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ABSTRACT 

 
Performance Analysis of the Parallel  

Community Atmosphere Model (CAM) Application. (August 2006) 

Sameh Sherif Shawky Sharkawi, B.S., The American University in Cairo 

Chair of Advisory Committee:  Dr. Valerie Elaine Taylor 

 

 

Efficient execution of parallel applications requires insight into how the parallel 

system features impact the performance of the application. Significant experimental 

analysis and the development of performance models enhance the understanding of such 

an impact. Deep understanding of an application’s major kernels and their design leads to 

a better understanding of the application’s performance, and hence, leads to development 

of better performance models. The Community Atmosphere Model (CAM) is the latest in 

a series of global atmospheric models developed at the National Center for Atmospheric 

Research (NCAR) as a community tool for NCAR and the university research community.  

This work focuses on analyzing CAM and understanding the impact of different 

architectures on this application. In the analysis of CAM, kernel coupling, which 

quantifies the interaction between adjacent and chains of kernels in an application, is used. 

All experiments are conducted on four parallel platforms: NERSC (National Energy 

Research Scientific Computing Center) Seaborg, SDSC (San Diego Supercomputer 

Center) DataStar P655, DataStar P690 and PSC (Pittsburgh Supercomputing Center) 

Lemieux. Experimental results indicate that kernel coupling gave an insight into many of 

the application characteristics. One important characteristic of CAM is that its 

performance is heavily dependent on a parallel platform memory hierarchy; different 

cache sizes and different cache policies had the major effect on CAM’s performance. 

Also, coupling values showed that although CAM’s kernels share many data structures, 

most of the coupling values are still destructive (i.e., interfering with each other so as to 

adversely affect performance). The kernel coupling results helps developers in pointing 

out the bottlenecks in memory usage in CAM. The results obtained from processor 

partitioning are significant in helping CAM users in choosing the right platform to run 

CAM.  
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1. INTRODUCTION 
 

 

Computational models enable us to continually refine our understanding of earth 

systems and predict weather and climate. During the past couple of years, severe weather 

conditions and their disastrous consequences show the extreme need for such models in 

predicting atmospheric and climate conditions. The Community Atmosphere Model 

(CAM) is the latest in a series of global atmosphere models developed at the National 

Center for Atmospheric Research (NCAR) [1]. It was originally developed to simulate 

general circulation of the atmosphere, and was later modified to work with other 

components of the climate system model to simulate climate. It was developed in Fortran 

90 and has support for shared memory (via OpenMP) and message passing (via MPI). 

CAM is composed of several hundred files encompassing physics, dynamics and ocean 

sciences. When running CAM, researchers usually simulate 30 to 40 simulation years on 

average. For the smallest resolution dataset, to simulate one day requires approximately 

42 seconds on 32 Power3 processors; to simulate 30 years requires 120 CPU hours per 

processor for the smallest dataset. For such large-scale applications, how to understand 

their performance and point out bottlenecks becomes a major challenge because of the 

variation of schemes used in communication and computation. Also, the variations of 

operating systems, machine architectures, compilers and runtime libraries complicate the 

understanding of such applications’ behavior.  

This thesis focuses on analyzing the Community Atmosphere Model (CAM) and 

understanding the performance impact on different architectures. This work investigates 

the following four aspects of CAM’s performance:  

• application input: this work uses three different datasets and investigates the 

effect of dataset (grid) size on the application performance. 

• system configuration:  this work examines how the number of processors per node 

impacts the application performance.  

• scalability:  this work examines the application performance for a fixed problem 

size with processor scaling. 

 
________________ 
This thesis follows the style of ACM Sigmetrics. 
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• kernel coupling:  this work uses the kernel coupling metric to examine the impact 

of system parameters on application performance 

CAM runs on large scale supercomputers; thus, this analysis will give the 

researchers a guide on the best configuration for CAM on such systems and paves the 

way for a yet better design.  CAM was executed on four supercomputers: SDSC DataStar 

P655, SDSC DataStar P690, NERSC Seaborg and PSC Lemieux; a detailed description 

and comparison among these machines are provided below. Each of these 

supercomputers has different number of processors per node, different memory 

hierarchies and different network interconnections; thus, executing CAM with different 

processor partitioning shows how CAM’s behavior is affected with such partitioning and 

how the difference in memory hierarchy and network interconnections impacts the trend 

of execution. 

Kernel coupling quantifies the interaction between adjacent and chains of kernels 

in an application [2]. There are four major kernels in CAM: (1) PHYS_PKG that 

approximates subgrid phenomena such as precipitation processes, clouds, long and short 

wave radiation, and turbulent mixing, (2) DYN_PKG that advances the evolution 

equations for the atmospheric flow, (3) P_D_COUPLING which is responsible for 

converting physics data to dynamics data, and (4) D_P_COUPLING which is responsible 

for converting data from dynamics to physics. Among these four kernels two dominate 

the execution, PHYS_PKG and DYN_PKG. In this work, coupling between the four 

kernels is closely examined and analyzed. The runtimes of each kernel when executed in 

isolation and runtimes when executed in pairs and chains of three kernels were examined. 

In addition, the scalability of the overall application in comparison to the scalability of 

each kernel in isolation is studied. These tests where conducted on the four 

aforementioned supercomputers, NERSC Seaborg, SDSC DataStar P655, P690 and PSC 

Lemieux.  

CAM supports three dynamical cores:  Spectral Eulerian Dynamics, Semi-

Lagrangian Dynamics, and Finite Volume Dynamics. This work focuses on the Eulerian 

Dynamical core. The Spectral Eulerian Dynamics is the default dynamical core for CAM 

and has been used the longest among other dynamical cores by the scientific research 
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community. There are three standard configurations that are available on CAM website 

for the Eulerian Dynamical core with spectral resolutions T31, T42 and T85. 

 

1. T31: 96 Longitude x 48 Latitude. This takes 48 timesteps to simulate 1 day. 

2. T42: 128 Longitude x 64 Latitude. This takes 72 timesteps to simulate 1 day. 

3. T85:  256 Longitude x 128 Latitude. This takes 145 timesteps to simulate 1 day.  

 

Although the three datasets have a third dimension which is the level, but this can 

be chosen to be either 26 or 30 during the configuration. Through out all the tests 

concerned in this work, the level was set to be 26. In this way, it is guaranteed in each run 

that the PHYS_PKG will be called. 

Kernel coupling gave us an insight about many of the application characteristics. 

One important characteristic of CAM is that its performance is heavily dependent on 

parallel platform memory hierarchy. For example, all the coupling values show that 

Lemieux, with a slower processor than DataStar but with a larger L1 and L2 cache sizes, 

experience better coupling than DataStar. Also, coupling values showed that although 

CAM’s kernels share many data structures, most of the coupling values are still 

destructive (i.e., interfering with each other so as to adversely affect performance). This 

is due to the large sizes of these data structures and the way CAM loops are designed. 

In processor partitioning, although the intranode bandwidth is much higher than 

the internode bandwidth, CAM’s runtime was better when less than half of the maximum 

number of processors per node are used. This, also, emphasizes CAM’s heavy reliance on 

memory and that the intensive use of memory in computation reduces the intranode (i.e., 

within a node) bandwidth significantly. 
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2. BACKGROUND 

 
 

 

Performance analysis and prediction provide significant insight into the 

performance relationships between an application and the system used for execution. The 

major obstacle to correctly understand an application behavior and performance is the 

lack of knowledge about the performance relationships between the different functions 

that compose an application [6]. Understanding such relationships assists in deriving 

performance models that help in predicting and understanding an application behavior.   

Kernel coupling refers to the effect that kernel i has on kernel j in relation to 

running each kernel in isolation. The two kernels can be adjacent kernels in the control 

flow of the application or a chain of three or more kernels [5]. In this work, kernel 

coupling will be used to identify four major points: 

• how the coupling values change with scaling of the problem size; 

• how the coupling values change with the scaling of the number of processors; 

• how coupling values change with the system architecture; and  

• how coupling values change with the application runtime. 

 

2.1 Testbeds 

In this work, all CAM runs and tests were performed on four supercomputers: 

SDSC DataStar P655 and P699, NERSC Seaborg and PSC Lemieux. Table 1 shows a 

detailed comparison for these machines. As it is clear in the table, P655, P690 and 

Seaborg have the same Operating System (AIX), but they have different processor speeds 

and different memory hierarchy. For that reason, we chose the PSC Lemieux machine as 

the 4
th

 testbed in order to have a different operating system and different runtime libraries 

to compare with. The four machines had support for message passing (MPI) and shared 

memory (OpenMP). In addition, the four machines had the libraries needed to run CAM 

installed and specifically the Network Common Data Form (NetCDF). NetCDF is an 

interface for array-oriented data access and a library that provides an implementation of 

the interface. The netCDF library also defines a machine-independent format for 

representing scientific data. Together, the interface, library, and format support the 
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creation, access, and sharing of scientific data [4].   For the three IBM machines, IBM XL 

Fortran compiler was used. Although the machines have different compilers installed on 

the machines, the choice of the XL FORTRAN was due to its capability of optimizing the 

code to the best extent on the IBM machines. On the other hand, f90 was used on 

Lemieux. For each of these machines, there were certain batch scripts that were written to 

configure the runtime environment for CAM. The most important parameter that was 

needed by CAM on all platforms was setting the Stack Size to maximum value in order 

for CAM to run without crashing. This is due to CAM’s intensive memory requirements 

which will be discussed in details in CAM Description and CAM Analysis sections.  

 

 
Table 1: Testbeds Comparison 

Configurations SDSC 

DataStar P655 

SDSC 

DataStar P690 

NERSC 

Seaborg 

PSC Lemieux 

Number of 

Nodes 

176 7 416 750 

CPUs per 

Node 

8 32 16 4 

CPU type 1.5 GHz PPC4 1.7 GHz PPC4 375 MHz PPC3 1 GHz Alpha 

CPU Peak 

Speed 

6.0 GFlops 6.8 GFlops 1.5 GFlops 600 MFlops 

Memory per 

Node 

16GB 128GB 16-64GB 4 GB 

L1 Cache 64/32 KB 2-

way/ Direct 

Mapped 

64/32 KB 2-

way/ Direct 

Mapped 

64/32 KB 128-

way set 

associative 

64/64 KB 2-

way set 

associative 

L2 Cache 1.5MB On Chip 

shared between 

2 cores 

1.5MB On Chip 

shared between 

2 cores 

8MB Off Chip 

per one core 

8MB On Chip 

L3 Cache 128MB 128MB N/A N/A 

Network Federation Federation Colony Quadrics 

OS AIX AIX AIX Tru64 Unix 
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2.2 CAM 

 This section describes CAM and has a brief scientific explanation for the physics 

and dynamics in CAM. 

2.2.1 Application Description 

The Community Atmosphere Model provides the research community with a 

reliable, well documented atmospheric general circulation model. CAM has been 

developed over a period of fifteen years. It started as a community climate model that is a 

stand alone application and cannot be coupled with any other atmospheric or climate 

model. Over the years, CAM evolved into a more specific model of simulating and 

modeling the atmosphere. Also, the capability of being integrated into the Community 

Climate System Model (CCSM) was added. In CAM 3.0, many features and 

enhancements were added to it. The most important of which is the ability to support 

multiple dynamical cores instead of only one. In this work, Spectral Eulerian Dynamics is 

the core of focus.  

The CAM 3.0 cleanly separates the parameterization suite from the dynamical 

core, and makes it easier to replace or modify each in isolation. The dynamical core can 

be coupled to the parameterization suite in a purely time split manner or in a purely 

process split one, as described below [1]. 

Consider the general prediction equation for a generic variable ψ 

 

)()( ϕϕ
ϕ

PD
t

+=
∂
∂

       (1) 

 

where ϕ denotes a prognostic variable such as temperature or horizontal wind component. 

The dynamical core component is denoted D and the physical parameterization suite P. 

A three-time-level notation is employed which is appropriate for the semi-implicit 

Eulerian spectral transform dynamical core. However, the numerical characteristics of the 

physical parameterizations are more like those of diffusive processes rather than 

advective ones. They are therefore approximated with forward or backward differences, 

rather than centered three-time-level forms.  
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The Process Split coupling, which refers to the coupling of the dynamical core 

with the complete parameterization suite, is approximated by  

),(2),,(2 1*1111 −−+−+ ∆+∆+= nnnnnn tPtD ϕϕϕϕϕϕϕ    (2) 

where ),( 1* −nP ϕϕ  is calculated first from 

),(2 1*1* −− ∆+= nn tP ϕϕϕϕ       (3) 

 

The Process Split form is convenient for spectral transform models. 

The Time Split coupling, which also refers to the coupling of the dynamical core 

with the complete parameterization suite, is approximated by  

),,(2 111 −+− ∆+ nnnn tD ϕϕϕϕ       (4) 

).,(2 *1* ϕϕϕ +∆+ ntP        (5) 

 

The Time Split form is convenient for the finite-volume core which adopts a Lagrangian 

vertical coordinate. 

The distinction is that in the Process Split approximation the calculations of D 

and P are both based on the same past state, 1−nϕ , while in the Time Split approximations 

D and P are calculated sequentially, each based on the state produced by the other. 

As mentioned above, the Eulerian core employs the three-time-level notation in 

(Equation 2)-(Equation 5). (Equation 2)-(Equation 5) also apply to two-time-level semi-

Lagrangian and finite volume cores by dropping centered term dependencies, and 

replacing n-1 by n and t∆2 by t∆ . 

The parameterization package can be applied to produce an updated field as 

indicated in (Equation 3) and (Equation 5). Thus (Equation 5) can be written with an 

operator notation 

)( *1 ϕϕ Pn =+         (6) 
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where only the past state is included in the operator dependency for notational 

convenience. The implicit predicted state dependency is understood. The Process Split 

equation (Equation 2) can also be written in operator notation as 

)
2

)(
,(

11
11

t

P
D

nn
nn

∆
−

=
−−

−+ ϕϕ
ϕϕ      (7) 

 

where the first argument of D denotes the prognostic variable input to the dynamical core 

and the second denotes the forcing rate from the parameterization package, e.g. the 

heating rate in the thermodynamic equation. Again only the past state is included in the 

operator dependency, with the implicit predicted state dependency left understood. With 

this notation the Time Split system (Equation 5) and (Equation 5) can be written 

 

))0,(( 11 −+ = nn DP ϕϕ        (8) 

 

The total parameterization package in CAM 3.0 consists of a sequence of 

components, indicated by 

 

P = {M, R, S, T}       (9) 

 

where M denotes (Moist) precipitation processes, R denotes clouds and Radiation, S 

denotes the Surface model, and T denotes Turbulent mixing. Each of these in turn is 

subdivided into various components: M includes an optional dry adiabatic adjustment 

(normally applied only in the stratosphere), moist penetrative convection, shallow 

convection, and large-scale stable condensation; R first calculates the cloud 

parameterization followed by the radiation parameterization; S provides the surface 

fluxes obtained from land, ocean and sea ice models, or calculates them based on 

specified surface conditions such as sea surface temperatures and sea ice distribution. 

These surface fluxes provide lower flux boundary conditions for the turbulent mixing T 

which is comprised of the planetary boundary layer parameterization, vertical diffusion, 

and gravity wave drag [1]. 
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Further details of the splitting of parameterized physics and the dynamical core 

can be found in [1]. Also, the detailed scientific explanation of the physics and dynamics 

involved in CAM can be found in [1] sections 2.2 and 3.2 respectively. 

 

2.2.2 Control Flow 

CAM,  as mentioned earlier, can be divided into four major kernels in addition to 

INITIALIZATION and FINALIZATION. CAM starts execution in the cam subroutine in 

cam.F90 file. In this subroutine, all the initializations and finalization routines and calls 

take place. In this section, INITIALIZATION and FINALIZATION kernels will be 

discussed as the remaining kernels will be discussed in details in the following section. 

The main core of CAM execution is done in the stepon function in stepon.F90 file. This 

function has a time loop that calls the four major kernels. 

During INITIALIZATION, dataset files are read and all the SPMD MPI 

communications are initialized. On the other hand, during FINALIZATION, history and 

restart files are written. It is obvious that these two kernels are heavily dependent on the 

I/O system and thus their performance and behavior are not completely predictable. 

Figure 1 and Figure 2 show CAM flow of execution. 
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Figure 1: CAM Flow of Execution 

 

 
Figure 2: CAM Flow Inside Stepon 

Initialize Data 

Structures 

d_p_coupling() 

d_p_coupling() 

d_p_coupling() 

d_p_coupling() 

Initialize Data 

Structures 

Time Loop 

INITIALIZATION 

Reading Datasets and 

Initializing communications 

FINALIZATION 

Writing History and Restart 

Files 

stepon 
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Table 2: T31 D_P_COUPLING Data Structure Sizes in Bytes 

Name Type and Description 
2 
Processors 

4 
Processors 

ps real(r8), intent(in) :: ps  (plon, beglat:endlat) 12288 6144 

t3 real(r8), intent(in) :: t3  (plon, plev, beglat:endlat)   319488 159744 

u3 real(r8), intent(in) :: u3  (plon, plev, beglat:endlat)   319488 159744 

v3 real(r8), intent(in) :: v3  (plon, plev, beglat:endlat)   319488 159744 

q3 
real(r8), intent(in) :: q3  (plon, plev, ppcnst, 
beglat:endlat)  958464 479232 

omga real(r8), intent(in) :: omga(plon, plev, beglat:endlat) 319488 159744 

phis real(r8), intent(in) :: phis(plon, beglat:endlat) 12288 6144 

pdeld real(r8), intent(in) :: pdeld (:,:,beglat:)   

    

phys_state 
type(physics_state), intent(out), 
dimension(begchunk:endchunk) :: phys_state 10027008 5013504 

phys_tend 
type(physics_tend ), intent(out), 
dimension(begchunk:endchunk) :: phys_tend 1327104 663552 

pbuf 
type(pbuf_fld),    intent(inout), 
dimension(pbuf_size_max):: pbuf   

 

 

Table 3: T31 PHYS_PKG Data Structure Sizes in Bytes 

 

 

2.2.2.1 D_P_COUPLING 

As mentioned previously, one of the main enhancements added to CAM 3.0 is the 

ability to support multiple dynamical cores. This enhancement required a full decoupling 

between the PHYS_PKG and the DYN_PKG. This decoupling was in data structures 

used and the parallelism techniques. Thus the need for this kernel (D_P_COUPLING) 

and the kernel explained in the next section (P_D_COUPLING).  Table 2 has details of 

data structures that this kernel works on. 

As the name implies, D_P_COUPLING is the kernel responsible for copying the 

data structures produced by the dynamical core into the data structures used by the 

physics package. Table 3 shows the data structures used by the physics package and 

Table 4 shows the data structures used by the dynamical core. This kernel is composed of 

many loops that have OpenMP support if the machine has support for threading. This 

Name Type and Description 
2 
Processors 

4 
Processors 

phys_state 
type(physics_state), intent(inout), 
dimension(begchunk:endchunk) :: phys_state 10027008 5013504 

phys_tend 
type(physics_tend ), intent(inout), 
dimension(begchunk:endchunk) :: phys_tend 1327104 663552 

pbuf 
type(pbuf_fld),    intent(inout), 
dimension(pbuf_size_max)     :: pbuf   
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nested loops copy the arrays and data structures produced by the dynamics into the 

phys_state structure of the physics package. Most of the loops have three dimensions due 

to the three dimensional nature of the grid data (Latitude x Longitude x Level). The 

latitude dimension is the dimension that is parallelized using MPI. To illustrate, the 

number of latitudes assigned to each processor is linear to the number of processors 

running CAM. As will be discussed in the PHYS_PKG section, in the physics package, 

data are represented differently (chunks and columns) to achieve maximum 

parallelization. Thus, this copying of data is also responsible for changing the array data 

structures from (Latitude x Longitude x Level) dimensions to (Chunks x Vertical x 

Columns) dimensions.  

 

Table 4: T31 DYN_PKG Data Structure Sizes in Bytes 

Name Type and Description 
2 
Processors 

4 
Processors 

adv_state type(advection_state), intent(inout) :: adv_state    

t2    real(r8), intent(inout) :: t2(plon,plev,beglat:endlat) 319488 159744 

fu    real(r8), intent(inout) :: fu(plon,plev,beglat:endlat)  319488 159744 

fv    real(r8), intent(inout) :: fv(plon,plev,beglat:endlat) 319488 159744 

   0 

etamid    real(r8), intent(in) :: etamid(plev) 208 208 

cwava    real(r8), intent(inout) :: cwava(plat) 768 768 

detam    real(r8), intent(inout) :: detam(plev) 208 208 

flx_net    real(r8), intent(in) :: flx_net(plon,beglat:endlat) 12288 6144 

ztodt    real(r8), intent(in) :: ztodt 8 8 

    

ps real(r8), intent(in) :: ps  (plon, beglat:endlat) 12288 6144 

t3 real(r8), intent(in) :: t3  (plon, plev, beglat:endlat)   319488 159744 

u3 real(r8), intent(in) :: u3  (plon, plev, beglat:endlat)   319488 159744 

v3 real(r8), intent(in) :: v3  (plon, plev, beglat:endlat)   319488 159744 

q3 real(r8), intent(in) :: q3  (plon, plev, ppcnst, beglat:endlat)  958464 479232 

omga real(r8), intent(in) :: omga(plon, plev, beglat:endlat) 319488 159744 

phis real(r8), intent(in) :: phis(plon, beglat:endlat) 12288 6144 

pdeld real(r8), intent(in) :: pdeld (:,:,beglat:)   
 

 

 
 

2.2.2.2 P_D_COUPLING 

P_D_COUPLING is the kernel responsible for doing exactly the opposite of the 

previous kernel. A point worth mentioning is that each dynamical core has its own 

D_P_COUPLING and P_D_COUPLING functions. Hence, each dynamical core can 
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easily interact with the physics package. In P_D_COUPLING all the data structures that 

are updated or changed by the PHYS_PKG are then copied into arrays that can be used 

by the dynamics package. As the case with D_P_COUPLING, the nested loops do the 

copying of data and changing the dimensions as mentioned in the previous section. Table 

5 shows details of data structures that this kernel utilizes. 

 

Table 5: T31 P_D_COUPLING Data Structure Sizes in Bytes 

 

 

 

 

2.2.2.3 PHYS_PKG 

The PHYS_PKG kernel is the most dominant kernel in CAM. The PHYS_PKG is 

responsible for all the physical parameterizations and uses the phys_state structure as the 

main data structure. This data structure is a large and many computations are done on that 

data structure that causes this kernel to dominate the execution. As mentioned earlier, 

CAM has a three dimensional grid structure (Latitude x Longitude x Vertical). Because 

computation in the physics is independent between vertical columns, the inner loop over 

longitude is vectorizable. Coarser grain parallelism is exploited in the outer loop over 

latitude, via either MPI or OpenMP [6]. Thus, the loops in the physics parameterization 

package looks like this: 

 

do j=1,nlat 

do k=1,nver 

do i=1,nlon 

(physical parameterizations) 

Name Type and Description 
2 
Processors 

4 
Processors 

phys_state 
 type(physics_state),intent(in), 
dimension(begchunk:endchunk) :: phys_state 10027008 5013504 

phys_tend 
    type(physics_tend), intent(in), 
dimension(begchunk:endchunk) :: phys_tend 1327104 663552 

   0 

t2 real(r8), intent(out) :: t2(plon, plev, beglat:endlat) 319488 159744 

fu real(r8), intent(out) :: fu(plon, plev, beglat:endlat) 319488 159744 

fv real(r8), intent(out) :: fv(plon, plev, beglat:endlat) 319488 159744 

flx_net real(r8), intent(out) :: flx_net(plon,beglat:endlat) 12288 6144 

qminus 
real(r8), intent(out) :: qminus(plon, plev, pcnst, 
beglat:endlat) 958464 479232 

qnats 
real(r8), intent(out) :: qnats(plon, plev, ppcnst, 
beglat:endlat) 958464 479232 
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enddo 

enddo 

enddo 

 

As of CAM 3.0, the design of the loop structure in the physics parameterization 

package has changed. To exploit vectorization, which is important to both vector based 

architectures and cache-based processor architectures to exploit fine-grain parallelism for 

long-instruction-word architectures, the computation of multiple columns was bundled 

into chunks [6]. Thus the new array structure is (pcols, never, nchunks), and the new loop 

structure is: 

 

do j=1,nchunks 

do k=1,nver 

do i=1,ncols(j) 

(physical parameterizations) 

enddo 

enddo 

enddo 

 

 

With this new design of arrays and loops, the inner loop is again vectorizable, and 

the outer loop is the MPI or OpenMP parallel direction. CAM is a Fortran code, so the 

inner loop also runs sequentially over contiguous memory locations. As the chunk size 

(pcols and ncols) decreases, the cache locality increases and the parallelism exploitable at 

the outer loop level increases. In contrast, as the chunk size increases, the vectorization 

opportunities increase [6]. Details of the new data structures and their sizes are presented 

in Table 3. 

 

2.2.2.4 DYN_PKG 

In this work, the focus is on the Spectral Eulerian Dynamical core. In general, the 

dynamical core is responsible for advancing the evolution equations for the atmospheric 

flow. The DYN_PKG is the second major kernel in CAM and the second dominant 

kernel in execution time. Details of data structures used by the DYN_PKG are presented 

in Table 4. 
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2.3 Kernel Coupling  

The coupling parameter, Cij, quantifies the interaction between adjacent kernels in 

an application [5]. In this work, four major kernels are identified, PHYS_PKG, 

DYN_PKG, P_D_COUPLING and D_P_COUPLING. A detailed explanation of each 

kernel will be provided in the CAM explanation section. To compute the parameter Cij, 

three measurements must be taken: 

• Pi is the performance of kernel i alone, 

• Pj is the performance of kernel j alone, and 

• Pij is the performance of kernels i and j (assuming kernel i immediately precedes  

kernel j) in the application 

These measurements are done in the sequence determined by the application. In 

particular, a measurement is obtained by placing a given kernel or pair of kernels into a 

loop, such that the loop dominates the application execution time. Then the time required 

for the application, beyond the given kernel or pair of kernels, is subtracted such that the 

resultant time reflects that of only the given kernel or pair of kernels [8]. In general, the 

value Cij is equal to the ratio of the measured performance of the pair of kernels to the 

expected performance resulting from combining the isolated performance of each kernel. 

Since Cij is the measurement of interaction between kernels, it is computed as the ratio of 

the actual performance of the kernels together to that of no interaction, as given below: 

ij

ij

i j

P
C

P P
=

+
 

For the case of a chain of kernels, S is defined as the set of kernels to be measured. 

The performance of the kernels is measured independently (Pk for every kernel k in the 

set S), and the performance of the kernels together (PS) to compute the coupling 

parameter CS. The equation for the coupling for a chain of kernels is given below: 

s
s

k

k S

P
C

P
∈

=
∑

   

The parameters are grouped into three sets: 

• CS = 1 indicates no interaction between the chain of kernels, yielding no change 

in performance. 
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• CS < 1 indicates a performance gain, resulting from some resource(s) being 

shared between the kernels (i.e., constructive coupling). 

• CS > 1 indicates a performance loss, resulting from the kernels interfering with 

each other (i.e., destructive coupling). 

For example, for a chain of 3 (K1-K2-K3) in CAM the coupling value equation will be: 

123
12

1 2 3

P
C

P P P
=

+ +
 

This coupling value can be used in predicting the performance of CAM. The equation 

used in performance prediction is: 

4

1

finalinit i i i

i

T P N P Pα
=

= + +∑  

where 
i

α is the weighted average of the kernel coupling values associated with kernel i. 

i
α  can be calculated using: 

j j

j Q

i

j

j Q

c p

p
α ∈

∈

×

=
∑

∑
 

Where Q is the set of all coupled kernels involved with kernel i. 

In this work, kernel pairs and chains of three kernels were executed. Each kernel 

was run separately in a loop of 500 iterations. The choice of the number of 500 was to 

make sure that data starts to stabilize in cache and any other data from previous functions 

are out. The kernel pairs (D_P_COUPLING, PHYS_PKG), (PHYS_PKG, 

P_D_COUPLING), (P_D_COUPLING, DYN_PKG) and (DYN_PKG, 

D_P_COUPLING) were also executed in loops of 500 iterations. For some kernels, some 

tweaking was needed in order not to blow up the model and to keep the data within 

certain ranges that the model can tolerate. Finally, chains of three kernels were also run in 

loops of 500 iterations, (D_P_COUPLING, PHYS_PKG, P_D_COUPLING), 

(PHYS_PKG, P_D_COUPLING, DYN_PKG), (P_D_COUPLING, DYN_PKG, 

D_P_COUPLING) and (DYN_PKG, D_P_COUPLING, PHYS_PKG). Using the 

coupling values from these runs, an application model was generated. This application 

model was used in predicting CAM execution runtime and performance.  
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3. EXPERIMENTAL RESULTS 
 

 

 

As mentioned previously, CAM was executed on four different parallel platforms 

in order to identify its general behavior and characteristics. The characteristics that were 

of concern for these tests were scalability, execution time and communication. In this 

section, a detailed analysis for these characteristics will be shown along with the 

execution results that indicate these characteristics. 

 

3.1 Processor Partitioning 

The aim of processor partitioning analysis is to identify the application factors 

that impact the selection of the best number of processors per node to use for execution of 

MPI applications. Thus, the focus of this analysis is the MPI-only version of CAM. The 

current trend in parallel systems is shifting towards clusters of shared memory symmetric 

multiprocessors (SMP), with moderate number of processors per node [7]. Hence, this 

analysis will identify the best configuration to run the MPI-only version of CAM and, 

also, will provide further insight on CAM characteristics and behavior. 

To analyze the performance of CAM, it was executed on DataStar P655, P690, 

PSC Lemieux and NERSC Seaborg. The total number of processors was kept constant 

while changing the number of processors per node to see the effect of such configuration. 

The total runtime, communication time and initialization were collected in order to see 

the effect on both communication and computation. Initialization was an important factor 

due to its heavy reliance on I/O. Thus, initialization time needed to be calculated to be 

subtracted from total execution time to have accurate computation and communication 

timings. Tables 7, 8, 9 and 10 show the results of the tests of 32 processors on the four 

aforementioned platforms.  
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Table 6: Bi-directional Latency and Bandwidth Using Sendrecv 

*Lemieux data is not available 

 

 

 

Table 7: Processor Partitioning Data on Seaborg 

T31 Resolution 
 

Runtime (secs) 
 

Communication 

(secs) 

Initialization 

(secs) 
 

2x16 51.414518 6.693528 10.0879 

4x8  41.816107  4.723436  4.21962 

8x4  42.012999  4.842055  4.68493 

16x2  42.848741  5.116556  5.45826 

32x1  45.17013  5.193585  6.121484  

T42 Resolution 

2x16 79.074583  8.302817   11.372018  

4x8  70.570393   4.258834  4.880712  

8x4  71.811414   4.024824   6.311421  

16x2  69.618445  4.257174   6.496892  

32x1  71.742334  3.853449  7.93939   

T85 Resolution 

2x16 395.91757  21.119348  31.804444   

4x8  384.35363   16.084764  27.306053  

8x4  381.27095   15.025156  27.12071  

16x2  377.89918  15.151985  28.767705  

32x1  370.620077  13.086333 24.424302  

 

 

As it is indicated in [7], there are three major characteristics that affect the 

performance of a parallel application for the case when the number of requested 

processors is larger than the maximum number of processors per node. These 

characteristics are Global Communication, Memory Access and Message Size. It is 

obvious from the data shown in Tables 7, 8, 9 and 10 that CAM communication 

percentage of the total runtime is approx. 10% for T31 and approx. 5% for both T42 and 

T85. Thus, the interesting characteristic of CAM that this work focuses on is the memory 

Platform Communication  

Mode 

MPI Latency  

(µs) 

MPI Bandwidth  

(MB/s) 

Intra-node (1x2) 2.90 3724.01 P655 

Inter-node (2x1) 6.71 1600.55 

Intra-node (1x2) 4.91 2606.86 P690 

Inter-node (2x1) 8.01 1504.12 

Intra-node (1x2) 14.45 932.84 Seaborg 

Inter-node (2x1) 29.89 295.61 
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access. The global communication, on the other hand, has very limited effect that only 

shows on the smallest dataset T31. 

Each of the four platforms used shared a common factor. The four machines had a 

very high intra-node bandwidth (depending on shared memory), and lower inter-node 

bandwidth (using the underlying interconnection network). The intuition is that running 

the application with using the maximum number of processors per node will lead to the 

best performance. However, the aforementioned characteristics greatly affect the 

application performance. Inter-node and Intra-node bandwidth for each of the four 

platforms is shown in Table 6 [7].  

 For T31, the dataset size is the smallest. Thus, T31 is not as memory 

intensive as the rest of the datasets, and hence, less memory accesses. The lower the 

number of memory accesses the less memory congestion, hence the intra-node bandwidth 

is not totally consumed. This leads to a very consistent trend for T31 on P690, P655 and 

Lemieux where using the maximum number of processors per node yields the best 

performance. It is clear from the results that the communication time is shorter when 

using the maximum number of processors per node for these two machines. However, 

this is not the case for Seaborg. Seaborg has a more interesting outcome where the 

execution time starts being the longest for maximum number of processors per node 

which starts dropping by using less number of processors and then goes up again. The 

longer execution time experienced by the maximum number of processors per node is 

justified by memory congestion of 16 processors on the node and having less memory 

than P655 and P690. The increase in the execution time again when using less than half 

the processors on one node is justified by the slow interconnection network between 

nodes. This behavior is not encountered on DataStar due to the fast Federation Network 

used there. 
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Table 8: Processor Partitioning Data on P655 

T31 Resolution 
 

Runtime (secs) 
 

Communication 

(secs) 

Initialization (secs) 
 

4x8 13.085524 1.182073 1.263196 

8x4 16.022259 1.306746 3.970442 

16x2 13.699135 1.537202 1.518381 

32x1 13.675276 1.496823 1.374236 

T42 Resolution 

4x8 24.230881 0.952962 1.602706 

8x4 22.830676 0.950005 1.672912 

16x2 22.656113 0.993427 1.846584 

32x1 22.823563 1.030669 1.791539 

T85 Resolution 

4x8 134.297046 4.932801 6.45849 

8x4 125.44362 4.775869 6.407569 

16x2 128.168296 4.025751 11.291061 

32x1 122.027002 3.309613 7.550648 

 

 

The T42 dataset experiences different behavior than that for the T31. This is due 

to the larger size of data of the T42 dataset.  Since the sizes of the data structures are 

relatively larger than T31, memory congestion from array copying overhead is 

encountered. This congestion boosts the runtime. A point worth mentioning is that the 

communication time on P655 and Lemieux is still shorter for using max number of 

processors per node. This proves that communication overhead for CAM is relatively 

negligible to memory overhead. Nevertheless, P690 suffers from intra-node bandwidth 

consumption by memory congestion which leads to longer communication time for 

maximum number of processors per node. Also, Seaborg doesn’t show the previous trend 

of the concave curve for neither runtime nor communication time. This happens when 

memory congestion starts to be the major overwhelming factor in the execution causing 

any network delay to be unnoticed.  
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Table 9: Processor Partitioning Data on P690 

T31 Resolution 
 

Runtime (secs) 
 

Communication 

(secs) 

Initialization (secs) 
 

1x32 12.972556 0.966188 1.5539749 

2x16 13.69839 0.992613 1.45267 

4x8 13.69603 1.142692 1.482992 

T42 Resolution 

1x32 27.33603 1.142692 1.7539749 

2x16 24.705 0.992613 1.85267 

4x8 22.589292 0.866188 1.782992 

T85 Resolution 

1x32 130.648718 4.909863 7.881138 

2x16 122.139668 2.994368 7.412044 

4x8 112.778566 2.80783993 7.516255 

 

 

Table 10: Processor Partitioning Data on Lemieux 

T31 Resolution 
 

Runtime (secs) 
 

Communication 

(secs) 

Initialization (secs) 
 

8x4 38.013508 2.778082987 9.467733 

16x2 34.22544 2.067937245 7.362273 

32x1 34.018543 2.125226589 6.958006 

T42 Resolution 

8x4 60.821712 2.7265488 11.469622 

16x2 56.755615 2.783664 10.77925 

32x1 59.077131 2.0358386 12.180661 

T85 Resolution 

8x4 279.091735 7.3278648 37.307626 

16x2 254.130367 6.48746 21.60738 

32x1 248.882319 5.8346547 21.054645 

 

The T85, as in Tables 7, 8, 9 and 10, with the largest dataset size shows yet 

another behavior where both communication time and computation time is the highest for 

maximum number of processors per node on all four platforms. As in the case of T42 on 

Seaborg where memory congestion is the controlling factor, memory congestion for T85 

consumes all the intra-node bandwidth making even the intra-node communication 

slower than communication through the interconnection network. For T85 this trend is 

even experienced on P655 and Lemieux due to the huge data structures sizes.  

CAM is very interesting in that the major performance difference occurs with 

between the scheme utilizing all the processors per node and half of the maximum 

number of processors per node, with half of the maximum number of processors per node 
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being the better scheme.  Further, there is very little difference in the execution time 

between using one to half of the maximum number of processors per node. When all the 

processors per node are used, congestion can occur due to data copies of arrays. When 

half of the maximum number of processors or fewer per node are used the intra-node 

bandwidth is sufficient [7]. 

 

 

3.2 Processor Scaling 

 In this section, runtime comparison, scalability and communication analysis is 

provided. 

3.2.1 Execution Runtime Comparison 

In the tests for runtime comparison among the four parallel platforms, CAM was 

configured to have one task per node. This configuration was necessary to guarantee to 

have one thread per processor and not to have multiple threads switching on the same 

processor. Each task had four OpenMP threads running on it. The choice of four threads 

was due to the fact that Lemieux has four processors per node and it was the least among 

the rest of the platforms. Thus the choice of four threads was to keep the workload 

consistent among the platforms and to have the workload per processor the same. This 

implies that on Lemieux, the maximum number of processors per node is used, while 

50% of P655, and 25% of Seaborg capabilities per node is used. An exception from this 

configuration was DataStar P690. This exception is due to the fact that SDSC doesn’t 

allow more than using four nodes on the P690. This limitation prevented running CAM 

on more than 128 processors on P690. 
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T31 Runtime Comparison
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Figure 3: Runtime Comparison of the T31 Dataset on the Four Platforms 

 
 

T42 Runtime Comparison
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Figure 4: Runtime Comparison of the T42 Dataset on the Four Platforms 
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T85 Runtime Comparison
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Figure 5: Runtime Comparison of the T85 Dataset on the Four Platforms 

 

 

It is clear from Figures 3, 4 and 5 that runtimes don’t exactly reflect the platform 

architecture as expected. To illustrate, Seaborg with the slowest processors experience 

the longest runtime for all the input datasets; however, it is not four times slower that 

P655 as expected. This is due to the memory hierarchy of Seaborg and having a larger 

memory per processor and a larger L2 cache. This, in fact, shows the high dependability 

of CAM on memory. 

Another point worth mentioning is the scalability on Lemieux. It is consistent 

among the three datasets that scalability on Lemieux is worse than the remaining 

machines. This scalability will be discussed in the next section. 

 

3.2.2 Scalability 

In the experiments for scalability, CAM was configured to run with number of 

OpenMP threads equal to the number of processors per node. This was the choice in 

order to have consistency among all machines and to avoid having the differences in 

scalability as indicated in the previous section. To illustrate, in the previous section, 

Lemieux runs were using the maximum processor capacity per node causing it to 

encounter the least scalability, while P655 was only using 50% of node capacity and 
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Seaborg was using 25% of load capacity. Thus the configuration for each machine was as 

follows: 

• DataStar P655   : 1 Task/ Node – 8 Threads/ Task 

• DataStar P690 : 1 Task/Node – 8 Threads/Task , 16 Threads/Task and 32 

Threads/Task 

• Seaborg    : 1 Task/Node – 16 Threads/Task 

• Lemieux    : 1 Task/Node – 4 Threads/Task 

 

DataStar P655 Scalability
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Figure 6: Scalability Comparison of the 3 Datasets on DataStar P655 

 

 

Figures 6 and 7 show the runtime scalability of the three datasets on P655 and 

their relative speedup respectively. It is obvious from both graphs that CAM doesn’t scale 

very well. This behavior is also consistent on all datasets and, as it is shown in Figures 8, 

9, 10, 11, 12 and 13, it is also consistent on all the platforms.  

In fact, this behavior is due to the intensive reliance of CAM on memory and the 

memory overhead incurred by the copying that occurs between different kernels and 

different data structures. This overhead is increased when all the processors on one node 

are used, thus using all the memory available on one node and memory thrashing occurs. 

Nevertheless, when half the number of processors per node is used or less, then there is 
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enough memory per processor to accommodate the large data structures and the overhead 

of copying them. 

 

DataStar P655 Relative Speedup
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Figure 7: Relative Speedup of the 3 Datasets on DataStar P655 
 

 

 

Seaborg Scalability
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Figure 8: Scalability Comparison of the 3 Datasets on Seaborg 
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Seaborg Relative Speedup
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Figure 9: Relative Speedup Comparison of the 3 Datasets on Seaborg 
 

 

Although, this may seem counter intuitive because it is known that the network 

bandwidth within the node is much larger than the inter-node network bandwidth, as it 

will be shown in the processor partition section, the communication overhead of CAM is 

much less than memory overhead. Also, the effect that communication has on CAM is 

considered negligible in comparison to the memory significant effect. Figures 14, 15 and 

16 will show a comparison done on Seaborg where 16 threads per task run is compared to 

four threads per task run. 
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DataStar P690 Scalability
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Figure 10: Scalability Comparison of the 3 Datasets on DataStar P690 
 

 

 

DataStar P690 Relative Speedup
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Figure 11: Relative Speedup Comparison of the 3 Datasets on DataStar P690 
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Lemieux Scalability
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Figure 12: Scalability Comparison of the 3 Datasets on Lemieux 
 

 

 

Lemieux Relative Speedup

0

5

10

15

20

0 20 40 60 80 100 120 140

Number of Processors

R
e
la

ti
v
e
 S

p
e
e
d

u
p

T31 T42 T85 Linear
 

Figure 13: Relative Speedup Comparison of the 3 Datasets on Lemieux 
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Figures 14, 15 and 16 demonstrate the fact that using all the processors per node 

degrades the performance. For T31, for 32 processors the runtime is better if using 4 

Threads; however, it degrades for larger number of processors. This is because for T31, 

data sizes and memory need, especially for larger number of processors, is not very 

demanding. Thus, communication overhead is the dominating factor. For T42, it can be 

easily seen that a similar behavior is encountered, although the effect is seen on a larger 

number of processors due to the bigger data sizes for the T42 dataset. On the other hand, 

the T85 behavior demonstrates the fact that using all the processors per node degrades the 

performance. Due to the large data sizes and the intensive demand for memory, 

communication overhead is negligible.  
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Figure 14: Scalability Comparison of the T31 Dataset on Seaborg with Different Number of Threads per 

Task 
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T42 Seaborg Scalability Comparison
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Figure 15: Scalability Comparison of the T42 Dataset on Seaborg with Different Number of Threads per 

Task 

 

 

 

T85 Seaborg Scalability Comparison
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Figure 16: Scalability Comparison of the T85 Dataset on Seaborg with Different Number of Threads per 

Task 
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3.2.3 Communication 

In the analysis of CAM’s communication, MPI communication to computation 

ratio was measured for both the MPI-Only version and the HYBRID version. In both 

cases, MPI communication was obviously the same as the number of MPI tasks remains 

the same and hence the number of MPI calls remains the same. However, the ratio will 

normally change as the HYBRID version reaches higher processor count, therefore 

having less execution time. In all the tests for the communication, NERSC Seaborg and 

SDSC DataStar were the platforms of testing. In this section, the HYBRID model results 

will be shown and analyzed and in the processor partition section, the MPI only version 

will be analyzed in details.  

The following two tables, Tables 11 and 12,  show the execution time, MPI 

communication time on the master process, MPI communication time on non-master 

processes and the percentage of communication time of non-master processes to 

computation time. For all datasets and on both platforms, the trend is clear and stable. 

Communication time is relatively smaller than computation time, bearing in mind that in 

the HYBRID model there are more processors doing computation than the number of 

processors doing communication. To illustrate, in the case of 32 processors on Seaborg, 

only 2 processors will be responsible for the MPI communication, while the 32 

processors will be doing computation. Thus, when we analyze the MPI only version in 

the processor partitioning section, it will be clear that communication is actually less than 

5% of the total execution time. This, in fact, emphasizes the previous hypothesis that 

CAM is more memory intensive application than a communication intensive application.  
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Table 11: DataStar MPI Communication (seconds) 

DataStar MPI Communication     

 Number of Processors 

 16 32 64 128 256 

T31      

Actual Execution Time 19.40919 11.66729 7.147747 5.849899 5.806424 

MPI Master Process 

Time 

0.466595 0.479956 0.546961 0.586966 1.357719 

MPI Time 3.640476 3.011145 2.843876 2.281166 2.86144 

MPI Percentage 18.75646 25.80843 39.78703 38.99496 49.28059 

Computation 15.76871 8.656149 4.303871 3.568733 2.944984 

T42      

Actual Execution Time 40.62714 23.84297 14.87871 10.57473 9.932914 

MPI Master Process 

Time 

0.980445 0.947974 0.972482 1.019841 0.965429 

MPI Time 4.010378 6.206893 5.92359 3.803363 3.7352 

MPI Percentage 9.871181 26.03238 39.81253 35.96654 37.60427 

Computation 36.61676 17.63608 8.955116 6.771364 6.197714 

T85      

Actual Execution Time 258.0176 140.3475 81.87492 49.08211 36.65649 

MPI Master Process 

Time 

6.51962 5.037458 4.865098 4.33258 3.408755 

MPI Time 21.54767 33.19722 31.66033 19.72617 14.41946 

MPI Percentage 8.35124 23.65359 38.66914 40.19015 39.33671 

Computation 236.4699 107.1503 50.21459 29.35594 22.23703 

 

 

The trend that is encountered in this analysis is that with larger number of 

processors, communication time decreases but not in the same scale as computation time. 

The reason for that, as mentioned previously, is that number of processors doing 

computation is much more than those responsible for the MPI communication. Due to the 

less scalable communication time compared to computation time, the percentage of 

communication tends to be larger for larger number of processors. 
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Table 12: Seaborg MPI Communication (seconds) 

Seaborg MPI Communication     

 Number of Processors 

 32 64 128 256 512 

T31      

Actual Execution Time 44.22248 28.35822 20.64922 22.94409 21.9838 

MPI Master Process 

Time 

1.63369 2.113134 2.104961 2.305571 3.016865 

MPI Time 7.652081 7.527077 6.268641 9.09134 9.004607 

MPI Percentage 17.3036 26.54284 30.35776 39.62389 40.9602 

 36.5704 20.83114 14.38058 13.85275 12.97919 

T42      

Actual Execution Time 84.44865 54.10535 39.63757 29.7675 30.20784 

MPI Master Process 

Time 

3.774989 3.877889 3.670007 3.668254 3.827213 

MPI Time 13.30371 13.51499 13.97302 10.34357 14.55347 

MPI Percentage 15.75361 24.97903 35.25197 34.74786 48.1778 

 71.14494 40.59036 25.66455 19.42393 15.65437 

T85      

Actual Execution Time 482.8127 281.947 169.1986 128.1411 107.829 

MPI Master Process 

Time 

23.53569 20.48308 15.15449 13.92867 12.40494 

MPI Time 57.99843 58.17592 45.96292 43.99574 39.81615 

MPI Percentage 12.01262 20.63363 27.16506 34.33382 36.92528 

 424.8142 223.7711 123.2357 84.14538 68.01281 

 

 

3.3 Kernel Coupling  

In this section, kernel coupling analysis is provided. A detailed analysis for each 

kernel pair is provided which can be extended to chains of three kernels. 

3.3.1 Kernel Coupling Analysis 

All the coupling values that were calculated for different kernel pairs or chains of 

three kernels were all very close to 1. The range of these coupling values was mostly 

between 0.9 and 1.1 with very few exceptions which will be explained and shown in this 

section. This trend of having the coupling values very close to 1 is due to the large data 

sizes of the data structures that each kernel use. Even for the smallest dataset, T31, data 

sizes are still large in comparison to the machines cache sizes. Thus, the data sharing and 

reuse between kernels is very limited. 

 

 



   35 

3.3.1.1 K1-K2 Kernel Pair 

K1 and K2 are the two kernels with the most data reuse as determined from 

Figure 20, Tables 2 and 3, and also as shown in Figures 17, 18 and 19. In all the K1-K2 

graphs for all the datasets, the coupling is constructive in most case since the coupling 

values are between 0.9 and 1.0.  This constructive coupling is due to the design of the 

data structures shared between these two kernels, corresponding to the phys_state array 

as well as the design of K1.  

To further explain the reason why K1 and K2 have the most constructive coupling 

values among all kernels, a detailed explanation and analysis of K1 and its design is 

required. As shown in Figure 20, K1 execution is divided into two major sub-kernels. 

The first sub-kernel which consumes approximately 33% of the execution time of K1 on 

all machines -with the exception of Seaborg due to its 128-way set associative cache- is 
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Figure 17:  Coupling Values Comparison of the K1-K2 Kernel Pair for the T31 Dataset on the 

Four Platforms 

 

 

responsible for copying the dynamics’ arrays into the arrays of the phys_state structure. 

The remainder of K1, approximately 67% of the execution time, is responsible for 

copying data within the phys_state structure itself to fill up the remainder of the structure. 
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Thus, as illustrated in Figure 20, for the last 67% of the execution of K1, phys_state is the 

only data that is being used by K1. Since K2 mainly uses the phys_state data structure, in 

addition to some local workspace variables, the coupling between the two kernels is 

constructive. Furthermore, by using a small number of columns per chunk in the 

phys_state structure, where a chunk is a collection of vertical columns of the grid, there is 

a great benefit by having high cache locality. Section 2.2.2.3 has further explanation on 

the chunk and columns data structures.  

For the T31, T42 and T85 datasets, the coupling values tend to be close to one for 

all platforms, mostly ranging from 0.9 to 1.0. Also, the coupling values tend to be stable 

and equivalent for different number of processors. This is due to the nature of the 

phys_state array where number of columns per chunk is kept small to achieve high cache 

locality.  

There is also another interesting fact that is clear in the graphs, coupling values 

don’t decrease by increasing the number of processors and, also, they don’t increase by 

increasing the size of data by using larger datasets. Going back to Tables 2 and 3, one 

would easily calculate the size of data per processor. For the T31, the smallest of all 

datasets, using 128 processors, there is 212736 Bytes per processor for data shared 

between kernels in addition to data structures that are local to each module or subroutine. 

This exceeds the size of D-Cache on all platforms. Furthermore, T42 data sizes are more 

than 200% the size of T31 data sizes and T85 exceeds 1000% the size of T31 data sizes. 

Thus, even with larger number of processors, the size of data is much bigger than the 

cache sizes. Hence, all the sharing that is encountered between K1 and K2 is mainly due 

to the cache locality of the phys_state and the design of K1 as previously mentioned. 
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T42 K1K2 Coupling Values Comparison
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Figure 18: Coupling Values Comparison of the K1-K2 Kernel Pair for the T42 Dataset on the Four 

Platforms 

 

 

T85 K1K2 Coupling Values Comparison
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Figure 19: Coupling Values Comparison of the K1-K2 Kernel Pair for the T85 Dataset on the Four 

Platforms 
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Figure 20: K1-K2 Kernel Pair Execution Illustration 

 

 

3.3.1.2 K2-K3 Kernel Pair 

K2-K3 kernel pair is the most interesting and most complicated kernel pair to 

analyze. As it is clear from the graphs in Figures 21, 22 and 23, K2-K3 has very high 

coupling values and hence experiencing destructive coupling. Since K2 is common on 

both K1-K2 and K2-K3 kernel pairs, but each kernel pair has different behavior, a 

comparison between K1 and K3 design, runtimes and trends on different machines need 

to be shown. In addition to having high coupling values, K2-K3 coupling values show 

high variation from one machine to another and from one dataset to another.  

As shown in Figure 24, K2 and K3 don’t experience the same trend as K1 and K2. 

K3 doesn’t have two sub-kernels as in K1. K3 is only responsible for copying the 

phys_state data into dynamics arrays. Thus the phys_state array is not the only data 

structure residing in the caches when K2-K3 is executed as there is no overlapping period 

as in Figure 20. 

To further analyze and understand the reasons why K2-K3 behavior is not as K1-

K2, comparison between the runtimes of both and their trends on different machines is 

required. Table 13 shows the trends of the runtime of each of K1 and K3 on the different 

platforms. The main trend of focus is the runtime and which kernel is taking longer on 

which machine. In Table 13, an ↑ indicates longer execution time. To Illustrate, the first 

column of the table indicates that for the T31 dataset on DataStar (both p655, p690), K1 

takes longer time to execute than K3.  

Copying arrays: ps, t3, u3, 

v3, q3, omga, phis, pdeld 
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~33% of K1 Runtime 

Copying data within the 
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T31 K2K3 Coupling Values Comparison
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Figure 21: Coupling Values Comparison of the K2-K3 Kernel Pair for the T31 Dataset on the Four 

Platforms 

 

 
 

Table 13: K1 and K3 Behavior on the Different Platforms 

 T31 T42 T85 

Machines DataStar Seaborg Lemieux D S L D S L 

K1 ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ 

K3 ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓ 

 

 

As it is clear from the table, Seaborg is the only machine with the odd behavior 

than all other platforms especially for the T42 and the T85 datasets. As it was mentioned 

earlier, Seaborg was the only exception in K1 sub-kernel runtime distribution. To 

illustrate, on DataStar and Lemieux, 33% of the execution of K1 was the copying of the 

dynamics arrays into the phys_state structure while 67% is copying data within the 

phys_state structure. With Seaborg the case is different. Approximately 49% of the 

execution time of K1 is in the first sub-kernel while only 51% is spent in the second sub-

kernel. That implies, W.L.O.G that the second sub-kernel is executing faster on Seaborg. 

This is because the second sub-kernel is using only the same data structure which is 

characterized with high locality. Since Seaborg D-Cache is 128-way set associative cache, 

the hit rate for such data structure can be very high. Utilizing the Hardware Performance 
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Monitor utility on IBM machines, this hypothesis was shown correct. Seaborg L1 D-

Cache hit rate was above 99% while DataStar hit rate was little below 84%. Thus on 

Seaborg, this high locality for K1 forces its execution time to be less than that for K3 

where less locality is encountered. On the other hand, DataStar as well as Lemieux, with 

2-way direct mapped D-Cache,  more cache replacements will be experienced where 

phys_state data will keep thrashing in and out of cache, especially with CAM’s large data 

sizes, and hence boosting K1 runtime, especially the second sub-kernel. 

With the previous comparison between K1 and K3 and the comparison between 

the different platforms, the analysis for K2-K3 kernel turns to be straight forward. For the 

T31 case in Figure 21, Seaborg has the highest coupling values. By looking at Figure 25, 

the illustration of the case of Seaborg is easy. Since Seaborg has very high L1 hit rate and 

it tends to be biased towards data that has high locality, K3 execution time when run in 

isolation will tend to be lower than when K2-K3 pair is run. K2-K3 execution time will 

be boosted up since the locality achieved when running K3 in isolation is no longer 

achievable. This is clear in Figure 25. By applying the kernel coupling formula: 

 

C23 = K2K3/K2+K3      (10) 

 

where K2-K3 represents the runtime for running the kernel pair K2-K3, while K2 + K3 

represents the sum of runtime for running K2 in isolation and running K3 in isolation. 

Since K3 execution time will decrease when run in isolation, coupling values will 

be boosted. Also, by increasing the number of processors, the locality of K2-K3 will 

decrease. This was tested using IBM HPM and such results of K2-K3 are shown in Table 

14 where higher average number of loads per TLB miss indicates higher locality. 

Nevertheless, with increasing data sizes, the locality achieved by running K3 in isolation 

on Seaborg will not be as beneficial as before. Figure 25 also shows this situation where 

large data sizes cause more data to be replaced from cache. This makes the K3 runtime to 

increase even when run in isolation. By going back to the equation 10 with higher value 

to K3, the coupling value will start approaching 1 again. Hence the graph in Figure 22 

and Figure 23 show that coupling values on Seaborg are more stable than that for T31. 
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Table 14.A: T31 HPM Data 

T31 2x1  4x1  8x1  16x1  

 Seaborg P655 Seaborg P655 Seaborg P655 Seaborg P655 

  % TLB misses 

per cycle 

0.025 0.004 0.025 0.043 0.027 0.005 0.026 0.006 

  Avg number of 

loads per TLB 

miss 

1152.18

3 

5016.24

1 

1152.32 4012.76

6 

1104.08

5 

3517.70

1 

1131.36

2 

3129.

98 

  Total L2 data 

cache accesses 

1.41 21108.7

6 

1.425 20335.9 1.438 21704.3

6 

1.476 2341

5.48 

% accesses from 

L2 per cycle 

0.252 

 

4.148 

 

0.247 

 

3.849 

 

0.235 

 

3.913 

 

0.215 

 

3.864 

 

 

 

 
 B: T42 HPM Data 

T42         

  % TLB misses 

per cycle 

0.032 0.003 0.032 0.004 0.033 0.472 0.031 0.022 

  Avg number of 

loads per TLB 

miss 

889.459 5488.15

7 

891.848 5030.96

7 

889.99 3600.15 915.772 834.0

35 

  Total L2 data 

cache accesses 

1.472 92996.0

1 

1.493 92027.0

4 

1.502 85872.4

7 

1.561 9017

4.65 

  % accesses 

from L2 per 

cycle 

0.253 4.295 0.252 4.228 0.241 3.835 0.223 3.892 

 

 

 

C: T85 HPM Data 

T85         

 % TLB misses 

per cycle 

0.028 0.004 0.027 0.005 0.025 0.004 0.026 0.059 

 Avg number of 

loads per TLB 

miss 

1033.84

3 

3940.34

9 

1055.27

6 

3210.11 1147.90

9 

4096.67

9 

1124.56

3 

307.3

02 

  Total L2 data 

cache accesses 

1.441 147891.

5 

1.439 147108.

3 

1.447 146992.

4 

1.484 1451

24 

  % accesses 

from L2 per 

cycle 

0.25 4.042 0.245 4.105 0.234 4.107 0.215 3.98 
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T42 K2K3 Coupling Values Comparison
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Figure 22: Coupling Values Comparison of the K2-K3 Kernel Pair for the T42 Dataset on the Four 

Platforms 

 

T85 K2K3 Coupling Values Comparison
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Figure 23: Coupling Values Comparison of the K2-K3 Kernel Pair for the T85 Dataset on the Four 

Platforms 
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Figure 24: K2-K3 Kernel Pair Execution Illustration 

 

 

 
Figure 25: Seaborg Cache Behavior 

 

 

As for DataStar, the same analysis for Seaborg applies. In the case of T31, Figure 

26 shows how the 2-way direct mapped cache will behave when K3 is run in isolation. It 

is different from the case of Seaborg because the direct mapped cache doesn’t make use 

of locality as much as Seaborg. Thus K3 runtime when run in isolation is still relatively 

close to the runtime of K3 when run within the kernel pair. Again applying that to 

equation 10, coupling values will be closer to one. Once again, with larger data sizes as in 
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T42 or T85, the situation where K2-K3 runtime starts to increase at a higher rate than K3 

due to more thrashing of data causes the coupling values from equation 10 to increase. 

Also, by increasing the number of processors, HPM shows that locality decreases, 

causing K3 runtime when run in K2-K3 pair to increase even more with higher number of 

processors relative to K3 in isolation where more cache locality can still be achieved.  

The case of Lemieux is unique. Lemieux follows DataStar Power4 2-way direct 

mapped cache policy; however, Lemieux has larger L1 cache size. This larger cache 

masks most of the effects of the locality and the replacement policies. It is easily noticed 

in all graphs of K1-K2 and K2-K3 that Lemieux coupling values are very stable and 

consistent. In the case of K1-K2, Lemieux has constructive coupling with very consistent 

values on all datasets. In the case of the K2-K3, coupling values are either 1 or little 

above 1. That shows that the larger L1 cache size is the key to better coupling. 

 

 

 
Figure 26: DataStar P655 Cache Behavior 
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3.3.1.3 K3-K4 Kernel Pair 

 

 

T31 K3K4 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemieux
 

Figure 27: Coupling Values Comparison of the K3-K4 Kernel Pair for the T31 Dataset on the Four 

Platforms 

 

 

K3-K4 kernel pair shows a consistent trend on all machines as shown in Figures 

27, 28 and 29. The coupling values range from 0.9 to 1.1. An illustration of the 

interaction between K3 and K4 is in Figure 30. Lemieux is the only machine having 

coupling values below 1 for all datasets on all machines. As for the rest of the machines, 

coupling values are all above 1 but with a very little margin. K3 is the kernel responsible 

for copying the phys_state data into dynamics’ arrays. These arrays account for 

approximately 40% of the data used in K4 as indicated in Table 5 and accounts for 

approximately 40% of the data used in K3 as indicated in Table 4. Although there may 

seem to be some sharing between the two kernels, the large sizes of phys_state data and 

the large sizes of dynamics’ arrays, both accounting for more than 200Kbytes per 

processor for the T31 on 128 Processors,   in K3 makes for a high cache miss rate on 

these data structures when running K3 in isolation or when run in K3-K4 kernel pair. 

Nevertheless, when run in K3-K4 kernel pair, the miss rate increases due to introducing 

the extra data structures in K4 as indicated in Table 5. This increase in cache miss rate 
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accounts for the coupling values being slightly higher than 1. As for Lemieux, the larger 

cache size causes this miss rate to decrease and hence less coupling values.  
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Figure 28: Coupling Values Comparison of the K3-K4 Kernel Pair for the T42 Dataset on the Four 

Platforms 

 

T85 K3K4 Coupling Values Comparison
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Figure 29: Coupling Values Comparison of the K3-K4 Kernel Pair for the T85 Dataset on the Four 

Platforms 
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Figure 30: K3-K4 Kernel Pair Execution Illustration 

 

 

3.3.1.4 K4-K1 Kernel Pair 

K4-K1 kernel pair is similar to K3-K4 kernel pair. K1 uses the arrays produced by 

K4 to copy them into the phys_state data structure. These arrays are ps, t3, u3, v3, q3, 

omga, phis and pdeld accounting for 40% of the data structure used in K1 and 

approximately 60% of the data structures used in K4. However, the use of the phys_state 

data structure accounting for 60% of the data used in K1 limits the sharing of the data 

between both kernels. The graphs for all datasets, Figures 31, 32 and 33, show consistent 

trend for the coupling values being all very close to 1. 

On T31, Lemieux is the only machine having constructive coupling. This is due to 

the larger L1 cache and also having the largest L2 cache. The reader may argue that 

Seaborg has the same L2 cache size, but the fact is, Seaborg L2 cache is an off chip cache 

in addition to the smaller L1 cache. When the data sizes are larger with the T42 and T85, 

DataStar P655 and P690 tend to have better coupling than Lemieux. This is due to the 

presence of the L3 cache in DataStar and its absence in Lemieux. This only appears for 

larger datasets as data is larger and hence data reuse makes use of lower memory levels. 

To illustrate, with larger data sizes, data tend to be replaced constantly from L1 cache to 

L2. Furthermore, by having larger data, more blocks are replaced out of L2. This 

replacement is more costly on Seaborg and Lemieux than it is the case in DataStar. 

 

 

 

Performing dynamical 

computation on arrays ps, 

t2, u2, v2, q2, omga, phis, 

pdeld in addition to ps, t3, 

u3, v3, q3 etc… 

Copying phys_state array 

data into arrays ps, t2, u2, 
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T31 K4K1 Coupling Values Comparison
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Figure 31: Coupling Values Comparison of the K4-K1 Kernel Pair for the T31 Dataset on the Four 

Platforms 
 

 

T42 K4K1 Coupling Values Comparison
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Figure 32: Coupling Values Comparison of the K4-K1 Kernel Pair for the T42 Dataset on the Four 

Platforms 
 

 



   49 

T85 K4K1 Coupling Values Comparison
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Figure 33: Coupling Values Comparison of the K4-K1 Kernel Pair for the T85 Dataset on the Four 

Platforms 
 

 

3.3.1.5 Summary of Kernel Coupling Analysis* 

 

 

• K1-K2 kernel pair is the only kernel pair with constructive coupling. This was due 

to the second sub-kernel of K1 where phys_state data structure being the only 

data structure used. This results in high data reuse as the phys_state structure is 

the only structure being used by K2. This trend was amplified on Seaborg as it has 

the 128-way set associative D-Cache that favors the data with high locality and 

high reuse. 

 

• K2-K3 was the most interesting kernel pair due to the high variation in coupling 

values from one dataset to another and from one machine to another. Since K2 

has the phys_state structure which is the biggest data structure in CAM as 

indicated by Tables 2 and 3, K3 data was being constantly replaced in the caches 

by K2 data resulting in high coupling values for K2-K3. This was boosted 

___________________________ 

* The same analysis done on the kernel pair coupling values can be extended to the three kernels chain 

coupling values. 
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because running K3 in isolation was causing K3 data to be residing in caches 

longer achieving better execution time.  

 

• Lemieux with the largest L1 Cache, and the largest L2 cache (on chip), has a very 

distinct and stable behavior on all kernel pairs and chains of three kernels. 

Lemieux is the only platform that didn’t experience any DESTRUCTIVE 

coupling on any dataset and on any number of processors. All the coupling values 

where either below 1 or approaching 1, which means that all the coupling was 

either CONSTRUCTIVE or no coupling was taking effect. Thus, the larger cache 

size was helping the data sharing and data reuse between kernels. 

 

• Since, the inner loop that is iterating over (columns in K2 or longitude in K4) runs 

sequentially over contiguous memory locations; cache placement policy had some 

effect on the cache misses. To illustrate, DataStar uses Power4 with 64KB D-

Cache 2-way set associate, while Seaborg uses Power3 with 64KB D-Cache 128 

way set associative. This different placement policy caused Seaborg to have a 

better hit rate in some cases over DataStar specially when K2 was involved and 

the phys_state structure is being used. This is because phys_state having small 

number of columns per chunk achieves high cache locality. 

 

 

 

3.3.2 Performance Prediction 

In this work, kernel coupling was used to analyze the interaction between kernels 

and identify the kernels with the most data sharing and reuse. In this section, K1 refers to 

D_P_COUPLING kernel, K2 refers to PHYS_PKG kernel, K3 refers to 

P_D_COUPLING kernel and finally K4 refers to DYN_PKG kernel. Since there were 

four kernels in CAM, kernel pairs and chains of three kernels had to be tested. In all the 

runs, kernel pairs or chains of three kernels were executed in a loop of 500 iterations to 

make sure that the data residing in the caches is the data under test.  

Kernel coupling produced a very high error prediction rate for the three datasets 

on all platforms. The exact prediction values and percentage errors are shown in Tables 
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15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26. It is clear from the results in the tables 

that the kernel coupling prediction is very close to summation prediction. This is due to 

the fact that almost all coupling values are very close to 1 which implies very low 

coupling between kernels. Furthermore, the results shown in the table indicates that 

percentage error ranges between 20% and 50% for T42 on Lemieux. This is due to two 

reasons. The first reason that causes a huge percentage error is the nature of CAM. In 

CAM, the loop is a time loop that keeps iterating by advancing time. This time 

advancement can’t be captured when running the kernels in isolation otherwise, the 

model blows up. The second reason is also related to how PHYS_PKG works. The 

PHYS_PKG does initialization of many variables and data structure during the first time 

step. When the kernels are run in isolation, the isolation loop is 500 iterations. Thus the 

average time per kernel is less than the average run per kernel when run in normal 

execution as in normal execution the maximum number of time steps (iterations) is 148. 

 

Tables 15, 16, 17 show kernel coupling results on Seaborg. 

 

 

Table 15: T31 Coupling Data on Seaborg 

 Number of Processors 32 64 128 256 512 

Actual Execution Time 42.228717 27.802381 20.226969 19.66108 19.37684 

Summation 25.0910378 17.3899696 12.7643395 14.236365 12.31124 

Prediction Error 40.58% 37.45% 36.89% 27.59% 36.46% 

Prediction using 2 Kernels 25.3571147 17.5858846 13.1115121 14.563855 12.74981 

Prediction Error 39.95% 36.75% 35.18% 25.93% 34.20% 

Prediction using 3 Kernels 25.4843792 17.7021249 12.994978 14.611104 13.01184 

Prediction Error 39.65% 36.33% 35.75% 25.69% 32.85% 

 

 

 

Table 16: T42 Coupling Data on Seaborg 
  Number of Processors 32 64 128 256 512 

Actual Execution Time 82.82715 52.357987 37.439146 28.876249 25.77038 

Summation 62.2340649 37.2806048 25.8341991 21.754938 24.66825 

Prediction Error 24.86% 28.80% 31.00% 24.66% 4.28% 

Prediction using 2 Kernels 62.8418427 37.7951448 26.1337012 22.032979 24.81883 

Prediction Error 24.13% 27.81% 30.20% 23.70% 3.69% 

Prediction using 3 Kernels 62.346939 38.6561293 26.2377473 23.299264 24.72023 

Prediction Error 24.73% 26.17% 29.92% 19.31% 4.08% 
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Table 17: T85 Coupling Data on Seaborg 
  Number of Processors 32 64 128 256 512 

Actual Execution Time 479.904102 276.373765 173.300197 126.59174 101.2833 

Summation 393.627459 221.763732 140.9289 99.533172 81.20083 

Prediction Error 17.98% 19.76% 18.68% 21.37% 19.83% 

Prediction using 2 Kernels 391.163884 224.244118 130.929409 99.946938 82.30398 

Prediction Error 18.49% 18.86% 24.45% 21.05% 18.74% 

Prediction using 3 Kernels 394.981511 218.461269 134.175221 99.678751 84.83371 

Prediction Error 17.70% 20.95% 22.58% 21.26% 16.24% 

 

Tables 18, 19 and 20 show kernel coupling results on DataStar P655. 

 
Table 18: T31 Coupling Data on P655 

  Number of Processors 16 32 64 128 256 

Actual Execution Time 19.40919 11.667294 7.147747 5.849899 5.806424 

Summation 9.83713156 5.74112504 3.64931876 3.0537826 3.008282 

Prediction Error 49.32% 50.79% 48.94% 47.80% 48.19% 

Prediction using 2 Kernels 9.92821329 5.82909874 3.70597131 3.1117138 3.075372 

Prediction Error 48.85% 50.04% 48.15% 46.81% 47.04% 

Prediction using 3 Kernels 9.96151625 5.82923 3.71471964 3.1162929 3.101381 

Prediction Error 48.68% 50.04% 48.03% 46.73% 46.59% 

 

 
Table 19: T42 Coupling Data on P655 

  Number of Processors 16 32 64 128 256 

Actual Execution Time 40.627136 23.842969 14.878706 10.574727 9.932914 

Summation 24.3323089 13.6594541 7.95374366 6.1103434 7.146598 

Prediction Error 40.11% 42.71% 46.54% 42.22% 28.05% 

Prediction using 2 Kernels 24.4439793 3474.69223 7.92458505 6.2154685 7.058937 

Prediction Error 39.83% 14473.24% 46.74% 41.22% 28.93% 

Prediction using 3 Kernels 24.6280343 13.543692 7.86980782 6.4770121 7.007105 

Prediction Error 39.38% 43.20% 47.11% 38.75% 29.46% 

 

 

 

Table 20: T85 Coupling Data on P655 
  Number of Processors 16 32 64 128 256 

Actual Execution Time 258.017587 140.347492 81.874917 49.082112 36.65649 

Summation 214.864651 111.749421 62.1261642 41.307122 28.4033 

Prediction Error 16.72% 20.38% 24.12% 15.84% 22.51% 

Prediction using 2 Kernels 224.42561 115.218067 65.0321343 43.189453 30.49381 

Prediction Error 13.02% 17.91% 20.57% 12.01% 16.81% 

Prediction using 3 Kernels 223.935036 113.757509 63.7798883 41.069842 28.33422 

Prediction Error 13.21% 18.95% 22.10% 16.32% 22.70% 

 

Tables 21, 22 and 23 show kernel coupling results on DataStar P690. 
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Table 21: T31 Coupling Data on P690 
  Number of Processors 16 32 64 

Actual Execution Time 16.632432 11.832137 10.387081 

Summation 8.76674576 5.53778884 5.46890884 

Prediction Error 47.29% 53.20% 47.35% 

Prediction using 2 Kernels 8.84197341 5.59320359 5.54245519 

Prediction Error 46.84% 52.73% 46.64% 

Prediction using 3 Kernels 8.87300783 5.60894744 5.56980715 

Prediction Error 46.65% 52.60% 46.38% 

 
 

Table 22: T42 Coupling Data on P690 
  Number of Processors 16 32 64 

Actual Execution Time 34.821296 23.576904 20.179434 

Summation 21.0230854 15.0979825 13.3158524 

Prediction Error 39.63% 35.96% 34.01% 

Prediction using 2 Kernels 21.1682745 15.1173988 13.1740706 

Prediction Error 39.21% 35.88% 34.72% 

Prediction using 3 Kernels 21.4962481 15.2985529 13.3898455 

Prediction Error 38.27% 35.11% 33.65% 

 

 

Table 23: T85 Coupling Data on P690 
  Number of Processors 16 32 64 

Actual Execution Time 217.645541 143.262683 118.01757 

Summation 176.082232 108.160116 85.116305 

Prediction Error 19.10% 24.50% 27.88% 

Prediction using 2 Kernels 177.698779 109.606703 88.2504969 

Prediction Error 18.35% 23.49% 25.22% 

Prediction using 3 Kernels 179.230168 110.731592 87.113182 

Prediction Error 17.65% 22.71% 26.19% 

 

Tables 24, 25 and 26 show kernel coupling results on Lemieux. 

 
 

Table 24: T31 Coupling Data on Lemiex 
  Number of Processors 8 16 32 64 128 

Actual Execution Time 63.664651 37.911851 30.926733 22.904117 25.36138 

Summation 34.7648687 18.2797708 15.6555909 9.9703296 14.00117 

Prediction Error 45.39% 51.78% 49.38% 56.47% 44.79% 

Prediction using 2 Kernels 34.3665972 18.0885386 15.4544454 9.7603949 13.85049 

Prediction Error 46.02% 52.29% 50.03% 57.39% 45.39% 

Prediction using 3 Kernels 34.0623188 18.067575 15.4995863 9.8691539 13.96964 

Prediction Error 46.50% 52.34% 49.88% 56.91% 44.92% 
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Table 25: T42 Coupling Data on Lemieux 
  Number of Processors 8 16 32 64 128 

Actual Execution Time 131.395851 78.541591 53.298564 44.841368 35.54182 

Summation 82.5764962 45.6758083 27.0389774 27.800711 17.36372 

Prediction Error 37.15% 41.85% 49.27% 38.00% 51.15% 

Prediction using 2 Kernels 81.1276917 45.375298 26.9574827 22.601942 17.26327 

Prediction Error 38.26% 42.23% 49.42% 49.60% 51.43% 

Prediction using 3 Kernels 80.9452431 45.0481333 27.1012465 22.971715 17.35848 

Prediction Error 38.40% 42.64% 49.15% 48.77% 51.16% 

 
 

 

Table 26: T85 Coupling Data on Lemieux 
  Number of Processors 8 16 32 64 128 

Actual Execution Time 864.965873 483.699936 316.551665 186.22169 141.4743 

Summation 721.245311 379.773383 231.479893 111.77632 76.16109 

Prediction Error 16.62% 21.49% 26.87% 39.98% 46.17% 

Prediction using 2 Kernels 711.0663 377.685943 229.726883 110.02786 73.36528 

Prediction Error 17.79% 21.92% 27.43% 40.92% 48.14% 

Prediction using 3 Kernels 708.205122 378.000411 228.476971 109.80479 75.08492 

Prediction Error 18.12% 21.85% 27.82% 41.04% 46.93% 
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4. RELATED WORK 
 

 

Worley and Drake in [6] developed a new implementation for the PHYS_PKG 

and demonstrated its effect on performance. Their work focused on the modifications 

done to the PHYS_PKG and how the new CAM design was aiming at decoupling the 

physics from the dynamics to have CAM compatible with different dynamics. The 

decision to decouple the physics and dynamics data structures incurred copy overhead 

and required additional memory, but was justified by the ability to support multiple 

dynamical cores [6]. Also, they examined how load balancing and the use of OpenMP 

threads can give similar of not better results than cache blocking.  

Mirin and Sawyer in [3] introduced a scalable message passing implementation to 

the finite volume dynamical core of CAM. Due to the data dependencies resulting from 

the polar singularity of the latitude-longitude coordinate system, Mirin and Sawyer 

employed two separate domain decompositions within the dynamical core – one in 

latitude/level space, and the other in longitude/latitude space. This requires that the data 

be periodically redistributed between these two decompositions. They used MPI for 

message passing and OpenMP for multi-threading. They had some executions that scaled 

to 3000 processors for certain datasets. They also demonstrated the feasibility of nested 

OpenMP constructs on the IBM, although the net benefit for this particular application is 

marginal.  
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5. SUMMARY AND FUTURE WORK 
 

 

 

5.1 Summary 

This thesis focused on analyzing the Parallel Community Atmosphere Model 

application. In this analysis several schemes and tools were utilized. We started by 

analyzing the general behavior of CAM by running it on different machines with 

different configurations. Through these runs, several characteristics of CAM were 

identified. Utilizing the Prophesy infrastructure, identifying the runtimes of separate 

kernels of CAM and their respective scalability was simple. Through this general analysis 

of CAM behavior the following characteristics and trends were identified: 

 

• There are four major kernels in CAM:  

1 K1: Dynamics to Physics Coupler that is responsible for filling up the data 

structures used by the physics parameterization package which is mainly the 

phys_state structure. 

2 K2: Physics Parameterization Package is the kernel responsible for all the 

physical parameterizations and computations. It is the most dominant kernel 

in runtime where it dominates over 50% of the overall execution time. 

3 K3: Physics to Dynamics Coupler is the kernel responsible for copying the 

phys_state structure into the arrays used by the Dynamics package. 

4 K4: The Dynamical Core where all the dynamical computation is done. This 

is the second dominant kernel in execution time where it dominates 

approximately 30% of the total execution time of CAM. 

 

• In CAM 3.0, decoupling of the Physical Parameterization from the Dynamical 

Core was the major advancement. This decoupling of both kernels accomplished 

two main targets. The first target is allowing CAM to be compatible with more 

than one Dynamical core. Thus, in CAM 3.0 there are three supported dynamical 

cores, Eulerian Dynamics, Semi-Lagrangian Dynamics and Finite Volume 

Dynamics. The second target that was accomplished by this decoupling was 
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allowing researchers to optimize each package separately, the Physics and the 

Dynamics. This was not achievable before decoupling of data as researchers had 

to design data structures to be compatible with both and hence their optimization 

was limited.  

 

• The decoupling of Physics data and Dynamics data had some negative impact on 

the application behavior. The introduction of the dp_Coupler, Dynamics to 

Physics Coupler, module boosted CAM’s reliance on memory. In both cases, 

dynamics to physics coupling or physics to dynamics coupling, intensive memory 

usage is required due to the copying of the data structures from one form to 

another. As indicated by Tables 2 through 5, the data structures per kernel per 

processor can be over 200Kbytes for 128 processors. This exceeds the sizes of 

any D-Cache of any of the supercomputers concerned in this work. 

 

• CAM can support both OpenMP (shared memory) and MPI (message passing) 

communication. To reach the maximum number of processors possible, CAM is 

configured to run with certain number of tasks, depending on the dataset, where 

tasks communicate using MPI. Within each of these tasks OpenMP threads can be 

utilized to have each thread running on a separate processor reaching the 

maximum number of processors. The number of tasks is limited by the dataset 

size. This, in fact, is due to the nature of the data that CAM uses. In atmosphere, 

computation is independent between grid latitudes. Thus, latitudes are the 

parallelizable dimension. In this sense, the number of latitudes per dataset is the 

determining factor of the maximum number of tasks. To illustrate, in T31 the 

number of latitudes are 16, thus a maximum of 16 tasks is the optimal value. For 

32 tasks the model execution starts degrading and for 64 tasks the model blows up.  

 

Also, processor partitioning scheme was used in analyzing the behavior of the 

MPI only version of CAM. The aim of processor partitioning analysis is to identify the 

application factors that impact the selection of the best number of processors per node to 

use for execution of MPI applications. To analyze the performance of CAM, it was 



   58 

executed on DataStar P655, P690, Lemieux and NERSC Seaborg. The total number of 

processors was kept constant while changing the number of processors per node to see 

the effect of such configuration. The total runtime, communication time and initialization 

were collected in order to see the effect on both communication and computation. 

Initialization was an important factor due to its heavy reliance on I/O. Through this 

analysis the following was identified about CAM’s behavior: 

 

• CAM is very interesting in that the major performance difference occurs with 

between the scheme utilizing all the processors per node and half of the maximum 

number of processors per node, with half of the maximum number of processors 

per node being the better scheme.  Further, there is very little difference in the 

execution time between using one to half of the maximum number of processors 

per node. When all the processors per node are used, congestion can occur due to 

data copies of arrays. When half of the maximum number of processors or fewer 

per node are used the intra-node bandwidth is sufficient 

 

The last scheme used in analyzing the performance of CAM was the kernel 

coupling scheme. In this work, kernel coupling was used to analyze the interaction 

between kernels and identify the kernels with the most data sharing and reuse. Since there 

were four kernels in CAM, kernel pairs and chains of three kernels had to be tested. In all 

the runs, kernel pairs or chains of three kernels were executed in a loop of 500 iterations 

to make sure that the data residing in the caches is the data under test. Through kernel 

coupling the following was identified about CAM’s behavior: 

 

• K1-K2 kernel pair is the only kernel pair with constructive coupling. This was due 

to the second sub-kernel of K1 where phys_state data structure being the only 

data structure used. This results in high data reuse as the phys_state structure is 

the only structure being used by K2. This trend was amplified on Seaborg as it has 

the 128-way set associative D-Cache that favors the data with high locality and 

high reuse. 
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• K2-K3 was the most interesting kernel pair due to the high variation in coupling 

values from one dataset to another and from one machine to another. Since K2 

has the phys_state structure which is the biggest data structure in CAM as 

indicated by Tables 2 and 3, K3 data was being constantly replaced in the caches 

by K2 data resulting in high coupling values for K2-K3. This was boosted 

because running K3 in isolation was causing K3 data to be residing in caches 

longer achieving better execution time.  

 

• Lemieux with the largest L1 Cache, and the largest L2 cache (on chip), has a very 

distinct and stable behavior on all kernel pairs and chains of three kernels. 

Lemieux is the only platform that didn’t experience any DESTRUCTIVE 

coupling on any dataset and on any number of processors. All the coupling values 

where either below 1 or approaching 1, which means that all the coupling was 

either CONSTRUCTIVE or no coupling was taking effect. Thus, the larger cache 

size was helping the data sharing and data reuse between kernels. 

 

• Since, the inner loop that is iterating over (columns in K2 or longitude in K4) runs 

sequentially over contiguous memory locations; cache placement policy had some 

effect on the cache misses. To illustrate, DataStar uses Power4 with 64KB D-

Cache 2-way set associate, while Seaborg uses Power3 with 64KB D-Cache 128 

way set associative. This different placement policy caused Seaborg to have a 

better hit rate in some cases over DataStar specially when K2 was involved and 

the phys_state structure is being used. This is because phys_state having small 

number of columns per chunk achieves high cache locality. 
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5.2 Future Work 

In addition to the previous analysis of CAM, there are some new areas to be explored. 

 

• How does the OpenMP only version behave? The only constraint on that version 

is that it cannot go beyond the node boundary and hence the number of processors 

will be limited to the maximum number of processors per node. 

 

• CAM can support two other dynamical cores that were not tested in this work. 

Each of these cores has different data structures and different design. Kernel 

coupling can be utilized to measure the degree of interaction between the new 

cores and quantify this interaction. Through comparing the results of coupling 

values obtained from different kernels, a better design for the dynamical cores can 

be achieved. 

 

• Enhancing the coupling formula to account for applications where each time step 

has different runtime than the next. In CAM, the early time steps in the model are 

used to setup the model and initialize all the data and structures. Thus earlier time 

steps takes much longer than the average time step. The current formula didn’t 

give an accurate prediction of CAM runtime due to this varying time step. 

 

• Looking into extending the coupling method to utilize the coupling                 

values from multiple chains into one equation to predict performance. 
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