, and

the best fitting ones used in the resulting fit (as shown in Figure 33) were as follows:

y0 = 0, η = 0.009, σ = 0.56, and k = 0.5. The resulting curve is generated by two

fixed inputs: thin line (width: 2 units) with fixed orientation at 30o and a bar (width:

40 units) with fixed orientation at 0o and a bar (width: 40 units) with a changing

orientation from 0o to 180o.

Figure 32 shows the experiment where a 20o bar was added. Figures 32A-C

show the initial activation of orientation columns to three lines (first thick bar is 0o,

the thin line is 30o, and the second thick bar is at 20o). Figures 32D-F show the

final response of the orientation columns after the disinhibition process. Note that

the perceived thin line’s orientations (the red line in Figure 32E inset) is slightly

increased compared to that of the original input (green line in Figure 32E inset), but

the perceived bars’ orientation (the green line in Figure 32D and F inset) are barely

affected. It is because the bars’ input responses are much stronger than the thin

line due to their thickness. Therefore, the proportion of change in the bars relative to

their initial response is significantly smaller than that of the line, so the peak positions

of the bars’ responses are not changed after disinhibitory process. This experiment

shows that the displacement of the peak positions before and after the disinhibition

process can explain the amount of angular perception at a neuronal level. Using the

model of disinhibition applied on orientation columns, the angular displacement can

be estimated mathematically.

As shown in the model prediction results (blue curve, Figure 33), the effect

demonstrated in Figure 28C is accurately predicted by the peak near 20o, and the

effect in Figure 28D by the valley near 50o. In a similar manner, the model can predict

the perceived angle when the angle between the thin line and horizontal bar is reduced.
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Fig. 32. Initial orientation column activations (green) and final responses

of orientation columns (red) after disinhibition. A Initial excitation

of the first bar. B Initial excitation of the thin line. C Initial excitation

of the second thick bar. D Response to the first bar after disinhibition. E

Response to the thin line after disinhibition. F Response to the second thick

bar after disinhibition. This figure shows the perceived orientation of the thin

line is enhanced (from 30o in B to 32.5o in E) through disinhibition that is

introduced by the second thick bar at 20o. See text for details.
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Fig. 33. Perceived angle in a modified Poggendorff illusion. The results from

the computational model (blue line) and human experiments (red line with

error bars representing the standard deviation of six samples on average)

on a modified Poggendorff illusion (Figure 28C) are plotted. The second

thick bar was rotated while the perceived angle was measured. The x-axis

indicates the angle of the second bar. The y-axis shows the perceived an-

gle of the thin 30o line. The model prediction and the human data are in

close agreement. The parameters used in this experiment were as follows:

y0 = 0,η = 0.009,σ = 0.56, and k = 0.5.

So, at least for these two cases, we can say that our disinhibition-based explanation

is accurate. However, does the explanation hold for an arbitrary orientation? To

test this, we conducted a psychophysical experiment to measure human perceptual

performance and compare the results to the model prediction (see the Methods section

above for details). The human results are shown as a red curve with error bars in

Figure 33.

The peak (near 20o) and valley (near 50o) in Figure 33 are apparent in the ex-

perimental data, and the overall shape of the curve closely agrees with the model

prediction. The results show that our model of angular interaction based on disin-
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Fig. 34. Perceived angles under various values of η and σ. (A) Perceived

angles under various values of inhibition strength η (σ = 0.56 in all trials).

(B) Perceived angles under various values of interaction width σ (η = 0.009

in all trials). See text for details.
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hibition can accurately explain the modified Poggendorff illusion, and that low-level

neurophysiology can provide us with insights into understanding the mechanisms un-

derlying visual illusions with complex interactions.

The standard deviation of the Gaussian σ and the inhibition strength η are two

free parameters that can be used for the curve fitting in Figure 33. The values of

these two parameters are necessary in modulating the angles perceived from multiple

lines, such as the sensitivity to the small angles, and the amount of distortion in

orientation perception. Experiments with ferrets [50] showed that the strength of

orientation tuning in the cortex can be changing during development, and therefore

mature orientation cells will be both sensitive to the small angles and at the same time

minimize the distortion. These parameters are tuned throughout development, and

we can also test similar effects in our simulations. The two experiments as shown in

Figures 34A and 34B tested different configurations of these two parameters in order

to gain some insight into how those parameters can affect orientation perception.

Figure 34A shows how the inhibition strength η defines the magnitude of the

curve predicted by the model. As η increases, the peak value of perceived angle

becomes larger. In the tests of inhibition strength in Figure 34A, we held σ to a

constant (0.56 in those trials), and in the final curve fitting in Figure 33, we picked a

value of 0.009 for η as the best fitting one. Note that the locations of the peak and

the valley do not change in this computational experiment.

Figure 34B shows that the standard deviation for the orientation column’s acti-

vation profile defines the shape of the curve, for example, the positions of the peak

and valley, or the direction of the tail in the curve. When σ is small, which means

the Gaussian curve of the orientation column excitation profile is narrow, there would

be less interactions across orientation columns. As a consequence, the cross-column

inhibition will be limited only to a relatively short range. If σ is larger, the cross-
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column inhibition can be effective in a wider range. Based on the peak and the valley

positions of our experimental data, we chose σ = 0.56 as the appropriate value to fit

the data.

The above observations suggest that the shape of the orientation column activa-

tion profile and cross-column inhibition strength could be the key factors which define

human angular perception. Therefore, our model predicts that the effect of angular

disinhibition will differ depending on which part of the visual field the stimulus is

present, e.g. fovea vs. periphery, because the σ is larger in the periphery than in the

fovea.

E. Discussion

The study of Poggendorff illusion has a long history. One existing explanation of

the angle expansion phenomenon in Poggendorff illusion is that it is due to lateral

inhibition between orientation cells [49; 46]. The explanation is also known as angular

displacement theory [51]. Our model is an extension to the angular displacement

theory. The angular displacement theory has been disputed (e.g., as pointed out by

Robinson [52], and Howe et al. [53]) because it seems that it cannot explain the case

where only the acute or the obtuse components are present. The Poggendorff illusion

is apparently reduced when only acute angle components are present (Figure 35A),

but it is maintained when only obtuse angle components are shown (figure 35B).

One explanation to this puzzling phenomenon as proposed by Zarándy [51] was that

there is a illusory shift or overestimation of the end position of the acute angles by

endpoint detectors in the visual cortex (figure 35C), but the shift is not perceived with

the obtuse angles. The apparent shift of the acute angles’ tip positions (the points

marked as A and B in figure 35D) move the edges along the directions as indicated by
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the arrows in figure 35D. Therefore, when the two mechanisms of angular displacement

and endpoint shifting are combined, the Poggendorff illusion is reduced, and thus the

line components appear collinear (as shown in figure 35D, demonstrated by the solid

line between the dashed lines). Their discovery suggested that the endpoint filter can

neutralize the effects of angle expansion under special configurations, and that the

angular displacement theory is still valid under usual configurations of the Poggendorff

illusion. However, the illusory shifting mechanism by the cortical endpoint detector

cells [51], which may account for the reduced illusory effect of acute angle components,

is not included in our model.

There are several other existing theories explaining the Poggendorff illusion. For

example, Gilliam proposed a depth processing theory, and suggested that the Poggen-

dorff illusion was due to the bias from three dimensional perception [54; 55]. Morgan

explained the illusion based on bias in the estimation of the orientation of virtual

lines by second-stage filters [42]. On the other hand, Fermüller proposed that noise

and uncertainty in the formation and processing of images caused a bias in percep-

tion of the line orientation [56]. Howe et al. explained the illusion based on natural

scene geometry using statistics of natural images [53]. They showed that the location

of a thin line segment across a thick bar in natural environments has the highest

possibility away from the collinear point. The bias in the geometric perception in

natural scene matched well with the shifting of the thin line in Poggendorff illusion.

Indeed, the above theories successfully explain possible sources of bias formed in the

Poggendorff illusion, but none of those provide an explanation of Poggendorff illusion

at a neurophysiological level, nor did they explicitly model the disinhibitory effect as

presented here.

The model we have presented here is based on angular inhibition which takes into

account the disinhibition effect, and the soundness of the theoretical extension lies
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in physiological and psychological facts. First, our model was based on the Limulus

visual system. However, it is also known that disinhibition exists in the vertebrate

visual system, such as in the visual cortical column of cats [57; 46; 47; 48], tiger

salamanders [58] and in mice [59]. It is also known that the opposite directions

of the same orientation evoke an asymmetric response [44]. Our model of the angle

variations for acute and obtuse angles shows asymmetric properties and matches these

experiments well. Second, our model can correctly replicate disinhibition caused by

more than two lines intersecting and the results match our own experimental data

obtained by the same kind of stimuli.

Besides the Poggendorff illusion, our model has the potential for explaining other

geometric illusions, such as the café-wall illusion. Fermüller and Malm showed a vari-

ation of the café-wall illusion where adding some dots in strategic places significantly

reduced the perceived distortion [56]. Such a correctional effect can potentially be

explained by our model. Because the newly introduced dots give rise to a new orienta-

tion component (as the second thick bar did in our modified Poggendorff illusion), the

disinhibitory effect caused by that new orientation can reduce the distortion formed

by the existing orientation components.

F. Summary

In this chapter, a neurophysiologically based model of disinhibition to account for a

modified version of the Poggendorff illusion was presented. The model was able to

accurately predict a subtle orientation interaction effect, closely matching the psy-

chophysical data we collected. We expect the model to be general enough to account

for other kinds of geometrical illusions as well.
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Fig. 35. The endpoint effect in the Poggendorff illusion. A The reduced

Poggendorff illusion with only acute angle components is shown. B The il-

lusion is not reduced with obtuse angle components. C The positions of the

acute angle endpoint can be overestimated. For example, the point b appears

to be on the right of point a, but actually they are on the same vertical

line. Redrawn from [51]. D The combination of shift in endpoint and angle

expansion mechanisms may explain why the illusion is reduced in A. The

overestimated endpoints are labeled as c and d, and the expanded angles are

illustrated by the green dashed line. (The amount of angle expansion by the

dashed lines may not be accurate, because we just use them as a demonstra-

tion of the angle expansion effect.) If we shift the expanded angle edges (the

green dashed line) to the overestimated endpoints c and d (shifted as the red

arrows indicated), the line components appear collinear (as illustrated by the

solid line in the middle of the two dashed line). Therefore, the overall illusory

effect is reduced.
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CHAPTER VII

ROLE OF DISINHIBITION IN ATTENTIONAL CONTROL

In this chapter, we will analyze the role of disinhibition in attentional control. I

will first introduce the thalamocortical circuit in section A. The thalamocortical

circuit is rich disinhibitory patterns, and it is believed to play a role in enhancing and

suppressing sensory inputs to the cortex. Based on this function of thalamocortical

circuit, I will propose a neural network model of input-modulation, and test it with

the Stimulus Onset Asynchrony (SOA) effect in the Stroop task (section B) [60].

A. Disinhibition in the thalamocortical circuit

The thalamus is about the size of the end segment of the little finger and is located

at the top of the brainstem in the interior region of the brain [61]. It consists of

the relay nuclei and the thalamic reticular nucleus (TRN). The thalamic reticular

nucleus is a collection of GABAergic neurons that form a shell surrounding the dorsal

and the lateral aspects of the thalamus. Figure 36 is a schematic drawing of the

thalamic connectivity. Sensory input is received by relay cells, and then relay cells

forward the activity to pyramidal cells in the cortex and also to the reticular nucleus.

The pyramidal cells have excitatory feedback to both the relay cells and the reticular

nucleus. The TRN neurons send inhibition to each other as well as to the relay cells.

The function of the thalamus can be summarized as follows (see, e.g., [9; 62]).

First, it transmits signals from the sensory periphery to the cortex. Second, it trans-

fers signals from deep motor nuclei to the cortical motor centers. Third, it controls

the signals to select which input and output will be permitted to pass to and from the

cortex and how the signals will be sequenced. The thalamic reticular nucleus (TRN)

plays a major role in such a signal selection function. Forth, it modulates (i.e. control
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Fig. 36. A schematic drawing of thalamus connectivity. Adapted from [20]. T1

and T2: relay cells. R1 and R2: thalamic reticular nucleus cells. C1 and C2:

cortical cells. See text for details. Filled circles indicate inhibitory, and open

circles excitatory neurons.

the intensity) and synchronizes (for grouping) the signal transmissions.

In the following, I will first summarize the roles of disinhibition in the thalamus

(section A.1) , then propose a biologically accurate model of the thalamocortical

circuit to verify the role of disinhibition (section A.2).

1. Role of disinhibition in the thalamus

In the thalamocortical model (figure 36) we can observe that the TRN neurons play

an important role in controlling and modulating the signal from the relay cells to the

cortex. Note that the TRN is recurrently connected within itself, and their inhibi-

tion mechanism implements disinhibition in two senses: (1) One TRN cell, say R1,

inhibits another R2, and R2 inhibits the relay cell T2 (R1 → R2 → T2); and (2) the

inhibition is mutual among TRN cells. Since I am mainly interested in the function
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of disinhibition, it will be worthwhile to study how these disinhibition mechanisms

can control and modulate the signals to and from the cortex. The first disinhibition

pathway is to disambiguate between the input and the output of cortical computa-

tion when the output was partially input driven. In this case, the more input-driven

cortical representation will be inhibited through the thalamus-TRN feedback loop

[20]. As for the second case, disinhibition within the TRN can allow for inhibitory

and excitatory effects to ripple through further than the immediate physical con-

nectivity radius, thus allowing for a large-scale coordination of activity within the

TRN. Moreover, recurrent disinhibition can enhance the signal contrast over space,

so this structure could be used in modulating the intensity of the signals. Research

on attention (e.g. [63]) pointed out that the TRN neuron can control and modulate

specific, localized, active parts of the response of the thalamus to the environmental

input. For example, O’Connor et al. found that lateral geniculate nucleus (LGN)

activity was enhanced when subjects attended to the stimulus, and it was suppressed

when they ignored it [64]. Furthermore, directed attention to a spatial location in

anticipation of the stimulus onset led to an increase in baseline activity in the LGN.

Such attention regulations can be a result of the control from the cortex to the TRN;

and through the disinhibition mechanism of the TRN neurons, the signals from the

relay cells transmitted to the cortical cells can be controlled and modulated.

2. Biologically accurate model of the thalamocortical circuit

Choe employed integrate-and-fire neurons to simulate the thalamocortical circuit [20].

In Choe’s experiment, the initial activation of the cortical cell driven by the input

was suppressed, and only the cortex-driven cortical activity was able to reactivate

the cortex through feedback to the thalamus. This kind of thalamocortical circuit

behavior can also be simulated in a more biologically accurate way with Hodgkin-
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Huxley neurons [65] (see results in figure 37 and 38). In figure 37, the input was only

injected to the relay cell T1. As a result the reticular cell (R1) and the cortical cell

(C1) were both activated. The cortical cell C2 was activated by the cortico-cortical

connection from C1. At this time point, the reticular cell R2 was inhibited by R1

and it allowed the reactivation of C2 (the right arrow in figure 37C). This simple

thalamocortical circuit demonstrates that the thalamus can control the propagation

of activation from one cortical region to another while suppressing the originating

region, even when the two regions are reciprocally connected. Figure 38 demonstrates

a similar result with different level of input to the two loops (as shown in the figure,

Loopi is defined as the local circuit composed of Ti, Ri, and Ci). Loop1 was injected

with strong input (2.0) while Loop2 with weak input (1.0). Due to disinhibition in the

TRN (R1 suppressing R2), Loop2 succeeds in reactivating the cortex C2 (right arrow

in figure 38C) even though it was input driven (i.e. weakly input-driven cortical

activity gets promoted).

In this section, we reviewed the thalamocortical circuit. In the following sections,

I will propose a neural network with disinhibition features. The proposed model can

enhance or suppress the input through feedforward disinhibitory connection, and

implement selective attention over time.

B. Selective attention over time

Selective attention refers to the competition between target resources (or relevant

stimuli) and distracting resources (or irrelevant stimuli). As a result, the attended

stimulus creates more reliable cortical activity than the unattended ones [66]. LaBerge

[7; 8] explained selective attention as an enhancement of target site (the corresponding

principal cells of a thalamic nucleus). Some other theories pointed out that selective
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Fig. 37. Input vs. no-input condition. The spike train for neurons in two con-

nected loops are shown in A and C. The two loops are connected as shown in

the middle B. A. A depolarizing current of duration 0.05 was injected in T1.

C1 activates once (arrow) and goes silent. C. No current was injected any-

where in the loop, thus all activities were initially driven by the cortico-cortical

connection from C1 to C2 at time t = 0.3. Only the cortex-driven cortical ac-

tivity in C2 (arrow on left) is able to reactivate the cortex through feedback

to the thalamus (t = 0.6 in C, arrow on right). Adapted from [20].
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Fig. 38. Strong vs. weak input condition. A similar experiment as in fig 37

where both loops received input (Loop1 = 2.0 and Loop2 = 1.0). Due to

disinhibition in the TRN (R1 suppressing R2), Loop2 succeeds in reactivating

the cortex (right arrow in C2) even though it was input driven (i.e. weakly

input-driven cortical activity gets promoted). Adapted from [20].
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attention is object-based [67; 68; 69; 66] or space-based [70; 71; 66; 72]. These

theories treated selective attention as a selection of What, Where, and Which [61].

Yet, selection in time has not been thoroughly investigated. In this section, we will

focus on attentional control in the temporal domain: the selection of “When”.

Attentional selection has been studied in visual search tasks (e.g. [73; 74]). In

these tasks, target and distractor objects are presented simultaneously (figure 39A).

Since the stimulus onset times are the same, there is no preference for a particular time

period: no modulation is needed to magnify or reduce the signal during a particular

time frame. However, if the target and the distractor are presented at a different time,

temporal modulation may be needed if a certain time period is to be given preference

(see e.g., [75]). As shown in figure 39B, C, and D, when a relevant stimulus and an

irrelevant stimulus are presented asynchronously, the desired modulation is to enhance

the signal during the relevant time frame, and reduce the signal during the irrelevant

time frame. Here, we are particularly interested in the attentional control mechanisms

that show modulation of input signals over time. Such an attentional control in the

temporal domain can be seen as the selection of “When”, which is different from

space-based or object-based attention [75]. The time-based modulation profile can be

applied to all the stimuli, showing no preference over objects or locations. Time-based

selection can provide an alternative explanation to the SOA effect in the Stroop task.

Stroop task [76] tests how humans respond to a compound stimulus where the

color information conveyed by the printed words is incompatible with the ink color

(i.e., incongruent case: for a comprehensive review, see [77]). In the color naming

task, stimulus feature from one dimension (color) is a target, while that from another

dimension (word) becomes a distractor. The control-condition cards were the same

as the experimental cards except that the text was replaced with colored blocks. The

results showed that there was a significant difference (almost twice) in response time
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Fig. 39. A schematic drawing of attentional control. The target and the dis-

tractor are defined by the task (e.g. in color-naming Stroop task, the target

is a color block and the distractor a word). Distractor can be congruent with

the target (as in D: we mark the congruent stimuli pair in gray), or incon-

gruent with the target (as in A-C: the target and distractor stimuli pair are

colored in gray and white). If the stimulus can provide sufficient information

(that does not necessarily have to be a target: e.g., a congruent distractor)

to evoke a response, the stimulus is defined as relevant, and otherwise irrele-

vant. A Simultaneous onset of target and distractor: input-modulation over

time is not needed. B Relevant-first: The target stimulus starts first, and

the distractor (irrelevant) later. The desired modulation is to enhance the

input in the early-stage and reduce in the later-stage. C Irrelevant-first: The

distractor (irrelevant) stimulus starts first, and the target follows. The de-

sired modulation is to reduce the input in the early-stage and enhance that in

the later-stage. D Relevant-first (congruent): The distractor stimulus begins

first, but unlike in case C, the distractor can be a relevant stimulus. The de-

sired modulation is to enhance the input in the early-stage (with relevant-first

profile) as in B.
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per item in the experimental case than in the control case [76].

Experiments on Stimulus Onset Asynchrony (SOA) investigated the time course

of the Stoop effect [78; 79]. For example, Glaser and Glaser [79] presented words and

colors with a set of target-first and distractor-first SOAs (figure 39B and C). In their

configuration, the words were presented in white on a dark background, and the color

in a colored block on the same background. The onset time of the word were 400,

300, 200, 100 or 0 ms before the time of color block presentation (distractor-first); or

0, 100, 200, 300, or 400 ms after the color block onset time (target-first).

The results by Glaser and Glaser [79] indicated that the Stroop phenomenon was

not caused by the relative speed of processing of word or color. Interestingly, as shown

in figure 40A, the response time is shorter for the distractor-first task (incongruent

case). However, neither models based on selection-through-accumulation [80; 81; 82]

(figure 40B) nor selection-through-attraction [83] can explain the phenomenon (see

[84] for a summary). What could be the mechanism underlying such a time-course

property in the SOA effect?

Roelofs proposed the theory of selection-through-verification, which used a sys-

tem named WEAVER++ to predict the SOA data [84]. Although WEAVER++

yielded better results than all previous models, this model was not a purely con-

nectionist model (i.e., it was semi-rule-based). More importantly, it omitted the

possibility of attentional control over time.

It is possible that attentional control over time can be learned: If the subject has

experienced target (or the relevant cue) onset time that is always (or with a certain

high probability) in a certain time offset from another stimulus onset, a neural process

may adaptively adjust attention to enhance the relevant input or reduce the irrelevant

input. From an attentional control perspective, we explore here, through attentional

selection of “when”, an alternative way to explain the SOA effect in the Stroop task.
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Fig. 40. Human data and model result of SOA experiment. In both A

and B, the results are for the color-naming task in the Stroop effect. The

x-axis is the stimulus onset time. The negative time is for distractor-first

case, and the positive time for the target-first case. The y-axis is the response

time of human compared to the control case. Throughout this chapter, the

response time in the control case is used as a reference (solid line at y = 0).

Therefore, positive response time means slower than the control, and negative

means faster than the control. The solid lines are the response times of the

incongruent case, while the dashed lines are those of the congruent case. A

Human data [79]. Note that for the incongruent case, the peak of the curve

is around time 0 and when the lag between the distractor and the target

increases, the response time is reduced. (Redrawn from [79].) B Results from

Cohen’s model [80; 81]. Note that the incongruent cases (solid line) are not

correctly predicted compared to human data. (Adapted from [84].)
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The remainder of this chapter is organized as follows. The next section (section

C) introduces the input-modulation model. Section D describes the experiments and

results, followed by discussions in section E. We conclude with section F.

C. Model

1. Model architecture

The proposed model contains three modules as shown in figure 41. Module I is the

attentional control module, which involves two parts. The first part functions as a

temporal learner and it generates inhibition profiles to modulate the input over time

through the attentional gateway (Module III). The second part plays the role of a

conflict monitor, monitoring the conflict in the responses that arose in the processing

modules. Module I outputs to Module III to control the input signal magnitude.

The second module employs the stimulus competition model, GRAIN, by Cohen

and Huston [81]. There are two layers of neurons that are bidirectionally and recur-

rently connected as shown in figure 42. The processing network follows the GRAIN

model’s configuration as shown below:

αj(t) =
∑

i

ai(t)wij + ej, (7.1)

where t is time, αj the post-synaptic potential of the j-th neuron, wij the synaptic

weight as shown in the figure 42 (note that all the synapses are bi-directional, and

wij = wji), and ej the input from lower-level sensors. The pre-synaptic activity of

neuron i is defined as:

ai(t) = σ(βi + θi), (7.2)

where σ is a sigmoid function (e.g. tanh in our experiments), θ the threshold (number

inside the circles in figure 42, and 0 otherwise), βi the running average of post-synaptic
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Fig. 41. An overview of the input-modulation model. There are three modules:

Module I - Attentional Control Module, Module II - The Stimulus Compe-

tition Module, and Module III - Attentional Gateway. The circles represent

neurons (black circle: inhibitory neuron, gray circle: neuron with both ex-

citatory and inhibitory synapses, white circle: excitatory neuron), and the

squares delay units. Filled arrows represent excitatory, and unfilled arrows

inhibitory synapses. The thick lines with arrows are interconnections between

the modules, representing multiple parallel connections. See text for details.

potential over time with an averaging rate τ :

βi = ταi + (1− τ)βi. (7.3)

The constant τ was 0.01 in all the experiments. The two response neurons marked

“RESPONSE” send their outputs to the conflict monitor [85]. When the difference

in the two outputs accumulates to reach a threshold (= 1 in our experiments), an

output of the perceived color is announced and that time point is recorded as the

response time (GRAIN model, [81]).
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Fig. 42. Module II: The stimulus competition model. Two layers of neurons

that are bidirectionally and recurrently connected are shown. The circles

represent neurons. Filled arrows represent excitatory synapses, and unfilled

arrows inhibitory synapses. Numbers in the circles represent the threshold of

that neuron. (Redrawn from [81].)

The third module is an attentional gateway. It forwards the input from lower

level visual pathway to module I and II. The inhibitory neuron tonically inhibits

the sensory input to module II, and it reads the attentional control feedback from

module I and regulates the input magnitude through an inhibitory neuron. When the

output from Module I inhibit the inhibitory neuron in Module III, the sensory input

is allowed to transfer to module II. The details of temporal control will be introduced

in “Temporal Control Profile” subsection below.

This model architecture follows the “triangle circuit” theory proposed by LaBerge

[61; 86]. The triangle circuit includes three aspects of attention: expression, enhance-

ment mechanism, and control. The “expression aspect”, as indicated by LaBerge,

corresponds to the clusters of neurons in the posterior and the anterior cortex that

serve cognitive functions. They map to the processing module (Module II) in our

model. The “enhancement mechanism” maps to the thalamic nuclei as the atten-
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Fig. 43. Module I: A solution for temporal learning. There are three layers

in this module: the bottom layer is a delay unit layer, which transfers the

temporal sequence into spatial representations in the middle layer. The middle

layer contains mutually inhibitory neurons. In the figure, only the connectivity

of the neuron marked with a star is shown. The other neurons in this layer are

similarly connected. The top layer is another delay unit layer, which replays

the output from the middle layer into a temporal sequence. See text for more

details.

tional gateway in our model (Module III). The “control” maps to the attentional

control module (Module I).

2. Temporal control profile

The temporal input-modulation profile can be learned by a neural network as shown

in figure 43. The circuit updates the connection weights for every instance of SOA

stimulus. Therefore, the circuit becomes more accurate over time in predicting the

onset time of a target stimulus. For example, let the stimulus (relevant or irrelevant)

occur at time ts and vanish at time te. (Note that the “relevant stimulus” does not
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necessarily mean the “target”, because in the congruent case, the “distractor” can

also be relevant to the final response, and the brain may use this relevant information

as a cue to predict.) The input neuron in figure 43 forwards the signal 1 for relevant

stimulus or −1 for irrelevant stimulus during time period t0 and te, and 0 at other

times to the delay unit layer. The delay units in this layer then converts the temporal

sequence into spatially distributed signals {s0, s1, ..., sn−1} and update the weights

(ωi, where i is the index of neuron) of the synapses between the feedforward delay

unit layer and the recurrent inhibitory layer. For relevant stimulus, there will be an

increase in the synaptic weight by a factor of γ (similarly for irrelevant stimulus, a

decrease) in the synaptic weight. If there is no input, the weight remains the same.

Therefore, the synaptic weights can be updated based on the input to the neuron in

the recurrent inhibitory layer i(t) as follows:

ωi(t + 1) = ωi(t) + γi(t)wi(t). (7.4)

The synaptic weight Wij from unit j to i in the middle layer employs a difference of

Gaussian (DoG) neuronal interaction profile, which is defined as follows:

Wij = Gσc(| i− j |)−Gσs(| i− j |), (7.5)

where σc and σs are standard deviations for the center and the surround Gaussians,

and the function Gσ is a Gaussian function with mean at zero and standard deviation

of σ (Gσ(x) = 1√
2πσ

e−
x2

2σ2 ). The Gaussian kernel in the inhibitory layer can smooth

and increase the contrast. If we treat the input sequence {s0, s1, ..., sn−1} as a vector

s, the output r of the middle layer can be obtained by the equation below [18]:

r = (I−W)−1s (7.6)

where I is an identity matrix, and W the weight matrix defined in 7.5.
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Fig. 44. Temporal control profiles. A Relevant-first case (k = 0.01, τ = 200,

ω = π/300, η0 = 1 − 2k). B Irrelevant-first case (k = −0.03, τ = 200,

ω = π/300, η0 = 1).

The third layer converts the spatial sequence r back into temporal control se-

quence η(t) at the output neuron through a series of delay units. The output neuron

disinhibits the sensory input in Module III. This way, the input signal gets modulated

according to the temporal input-modulation profile.

In our experiments, for practical reasons, the shape of the temporal control

sequence η(t) at the output neuron (for both relevant-first and irrelevant-first cases)

were approximated by η(t) = η0 + ke−t/τ cos(ωt), where η0, k, τ , and ω are free

parameters to control the shape of the profile. The parameter η0 defines the baseline

of the inhibitory profile, k the relevancy (+1: distractor-first; −1: target-first), and

τ and ω the decay temporal factors. The inhibitory modulation rate η(t) is plotted

in figure 44.

The learning site of the temporal attention control can be in the hippocampus,

the basal ganglia, and the prefrontal cortex [87]. In the next section, we will show that

the response time can be significantly changed by different temporal input-modulation

profiles.
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D. Experiments and results

1. Experiment 1: Using irrelevant control profile for distractor

In the first experiment by Glaser and Glaser [79], they used a set of 48 SOA cases

(with 1/3 congruent cases) which were randomly ordered. Due to the low rate of

congruent cases, the distractor was more likely to be irrelevant to the response. For

the simulation of this experiment, we employed the temporal input-modulation profile

shown in figure 44A (relevant-first) for the target-first task, and that in figure 44B

(irrelevant-first) for the distractor-first task. The model predictions and human data

in color naming task are compared in figure 45. Similar to the human data, the

response time of the incongruent case predicted by the model has a peak at around

0 ms SOA, and decreases in both positive and negative directions. In contrast, the

model results by Cohen and Huston [80; 81] (figure 40B) only decreased monotonically

toward positive SOA, and it achieves maximum response time at the negative end

of SOA (at -400ms). In the congruent case, our model correctly predicted that the

response time is below the control baseline (y = 0). The approximate response time

of the model (solid curve below the control baseline) matches well with the human

data (the dashed curve below the control baseline).

These results indicate that, through temporal attentional control, the response

time is reduced when the stimuli have a longer lag between their onset time. There-

fore, when two stimuli occur more separately over time (for both positive SOA and

negative SOA), neural processes can discriminate the two by reducing the input mag-

nitude during the presentation of the distractors.



87

−400 −300 −200 −100 0 100 200 300 400
−40

−20

0

20

40

60

80

SOA

R
es

po
ns

e 
Ti

m
e

A Experiment [79]

−400 −300 −200 −100 0 100 200 300 400
−40

−20

0

20

40

60

80

SOA

R
es

po
ns

e 
Ti

m
e

B Model

Fig. 45. Result of experiment 1: Human data and model result of SOA

experiment. In both A and B, the results are for the color-naming task

in the Stroop effect. The solid lines are incongruent case, and the dashed

lines congruent case. A Human data by Glaser and Glaser [79]. Note that

for the incongruent case, the peak of the curve is around time 0 and when

the lag between distractor and target increases, the response time is reduced.

(Adapted from [84].) B Model prediction. This result indicates that through

temporal attentional control, the response time is reduced when the stimuli

have a longer lag between their onset time points. The model response time

is scaled by 0.3.
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2. Experiment 2: Using relevant control profile for distractor

In the previous experiment, we used irrelevant-first input-modulation profile as shown

in figure 44B for distractor-first SOA cases, and thus the distractor is treated as irrel-

evant to the response. Now we are interested in knowing how the choice of irrelevant-

first or relevant-first profiles can affect the response time. In this experiment, we will

apply relevent-first modulation profile for the distractor-first SOA cases.

As shown by the results of the model, the response time of the incongruent

case (the solid curve above line y = 0 in figure 46B) takes longer than the result

in experiment 1 (the dashed curve above line y = 0). The response time of the

congruent case (the solid curve below line y = 0 in figure 46B) is shorter than the

result in experiment 1 (the dashed curve below line y = 0). A comparable human

experiment of “relevant distractor” in SOA was done by Glaser and Glaser [79]. They

did an experiment with a 80% probability of congruent cases. Since there was high

probability of congruent cases, in the distractor-first case, the distractor may not be

a real “distractor” but more likely a cue for the “target”. In figure 46, the changes

in response time in those two experiments are marked by the arrows in both the

human and the model data. The human data show that the subjects appeared to

have reduced their response time for all the incongruent cases when compared to the

results in the first experiment.

How can the response time of the congruent case become shorter while in the

incongruent case it becomes longer? That is due to the increased probability of the

congruent stimulus presenting, where the brain used the earlier appearing “distractor”

as a cue and assign more confidence on the corresponding target onset time than that

in the first experiment. However, in the incongruent case, the distractor stimulus is

no longer a cue and becomes irrelevant. The brain mistakenly takes the irrelevant cue
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at the wrong moment. As a result, it takes longer for the brain to give out a correct

response. Thus the response time for the incongruent case is significantly increased.

In this experiment, we simulated the process of “relevant” distractor-first case by

using the “first-relevant” profile as shown in figure 29A. The model results are shown

in figure 46B.

The model results match the human data pretty well, however, a discrepancy

arises at SOA time 0 (marked “A” and “B” in figure 46B): the solid curve (data

from experiment 2, high probability of congruent case) converges with the dashed

curve (data from experiment 1, low probability of congruent case). This is because

our model is not designed to handle probability of congruent case at the current

stage. What the model demonstrated is how the relevancy profile of the distractor

can affect the response time. Approximately, the higher probability of congruent cases

in distractor-first task, the temporal input-modulation profile has a peak at an earlier

position over time. Moreover, when the time lag decreases to zero, the temporal

input-modulation profile does not make any difference to both of the stimuli, and

therefore in such a case the whole system degrades to Module II (figure 42) which has

no ability to handle the change of the probability of the congruent cases. To address

the learning mechanism of non-temporal factors, which is purely contributed by the

distributions of the training cases, more research may be needed. For our current

model, it can demonstrate that the shift of attention input-modulation profile in time

domain can affect the level of conflict between different stimuli, and when the brain

pay more attention to the time period of the relevant stimulus onset, the overall

response time is reduced. As a side effect, the response time in the incongruent case

becomes longer due to the incorrect selection of time during which the stimulus is

irrelevant.
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Fig. 46. Result of experiment 2: Using relevant control profile for distractor.

A Human Data. (Redrawn from [79].) B Model Data. Similar to human data,

the incongruent case’s response time is increased than in the first experiment,

while for the congruent case it is reduced. The model response time is scaled

by 0.3. In both A and B, the solid lines are results of experiment 2 with

high probability of congruent cases. The dashed lines are from experiment

1 with low probability of congruent cases. The curves above line y = 0 are

for incongruent cases, while those below line y = 0 congruent cases. Near

SOA= 0, the model shows a slightly different behavior compared to human’s

result. This is because our model is not modulated by the probability of

congruent case. See text for details.
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E. Discussion

Time-based selective attention is different from space-based or object-based attention

control mechanisms. For object-based attention, the control mechanism gives prefer-

ence to one of the simultaneously presented objects. Similarly, space-based attention

is focus on the location of interest. Both the space-based and the object-based atten-

tion are spatial control mechanisms, and the selection does not have a preference over

time [75]. In contrast, time-based attentional control gives preference in the temporal

domain regardless of the stimuli’s spatial locations. Unlike temporal attention defined

in [75], our definition of time-based attention is an input-modulation mechanisms and

it does not require that multiple items are presented at “the same location”. The

control mechanism adjusts the input magnitude of stimuli at all possible locations

according to the temporal relevancy of the stimulus, e.g. the occurrence of the con-

gruent stimulus, to the overall response to color in the Stroop task. Thus, the SOA

in Stroop effect may not be due to the temporal modulation at the postperceptual

level in visual short-term memory (cf. [88; 89]). It is simply due to input modulation,

which is an ability to predict relevant stimulus onset time in order to reduce the ir-

relevant inputs. The temporal input-modulation profile can be given a priori from a

higher level cognitive module, or obtained through reinforcement learning. The high

peak in the temporal input-modulation profile means the “expected” moments and

the input should be enhanced in such a case; the low valley can be interpreted as

“noisy” moments and the input should be inhibited. Through sampling the stimulus

and monitoring the internal response, the “expected” and the “noisy” time frames

can be adaptively learned. Therefore the brain can use less computational resources

for faster and more accurate responses for repeated tasks.

The time-based selection is neither an early-selection (e.g., filter theory by [90])
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nor a late-selection (e.g., [91]). The brain not only controls the inputs at an early-stage

as in Module III, but also evaluates and learns at a late-stage as in Module I. The

evaluation of response relevancy must consider the relationship between high-level

motor responses and the low-level sensory input. In this respect, our understanding

of selective attention is similar to the “enhancement of target site” theory by LaBerge

[7], where ours is “enhancement of stimulus in a relevant time frame”.

One limitation of our current model is that it does not evaluate whether a stim-

ulus is relevant or irrelevant. At the current stage, the relevancy of the input to the

response was a given (1 for relevant, −1 for irrelevant input). However, this functional

block of relevancy evaluation can be extended by checking if a stimulus is sufficient

to evoke a correct response, and if so, it can be labeled as a relevant stimulus. For

example, in congruent case of color-naming task, a first appearing word “red” that is

followed by a red block is sufficient to invoke a verbal response “red”, therefore, it is

a relevant stimulus and the association can be learned.

The idea of selective attention over time can be verified through functional mag-

netic resonance imaging (fMRI) experiments (similar to the experiments for space-

based attention [73] or object-based attention [66]). For example, we can design

experiments to show subjects a sequence of words on a computer screen, and at some

random time point play a bell sound. The subjects are to remember the words only

at the point when the bell is heard. If the onset time of sound has a narrow distri-

bution over time, it is expected that the brain activities of the thalamus and certain

brain areas (e.g. prefrontal cortex or basal ganglia) will increase in a short period

preceding the sound onset time. If so, it demonstrates that through learning, the

brain has come to “expect” or “prefer” a certain time frame, i.e. selective attention

of “when”.
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F. Summary

In this chapter, I discussed the role of disinhibition in attentional control. In the

thalamocortical circuit, feedforward disinhibition (cortex-TRN-thalamus pathway)

can implement temporal modulation while recurrent disinhibition (TRN-TRN) can

implement spatial modulation. I further verified temporal modulation by designing

a model of time-based attentional control and tested it with the SOA effect in the

Stroop task.

In the model, the attention mechanism involves the thalamocortical circuit and

other brains areas (e.g. prefrontal cortex, hippocampus, or basal ganglia) that carry

out learning and higher level cognitive functions (e.g. defining the task and comparing

the relevancy of input stimulus). The control can be realized by an internally learned

temporal input-modulation profile, and inhibitions to the low-level sensory inputs.

Although the idea of selective attention over time and the model suggested in this

chapter awaits both more theoretical and empirical confirmations, it expanded the

concept of selective attention into the temporal domain: the selection of “When”.

Time-based attentional control can enhance the overall system performance.
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CHAPTER VIII

ROLE OF DISINHIBITION FROM A SYSTEM PERSPECTIVE

The previous chapters discussed the role of disinhibition in various brain organiza-

tions. In this chapter I will discuss the role of disinhibition from a dynamical system

perspective. I will abstract the thalamocortical circuit introduced in Chapter VII to

an interconnected Cohen-Grossberg network model to derive a set of sufficient con-

ditions to ensure the stability of such layered circuits. I will continue on to analyze

the controllability and computability within the disinhibition network structure, in

sections C and D.

A. Stability analysis of thalamocortical circuit

Choe [20] showed that the thalamocortical circuit may be involved in the processing of

analogy, where the results of the process are promoted through the cortico-thalamo-

cortical loop. For this to work reliably, enduring oscillations need to be avoided.

However, ensuring that oscillation does not occur in such a highly recurrently con-

nected circuit with various cell-types is a non-trivial task. Brute-force search for the

parameter may be infeasible due to the high dimensionality of the parameter space.

Here, we adopted the Cohen-Grossberg (C-G) theorem to derive conditions that allow

asymptotic stability in the thalamus-TRN-cortex circuit. The original C-G theorem

requires that all connections are bidirectional and symmetric, thus it cannot be ap-

plied to the thalamocortical circuit in its original form. However, if the cortex, the

TRN, and the thalamic relays are each treated as one instance of a C-G network, then

the C-G theorem can be used to derive the conditions for stability by treating the

whole network as interconnected C-G networks. In this section, we will provide a set

of sufficient conditions for such an interconnected system to be asymptotically stable.
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This allows us to greatly reduce the range of parameters to search. The framework

for treating networks containing asymmetric connections as interconnected symmet-

ric networks can also be of general interest to theorists studying stability in neural

circuits.

As illustrated by Choe [20; 65], the initial activation of the cortical cell driven

by input will be suppressed by the second iteration through cortical activation (see

figure 38). The thalamocortical circuit can be abstracted as interconnected Cohen-

Grossberg neural networks (CGNN). See [92; 93] and [94] for details about the CGNN.

Note that Cohen-Grossberg neural network only allows symmetric synaptic connec-

tions, but the model of interconnected CGNNs (see, e.g., figure 47) allows asymmetric

connections among CGNN networks. For example, the thalamocortical circuit can

be seen as three local CGNNs (CGNN1 as the relay-cell layer, CGNN2 as the TRN

layer, and CGNN3 as the cortical layer), and these three layers are interconnected

by a vertical column as shown in figure 47.

1. Interconnected Cohen-Grossberg neural networks

The Cohen-Grossberg neural network [92; 93; 94] is described by the following ordi-

nary differential equation:

ẋi(t) = −ai(xi(t))

bi(xi(t))−
n∑

j=1

wijσj(xj(t)) + Ii

 , (8.1)

where Ii (i = 1, 2, ..., n) denotes the external input, wij the connection weight, func-

tions ai(xi) and bi(xi) the amplification functions, σj the activation function, Ci the

membrane capacitance constant, and Ri the neuron resistance constant. The Cohen-

Grossberg neural network has the following properties [92]:

• Existence of Lyapunov function (see equation 8.15).
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Fig. 47. An illustration of multiple CGNNs with column-wise connection.

An interconnection of CGNNs is demonstrated on the left. The figure on the

right shows the intracolumnar connections of the three CGNN modules. The

constant d<p> is a positive number representing the weight of the Lyapunov

function for each CGNN module p, A<p> the connection weight matrix inside

each CGNN module, wpq the inter-module connection weight, and x<p>
i the

neuron activity in module p. See section B.5 for detailed description and

dynamic equations of this system.

• Existence of equilibrium.

• Under some sufficient conditions (i.e., the activation function is monotonic and

differentiable, and the connection weight matrix is symmetric), the system is

asymptotic stable (also known as global pattern formation).

For neurons in the thalamocortical circuit, assuming the input is sustained be-

tween time 0 and t0, and using tanh as the activation function, the circuit can be
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described by the following ordinary differential equations:

ẋi(t) =
1

Ci

− xi

Ri

+
n∑

j=1

wij tanh(xj(t− δij)) + Ii

 , when 0 ≤ t ≤ t0 (8.2)

ẋi(t) =
1

Ci

− xi

Ri

+
n∑

j=1

wij tanh(xj(t− δij))

 , when t > t0 (8.3)

where Ii (i = 1, 2, ..., n) denote the external input that is sustained between time 0

and t0, wij the connection weight, and δij the transmission delay.

2. Dynamics of interconnected CGNN

We will consider the asymptotic stability of interconnected CGNNs composed by m

CGNN components (or m modules), where each module contains n neurons. The

derivation procedure treats each CGNN as an individual module, and then finds the

Lyapunov function for such an interconnected system as a whole (for a review, see

[95], pp. 358-361). For example, the thalamocortical circuit can be described by the

following ordinary differential equation (when t > t0):

ẋ<p>
i =

1

C<p>

[
−x<p>

i (t)

R<p>
+ H(x<p>, t) + V (x<·>

i , t)

]
, (8.4)

where x is the state variable representing the membrane potential, function H(x<p>, t)

the horizontal connection,

H(x<p>, t) =
n∑

j=1

A<p>
ij tanh(x<p>

j (t− δ<p>
ij )),

and V (x<·>
i , t) the vertical connection,

V (x<·>
i , t) =

m∑
q

wqp tanh(x<q>
i (t− τqp)).

The indices p and q are the indices of the CGNN modules (or layers); i, j the indices

of neurons within each module; and C<p> and R<p> the membrane capacitance and
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resistance constants for neurons in module p. Matrix A<p> is the horizontal connec-

tion matrix within CGNN module p, and wqp an element in the vertical connection

matrix (across CGNN modules). The value δ<p>
ij is the horizontal connection delay

within CGNN module p, and τqp the vertical connection delay between module p and

q, and I<p>
i the external input to neuron i in module p.

The interconnected CGNN is expected to have the following properties:

• Existence of Lyapunov function. The Lyapunov function is in the form of a

weighted sum of the Lyapunov function of each CGNN modules.

• Existence of equilibrium.

• The connection weight matrix is symmetric in each CGNN module.

• Under some sufficient conditions, the system is asymptotic stable (which will

be demonstrated as the main result of this section).

3. Assumptions

For simplicity of analysis, we assume that the following conditions (A1 to A3) are

satisfied in the network.

• A1. The connection matrix A within each CGNN module is symmetric, and

defined as

A<p>
ij = A<p>

ji = r<p>, if i 6= j,

and

A<p>
ij = 0, if i = j.

• A2. Each of the CGNNs has n neurons, and they are interconnected by the

same connectivity structure in each column, i.e. only neurons with same index
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i across the modules are interconnected. The inter-module connection weight

matrix is W.

4. Existence of equilibrium point

To show a system is asymptotic stable, we have to prove that the system has at least

one equilibrium point. For the interconnected Cohen-Grossberg Neural Network, we

can claim that for every input I, there exists an equilibrium point for the system

defined by equation 8.4. The proof is as follows.

The system in equation 8.4 can be rewritten into the form shown below if we

assign each neuron a unique index:

ẋi(t) = − 1

Ci

xi(t)

Ri

−
n∑

j=1

Bij tanh(xj(t− τij))

 , (8.5)

where Bij is the corresponding connection weight. The system in equation 8.5 can be

treated as a delayed CGNN, following [96]:

ẋ(t) = −ai(xi)

bi(xi)−
n∑

j=1

Bijsj(xj(t− τij))

 , (8.6)

if we let

ai(xi) =
1

Ci

,

bi(xi) =
xi(t)

Ri

,

and

sj(x) = tanh(x).

Therefore,

• ai is bounded, positive, and locally Lipschitz continuous; and

• bi and b−1
i are locally Lipschitz continuous;
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• sj is bounded (by -1 and 1) and Lipschitz continuous.

These conditions satisfy the assumptions of the equilibrium theorem in [96], and thus

we can safely claim that the system 8.6 (or equivalently, system 8.5) has an equilibrium

point. Because system 8.5 is just a rewrite of system 8.4 based on different neuron

index, there must exist an equilibrium point for system 8.5 as well. Thus, the proof

is complete.

5. Lyapunov function for interconnected systems in general

The system defined by equation 8.4 can be generalized as interconnected systems.

Khalil proposed a method to derive the Lyapunov function of interconnected systems

in general [95]. The steps proposed by Khalil [95] can be summarized as follows.

For each system module, we assume that its dynamics is as follows:

ẋ<p> = f<p>(x<p>, t), (8.7)

where function f defines the dynamic of the p-th module (CGNN), and the intercon-

nection between modules (the uniform column connection) is described by a function

g<p>(x, t). Then, the whole system can be written as

ẋ<p> = f<p>(x<p>, t) + g<p>(x, t). (8.8)

When each module’s Lyapunov function is known (Λ<p>), it is reasonable to con-

sider the following function as the Lyapunov function for the interconnected system.

V (x) =
m∑

p=1

d<p>Λ<p>,

where d<p> is some positive number. Since Λ<p> is the Lyapunov function of module

p, it is positive definite. Hence, their weighted sum V (x) is also positive definite.
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Therefore, the derivative of V can be derived as:

V̇ (x) =
m∑

p=1

d<p>

[
∂Λ<p>

∂x<p>
f<p>(x<p>)

]
+

m∑
p=1

d<p>
n∑

i=1

(
∂Λ<p>

∂x<p>
i

g<p>
i (x<·>

i , t)

)
. (8.9)

Once the V̇ (x) is proved to be less than zero, we can assert that the intercon-

nected system is stable. In the following, we will apply the procedure by Khalil [95]

to the interconnected CGNNs, and derive the conditions of asymptotic stability for

the case of no delay.

6. Asymptotic stability of interconnected CGNN

The interconnected CGNNs (8.4) without delay is defined as:

ẋ<p>
i =

1

C<p>

−x<p>
i (t)

R<p>
+

n∑
j=1

A<p>
ij tanh(x<p>

j (t)) +
m∑
q

wqp tanh(x<q>
i (t))

 ,

(8.10)

Now we define a new state variable y, where y = tanh(x). Therefore, the system

defined by equation 8.10 can be rewritten:

ẏ<p>
i = h(y<p>

i )ẋ<p>
i =

h(y<p>
i )

C<p>

−tanh−1(y<p>
i )

R<p>
+

n∑
j=1

A<p>
ij y<p>

j +
m∑
q

wqpy
<q>
i

 ,

(8.11)

where

h(y) =
dy

dx
=

d

dx
tanh(x) = sech2(x) =

2

ex + e−x
(8.12)

The interconnected CGNNs in 8.11 can be split into a form of interconnected

system where

f<p>(x<p>, t) = {f<p>
i (x<p>

i , t), i ∈ 1...n}



102

is an n-dimensional function, and each of its elements is defined as follows:

f<p>
i (x<p>

i , t) =
h(x<p>

i )

C<p>

−tanh−1(x<p>
i )

R<p>
+

n∑
j=1

A<p>
ij x<p>

j

 . (8.13)

The interconnecting-dynamics function g is defined as:

g<p>
i (x<·>

i , t) =
h(x<p>

i )

C<p>

[
m∑
q

wqpx
<q>
i

]
. (8.14)

According to Khalil’s method [95], the candidate Lyapunov function of intercon-

nected system can be a weighted sum of each module’s Lyapunov function (as shown

in equation 5). Cohen and Grossberg [92] gave the Lyapunov function for each CGNN

module (8.13), which is as shown below:

Λ<p>(x<p>) = −1

2

∑
i

∑
j

A<p>
ij x<p>

i x<p>
j +

1

R<p>

∑
i

∫ x<p>
i

0
tanh−1(y)dy (8.15)

and

ẋ<p>
i = − 1

C<p>
h(x<p>

i )
∂Λ<p>

∂x<p>
i

(8.16)

The derivative of Λ<p>(x<p>) is given by:

Λ̇<p>(x<p>) =
∑

i

∂Λ<p>

∂x<p>
i

ẋ<p>
i = −

∑
i

1

C<p>
sech2(x<p>

i )

(
∂Λ<p>

∂x<p>
i

)2

≤ 0 (8.17)

To look for the conditions under which equation 8.9 becomes less than zero, we

need to find the upper bound of each term. We can begin with the first term:

Vf (x
<p>) =

∂Λ<p>

∂x<p>
f<p>(x<p>)

= Λ̇<p>(x<p>)

= −
n∑

i=1

sech2(x<p>
i )

C<p>

(
∂Λ<p>

∂x<p>
i

)2

= −
n∑

i=1

sech2(x<p>
i )

C<p>

 n∑
j=1

A<p>
ij x<p>

j − tanh−1(x<p>
i )

R<p>

2

= −α<p>[φ<p>(x<p>)]2
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where

α<p> =
1

C<p>
,

and φ<p>(x<p>) is the L-2 norm of an n-dimensional function, and it is defined as

follows:

φ<p>(x<p>) =

∥∥∥∥∥
{

sech(x<p>
i )

∂Λ<p>

∂x<p>
i

, i = 1...n

}∥∥∥∥∥ , (8.18)

where ‖ · ‖ is the L2-norm. Therefore, the first part Vf (x
<p>) has an upper bound as

below:

Vf (x
<p>) =

∂Λ<p>

∂x<p>
f<p>(x<p>) ≤ −α<p>φ<p>(x<p>)2,

By equation 8.18, we have∥∥∥∥∥∂Λ<p>

∂x<p>
i

∥∥∥∥∥ =

∥∥∥∥∥ 1

sech(x<p>
i )

∥∥∥∥∥φ<p>(x<p>).

Because x<p>
i ∈ (−1, 1), ∥∥∥∥∥∂Λ<p>

∂x<p>
i

∥∥∥∥∥ ≤ 1

sech(1)
φ<p>(x<p>).

Let β<p> = 1
sech(1)

, then

∥∥∥∥∥∂Λ<p>

∂x<p>
i

∥∥∥∥∥ ≤ β<p>φ<p>(x<p>)

For the second term of equation 8.9,

Vs(x
<p>) =

n∑
i=1

(
∂Λ<p>

∂x<p>
i

g<p>
i (x<·>

i , t)

)

≤
n∑

i=1

[
β<p>φ<p>(x<p>)g<p>

i (x<·>
i , t)

]

= β<p>φ<p>(x<p>)
n∑

i=1

g<p>
i (x<·>

i , t)

= β<p>φ<p>(x<p>)
n∑

i=1

sech2(x<p>
i )

C<p>
(

m∑
q=1

wqpx
<q>
i )
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= β<p>φ<p>(x<p>)

 m∑
q=1

(
wqp

C<p>

n∑
i=1

sech2(x<p>
i )x<q>

i

)
Now consider the part

m∑
q=1

(
wqp

C<p>

n∑
i=1

sech2(x<p>
i )x<q>

i

)

≤
m∑

q=1

(∥∥∥∥ wqp

C<p>

∥∥∥∥ n∑
i=1

∥∥∥x<q>
i

∥∥∥)

If there exists a constant k<q>, such that

k<q>
∥∥∥x<q>

i

∥∥∥ ≤ φ<q>
i (x<q>

i ) ≤ φ<q>(x<q>),

then
m∑

q=1

(∥∥∥∥ wqp

C<p>

∥∥∥∥ n∑
i=1

∥∥∥x<q>
i

∥∥∥) ≤ m∑
q=1

(∥∥∥∥ nwqp

C<p>k<q>

∥∥∥∥φ<q>(x<q>)
)

.

The constant k<q> can be set to

k<q> =
sech(1)

R<q>
,

so that

k<q>
∥∥∥x<q>

i

∥∥∥ ≤ φ<q>
i (x<q>

i ) =

∥∥∥∥∥∥
n∑

j=1

A<q>
ij x<q>

j − tanh−1(x<q>
i )

R<q>

∥∥∥∥∥∥ sech(x<q>
i ).

Since x<q>
i ∈ (−1, 1),

sech(x<q>
i ) ∈ (sech(1), 1).

Then the derivative of V is bounded above as:

V̇ (x) =
m∑

p=1

d<p>

[
∂Λ<p>

∂x<p>
f<p>(x<p>)

]
+

m∑
p=1

d<p>
n∑

i=1

(
∂Λ<p>

∂x<p>
i

g<p>
i (t, x)

)

≤
m∑

p=1

d<p>

−α<p>φ<p>(x<p>)2 +
m∑

q=1

β<p>

∥∥∥∥ wqp

C<p>k<q>

∥∥∥∥ (φ<p>(x<p>)φ<q>(x<q>))

 ,
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=
m∑

p=1

d<p>

−α<p>φ<p>(x<p>)2 +
m∑

q=1

β<p>‖wqp‖ sech(1)R<q>

C<p>
φ<p>(x<p>)φ<q>(x<q>)

 ,

i.e. the inequality can be rewritten in the form:

V̇ (x) ≤ −1

2
ΦT (DS + ST D)Φ,

where

Φ = [φ<1>, φ<2>, ..., φ<m>],

D =



d<1> 0 . . . 0

0 d<2> 0 . . 0

. . .

. . .

. . 0

0 . . . 0 d<m>


and S is an m×m matrix:

Spq = α<p> − β<p>γpq, if p = q,

Spq = −β<p>γpq, if p 6= q,

where

γpq =
‖wqp‖ sech(1)R<q>

C<p>
.

As a result, if the matrix DS+STD is positive definite, we can conclude that V̇

is negative definite. Hence the system will not oscillate in such a case, and moreover,

it is asymptotically stable.
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7. Examples and computer simulations

The following illustrative example of a 2-loop thalamocortical circuit configured as

figure 37 will demonstrate the effectiveness of the obtained results. The circuit has

three layers, and each layer can be treated as a CGNN module. The equilibrium point

was found at 0. The parameters used are as in Table I.

Table I. Parameters

< p > R<p> C<p> A<p>

1 3 0.3 [0 0; 0 0]

2 3 0.6 [0 -0.2; -0.2 0]

3 3 0.3 [0 0.25; 0.25 0]

The interconnection matrix was set to:

W =


0 0.1 0.1

−0.1 0 0

0.3 0.2 0

 .

For the thalamocortical network, we have m = 3, and n = 2. The resulting

matrix S is as follows:

S =


3.3333 −1.0000 −1.0000

−0.5000 1.6667 0

−3.0000 −2.0000 3.3333

 .

Because det(S) = 10.8519 > 0, there exists a positive diagonal matrix D such that

the matrix DS + STD is positive definite (see [97] for the proof). Therefore, the

equilibrium point 0 is asymptotic stable. This is demonstrated in figure 48.
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Fig. 48. Simulation of thalamocortical circuits (two loops) showing conver-

gence behavior. The x-axis is the time step, while the y-axis the value

of the state variable (membrane potential). The network is configured as in

figure 37B. T1 and T2 are relay cells, R1 and R2 TRN neurons, and C1 and C2

cortical neurons. The initial value is 1.2 for T1, 0.8 for T2, and 0 for all the

rest cells. All neurons reach a stable equilibrium by time step 800.

B. Controllability: Control resolution

Besides stability, controllability is also one of the important features of dynamic

systems. From the controllability perspective, the pattern of disinhibition can play a

role in improving the control accuracy of actions. This point can be best demonstrated
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in the local circuit of the basal ganglia.

As shown in figure 49, there are multiple levels of inhibition (type I disinhibition)

in the circuits of the basal ganglia. One question that arises here is why the system

uses multiple feedforward inhibition instead of one simple excitation to control the

action signal in basal ganglia. A possible answer could be that this feedforward

disinhibition can reduce the noise in control and therefore increase the accuracy.

Accuracy means how precisely we can direct an action to a specific state. For a system,

if the ith controlling variable is xi, and the output (the variable being controlled) is

y, the pointwise control accuracy χ(y0) for output y0 can be defined as:

χ(y0) = max
xi

∥∥∥∥∥∥log

 ∂xi

∂y

∣∣∣∣∣
y=y0

∥∥∥∥∥∥ . (8.19)

The basic idea behind this definition is that if the input value x changes within a wide

range, for high accuracy systems, the output y should only change in an arbitrarily

small range. There might be many inputs that control the output y0, so the max

operator on all of these returns the maximum accuracy from these inputs. Note that

for a meaningful accuracy we require χ(y0) to be bounded, because if it is ∞, it means

that the output over time is constant in which case it is not controllable (however, it

can be seen as ∞-accurate at such value y0).

In general, when controlling an action, accuracy and efficiency are both desired.

Efficiency means how fast we can perform an action. For example, we may control

a finger to point to an exact point in space, which may need fast movement to the

rough neighborhood and then precisely reach a specific point within that local region.

As another example, we may need to precisely control the eye muscle to focus on a

certain object, in which accuracy is a very important issue.

Higher control accuracy also means higher stability under noise conditions. Con-
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A B C D

Transient excitatory input to A Excitatory inputs to C

A at rest

A is excited

When A is at rest...
B is tonically active... thereby inhibiting C... So there is no excitation

of D

When A is transiently
excited...

B is transiently
inhibited...

and C is disinhibited
so other inputs can
excite it...

leading to exciting of
D Excitatory

Inhibitory

Fig. 49. Disinhibition in basal ganglia. Lines with filled arrows represent exci-

tation, while those with unfilled arrows represent inhibition. The two rows

below the neural network illustrate two scenarios: (1) neuron A is at rest;

and (2) neuron A is excited. The other neurons’ (B, C, and D) corresponding

activities are shown. The text above and below the two cases provide a more

detailed explanation. This figure demonstrates how the singals of actions in

basal ganglia can be controlled through disinhibitory mechanisms. (Redrawn

from [98].)

sider the first-order Taylor expansion for a system with noise ε:

y(x0 + ε) = y0 + f ′(y0)ε.

Thus, the effect of introducing noise in the output y is

‖∆y‖ = ‖f ′(y0)ε‖,
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and by substituting f ′(y0) with χ from equation 8.19, we have

‖∆y‖ = ‖εe−χ(y0)‖.

Therefore, with higher control accuracy, the noise in the output will decrease expo-

nentially.

The basal ganglia model in figure 49 can be abstracted as figure 50. The inputs

are represented by u1, u2, and u3. Let u2 be a constant input to represent the tonic

excitation of the second cell, and the free variable u1 and u3 the other external inputs.

The weights w1 and w2 are all inhibitory, so they have a value less than zero. The

activity of each cell fi is defined as

fi = σ(vi), (8.20)

where vi is the membrane potential, and σ(·) the sigmoid function.

The control accuracy of such a system can be derived as

χ(f3) =

∥∥∥∥∥log

(
du

df3

)∥∥∥∥∥ =

∥∥∥∥∥log

(
1

w1w2(σ′)3

)∥∥∥∥∥ = − log(−w1)− log(−w2)− 3 log(σ′)

(8.21)

In general, for n cells in feedforward disinhibition (e.g. n = 3 in the basal ganglia

system), the control accuracy is

χ(fn) = −
n−1∑
i=1

log(−wi)− n log(σ′) (8.22)

Therefore, the feedforward disinhibition structure has γ-times improvement in

control accuracy, where

γ =
χ(fn)

χ(f1)
=
−∑n−1

i=1 log(−wi)− n log(σ′)

− log(σ′)
=

∑n−1
i=1 log(−wi)

log(σ′)
+ n. (8.23)

Note that when wi and | σ′ | is less than 1, the log(−wi) term will always have the
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Fig. 50. The abstract model of basal ganglia. The lines with filled arrow are

excitatory synapses, while those with unfilled arrows inhibitory synapses. This

figure is an abstract version of the basal ganglia connectivity in figure 49.

Through multiple levels of control, the accuracy is improved compared to

direct activation. See text for details.

same sign as log(σ′), so that γ is always greater than n. Figure 51 compares the control

accuracy of the basal ganglia model (n = 3; solid line) with a direct control method

(single sigmoid; dashed line). The control accuracy of the disinhibitory network is

five time higher than a direct control network.

One problem with high accuracy systems is that, as the accuracy of a control

device is improved, the efficiency has to be decreased. Thus, the system has to spend

a relatively longer time to reach the specific state. However, note that there is a

direct input at the cell C in figure 49, which allows a fast estimated input, and the

disinhibition mechanism can be employed to refine the control at a much smaller

scale. As shown in the multiple-input sites in the basal ganglia, both efficiency and

accuracy can be achieved by such a disinhibitory structure.

Another question is why the synaptic weight has to be inhibitory to achieve the

accuracy, because if both w1 and w2 are positive the same accuracy level can be

achieved. The answer is two-fold. First, inhibitory synapses allow the modification of

the input u1 in both way (to add more input or reduce input) while purely excitatory

ones cannot deal with overflow in input of u1 by adjusting u3. Second, the inhibitory

mechanism also provides a logical function of action selection, which is an important



112

Fig. 51. Control accuracy of the basal ganglia model with feedforward dis-

inhibition. The x-axis is the value of output (f3 in figure 50), and the y-axis

the control accuracy χ. The dashed line is the control accuracy of sigmoid

function using direct control. The control accuracy of the feedforward disin-

hibition structure (solid line) is increased five times compared to the direct

control method (dashed line). (w1 = 0.1, w2 = 0.1)

function of the basal ganglia. This observation will be analyzed in the next section.

In sum, feedforward disinhibition can improve the control accuracy by at least

twice when the inhibition rate is less than 1.

C. Computability: The logic of control

In previous sections, we analyzed the stability and control accuracy of disinhibitory

neural network. In this section, we will see how the disinhibition contribute to the

the logic operation of the brain. In logic, “not” is an atomic operator, and every pair

of “not” can be eliminated. The question is whether the neurons can implement the

same logical operation through excitatory and inhibitory interactions. The answer is

yes. If the inhibitory interaction is analogous to the “not” operator, then a chain of

inhibitory interactions, which is type II disinhibition, can implement the same logic
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as a chain of “not” logic operators. For example, as illustrated in figure 49, cell

B tonically inhibit the excitation of cell C when cell B is not inhibited by cell A.

Assuming there is a pattern of excitation ΩC(t) to cell C, and cell A inhibits cell B at

t = t0, then only when t > t0 the muscle controlled by cell C can exhibit a pattern of

ΩC(t). In this sense, the disinhibition mechanism behave as a switch in the system.

With an analogy to logic, disinhibition realizes the logic of ¬¬Ωi = Ωi by neuronal

connections.

With feedforward disinhibition, the system is able to jump its state from Ωi to

Ωj, and this jump can be interpreted as a fast response (or action) to the external

world. The mechanism can eliminate the setup time (or convergence time) of the

internal neurons to get ready for any predicted action. For example, the system

needs an action Ω at time t0 but if the setup time is δt then the system can initiate

the sequence at an earlier time t0 − δt. The disinhibition mechanism can hold the

action until time t0, thus at time t0 the system can generate the desired action pattern

Ω without going through the unnecessary initiation behavior before the actual action.

Interestingly, signal routing by disinhibition mechanism can also be found in

the thalamic circuit (see figure 52). The disinhibition mechanism can perform as a

gating controller as proposed by Choe [99]. The input to the thalamic relay (T2)

cell is initially inhibited by the TRN neuron R2, but when the cortical neuron (C1)

excites R1, R1 will inhibit R2 and T2 then gets disinhibited. Thus the disinhibition

of R1 → R2 acts as a switch for signal transferred from the relay cell T2 to the

cortical neuron C2. Figure 53 shows the case the sensory input signal is transfered

to the cortex, and figure 54 demonstrates that the sensory input is suppressed by

disinhibition initiated by the cortex cell.
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Fig. 52. Signal routing by disinhibition. The lines with filled arrows represent

excitatory connections and those with unfilled arrows inhibitory connections.

Cortical neurons: C1 and C2; TRN neurons: R1 and R2; relay cells: T1 and

T2. A Current is injected to T2 simulating tonic input, and to C1 as the

disinhibition signal. The disinhibition mechanism can perform as a gating

controller as proposed by Choe [99]. The input to the thalamic relay (T2) cell

is initially inhibited by the TRN neuron R2, but when the cortical neuron

(C1) excites R1, R1 will inhibit R2 and T2 then gets disinhibited. Thus the

disinhibition of R1 → R2 acts as a switch for signal transfer from the relay cell

T2 to the cortical neuron C2. See figure 53 for the simulation results under this

scenario. B There is no current injection to C1. Activity at C2 is significantly

reduced by the inhibition from R2. See figure 53 for the simulation result of

this configuration.

D. Discussion

In this chapter, we explored the role of disinhibition from a system perspective. For

some hybrid form of disinhibitory neural network (mixed of feedforward and recurrent

types), Cohen-Grossberg (C-G) model cannot be directly applied due to its symme-

try requirement. The interconnected Cohen-Grossberg model (iCGNN) proposed here

solves this problem by treating each layer as a C-G module and allowing asymmetric

connections between modules. The iCGNN model is motivated partly by the thala-
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Fig. 53. Experiment 1: Signal is allowed from the sensory input to the cor-

tex cells. The scenario illustrated in figure 52A is shown. Current is injected

into T2 to simulate tonic input. Current is also injected to C1. Signal from

T2 directly goes to C2. The neurons are Hodgkin-Huxley neurons, and they

are simulated using GENESIS. The disinhibition mechanism can perform as

a gating controller as proposed by Choe [99]. The input to the thalamic relay

(T2) cell is initially inhibited by the TRN neuron R2, but when the cortical

neuron (C1) excites R1, R1 will inhibit R2 and T2 then gets disinhibited. Thus

the disinhibition of R1 → R2 acts as a switch for signal transferred from the

relay cell T2 to the cortical neuron C2.

mocortical circuit proposed by Choe [20] and partly by the C-G model. The iCGNN

model has general utility in describing neural networks with a layered structure, such

as the three-layered thalamocortical circuit or six layered cortex.

One limitation of our current result is that we did not consider the delayed

case. The existence of time delays can frequently cause oscillation, divergence, or

instability in neural networks. For example, the temporal properties can give rise to

several different behaviors in the thalamocortical model [20]. A network connection

without delay can be asymptotic stable with conditions derived in this section, but
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Fig. 54. Experiment 2: Signal is blocked from the sensory input to the

cortex cells. The scenario illustrated in figure 52B is shown. There is no

current injection to C1. Activity is significantly reduced at C2. Other details

were the same as figure 53. The input to the thalamic relay (T2) cell is

inhibited by the TRN neuron R2. Since the neuron C1 is not activated, there

is no activity for the neuron R1. Therefore, R1 does not inhibit R2, and T2’s

activity is reduced by the activation of R2. As a result, the activity at C2 gets

reduced.

the same network connection can become unstable or oscillating when there is delay.

Mathematically, to calculate the stability of neural networks with delay could be more

complex. However, neural networks with delay is a topic of great theoretical interest

and practical importance, and thus iCGNN with delay may be a promssing future

research topic in studying the function of disinhibitory neural networks.

E. Summary

In this chapter, I proposed the iCGNN model for hybrid disinhibitory neural networks.

I also derived a set of sufficient parameter conditions which can make the thalamocor-

tical circuit model (as an iCGNN model) show asymptotically stable behavior. The
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approach extends the Cohen-Grossberg network approach, and it can be applied to

the stability analysis of multiple-layered brain network in general. We also discussed

how the multiple level of inhibition can increase the accuracy of controllability and

implement basic “not-not” logic function.
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CHAPTER IX

DISCUSSION AND CONCLUSION

A. Summary

In searching for the computational role of disinhibition in brain function, I used

the approach of building computational models, applying them in local circuits in

the brain, and explaining psychological phenomena. The cycle in my approach is

illustrated in figure 55. The computational role of disinhibition is discussed from

three perspective: visual perception, attentional control, and system framework.

Furthermore, the research in this dissertation can be summarized from two di-

mensions (Table II). One dimension is along the study of disinhibition (i.e., com-

putational model, brain organization, and brain function), and the other along the

analysis under a system science framework. In the first dimension, the research cov-

ers disinhibition from abstract neuronal circuits and the disinhibition effect of vari-

ous subsystems in the brain, such as the retina, the primary visual cortex, and the

thalamus. In the second dimension, the system perspective, I first analyzed the equi-

librium points by extending the Hartline-Ratliff equation to the IDoG model. The

IDoG model with selfinhibition expresses dynamics in disinhibition. Furthermore,

the asymptotic stability analysis of interconnected Cohen-Grossberg neural network

(a case of type III disinhibition) was conducted to help us understand the contribu-

tion of disinhibition in the system’s overall stability. Moreover, two other possible

functions of disinhibition, to improve control accuracy and to implement the logic of

control, were proposed.
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Fig. 55. Main results in studying the computational role of disinhibition.

I studied the local circuit with disinhibition features in the brain, which in-

cludes the retina, the primary visual cortex (V1), and the thalamocortical

circuit. Several psychological phenomena were explained, such as the periph-

ery problem in the Hermann grid illusion, the White’s effect, the scintillating

grid illusion, the modified Poggendorff illusion, and the SOA effect in Stroop

tasks. Three computational models have been proposed: IDoG, IDoGS, and

iCGNN. In sum, the computational roles of disinhibition in brain function

have been studied from three perspectives: (1) visual perception; (2) atten-

tional control; and (3) system approach.

B. Discussion

In this section, I will first discuss the limitations of the computational models of

disinhibition, and then summarize the predictions based on these models. Finally, I

will conclude, with the contributions of my research.



120

Table II. Computational Roles of Disinhibition in Brain Function

1. Limitations of the approach

The IDoG and IDoGS model (Chapter III) extended the Hartline-Ratliff equation to

account for a population of neurons, but it requires matrix inverse to calculate the

response. The inverse of the weight matrix, which is symmetric Toeplitz one, has the

computational complexity of O(n log n) to calculate as reported by Heinig and Rost

[24]. One method to alleviate the expensive calculation is to avoid doing the inverse

operation for all the neurons (i.e., decrease the size of the matrix to be inversed),

and rather use an impulse response matrix as a filter with a small receptive field

size, and then convolve the filter with the initial input of the population of neurons.

Another potential problem with the matrix inverse operation is that for some of the

kernel functions, the resulting weight matrix may turn out to be singular, which

means that the inverse operation cannot be applied. In such a case, parameters of

the kernel function need to be changed in order to be accommodated by these models.

Fortunately in all our experiments, applying the different of Gaussians profiles as the

kernel function did not incur such a problem.

For the attentional input modulation model (Chapter VII), one limitation is that
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it does not evaluate whether a stimulus is relevant or irrelevant. At the current stage,

the relevancy of the input to the response was pregiven. However, this functional

block of relevancy evaluation can be extended by checking if a stimulus is sufficient

to invoke a correct response, and if so, it can be labeled as a relevant stimulus. For

example, in the congruent case of color-naming task, a first appearing word “red” that

is followed by a red block is sufficient to invoke a verbal response “red”, therefore, it

is a relevant stimulus and the association can be learned.

For the interconnected CGNN model, the limitation is that it did not consider the

delayed case. The existence of time delays can frequently cause oscillation, divergence,

or instability in neural networks. For example, the temporal properties can give

rise to different behaviors in the thalamocortical model [20]. A network connection

without delay can be asymptotic stable with conditions derived in section VIII.B, but

the same network connection can also be unstable or oscillating when with delays.

Mathematically, to calculate the stability of neural networks with delay could be

more complex. Neural networks with delay is a topic of great theoretical interest and

practical importance, and however, it is beyond the scope of this dissertation.

2. Predictions

The computational models of IDoG and IDoGS provide some interesting predictions.

In the dynamic brightness-contrast illusion experiments on the scintillating grid

(see Chapter V), the IDoGS model gives a couple of interesting predictions (both of

which were brought to our attention by Rufin VanRullen). The first prediction is that

scintillating effect will occur only in an annular region in the visual field surrounding

the fixation point where the size of the receptive field matches that of the grid element

size. However, this does not seem to be the case under usual viewing conditions. Our

explanation for this apparent shortcoming of the model is that the size of usual



122

scintillating grid images is not large enough to go beyond the outer boundary of

the annular region. Our explanation can be tested in two ways: Test the strength

of illusion with (1) a very large scintillating grid image where the grid-element size

remains the same, or with (2) the usual sized image with a reduced grid-element

size. We expect that the annular region will become visible in both cases, where no

scintillating effect is observed beyond the outer boundary of the annular region.

The second prediction is that the scintillation would be synchronous, due to the

same time course followed by the neurons responding to each scintillating grid el-

ement. Again, this is quite different from our perceived experience, which is more

asynchronous. In our observation, the asynchronicity is largely due to the random na-

ture of eye movement. If that is true, the scintillating effect will become synchronous

if eye movement is suppressed. That is, if we fixate on one location of the scintillat-

ing grid while the stimulus is turned on and off periodically (or alternatively, we can

blink our eyes to simulate this), all illusory dark spots would seem to appear all at

the same time, in a synchronous manner. Then, why is our experience asynchronous?

The reason why we perceive the scintillation to be asynchronous may be because

when we move our gaze from point X to point Y in a long saccade, first the region

surrounding X, and then at a later time the region surrounding Y scintillates. This

will give us the impression that the scintillating effect is asynchronous.

In the orientation perception experiments on modified Poggendorff illusion (Chap-

ter VI), the disinhibition model based on IDoG made two other novel predictions.

First, the strength of inhibition can significantly affect the illusory effect (Figure 34A).

The stronger the inhibition, the larger the magnitude of the curve in Figure 35A, while

the locations of the peak and the valley of the curve are not affected. This obser-

vation cannot be verified through purely psychological means, however, if combined

with physiological experiments, it may be possible to test. An animal can be trained
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to select an apparently collinear lines over misaligned ones in a non-illusory task. In

the first test, the stimulus can be present in the periphery of the animal’s visual field,

where the tuning curve has a standard deviation measured as σ1. Record the animal’s

choices for the stimulus configured as in Figure 35A. Then, in the second test, apply

bicuculline to block GABA receptors in the animal’s primary visual cortex to reduce

the strength of inhibition. The blocking of GABA receptor may also incur the change

of the orientation tuning curve’s standard deviation, and therefore we may need to

move the stimulus towards the fovea region to increase the reduced standard devia-

tion value. (In the fovea, its standard deviation is smaller, which will be explained in

the next paragraph.) We can stop moving the stimulus right at the location where

the receptive field has the same tuning width as in the first test, σ1. Again, record

the animal’s choices for the stimulus configured as in Figure 35A. Comparing the two

results obtained in those two tests, in which both of the standard deviations are the

same but the inhibition strengths are different, the result of the first test is expected

to have a larger magnitude than that of the second one due to the reduced inhibition

strength in the second test. Furthermore, the peak and the valley position will not

change as predicted in Figure 35A.

Another observation is that the illusory effect can heavily depend on the standard

deviation σ of the orientation tuning curve. The value of σ can affect both the

magnitude and locations of the peak and valleys in Figure 35B. Further psychological

experiment could be conducted to verify this observation. The variation in perceived

orientation can be compared under two conditions: one is to present the stimulus

to the fovea, and the other is to present it to the periphery. In the fovea area, it is

supposed to have smaller σ than that in the periphery. Therefore, according to our

computational experiment based on the value of σ (figure 35B), we are expecting that

in the periphery there is stronger illusion (larger magnitude) than in the fovea; and
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also in the periphery, the second thick bar must have a higher degree of orientation

than in the fovea to make the thin line’s orientation to be maximally enhanced and

while a lower degree of the second thick bar in the periphery can get the thin line’s

orientation maximally reduced (i.e., locations of the peak and valley will change).

In sum, the above predictions of the computational models are expected to be

consistent with experiments under similar conditions. Further psychophysical exper-

iments may have to be conducted to more rigorously test the model predictions.

3. Contributions

The main contribution of this research is that it used a unified framework of dis-

inhibition to model various neural circuits in the brain. The framework explains

different types of visual illusion in the context of disinhibition: brightness-contrast

illusions [18] and geometric illusions [19]. As shown in the Hermann grid and Mach

band experiments, the static disinhibitory model IDoG can preserve brightness and

enhance contrast in multiple spatial frequency scales. The IDoGS model is the first

computational model to explain the scintillating grid illusion [25; 100]. Furthermore,

control accuracy, logic of control, and stability analysis of interconnected CGNN are

novel ways of analyzing the role of disinhibition in the brain. The analysis framework

for interconnected CGNN presented here eases the symmetry requirement of Cohen-

Grossberg neural network [101], and has the potential to be applied in the analysis

of large-scale multi-layer neural networks. Finally, the input modulation model com-

bining recurrent and feedforward disinhibition (based on the gating controller theory

of thalamocortical circuit [99]) was successfully applied in modeling SOA effects in

the Stroop task. The proposed concept of “selection of When” extended selective

attention into the temporal domain [60].
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C. Future directions

Future research can be conducted in two directions. The first is to more broadly apply

the disinhibition model to various local circuits in the brain. For example, analyzing

the role of disinhibition in the cerebellum, the hippocampus, the basal ganglia, and

their interconnections. Observation of various disinhibitory patterns can help us to

have a deeper understanding of the role of disinhibition in the brain.

Second, I will further carry out systems analysis of disinhibitory neural circuits

in the brain. The system-level analysis includes the studies of system dynamics and

design methods. The system dynamic, which is characterized by sensitivity, phase

portrait, and bifurcation, can provide insights on the change in behavior over time or

in different parameter space. The design methods, such as controllability and stability

studies, can guide the design of robust biologically inspired systems. Methods for

increased controllability can direct us in designing controllable system components

in a principled way. Systems with improved stability can deal with noisy inputs

from the environment and ensure that the system is working properly under various

unexpected circumstances.

Third, further study of disinhibition in higher-level perception and cognition

could also be a worthwhile topic. For example in Stroop effect, for two dimensional

stimulus, there are competitions between those two dimensions, or we say the two

stimuli inhibit each other. It would be interesting to see what happens if we have

stimulus from three or more dimensions (where disinhibition takes place), and to

predict the perception and cognition of the multi-dimensional interference through

the disinhibition model at a higher-level. Topics such as attentional selection and

decision making in light of disinhibition may lead to new insights.
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D. Conclusion

In sum, the computational role of disinhibition has been studied from three perspec-

tives of visual perception, attentional control, and system framework. The study of

the role of disinhibition in the brain can help us in understanding how the brain

can realize intelligent and complex functions through simple neuronal excitation and

inhibition. Further research on other basic circuits containing disinhibition can help

us discover deeper principles of brain function.
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