

PERFORMANCE ANALYSIS OF THE PARALLEL COMMUNITY

 ATMOSPHERE MODEL (CAM) APPLICATION

A Thesis

by

SAMEH SHERIF SHAWKY SHARKAWI

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2006

Major Subject: Computer Science

PERFORMANCE ANALYSIS OF THE PARALLEL COMMUNITY

 ATMOSPHERE MODEL (CAM) APPLICATION

A Thesis

by

SAMEH SHERIF SHAWKY SHARKAWI

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Valerie Elaine Taylor

Committee Members, Nancy Amato

 Ping Chang

Head of Department, Valerie Elaine Taylor

August 2006

Major Subject: Computer Science

 iii

ABSTRACT

Performance Analysis of the Parallel

Community Atmosphere Model (CAM) Application. (August 2006)

Sameh Sherif Shawky Sharkawi, B.S., The American University in Cairo

Chair of Advisory Committee: Dr. Valerie Elaine Taylor

Efficient execution of parallel applications requires insight into how the parallel

system features impact the performance of the application. Significant experimental

analysis and the development of performance models enhance the understanding of such

an impact. Deep understanding of an application’s major kernels and their design leads to

a better understanding of the application’s performance, and hence, leads to development

of better performance models. The Community Atmosphere Model (CAM) is the latest in

a series of global atmospheric models developed at the National Center for Atmospheric

Research (NCAR) as a community tool for NCAR and the university research community.

This work focuses on analyzing CAM and understanding the impact of different

architectures on this application. In the analysis of CAM, kernel coupling, which

quantifies the interaction between adjacent and chains of kernels in an application, is used.

All experiments are conducted on four parallel platforms: NERSC (National Energy

Research Scientific Computing Center) Seaborg, SDSC (San Diego Supercomputer

Center) DataStar P655, DataStar P690 and PSC (Pittsburgh Supercomputing Center)

Lemieux. Experimental results indicate that kernel coupling gave an insight into many of

the application characteristics. One important characteristic of CAM is that its

performance is heavily dependent on a parallel platform memory hierarchy; different

cache sizes and different cache policies had the major effect on CAM’s performance.

Also, coupling values showed that although CAM’s kernels share many data structures,

most of the coupling values are still destructive (i.e., interfering with each other so as to

adversely affect performance). The kernel coupling results helps developers in pointing

out the bottlenecks in memory usage in CAM. The results obtained from processor

partitioning are significant in helping CAM users in choosing the right platform to run

CAM.

 iv

DEDICATION

To my mother who gave me all the support in the world

 v

ACKNOWLEDGMENTS

I would like to express my gratitude to the people who have supported me in

completing this thesis. I am especially thankful to my advisor, Dr. Valerie E. Taylor, who

has provided encouragement, insight, and guidance over the course of the work presented

in this thesis. I would also like to thank Dr. Xingfu Wu for always providing help,

support, and immediate feedback. Also, I would like to give thanks to my colleagues in

the research group for helping me whenever I needed them and giving positive feedback

on my work. Finally, I would like to thank Dr. Patrick Worley for providing the

application and answering questions about it, the PERC group and Dr. David Bailey for

providing us with accounts on NERSC Seaborg, San Diego Supercomputing Center for

providing us with accounts on DataStar P655 and P690 and for their technical support

when needed, and finally Pittsburgh Supercomputing Center for providing us with

accounts on Lemieux.

 vi

TABLE OF CONTENTS

 Page

ABSTRACT……………………………………………………………………………...iii

DEDICATION……………………………………………………………………………iv

ACKNOWLEDGMENTS………………………………………………………………...v

TABLE OF CONTENTS…………………………………………………………………vi

LIST OF FIGURES…………………………………………………………………......viii

LIST OF TABLES………………………………………………………………………...x

1. INTRODUCTION………………………………………………………………...1

2. BACKGROUND………………………………………………………………….4

 2.1 Testbeds…………………………………………………………………...4

2.2 CAM…………………………………………………………....................6

2.2.1 Application Description…………………………………………...6

2.2.2 Control Flow…………………………………………………........9

2.2.2.1 D_P_COUPLING……………………………………11

2.2.2.2 P_D_COUPLING……………………………………12

2.2.2.3 PHYS_PKG………………………………………….13

2.2.2.4 DYN_PKG…………………………………………...14

 2.3 Kernel Coupling………………………………………………………….15

3. EXPERIMENTAL RESULTS …………………………………..........................17

3.1 Processor Partitioning……………………………………………………17

 3.2 Processor Scaling………………………………………………………...22

3.2.1 Execution Runtime Comparison…………………………………22

3.2.2 Scalability……………………………………………………......24

3.2.3 Communication………………………………………………......32

 3.3 Kernel Coupling………………………………………………………….34

3.3.1 Kernel Coupling Analysis………………………………………….34

3.3.1.1 K1-K2 Kernel Pair…………………………………...35

3.3.1.2 K2-K3 Kernel Pair…………………………………...38

3.3.1.3 K3-K4 Kernel Pair…………………………………...45

3.3.1.4 K4-K1 Kernel Pair…………………………………...47

3.3.1.5 Summary of Kernel Coupling Analysis……………...49

3.3.2 Performance Prediction…………………………………………….50

4. RELATED WORK………………………………………………………………55

5. SUMMARY AND FUTURE WORK…………………………………………...56

 vii

 Page

 5.1 Summary…………………………………………………………………56

 5.2 Future Work……………………………………………………………...60

REFERENCES…………………………………………………………………………..61

VITA……………………………………………………………………………………..62

 viii

LIST OF FIGURES

FIGURE Page

1 CAM Flow of Execution .……………………………………………………......10

2 CAM Flow Inside Stepon……………………………………………………......10

3 Runtime Comparison of the T31 Dataset on the Four Platforms………………...23

4 Runtime Comparison of the T42 Dataset on the Four Platforms………………...23

5 Runtime Comparison of the T85 Dataset on the Four Platforms………………...24

6 Scalability Comparison of the 3 Datasets on DataStar P655………………….....25

7 Relative Speedup of the 3 Datasets on DataStar P655…………………………..26

8 Scalability Comparison of the 3 Datasets on Seaborg…………………………...26

9 Relative Speedup Comparison of the 3 Datasets on Seaborg……………………27

10 Scalability Comparison of the 3 Datasets on DataStar P690………………….....28

11 Relative Speedup Comparison of the 3 Datasets on DataStar P690……………..28

12 Scalability Comparison of the 3 Datasets on Lemieux…………………………..29

13 Relative Speedup Comparison of the 3 Datasets on Lemieux…………………...29

14 Scalability Comparison of the T31 Dataset on Seaborg with

Different Number of Threads per Task…………………………………………..30

15 Scalability Comparison of the T42 Dataset on Seaborg with

Different Number of Threads per Task…………………………………………..31

16 Scalability Comparison of the T85 Dataset on Seaborg with

Different Number of Threads per Task…………………………………………..31

17 Coupling Values Comparison of the K1-K2 Kernel Pair for

the T31 Dataset on the Four Platforms…………………………………………..35

18 Coupling Values Comparison of the K1-K2 Kernel Pair for

the T42 Dataset on the four Platforms…………………………………………...37

19 Coupling Values Comparison of the K1-K2 Kernel Pair for

the T85 Dataset on the Four Platforms…………………………………………..37

20 K1-K2 Kernel Pair Execution Illustration……………………………………….38

21 Coupling Values Comparison of the K2-K3 Kernel Pair for

the T31 Dataset on the Four Platforms…………………………………………..39

 ix

FIGURE Page

22 Coupling Values Comparison of the K2-K3 Kernel Pair for

the T42 Dataset on the Four Platforms…………………………………………..42

23 Coupling Values Comparison of the K2-K3 Kernel Pair for

the T85 Dataset on the Four Platforms…………………………………………..42

24 K2-K3 Kernel Pair Execution Illustration…………………………………….....43

25 Seaborg Cache Behavior…………………………………………………………43

26 DataStar P655 Cache Behavior………………………………………………......44

27 Coupling Values Comparison of the K3-K4 Kernel Pair for

the T31 Dataset on the Four Platforms…………………………………………..45

28 Coupling Values Comparison of the K3-K4 Kernel Pair for

the T42 Dataset on the Four Platforms…………………………………………..46

29 Coupling Values Comparison of the K3-K4 Kernel Pair for

the T85 Dataset on the Four Platforms…………………………………………..46

30 K3-K4 Kernel Pair Execution Illustration……………………………………….47

31 Coupling Values Comparison of the K4-K1 Kernel Pair for

the T31 Dataset on the Four Platforms…………………………………………..48

32 Coupling Values Comparison of the K4-K1 Kernel Pair for

the T42 Dataset on the Four Platforms…………………………………………..48

33 Coupling Values Comparison of the K4-K1 Kernel Pair for

the T85 Dataset on the Four Platforms…………...……………………………..49

 x

LIST OF TABLES

TABLE Page

1 Testbeds Comparison ……………………………………………………………..5

2 T31 D_P_COUPLING Data Structure Sizes in Bytes…………………………...11

3 T31 PHYS_PKG Data Structure Sizes in Bytes………………………………....11

4 T31 DYN_PKG Data Structure Sizes in Bytes……………………………..........12

5 T31 P_D_COUPLING Data Structure Sizes in Bytes…………………………...13

6 Bi-directional Latency and Bandwidth Using Sendrecv…..…………………….18

7 Processor Partitioning Data on Seaborg.………………….……………………..18

8 Processor Partitioning Data on P655…..………………….……………………..20

9 Processor Partitioning Data on P690…..………………….……………………..21

10 Processor Partitioning Data on Lemieux………………….……………………..21

11 DataStar MPI Communication (seconds)………………………………………..33

12 Seaborg MPI Communication (seconds)………………………………………...34

13 K1 and K3 Behavior on the Different Platforms…………………………….......39

14 A. T31 HPM Data, B. T42 HPM Data, C. T85 HPM Data……...........................41

15 T31 Coupling Data on Seaborg………………………………………………….51

16 T42 Coupling Data on Seaborg………………………………………………….51

17 T85 Coupling Data on Seaborg………………………………………………….52

18 T31 Coupling Data on P655……………………………………………………..52

19 T42 Coupling Data on P655……………………………………………………..52

20 T85 Coupling Data on P655……………………………………………………..52

21 T31 Coupling Data on P690……………………………………………………..53

22 T42 Coupling Data on P690……………………………………………………..53

23 T85 Coupling Data on P690……………………………………………………..53

24 T31 Coupling Data on Lemieux……………………………………………........53

25 T42 Coupling Data on Lemieux……………………………………………........54

26 T85 Coupling Data on Lemieux……………………………………………........54

 1

1. INTRODUCTION

Computational models enable us to continually refine our understanding of earth

systems and predict weather and climate. During the past couple of years, severe weather

conditions and their disastrous consequences show the extreme need for such models in

predicting atmospheric and climate conditions. The Community Atmosphere Model

(CAM) is the latest in a series of global atmosphere models developed at the National

Center for Atmospheric Research (NCAR) [1]. It was originally developed to simulate

general circulation of the atmosphere, and was later modified to work with other

components of the climate system model to simulate climate. It was developed in Fortran

90 and has support for shared memory (via OpenMP) and message passing (via MPI).

CAM is composed of several hundred files encompassing physics, dynamics and ocean

sciences. When running CAM, researchers usually simulate 30 to 40 simulation years on

average. For the smallest resolution dataset, to simulate one day requires approximately

42 seconds on 32 Power3 processors; to simulate 30 years requires 120 CPU hours per

processor for the smallest dataset. For such large-scale applications, how to understand

their performance and point out bottlenecks becomes a major challenge because of the

variation of schemes used in communication and computation. Also, the variations of

operating systems, machine architectures, compilers and runtime libraries complicate the

understanding of such applications’ behavior.

This thesis focuses on analyzing the Community Atmosphere Model (CAM) and

understanding the performance impact on different architectures. This work investigates

the following four aspects of CAM’s performance:

• application input: this work uses three different datasets and investigates the

effect of dataset (grid) size on the application performance.

• system configuration: this work examines how the number of processors per node

impacts the application performance.

• scalability: this work examines the application performance for a fixed problem

size with processor scaling.

This thesis follows the style of ACM Sigmetrics.

 2

• kernel coupling: this work uses the kernel coupling metric to examine the impact

of system parameters on application performance

CAM runs on large scale supercomputers; thus, this analysis will give the

researchers a guide on the best configuration for CAM on such systems and paves the

way for a yet better design. CAM was executed on four supercomputers: SDSC DataStar

P655, SDSC DataStar P690, NERSC Seaborg and PSC Lemieux; a detailed description

and comparison among these machines are provided below. Each of these

supercomputers has different number of processors per node, different memory

hierarchies and different network interconnections; thus, executing CAM with different

processor partitioning shows how CAM’s behavior is affected with such partitioning and

how the difference in memory hierarchy and network interconnections impacts the trend

of execution.

Kernel coupling quantifies the interaction between adjacent and chains of kernels

in an application [2]. There are four major kernels in CAM: (1) PHYS_PKG that

approximates subgrid phenomena such as precipitation processes, clouds, long and short

wave radiation, and turbulent mixing, (2) DYN_PKG that advances the evolution

equations for the atmospheric flow, (3) P_D_COUPLING which is responsible for

converting physics data to dynamics data, and (4) D_P_COUPLING which is responsible

for converting data from dynamics to physics. Among these four kernels two dominate

the execution, PHYS_PKG and DYN_PKG. In this work, coupling between the four

kernels is closely examined and analyzed. The runtimes of each kernel when executed in

isolation and runtimes when executed in pairs and chains of three kernels were examined.

In addition, the scalability of the overall application in comparison to the scalability of

each kernel in isolation is studied. These tests where conducted on the four

aforementioned supercomputers, NERSC Seaborg, SDSC DataStar P655, P690 and PSC

Lemieux.

CAM supports three dynamical cores: Spectral Eulerian Dynamics, Semi-

Lagrangian Dynamics, and Finite Volume Dynamics. This work focuses on the Eulerian

Dynamical core. The Spectral Eulerian Dynamics is the default dynamical core for CAM

and has been used the longest among other dynamical cores by the scientific research

 3

community. There are three standard configurations that are available on CAM website

for the Eulerian Dynamical core with spectral resolutions T31, T42 and T85.

1. T31: 96 Longitude x 48 Latitude. This takes 48 timesteps to simulate 1 day.

2. T42: 128 Longitude x 64 Latitude. This takes 72 timesteps to simulate 1 day.

3. T85: 256 Longitude x 128 Latitude. This takes 145 timesteps to simulate 1 day.

Although the three datasets have a third dimension which is the level, but this can

be chosen to be either 26 or 30 during the configuration. Through out all the tests

concerned in this work, the level was set to be 26. In this way, it is guaranteed in each run

that the PHYS_PKG will be called.

Kernel coupling gave us an insight about many of the application characteristics.

One important characteristic of CAM is that its performance is heavily dependent on

parallel platform memory hierarchy. For example, all the coupling values show that

Lemieux, with a slower processor than DataStar but with a larger L1 and L2 cache sizes,

experience better coupling than DataStar. Also, coupling values showed that although

CAM’s kernels share many data structures, most of the coupling values are still

destructive (i.e., interfering with each other so as to adversely affect performance). This

is due to the large sizes of these data structures and the way CAM loops are designed.

In processor partitioning, although the intranode bandwidth is much higher than

the internode bandwidth, CAM’s runtime was better when less than half of the maximum

number of processors per node are used. This, also, emphasizes CAM’s heavy reliance on

memory and that the intensive use of memory in computation reduces the intranode (i.e.,

within a node) bandwidth significantly.

 4

2. BACKGROUND

Performance analysis and prediction provide significant insight into the

performance relationships between an application and the system used for execution. The

major obstacle to correctly understand an application behavior and performance is the

lack of knowledge about the performance relationships between the different functions

that compose an application [6]. Understanding such relationships assists in deriving

performance models that help in predicting and understanding an application behavior.

Kernel coupling refers to the effect that kernel i has on kernel j in relation to

running each kernel in isolation. The two kernels can be adjacent kernels in the control

flow of the application or a chain of three or more kernels [5]. In this work, kernel

coupling will be used to identify four major points:

• how the coupling values change with scaling of the problem size;

• how the coupling values change with the scaling of the number of processors;

• how coupling values change with the system architecture; and

• how coupling values change with the application runtime.

2.1 Testbeds

In this work, all CAM runs and tests were performed on four supercomputers:

SDSC DataStar P655 and P699, NERSC Seaborg and PSC Lemieux. Table 1 shows a

detailed comparison for these machines. As it is clear in the table, P655, P690 and

Seaborg have the same Operating System (AIX), but they have different processor speeds

and different memory hierarchy. For that reason, we chose the PSC Lemieux machine as

the 4
th

 testbed in order to have a different operating system and different runtime libraries

to compare with. The four machines had support for message passing (MPI) and shared

memory (OpenMP). In addition, the four machines had the libraries needed to run CAM

installed and specifically the Network Common Data Form (NetCDF). NetCDF is an

interface for array-oriented data access and a library that provides an implementation of

the interface. The netCDF library also defines a machine-independent format for

representing scientific data. Together, the interface, library, and format support the

 5

creation, access, and sharing of scientific data [4]. For the three IBM machines, IBM XL

Fortran compiler was used. Although the machines have different compilers installed on

the machines, the choice of the XL FORTRAN was due to its capability of optimizing the

code to the best extent on the IBM machines. On the other hand, f90 was used on

Lemieux. For each of these machines, there were certain batch scripts that were written to

configure the runtime environment for CAM. The most important parameter that was

needed by CAM on all platforms was setting the Stack Size to maximum value in order

for CAM to run without crashing. This is due to CAM’s intensive memory requirements

which will be discussed in details in CAM Description and CAM Analysis sections.

Table 1: Testbeds Comparison

Configurations SDSC

DataStar P655

SDSC

DataStar P690

NERSC

Seaborg

PSC Lemieux

Number of

Nodes

176 7 416 750

CPUs per

Node

8 32 16 4

CPU type 1.5 GHz PPC4 1.7 GHz PPC4 375 MHz PPC3 1 GHz Alpha

CPU Peak

Speed

6.0 GFlops 6.8 GFlops 1.5 GFlops 600 MFlops

Memory per

Node

16GB 128GB 16-64GB 4 GB

L1 Cache 64/32 KB 2-

way/ Direct

Mapped

64/32 KB 2-

way/ Direct

Mapped

64/32 KB 128-

way set

associative

64/64 KB 2-

way set

associative

L2 Cache 1.5MB On Chip

shared between

2 cores

1.5MB On Chip

shared between

2 cores

8MB Off Chip

per one core

8MB On Chip

L3 Cache 128MB 128MB N/A N/A

Network Federation Federation Colony Quadrics

OS AIX AIX AIX Tru64 Unix

 6

2.2 CAM

 This section describes CAM and has a brief scientific explanation for the physics

and dynamics in CAM.

2.2.1 Application Description

The Community Atmosphere Model provides the research community with a

reliable, well documented atmospheric general circulation model. CAM has been

developed over a period of fifteen years. It started as a community climate model that is a

stand alone application and cannot be coupled with any other atmospheric or climate

model. Over the years, CAM evolved into a more specific model of simulating and

modeling the atmosphere. Also, the capability of being integrated into the Community

Climate System Model (CCSM) was added. In CAM 3.0, many features and

enhancements were added to it. The most important of which is the ability to support

multiple dynamical cores instead of only one. In this work, Spectral Eulerian Dynamics is

the core of focus.

The CAM 3.0 cleanly separates the parameterization suite from the dynamical

core, and makes it easier to replace or modify each in isolation. The dynamical core can

be coupled to the parameterization suite in a purely time split manner or in a purely

process split one, as described below [1].

Consider the general prediction equation for a generic variable ψ

)()(ϕϕ
ϕ

PD
t

+=
∂
∂

 (1)

where ϕ denotes a prognostic variable such as temperature or horizontal wind component.

The dynamical core component is denoted D and the physical parameterization suite P.

A three-time-level notation is employed which is appropriate for the semi-implicit

Eulerian spectral transform dynamical core. However, the numerical characteristics of the

physical parameterizations are more like those of diffusive processes rather than

advective ones. They are therefore approximated with forward or backward differences,

rather than centered three-time-level forms.

 7

The Process Split coupling, which refers to the coupling of the dynamical core

with the complete parameterization suite, is approximated by

),(2),,(2 1*1111 −−+−+ ∆+∆+= nnnnnn tPtD ϕϕϕϕϕϕϕ (2)

where),(1* −nP ϕϕ is calculated first from

),(2 1*1* −− ∆+= nn tP ϕϕϕϕ (3)

The Process Split form is convenient for spectral transform models.

The Time Split coupling, which also refers to the coupling of the dynamical core

with the complete parameterization suite, is approximated by

),,(2 111 −+− ∆+ nnnn tD ϕϕϕϕ (4)

).,(2 *1* ϕϕϕ +∆+ ntP (5)

The Time Split form is convenient for the finite-volume core which adopts a Lagrangian

vertical coordinate.

The distinction is that in the Process Split approximation the calculations of D

and P are both based on the same past state, 1−nϕ , while in the Time Split approximations

D and P are calculated sequentially, each based on the state produced by the other.

As mentioned above, the Eulerian core employs the three-time-level notation in

(Equation 2)-(Equation 5). (Equation 2)-(Equation 5) also apply to two-time-level semi-

Lagrangian and finite volume cores by dropping centered term dependencies, and

replacing n-1 by n and t∆2 by t∆ .

The parameterization package can be applied to produce an updated field as

indicated in (Equation 3) and (Equation 5). Thus (Equation 5) can be written with an

operator notation

)(*1 ϕϕ Pn =+ (6)

 8

where only the past state is included in the operator dependency for notational

convenience. The implicit predicted state dependency is understood. The Process Split

equation (Equation 2) can also be written in operator notation as

)
2

)(
,(

11
11

t

P
D

nn
nn

∆
−

=
−−

−+ ϕϕ
ϕϕ (7)

where the first argument of D denotes the prognostic variable input to the dynamical core

and the second denotes the forcing rate from the parameterization package, e.g. the

heating rate in the thermodynamic equation. Again only the past state is included in the

operator dependency, with the implicit predicted state dependency left understood. With

this notation the Time Split system (Equation 5) and (Equation 5) can be written

))0,((11 −+ = nn DP ϕϕ (8)

The total parameterization package in CAM 3.0 consists of a sequence of

components, indicated by

P = {M, R, S, T} (9)

where M denotes (Moist) precipitation processes, R denotes clouds and Radiation, S

denotes the Surface model, and T denotes Turbulent mixing. Each of these in turn is

subdivided into various components: M includes an optional dry adiabatic adjustment

(normally applied only in the stratosphere), moist penetrative convection, shallow

convection, and large-scale stable condensation; R first calculates the cloud

parameterization followed by the radiation parameterization; S provides the surface

fluxes obtained from land, ocean and sea ice models, or calculates them based on

specified surface conditions such as sea surface temperatures and sea ice distribution.

These surface fluxes provide lower flux boundary conditions for the turbulent mixing T

which is comprised of the planetary boundary layer parameterization, vertical diffusion,

and gravity wave drag [1].

 9

Further details of the splitting of parameterized physics and the dynamical core

can be found in [1]. Also, the detailed scientific explanation of the physics and dynamics

involved in CAM can be found in [1] sections 2.2 and 3.2 respectively.

2.2.2 Control Flow

CAM, as mentioned earlier, can be divided into four major kernels in addition to

INITIALIZATION and FINALIZATION. CAM starts execution in the cam subroutine in

cam.F90 file. In this subroutine, all the initializations and finalization routines and calls

take place. In this section, INITIALIZATION and FINALIZATION kernels will be

discussed as the remaining kernels will be discussed in details in the following section.

The main core of CAM execution is done in the stepon function in stepon.F90 file. This

function has a time loop that calls the four major kernels.

During INITIALIZATION, dataset files are read and all the SPMD MPI

communications are initialized. On the other hand, during FINALIZATION, history and

restart files are written. It is obvious that these two kernels are heavily dependent on the

I/O system and thus their performance and behavior are not completely predictable.

Figure 1 and Figure 2 show CAM flow of execution.

 10

Figure 1: CAM Flow of Execution

Figure 2: CAM Flow Inside Stepon

Initialize Data

Structures

d_p_coupling()

d_p_coupling()

d_p_coupling()

d_p_coupling()

Initialize Data

Structures

Time Loop

INITIALIZATION

Reading Datasets and

Initializing communications

FINALIZATION

Writing History and Restart

Files

stepon

 11

Table 2: T31 D_P_COUPLING Data Structure Sizes in Bytes

Name Type and Description
2
Processors

4
Processors

ps real(r8), intent(in) :: ps (plon, beglat:endlat) 12288 6144

t3 real(r8), intent(in) :: t3 (plon, plev, beglat:endlat) 319488 159744

u3 real(r8), intent(in) :: u3 (plon, plev, beglat:endlat) 319488 159744

v3 real(r8), intent(in) :: v3 (plon, plev, beglat:endlat) 319488 159744

q3
real(r8), intent(in) :: q3 (plon, plev, ppcnst,
beglat:endlat) 958464 479232

omga real(r8), intent(in) :: omga(plon, plev, beglat:endlat) 319488 159744

phis real(r8), intent(in) :: phis(plon, beglat:endlat) 12288 6144

pdeld real(r8), intent(in) :: pdeld (:,:,beglat:)

phys_state
type(physics_state), intent(out),
dimension(begchunk:endchunk) :: phys_state 10027008 5013504

phys_tend
type(physics_tend), intent(out),
dimension(begchunk:endchunk) :: phys_tend 1327104 663552

pbuf
type(pbuf_fld), intent(inout),
dimension(pbuf_size_max):: pbuf

Table 3: T31 PHYS_PKG Data Structure Sizes in Bytes

2.2.2.1 D_P_COUPLING

As mentioned previously, one of the main enhancements added to CAM 3.0 is the

ability to support multiple dynamical cores. This enhancement required a full decoupling

between the PHYS_PKG and the DYN_PKG. This decoupling was in data structures

used and the parallelism techniques. Thus the need for this kernel (D_P_COUPLING)

and the kernel explained in the next section (P_D_COUPLING). Table 2 has details of

data structures that this kernel works on.

As the name implies, D_P_COUPLING is the kernel responsible for copying the

data structures produced by the dynamical core into the data structures used by the

physics package. Table 3 shows the data structures used by the physics package and

Table 4 shows the data structures used by the dynamical core. This kernel is composed of

many loops that have OpenMP support if the machine has support for threading. This

Name Type and Description
2
Processors

4
Processors

phys_state
type(physics_state), intent(inout),
dimension(begchunk:endchunk) :: phys_state 10027008 5013504

phys_tend
type(physics_tend), intent(inout),
dimension(begchunk:endchunk) :: phys_tend 1327104 663552

pbuf
type(pbuf_fld), intent(inout),
dimension(pbuf_size_max) :: pbuf

 12

nested loops copy the arrays and data structures produced by the dynamics into the

phys_state structure of the physics package. Most of the loops have three dimensions due

to the three dimensional nature of the grid data (Latitude x Longitude x Level). The

latitude dimension is the dimension that is parallelized using MPI. To illustrate, the

number of latitudes assigned to each processor is linear to the number of processors

running CAM. As will be discussed in the PHYS_PKG section, in the physics package,

data are represented differently (chunks and columns) to achieve maximum

parallelization. Thus, this copying of data is also responsible for changing the array data

structures from (Latitude x Longitude x Level) dimensions to (Chunks x Vertical x

Columns) dimensions.

Table 4: T31 DYN_PKG Data Structure Sizes in Bytes

Name Type and Description
2
Processors

4
Processors

adv_state type(advection_state), intent(inout) :: adv_state

t2 real(r8), intent(inout) :: t2(plon,plev,beglat:endlat) 319488 159744

fu real(r8), intent(inout) :: fu(plon,plev,beglat:endlat) 319488 159744

fv real(r8), intent(inout) :: fv(plon,plev,beglat:endlat) 319488 159744

 0

etamid real(r8), intent(in) :: etamid(plev) 208 208

cwava real(r8), intent(inout) :: cwava(plat) 768 768

detam real(r8), intent(inout) :: detam(plev) 208 208

flx_net real(r8), intent(in) :: flx_net(plon,beglat:endlat) 12288 6144

ztodt real(r8), intent(in) :: ztodt 8 8

ps real(r8), intent(in) :: ps (plon, beglat:endlat) 12288 6144

t3 real(r8), intent(in) :: t3 (plon, plev, beglat:endlat) 319488 159744

u3 real(r8), intent(in) :: u3 (plon, plev, beglat:endlat) 319488 159744

v3 real(r8), intent(in) :: v3 (plon, plev, beglat:endlat) 319488 159744

q3 real(r8), intent(in) :: q3 (plon, plev, ppcnst, beglat:endlat) 958464 479232

omga real(r8), intent(in) :: omga(plon, plev, beglat:endlat) 319488 159744

phis real(r8), intent(in) :: phis(plon, beglat:endlat) 12288 6144

pdeld real(r8), intent(in) :: pdeld (:,:,beglat:)

2.2.2.2 P_D_COUPLING

P_D_COUPLING is the kernel responsible for doing exactly the opposite of the

previous kernel. A point worth mentioning is that each dynamical core has its own

D_P_COUPLING and P_D_COUPLING functions. Hence, each dynamical core can

 13

easily interact with the physics package. In P_D_COUPLING all the data structures that

are updated or changed by the PHYS_PKG are then copied into arrays that can be used

by the dynamics package. As the case with D_P_COUPLING, the nested loops do the

copying of data and changing the dimensions as mentioned in the previous section. Table

5 shows details of data structures that this kernel utilizes.

Table 5: T31 P_D_COUPLING Data Structure Sizes in Bytes

2.2.2.3 PHYS_PKG

The PHYS_PKG kernel is the most dominant kernel in CAM. The PHYS_PKG is

responsible for all the physical parameterizations and uses the phys_state structure as the

main data structure. This data structure is a large and many computations are done on that

data structure that causes this kernel to dominate the execution. As mentioned earlier,

CAM has a three dimensional grid structure (Latitude x Longitude x Vertical). Because

computation in the physics is independent between vertical columns, the inner loop over

longitude is vectorizable. Coarser grain parallelism is exploited in the outer loop over

latitude, via either MPI or OpenMP [6]. Thus, the loops in the physics parameterization

package looks like this:

do j=1,nlat

do k=1,nver

do i=1,nlon

(physical parameterizations)

Name Type and Description
2
Processors

4
Processors

phys_state
 type(physics_state),intent(in),
dimension(begchunk:endchunk) :: phys_state 10027008 5013504

phys_tend
 type(physics_tend), intent(in),
dimension(begchunk:endchunk) :: phys_tend 1327104 663552

 0

t2 real(r8), intent(out) :: t2(plon, plev, beglat:endlat) 319488 159744

fu real(r8), intent(out) :: fu(plon, plev, beglat:endlat) 319488 159744

fv real(r8), intent(out) :: fv(plon, plev, beglat:endlat) 319488 159744

flx_net real(r8), intent(out) :: flx_net(plon,beglat:endlat) 12288 6144

qminus
real(r8), intent(out) :: qminus(plon, plev, pcnst,
beglat:endlat) 958464 479232

qnats
real(r8), intent(out) :: qnats(plon, plev, ppcnst,
beglat:endlat) 958464 479232

 14

enddo

enddo

enddo

As of CAM 3.0, the design of the loop structure in the physics parameterization

package has changed. To exploit vectorization, which is important to both vector based

architectures and cache-based processor architectures to exploit fine-grain parallelism for

long-instruction-word architectures, the computation of multiple columns was bundled

into chunks [6]. Thus the new array structure is (pcols, never, nchunks), and the new loop

structure is:

do j=1,nchunks

do k=1,nver

do i=1,ncols(j)

(physical parameterizations)

enddo

enddo

enddo

With this new design of arrays and loops, the inner loop is again vectorizable, and

the outer loop is the MPI or OpenMP parallel direction. CAM is a Fortran code, so the

inner loop also runs sequentially over contiguous memory locations. As the chunk size

(pcols and ncols) decreases, the cache locality increases and the parallelism exploitable at

the outer loop level increases. In contrast, as the chunk size increases, the vectorization

opportunities increase [6]. Details of the new data structures and their sizes are presented

in Table 3.

2.2.2.4 DYN_PKG

In this work, the focus is on the Spectral Eulerian Dynamical core. In general, the

dynamical core is responsible for advancing the evolution equations for the atmospheric

flow. The DYN_PKG is the second major kernel in CAM and the second dominant

kernel in execution time. Details of data structures used by the DYN_PKG are presented

in Table 4.

 15

2.3 Kernel Coupling

The coupling parameter, Cij, quantifies the interaction between adjacent kernels in

an application [5]. In this work, four major kernels are identified, PHYS_PKG,

DYN_PKG, P_D_COUPLING and D_P_COUPLING. A detailed explanation of each

kernel will be provided in the CAM explanation section. To compute the parameter Cij,

three measurements must be taken:

• Pi is the performance of kernel i alone,

• Pj is the performance of kernel j alone, and

• Pij is the performance of kernels i and j (assuming kernel i immediately precedes

kernel j) in the application

These measurements are done in the sequence determined by the application. In

particular, a measurement is obtained by placing a given kernel or pair of kernels into a

loop, such that the loop dominates the application execution time. Then the time required

for the application, beyond the given kernel or pair of kernels, is subtracted such that the

resultant time reflects that of only the given kernel or pair of kernels [8]. In general, the

value Cij is equal to the ratio of the measured performance of the pair of kernels to the

expected performance resulting from combining the isolated performance of each kernel.

Since Cij is the measurement of interaction between kernels, it is computed as the ratio of

the actual performance of the kernels together to that of no interaction, as given below:

ij

ij

i j

P
C

P P
=

+

For the case of a chain of kernels, S is defined as the set of kernels to be measured.

The performance of the kernels is measured independently (Pk for every kernel k in the

set S), and the performance of the kernels together (PS) to compute the coupling

parameter CS. The equation for the coupling for a chain of kernels is given below:

s
s

k

k S

P
C

P
∈

=
∑

The parameters are grouped into three sets:

• CS = 1 indicates no interaction between the chain of kernels, yielding no change

in performance.

 16

• CS < 1 indicates a performance gain, resulting from some resource(s) being

shared between the kernels (i.e., constructive coupling).

• CS > 1 indicates a performance loss, resulting from the kernels interfering with

each other (i.e., destructive coupling).

For example, for a chain of 3 (K1-K2-K3) in CAM the coupling value equation will be:

123
12

1 2 3

P
C

P P P
=

+ +

This coupling value can be used in predicting the performance of CAM. The equation

used in performance prediction is:

4

1

finalinit i i i

i

T P N P Pα
=

= + +∑

where
i

α is the weighted average of the kernel coupling values associated with kernel i.

i
α can be calculated using:

j j

j Q

i

j

j Q

c p

p
α ∈

∈

×

=
∑

∑

Where Q is the set of all coupled kernels involved with kernel i.

In this work, kernel pairs and chains of three kernels were executed. Each kernel

was run separately in a loop of 500 iterations. The choice of the number of 500 was to

make sure that data starts to stabilize in cache and any other data from previous functions

are out. The kernel pairs (D_P_COUPLING, PHYS_PKG), (PHYS_PKG,

P_D_COUPLING), (P_D_COUPLING, DYN_PKG) and (DYN_PKG,

D_P_COUPLING) were also executed in loops of 500 iterations. For some kernels, some

tweaking was needed in order not to blow up the model and to keep the data within

certain ranges that the model can tolerate. Finally, chains of three kernels were also run in

loops of 500 iterations, (D_P_COUPLING, PHYS_PKG, P_D_COUPLING),

(PHYS_PKG, P_D_COUPLING, DYN_PKG), (P_D_COUPLING, DYN_PKG,

D_P_COUPLING) and (DYN_PKG, D_P_COUPLING, PHYS_PKG). Using the

coupling values from these runs, an application model was generated. This application

model was used in predicting CAM execution runtime and performance.

 17

3. EXPERIMENTAL RESULTS

As mentioned previously, CAM was executed on four different parallel platforms

in order to identify its general behavior and characteristics. The characteristics that were

of concern for these tests were scalability, execution time and communication. In this

section, a detailed analysis for these characteristics will be shown along with the

execution results that indicate these characteristics.

3.1 Processor Partitioning

The aim of processor partitioning analysis is to identify the application factors

that impact the selection of the best number of processors per node to use for execution of

MPI applications. Thus, the focus of this analysis is the MPI-only version of CAM. The

current trend in parallel systems is shifting towards clusters of shared memory symmetric

multiprocessors (SMP), with moderate number of processors per node [7]. Hence, this

analysis will identify the best configuration to run the MPI-only version of CAM and,

also, will provide further insight on CAM characteristics and behavior.

To analyze the performance of CAM, it was executed on DataStar P655, P690,

PSC Lemieux and NERSC Seaborg. The total number of processors was kept constant

while changing the number of processors per node to see the effect of such configuration.

The total runtime, communication time and initialization were collected in order to see

the effect on both communication and computation. Initialization was an important factor

due to its heavy reliance on I/O. Thus, initialization time needed to be calculated to be

subtracted from total execution time to have accurate computation and communication

timings. Tables 7, 8, 9 and 10 show the results of the tests of 32 processors on the four

aforementioned platforms.

 18

Table 6: Bi-directional Latency and Bandwidth Using Sendrecv

*Lemieux data is not available

Table 7: Processor Partitioning Data on Seaborg

T31 Resolution

Runtime (secs)

Communication

(secs)

Initialization

(secs)

2x16 51.414518 6.693528 10.0879

4x8 41.816107 4.723436 4.21962

8x4 42.012999 4.842055 4.68493

16x2 42.848741 5.116556 5.45826

32x1 45.17013 5.193585 6.121484

T42 Resolution

2x16 79.074583 8.302817 11.372018

4x8 70.570393 4.258834 4.880712

8x4 71.811414 4.024824 6.311421

16x2 69.618445 4.257174 6.496892

32x1 71.742334 3.853449 7.93939

T85 Resolution

2x16 395.91757 21.119348 31.804444

4x8 384.35363 16.084764 27.306053

8x4 381.27095 15.025156 27.12071

16x2 377.89918 15.151985 28.767705

32x1 370.620077 13.086333 24.424302

As it is indicated in [7], there are three major characteristics that affect the

performance of a parallel application for the case when the number of requested

processors is larger than the maximum number of processors per node. These

characteristics are Global Communication, Memory Access and Message Size. It is

obvious from the data shown in Tables 7, 8, 9 and 10 that CAM communication

percentage of the total runtime is approx. 10% for T31 and approx. 5% for both T42 and

T85. Thus, the interesting characteristic of CAM that this work focuses on is the memory

Platform Communication

Mode

MPI Latency

(µs)

MPI Bandwidth

(MB/s)

Intra-node (1x2) 2.90 3724.01 P655

Inter-node (2x1) 6.71 1600.55

Intra-node (1x2) 4.91 2606.86 P690

Inter-node (2x1) 8.01 1504.12

Intra-node (1x2) 14.45 932.84 Seaborg

Inter-node (2x1) 29.89 295.61

 19

access. The global communication, on the other hand, has very limited effect that only

shows on the smallest dataset T31.

Each of the four platforms used shared a common factor. The four machines had a

very high intra-node bandwidth (depending on shared memory), and lower inter-node

bandwidth (using the underlying interconnection network). The intuition is that running

the application with using the maximum number of processors per node will lead to the

best performance. However, the aforementioned characteristics greatly affect the

application performance. Inter-node and Intra-node bandwidth for each of the four

platforms is shown in Table 6 [7].

 For T31, the dataset size is the smallest. Thus, T31 is not as memory

intensive as the rest of the datasets, and hence, less memory accesses. The lower the

number of memory accesses the less memory congestion, hence the intra-node bandwidth

is not totally consumed. This leads to a very consistent trend for T31 on P690, P655 and

Lemieux where using the maximum number of processors per node yields the best

performance. It is clear from the results that the communication time is shorter when

using the maximum number of processors per node for these two machines. However,

this is not the case for Seaborg. Seaborg has a more interesting outcome where the

execution time starts being the longest for maximum number of processors per node

which starts dropping by using less number of processors and then goes up again. The

longer execution time experienced by the maximum number of processors per node is

justified by memory congestion of 16 processors on the node and having less memory

than P655 and P690. The increase in the execution time again when using less than half

the processors on one node is justified by the slow interconnection network between

nodes. This behavior is not encountered on DataStar due to the fast Federation Network

used there.

 20

Table 8: Processor Partitioning Data on P655

T31 Resolution

Runtime (secs)

Communication

(secs)

Initialization (secs)

4x8 13.085524 1.182073 1.263196

8x4 16.022259 1.306746 3.970442

16x2 13.699135 1.537202 1.518381

32x1 13.675276 1.496823 1.374236

T42 Resolution

4x8 24.230881 0.952962 1.602706

8x4 22.830676 0.950005 1.672912

16x2 22.656113 0.993427 1.846584

32x1 22.823563 1.030669 1.791539

T85 Resolution

4x8 134.297046 4.932801 6.45849

8x4 125.44362 4.775869 6.407569

16x2 128.168296 4.025751 11.291061

32x1 122.027002 3.309613 7.550648

The T42 dataset experiences different behavior than that for the T31. This is due

to the larger size of data of the T42 dataset. Since the sizes of the data structures are

relatively larger than T31, memory congestion from array copying overhead is

encountered. This congestion boosts the runtime. A point worth mentioning is that the

communication time on P655 and Lemieux is still shorter for using max number of

processors per node. This proves that communication overhead for CAM is relatively

negligible to memory overhead. Nevertheless, P690 suffers from intra-node bandwidth

consumption by memory congestion which leads to longer communication time for

maximum number of processors per node. Also, Seaborg doesn’t show the previous trend

of the concave curve for neither runtime nor communication time. This happens when

memory congestion starts to be the major overwhelming factor in the execution causing

any network delay to be unnoticed.

 21

Table 9: Processor Partitioning Data on P690

T31 Resolution

Runtime (secs)

Communication

(secs)

Initialization (secs)

1x32 12.972556 0.966188 1.5539749

2x16 13.69839 0.992613 1.45267

4x8 13.69603 1.142692 1.482992

T42 Resolution

1x32 27.33603 1.142692 1.7539749

2x16 24.705 0.992613 1.85267

4x8 22.589292 0.866188 1.782992

T85 Resolution

1x32 130.648718 4.909863 7.881138

2x16 122.139668 2.994368 7.412044

4x8 112.778566 2.80783993 7.516255

Table 10: Processor Partitioning Data on Lemieux

T31 Resolution

Runtime (secs)

Communication

(secs)

Initialization (secs)

8x4 38.013508 2.778082987 9.467733

16x2 34.22544 2.067937245 7.362273

32x1 34.018543 2.125226589 6.958006

T42 Resolution

8x4 60.821712 2.7265488 11.469622

16x2 56.755615 2.783664 10.77925

32x1 59.077131 2.0358386 12.180661

T85 Resolution

8x4 279.091735 7.3278648 37.307626

16x2 254.130367 6.48746 21.60738

32x1 248.882319 5.8346547 21.054645

The T85, as in Tables 7, 8, 9 and 10, with the largest dataset size shows yet

another behavior where both communication time and computation time is the highest for

maximum number of processors per node on all four platforms. As in the case of T42 on

Seaborg where memory congestion is the controlling factor, memory congestion for T85

consumes all the intra-node bandwidth making even the intra-node communication

slower than communication through the interconnection network. For T85 this trend is

even experienced on P655 and Lemieux due to the huge data structures sizes.

CAM is very interesting in that the major performance difference occurs with

between the scheme utilizing all the processors per node and half of the maximum

number of processors per node, with half of the maximum number of processors per node

 22

being the better scheme. Further, there is very little difference in the execution time

between using one to half of the maximum number of processors per node. When all the

processors per node are used, congestion can occur due to data copies of arrays. When

half of the maximum number of processors or fewer per node are used the intra-node

bandwidth is sufficient [7].

3.2 Processor Scaling

 In this section, runtime comparison, scalability and communication analysis is

provided.

3.2.1 Execution Runtime Comparison

In the tests for runtime comparison among the four parallel platforms, CAM was

configured to have one task per node. This configuration was necessary to guarantee to

have one thread per processor and not to have multiple threads switching on the same

processor. Each task had four OpenMP threads running on it. The choice of four threads

was due to the fact that Lemieux has four processors per node and it was the least among

the rest of the platforms. Thus the choice of four threads was to keep the workload

consistent among the platforms and to have the workload per processor the same. This

implies that on Lemieux, the maximum number of processors per node is used, while

50% of P655, and 25% of Seaborg capabilities per node is used. An exception from this

configuration was DataStar P690. This exception is due to the fact that SDSC doesn’t

allow more than using four nodes on the P690. This limitation prevented running CAM

on more than 128 processors on P690.

 23

T31 Runtime Comparison

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

Number of Processors

R
u

n
ti

m
e

 (
S

e
c

)

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 3: Runtime Comparison of the T31 Dataset on the Four Platforms

T42 Runtime Comparison

0

50

100

150

200

250

0 20 40 60 80 100 120 140

Number of Processors

R
u

n
ti

m
e

 (
s

e
c

)

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 4: Runtime Comparison of the T42 Dataset on the Four Platforms

 24

T85 Runtime Comparison

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100 120 140

Number of Processors

R
u

n
ti

m
e

 (
s

e
c

)

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 5: Runtime Comparison of the T85 Dataset on the Four Platforms

It is clear from Figures 3, 4 and 5 that runtimes don’t exactly reflect the platform

architecture as expected. To illustrate, Seaborg with the slowest processors experience

the longest runtime for all the input datasets; however, it is not four times slower that

P655 as expected. This is due to the memory hierarchy of Seaborg and having a larger

memory per processor and a larger L2 cache. This, in fact, shows the high dependability

of CAM on memory.

Another point worth mentioning is the scalability on Lemieux. It is consistent

among the three datasets that scalability on Lemieux is worse than the remaining

machines. This scalability will be discussed in the next section.

3.2.2 Scalability

In the experiments for scalability, CAM was configured to run with number of

OpenMP threads equal to the number of processors per node. This was the choice in

order to have consistency among all machines and to avoid having the differences in

scalability as indicated in the previous section. To illustrate, in the previous section,

Lemieux runs were using the maximum processor capacity per node causing it to

encounter the least scalability, while P655 was only using 50% of node capacity and

 25

Seaborg was using 25% of load capacity. Thus the configuration for each machine was as

follows:

• DataStar P655 : 1 Task/ Node – 8 Threads/ Task

• DataStar P690 : 1 Task/Node – 8 Threads/Task , 16 Threads/Task and 32

Threads/Task

• Seaborg : 1 Task/Node – 16 Threads/Task

• Lemieux : 1 Task/Node – 4 Threads/Task

DataStar P655 Scalability

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Number of Processors

R
u

n
ti

m
e
 (

s
e
c
)

T31 T42 T85

Figure 6: Scalability Comparison of the 3 Datasets on DataStar P655

Figures 6 and 7 show the runtime scalability of the three datasets on P655 and

their relative speedup respectively. It is obvious from both graphs that CAM doesn’t scale

very well. This behavior is also consistent on all datasets and, as it is shown in Figures 8,

9, 10, 11, 12 and 13, it is also consistent on all the platforms.

In fact, this behavior is due to the intensive reliance of CAM on memory and the

memory overhead incurred by the copying that occurs between different kernels and

different data structures. This overhead is increased when all the processors on one node

are used, thus using all the memory available on one node and memory thrashing occurs.

Nevertheless, when half the number of processors per node is used or less, then there is

 26

enough memory per processor to accommodate the large data structures and the overhead

of copying them.

DataStar P655 Relative Speedup

0

5

10

15

20

0 50 100 150 200 250 300

Number of Processors

R
e
la

ti
v
e
 S

p
e
e
d

u
p

T31 T42 T85 Linear

Figure 7: Relative Speedup of the 3 Datasets on DataStar P655

Seaborg Scalability

0

100

200

300

400

500

600

0 100 200 300 400 500 600

Number of Processors

R
u

n
ti

m
e
 (

s
e
c
)

T31 T42 T85

Figure 8: Scalability Comparison of the 3 Datasets on Seaborg

 27

Seaborg Relative Speedup

0

5

10

15

20

0 100 200 300 400 500 600

Number of Processors

R
e
la

ti
v
e
 S

p
e
e
d

u
p

T31 T42 T85 Linear

Figure 9: Relative Speedup Comparison of the 3 Datasets on Seaborg

Although, this may seem counter intuitive because it is known that the network

bandwidth within the node is much larger than the inter-node network bandwidth, as it

will be shown in the processor partition section, the communication overhead of CAM is

much less than memory overhead. Also, the effect that communication has on CAM is

considered negligible in comparison to the memory significant effect. Figures 14, 15 and

16 will show a comparison done on Seaborg where 16 threads per task run is compared to

four threads per task run.

 28

DataStar P690 Scalability

0

50

100

150

200

250

0 10 20 30 40 50 60 70

Number of Processors

R
u

n
ti

m
e
 (

s
e
c
)

T31 T42 T85

Figure 10: Scalability Comparison of the 3 Datasets on DataStar P690

DataStar P690 Relative Speedup

0

1

2

3

4

5

0 10 20 30 40 50 60 70

Number of Processors

R
e
la

ti
v
e
 S

p
e
e
d

u
p

T31 T42 T85 Linear

Figure 11: Relative Speedup Comparison of the 3 Datasets on DataStar P690

 29

Lemieux Scalability

0

200

400

600

800

1000

0 20 40 60 80 100 120 140

Number of Processors

R
u

n
ti

m
e
 (

s
e
c
)

T31 T42 T85

Figure 12: Scalability Comparison of the 3 Datasets on Lemieux

Lemieux Relative Speedup

0

5

10

15

20

0 20 40 60 80 100 120 140

Number of Processors

R
e
la

ti
v
e
 S

p
e
e
d

u
p

T31 T42 T85 Linear

Figure 13: Relative Speedup Comparison of the 3 Datasets on Lemieux

 30

Figures 14, 15 and 16 demonstrate the fact that using all the processors per node

degrades the performance. For T31, for 32 processors the runtime is better if using 4

Threads; however, it degrades for larger number of processors. This is because for T31,

data sizes and memory need, especially for larger number of processors, is not very

demanding. Thus, communication overhead is the dominating factor. For T42, it can be

easily seen that a similar behavior is encountered, although the effect is seen on a larger

number of processors due to the bigger data sizes for the T42 dataset. On the other hand,

the T85 behavior demonstrates the fact that using all the processors per node degrades the

performance. Due to the large data sizes and the intensive demand for memory,

communication overhead is negligible.

T31 Seaborg Scalability Comparison

0

10

20

30

40

50

0 20 40 60 80 100 120 140

Number of Processors

R
u

n
ti

m
e
 (

s
e
c
)

16 Threads / Task 4 Threads / Task

Figure 14: Scalability Comparison of the T31 Dataset on Seaborg with Different Number of Threads per

Task

 31

T42 Seaborg Scalability Comparison

0

20

40

60

80

100

0 20 40 60 80 100 120 140

Number of Processors

R
u

n
ti

m
e
 (

s
e
c
)

16 Threads / Task 4 Threads / Task

Figure 15: Scalability Comparison of the T42 Dataset on Seaborg with Different Number of Threads per

Task

T85 Seaborg Scalability Comparison

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140

Number of Processors

R
u

n
ti

m
e
 (

s
e
c
)

16 Threads / Task 4 Threads / Task

Figure 16: Scalability Comparison of the T85 Dataset on Seaborg with Different Number of Threads per

Task

 32

3.2.3 Communication

In the analysis of CAM’s communication, MPI communication to computation

ratio was measured for both the MPI-Only version and the HYBRID version. In both

cases, MPI communication was obviously the same as the number of MPI tasks remains

the same and hence the number of MPI calls remains the same. However, the ratio will

normally change as the HYBRID version reaches higher processor count, therefore

having less execution time. In all the tests for the communication, NERSC Seaborg and

SDSC DataStar were the platforms of testing. In this section, the HYBRID model results

will be shown and analyzed and in the processor partition section, the MPI only version

will be analyzed in details.

The following two tables, Tables 11 and 12, show the execution time, MPI

communication time on the master process, MPI communication time on non-master

processes and the percentage of communication time of non-master processes to

computation time. For all datasets and on both platforms, the trend is clear and stable.

Communication time is relatively smaller than computation time, bearing in mind that in

the HYBRID model there are more processors doing computation than the number of

processors doing communication. To illustrate, in the case of 32 processors on Seaborg,

only 2 processors will be responsible for the MPI communication, while the 32

processors will be doing computation. Thus, when we analyze the MPI only version in

the processor partitioning section, it will be clear that communication is actually less than

5% of the total execution time. This, in fact, emphasizes the previous hypothesis that

CAM is more memory intensive application than a communication intensive application.

 33

Table 11: DataStar MPI Communication (seconds)

DataStar MPI Communication

 Number of Processors

 16 32 64 128 256

T31

Actual Execution Time 19.40919 11.66729 7.147747 5.849899 5.806424

MPI Master Process

Time

0.466595 0.479956 0.546961 0.586966 1.357719

MPI Time 3.640476 3.011145 2.843876 2.281166 2.86144

MPI Percentage 18.75646 25.80843 39.78703 38.99496 49.28059

Computation 15.76871 8.656149 4.303871 3.568733 2.944984

T42

Actual Execution Time 40.62714 23.84297 14.87871 10.57473 9.932914

MPI Master Process

Time

0.980445 0.947974 0.972482 1.019841 0.965429

MPI Time 4.010378 6.206893 5.92359 3.803363 3.7352

MPI Percentage 9.871181 26.03238 39.81253 35.96654 37.60427

Computation 36.61676 17.63608 8.955116 6.771364 6.197714

T85

Actual Execution Time 258.0176 140.3475 81.87492 49.08211 36.65649

MPI Master Process

Time

6.51962 5.037458 4.865098 4.33258 3.408755

MPI Time 21.54767 33.19722 31.66033 19.72617 14.41946

MPI Percentage 8.35124 23.65359 38.66914 40.19015 39.33671

Computation 236.4699 107.1503 50.21459 29.35594 22.23703

The trend that is encountered in this analysis is that with larger number of

processors, communication time decreases but not in the same scale as computation time.

The reason for that, as mentioned previously, is that number of processors doing

computation is much more than those responsible for the MPI communication. Due to the

less scalable communication time compared to computation time, the percentage of

communication tends to be larger for larger number of processors.

 34

Table 12: Seaborg MPI Communication (seconds)

Seaborg MPI Communication

 Number of Processors

 32 64 128 256 512

T31

Actual Execution Time 44.22248 28.35822 20.64922 22.94409 21.9838

MPI Master Process

Time

1.63369 2.113134 2.104961 2.305571 3.016865

MPI Time 7.652081 7.527077 6.268641 9.09134 9.004607

MPI Percentage 17.3036 26.54284 30.35776 39.62389 40.9602

 36.5704 20.83114 14.38058 13.85275 12.97919

T42

Actual Execution Time 84.44865 54.10535 39.63757 29.7675 30.20784

MPI Master Process

Time

3.774989 3.877889 3.670007 3.668254 3.827213

MPI Time 13.30371 13.51499 13.97302 10.34357 14.55347

MPI Percentage 15.75361 24.97903 35.25197 34.74786 48.1778

 71.14494 40.59036 25.66455 19.42393 15.65437

T85

Actual Execution Time 482.8127 281.947 169.1986 128.1411 107.829

MPI Master Process

Time

23.53569 20.48308 15.15449 13.92867 12.40494

MPI Time 57.99843 58.17592 45.96292 43.99574 39.81615

MPI Percentage 12.01262 20.63363 27.16506 34.33382 36.92528

 424.8142 223.7711 123.2357 84.14538 68.01281

3.3 Kernel Coupling

In this section, kernel coupling analysis is provided. A detailed analysis for each

kernel pair is provided which can be extended to chains of three kernels.

3.3.1 Kernel Coupling Analysis

All the coupling values that were calculated for different kernel pairs or chains of

three kernels were all very close to 1. The range of these coupling values was mostly

between 0.9 and 1.1 with very few exceptions which will be explained and shown in this

section. This trend of having the coupling values very close to 1 is due to the large data

sizes of the data structures that each kernel use. Even for the smallest dataset, T31, data

sizes are still large in comparison to the machines cache sizes. Thus, the data sharing and

reuse between kernels is very limited.

 35

3.3.1.1 K1-K2 Kernel Pair

K1 and K2 are the two kernels with the most data reuse as determined from

Figure 20, Tables 2 and 3, and also as shown in Figures 17, 18 and 19. In all the K1-K2

graphs for all the datasets, the coupling is constructive in most case since the coupling

values are between 0.9 and 1.0. This constructive coupling is due to the design of the

data structures shared between these two kernels, corresponding to the phys_state array

as well as the design of K1.

To further explain the reason why K1 and K2 have the most constructive coupling

values among all kernels, a detailed explanation and analysis of K1 and its design is

required. As shown in Figure 20, K1 execution is divided into two major sub-kernels.

The first sub-kernel which consumes approximately 33% of the execution time of K1 on

all machines -with the exception of Seaborg due to its 128-way set associative cache- is

T31 K1K2 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 17: Coupling Values Comparison of the K1-K2 Kernel Pair for the T31 Dataset on the

Four Platforms

responsible for copying the dynamics’ arrays into the arrays of the phys_state structure.

The remainder of K1, approximately 67% of the execution time, is responsible for

copying data within the phys_state structure itself to fill up the remainder of the structure.

 36

Thus, as illustrated in Figure 20, for the last 67% of the execution of K1, phys_state is the

only data that is being used by K1. Since K2 mainly uses the phys_state data structure, in

addition to some local workspace variables, the coupling between the two kernels is

constructive. Furthermore, by using a small number of columns per chunk in the

phys_state structure, where a chunk is a collection of vertical columns of the grid, there is

a great benefit by having high cache locality. Section 2.2.2.3 has further explanation on

the chunk and columns data structures.

For the T31, T42 and T85 datasets, the coupling values tend to be close to one for

all platforms, mostly ranging from 0.9 to 1.0. Also, the coupling values tend to be stable

and equivalent for different number of processors. This is due to the nature of the

phys_state array where number of columns per chunk is kept small to achieve high cache

locality.

There is also another interesting fact that is clear in the graphs, coupling values

don’t decrease by increasing the number of processors and, also, they don’t increase by

increasing the size of data by using larger datasets. Going back to Tables 2 and 3, one

would easily calculate the size of data per processor. For the T31, the smallest of all

datasets, using 128 processors, there is 212736 Bytes per processor for data shared

between kernels in addition to data structures that are local to each module or subroutine.

This exceeds the size of D-Cache on all platforms. Furthermore, T42 data sizes are more

than 200% the size of T31 data sizes and T85 exceeds 1000% the size of T31 data sizes.

Thus, even with larger number of processors, the size of data is much bigger than the

cache sizes. Hence, all the sharing that is encountered between K1 and K2 is mainly due

to the cache locality of the phys_state and the design of K1 as previously mentioned.

 37

T42 K1K2 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 18: Coupling Values Comparison of the K1-K2 Kernel Pair for the T42 Dataset on the Four

Platforms

T85 K1K2 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 19: Coupling Values Comparison of the K1-K2 Kernel Pair for the T85 Dataset on the Four

Platforms

 38

Figure 20: K1-K2 Kernel Pair Execution Illustration

3.3.1.2 K2-K3 Kernel Pair

K2-K3 kernel pair is the most interesting and most complicated kernel pair to

analyze. As it is clear from the graphs in Figures 21, 22 and 23, K2-K3 has very high

coupling values and hence experiencing destructive coupling. Since K2 is common on

both K1-K2 and K2-K3 kernel pairs, but each kernel pair has different behavior, a

comparison between K1 and K3 design, runtimes and trends on different machines need

to be shown. In addition to having high coupling values, K2-K3 coupling values show

high variation from one machine to another and from one dataset to another.

As shown in Figure 24, K2 and K3 don’t experience the same trend as K1 and K2.

K3 doesn’t have two sub-kernels as in K1. K3 is only responsible for copying the

phys_state data into dynamics arrays. Thus the phys_state array is not the only data

structure residing in the caches when K2-K3 is executed as there is no overlapping period

as in Figure 20.

To further analyze and understand the reasons why K2-K3 behavior is not as K1-

K2, comparison between the runtimes of both and their trends on different machines is

required. Table 13 shows the trends of the runtime of each of K1 and K3 on the different

platforms. The main trend of focus is the runtime and which kernel is taking longer on

which machine. In Table 13, an ↑ indicates longer execution time. To Illustrate, the first

column of the table indicates that for the T31 dataset on DataStar (both p655, p690), K1

takes longer time to execute than K3.

Copying arrays: ps, t3, u3,

v3, q3, omga, phis, pdeld

into phys_state array

~33% of K1 Runtime

Copying data within the

phys_state structure.

~67% of K1 Runtime

Performing Physical

parameterization on the

phys_state structure array

K1 flow of

execution

K2

flow of

executi

on

 39

T31 K2K3 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

A
L

U
E

S

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 21: Coupling Values Comparison of the K2-K3 Kernel Pair for the T31 Dataset on the Four

Platforms

Table 13: K1 and K3 Behavior on the Different Platforms

 T31 T42 T85

Machines DataStar Seaborg Lemieux D S L D S L

K1 ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑

K3 ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓ ↓

As it is clear from the table, Seaborg is the only machine with the odd behavior

than all other platforms especially for the T42 and the T85 datasets. As it was mentioned

earlier, Seaborg was the only exception in K1 sub-kernel runtime distribution. To

illustrate, on DataStar and Lemieux, 33% of the execution of K1 was the copying of the

dynamics arrays into the phys_state structure while 67% is copying data within the

phys_state structure. With Seaborg the case is different. Approximately 49% of the

execution time of K1 is in the first sub-kernel while only 51% is spent in the second sub-

kernel. That implies, W.L.O.G that the second sub-kernel is executing faster on Seaborg.

This is because the second sub-kernel is using only the same data structure which is

characterized with high locality. Since Seaborg D-Cache is 128-way set associative cache,

the hit rate for such data structure can be very high. Utilizing the Hardware Performance

 40

Monitor utility on IBM machines, this hypothesis was shown correct. Seaborg L1 D-

Cache hit rate was above 99% while DataStar hit rate was little below 84%. Thus on

Seaborg, this high locality for K1 forces its execution time to be less than that for K3

where less locality is encountered. On the other hand, DataStar as well as Lemieux, with

2-way direct mapped D-Cache, more cache replacements will be experienced where

phys_state data will keep thrashing in and out of cache, especially with CAM’s large data

sizes, and hence boosting K1 runtime, especially the second sub-kernel.

With the previous comparison between K1 and K3 and the comparison between

the different platforms, the analysis for K2-K3 kernel turns to be straight forward. For the

T31 case in Figure 21, Seaborg has the highest coupling values. By looking at Figure 25,

the illustration of the case of Seaborg is easy. Since Seaborg has very high L1 hit rate and

it tends to be biased towards data that has high locality, K3 execution time when run in

isolation will tend to be lower than when K2-K3 pair is run. K2-K3 execution time will

be boosted up since the locality achieved when running K3 in isolation is no longer

achievable. This is clear in Figure 25. By applying the kernel coupling formula:

C23 = K2K3/K2+K3 (10)

where K2-K3 represents the runtime for running the kernel pair K2-K3, while K2 + K3

represents the sum of runtime for running K2 in isolation and running K3 in isolation.

Since K3 execution time will decrease when run in isolation, coupling values will

be boosted. Also, by increasing the number of processors, the locality of K2-K3 will

decrease. This was tested using IBM HPM and such results of K2-K3 are shown in Table

14 where higher average number of loads per TLB miss indicates higher locality.

Nevertheless, with increasing data sizes, the locality achieved by running K3 in isolation

on Seaborg will not be as beneficial as before. Figure 25 also shows this situation where

large data sizes cause more data to be replaced from cache. This makes the K3 runtime to

increase even when run in isolation. By going back to the equation 10 with higher value

to K3, the coupling value will start approaching 1 again. Hence the graph in Figure 22

and Figure 23 show that coupling values on Seaborg are more stable than that for T31.

 41

Table 14.A: T31 HPM Data

T31 2x1 4x1 8x1 16x1

 Seaborg P655 Seaborg P655 Seaborg P655 Seaborg P655

 % TLB misses

per cycle

0.025 0.004 0.025 0.043 0.027 0.005 0.026 0.006

 Avg number of

loads per TLB

miss

1152.18

3

5016.24

1

1152.32 4012.76

6

1104.08

5

3517.70

1

1131.36

2

3129.

98

 Total L2 data

cache accesses

1.41 21108.7

6

1.425 20335.9 1.438 21704.3

6

1.476 2341

5.48

% accesses from

L2 per cycle

0.252

4.148

0.247

3.849

0.235

3.913

0.215

3.864

 B: T42 HPM Data

T42

 % TLB misses

per cycle

0.032 0.003 0.032 0.004 0.033 0.472 0.031 0.022

 Avg number of

loads per TLB

miss

889.459 5488.15

7

891.848 5030.96

7

889.99 3600.15 915.772 834.0

35

 Total L2 data

cache accesses

1.472 92996.0

1

1.493 92027.0

4

1.502 85872.4

7

1.561 9017

4.65

 % accesses

from L2 per

cycle

0.253 4.295 0.252 4.228 0.241 3.835 0.223 3.892

C: T85 HPM Data

T85

 % TLB misses

per cycle

0.028 0.004 0.027 0.005 0.025 0.004 0.026 0.059

 Avg number of

loads per TLB

miss

1033.84

3

3940.34

9

1055.27

6

3210.11 1147.90

9

4096.67

9

1124.56

3

307.3

02

 Total L2 data

cache accesses

1.441 147891.

5

1.439 147108.

3

1.447 146992.

4

1.484 1451

24

 % accesses

from L2 per

cycle

0.25 4.042 0.245 4.105 0.234 4.107 0.215 3.98

 42

T42 K2K3 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 22: Coupling Values Comparison of the K2-K3 Kernel Pair for the T42 Dataset on the Four

Platforms

T85 K2K3 Coupling Values Comparison

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

0 50 100 150

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e

DataStar p655 Seaborg DataStar P690 Lemeiux

Figure 23: Coupling Values Comparison of the K2-K3 Kernel Pair for the T85 Dataset on the Four

Platforms

 43

Figure 24: K2-K3 Kernel Pair Execution Illustration

Figure 25: Seaborg Cache Behavior

As for DataStar, the same analysis for Seaborg applies. In the case of T31, Figure

26 shows how the 2-way direct mapped cache will behave when K3 is run in isolation. It

is different from the case of Seaborg because the direct mapped cache doesn’t make use

of locality as much as Seaborg. Thus K3 runtime when run in isolation is still relatively

close to the runtime of K3 when run within the kernel pair. Again applying that to

equation 10, coupling values will be closer to one. Once again, with larger data sizes as in

Copying phys_state array

data into arrays ps, t2, u2,

v2, q2, omga, phis, pdeld

Performing Physical

parameterization on the

phys_state structure array

K3 flow of

execution

K2

flow of

executi

on

K3 Data

K3 Data

K3 Data

K3 Data

K3 Data

K3 Data

K3 Data

K3 Data

K2 Data

K2 Data

K2 Data

K2 Data

K2 Data

K2 Data

K2 Data

K3 Data

K3 Data

K3 Data

K3 Data

K3 Data

 K3 Data

 K3 Data

Seaborg T31 K3 in

Isolation Illustration

Seaborg T31 K2-K3

Illustration

K2 Data

Seaborg T42 K3 in

Isolation Illustration

Another K3 Data

K3 Data

K3 Data

 44

T42 or T85, the situation where K2-K3 runtime starts to increase at a higher rate than K3

due to more thrashing of data causes the coupling values from equation 10 to increase.

Also, by increasing the number of processors, HPM shows that locality decreases,

causing K3 runtime when run in K2-K3 pair to increase even more with higher number of

processors relative to K3 in isolation where more cache locality can still be achieved.

The case of Lemieux is unique. Lemieux follows DataStar Power4 2-way direct

mapped cache policy; however, Lemieux has larger L1 cache size. This larger cache

masks most of the effects of the locality and the replacement policies. It is easily noticed

in all graphs of K1-K2 and K2-K3 that Lemieux coupling values are very stable and

consistent. In the case of K1-K2, Lemieux has constructive coupling with very consistent

values on all datasets. In the case of the K2-K3, coupling values are either 1 or little

above 1. That shows that the larger L1 cache size is the key to better coupling.

Figure 26: DataStar P655 Cache Behavior

K3 Data

K3 Data

K3 Data

Other Data

Other Data

Other Data

K3 Data

K3 Data

K3 Data

K3 Data

K2 Data

K2 Data

K2 Data

K2 Data

K2 Data

K3 Data

K3 Data

K3 Data

Other Data

Other Data

 Other Data

 Other Data

DataStar T31 K3 in

Isolation Illustration

DataStar T31 K2-K3

Illustration

K2 Data

DataStar T42 K3 in

Isolation Illustration

Another K3 Data

K3 Data

K3 Data

 45

3.3.1.3 K3-K4 Kernel Pair

T31 K3K4 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 27: Coupling Values Comparison of the K3-K4 Kernel Pair for the T31 Dataset on the Four

Platforms

K3-K4 kernel pair shows a consistent trend on all machines as shown in Figures

27, 28 and 29. The coupling values range from 0.9 to 1.1. An illustration of the

interaction between K3 and K4 is in Figure 30. Lemieux is the only machine having

coupling values below 1 for all datasets on all machines. As for the rest of the machines,

coupling values are all above 1 but with a very little margin. K3 is the kernel responsible

for copying the phys_state data into dynamics’ arrays. These arrays account for

approximately 40% of the data used in K4 as indicated in Table 5 and accounts for

approximately 40% of the data used in K3 as indicated in Table 4. Although there may

seem to be some sharing between the two kernels, the large sizes of phys_state data and

the large sizes of dynamics’ arrays, both accounting for more than 200Kbytes per

processor for the T31 on 128 Processors, in K3 makes for a high cache miss rate on

these data structures when running K3 in isolation or when run in K3-K4 kernel pair.

Nevertheless, when run in K3-K4 kernel pair, the miss rate increases due to introducing

the extra data structures in K4 as indicated in Table 5. This increase in cache miss rate

 46

accounts for the coupling values being slightly higher than 1. As for Lemieux, the larger

cache size causes this miss rate to decrease and hence less coupling values.

T42 K3K4 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 28: Coupling Values Comparison of the K3-K4 Kernel Pair for the T42 Dataset on the Four

Platforms

T85 K3K4 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 29: Coupling Values Comparison of the K3-K4 Kernel Pair for the T85 Dataset on the Four

Platforms

 47

Figure 30: K3-K4 Kernel Pair Execution Illustration

3.3.1.4 K4-K1 Kernel Pair

K4-K1 kernel pair is similar to K3-K4 kernel pair. K1 uses the arrays produced by

K4 to copy them into the phys_state data structure. These arrays are ps, t3, u3, v3, q3,

omga, phis and pdeld accounting for 40% of the data structure used in K1 and

approximately 60% of the data structures used in K4. However, the use of the phys_state

data structure accounting for 60% of the data used in K1 limits the sharing of the data

between both kernels. The graphs for all datasets, Figures 31, 32 and 33, show consistent

trend for the coupling values being all very close to 1.

On T31, Lemieux is the only machine having constructive coupling. This is due to

the larger L1 cache and also having the largest L2 cache. The reader may argue that

Seaborg has the same L2 cache size, but the fact is, Seaborg L2 cache is an off chip cache

in addition to the smaller L1 cache. When the data sizes are larger with the T42 and T85,

DataStar P655 and P690 tend to have better coupling than Lemieux. This is due to the

presence of the L3 cache in DataStar and its absence in Lemieux. This only appears for

larger datasets as data is larger and hence data reuse makes use of lower memory levels.

To illustrate, with larger data sizes, data tend to be replaced constantly from L1 cache to

L2. Furthermore, by having larger data, more blocks are replaced out of L2. This

replacement is more costly on Seaborg and Lemieux than it is the case in DataStar.

Performing dynamical

computation on arrays ps,

t2, u2, v2, q2, omga, phis,

pdeld in addition to ps, t3,

u3, v3, q3 etc…

Copying phys_state array

data into arrays ps, t2, u2,

v2, q2, omga, phis, pdeld

K4 flow of

execution

K3

flow of

executi

on

 48

T31 K4K1 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 31: Coupling Values Comparison of the K4-K1 Kernel Pair for the T31 Dataset on the Four

Platforms

T42 K4K1 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemieux

Figure 32: Coupling Values Comparison of the K4-K1 Kernel Pair for the T42 Dataset on the Four

Platforms

 49

T85 K4K1 Coupling Values Comparison

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0 20 40 60 80 100 120 140

Number of Processors

C
o

u
p

li
n

g
 V

a
lu

e
s

DataStar P655 Seaborg DataStar P690 Lemeiux

Figure 33: Coupling Values Comparison of the K4-K1 Kernel Pair for the T85 Dataset on the Four

Platforms

3.3.1.5 Summary of Kernel Coupling Analysis*

• K1-K2 kernel pair is the only kernel pair with constructive coupling. This was due

to the second sub-kernel of K1 where phys_state data structure being the only

data structure used. This results in high data reuse as the phys_state structure is

the only structure being used by K2. This trend was amplified on Seaborg as it has

the 128-way set associative D-Cache that favors the data with high locality and

high reuse.

• K2-K3 was the most interesting kernel pair due to the high variation in coupling

values from one dataset to another and from one machine to another. Since K2

has the phys_state structure which is the biggest data structure in CAM as

indicated by Tables 2 and 3, K3 data was being constantly replaced in the caches

by K2 data resulting in high coupling values for K2-K3. This was boosted

* The same analysis done on the kernel pair coupling values can be extended to the three kernels chain

coupling values.

 50

because running K3 in isolation was causing K3 data to be residing in caches

longer achieving better execution time.

• Lemieux with the largest L1 Cache, and the largest L2 cache (on chip), has a very

distinct and stable behavior on all kernel pairs and chains of three kernels.

Lemieux is the only platform that didn’t experience any DESTRUCTIVE

coupling on any dataset and on any number of processors. All the coupling values

where either below 1 or approaching 1, which means that all the coupling was

either CONSTRUCTIVE or no coupling was taking effect. Thus, the larger cache

size was helping the data sharing and data reuse between kernels.

• Since, the inner loop that is iterating over (columns in K2 or longitude in K4) runs

sequentially over contiguous memory locations; cache placement policy had some

effect on the cache misses. To illustrate, DataStar uses Power4 with 64KB D-

Cache 2-way set associate, while Seaborg uses Power3 with 64KB D-Cache 128

way set associative. This different placement policy caused Seaborg to have a

better hit rate in some cases over DataStar specially when K2 was involved and

the phys_state structure is being used. This is because phys_state having small

number of columns per chunk achieves high cache locality.

3.3.2 Performance Prediction

In this work, kernel coupling was used to analyze the interaction between kernels

and identify the kernels with the most data sharing and reuse. In this section, K1 refers to

D_P_COUPLING kernel, K2 refers to PHYS_PKG kernel, K3 refers to

P_D_COUPLING kernel and finally K4 refers to DYN_PKG kernel. Since there were

four kernels in CAM, kernel pairs and chains of three kernels had to be tested. In all the

runs, kernel pairs or chains of three kernels were executed in a loop of 500 iterations to

make sure that the data residing in the caches is the data under test.

Kernel coupling produced a very high error prediction rate for the three datasets

on all platforms. The exact prediction values and percentage errors are shown in Tables

 51

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26. It is clear from the results in the tables

that the kernel coupling prediction is very close to summation prediction. This is due to

the fact that almost all coupling values are very close to 1 which implies very low

coupling between kernels. Furthermore, the results shown in the table indicates that

percentage error ranges between 20% and 50% for T42 on Lemieux. This is due to two

reasons. The first reason that causes a huge percentage error is the nature of CAM. In

CAM, the loop is a time loop that keeps iterating by advancing time. This time

advancement can’t be captured when running the kernels in isolation otherwise, the

model blows up. The second reason is also related to how PHYS_PKG works. The

PHYS_PKG does initialization of many variables and data structure during the first time

step. When the kernels are run in isolation, the isolation loop is 500 iterations. Thus the

average time per kernel is less than the average run per kernel when run in normal

execution as in normal execution the maximum number of time steps (iterations) is 148.

Tables 15, 16, 17 show kernel coupling results on Seaborg.

Table 15: T31 Coupling Data on Seaborg

 Number of Processors 32 64 128 256 512

Actual Execution Time 42.228717 27.802381 20.226969 19.66108 19.37684

Summation 25.0910378 17.3899696 12.7643395 14.236365 12.31124

Prediction Error 40.58% 37.45% 36.89% 27.59% 36.46%

Prediction using 2 Kernels 25.3571147 17.5858846 13.1115121 14.563855 12.74981

Prediction Error 39.95% 36.75% 35.18% 25.93% 34.20%

Prediction using 3 Kernels 25.4843792 17.7021249 12.994978 14.611104 13.01184

Prediction Error 39.65% 36.33% 35.75% 25.69% 32.85%

Table 16: T42 Coupling Data on Seaborg
 Number of Processors 32 64 128 256 512

Actual Execution Time 82.82715 52.357987 37.439146 28.876249 25.77038

Summation 62.2340649 37.2806048 25.8341991 21.754938 24.66825

Prediction Error 24.86% 28.80% 31.00% 24.66% 4.28%

Prediction using 2 Kernels 62.8418427 37.7951448 26.1337012 22.032979 24.81883

Prediction Error 24.13% 27.81% 30.20% 23.70% 3.69%

Prediction using 3 Kernels 62.346939 38.6561293 26.2377473 23.299264 24.72023

Prediction Error 24.73% 26.17% 29.92% 19.31% 4.08%

 52

Table 17: T85 Coupling Data on Seaborg
 Number of Processors 32 64 128 256 512

Actual Execution Time 479.904102 276.373765 173.300197 126.59174 101.2833

Summation 393.627459 221.763732 140.9289 99.533172 81.20083

Prediction Error 17.98% 19.76% 18.68% 21.37% 19.83%

Prediction using 2 Kernels 391.163884 224.244118 130.929409 99.946938 82.30398

Prediction Error 18.49% 18.86% 24.45% 21.05% 18.74%

Prediction using 3 Kernels 394.981511 218.461269 134.175221 99.678751 84.83371

Prediction Error 17.70% 20.95% 22.58% 21.26% 16.24%

Tables 18, 19 and 20 show kernel coupling results on DataStar P655.

Table 18: T31 Coupling Data on P655

 Number of Processors 16 32 64 128 256

Actual Execution Time 19.40919 11.667294 7.147747 5.849899 5.806424

Summation 9.83713156 5.74112504 3.64931876 3.0537826 3.008282

Prediction Error 49.32% 50.79% 48.94% 47.80% 48.19%

Prediction using 2 Kernels 9.92821329 5.82909874 3.70597131 3.1117138 3.075372

Prediction Error 48.85% 50.04% 48.15% 46.81% 47.04%

Prediction using 3 Kernels 9.96151625 5.82923 3.71471964 3.1162929 3.101381

Prediction Error 48.68% 50.04% 48.03% 46.73% 46.59%

Table 19: T42 Coupling Data on P655

 Number of Processors 16 32 64 128 256

Actual Execution Time 40.627136 23.842969 14.878706 10.574727 9.932914

Summation 24.3323089 13.6594541 7.95374366 6.1103434 7.146598

Prediction Error 40.11% 42.71% 46.54% 42.22% 28.05%

Prediction using 2 Kernels 24.4439793 3474.69223 7.92458505 6.2154685 7.058937

Prediction Error 39.83% 14473.24% 46.74% 41.22% 28.93%

Prediction using 3 Kernels 24.6280343 13.543692 7.86980782 6.4770121 7.007105

Prediction Error 39.38% 43.20% 47.11% 38.75% 29.46%

Table 20: T85 Coupling Data on P655
 Number of Processors 16 32 64 128 256

Actual Execution Time 258.017587 140.347492 81.874917 49.082112 36.65649

Summation 214.864651 111.749421 62.1261642 41.307122 28.4033

Prediction Error 16.72% 20.38% 24.12% 15.84% 22.51%

Prediction using 2 Kernels 224.42561 115.218067 65.0321343 43.189453 30.49381

Prediction Error 13.02% 17.91% 20.57% 12.01% 16.81%

Prediction using 3 Kernels 223.935036 113.757509 63.7798883 41.069842 28.33422

Prediction Error 13.21% 18.95% 22.10% 16.32% 22.70%

Tables 21, 22 and 23 show kernel coupling results on DataStar P690.

 53

Table 21: T31 Coupling Data on P690
 Number of Processors 16 32 64

Actual Execution Time 16.632432 11.832137 10.387081

Summation 8.76674576 5.53778884 5.46890884

Prediction Error 47.29% 53.20% 47.35%

Prediction using 2 Kernels 8.84197341 5.59320359 5.54245519

Prediction Error 46.84% 52.73% 46.64%

Prediction using 3 Kernels 8.87300783 5.60894744 5.56980715

Prediction Error 46.65% 52.60% 46.38%

Table 22: T42 Coupling Data on P690
 Number of Processors 16 32 64

Actual Execution Time 34.821296 23.576904 20.179434

Summation 21.0230854 15.0979825 13.3158524

Prediction Error 39.63% 35.96% 34.01%

Prediction using 2 Kernels 21.1682745 15.1173988 13.1740706

Prediction Error 39.21% 35.88% 34.72%

Prediction using 3 Kernels 21.4962481 15.2985529 13.3898455

Prediction Error 38.27% 35.11% 33.65%

Table 23: T85 Coupling Data on P690
 Number of Processors 16 32 64

Actual Execution Time 217.645541 143.262683 118.01757

Summation 176.082232 108.160116 85.116305

Prediction Error 19.10% 24.50% 27.88%

Prediction using 2 Kernels 177.698779 109.606703 88.2504969

Prediction Error 18.35% 23.49% 25.22%

Prediction using 3 Kernels 179.230168 110.731592 87.113182

Prediction Error 17.65% 22.71% 26.19%

Tables 24, 25 and 26 show kernel coupling results on Lemieux.

Table 24: T31 Coupling Data on Lemiex
 Number of Processors 8 16 32 64 128

Actual Execution Time 63.664651 37.911851 30.926733 22.904117 25.36138

Summation 34.7648687 18.2797708 15.6555909 9.9703296 14.00117

Prediction Error 45.39% 51.78% 49.38% 56.47% 44.79%

Prediction using 2 Kernels 34.3665972 18.0885386 15.4544454 9.7603949 13.85049

Prediction Error 46.02% 52.29% 50.03% 57.39% 45.39%

Prediction using 3 Kernels 34.0623188 18.067575 15.4995863 9.8691539 13.96964

Prediction Error 46.50% 52.34% 49.88% 56.91% 44.92%

 54

Table 25: T42 Coupling Data on Lemieux
 Number of Processors 8 16 32 64 128

Actual Execution Time 131.395851 78.541591 53.298564 44.841368 35.54182

Summation 82.5764962 45.6758083 27.0389774 27.800711 17.36372

Prediction Error 37.15% 41.85% 49.27% 38.00% 51.15%

Prediction using 2 Kernels 81.1276917 45.375298 26.9574827 22.601942 17.26327

Prediction Error 38.26% 42.23% 49.42% 49.60% 51.43%

Prediction using 3 Kernels 80.9452431 45.0481333 27.1012465 22.971715 17.35848

Prediction Error 38.40% 42.64% 49.15% 48.77% 51.16%

Table 26: T85 Coupling Data on Lemieux
 Number of Processors 8 16 32 64 128

Actual Execution Time 864.965873 483.699936 316.551665 186.22169 141.4743

Summation 721.245311 379.773383 231.479893 111.77632 76.16109

Prediction Error 16.62% 21.49% 26.87% 39.98% 46.17%

Prediction using 2 Kernels 711.0663 377.685943 229.726883 110.02786 73.36528

Prediction Error 17.79% 21.92% 27.43% 40.92% 48.14%

Prediction using 3 Kernels 708.205122 378.000411 228.476971 109.80479 75.08492

Prediction Error 18.12% 21.85% 27.82% 41.04% 46.93%

 55

4. RELATED WORK

Worley and Drake in [6] developed a new implementation for the PHYS_PKG

and demonstrated its effect on performance. Their work focused on the modifications

done to the PHYS_PKG and how the new CAM design was aiming at decoupling the

physics from the dynamics to have CAM compatible with different dynamics. The

decision to decouple the physics and dynamics data structures incurred copy overhead

and required additional memory, but was justified by the ability to support multiple

dynamical cores [6]. Also, they examined how load balancing and the use of OpenMP

threads can give similar of not better results than cache blocking.

Mirin and Sawyer in [3] introduced a scalable message passing implementation to

the finite volume dynamical core of CAM. Due to the data dependencies resulting from

the polar singularity of the latitude-longitude coordinate system, Mirin and Sawyer

employed two separate domain decompositions within the dynamical core – one in

latitude/level space, and the other in longitude/latitude space. This requires that the data

be periodically redistributed between these two decompositions. They used MPI for

message passing and OpenMP for multi-threading. They had some executions that scaled

to 3000 processors for certain datasets. They also demonstrated the feasibility of nested

OpenMP constructs on the IBM, although the net benefit for this particular application is

marginal.

 56

5. SUMMARY AND FUTURE WORK

5.1 Summary

This thesis focused on analyzing the Parallel Community Atmosphere Model

application. In this analysis several schemes and tools were utilized. We started by

analyzing the general behavior of CAM by running it on different machines with

different configurations. Through these runs, several characteristics of CAM were

identified. Utilizing the Prophesy infrastructure, identifying the runtimes of separate

kernels of CAM and their respective scalability was simple. Through this general analysis

of CAM behavior the following characteristics and trends were identified:

• There are four major kernels in CAM:

1 K1: Dynamics to Physics Coupler that is responsible for filling up the data

structures used by the physics parameterization package which is mainly the

phys_state structure.

2 K2: Physics Parameterization Package is the kernel responsible for all the

physical parameterizations and computations. It is the most dominant kernel

in runtime where it dominates over 50% of the overall execution time.

3 K3: Physics to Dynamics Coupler is the kernel responsible for copying the

phys_state structure into the arrays used by the Dynamics package.

4 K4: The Dynamical Core where all the dynamical computation is done. This

is the second dominant kernel in execution time where it dominates

approximately 30% of the total execution time of CAM.

• In CAM 3.0, decoupling of the Physical Parameterization from the Dynamical

Core was the major advancement. This decoupling of both kernels accomplished

two main targets. The first target is allowing CAM to be compatible with more

than one Dynamical core. Thus, in CAM 3.0 there are three supported dynamical

cores, Eulerian Dynamics, Semi-Lagrangian Dynamics and Finite Volume

Dynamics. The second target that was accomplished by this decoupling was

 57

allowing researchers to optimize each package separately, the Physics and the

Dynamics. This was not achievable before decoupling of data as researchers had

to design data structures to be compatible with both and hence their optimization

was limited.

• The decoupling of Physics data and Dynamics data had some negative impact on

the application behavior. The introduction of the dp_Coupler, Dynamics to

Physics Coupler, module boosted CAM’s reliance on memory. In both cases,

dynamics to physics coupling or physics to dynamics coupling, intensive memory

usage is required due to the copying of the data structures from one form to

another. As indicated by Tables 2 through 5, the data structures per kernel per

processor can be over 200Kbytes for 128 processors. This exceeds the sizes of

any D-Cache of any of the supercomputers concerned in this work.

• CAM can support both OpenMP (shared memory) and MPI (message passing)

communication. To reach the maximum number of processors possible, CAM is

configured to run with certain number of tasks, depending on the dataset, where

tasks communicate using MPI. Within each of these tasks OpenMP threads can be

utilized to have each thread running on a separate processor reaching the

maximum number of processors. The number of tasks is limited by the dataset

size. This, in fact, is due to the nature of the data that CAM uses. In atmosphere,

computation is independent between grid latitudes. Thus, latitudes are the

parallelizable dimension. In this sense, the number of latitudes per dataset is the

determining factor of the maximum number of tasks. To illustrate, in T31 the

number of latitudes are 16, thus a maximum of 16 tasks is the optimal value. For

32 tasks the model execution starts degrading and for 64 tasks the model blows up.

Also, processor partitioning scheme was used in analyzing the behavior of the

MPI only version of CAM. The aim of processor partitioning analysis is to identify the

application factors that impact the selection of the best number of processors per node to

use for execution of MPI applications. To analyze the performance of CAM, it was

 58

executed on DataStar P655, P690, Lemieux and NERSC Seaborg. The total number of

processors was kept constant while changing the number of processors per node to see

the effect of such configuration. The total runtime, communication time and initialization

were collected in order to see the effect on both communication and computation.

Initialization was an important factor due to its heavy reliance on I/O. Through this

analysis the following was identified about CAM’s behavior:

• CAM is very interesting in that the major performance difference occurs with

between the scheme utilizing all the processors per node and half of the maximum

number of processors per node, with half of the maximum number of processors

per node being the better scheme. Further, there is very little difference in the

execution time between using one to half of the maximum number of processors

per node. When all the processors per node are used, congestion can occur due to

data copies of arrays. When half of the maximum number of processors or fewer

per node are used the intra-node bandwidth is sufficient

The last scheme used in analyzing the performance of CAM was the kernel

coupling scheme. In this work, kernel coupling was used to analyze the interaction

between kernels and identify the kernels with the most data sharing and reuse. Since there

were four kernels in CAM, kernel pairs and chains of three kernels had to be tested. In all

the runs, kernel pairs or chains of three kernels were executed in a loop of 500 iterations

to make sure that the data residing in the caches is the data under test. Through kernel

coupling the following was identified about CAM’s behavior:

• K1-K2 kernel pair is the only kernel pair with constructive coupling. This was due

to the second sub-kernel of K1 where phys_state data structure being the only

data structure used. This results in high data reuse as the phys_state structure is

the only structure being used by K2. This trend was amplified on Seaborg as it has

the 128-way set associative D-Cache that favors the data with high locality and

high reuse.

 59

• K2-K3 was the most interesting kernel pair due to the high variation in coupling

values from one dataset to another and from one machine to another. Since K2

has the phys_state structure which is the biggest data structure in CAM as

indicated by Tables 2 and 3, K3 data was being constantly replaced in the caches

by K2 data resulting in high coupling values for K2-K3. This was boosted

because running K3 in isolation was causing K3 data to be residing in caches

longer achieving better execution time.

• Lemieux with the largest L1 Cache, and the largest L2 cache (on chip), has a very

distinct and stable behavior on all kernel pairs and chains of three kernels.

Lemieux is the only platform that didn’t experience any DESTRUCTIVE

coupling on any dataset and on any number of processors. All the coupling values

where either below 1 or approaching 1, which means that all the coupling was

either CONSTRUCTIVE or no coupling was taking effect. Thus, the larger cache

size was helping the data sharing and data reuse between kernels.

• Since, the inner loop that is iterating over (columns in K2 or longitude in K4) runs

sequentially over contiguous memory locations; cache placement policy had some

effect on the cache misses. To illustrate, DataStar uses Power4 with 64KB D-

Cache 2-way set associate, while Seaborg uses Power3 with 64KB D-Cache 128

way set associative. This different placement policy caused Seaborg to have a

better hit rate in some cases over DataStar specially when K2 was involved and

the phys_state structure is being used. This is because phys_state having small

number of columns per chunk achieves high cache locality.

 60

5.2 Future Work

In addition to the previous analysis of CAM, there are some new areas to be explored.

• How does the OpenMP only version behave? The only constraint on that version

is that it cannot go beyond the node boundary and hence the number of processors

will be limited to the maximum number of processors per node.

• CAM can support two other dynamical cores that were not tested in this work.

Each of these cores has different data structures and different design. Kernel

coupling can be utilized to measure the degree of interaction between the new

cores and quantify this interaction. Through comparing the results of coupling

values obtained from different kernels, a better design for the dynamical cores can

be achieved.

• Enhancing the coupling formula to account for applications where each time step

has different runtime than the next. In CAM, the early time steps in the model are

used to setup the model and initialize all the data and structures. Thus earlier time

steps takes much longer than the average time step. The current formula didn’t

give an accurate prediction of CAM runtime due to this varying time step.

• Looking into extending the coupling method to utilize the coupling

values from multiple chains into one equation to predict performance.

 61

REFERENCES

[1] W. D. Collins, P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, et al. Description

of the NCAR Community Atmosphere Model (CAM 3.0). NCAR TECHNICAL NOTE.

June 2004, Retrieved June 12, 2006 from http://www.ccsm.ucar.edu/models/atm-

cam/docs/description/

[2] J. Geisler, V. Taylor, X. Wu, and R. Stevens, Using Kernel Coupling to Improve the

Performance of Multithreaded Applications, In Proc. of the 16th International

Conference on Parallel and Distributed Computing Systems (PDCS-2003), Reno,

Nevada, August 13-15, 2003

[3] A. A. Mirin and W. B. Sawyer A scalable implementation of a finite-volume

dynamical core in the Community Atmosphere Model. International Journal of High

Performance Computing Applications, 19(3), August 2005, pp. 203-212

[4] Network Common Data Form, (n.d), Retrieved June 12, 2006 from

http://www.unidata.ucar.edu/software/netcdf/

[5] V. Taylor, X. Wu, J. Geisler, and R. Stevens, Using Kernel Couplings to Predict

Parallel Application Performance, In Proc. of the 11th IEEE International Symposium

on High-Performance Distributed Computing (HPDC 2002), Edinburgh, Scotland,

July 24-26, 2002

[6] P. H. Worley and J. B. Drake Performance Portability in the Physical

Parameterizations of the Community Atmosphere Model, International Journal for

High Performance Computer Applications, 19(3), August 2005, pp. 1-15.

[7] X. Wu, V. Taylor, C. Lively, and S. Sharkawi Processor Partitioning: An

Experimental Performance Analysis for MPI Applications, submitted to International

Conference for High Performance Computing, Networking, Storage and Analysis

(SC06), Tampa, Florida, November 2006.

[8] X. Wu, V. Taylor, J. Geisler, and R. Stevens, Isocoupling: Reusing Coupling Values

to Predict Parallel Application Performance, In Proc. of the 18th International

Parallel and Distributed Processing Symposium (IPDPS2004), Santa Fe, New

Mexico, April 26-30, 2004

 62

VITA

NAME: Sameh Sherif Shawky Sharkawi

ADDRESS: 301 Harvey R. Bright Building, College Station, TX 77843-3112

EMAIL ADDRESS: sss1858@cs.tamu.edu

EDUCATION: B.S., Computer Science, The American University in Cairo, 2002

M.S., Computer Science, Texas A&M University, 2006

