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ABSTRACT

On Traffic Analysis in Anonymous Communication Networks. (August 2006)

Ye Zhu, B.S., Shanghai Jiao Tong University;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Riccardo Bettati
Dr. A. L. Narasimha Reddy

In this dissertation, we address issues related to traffic analysis attacks and the engi-

neering in anonymous communication networks.

Mixes have been used in many anonymous communication systems and are sup-

posed to provide countermeasures that can defeat various traffic analysis attacks. In

this dissertation, we first focus on a particular class of traffic analysis attack, flow

correlation attacks, by which an adversary attempts to analyze the network traffic

and correlate the traffic of a flow over an input link at a mix with that over an output

link of the same mix. Two classes of correlation methods are considered, namely

time-domain methods and frequency-domain methods. We find that a mix with any

known batching strategy may fail against flow correlation attacks in the sense that,

for a given flow over an input link, the adversary can correctly determine which out-

put link is used by the same flow. We theoretically analyze the effectiveness of a mix

network under flow correlation attacks.

We extend flow correlation attack to perform flow separation: The flow separation

attack separates flow aggregates into either smaller aggregates or individual flows. We

apply blind source separation techniques from statistical signal processing to separate

the traffic in a mix network. Our experiments show that this attack is effective and

scalable. By combining flow separation and frequency spectrum matching method,

a passive attacker can get the traffic map of the mix network. We use a non-trivial
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network to show that the combined attack works.

The second part of the dissertation focuses on engineering anonymous communi-

cation networks. Measures for anonymity in systems must be on one hand simple and

concise, and on the other hand reflect the realities of real systems. We propose a new

measure for the anonymity degree, which takes into account possible heterogeneity.

We model the effectiveness of single mixes or of mix networks in terms of information

leakage and measure it in terms of covert channel capacity. The relationship between

the anonymity degree and information leakage is described, and an example is shown.
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CHAPTER I

INTRODUCTION

As the Internet is increasingly used in all aspects of daily life, so has the realization

that privacy and confidentiality are important requirements for the success of many

applications. One particular aspect of privacy that is of importance to users of such

applications is anonymity: the inability to identify the user as a participant in the

application. Anonymity is feasible and beneficial in many scenarios, such as privacy-

preserving web browsing, electronic voting, and many other e-business applications.

The nature of many such applications requires that the identities of participants

remain confidential from either other participants or from a third party.

In a computer system the anonymity of any participant is naturally preserved

as long as that participant does not interact with others. Only when he commu-

nicates with others his identity is revealed. Hiding the identity of the participant

during a communication therefore goes a long way towards preserving the partici-

pant’s anonymity.

Achieving anonymity in open environments such as the Internet is a challenging

problem. Encryption alone cannot preserve the anonymity of communication, since

the identities or locations of participants can be easily inferred from data that is used

to support the communication, for example packet headers. Additional measures

must be put in place to hide the identities of participants.

Chaum [1] proposed the use of special intermediary nodes, or proxies, which he

called mixes, to relay messages for anonymous email applications. The objective of

a mix is to split the communication between sender and receiver into two separate

The journal model is IEEE Transactions on Automatic Control.
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communications, and so sever the communication between sender and receiver.

An observer may monitor incoming and outgoing traffic at the mix, and so infer

at least part of the sender-receiver relationship. To prevent this, a mix may delay,

batch, and reorder packets to disrupt the packet-level timing correlation of packets

that enter and leave the mix. We observe that single mix presents a single point of

failure: When the single mix is compromised and the attacker has access to packet

inside the mix, the anonymity of the users is compromised as well. The solution is

to relay messages through multiple, mutually non-trusting mixes. In such a system,

multiple mixes form a mix network, and a sender chooses a path through the mix

network to communicate to the receiver. In general the sender uses source routing and

encrypts messages in an onion-like way [2]: each intermediate mix gets the address of

the next mix after decrypting the message and relays the “thinner” stripped message

to the next mix with its own address as the source address.

The original Chaum mix operates on entire messages (originally e-mail) at a

time, and therefore does not need to pay particular attention to latency added to

message delivery by the mixes. Increasingly, the data exchanged among participants

in networked applications, for example in file sharing, exceeds by far the capacity of

mixes. As a result, current mixes operate on individual packets in a flow rather than

on entire messages. In conjunction with source routing at the sender, this allows for

very efficient network-level implementation of mix networks.

A. Problem Statement

This dissertation is concerned with the question if current anonymous communication

systems can achieve anonymity given all these current anonymity techniques.

The anonymity techniques proposed or implemented are as follows:
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• Aggregating: It is a common sense that it is easier to hide in a “crowd”. By ag-

gregating packets from a lot of users, the anonymity system can more efficiently

hide the communication relationship inside anonymity networks.

• Batching: Packets arriving at the mix will be buffered first and then sent out in a

batch. The trigger for batch transmission can be timer-based, threshold-based,

or, a combination of both.

• Reordering: The order of packet departures will be randomly arranged so that

less information on the packet departure order can be inferred from the packet

arrival order or vice versa.

• Pooling: In a pooling based mix system, an arrival packet will be sent out with

a probability each time the packet has a chance to be sent out.

• Padding: Mix system can insert dummy traffic into the outgoing traffic to

further break the correlation between incoming and outgoing packets. But due

to its cost on the network bandwidth and other practical reasons, padding is

not used in the current anonymity systems.

• Rerouting: Instead of following the shortest path between the sender and the

receiver, a traffic flow in anonymity networks usually use a longer path which

is randomly chosen by the source routing mechanism at the sender.

These anonymity techniques are used in various combinations in current anonymity

networks. For example, the pooling mechanism can be used in combination with

batching to further “mix” the packets from different users.

In this dissertation we limit ourselves to passive attacks, meaning that the at-

tackers observe the packets as they traverse the network and refrain from actively
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modifying the traffic (for example by dropping individual packets). A passive at-

tacker has no ability to disturb the existing traffic, such as by inserting packets,

dropping packets, or modifying packets. Such active attacks can be very effective

since they can “inject” traffic patterns into the system that are easy to monitor, or

they can traffic to saturate network links and thus allow for a study of the system

in overload mode. While highly effective, active attacks can be easily detected and

shut down. Under these general assumptions, we would like to investigate if the cur-

rent anonymity system can achieve anonymity given the proposed or implemented

anonymity techniques.

B. Summary of Results

In this thesis we first focus on a class of flow correlation attacks that can determine the

communication relationship inside an anonymity network by estimating dependence

between individual traffic flows at the input of a mix and the aggregate traffic flows

at its output. We formally proved that given enough data, flow correlation attacks

can break anonymity of many current anonymous communication systems with a

probability arbitrary close to 100% and derive the formula to show the effects of

varying the parameters that control the anonymity system on the latter’s effectiveness.

We then propose a traffic analysis method (which we call flow separation) to

separate individual traffic flows based on the observations of aggregate traffic flows.

The method employs blind source separation, a classical method in statistical signal

processing to separate individual signal components given mixtures of signal com-

ponents. We show how flow separation can effectively separate aggregates of flows

into individual flows or smaller aggregates as they traverse mixes in the network. In

conjunction with flow correlation, the attack can successfully determine the commu-
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nication relationship.

We also apply traffic analysis to wireless ad-hoc networks. We adopt the threat

model proposed in [3], where a sensor network deployed in a field is used to monitor

the wireless signals transmitted by wireless nodes inside the field. These sensors used

can be either part of a separate monitoring or surveillance infrastructure or consist

simply of the other participants in the abhor network. We apply traffic analysis on the

aggregate traffic “heard” by the sensors to separate individual flows sent by wireless

nodes. The attacks based on the method can both accurately and precisely estimate

the location of wireless nodes.

In the second part of the dissertation, we address the question of how to engineer-

ing good anonymity networks. To engineer an anonymity network, it is important to

have a measure which can take into account the topology of the planned anonymity

infrastructure. For this, we proposed an anonymity degree to capture the quality of

anonymity networks. Our definition can generalize the information-theoretic defini-

tions proposed in [4, 5]. We also proposed a new class of anonymity channels, which

we call anonymity-based covert channels. We show how the capacity of anonymity-

based covert channels can be used to provide simple description of non-perfect mix

networks, and can be used to formulate bounds on the provided anonymity.

C. Organization

The rest of the dissertation is organized as follows:

Chapter II reviews the related work, including evolution of anonymity systems,

attacks on anonymity systems, the metrics to measure the anonymity provided by

anonymity networks, covert channels, and locating wireless nodes.

Chapter III describes the flow correlation attack in anonymity networks. The
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objective of the flow correlation attack is to correlate an incoming flow at a mix

with several aggregate outgoing flows. In this chapter, we propose two measures to

correlate traffic flows: mutual information, an information-theoretical measure, and

spectrum matching. We verified the proposed attacks through experimentation in a

testbed and propose a countermeasure.

Modeling and theoretical analysis of flow correlation attacks are presented in

Chapter IV. In this chapter, a framework to model the effectiveness of flow correlation

attacks is proposed. The framework provides a guideline for anonymity network

designers on how to select system parameters.

In Chapter V, we introduce a traffic analysis method based on flow separation and

its application in mix network. As opposed to flow correlation, where an individual

flow is correlated to aggregates of output flows, the separation attack partitions both

incoming and outgoing flows into small aggregates. This traffic analysis method can

also be used to pre-condition collected data for traffic analysis attacks. In this case

the possibly large aggregates of flows are separated into either individual flows or

small aggregates, thus greatly simplifying the work of subsequent correlation steps.

We investigate the flow separation method under different combinations of traffic,

and we evaluate its scalability. A simulation of flow separation attacks against an

anonymity network is used to demonstrate the strength of the method.

A traffic analysis method for wireless networks is proposed in Chapter VI. The

method can be used to detect location of wireless nodes. Further attacks on this

analysis method can disclose motion information of wireless nodes and communication

relationship between wireless nodes.

Chapter VII presents a new anonymity degree and its relationship to information

leakage through the anonymity network in the form of covert channel. We propose a

new type of covert channel, called anonymity-based covert channel. We investigate
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the relationship between anonymity degree and information leakage for both single

mix case and mix network case.

We conclude this dissertation and outline future work in Chapter VIII.
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CHAPTER II

RELATED WORK

A. Evolution of Anonymity Systems

The oldest form of support for anonymity in interpersonal transactions is perhaps

the use of cash. When buying problematic goods, a purchaser would like to use cash

because transaction through cash will leave no records about the parties involved

in the transaction. Similarly, a purchaser may be worried about identity theft, and

so opt for a cash-based transaction, which leaves no record that could be mis-used.

In modern society, secure and untraceable electronic cash (E-cash) system has been

proposed in [6, 7].

For anonymous email applications, Chaum [1] proposed to use relay servers,

called mixes, which reroute messages that are encrypted by the public keys of the

mixes. An encrypted message is analogous to an onion constructed by a sender, who

sends the onion to the first mix. Using its private key, the first mix peels off the first

layer. Inside the first layer is the second mix’s address and the rest of the onion,

which is encrypted with the second mix’s public key. After retrieving the second

mix’s address, the first mix forwards the peeled onion. This process proceeds in this

recursive way until the core part of the onion is forwarded to the receiver. Chaum

also proposed return address and digital pseudonyms for users to communicate with

each other anonymously.

A number of evolutions of Chaum’s mix were proposed over the years. Helsingius

[8] implemented the first Internet anonymous remailer, which is a single application

proxy that just replaces the original email’s source address with the remailer’s address.

It has no reply function and is subject to a number of attacks, which we will describe
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in Section II.B. Eric Hughes and Hal Finney [9] built the cypherpunk remailer, a real

distributed mix network with reply functions that uses PGP to encrypt and decrypt

messages. Gülcü and Tsudik [10] developed a relatively full-fledged anonymous email

system, called Babel. Their reply technique does not need the sender to remember the

secret seed to decrypt the reply message. Cottrell [11] developed Mixmaster which

counters a global passive attack by using message padding and also counters trickle

and flood attacks [10, 12] by using a pool batching strategy. Mixmaster does not have

a reply function. Danezis, Dingledine and Mathewson [13] developed Mixminion,

with consideration for a relatively complete set of attacks that researchers have found

[12, 14, 15, 16, 17, 18]. The authors in [13] suggest a list of research topics for future

study.

The mix networks described above are called message-based networks because

they forward entire messages, for example email messages, in a store-and-forward

fashion. More recently, message-based mix networks have been extended to flow-

based, also called low-latency anonymous communication networks for low-latency

communication. Low-latency mixes operate at a per-packet (instead of per-message)

level. Low-latency anonymous communication can be further divided into systems

using core mix networks and peer-to-peer networks. In a system using a core mix

network, users connect to a pool of mixes, which provides anonymous communication,

and users select a forwarding path through this core network to the receiver. Onion

routing [2] and Freedom [19] belong to this category. In contrast, in a system using

a peer-to-peer network, every node in the network is a mix, but it can also be a

sender and receiver. Obviously, a peer-to-peer mix network can be very large and

may provide better anonymity in the case when many participants use the anonymity
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service and sufficient traffic is generated around the network. Crowds [20]1 , Tarzan

[21] and P 5 [22] belong to this category.

A typical example of low-latency mix is Tor [23], the second-generation onion

router, developed for circuit-based low-latency anonymous communication. The Tor

network supports anonymous transport of TCP streams such as HTTP sessions. It

can provide perfect forward secrecy and support hidden server. Tor network is avail-

able for public use and already has more than 50 nodes [24].

Following the realization that serious privacy issues are at stake when location

information is accessible in many pervasive applications and wireless networks (see,

for example, the work of the IETF Working Group on Geographic Location/Privacy

(geopriv) [25]), several communication systems to preserve anonymity and location

privacy in ad-hoc and infrastructure-based wireless networks have been proposed.

ANODR [26] protects route anonymity by a onion-based encryption and routing pro-

tocol. The data transmission in ANODR is based on broadcast, and identity dis-

closure is prevented by the use of broadcast MAC addresses. SDDR [27] also uses

an onion-routing scheme for routing in wireless ad-hoc networks. ASR [28] was de-

signed to provide stronger anonymity by preventing the nodes en route to know the

hop count to the sender or receiver. Its data transmission is broadcast-based and

it assumes the presence of a shared secret between nodes. For infrastructure-based

networks, Gruteser et al. [29] proposed the use of disposable MAC addresses in order

to prevent tracking of mobile hosts.

A completely different approach is taken in DC networks (see [30]) where each

participant shares secret coin flips with other pairs and announce the parity of the

1Although Crowds may not use the classical Chaum’s mix, for simplicity, we still
use the name of “mix” to refer to a single anonymity network hop, and our theory
can be applied to all rerouting-based anonymity networks.
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observed flip to all other participants and to the receiver. The total parity should be

even, since each flip is announced twice. By incorrectly stating the parity the sender

has seen, this causes the parity to be odd. Thus the sender can send a message to

the receiver. The receiver receives the message whenever it finds the parity to be

odd. Nobody except the sender knows who sent the message. This scheme relies

on an underlying broadcast medium, which comes at a great expense as the number

of participants grows. Due to this lack of scalability none of the currently deployed

systems employs this method. In the following we will focus on rerouting-based

systems.

B. Anonymity Attacks

This dissertation is interested in the study of passive traffic analysis attacks against

low-latency2 anonymous communication systems. In [31, 32], a quantitative perfor-

mance analysis is given for an anonymous web server that applies both encryption

and anonymizing proxies. The analysis takes advantage of the fact that a number of

HTTP features, such as the number and size of objects, can be used as signatures to

identify web pages with some accuracy. An observer could monitor the size of HTTP

objects requested by the browser and compare them with database of previously col-

lected object size. Unless an anonymizer addresses this issue, these signatures are

visible to the adversary.

Serjantov and Sewell [33] analyzed the possibility of a lone flow along an input

link of a mix in peer-to-peer anonymity systems. If the rate of this lone input flow

is approximately equal to the rate of a flow out of the mix, this pair of input and

2We use an operational definition for “low-latency”. We call a communication
system low-latency in this context when it does not unduly disrupt TCP connections
under normal load conditions. Using this definition, TOR is clearly low-latency.
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output flows are correlated. They also discussed possible traffic features used to trace

a flow. Other analysis focus on the anonymity degradation when some mixes are

compromised, e.g., [20].

Levine et al. [34] describe an approach to discover communication relationship.

In their particular case, they have access to per-flow packet data. This is the case, for

example, when the attacker has access to the unprotected flows entering and leaving

the mix network. Similarly, the mixes at the two ends of the flow may be controlled

by the attacker. Given this information, the attacker can use cross correlation to

measure the similarity between individual flows.

Danezis [35] describes an attack on the Continuous Mix : in such a mix packets

get individually delayed according to some probability distribution. Since the packet

delays are independent, the departure distribution of the packets of a flow can be

accurately described (if one ignores queuing) by convoluting the packet-arrival and

the delay distribution. This can be used as a basis for measuring similarities among

flows.

C. Anonymity Degree, Covert Channel

To capture the effectiveness of anonymity systems under anonymity attacks, a number

of different anonymity degree definitions have been proposed: The first anonymity

degree measure, proposed in [20], is defined as the probability of not being identified

by the attacker. It focuses on each user and does not capture the anonymity of

the whole system. Berthold et al. [16] propose an anonymity degree based on the

number of the users of an anonymity system. There is an ongoing debate about what

the role of the number of users is in providing anonymity. Intuitively, the larger the

crowd, the easier it is for an individual to hide in it. In practice, however, attacks
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proceed by isolating users or groups of users that are more likely to be participants in

a communication. This was first considered in the anonymity set, introduced in [30].

The anonymity set describes the set of suspected senders or receivers of a message.

The size of the anonymity set is used in [36] as the anonymity degree.

The anonymity set measure does not take into account that some members in

the anonymity set are inherently more likely to be receivers or senders of a message;

for example as a result of a priori information. A big step forward was done by

Serjantov and Danezis [5], by Diaz et al. [4] and by Guan et al. [37] by proposing

anonymity measures that consider probability distributions in the anonymity set. All

these measures are based on entropy and can differentiate two anonymity sets that

have identical sizes, but different distributions. The measure in [4] normalizes the

anonymity degree to discount for the anonymity set size.

A number of efforts have studied the relation between covert channels and anony-

mity systems. Moskowitz et al. [38] focus on the covert channel over a mix-firewall

between two enclaves. The covert channel in this case is established by the channel

receiver determining whether an anonymized sender is transmitting packets. Newman

et al. [39] focus on the covert channel over a timed mix. The authors in [40] make

a series of excellent observations about the relation between covert channels and

anonymity systems. They illustrate this relation by describing the linkage between

the lack of complete anonymity (quasi-anonymity) and the covert communication over

different type of mixes and propose to use of this covert channel capacity as a metric

for anonymity.



14

D. Related Work on Locating Wireless Nodes

Numerous papers have been published on locating wireless nodes. Many of them

are based on the characteristic of physical signals, such as Received Signal Strength

(RSS) [41, 42], Angle of Arrival (AOA) [43, 44], and Time of Arrival (TOA) [45].

Complex processing methods on collected data, such as triangulation [46], Kalman

filter [45], and robotics-based approaches [41] are needed to deal with the physical

signal’s non-linearity, noise, and the complex correlations caused by multi-path effects,

interference, and absorption. Elnahrawy et al. [47] point out a number of fundamental

limits associated with the use of signal strength for example and claim that the limits

are unlikely to be transcended.

Senders can easily counter location estimation attacks based on signal-strength

by fluctuating the transmission power. This has been proposed in Whisper [48]. Loca-

tion privacy attacks using Angle-of-Arrival data assume that sensors have directional

capabilities, which adds greatly to the cost of the sensor network. One objective

of Chapter VI is to illustrate how most of current anonymity methods for wireless

networks, such as encryption, MAC address hiding, signal power fluctuations, link

padding, and others are of limited effectiveness in 802.11-style setting. For this, we

assume that the sensors used do not make use of information that can be hidden

by anonymity measures. Therefore we assume that sensors have no access to header

data, such as sender or receiver information, or packet data, or signal strength, or

directional information.

In general, schemes that rely on physical-level, analog signals require large vol-

umes of data to be transfered over the wireless sensor network for further analysis. In

comparison, the schemes proposed in Chapter VI rely on highly aggregated packet-

count data which can be easily propagated across a low-bandwidth infrastructure.
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Spatial and temporal redundancy of the packet-count data from different sensors can

be exploited to further reduce traffic volume by using compression methods such as

ESPIHT [49].
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CHAPTER III

WEAKNESSES IN CURRENT ANONYMOUS COMMUNICATION SYSTEMS

A. Motivation

In this chapter, we study to which level current anonymous communication systems

can achieve anonymity. Little is known about the effectiveness of mixes in providing

anonymity. Although significant efforts have been put forth in researching anony-

mous communication since Chaum, only recently systematic studies have appeared

to quantitatively capture the effect of the traffic perturbation caused by the various

mechanisms in the mixes (batching, pooling, and so on) on the anonymity degree.

As we will describe in subchapter III.E.3 any such disturbance of traffic can lead to

a decrease in the goodput as perceived by users, and the desired level of anonymity

must be traded off against this cost. Quantitative studies on the effectiveness of

anonymity measures are therefore important to assess the improvement of anonymity

that one attains for any given cost. Moreover, few quantitative guidelines exist on

how different perturbation mechanisms perform. In fact, a number of current anony-

mous communication systems (for example Tarzan [21]) employ rather heavy-handed

methods, such as link padding (generating large amounts of dummy traffic in addition

to any cross traffic already present in the network to confuse the observer) as defense

against traffic analysis, with little regard for cost and without a clear understanding

of how these measures actually benefit anonymity in the system. This chapter fo-

cuses on the quantitative evaluation of mix performance. We focus our analysis on

a particular type of attack, which we call flow correlation attack. In general, flow

correlation attacks attempt to reduce the anonymity degree by estimating the path

of flows through the mix network. Flow correlation analyzes the traffic on a set of
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links (observation points) inside the network, and estimates the likelihood for each

link to be on the path of the flow under consideration. An adversary analyzes the

network traffic with the intention of identifying which of several output ports a flow

at an input port of a mix is taking. Obviously, flow correlation helps the adversary

identify the path of a flow and consequently reveal other mission critical information

related to the flow, such as the sender and receiver.

B. Network Model

1. Mix and Mix Network

A mix is a relay device for anonymous communication. Figure 1 shows the commu-

nication between users that use a single mix. Such a mix can achieve a certain level

of communication anonymity: The sender of a message attaches the receiver address

to a packet and encrypts it using the mix’s public key. Upon receiving a packet, a

mix first decodes the packet. Different from an ordinary router, the mix usually will

not relay the received packet immediately. Rather, it collects several packets and

then sends them out in a batch1. The order of packets may be altered as well. Tech-

niques such as batching and reordering are considered necessary techniques for mixes

to prevent timing-based attacks. The main objective of this chapter is to analyze the

effectiveness of mixes against a special class of timing-based attacks.

A mix network consists of multiple mixes that are inter-connected by a network.

A mix network may provide enhanced anonymity, as payload packets may go through

multiple mixes. Even in such a mix network it is important that each individual

mix provides a sufficient level of anonymity at an acceptable cost so that the end-to-

1.In this section we focus our attention on so-called batching mixes. Other types
of mixes for example stop-and-go or continuous mixes, exist which use per-packet
schemes to perturb the traffic.



18

 

 

S2 

R1 S1 

R2 

Mix M 
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end performance can be guaranteed. Thus, our analysis on a single mix provides a

foundation for analyzing the end-to-end performance of mix networks. In fact, if we

view a mix network (for example Onion routing [2]) as one super mix, the analytical

techniques in this chapter can be directly applied.

2. Batching Strategies for a Mix

Batching strategies are designed to prevent not only simple timing analysis attacks

but also many other forms of attacks ([12, 13]). Serjantov [12] summarizes seven

batching strategies that have been proposed in the literature. These seven batching

strategies are listed in Table I, in which batching strategies from S1 to S4 are denoted

as simple mix, while batching strategies from S5 to S7 are denoted as pool mix. Our

results show that these strategies may not work under certain timing analysis attacks.

From Table I, we can see that the sending of a batch of packets can be triggered

by a number of different events, e.g., queue length reaching a pre-defined threshold,

a timer having a time out, or some combination of these two.

Batching is typically accompanied by reordering. In this chapter, the attacks

focus on the traffic timing characteristics. As reordering does not change packet

interarrival times much for mixes using batching, these attacks (and our analysis)
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Table I. Batching Strategies [12]

Glossary

n queue size

m threshold to control the packet sending

t timer’s period if a timer is used

f the minimum number of packets left in the pool for pool Mixes

p a fraction only used in Timed Dynamic-Pool Mix

Algorithms

Strategy Name Adjustable Algorithm

Index Parameters

S0 Simple Proxy none no batching or reordering

S1 Threshold Mix < m > if n = m, send n packets

S2 Timed Mix < t > if timer times out, send n packets

S3 Threshold Or

Timed Mix

< m, t > if timer times out, send n packets; elseif

n = m {send n packets; reset the timer}
S4 Threshold and

Timed Mix

< m, t > if (timer times out) and (n ≥ m), send

n packets

S5 Threshold Pool

Mix

< m, f > if n = m + f , send m randomly chosen

packets

S6 Timed Pool Mix < t, f > if (timer times out) and (n > f), send

n − f randomly chosen packets

S7 Timed Dynamic-

Pool Mix

<

m, t, f, p >

if (timer times out) and (n ≥ m + f),

send max(1, �p(n − f)�) randomly cho-

sen packets
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are largely unaffected by reordering. Thus, our results are applicable to systems that

use any kind of reordering methods. As such, in the rest of this chapter, we will not

discuss reordering techniques further.

Any of the batching strategies can be implemented either at link-level or inside

the mix:

• Link-Based Batching: With this method, each output link has a separate queue.

A newly arrived packet is put into a queue depending on its destination (and

hence the link associated with the queue). Once a batch is ready from a partic-

ular queue (per the batching strategy), the packets are taken out of the queue

and transmitted over the corresponding link.

• Mix-Based Batching: In this batching scheme, the entire mix maintains a single

queue of packets. The selected batching strategy is applied to this queue. That

is, once a batch is ready (per the batching strategy), the packets are removed

from the queue and transmitted over the appropriate links, based on the packets’

destination.

Each of these two methods has its own advantages and disadvantages. The

control of link-based batching is distributed inside the mix and hence it may have

good efficiency. On the other hand, mix-based batching uses only one queue and

hence is easier to manage. We consider both methods in this chapter.

C. Threat Model

In this chapter, we assume that the adversary applies a timing analysis attack on

some sample of observed traffic ([50, 51]). We summarize the threat model as follows.

The adversary observes input and output links of a mix, collects the packet

interarrival times, and analyzes them. This type of attack is passive, since traffic is
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not actively altered (by, say, dropping, inserting, and/or modifying packets during a

communication session), and is therefore often difficult to detect. This type of attack

can be easily staged on wired and wireless links [52] by a variety of agents, such as

malicious ISPs or governments [53]. We make the simplifying assumption that the

traffic characteristic of the flow under consideration (the input flow) is known. This

can be the case for example because the flow traffic characteristic is indeed observable

at the input or at the input of the mix network.

To maximize the power of the adversary, we assume that she makes observations

on all the links of the mix network. Such an adversary is called global as opposed to

a local adversary, which has access to a single observation point, or maybe a small

collection thereof.

The mix’s infrastructure and strategies are known to the adversary. This is a

typical assumption in the study of security systems.

The adversary cannot correlate (based on packet timing, content, or size) a packet

on a input link to another packet on the output link. Packet correlation based on

packet timing is prevented by batching, and correlation based on content and packet

size is prevented by encryption and packet padding, respectively. Padding of packets

is achieved by appending random data at the end of packets as appropriate to ensure

that all packets have the same length. It is the intent of the attack to correctly

correlate these packets without access to this data.

There has been some discussion about the benefit of link padding with dummy

packets. In such a system, additional packets are generated by mixes to further

increase the number of packets on the links and so make traffic analysis harder. To

simplify the following discussion, we assume that dummy traffic is not used in the

mix network. Some of the modern anonymous communication systems such as Onion

Routing [54] and Tor [23] do not use dummy traffic because of its heavy consumption
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of bandwidth and the general lack of understanding of to what extent exactly dummy

packets contribute to anonymity.

Finally, we assume that the specific objective of the adversary is to identify the

output link of a traffic flow that appears on an input link. Others have described

similar attacks, but under simplified circumstances. Serjantov and Sewell [33], for

example, assume that the flow under attack is alone on a link thus making its traffic

characteristics immediately visible to the attacker. In this chapter, we consider flows

inside (potentially large) aggregates, thus making the attack generally applicable.

D. Traffic Flow Correlation Techniques

This section discusses the traffic flow correlation techniques that may be used by the

adversary either to correlate senders and receivers directly or to greatly reduce the

searching time for such a correlation in a mix network.

1. Overview

Recall that the adversary’s objective is to correlate an incoming flow to an output

link at a mix. We call this flow correlation. This kind of flow correlation attack is

harmful in many scenarios. For example, in Figure 1, the adversary can discover the

communication relationship between senders (S1 and S2) and receivers (R1 and R2) by

matching senders’ output flows and receivers’ input flows. Using the flow correlation

attack techniques, the adversary can determine a flow’s sender and receiver if she

catches a fragment of the flow in the mix network, thus breaking the anonymity

despite the mix network. In a mix network, the adversary can even reconstruct the

path of this connection by using flow correlation techniques. This subsection discusses

the attack in more detail.
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(1) Data Collection. 

(2) Flow Pattern Vector Extraction based 
on the knowledge of the Mix’s batching 
strategies. 

(3) Distance Function Selection to 
measure the similarity between two flows. 

(4) Flow Correlation. 

Fig. 2. Typical Flowchart for Flow Correlation

Figure 2 shows a flowchart of the typical procedure that the adversary may use

to perform flow correlation. We now describe each step in detail.

a. Step 1: Data Collection

We assume that the adversary is able to collect information about all the packets on

both input and output links. For each collected packet, the arrival time is recorded

using tools such as tcpdump [55] and Cisco’s NetFlow [56]. We assume that all the

packets are encrypted and padded to the same size, and hence only arrival time is of

interest. The arrival times of packets at input link i form a time series

Ai = (ai,1, · · · , ai,n) , (3.1)

where ai,k is the arrival time of the kth packet at input link i, and n is the size of

the sample collected during a given sampling interval. Similarly, the arrival times of

packets at output link j form a time series

Bj = (bj,1, · · · , bj,m) , (3.2)
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where bj,k is the arrival time of the kth packet at output link j, and m is the size of

the sample collected during a given sampling interval. The packets leave the mixes

in batches. The length of time packets are queued for batching has to be sufficiently

short as to not to interfere with latency requirements. The length of a sampling

interval is therefore usually much longer than the duration of a batch. Hence, a

sampling interval typically contains many batches.

b. Step 2: Flow Pattern Vector Extraction

With the above notation, the strategy of the adversary is to analyze the time series

Ai and Bj in order to determine if there is any “similarity” between an input flow

and an output flow of the mix. However, a direct analysis over these time series will

not be effective. They need to be transformed into so called pattern vectors that can

facilitate further analysis. We have found that effective transformations depend on

the particular batching strategies utilized by the mix. In Section 3, we will discuss

specific definitions of transformations for different batching strategies. Currently, for

the convenience of discussion, let us assume that Ai is transformed into pattern vector

Xi = (xi,1, · · · , xi,q), and time series Bj is transformed into Yj = (yj,1, · · · , yj,q). For

simplicity we assume that the two pattern vectors have the same length.

c. Step 3: Distance Function Selection

We define the distance function d(Xi, Yj), which measures the “distance” between an

input flow at input link i and the traffic at output link j. The smaller the distance,

the more likely the flow on an input link is correlated to the corresponding flow

on the output link. Clearly, the definition of the distance function is the key in

the correlation analysis. Section 2 will discuss two effective distance functions: one is

based on mutual information and the other is based on the frequency-spectrum-based
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matched filter.

d. Step 4: Flow Correlation

Once the distance function has been defined between an input flow and an output

link, we can easily carry out the correlation analysis by selecting the output link

whose traffic has the minimum distance to input flow pattern vector Xi.

2. Flow Pattern Vector Extraction

In this subsection, we discuss how to choose pattern vectors Xis and Yjs. We will start

with pattern vectors for the output link traffic first. Recall that batching strategies

in Table I can be classified into two classes: threshold-triggered batching (S1, S3,

and S5)
2 and timer-triggered batching (S2, S4, S6 and S7). We will see that different

classes should have different transformation methods.

For threshold-triggered batching strategies, packets come out from the mix in

batches. Hence, the inter-arrival time of packets in a batch is determined by the

transmission latency, which is independent of the input flow. Thus, the useful in-

formation to the adversary is the number of packets in a batch and the time elapses

between two batches. Normalizing this relationship, we define the elements in pattern

vector Yj as follows:

Yj,k =
Number of packets in batch k in the sampling interval

(Ending time of batch k) - (Ending time of batch k-1)
(3.3)

In the calculation, we may need to truncate the original time series

Bj = (bj,1, bj,2, · · · , bj,n) so that only complete batches are used.

2S3 could also be classified as timer-triggered. However, we treat it as threshold
triggered because it may send out a batch when the number of packets received by
the mix has reached the threshold.



26

For timer-triggered batching strategies, a batch of packets is sent whenever a

timer fires. The length of the time interval between two consecutive timer events

is a pre-defined constant of length δ. To compute the pattern vector, we partition

the time line into slots of length δ. Thus, following a similar argument made for the

threshold-triggered batching strategies, we define the elements in pattern vector Yj

as follows:

Yj,k =
Number of packets in the kthtime slot

δ
(3.4)

Again, in the calculation, we may need to truncate the original time series Bj so

that only complete batches are used.

For the traffic without batching (i.e., the baseline strategy S0 in Table I), we use

similar methods defined for timer-triggered batching strategies as shown in (3.4).

The basic idea in the methods for extraction of pattern vectors is to partition

a sampling interval into multiple sub-intervals and calculate the average traffic rate

in each sub-interval. The above two methods differ on how to partition the interval,

depending on which batching strategy is used by the mix. We take a similar approach

to extract pattern vectors Xi at the input of mixes. Again, the specific method of

sub-interval partition depends on how the mix is batching the packets.

3. Distance Functions

In this chapter, we consider two kinds of distance functions: the first is based on

a comparison of mutual information and the second on frequency analysis. The

motivation and computation methods are given below.
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a. Mutual Information

Mutual information is an information-theoretical measure of the dependence of two

random variables. In our scenario, we can view the pattern vectors that represent the

input and output flows as samples of random variables. If we consider the pattern

vectors Xi and Yj to be each a sample of the random variables Xi and Yj, respectively,

then {(Xi,1, Yj,1), · · · , (Xi,q, Yj,q)} correspond to a sample of the joint random variable

(Xi,Yj). With these definitions, the distance function d(Xi, Yj) between pattern

vectors Xi and Yj should be approximately inversely proportional to the mutual

information I(Xi,Yj) between Xi and Yj,

d(Xi, Yj) =
1

I(Xi,Yi)
= − 1∫ ∫

p(xi, yj) log
p(xi,yj)

p(xi)p(yj)

(3.5)

Here, we need to estimate marginal distributions (p(xi) and p(yj)) and their joint

distribution p(xi, yj). In this chapter, we use histogram-based estimation of mutual

information Î(Xi,Yj) of continuous distributions [57], which is given as follows.

Î(Xi,Yj) ≈
∑
u,v

Kuv

q
log

KuvN

Ku.K.v
(3.6)

where q is the sample size. The sample space is a two-dimensional plane divided

into U × V equally-sized ΔX × ΔY cells with coordinates (u, v). Kuv is the number

of samples in the cell (u, v). ΔX and ΔY have to be carefully chosen for an optimal

estimation.
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b. Frequency Analysis

We use mutual information to measure the distance in the time domain. For the

frequency domain, we use spectrum information to measure the distance between the

input and outputs. For timer-triggered batching strategies, we therefore use FFT

on the sample Xi and Yj to obtain the frequency spectrum XF
i and Y F

j . Then we

apply matched filter method over XF
i and Y F

j . We take advantage of the fact that

frequency components of the input flow traffic carry on to the aggregate flow at the

output link. Matched filter is an optimal filter to detect a signal buried in noise. It

is optimal in the sense that it can provide the maximum signal-to-noise ratio at its

output for a given signal. In particular, by directly applying the theory of matched

filters, we can define the distance function d(Xi, Yj) as the inverse matched filter

detector M(XF
i , Y F

j ),

d(Xi, Yj) =
1

M(XF
i , Y F

j )
=

1
<XF

i ,Y F
j >

||Y F
j ||

(3.7)

where < XF
i , Y F

j > is the inner product of XF
i and Y F

j , and ||Y F
j || =

√
< Y F

j , Y F
j >.

Please refer to [58] for details about the calculation of FFT over a vector.

E. Empirical Evaluation

In this section, we evaluate the effectiveness of a selection of batching strategies (listed

in Table I) for a mix under our flow correlation attacks. We will see the failure of

a mix under our traffic flow correlation attacks and batching strategies’ influence on

TCP flow performance. Our experiments reported here focus on TCP flows because

of their dominance in the Internet. However, the results are generally applicable to

other kinds of flows.
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1. Metrics

We use detection rate as a measure of the ability of the mix to protect anonymity.

Detection rate here is defined as the ratio of the number of correct detections to

the number of attempts. While the detection rate measures the effectiveness of the

mix, we measure its efficiency in terms of quality of service (QoS) perceived by the

applications. We use FTP goodput as an indication of FTP quality of service (QoS).

FTP goodput is defined as the rate at which a FTP client receives data from a FTP

server. Low levels of FTP goodput indicate that the mix in the given configuration

is poorly applicable for low-latency flow-based mix networks.

2. Experiment Network Setup

Figure 3 shows our experimental network setup. Our mix is implemented on Timesys/Real

Time Linux operating system for its timer accuracy [59]. The Mix control module

that performs the batching and reordering functions is integrated into Linux’s fire-

wall system [60] using Netfilter; we use the corresponding firewall rules to specify

what traffic should be protected. Two delay boxes D1 and D2 emulate the Internet

propagation delay on different paths.

 

D2 

D1 

 
S2 

R1 S1 

Mix M  

 

R2 

Fig. 3. Experiment Setup

The traffic flows in our experiments are configured as follows: An FTP client on
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node R2 downloads a file from the FTP server on S2. The traffic from S1 to R2 serves

as the random noise traffic to the FTP client. The traffic from node S1 to node R1 is

the cross traffic through mix M from the perspective of the FTP flow. We maintain

the traffic rate on both output links of the mix at approximately 500 packets per

second (pps). The objective of the adversary in this experiment is to identify the

output link that carries the FTP flow.

3. Performance Evaluation

a. Effectiveness of Batching Strategies

Figure 4 shows the detection rate for systems using a link-based batching strategy.

Figure 5 shows the detection rate for systems using a mix-based batching strategy

as a function of the number of packets observed. A sample may include both FTP

packets and cross traffic packets while FTP packets account for less than 20% of

the number -sample size- of packets. Parameters in the legends of these figures are

listed in the same order as in Table I. Based on these results, we make the following

observations.

• For all the strategies, the detection rate monotonically increases with increasing

amount of available data. The detection rate approaches 100% when the sample

size is sufficiently large. This is consistent with intuition, as more data implies

that there is more information about the input flow, which in turn improves the

detection rate.

• Different strategies display different resistances to flow correlation attacks. In

general, pool mixes perform better than simple mixes based on matched filter

detector.
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Fig. 4. Detection Rate for Link-based Batching

• Frequency-analysis-based distance functions typically outperforms mutual-information-

based distance functions in terms of detection rate. For many batching strate-

gies, the former performs significantly better. This is because there are phasing

issues in frequency-analysis-based attacks. Therefore, lack of synchronization

between data collected at input and output port has a minor effect on the

effectiveness of the attack.

• To compare mix-based batching strategy with link-based batching strategy, we

find that no one dominates the other.

Overall, our data shows that mix using any of the batching strategies S1, S2, · · ·,
S7 fails under the flow correlation attacks. One of the reasons is that TCP flows often

demonstrate interesting patterns such as periodicity of rate change and burstiness,

in particular when the TCP loop-control mechanism is triggered by excessive traffic

perturbation in the mixes. Figure 4 and 5 show that flow correlation attacks can well

explore this pattern difference between TCP flows.
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Fig. 5. Detection Rate for Mix-based Batching

b. Efficiency of Batching Strategies

As batching delays packets, one should expect that the overall performance (in terms

of throughput) of TCP connections will be impacted by the mixes along their path.

Figure 6 quantitatively shows the degradation of FTP goodput for a mix using dif-

ferent batching strategies.

In Figure 6, we compare FTP goodput between a strategy without any batching

(S0) and other batching strategies (S1, S2, · · · , S7 ). We still use the network setup in

Figure 3. The traffic other than FTP is configured as follows: 400pps from S1 to R1

and 500pps from S2 to R2. Based on these experiments and the results illustrated in

Figure 6, we make the following observations:

• FTP goodput is decreased because of the use of batching.
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Fig. 6. FTP Goodput

• Different batching strategies have different impact on the FTP goodput. In

general, pool batching strategies (strategy S5 to S7) cause a worse FTP goodput

than simple batching strategies (strategy S1 to S4).

• When the batching in the mixes is excessively aggressive, that is, when batching

intervals are too long or threshold values too high, the batching interferes with

the time-out behavior of TCP and FTP, and in some cases, FTP aborts. This

is the case in particular for threshold triggered mixes with no cross traffic.

F. Sampling Interval Selection

1. Theory and Empirical Proof

From the evaluation above, we can see that the flow correlation attack based on

Fourier spectrum is very effective. Sampling interval plays an important role in the

effectiveness of Fourier spectrum since we calculate Fourier spectrum over a set of
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packet average rate (i.e., the flow feature vector) in the sampling interval. In this

section, we discuss how to select the sampling interval, τ , to maximize the effectiveness

of flow correlation attacks. We still use FTP as an example for the discussion.

Corollary 1 A FTP flow with round trip time RTT has a frequency component with

the maximum power density at 1/RTT . This frequency component is denoted as the

feature frequency of the FTP flow.

Please refer to Appendix A for the proof. The basic idea is that FTP uses a loop

control mechanism. For most of the life time, a FTP flow acts on the information

collected in each round trip time, thus demonstrates a strong periodicity at the round

trip time RTT.

Based on Corollary 1, we have the following theory for the selection of sampling

interval.

Theorem 1 Assuming that a stable FTP flow on the input link of a mix has a round

trip time RTT , to detect the output link of this FTP flow, we need to choose a sampling

interval τ smaller than or equal to RTT/2, i.e.,

τ ≤ RTT

2
(3.8)

Proof:

When we do sampling and calculate the average rate of a FTP flow during the

sampling interval, the process corresponds to a zero-order hold [61] sampling process.

From Corollary 1, we know that a FTP flow’s feature frequency is at 1/RTT , which

we have to preserve for the best effectiveness of flow correlation attack. Nyquist’s

sampling theorem [61] tells us that to preserve this feature frequency, the sampling
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rate 1/τ should be at least 2 times the feature frequency. That is,

1

τ
≥ 2

1

RTT
(3.9)

Thus

τ ≤ RTT

2

Approximately, we can apply Theorem 1 to all the strategies. Figure 7 and 8

show detection rate in terms of sampling interval. RTT of this FTP flow in question is

around 300 milliseconds. We can see that the maximum detection rate does happens

at RTT/2 = 150 milliseconds.
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Fig. 7. Detection Rate in Terms of Sampling Interval Based on Matched Filter
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Fig. 8. Detection Rate in Terms of Sampling Interval Based on Mutual Information

In theory, we can use any sampling interval smaller than half of RTT. In practice,

because there exists all kinds of interference from mixes and operating systems, which

may introduce high-frequency noise in frequency domain, we prefer to use a sample

interval between [RTT/2, RTT/4]. In this way, the zero-order hold operator acts as

a low-pass filter with frequency response

H(f, τ) = e−
j2πfτ

2

[
2 sin(2πfτ

2
)

2π

]
, (3.10)

Recall τ is the sample interval. The main lobe of |H(f, τ)| is in the range |f | < 1
τ
.

Thus, our sampling process will smooth the original instantaneous rate and remove

a lot of noise. This will help the flow correlation attacks. Figures 7 and 8 show

the noise’s influence on detection rate: when τ is much smaller than RTT/2, the

detection rate becomes bad.
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2. Discussion

One important point is that in practice, the adversary does not know the exact RTT

of special FTP flows. But what the adversary can do is to a priori investigate the

mix network and get a rough picture of possible FTP flow RTTs. The sampling

interval can be half of the smallest of the possible RTTs or the one which gives the

best detection rate. So we can see that flow correlation attacks can even help the

adversary to find the concrete RTT of a FTP flow.

Figures 7 and 8 also demonstrate very complicated relationship between detection

rate and sampling interval. A possible reason causing this is: although it has a feature

frequency component at 1/RTT , a FTP flow in reality is very complicated. There

may exist some minor feature frequencies which are enough to differentiate a FTP

flow from others. Figure 9 demonstrates a FTP flow’s complicated power spectrum.
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G. A Countermeasure and Its Performance

From the discussion above, it is apparent that traditional batching strategies and

reordering are not sufficient for mixes to effectively counter flow correlation attacks.

Additional measures are needed. In this section, we introduce a relatively efficient

and effective countermeasure and evaluate its performance in terms of FTP goodput.

1. Overview

To counter flow correlation attacks, the perfect way is that the input flow vector Xi

should have the same distance with each of l output flow vectors Y1, · · · , Yl,

d(Xi, Y1) = · · · = d(Xi, Yj) = · · · = d(Xi, Yl), (3.11)

and the only analysis strategy for an adversary would be to randomly guess which

output flow is correlated to an input flow. This results in a detection rate of 1
l
.

Recall in (3.5), the distance is defined as the inverse of mutual information of an

input flow vector and output flow vector. Thus, one way to achieve (3.11) is to make

the input flow vector Xi have the same mutual information with each of l output flow

vectors Y1, · · · , Yl,

I(Xi, Y1) = · · · = I(Xi, Yj) = · · · = I(Xi, Yl) (3.12)

There are a few ways to achieve (3.12) based on the properties of mutual infor-

mation:

• Make I(Xi, Y1) = · · · = I(Xi, Yj) = · · · = I(Xi, Yl) = 0. That is, we make the

input flow independent from the output flows. In general, this approach incurs a

high cost since we have to shape the input flow and outflow completely different

from each other by delaying traffic and inserting a large number of dummy
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packets. Tarzan [21]) uses this method. It pads all the edges of a connected

(but not fully connected) graph of the mix network to achieve a predefined

traffic pattern.

• Make I(Xi, Y1) = · · · = I(Xi, Yj) = · · · = I(Xi, Yl) �= 0. There are two ways:

– Make I(Xi, Y1) = · · · = I(Xi, Yj) = · · · = I(Xi, Yl) = H(Xi). One way to

do this is to broadcast the input traffic to all the output links. This will

increase an heavy overhead obviously.

– Make I(Xi, Y1) = · · · = I(Xi, Yj) = · · · = I(Xi, Yl) < H(Xi). What

we have to do is to have all the output flows look identical. Following

this analysis, below we develop an adaptive mix output traffic shaping

algorithm to reduce the overhead of dummy packets.

2. Adaptive Mix Output Traffic Shaping Algorithm

Because naturally the rates of traffic along all the output links of a mix are different,

we have to appropriately insert dummy packets to make all the output flows behave

in the same way. A challenge here is to insert a minimum number of dummy packets.
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Fig. 10. Network Setup for the New Countermeasure

Such an output-control algorithm is illustrated in Figure 10. Mix M maintains

two output queues, Q1 for the link between Mix M and node R1, and Q2 for the link
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between Mix M and node R2. At any time, if each queue has a packet, they are sent

out in some pre-defined order, e.g., the packet in Q1 first and the packet in Q2 second.

By doing so, one of the two queues will be always empty. Let us say, for the moment,

that Q2 is empty. A deadline is assigned to each packet waiting in Q1. If a packet in

Q1 reaches its deadline, a dummy packet will be generated for Q2. Then, the payload

packet from Q1 and the dummy packet from Q2 are sent out in the predefined order.

A dummy packet will also be generated for Q2 if the queue length of Q1 goes beyond

a preset threshold. In this way, we can ensure a maximum delay on each packet, and

we also guarantee that neither queue will overflow.

Data : queues, in which packets are kept in deadline order by the mix
Result : synchronized flows out of the mix
while (1) do

if (��.Length � 0) and (��.Length � 0) then
send the first packet from ��;
send the first packet from ��

else
if (��.Length � 0) then

if (��.FirstPacket.Deadline � CurrentTime) or (��.Length � ��.Threshold)
then

send the first packet from ��;
send a dummy packet for ��

end
else

if (��.Length � 0) then
if (��.FirstPacket.Deadline � CurrentTime) or (��.Length �

��.Threshold) then
send a dummy packet for ��

send the first packet from ��;
end

end
end

end
end

Fig. 11. Algorithm for Output Traffic Control

Figure 11 gives the new countermeasure algorithm on Mix M for the anonymity

system in Figure 10. We can see that the output traffic of the Mix is now synchronized,

and the adversary cannot observe any difference among the output flows.
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This method can be easily extended and optimized for more complicated cases.

The number of virtual output links of a mix can be very large since we assume a

peer-to-peer mix network. Since we only maintain virtual queues, the overhead is

limited. In the case of a large network with a small number of flows, there still needs

to be a lower bound LBQ of the number of virtual queues required for each mix to

maintain anonymity. In other words, we do not necessarily need to synchronize every

output link when traffic is slow, but we will synchronize a minimum number LBQ

of links. For example, if there is one virtual queue with a packet whose deadline is

reached, we have to send out dummy packets to the other LBQ − 1 virtual links.

Output traffic control is not new and has been proposed for example in [62],

where messages at the output ports are forwarded periodically3. The algorithm in

Figure 11 is more efficient and probably more effective than the approach described in

[62]. It is more efficient because packets are forwarded based on each queue’s status:

once each queue has payload packets, the first packet in each queue is sent out and

packets suffer smaller delay at Mixes. It is likely more effective because periodic

traffic patterns are very difficult to generate with sufficient accuracy. We showed in

NetCamo [51, 63], for example, how high-accuracy traffic analysis can easily break

periodic link padding schemes.

3. Performance Evaluation of Output Traffic Control

We are interested in how traffic flows traversing a mix affect each other. In partic-

ular, we evaluate the TCP performance. Again FTP is used as an example in the

evaluation.

Figure 12 gives the FTP goodput measurement for our new scheme for the net-

3The paper is too vaguely written for us to figure out exactly what forwarding
mechanism is used.
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work setup in Figure 10. We set the threshold of each queue at 50 packets. The path

from S2 to R2 has FTP traffic and UDP traffic of 400pps. Cross traffic in Figure 12

refers to the UDP traffic along the path S1 to R1. Both paths have a propagation

delay of 0.3 second. We have the following observations from these experiments.
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Fig. 12. FTP Goodput Using Output Traffic Control (“clean” means no output traffic

control)

While not evident from Figure 12, the observed detection rate of the correlation

attack is 50% in all the cases when the new countermeasure is used. This is expected,

as the new method can guarantee a detection rate of 1/LBQ where LBQ = 2 in this

case.

The goodput for the clean FTP is 114,628.83 bytes/s. When the delay parameter

is set to 0.01s, the same goodput is achieved as long as the cross traffic is less than 525

pps. This is very significant. It indicates that, once the delay parameter is properly

selected, our new method can achieve high throughput (as high as the case without

mix) while guaranteeing a low detection rate.

For the cases of delay equal to 0.01s, 0.10s, and 1.00s, right after the cross traffic

goes beyond 525 pps, all have their goodput drop rapidly. This is due to the fact
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that the cross traffic is so heavy that the FTP’s TCP protocol detects congestion and

adapts accordingly.

It is also interesting to note, that when the cross traffic is low and the value of

delay parameter is large (say, the cross traffic is less than 500 pps and delay is equal

to 0.10s or 1.00s), the goodput is low (about 93,000 bytes/s). This is consistent with

intuition: if the cross traffic is low and delay is large, then the traffic of our FTP flow

may have to wait longer than in other cases, resulting in a reduction of goodput.

Finally, in the case when the value of delay parameter is small, say, equal to

0.001s, the curve of goodput is monotonically decreasing. In this case, it is likely

that a packet from the FTP flow will be transmitted due to the deadline expiration,

rather than the arrival of a packet from the cross traffic. Thus, the cross traffic always

contributes negatively to the goodput performance here by creating dummy packets.

H. Summary

We formally model the behavior of an adversary who launches flow correlation attacks.

In order to successfully identify the path taken by a particular flow, the attacker mea-

sures the similarity of traffic flows. Two classes of correlation methods are considered,

namely time-domain methods and frequency-domain methods. In the time domain,

for example, statistical information about rate distributions is collected, and mutual

information is used to identify the traffic similarity. Similarly, in the frequency do-

main, we identify traffic similarities by comparing the Fourier spectra of timing data.

Our experiments indicate that mixes with many currently used batching strategies are

weak against flow-correlation attacks, in the sense that attackers can easily determine

the path taken by a protected flow.

We measure the effectiveness of a number of popular mix strategies in countering
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flow correlation attacks. Mixes with any tested batching strategy may fail under flow-

correlation in the sense that, for a given flow over an input link, the adversary can

effectively detect which output link is used by the same flow. We use detection rate,

the probability that the adversary correctly correlates flows into and out of a mix. as

the measure of success for the attack. We will show that, given a sufficient amount of

data, known mix strategies fail, that is, the attack achieves close to 100% detection

rate. This remains true, even in batching strategies that sacrifice QoS concerns (such

as a significant TCP goodput reduction) in favor of security.

While many mix strategies rely on other mechanisms in addition to batching

alone, it is important to understand the vulnerabilities of batching. In fact, for a

given accuracy of collected data, the effectiveness of such attacks depends primarily

on the amount of collected data, i.e. on the length of the observation interval. In our

experiments, we illustrate this dependency between attack effectiveness for various

batching strategies and the amount of data at hand. These results should guide

designers of anonymous communication systems in the educated choice of strategy

parameters, such as for striping or for path rerouting.

We have analyzed mix networks in terms of their effectiveness in providing

anonymity and quality-of-service. Various methods used in mix networks were con-

sidered: seven different packet batching strategies and two implementation schemes,

namely the link-based batching scheme and mix-based batching scheme. We found

that mix networks that use traditional batching strategies, regardless of the imple-

mentation scheme, are vulnerable under flow correlation attacks. By using proper

statistical analysis, an adversary can accurately determine the output link used by

traffic that comes to an input flow of a mix. The detection rate can be as high as 100%

as long as enough data is available. This is true even if heavy cross traffic exists. The

data collected in this chapter should give designers guidelines for the development
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and operation of mix networks.

The failure of traditional mix batching strategies directly leads us to the forma-

tion of a new packet control method for mixes in order to overcome their vulnerability

to flow correlation attacks. Our new method can achieve a guaranteed low detection

rate while maintaining high throughput for normal payload traffic. Our claim is val-

idated by extensive performance data collected from experiments. The new method

is flexible in controlling the overhead by adjusting the maximum packet delay.
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CHAPTER IV

MODELING THE EFFECTIVENESS OF TIMING ATTACKS

A. Motivation

In Chapter III it has been shown that flow correlation attack could seriously degrade

the effectiveness of flow-based anonymity communication systems. In this chapter,

we describe a framework for the analytical evaluation of mix networks under flow

correlation attack. Our analytical model provides anonymity network designers a

guideline in assessing the anonymity provided by the network.

The modeling framework proposed in this chapter is very general. It is not only

applicable to the mixes using batching strategies described in Chapter III but also ap-

plicable to other types of mixes as well, such as stop-and-go mixes [36] and continuous-

time mix [35]. The concept of continuous-time mix is introduced by Danezis in [35].

Danezis proved that the optimal mix strategy (i.e. the strategy that maximizes

anonymity) for continuous-time mix is the Exponential Mix, i.e. a Stop-and-Go Mix

that delays packets individually according to an exponential distribution. In this

chapter we also applied our modeling framework to the Exponential Mix.

B. Flow Correlation Attack Revisited

In this section, we will first revisit the flow correlation attack method based on mutual

information and then formulate the modeling problem.
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1. Problem Definition

Define a traffic flow as a series of packets exchanged between a sender (Alice) and a

receiver (Bob) in the network1. For the attacker who reconstructs the path of a flow, a

fundamental question must be answered: Given a flow, f , into a mix or mix network,

which output link does the flow take? For example, consider the simplified scenario in

Figure 13, where f ′, c′1,..., c′4 are output flows of input flows f , c1, ..., c4, respectively.

The goal of the adversary is to determine whether input flow f , after passing through

the mix, goes through linkM→R1 (link from mix M to R1) or linkM→R2 .

Flow f is not alone in the mix network: First, it is typically not alone on the

input link to the mix. Second, significant cross traffic either naturally exists, or

is generated by the mix network. We therefore have to assume that there is cross

traffic (for example, denoted by c1, c2, c3, and c4 in Figure 13) interfering with the

correlation analysis. In the experiments we will focus on scenarios where long-term

average traffic rates on all the output links (for example, linkM→R1 and linkM→R2

in Figure 13) are identical. This renders simple statistical attacks, such as average

traffic rate based attacks in [33], invalid. In this section, we will always use the setup

of Figure 13 as an example to demonstrate our analysis technique.

2. Flow-Correlation Attack Algorithm

To determine which output link the input flow f uses, an adversary has to collect

information and make a determination based on some statistical analysis. In this

chapter, we consider the case where the adversary adopts the method based on mutual

1Such a flow can be either a TCP connection or a segment of UDP packets that
are part of a VOIP connection, or any other sequence of packets that represent a
communication session. In the experiments described later we are using the traffic
from a FTP session as the flow.
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Fig. 13. Mix Setup and Flow Configuration

information of the input flow and the aggregate flows on each output link and chooses

the output link whose aggregated flow has the biggest mutual information with the

input flow. Specifically, using Figure 13 as the example, the adversary will collect

a traffic sample from both input and output links. Then, she calculates mutual

information I(f, lM→R1) and I(f, lM→R2), where lM→R1 = f ′+c′1+c′4 is the aggregated

flow on linkM→R1 and lM→R2 = c′2+c′3 is the aggregated flow on linkM→R2 . A decision

will then be made in the following way: if I(f, lM→R1) > I(f, lM→R2), the adversary

will declare linkM→R1 as f ’s output link. Otherwise, linkM→R2 will be chosen.

The rationale for comparing mutual information is that the correct output link

carries the flow, embedded in cross traffic: The input flow and the aggregate output

flow are therefore not independent and thus display a non-zero mutual information.

In Figure 13, it is statistically likely that input flow f is more similar to the aggregated

flow lM→R1 on linkM→R1 than the aggregated flow lM→R2 on linkM→R2 since f ′ is in

lM→R1
2.

2We tacitly assume that incoming flows are unrelated and thus statistically inde-
pendent from each other.
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3. Mutual Information Estimation

From the discussion above, we can see that an accurate estimation of mutual in-

formation of input and output traffic is critical for the effectiveness of the type of

flow-correlation attacks considered here. In order to develop a model for the ef-

fectiveness of attacks and of counter measures it is therefore important to in turn

develop a model for the accuracy of the mutual information estimator available to

the attacker.

We assume that the adversary uses the following packet counting scheme to

estimate the mutual information between the input flow f and any aggregated flow l

on an output link.

• The adversary collects (by, say, monitoring the packets on a link) a sample of

traffic traces of the input flow f and the aggregated flow l.

• Each traffic trace is divided into time segments. The length of the segments

is T , which is denoted as sampling interval. The number of the segments in a

trace is denoted N and is called sample size in this chapter.

• The number of packets in each segment of both traces is counted. Let a and b

represent the random variables of the numbers of packets in a segment of traffic

trace from an input flow and output link aggregated flow, respectively.

Two time series can be obtained:

– The input flow packet count time series

fT = {a1, · · · , aN}

is the series of number of packets ai in the ith segment of the input traffic
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flow trace. Note that ai ∈ {0, · · · , r}, where

r = max(a) . (4.1)

– The output link aggregated flow packet count time series

lT = {b1, · · · , bN}

is the series of number of packets bi in the ith segment of the output link

traffic flow trace. Note that bi ∈ {0, · · · , s}, where

s = max(b) . (4.2)

• Based on the time series fT and lT , a joint time series is developed as follows:

JT = {(a1, b1), · · · , (aN , bN)} (4.3)

where ai and bi are elements in time series of fT and lT , respectively.

• Finally, the mutual information of the input flow and the output link flow is

estimated by the following formula:

Î(f, l) ≈
r∑

a=0

s∑
b=0

p̂(a, b) log
p̂(a, b)

p̂(a)p̂(b)
(4.4)

where p̂(a), p̂(b), and p̂(a, b) are the frequencies of a, b, and (a, b) within fT , lT ,

and JT , respectively.3

3In the following we will need to distinguish the frequency of an event as sampled
from the collected data from the underlying distribution of the same event. We use
the notation p̂ for the frequency and p for the underlying distribution. Similarly, we
use Î to denote the estimated mutual information based on the sampled time series f
and l. We denote the actual mutual information based on the underlying distributions
as I.



51

C. Derivation of Detection Rate

The detection rate v measures the effectiveness of the attack and is defined as the

probability that the adversary correctly recognizes the output link of the input flow

f . Without loss of generality, we assume that the input flow f uses the mix’s first

output link i.e. linkM→R1 in Figure 13. Based on the algorithm described in Section

B.2, the general formula to compute detection rate is as follows:

v = Pr
(
Î(f, lM→R1) > Î(f, lM→R2), · · · , Î(f, lM→R1) > Î(f, lM→Rn)

)
(4.5)

In the following we derive a formula to estimate v as a function of the type of

traffic in the network and of the mix’s traffic perturbation strategy.

1. Distribution of the Mutual Information

The attacker makes her decision by comparing the estimated mutual information,

based on the sampled data, instead of actual mutual information based on the under-

lying probability. The effectiveness (i.e. the detection rate) of the attack therefore

suffers if insufficient data is available. In the following we will show how the amount

of available trace data affects the detection rate of the attack. For this we will show

how the estimated mutual information based on histograms of collected trace data

affects Equation (4.6) and (4.7). We will also show that the attack is correct; that is,

with sufficient trace data available the effectiveness of the attack approaches 100%.

To calculate the detection rate by using (4.5), we need to obtain the probability

distribution function of the mutual information estimation Î(f, l) in (4.4). According

to the Central Limit Theorem, for a sufficiently large sample size N , Î(f, l) should

satisfy a normal distribution. To obtain the distribution function, we therefore only

need to estimate Î(f, l)’s mean and variance, which are given in Lemma 1 and Lemma
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2, respectively. Their proofs can be found in Appendix B.

Lemma 1 The mean of the mutual information estimation Î(f, l) is given by

E(Î(f, l)) ≈ I(f, l) +
(r − 1)(s − 1)

N
(4.6)

where I(f, l) is the original mutual information, and r and s are defined in (4.1) and

(4.2), respectively.

As described in (4.1) and (4.2), the value for r and s describe the range of possible

sample values observed at the input and output ports, respectively. For 10Mb/sec

links, the maximum numbers of packets observed over a 10 msec interval could be

about 10, giving rise to a value of 10 for r and s.

Lemma 2 The variance of the mutual information estimation Î(f, l) is given by

var(Î(f, l)) ≈ Cf,l

N
. (4.7)

The constant Cf,l is defined as follows

Cf,l =
∑
a,b

p(a, b)

(
log

p(a, b)

p(a)p(b)

)2

−
⎛
⎝∑

a,b

p(a, b) log
p(a, b)

p(a)p(b)

⎞
⎠2

(4.8)

where p(a, b) is the original probability distribution of (a, b).

2. Detection Rate Theorem

Based on the distribution function of the estimated mutual information, we can calcu-

late the detection rate by the following theorem. Its proof can be found in Appendix

C.

Theorem 2 For a mix with any number of output links, the detection rate, v, is
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given by

v ≈ 1 −
√

Cf,lM→R1

N
×
∫ −I(f,lM→R1

)
√

N
Cf,lM→R1

−∞
N (0, 1)dx (4.9)

where N is the sample size, I(f, lM→R1) is the mutual information of the input flow

f and its corresponding output link aggregated flow lM→R1, N (0, 1) is the density

function of the standard normal distribution, and Cf,lM→R1
is a constant.

We can make a number of observations on Theorem 2.

• No assumptions are made in Formula (4.9) about the batching strategy of the

mix or about the network topology. Theorem 2 is therefore valid for mix net-

works with arbitrary topology. Similarly, no assumption is about the type of

traffic or about the amount of cross traffic. As a result, Theorem 2 is very

general.

• Clearly, the detection rate is an increasing function of sample size N . Thus,

when sample size N increases, the detection rate approaches 100%. This for-

mally proves the intuitive fact that any mix network will fail and cannot main-

tain anonymity if the adversary has access to a sufficient amount of traffic data.

3. Joint Distribution of (a, b)

In Theorem 2, both constant C and the original mutual information I(f, l) depend on

the joint distribution function p(a, b), which in turn is defined by the strategy of the

mix network and the type and amount of traffic in the network. It can be estimated

by two methods.

a. Direct Estimation

We can estimate p(a, b) directly from the time series JT defined in (4.3). Specifically,

from JT , a frequency distribution of (a, b) can be established. Then, we can use
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standard statistical techniques to obtain an estimation of p(a, b). See [64] for details.

b. Estimation based on Poisson Assumption

The joint distribution p(a, b) can be calculated as follows:

p(a, b) = p(b|a)p(a). (4.10)

To calculate the conditional probability p(b|a) in (4.10), we need to apply proper

queuing models in accordance to mixing strategies. For example, if the input flow

is assumed to be a Poisson process, for a Simple Proxy S0, a M/D/1 queuing model

should be used. For a Timed Mix S2, we should use an embedded Markov chain.

For an exponential mix, we should use a M/M/∞ queue. Please see Appendix D,

Appendix E, and Appendix F for a detailed derivation of the probability from the

models.

D. Evaluation

In this section, we assess the accuracy of methods we developed to estimate detection

rate and to evaluate the performance of mix networks that are under flow-correlation

attacks. Unless we specify otherwise, we use the popular ns-2 network simulator [65]

for the experimental evaluations. In this section, we first describe our results on mix

strategies based on batching and then describe our results for the exponential mix.

1. Evaluation on Batching-based Mix

a. Failure of Mix Network

Before we proceed to evaluate the accuracy of our predictive models for single mixes,

we provide data to validate the claim made in Theorem 2: for any size of mix network,
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given a sufficient amount of traffic data, the flow correlation attack will ultimately

achieve a detection rate of 100%.
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Fig. 14. Topology of Mix Network

The network topology for this experiment is shown in Figure 14: The senders

and receivers are connected by a stratified cascade of 2n mixes. Each flow traverses

n mixes to reach its receivers. Each link between mixes has a bandwidth of 10Mbit/s

and propagation delay of 10ms. The senders and receivers are connected to the mix

network via links with bandwidth of 100Mbit/s and propagation delay of 1ms. There

are nine flows in the network: flow S1 → R1, flow S2 → R1, flow S3 → R2, flow

S4 → R5, flow S5 → R6, flow S6 → R3, flow S7 → R4, flow S8 → R7 and flow

S9 → R8 respectively. Flow S1 → R1 , flow S2 → R1, and flow S3 → R2 traverse

odd-numbered mixes only, flow S8 → R7 and flow S9 → R8 traverses even-numbered

mixes only, flow S4 → R5, flow S5 → R6, flow S6 → R3, and flow S7 → R4 take the

zigzag path between the two horizontal lines of the mixes, and flow S1 → R1 is the

flow of interest to us. To ease the control of noise traffic rate, only flow S1 → R1 is
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TCP traffic from a FTP session and the other flows are UDP streams with Poisson

arrivals. The average traffic rate to all the receivers are adjusted to roughly five times

the average rate of flow S1 → R1. The mixes in network are all timed mixes with a

batch interval of 10ms.
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Fig. 15. Effectiveness of Flow Correlation Attack vs size of the mix network (Sample

size: number of sample intervals of length 10ms)

Figure 15 shows the detection rate of a flow correlation attack for different num-

bers of mixes in the network. The length of sampling segments is set to be 10ms. We

make the following observations:

• As stated in Theorem 2, the flow correlation attack remains effective as the

network size grows.

• In fact, the flow correlation attack achieves higher detection rates for larger mix

networks! While we have not analyzed this effect in detail, we conjecture that
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the reason is the loop-control mechanism of TCP: The more mixes are on the

path, the larger is the burstiness of the TCP flow from Alice to Bob. In turn,

this makes Alice’s flow more recognizable compared with the background noise

traffic.

b. Estimation Error of Detection Rate

In the last section, we derived formula (4.9) to compute the detection rate. This

formula is an estimated one due to, at least, the following reasons:

• Error in the Taylor Expansion: In Formula (B.2) (in Appendix A), the com-

putation of mutual information is estimated by a truncated Taylor expansion,

which introduces a certain error, given the limited number of terms.

• Error in p(a, b) Computation: As discussed in Section C.3, we introduce two

different methods to estimate p(a, b). Either one of them will contribute some

error in the estimation of detection rate.

In this subsection, we examine the accuracy of our estimation in order to ensure

the performance data we derive in this chapter is meaningful. We use the one-mix

network setup in Figure 13.

We define e, the estimation error of detection rate, as follows:

e =
| approximated detection rate − exact detection rate|

exact detection rate
(4.11)

We obtain the exact detection rate in (4.11) by simulation. In all the experiments

mentioned earlier, the traffic average rates on all output links are assumed to be

identical. This in turn prevents attacks based on analyzing average traffic rates. The

traffic type of payload flow can be either UDP or TCP, with traffic rates of 100 Kbps

and 80Kbps, respectively. Compounded with noise traffic, each output link has an
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aggregated traffic rate 500 Kbps. The length T of sampling segments is set to be

10ms.

Figure 16 depicts the estimation error in terms of sample size. From this figure,

we can make a number of observations:

• For all the traffic types and batching strategies, if the sample size is small (say,

less than 100), the estimation error may be more than 5%. Fortunately, the

estimation error diminishes and eventually approaches zero when the sample size

is sufficiently large. For example, when the sample size is 200, which corresponds

to a sample of two seconds, the estimation error for all cases is below 4%. This

observation suggests our estimation methods will be quite useful in practical

situations.

• Generally speaking, the direct estimation method results in smaller error than

the estimation by Poisson assumption. This is to be expected as the traffic on

the Internet is not inherently Poisson [66].

• In comparison with the networks using different batching strategies, the esti-

mation errors appear to be similar. However, when we compare networks with

different traffic types, the one with UDP traffic seems to result in less error.

This is, perhaps, due to the difficulty in statistical modeling of TCP traffic.

c. Detection Rate

Figure 17 shows the detection rate in terms of sample size. We can make the following

observations:

• In all cases (of different batching strategies and traffic types), the detection rate

approaches 100% when the sample size is sufficiently large. This demonstrates
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the challenges posed by flow-correlation attacks and validates the claim we made

in Section C.2.

• Even when the sample size is not too large, (say, about 200), the detection rate

can be relatively high, typically more than 90% for the shown cases.

• The implication of the above two observations is serious: A mix network would

fail to provide anonymity under the flow-correlation attacks if the adversary is

allowed to collect its sample for a time period of sufficient length. Note that,

by using our formulae, a system designer can predict the situations where the

failure may occur and invoke other countermeasures (such as shortening the

flow life time, utilizing channel hoping in wireless networks, etc).

d. Minimum Sample Size

As mentioned earlier, one way to provide a countermeasure against flow-correlation

attacks is to reduce the flow life time and so prevent the adversary from obtaining

a sample that is sufficiently large. To provide some guidelines on this matter, we

measure m, the minimum sample size needed in order for the adversary to achieve a

given level of detection rate.

In Figure 18, we compare the systems under the measure of the minimum sample

size with different traffic type and batching strategies. A number of observations can

be made:

• In order to increase the detection rate, a larger minimum sample size is required.

For example, in Figure 18 (a), for the case of TCP traffic, when the detection

rate requirement changes from 95% to 99%, the minimum sample size increases

from about 130 to almost 200. While this observation is expected, our formulae

provide useful guidelines for system parameter selection here.
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• For UDP traffic, it seems that the batching strategy may not be effective in

terms of the minimum sample size. In other words, the difference between

Figures 18 (a) and (b) is not significant for the case of UDP traffic.

• However, the effectiveness of batching appears to be much more interesting for

the TCP traffic. We observe that the minimum sample size actually reduces

when we switch the network from using no batching (strategy S0) to using

batching strategy S2. That is, Figure 18(a) shows that when a mix network

does not use any batching and traffic is TCP, a sample of about 290 is needed

to achieve a detection rate of 99%, while in Figure 18(b), we see that for a

network that does use batching and has the similar rate of TCP traffic, the size

of sample is reduced to 210 to achieve the same detection rate of 99%. This is

counter intuitive: If we take sample size a measure for the level of difficulty for

an adversary, our data show that the adversary has more difficulty to achieve the

required detection rate in a network without batching than one with batching.

This phenomenon can be explained. When batching is performed, the TCP

traffic may start oscillation. Consequently, this oscillation provides a much

better signature for the adversary to use in the correlation of traffic on input

and output links. We believe this is an important discovery that justifies the

necessity of our modeling and evaluation in this chapter. We strongly suggest

to always make a thorough evaluation for anonymity systems to be deployed.

2. Evaluation of the Continuous-time Mix

a. Failure of the Continuous-time Mix

Experimental Results: We first show the failure of the continuous-time mix in

reality. We implemented the continuous-time mix in Timesys/RealTime Linux op-
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erating system [59]. The mix control module that performs the delay function is

integrated into the Linux firewall system [60] using Netfilter. The bandwidth of all

links is 10Mb/s. The average delay of the continuous-time mix in this subsection is

20ms.

We consider two cases here: (1) All the traffic is TCP. TTCP [67] is used to

generate TCP traffic. There are five TCP flows to Receiver Bob and R2 respectively.

One of the flow to Bob is from Alice; (2) All the traffic is UDP and Poisson. The rate

of traffic to Bob and R2 are around 650 packets/s and the rate of traffic from Alice

to Bob is around 200 packets/s.

The result of flow correlation attacks on the continuous-time mix in the testbed

is shown in Figure 19. We make the following observations:

• For the continuous-time mix, flow correlation attacks can achieve high detection

rate given access to sufficient data. Detection rate increases with the amount

of data available. This result and the experimental results in Chapter III em-

pirically give evidence for the correctness of our detection rate formula (4.9).

• Experiments with TCP flows show much higher detection rates than experi-

ments with UDP traffic. The reason for this is very likely that TCP has a

significantly stronger signatures, which are easy to detect than UDP traffic.

• Flow correlation attacks can be very efficient. Recall that we use a sampling

interval of 10ms. Thus, a sample size of 3000 corresponds to a sample length

of 30 seconds. Given access to 30 seconds of data, an attacker can achieve a

detection rate of 100% in the case of TCP traffic and a detection rate of around

90% even with such a high load of noise traffic.

Modeling Accuracy by Simulation: We use the ns-2 simulator to evaluate the

accuracy of the model described in Appendix F. We consider two cases of traffic
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load: light traffic load and heavy traffic load. We distinguish the two cases to assess

the accuracy of the M/D/1-based model for the output port, as in the case of light

traffic load, the second queue can be largely ignored. In the experiments, we vary the

link capacity instead of traffic load, with a 1Tb/s and 5Mb/s capacity for the light

and heavy load respectively. The traffic of Alice’s flow is Poisson distributed with

an average rate of 100 packet/s. The noise traffic to Receiver Bob and R2 are also

Poisson distributed with average rate 400 and 500 packet/s respectively. The link

delay between the mix and the receivers is 50ms. The links between senders and mix

have 100Mb/s bandwidth and 1ms delay. The continuous-time mix’s average delay is

set to 20ms.

Figure 20 compares the results obtained from our model and by simulation. We

make the following observations:

• The results from the model well match the simulation results. For example, the

mean estimation error is only around 5% and the estimation error never exceeds

15%.

• The detection rate is higher in the case of light traffic load. This is because for

heavy traffic load the aggregate traffic rate is comparable to the link bandwidth.

The output queue will therefore build up and so further perturb the outgoing

traffic. This reduces the dependence between the sender’s outbound flow and

the receiver’s inbound flow. Nevertheless, this effect is accurately captured by

the M/D/1 queue model in this chapter.

b. Impact of Parameter of Continuous Mix

The continuous-time mix with exponentially distributed delay has a single parameter:

the average delay tavg. Figure (21) shows the relationship between the detection rate
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and the average delay for sample size 60, 480, 3840, and 30720. The sampling interval

is set to 10ms. These sample size correspond to sample length of 0.6s, 4.8s, 38.4s and

307.2s. We make the following observations:

• Detection rate decreases as tavg increases for each case of sample size. This is

to be expected: because when tavg increases, the probability for a packet held

in the delay module or an incoming packet to leave the mix in the same sample

interval will decrease. In turn, this will cause a smaller dependence between the

flow of interest and the aggregate traffic containing the flow.

• Detection rate increases as the sample size increases when we fix tavg . This is

consistent with the results in Figure 20. Again, it is because the increase of the

amount of data for detection will cause more accurate estimation of dependency

between the flow of interest and the aggregate traffic flows.

E. Conclusion

We have analyzed the anonymity of mix networks under flow correlation attacks.

We present a formal model of the adversary and derive the detection rate as a per-

formance measure of the system. Our theory discloses the underlying principle of

flow-correlation attacks. As such, our results are the first to illustrate the quantita-

tive relationship among system parameters, such as sample size, noise level, payload

flow rate, and detection rate. Our analysis quantitatively reveals that flow-correlation

attacks can seriously degrade anonymity in mix networks. Consequently, our results

also provide useful guidelines for the design of future anonymous systems where ad-

ditional countermeasures must be taken.

In the following, we will describe another class of traffic analysis attack, the flow

separation attack.
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CHAPTER V

DATA PRE-CONDITIONING FOR TIMING ATTACKS

A. Motivation

In this chapter, we describe a class of attacks on low-latency anonymity networks

which we will call flow separation attacks. Their aim is to separate (as opposed to

identify) flows inside a network, based on aggregate traffic information only. This

attack method can also be used as a data pre-conditioning method to improve the

effectiveness of other timing attacks such as flow correlation attacks.

One of the main functions of the mix network is to mix the traffic flows and

so render senders or receivers anonymous. Mix networks typically achieve this by

perturbing the traffic in (a) the payload domain (through encryption), (b) in the

route domain (through re-routing) and (c) in the timing domain (through batching

and link padding). By using the flow separation attack, an attacker can separate the

flows based on passively collected traffic data. Further attacks by frequency spectrum

matching or time domain cross-correlation [34] can then easily determine the path of

flows in the mix network if additional knowledge about flows is available.

Another motivation stems from the flow correlation attack described in Chap-

ter III. For flow correlation attacks, we assume the attacker can obtain the packet

timing information of the flow of interest. The assumption is valid since the flow-

level information can be obtained by eavesdropping packets at the edge of anonymous

communication network. But with the aid of flow separation attack, the assumption

is not needed any more because the attacker can separate individual flows based on

the information of aggregate traffic.

The flow separation attack employs the blind source separation model [68], which
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was originally defined to solve cocktail party problem: The goal of blind source sepa-

ration in this case is to extract one person’s voice signal given a mixtures of voices.

Blind source separation algorithms solve the problem based on the independence be-

tween voices from different persons. Similarly, in a mix network, we can use blind

source separation algorithms to separate independent flows.

B. Threat Model

The threat model in this chapter is similar to the threat model described in Section

III.C with two differences as following:

• We do not need the simplifying assumption that the traffic characteristic of the

flow under consideration (the input flow) is known.

• We focus on mixes operating as simple proxy. No batching or reordering is

used. Link padding (with dummy packets) is not used either. This follows the

practice of some existing mix networks such as, Tor [23].

Given a mix with observations of aggregate traffic at input ports I1, · · · , In and

output ports O1, · · · , On, the goal of the flow separation attack is to partition the

aggregate traffic into either individual flows or small aggregates that contain the

individual flows.

C. Flow Separation in Mix Networks

In this section, we will first define the problem in the context of blind source separation

and then describe how to apply the flow separation method in a mix network.
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1. Blind Source Separation

Blind source separation is a methodology in statistical signal processing to recover

unobserved “source” signals from a set of observed mixtures of the signals. The

separation is called “blind” to emphasize that the source signals are not observed

and that the mixture is a black box to the observer. While no knowledge is available

about the mixture, in many cases it can be safely assumed that source signals are

independent. In its simplest form [69], the blind source separation model assumes n

independent signals F1(t), · · · , Fn(t) and n observations of mixture O1(t), · · · , On(t)

where Oi(t) =
∑n

j=1 aijFj(t). The goal of blind source separation is to reconstruct

the source signals Fj(t) using only the observed data Oi(t) and the assumption of

independence among the signals Fj(t). A Very nice introduction to the statistical

principles behind blind source separation is given in [69].

2. Flow Separation as a Blind Source Separation Problem

As in the previous chapters, we define a flow as a series of packets that are ex-

changed between a pair of hosts. Typically, such a flow is identified by a tuple of

source/destination addresses and port numbers. Similarly, we define an aggregate

flow at the link-level to be the sum of the packets (belonging to different flows) on

the link. We define the mix-level aggregate flow as the sum of packets through the

same input and output port of a mix. Unless specified, otherwise the word “flow” in

the remaining of this chapter means “mix-level aggregate flow” for brevity.

We will show in this chapter that, for the attacker who tries to break the

anonymity of a mix, it is very helpful to separate the flows through the mix based

on the observation of the link traffic. The separation of the flows through the mix

can recover the traffic pattern of flows, which can be used in further attacks, such as
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the frequency spectrum matching attack described in Section C.3 or the time domain

cross-correlation attack [34].

In this chapter, we are interested in the traffic pattern carried in the time series of

packet counts during each sample interval T . For example, in Figure 22, the attacker

acquires a time series O1 = [o1
1, o

1
2, · · · , o1

n] of packet counts by observing the link

between Sender S1 and the mix. We use n to denote the sample size in this chapter.

The attacker’s objective is to recover the packet count time series Fi = [f i
1, f

i
2, · · · , f i

n]

for each flow. For the simplest case, we assume that (a) there is no congestion in the

mix and that (b) the time series can be synchronized. (We will relax both assumptions

in later sections.) In the example of Figure 22, the time series F1 is contained in both

time series O1 and O3 i.e. O1 = F1 + F2, O3 = F1 + F3. For a mix with j input

ports, k output ports and m mix-level aggregate flows, we can rewrite the problem

in vector-matrix notation, ⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O1

O2

...

Oj+k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= A(j+k)×m

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1

F2

...

Fm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.1)

where A(j+k)×m is called mixing matrix in the blind source separation problem [68].

The flow separation can be solved using a number of blind source separation tech-

niques. The rationale for blind source separation relies on the fact that the aggregate

flows through a mix are independent from each other, since the aggregate flows are

from different sources. Even the flows from a same host, such as F1 and F2, can be

regarded as independent as they follow different paths and are controlled by different

sockets. This independence assumption is of course only valid as long as Sender S1

is not heavily overloaded, since otherwise one flow would influence the other. Given
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Fig. 22. An Example for Flow Model

the observations O1, O2, · · · , Oj+k, blind source separation techniques estimate the

independent aggregate flows F1, F2, · · · , Fm by maximizing the independence between

estimated aggregate flows. The common methods employed in blind source separa-

tion are minimization of mutual information [70, 71], maximization of nongaussianity

[72, 73] and maximization of likelihood [74, 75]. In the following, we need to keep

in mind that flow separation often is not able to separate individual flows. Rather,

mix-level aggregates flows that share the links at the observation points form the

minimum separable unit.

a. Practical Blind Source Separation in Mix Networks

Basic blind source separation algorithms require the number of observations to be

larger than or equal to the number of independent components. For flow separation,

this means that j + k ≥ m, where j and k denote the number of observations at

the input and output of the mix, respectively, and m denotes the number of flows.

Advanced blind source separation algorithm [76, 77] target over-complete bases prob-

lems and can be use for the case where m > j + k. But they usually require m, the

number of independent flows, to be known. Since all the mix traffic is encrypted and

padded, it is hard for the attacker to estimate m. In this chapter, we assume that

m = j + k. The cost of the assumption is that some independent flows can not be



73

separated, that is, they remain mixed after the separation step. We will see that this

is not a severe constraint, in particular not in mix networks where flows that remain

mixed in some separations can be separated using separation results from neighbor

mixes.

Unless there is multicast or broadcast traffic through the mix, the j + k obser-

vations will have some redundancy, because the summation of all the observations

on the input ports are equal to the summation of all the observations on the output

ports. In other words, the row vectors of the mixing matrix are linearly dependent.

Again, the cost of the redundancy is that some independent flows are not separated.

The flow estimation generated by blind source separation algorithms is usually

a lifted, scaled version of the actual flow (of its time series, actually). Sometimes,

the estimated flow may be of different sign than the actual flow. Both lifting and

scaling does not affect the frequency components of the time series, and so frequency

matching can be used to further analyze the generated data.

Furthermore, since the elements of the estimated mixing matrix are not binary,

it is not straightforward to tell the direction of each aggregate flow. Some heuristic

approach can be used, but we leave this to further research.

In the rest of this chapter, we will show that the issues identified above can be

largely solved with the use of appropriate frequency matching.

3. Frequency Matching Attack

After the flows have been separated, a number of flows, each with a given packet-count

time series, have been determined to traverse the mix.

Frequency spectrum matching has shown to be particularly effective to further

analyze the traffic. The rationale for the use of frequency matching is four-fold: First,

the dynamics of a flow, especially a TCP flow [78], is characterized by its periodicities.



74

By matching the frequency spectrum of a known flow with the frequency spectrums

of estimated flows obtained by blind source separation techniques, we can identify

the known flow with high accuracy. Second, frequency matching can easily remove

the ambiguities introduced by the lifting and scaling in the estimated time series

by removing the zero-frequency component. Third, frequency spectrum matching

can also be applied on the mix-level aggregate flows, since the different frequency

components in each individual flows can characterize the aggregate flow. Fourth,

the low frequency components of traffic are often not affected by congestion as they

traverse multiple switches and mixes. This is particularly the case for TCP traffic,

where the frequency components are largely defined by the behavior at the end hosts.

In summary, frequency spectrum analysis has excellent prerequisites to be highly

effective.

Even if no information is available about individual flows, the attacker can easily

determine if there is communication between two neighboring mixes. Matching the

estimated aggregate flows through the neighboring mixes can give attackers more

information, such as how many aggregate flows are going through the next mix. In

a mix network, an aggregate flow through a mix may split into aggregate flows of

smaller size, multiplex with other aggregate flows, or do both. By matching the

estimated aggregate flows through neighboring mixes, the attacker can detect the

split and multiplex. Based on the information gathered, the attacker can eventually

get a detailed map of traffic in a mix network. In Section F, we show a traffic map

obtained from the aggregate flow matching.

The sample interval T (see page 66) is important to the frequency spectrum

matching. The averaging effect of the sampling over an interval T on the frequency

spectrum matching results can be modeled as low-pass filtering. If we are matching

TCP flows, it is important to select a proper sample interval to avoid filtering out
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interesting TCP frequency components such as round trip time (RTT) and time-out

frequencies. More details on selecting T and modeling of the effect of T can be found

in Section III.F.

In the following, we will be using frequency matching of the separated flows

against the actual flows in the network to measure the accuracy of the flow separation.

The rationale for this method is that a highly accurate flow separation will result in

good matching with the component flows, whereas a poor separation will generate

separated flows that can not be matched with the actual ones.

D. Evaluation on Single Mix with Different Combinations of Traffic

In this section, we will evaluate the performance of the flow separation for a single

mix. We use the blind source separation algorithm proposed in [79] to separate the

flows. The accuracy of separation will be measured using frequency matching with

actual flows.

1. Metrics

In the following, we will adopt two metrics to evaluate the accuracy of the flow

separation. Both metrics are based on a comparison of the separated flows with the

actual flows in the mix.

As first performance metric, we use mean square error (MSE), a widely used

performance criterion in blind source separation research. Let FA = [fA
1 , fA

2 , · · · , fA
n ]

represent the time series of the actual flow and FB = [fB
1 , fB

2 , · · · , fB
n ] represent the

time series estimated by the blind source separation algorithm. To match the time

series FA with FB, we first need to scale and lift FB so that they have the same mean
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and variance.

F ′
B =

std(FA)

std(FB)
· (FB − mean(FB) · [1, 1, · · · , 1]) + mean(FA) · [1, 1, · · · , 1] , (5.2)

where std(F ) and mean(F ) denote the standard deviation and average of the time

series F , respectively. The mean square error is defined as follows:

εA,B =
‖FA − F ′

B‖2

n
. (5.3)

Since the times series FB can also be a flipped version of FA, we also need to match

FA with −FB.

As the second metric, we use what we call frequency spectrum matching rate. We

define the matching rate to be probability that the separated flow FB has the highest

frequency spectrum cross-correlation with the actual flow FA.

We note that while the mean square error captures the accuracy of the separation

in the time domain, the matching rate captures the effectiveness of the separation in

the frequency domain.

2. Experiment Setup

Figure 23 shows the experimental network setup for single mix. We use ns-2 to

simulate the network. The links in the figure are all of 10Mbit/s bandwidth and

10ms delay1 if not specifically mentioned. In the series of experiments in this section,

the mix under study has two input ports and two output ports and four aggregate

flows passing through the mix, as shown in Figure 22. We will study mixes with more

than two ports in Section E. Unless specified otherwise, we will use time observation

intervals of 32 second length and sample interval of 10ms length, resulting in time

1Senders and receivers can be at a large distance from the mix, potentially con-
necting through several routers and switches.
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Fig. 23. Experiment Setup for Single Mix

series of size n = 3200. Similar results were obtained for shorter observations as well.

3. Different Types of Traffic

In this experiment, four aggregate flows, including one FTP flow, one sequence of

HTTP requests, and two on/off UDP flows, are passing through the mix. The para-

meters for the flows are as follows: Flow 1: FTP flow, with round trip time around

80ms. Flow 2: UDP-1 flow, on/off traffic, with burst rate 2500kbit/s, average burst

time 13ms and average idle time 6ms. Flow 3: HTTP flows, with average page size

2048 byte. Flow 4: UDP-2, on/off traffic with burst rate 4000kbit/s, average burst

time 12ms and average idle time 5ms. All the random parameters for the flows are

exponentially distributed. The flows are passing through the mix as shown in Figure

22.

Figure 24 shows portions of the actual times series (Figure 24(a)) and of the

estimated time series (Figure 24(b)). From the figures, it is apparent that the flipped
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Fig. 24. Example of Flow Separation for Different Types of Traffic

version of the actual flow 3 (HTTP flows) is contained in the estimated flow 2. We

also observe the resemblance between actual flow 1 (FTP flow) and estimated flow

4. Estimated flow 1 is clearly not close to any actual flows. This is caused by the

redundancy contained in the observations, as described in Section C.2.

Figure 25 shows the separation accuracy using the two metrics defined earlier.

We note in Figure 25(b) that both the separated flow and its flipped time series is

compared against the actual flows. Both metrics can identify the FTP flow, HTTP

flows and one UDP flow. But the two metrics disagree on the other UDP flow. This

is because of the redundancy in the observations, and the two UDP flows can not be

separated. MSE fails for this case since it is designed for one-to-one flow matching

while frequency spectrum matching is more suitable for matching of flows against

aggregates. The latter case is more common in the context of flow separation.
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Fig. 25. Performance of Flow Separation for Different Types of Traffic

4. Different Types of Traffic with Multicast Flow

In this experiment, the flow UDP-1 in the previous experiment is multicast to both

output ports.

Portions of the actual flows and the estimated flows are shown in Figure 26. We

observe the correspondence between the actual flows and estimated flows easily. In

comparison with the previous experiment, we can conclude that multicast flows can

help the flow separation. The reason is that in this experiment, there is no redundant

observation when the multicast flow is passing through the mix.

MSE performance metrics in Figure 27 identify the flows successfully. Frequency

spectrum matching successfully determine the FTP and HTTP flows, but does not

perform well on the UDP flows. This is because the two UDP flows have approxi-

mately same period and the periodical behavior is not strong for exponential on/off

traffic.
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Fig. 28. Performance of Flow Separation for TCP-Only Traffic (without Multicast

Traffic)

5. TCP-Only Traffic

Since most of the traffic in today’s network is TCP traffic, we focus on TCP traffic

in the next series of experiments. All the flows in this experiment are FTP flows. To

distinguish the flows, we vary the link delays between the sender and mix, with S1

having 10ms link delay to the mix, and S2 having 15ms delay.

Figure 28 shows the flow separation performance. Since there is no multicast

traffic, the redundancy in observations results that TCP Flow 1 and TCP Flow 2

are still mixed. But the flows are identified successfully, especially by the frequency

spectrum matching method.

6. TCP-Only Traffic with Multicast Flow

In this experiment, we change one FTP flow in the previous experiment to a multicast

UDP flow. The UDP flow is exponential on/off traffic with the same parameter as

UDP-1 in the experiment of Section 3.
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Fig. 29. Performance of Flow Separation for TCP-Only Traffic (with Multicast Traffic)

Figure 29 shows the flow separation performance. Similarly to the effect of

multicast flow on different types of traffic, the four flows are separated completely

since there are no redundant observations. We can also observe that the frequency

spectrum method identifies the FTP flows successfully. But the performance on the

exponential on/off UDP flow is not as good as FTP flows because exponential traffic

flow’s frequency signature is very weak.

E. Evaluation of Scalability of Flow Separation

In this section, we focus on the scalability of flow separation. We evaluate the flow

separation performance with respect to (a) increasing the number of flows in mix-level

aggregate flows (the number of aggregate flows remains constant), (b) increasing the

number of mix-level aggregate flows, and (c) increasing the number of ports per mix.

We will show that flow separation remains effective when systems grow in terms of

nodes, flows, and amount of traffic.
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1. Experiment Setup and Metrics

In this series of experiment, the network setup is as shown in Figure 23: The setup

consists of m× j sender hosts and m× j receivers hosts. The flows from the senders

get routed through j sender-side routers (mixes) to the Mix M , which forwards the

traffic to the receiver-side routers (mixes) and finally to the receivers nodes. We note

that there is no need to investigate mixes with unequal number of input and output

ports(i.e. j �= k, since blind source separation does not distinguish input from output

anyway. All the flows are FTP flows. To distinguish different FTP flows, we add 5ms

delay incrementally to the link connected to each sender.

In this series of experiment, we will limit ourselves to frequency spectrum match-

ing results as the performance metrics, mainly because they are more suitable for

redundant observations when there is no multicast traffic. When there are more than

one flows in one mix-level aggregate flow, we will use the frequency spectrum of the

actual mix-level aggregate flow to match with the separated mix-level aggregate flows.

We will show only the maximum matching rate for each actual flow.

2. Scalability: Size of Aggregate Flows

We first leave the number of observations constant and increase the number of FTP

flows in each mix-level aggregate flow by adjusting m. The mix under study still has

two input ports and two output ports. The directions of the aggregate flows are still

as show in Figure 22. But now each aggregate will contain m
2

flows.

Figure 30 shows the performance of flow separation for different aggregate sizes.

We use < m, B, T > to represent different experiments, where B denotes the band-

width of each link in the experiment, and T denotes the sample interval.

First, we observe that for the experiments with link bandwidth 10Mbit/s and
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Fig. 30. Frequency Spectrum Matching Rate for Different Size of Aggregate Flows

sample interval 10ms, the performance decreases when the aggregate size increases.

This is because the TCP flows tends to “fill the link bandwidth” when there is enough

data to send. When the number of FTP flows increases, congestion happens, and the

time series of individual flows get perturbed as they traverse the mix. In addition,

packets get dropped, which perturbs the time series even more. The perturbation

caused by congestion and by the packet drops degrades the performance.

Second, we observe that if we increase the bandwidth from 10Mbit/s to 100Mbit/s,

the performance significantly increases for the same aggregate size and sample inter-

val. Obviously less congestion causes better performance.

Third, for the same aggregate size and link bandwidth, increasing sample inter-

vals increases the performance. Larger sampling intervals reduce the boundary effects

caused by non-perfect sampling and by lack of synchronization, and it reduces the ef-

fect of congestion as well. As a result, signal noise ratio increases and flow separation

performance increases too.
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3. Scalability: Number of Aggregate Flows and Number of Flows

In this set of experiments, we change the number of mix ports and the number of flows

through the mix. Because of the space limitation, we show three typical experiments

here.
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Fig. 31. Frequency Spectrum Matching Rate (3 × 3 mix, 6 Flows)

Figure 31 shows the performance of experiments on six aggregate flows through

a 3× 3 mix. We can observe that performance of flow separation remains good when

the ports increase as long as the ratio of the number aggregate flows over number of

observations (ports) remains constant.

Figure 32(a) and 32(b) show the performance of experiments with nine mix-level

aggregate flows through a 3 × 3 mix and sixteen mix-level aggregate flows through a

4×4 mix, respectively. Our experiments show that when the number of aggregate flow

increases, there are more flows that can not be separated. In other words, the number

of flows that remain mixed together increases. This is because the ratio of aggregate

flows to observations increases, and the blind source separation algorithm needs more
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observations. On the other hand, the matching rate by frequency spectrum matching

remains high. This indicates that the flows have been correctly separated.

F. Evaluation for Mix Networks

Flow separation can also be used by a global passive attacker. The attacker can do

flow separation at each mix according to observations obtained at that mix. Then

the attacker can correlate the separated aggregate flows to derive the traffic map of

the whole mix network.

1. Experiment Setup

Figure 33 shows the network setup in this experiment. Eight FTP flows from senders

on the left side are traversing the mix network. To distinguish these eight FTP flows,

we incrementally add 5ms delay to link connected to each sender. To simulate the

cross traffic in the mix network, four larger aggregates of flows are added to the mix

network. According to the self-similar nature of the network traffic [80], the high-
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Table II. Flow Configuration

Flows Path Parameters Throughput (packets/s)

1 S1 → M′
1 → M1 → M3 → M5 → M7 → M9 → M11 → M′

5 → R1 FTP 106.125

2 S2 → M′
1 → M1 → M4 → M5 → M8 → M9 → M12 → M′

7 → R5 FTP 100.791

3 S3 → M′
2 → M1 → M3 → M5 → M7 → M9 → M11 → M′

6 → R3 FTP 95.936

4 S4 → M′
2 → M1 → M4 → M5 → M8 → M9 → M12 → M′

8 → R7 FTP 91.541

5 S5 → M′
3 → M2 → M3 → M6 → M7 → M10 → M11 → M′

5 → R2 FTP 87.531

6 S6 → M′
3 → M2 → M4 → M6 → M8 → M10 → M12 → M′

7 → R6 FTP 83.858

7 S7 → M′
4 → M2 → M3 → M6 → M7 → M10 → M11 → M′

6 → R4 FTP 80.483

8 S8 → M′
4 → M2 → M4 → M6 → M8 → M10 → M12 → M′

8 → R8 FTP 77.357

9 → M3 → M5 → M8 → M10 → Pareto 319.317
10 → M3 → M6 → M8 → M9 → Pareto 318.558
11 → M4 → M5 → M7 → M10 → Pareto 321.806
12 → M4 → M6 → M7 → M9 → Pareto 323.36

volume cross traffic is Pareto distributed. The configuration of the flows is shown in

Table II.

In the center of the mix network, the traffic volume ratio between link-level

aggregate traffic and each individual flow from senders is at least 7 : 1. We assume the

attacker can observe links connected to Mix M1, M2, · · · , M12. Thus, a flow originating

from S1 can take 26 possible paths.
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Fig. 33. Experiment Setup of Mix Network
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2. Performance Metrics

To evaluate the performance of detecting a flow in the network, we introduce a

network-level performance metrics, which is based on the entropy-based anonymity

degree proposed in [4, 5]. Suppose we are interested in flow Fx. The attacker can

suspect the flow Fx taking a path Pi with probability pi based on the information

gathered from the anonymity attack on the mix network. Assuming there are h pos-

sible paths that can be suspected as the path taken by the flow Fx, we define the

anonymity degree as

D = −
h∑

i=1

pi log2 pi . (5.4)

Suppose a flow originated from S1 in Figure 33 is suspected to use each of 26

possible paths with equal probability. Then the anonymity degree D = 6bit.

3. Performance

Figure 34 shows the mean value of cross correlation using frequency spectrum match-

ing method among the first four FTP flows and separated flows recovered from Mix

1 − 12. The cross-correlation values less than 0.1 are marked as white. Please note

that the cross-correlation values between separated flows recovered from the same

mix are also marked as white. This includes the cross-correlation (auto-correlation)

for the same separated flow or FTP flow.

From the cross-correlation map shown in Figure 34, we can easily figure out the

traffic direction in the mix network.

Figure 35 shows an algorithm to detect a flow say Fx in the network based on flow

separation attack and frequency spectrum matching method. The main idea behind

the algorithm is to first use the aggregate flow Ftmp, which is determined to be on the

path previously to match the separated flows on the neighboring mixes. The threshold
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Flows

threshold 1 is used to determine the Candidate array which includes the separated

flows that have some components of the identified aggregate flow Ftmp. Then we

match the flow Fx with the separated flows in the Candidate array to determine

the most closely matching flow on the next hop. The process continues until the

correlation is too weak, which is determined by the threshold threshold 2. Thresholds

threshold 1 and threshold 2 can be determined by online learning based either on

data collected by attacker or on some heuristics setting. The algorithm works in

dynamic programming way. It can be further improved by considering more possible

routes and select the one has the largest overall possibilities.

Figure 36 shows the comparison of the anonymity degree before and after the

attack. Due to the effectiveness of the attack, the anonymity degree reduces signifi-

cantly. We use the algorithm described in Appendix A to detect the path of a flow.



90

Ftmp=Fx 
Mtmp=Mx 
while (mix Mtmp is not a dead-end) do { 

empty Candidate array  
 for each mix Mi connected to Mtmp {  
  for each flow F’y separated by flow separation attack on Mi { 

matching(Ftmp, F’y)=Cross-correlation coefficient of the frequency 
spectrums of Ftmp and F’y 
if  matching(Ftmp, F’y)> threshold_1 
 record (F’ y, Mi) into array Candidate 

  } 
} 
find the element (F’max, Mmax) in candidate array,  so that  
matching(Fx, F’max) ≥matching(Fx, F’y), for any F’y in Candidate array 

 if  matching(Fx, F’max) <threshold_2 
  break  
 Ftmp=F’max 
 Mtmp=Mmax 
 record Mmax as a mix on the flow path 
} 

   
 

Fig. 35. Flow Detection Algorithm

We set the Thresholds threshold 1 to zero and threshold 2 to 0.1 heuristically. The

result is based on the observations of 32 seconds of traffic. Our data indicates that

similar results can be obtained with significantly smaller observation intervals.
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Fig. 36. Anonymity Degree

G. Discussion

The countermeasures to flow separation attack are intuitive.



91

• Padding the links so that the observations obtained by the passive attacker are

identical, or at least mostly redundant.

• Use pool-mix like batching strategies. Pool mixes fire packets with a certain

probability p. If the probability p is small enough, the aggregate flows at the

output ports can be significantly different from aggregate flows at the input

ports. Adding noise in the passive attacker’s observations can degrade the

performance of flow separation attacks. But the cost will be increased packet

transfer latency and lower throughput, especially for TCP traffic.

• Increase the dependency among flows by adding dependent dummy traffic flows

to the mix-level aggregate flows.

• Padding each aggregate flow so that the distribution of the packet count is

Gaussian. Most blind source separation algorithms fail when the signals mixed

are Gaussian distributed. But different classes of blind source separation algo-

rithm that make use of the time structure of the signals can still separate the

flows e.g., [81, 82].

In general, it can be said that blind source separation algorithms coping with

noisy delayed signals, over-complete base problems are still active research topics in

blind source separation research. Flow separation attacks will be more powerful when

more advanced algorithms become available.

H. Summary

We proposed a new anonymity attack, called the flow separation attack which can

be used either alone or in conjunctions with other attacks to significantly reduce the

effectiveness of anonymous communication systems. Flow separation attack is based
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on the blind source separation algorithms widely used to recover individual signals

from mixtures of signals. Our experiments show that the anonymity attack is effective

and scalable. With the aid of further attack such as frequency spectrum matching

attack, flow separation attack can be used to detect the path taken by a flow in a

mix network. Flow separation attack can also be used to simply recover the traffic

map of the anonymity network. We discuss the possible usage of flow separation

attack in different anonymity network settings, and we elaborate on criteria for its

countermeasures.

In the following, we will describe the application of blind source separation in

wireless networks.
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CHAPTER VI

WIRELESS CONFIDENTIALITY

A. Introduction

With the increasing popularity of 802.11 style wireless networks (WLANs), both in

infrastructure and in ad-hoc mode, location privacy issues in such networks and in

ubiquitous computing environments in general have received great attention. Signifi-

cant recent work has focused on the identification of location privacy risks associated

with the use of WLANs and on the implication caused by the weak location privacy.

Location information can be gathered or inferred in a variety of ways, such as through

direct identification of nodes at MAC layer or above [26, 29], through physical signal

shape and propagation analysis (e.g., [42, 83]), or through tracking of interactions

with services and access points (e.g., [84]).

A number of schemes have been proposed to preserve location privacy in such

systems. Some schemes hide the node identity through appropriate encryption and

the use of one-time MAC addresses [29] or broadcast-only communication [26, 27,

28]. Others attempt to counter signal-level location through manipulation of signal

strength [48]. Service access tracking is addressed by schemes such as path perturba-

tion [85], in which nodes report appropriately modified locations whenever they are

close to other nodes with the goal to confuse the location tracker.

In this chapter we want to bring attention to the possibility of an attacker com-

promising -with the help of a network of very simple sensors- the location privacy

in a perfectly anonymized wireless network. By the sensors being “simple” we mean

that they monitor packets at MAC level or above, have no directional capabilities,

cannot distinguish packets, cannot relate network packets to senders or receivers,
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have only coarse time synchronization support, and have only low-bandwidth links

for inter-sensor communication. (While this is not a real limitation for wireless re-

ceivers, we don’t need support for signal-strength measurement on the sensors either.)

Such networks of sensors could be realized either by a number of WLAN users that

collude and exchange information or by a separate infrastructure of sensor nodes.

Given their limited capabilities, we use the sensors to count packets over intervals of

given length, and to forward the resulting time series of packet counts for analysis to

a base station. No information is available about how many nodes are present and

sending in the area, and the anonymity measures in the WLAN prevent the sensors

from distinguishing packets sent from different nodes.

We will describe two statistical signal analysis methods to first estimate the num-

ber of nodes in areas of the network (we call this node density) and second separate

the overall traffic into estimates of actual traffic sent by nodes in the network to pin-

point the location of sending nodes (node location). For the node-density estimation

we use Principal Component Analysis (PCA). PCA is a classical statistical method

used to reduce the dimensionality in a dataset. It can represent a dataset of correlated

variables with less uncorrelated variables, which are called principal components. For

the traffic separation we use the Blind Source Separation (BSS) method [68]. BSS

was originally developed to solve the cocktail party problem, where the goal is to ex-

tract one person’s voice signal given a mixtures of voices at a cocktail party. BSS

algorithms solve the problem by taking advantage of the independence between voices

from different persons. Similarly, in wireless networks, we can use BSS algorithms to

separate traffic from different wireless nodes. The separated traffic is not in a form

that can be associated to any sender node. However, we take advantage of spatial

diversity in the collected data in the sensor network to reconstruct the sender location

based on the separated traffic.
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Our experimental evaluations using a widely accepted packet-level network sim-

ulator (ns-2) indicate that the proposed algorithms estimate the node density with

high accuracy and that they estimate node locations with both high accuracy and

high confidence. The majority of experiments is performed with the intent to simu-

late naturally occurring (i.e. TCP) traffic. In order to show the effectiveness of the

approach, we also simulate a network that uses constant-rate padding of traffic on all

nodes: In such a scheme, all nodes send traffic at a constant rate using UDP, inde-

pendently if they have traffic to send or not. If no traffic is ready, a dummy packet is

transmitted instead. Our experiments indicate that traffic padding is largely useless

in this setting: it has no impact on the effectiveness of both our node-density and

node-location estimators.

We consider these results significant, since they indicate that it is impossible

to maintain location privacy in 802.11-style networks against colluding WLAN users

or networks of sensors that use simple off-the-shelf technology. Often anonymity

measures rely on users being able to “hide in a crowd”. Our experiments show that

crowds are unable to hide individuals in WLAN settings. BSS algorithms can easily

and effectively separate packets from different senders, based on packet-count time

series only.

As in many other settings, the traffic analysis mechanisms presented in this

chapter can be utilized for intrusion detection. An accurate node density estimation

can be used to identify intruding actively sending nodes, independently of how well

they are able to masquerade bona fide nodes. Node location estimators can then be

used to identify the intruder.
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B. Confidentiality Issues in Wireless Networks

Whether to support anonymity and privacy of participants in a network, or to support

integrity of the network itself, a variety of information about the network must not

be divulged to third parties. In the following we list a number of criteria that both

the participants and the wireless network operator may want to keep confidential, in

addition to the traditional anonymity criteria discussed in Chapter I:

• Node Identity: The identities of the wireless nodes in a network may need to

remain confidential. One problem in such networks is that each node is identified

by its Medium-access-control (MAC) address, which is sent with every packet.

Wireless anonymity systems such as ANODR [26] use a broadcast address as the

MAC address and a random route pseudonym for routing. Similarly, Gruteser

and Grunwald [29] propose disposable MAC addresses, where MAC addresses of

nodes are changed frequently. If an observer has access to location information,

it may make use of it to piece together the profile of a node that uses MAX

address recycling. Hoh and Gruteser propose path perturbation [85] to address

this.

• Node Location: The network should also prevent the disclosure of the location of

wireless nodes. Alternatively, node location information allows for node tracking

and node identification, with detrimental effect on all anonymity measures.

• Node density, node number: The number of nodes inside an area should be

kept confidential. A good estimation of the number of nodes in the system

generally simplifies the separation of flows, and so affects all other anonymizing

and confidentiality measures.
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• Node Motion: Similarly to node location, information about the movement of

wireless nodes should be kept confidential.

In this chapter we describe a methodology to estimate the node density and

node locations in a 802.11 WLAN. In the discussion of our results we will then de-

scribe how simple extensions of the proposed scheme can be used to affect the other

confidentiality criteria that we discussed in Chapter I.

C. Network Model and Threat Model

In the following we formulate the node density and node location estimation problem

using a confidentiality threat paradigm: A network of wireless nodes is passively at-

tacked by a sensor-network based eavesdropper. Node density and location estimation

is highly relevant in other settings as well: For example low-cost intrusion detection

schemes for ad-hoc networks can perform node density estimations at deployment

time and determine if active intruders are present. If so, location estimations can

support the localization of the intruder.

1. Network Model

We assume a set of wireless nodes (simply called nodes in the following) that commu-

nicate over an ad-hoc WLAN using an 802.11-style MAC protocol. We assume that

all communications are perfectly anonymized: For example, all communications are

either broadcast-based so that the anonymity attacker cannot identify the source and

destination of a MAC frame [26, 27, 28]. Similarly MAC addresses can be recycled

[29] to achieve the same effect. We also assume that all the packets inside the wire-

less network are encrypted, and only the receiver has the capability to successfully

decrypt the packets. Both ANODR [26] and SDDR [27] use onion-based encryption
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and routing to provide end-user anonymity and communication path anonymity. The

anonymous data transmission in ASR [28] is based on shared secrets between nodes.

So we assume the anonymity attacker can not utilize any information of packet con-

tent. As a result, no information is divulged to external observers either through

packet data or header content.

In addition, we assume that nodes are able to manipulate signal power e.g. [48]

so as to render any observed signal strength information difficult to use.

2. Threat Model

Similar to threat models of previously described attacks to anonymous wireless sys-

tems (e.g. [3]), our threat model assumes that the communication between nodes

is observed by a network of low-cost sensors scattered around a field. The sensors

can be either WLAN receivers of a set of colluding users in the area or a separate

sensor network infrastructure. The attacker collects packet timing information from

the sensors in the field for analysis.

We will demonstrate in this chapter that accurate node density and location

estimation can be performed by a low-cost sensor network and appropriate computing

capabilities at the back-end. We therefore assume that the passive attacker has the

following capabilities:

• Sensor nodes are equipped with off-the-shelf 802.11 receivers.

• Signals power manipulation at the senders and forwarding nodes makes any

collected signal strength information unreliable. In addition, we assume that

the bandwidth of the sensor network is severely limited, which precludes the

exchange of physical-layer signal information. As a result we make no use of

signal strength information.
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• Sensors are equipped with omni-directional antennas. No directional informa-

tion is available.

• Similarly, the time synchronization across sensor nodes is insufficient to allow

for signal-propagation based location estimation. As a result, the sensor nodes

(approximately) have access to packet timing information only.

• A sensor cannot associate a packet with a sender or receiver node.

• We assume that the network of sensors is sufficiently dense. This typically

entails that the number of sensors is larger than the number of mobile nodes.

• The location of each sensor in the sensor network is known. Location informa-

tion can be gathered in a variety of ways. For example, the sensors may be

planted, and their location marked. Alternatively, sensors may have GPS capa-

bilities. Finally, sensors may locate themselves through one of severals schemes
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that rely on sparsely-located anchor sensor nodes [86, 87].

• In the following description we assume for simplicity that the sensors whose data

is used for analysis form a grid topology as shown in Figure 37. If the sensors

are randomly distributed in the field, we can select a subsets of sensors, that are

located either on the grid or close to the grid. We expect that the estimation

algorithms can be easily extended to cope with random sensor topologies.

• We assume that the communication between sensors does not interfere with

the communication between wireless nodes. For example, sensors and wireless

nodes may use different communication channels.

D. Data Collection and Pre-processing

The data collected from each sensor is a time series of counts of the packets “over-

heard” by the sensor. (While sensors cannot decrypt the packets or even associate

packets with a mobile node, they can mark the time when a packet is received, and

so count the number of packets received over any interval.) We use the time series

Si = [s1
i , s

2
i , · · · , sl

i] to denote the series of packet counts detected by Sensor i during

a sequence of intervals of length T each. Since there may be several wireless nodes in

the field, each sensor may be counting the packets from more than one wireless node.

Similarly, the same packet may be counted by multiple sensors.

As for any data gathering application on sensor networks, power consumption

and bandwidth limitations are important design issues. In our attack method, only

packet counts are collected from the sensor, and so the resulting amount of data is

significantly less than from collecting, say the time-stamp of each packet. In addition,

we can use data compression or coding schemes designed for sensor networks such as

ESPIHT [49], MEGA [88] to reduce the data volume that is caused by remaining
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spatial redundancy across neighboring nodes or temporal redundancy at individual

nodes.

E. Node Density Estimation

Unless a priori information is available about the presence of wireless nodes, any

location effort must be preceded by some form of estimation of the number of nodes

present in the area, also called node density. We use principal component analysis

to estimate the node density. Principal component analysis (PCA) is a classical

statistical method widely used in data analysis and compression. It is primarily

used to reduce the dimensionality of datasets while best representing data. PCA

reduces the dimensionality by transferring the correlated variables into a usually much

smaller number of uncorrelated variables. For more details about principal component

analysis, readers should refer to [89], for example. In our case, the data collected

from the sensors is highly correlated, while the actual packet sending time series

Mi = [m1
i , m

2
i , · · · , ml

i] from each mobile node are are significantly less correlated or

dependent. Since sensors are geographically close, the sets of wireless nodes observed

by neighboring sensors have large overlaps.

Traditionally, PCA requires the computation of the covariance matrix of the in-

put data. In order to determine the dimensionality of the input data, one computes

the eigenvalues of the covariance matrix and estimate the dimensionality based on

the eigenvalues. Heuristic approaches such as Kaiser criterion [90] and screen test [91]

are not reliable. The two so-called information criteria AIC [92] and MDL [93, 94]

are widely used to determine the dimensionality. But they assume that the underly-

ing data (in our case, packet count time series from each mobile node) is Gaussian

distributed. This is not the case for our application where the packet-count time
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series are the result of TCP or other protocol communications. We use an approach

described in [95], where the probability of the data for each possible dimensionality

is computed using a Bayesian model selection. It is shown that this method is robust

against non-Gaussian distributed data.

One key step in PCA is the estimation of the covariance matrix based on the ob-

servations collected from the sensors. Given n sensors, this leads to n(n−1)
2

parameters

to estimate. According to general measurement theory, the length of the data needed

is at least five to ten times the number of parameters. So when n increases, the

length of the data needed will increase quadratically. Thus it may not be practical to

estimate the number of wireless nodes in the entire field directly using PCA. Instead,

we can partition the overall area A into smaller sub-areas A1, A2, · · · , and use the

PCA method to estimate the number of nodes inside each sub-area separately. To

determine the number of nodes in the entire area A, we can use averaging or cross

validation methods to estimate it from the number of nodes inside each smaller area.

F. Node Location Estimation

Once the approximate number of wireless nodes is known, one can proceed to estimate

the location of individual nodes. Just as for the case of node density estimation, we

base the location estimation on the time series Si of packet counts received by the

sensors.

Since all packets are perfectly anonymized, the location estimation has only ag-

gregated packet data available, since it cannot distinguish among packets sent by

different nodes. In the following we describe how we use Blind Source Separation

(BSS) to de-aggregate the packet count time series collected at a group of sensors into

an estimation of the per-node packet count time series Mj of some node j. Based on
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the estimated per-node time series we then use a proximity-based scheme to estimate

the location of nodes.

In the following we first give an overview of Blind Source Separation and how

we apply it to the problem of de-aggregating packet-count information. We then

illustrate how we apply BSS to support proximity-based location of nodes.

1. Blind Source Separation

In order to de-aggregate packet count information we use - similarly to the flow

separation in Chapter V - Blind source separation [69]. 1

In our experiments, we use a powerful blind source separation algorithm proposed

in [79]. This algorithm can jointly optimize several statistics of the same order, and

it combines advantages of other powerful techniques as Fast-ICA [73], JADE [96] and

SOBI [97]. The algorithm is shown to achieve a good performance when the amount

of data available is small.

While the goal of BSS is to re-construct the original signals Mi (in our case

the time series of packet counts sent by individual nodes), in practice the separated

signals (we call these components) are sometimes only loosely related to the original

signals. We categorize these separated components into three types: In the first

case, the component is correlated to the time series of packet counts. The separated

component in this case may have a different sign than the original signal. We call this

type of component individual component. In the second case a component correlated

to an aggregate of signals from several nodes. This happens when the packets of more

than two wireless nodes can be “heard” by all the sensors. In such a case, the BSS

algorithm would not be able to fully separate the signal mixture into the individual

1See Chapter V for a short overview to BSS.
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components. Rather, while some components can be successfully separated, others

remain aggregated. In the third case, components can represent noise signals. Noise in

our case can be caused by packet collisions that prevent some sensors from “hearing”

some packets. Noise can also be caused as artifacts from generating the packet timing

sequences. For example a packet may be counted in the ith interval for some sensor

while for some other sensor the same packet may be counted in the (i + 1)th interval

due to transmission delay or imperfect timing.

For brevity, we call the second type aggregate component and the third type

noise component.

2. Node Location Estimation Algorithm

In the following we describe an algorithm for the estimation of the location of sev-

eral sender nodes based only on aggregate packet count time series as received and

provided by the sensors. Figure 38 gives an overview of the algorithm: In a first step

the sensor data is grouped into data from blocks of neighboring sensors. For example,

we group the sensors in the grid into blocks of c × c sensors each as shown in Figure

39. Neighboring blocks are generally overlapping, and as a result sensors generally

belong to several sensor blocks. (For the case of a quadratic blocks over a regular

grid of sensors, most sensors belong to c2 blocks.)

For each block of sensors we sequentially apply a BSS algorithm to recover the

packet traces of mobile nodes in the sensing range. As a result of this block-by-block

separation step, we are left with a large set of components as described in Section 1.

Many of these components are either aggregates or noise components. In a second

step we eliminate these components by identifying components that were identified in

several blocks. This is achieved by identifying clusters of similar components across all

blocks. This clustering step generates a set of components that have been detected by
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Data collected from sensor (S1, S2…, SM) 

Block-by-Block blind source separation step 

Clustering step 

Separated components (including noise and aggregates) 

Intersection step 

Selected components most similar to the actual signal 

Location estimation of wireless nodes 

Fig. 38. Location Detection Algorithm

several blocks of sensors, and so are likely to be similar to the original signals. Once

the original signals have been estimated through BSS and clustering, we estimate

the location of the senders by intersecting the sensing ranges for all blocks that have

separated component highly correlated to the original signals.We describe the three

steps (BSS, clustering, intersection) in the following in more detail.

a. Blind Source Separation Step

For each sensor block we use a blind source separation algorithm to recover the original

packet count time series from each mobile node. For the evaluation in the following

sections we use the algorithm proposed in [79]. The output of this step is a set of c2

components as described in Section 1 for each sensor block of size c × c. We use Rj
i
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Block at location (i,j) 

Block at location (i+1,j) 

Block at location (i,j+1) 

Fig. 39. Sensor Blocks

to represent the jth recovered component from the ith sensor block.

b. Clustering Step

In this step we eliminate those components that are likely to be noise or aggregate

components from the set of components generated by the previous step. For this

we use the following heuristic: If a component represents a real signal, the same

component must likely have been detected and separated in at least a similar form

by several sensor blocks. In comparison, a component that was generated because of

some interference or other artifact is unlikely to have been generated by more than

one block.

Based on this heuristic we identify clusters of similar components by using the

cross correlation coefficient as measure for similarity as follows: Suppose that the

separated components are of length l. Then these components can be represented as

points in an l-dimensional space. We define the distance (our measure for similarity)

between any of these two components as

D(Rp
i , R

q
j) = 1 −

∥∥∥corr(Rp
i , R

q
j)
∥∥∥ , (6.1)
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where Rp
i denotes the pth component recovered from the ith sensor block Bi and

corr(X, Y ) denotes the correlation coefficient of components X and Y . We use the

absolute value of the cross correlation because the separated components may be of

different sign than the actual time series. So in this l-dimensional space, the highly

correlated (similar) components will cluster together and uncorrelated components

will be far from each other.

 

Center of Individual Components 

Individual Component  

Aggregate Component 

Noise Component 

Fig. 40. Visualization of Distance between Separated Components

Figure 40 uses a two-dimensional representation to further illustrate the ratio-

nale for the clustering approach in this step: As shown in this figure, the individual

components will form clusters since the individual components in a cluster are highly

correlated to one of the actual time series Mj. The aggregate components on the
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other hand will scatter in-between these clusters because they are correlated to more

than one of the actual time series. The noise components will be distant both from

each other and from the other components because noise tends to be local to some

sensor block.

To eliminate some of the false correlation between components that cannot pos-

sibly be caused by the same sender node, we modify the distance function so as to

take into account the sensing range of sensors in the blocks:

D(Rp
i , R

q
j) = (1 −

∥∥∥corr(Rp
i , R

q
j)
∥∥∥) · Overlap(i, j) , (6.2)

where Overlap(i, j) is a binary function defined as

Overlap(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

1, if sensing ranges of sensors in Block Bi and Block Bj overlap,

0, otherwise.

In addition to random false correlations, the binary function Overlap(u, v) ad-

dresses the case when a flow traverses several hops in the wireless ad-hoc network,

and the forwarded flow may give rise to similar components appearing along the path

of the flow. This is taken into account by the overlap function.

Each cluster of components has a center component, which is the component

with the minimum average distance to every component in the cluster. Among all

the possible center components we select the center components R1, · · · , RK of the K

largest clusters, where K is the estimated number of nodes in the area. (The value for

K is either known a priori or is estimated using the node density estimation methods

described in Section E). We note that it is highly unlikely that either aggregate or

noise components are selected as center components: (a) Aggregate components are

unlikely in the center of clusters, and (b) noise is local to a small group of sensors at

best, and gives rise to a small cluster. As a result, the K selected center components
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will be highly correlated to the packet count times series M1, · · · , MK of nodes in the

network.

c. Intersection Step

Once the components that likely represent packet count time series of the nodes in

the area have been identified, we proceed to determine the location of the nodes. We

locate a sending node by intersecting the sensing ranges of blocks that are likely to

“hear” the node. For this we select sensor blocks that have components that are

closely correlated with the likely time series of the nodes in the area2. The rationale

is that for the sensors in a sensor block to hear a node, they must have sensed a

signal that is at least similar to the signal generated by the node. This means that

sensor blocks with components that correlate with any of the K center components

are likely to hear a sending node. We therefore determine the likely location of a node

by geographically intersecting the sensing areas of the sensors in those sensor blocks

that have highly correlated component with a center component determined in the

previous step (Section b).

When sensor blocks are erroneously classified as hearing a node when they do

not, the geographical intersection of their sensing area fails to determine the location

of the node. Particular attention must be therefore paid to correctly identify the

correct sensor blocks. For example, simply correlating the components of the sensor

block with a particular center component may lead to too many false positives because

geographically very distant components may occasionally correlate with a particular

center component. For example, correlated components may appear along the path

2As we illustrate in Section 2, sensor blocks in the immediate neighborhood of a
sender node are often not able to successfully separate the component representing
the sender node packet time series, and are therefore discarded.
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of a connection, and so give rise to very distant geographical sensor blocks that are

erroneously classified to be able to hear the node. When in fact the node is well outside

their sensing range. In such cases, the geographical area intersection approach fails

to locate the node. We therefore use the following method to identify the relevant

sensor blocks and perform the area intersections. We borrow techniques from image

processing, and therefore make use of its terminology as well.

• We generate the “image matrix” IMGk of correlation coefficients (the “inten-

sity”) as follows: each entry in the matrix IMGk(i, j) represents the maximum

correlation between the center component Rk and all c2 components of the

block, say Bu, at location (i, j):

IMGk(i, j) = max
1≤p≤c2

(‖corr(Rp
u, Rk)‖

• Apply an edge detection algorithm on IMGk to find the “edges”, i.e. the

positions where the intensity in IMGk changes quickly. In our experiments,

we use the zero-crossing edge detection method, with the sensitivity threshold

set to zero. This approach finds closed contours of the intensity image. These

contours divide the area represented by IMGk into regions. At this point we

have a set of geographical regions each with components that correlate with the

center component Rk.
3

• Now we need to identify the regions that most likely contain sensors that “hear”

the sender node. We therefore identify regions where components are highly

3The function of the edge detection step is to partition the entire field into areas
that need to be considered for intersection and areas that are outside of the sensing
range. The rationale is that a sudden drop in the correlation intensity marks the edge
of area where a sending node can be “heard”. Components outside the sensing range
can be safely ignored. As a result, the intersection algorithm becomes significantly
more robust.
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Fig. 41. An Example Distribution of Intensity in IMGk

correlated with the center component Rk. We proceed by first computing the

“average intensity” of each region. Regions with an average intensity smaller

than some threshold Tregion (see below) are then discarded.

• We perform the intersection of the sensing area of sensor blocks in the remain-

ing regions as follows: Sort the points IMGk(i, j) in the remaining regions in

order of decreasing intensity. Starting with the highest-intensity point, add

subsequent points by intersecting their sensing range. Stop when you either

run out of points or the new point’s sensing area is disjoint from the computed

intersection area, causing the new intersection area to disappear.

• The resulting intersection area is the suspected area of location of a node.

The threshold Tregion is used to separate correlation levels due to the sensor hear-

ing the node from correlation levels that are merely accidental. In order to determine

Tregion, we take advantage of the fact that the correlation coefficients of “acciden-
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tally” correlated components are significantly smaller than components from blocks

that hear the node. In addition, due to the central limit theorem, the coefficients of

accidentally correlated components are normally distributed.

A representative distribution from our experiments is shown in Figure 41. As we

can observe, most of the intensity in IMGk has a very small value since the compo-

nents recovered from most sensor blocks are not correlated to the component Rk. We

use a kernel density estimation method to estimate the distribution of the intensity

in IMGk and set Tregion to be at the “right boundary” of the normal distribution. (In

our case we do this by setting the threshold Tregion to be the point where the density

is minimal between the peak and 0.5). An example of the density estimation and the

selection of Tregion is shown in Figure 41 (b).

G. Evaluation

We evaluate the effectiveness of the proposed algorithms for node density and node

location estimation in a series of simulation experiments in the ns-2 [65] network

simulation environment.

1. Experiment Setup

In the following experiments the simulated field is a 1600m × 1600m square area. The

distance between two neighboring sensors in the sensor grid is 50m. The location of

the wireless node is restricted to a 1000m × 1000m center area of the simulated

field to eliminate boundary effects. The wireless network interfaces of both wireless

nodes and sensors are modeled according to the commercial Lucent WaveLan radio

interface, which has a nominal radio range of 250m. For the sensors the transmission

function is disabled, so that they can only eavesdrop on the traffic. All simulations
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have a duration of 200 seconds. The packet count data is sampled with a sample

interval of 50 ms. We place 20 wireless nodes inside the center area. There are 36

randomly generated TCP flows in the wireless ad-hoc network. To make sure that

every wireless node sends packets, every wireless node has at least one TCP flow that

originates from it. The size of the sensor blocks used in the experiments is 3 by 3.

Since the radio range of wireless nodes is 250 m and every wireless node is sending

packets, the interference from different wireless nodes renders the location detection

based on physical signal strength hard and inaccurate. (Four wireless nodes can cover

nearly all the center area.)

2. Node Density Estimation

We use the simple arrangement of wireless nodes shown in Figure 42 (a) to evaluate

the the node density estimation algorithm. The wireless nodes are arranged in a

grid, and the vertical and horizontal distance between neighboring sensors are 180m

and 150m respectively. (The horizontal and vertical distances between neighboring

sensors are chosen so that every wireless node is in the radio range of the nodes in its

8-neighborhood.)

We use a mean-error metric to evaluate the algorithm:

en =
∑c2

m=0
p(m|n) ‖m − n‖ , (6.3)

where p(m|n) denotes the probability of the algorithm deciding that there are m

wireless nodes in the sensing area of one sensor block when the actual number of

wireless nodes in the sensing area is n. Since in this series of experiments the size of

the sensor blocks is 3 × 3, the number c2 in Equation (6.3) is 9.

From Figure 42 (b) we observe that the node-density estimation algorithm is off

by about 1 node in average. Since the dimensionality estimation algorithm [95] in
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Fig. 42. Node Density Estimation

Section E assumes that the number of actual signals is less than the original dimension

of the data, which is c2 for our case, we only show the error when the actual number of

wireless nodes present ranges from 1 to c2 − 1. Please note that if two wireless nodes

are in sufficiently close proximity (e.g. two central nodes in Figure 43) such that every

sensor in one sensor block receives packet from both nodes, then it is impossible to

differentiate the tow nodes based on the collected data. As a result, the two nodes

are considered as a single node.
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3. Effectiveness of Location Estimation

a. Performance Metrics

As described in Section F.2.c, the output of the location estimation algorithm is the

suspected area of location of a node. To evaluate the performance according to the

suspected area, we quantize the area of whole field using 5 m × 5 m tiles. The

suspected area is represented by a set of points inside the suspected area, each point

representing the corner of the corresponding tile. Two metrics are used to evaluate

the area: One is the mean error distance between the points inside the suspected area

and the actual location of a wireless node. The other is the standard deviation of the

error distance between the points inside the suspected area and the actual location

of a wireless node. The first one measure the accuracy of the detection algorithm

and the second measures the precision of the detection algorithm. If we cast the

evaluation of the estimation algorithm in terms of evaluating a statistical estimator,

the accuracy corresponds to the bias of the estimator and the precision corresponds

to the variance of the estimator.

These two metrics are similar to the metrics defined earlier in signal-based lo-

cation studies [47]: probability of the actual wireless node within the suspected area



116

(for accuracy) and size of the area (for precision). We feel that error-distance based

statistics (mean and standard deviation) better describe the estimator than the met-

rics used in [47]. First, our accuracy measure describes better how the node is located

inside the suspected area (corner vs. center). Second, the shape of the suspected area

is considered as well. It is of little help, for example, to know that a node is likely

located in a small area when the latter is narrow but very long.

To evaluate the intermediate result of the clustering step in Section b, we com-

pare the K selected center components with the actual packet count time series of

corresponding wireless nodes. The metrics used for comparison is the absolute value

of the cross-correlation. We use absolute value here to account for the possibility that

the separated component is of different sign than the time series.

b. Performance

We run our algorithm on three different types of node arrangements: grid arrange-

ment, random arrangement and clustered arrangement. Examples of typical results

of our location algorithm are shown in Figure 44 and 45. Please note that in Fig-

ure 45 two relatively large suspected areas are removed to prevent overlapping with

other suspected areas. The two larger suspected areas are caused by the two pairs

of closely located nodes near point A and point B, respectively, in Figure 45. These

closely located nodes cannot be differentiated by the sensor grid, so the number of ac-

tual differentiable nodes is less than the number of nodes we know. These two larger

suspected area are caused by the two “mistakenly” selected center components.

The three typical examples shown in Figure 44 and Figure 45 illustrate that

our algorithm can make accurate and precise detection for all three kinds of node

arrangements.

To quantitatively evaluate our algorithm, we run extensive simulations for both
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random and clustered arrangements. For clustered arrangements, the locations of

wireless nodes are generated by a Gaussian distribution with standard deviation of

100m for both x and y axes. The mean of the distribution is chosen to arrange

the wireless nodes around the center of the field. Figure 46 shows the accuracy and

precision resulting from the experiment. From Figure 46, we can make the following

observations. For both types of arrangements, the algorithm accurately locates the

nodes. For random arrangements, node location estimations have an error of less

than 30m in more than 90% of the cases. For clustered arrangements, more than 85%

of detections have an error of less than 30 m.

For both kinds of arrangements, the algorithm precisely locate nodes. For random

arrangements, more than 90% of the detections have error standard deviation less

than 20m. For clustered arrangements, more than 85% of the detections have error

stand deviation less than 20m.

As to be expected, the performance of the algorithm degrades when nodes are

clustered. This is because of three reasons: (a) Clustered arrangements tend to

have wireless nodes located close enough so that the sensor grid can not differen-

tiate them. (b) For clustered arrangements, increased contention for the wireless

medium causes increased dependency between packet sending time series from differ-

ent wireless nodes. Since BSS relies on the independence of underlying signals, its

performance is affected by increased contention in clustered arrangements. (c) For

clustered topologies, sensor blocks may overhear packets from more nodes than the

number of sensor in the block. Whenever the number of signals exceeds the number

of sensors, BSS runs into the so-called overcomplete base problem where some com-

ponents can not be separated. In summary, effect (a) is equivalent to “thinning out”

the sensor network. In addition, both effects (b) and (c) cause the performance of

blind source separation to degrade.
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Fig. 44. Location Estimation on Different Topologies

Figure 46 indicates that in some cases the location estimation algorithm performs

significantly worse for random arrangements than for clustered arrangements. While

this appears counter-intuitive at first, it is easy to explain: Since clustered nodes

are tending to be close to each other, their signals cover a smaller region than the

nodes in random arrangements. Therefore, large errors for clustered arrangements

are unlikely.

We also evaluate our approach based on topology. The 95% confidence intervals

for per-topology mean error distance are from 14.9618 to 58.5623 and from 21.9886

to 42.7431 for random topologies and clustered topologies.
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c. Constant-Rate Traffic

In this experiment we evaluate our location detection algorithm against constant-rate

UDP traffic. The grid topology shown in Figure 42 (a) is used in this experiment.

Each wireless node sends UDP packets to one of its neighbors. The choice of neighbor

is made so that two loops are formed, with the outside nodes forming an outer loop

and the inner nodes an inner loop. The packet sending rate of each wireless node is 40

packet/s and the assumed bandwidth utilization is about 80%. The goal of this setup

is to evaluate an arrangement as uniform as possible, thus making the separation and

location problem maximally hard.

The results of this experiment are shown in Figure 47. We observe that the
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location detection algorithm is also effective against constant-rate traffic and heavy

traffic. While the flows are constant-rate at sender application level, they are suffi-

ciently perturbed by the 802.11 MAC protocol, which adds enough timing signature

to the flows, and so helps to separate the traffic. This experiment also illustrates

that traffic padding at network layer or above is largely ineffective. A MAC level

traffic padding scheme that consider both the media control protocol and bandwidth

efficiency is needed.

H. Discussion

The mechanisms used to estimate density and location information can be used to

infer additional information about the wireless nodes, as well:

1. Traditional sender/receiver/route anonymity

For each intensity image IMGk, we can apply an edge detection algorithm to reveal

the sender/receiver relationship as well as information about the communication path.

The edge detection algorithm used for this purpose is different from the algorithm

used in Section F.2.c, where we use the Zero Crossing method to detect large jump

in the intensity image IMGk. Here we apply the Canny [98] method instead, which

is good at detecting weak edges, to visualize the relationship between sender and

receiver. The result of an example attack is shown in Figure 48. From the intensity

image shown in Figure 48(a) we can observe the relationship between the sender and

the receiver. A contour of the route taken by a flow is shown in 48(b). (In Figure

48(b), the locations of the sender and receiver are marked with star.)
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2. Motion privacy

To detect the motion of the wireless nodes in a field, we periodically compare the

K selected components using cross correlation. Suppose the attacker finds out that

component Rt
i at some time t is highly correlated to component Rt+δ

j at some later

time t + δ, and the location of component Rt
i and Rt+δ

j is estimated to be areat
i

and areat+δ
j respectively. The attacker can infer that a node has moved from areat

i

to areat+δ
j . From the analysis of node location privacy, we can get the location of

k nodes at time t and t + δ. Under the assumption that routing does not change

dramatically from time t to t + δ, we can find the correspondence between k signals

at time t and k signals at time t + δ through correlation. When routes do change

from time t to time t+ δ, the timing behavior of flows can change as well, due to new

contention situations or different path lengths. If routing does change, we can take

advantage of correlation in the space domain: since the speed of nodes is limited, for

small values of δ the location of a node can not vary indeterminately.

3. Identity privacy

If a priori information is available about a wireless user, such as a model for commu-

nication or motion, the identity can be derived by correlating the K separated center

components with the available models.

In this chapter, we apply blind source separation algorithm to degrade a number

of anonymity measures in networks. The proposed attack methods can apply to not

only wireless ad-hoc networks but also infrastructure-based wireless network since

the methods do not make use of any information of base stations. Generally, our

algorithm can be used to locate objects in a field by using signals from different type

of sensors. For example, acoustic sensors can used to locate snipers in a field. More
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(a) Intensity Image IMGk (b) Edge Detection

Fig. 48. Sender/Receiver/Route Anonymity Attack

generally, the algorithm can be used to analyze any observed mixture data that are

linear combinations of the underlying signals.

I. Summary

In this chapter, we focus on a number of anonymity issues in wireless networks. We

propose algorithms for the estimation of node density and of node location. The

approach is based on principal component analysis for the estimation of nodes in the

network (density estimation) and on independent component analysis (blind source

separation) for the de-aggregation of the presumably fully anonymized packet trace

information. Our experiments show that the attacks are very effective. Two new

metrics to evaluate location privacy attack are proposed. They can capture accuracy

and precision of the location privacy algorithm and differentiate different shapes of

estimated areas. We applied our location privacy attack algorithm to different node

arrangements. The result of location privacy attacks can be used to attack traditional

sender/receiver anonymity and motion privacy as well.

The fact that the proposed schemes require from the sensors only the capability

to receive and count 802.11 packets indicates that one should be able to deploy similar



125

schemes on nodes in ad-hoc networks, for example, for intrusion detection purposes:

The ad-hoc nodes could easily collect the data necessary to identify active intruders

and to pin-point their location.
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CHAPTER VII

ENGINEERING OF ANONYMITY NETWORKS

A. Motivation

Researchers proposed various definitions to quantify anonymity, such as anonymity

set size [36], effective anonymity set size [5] and entropy-based anonymity degree [4].

While the metrics led to an increasingly better understanding of anonymity, they tend

to focus on the anonymity of a single message under a single anonymity attack. In

practice however, metrics are needed that take into account realities of today’s use of

networks. a.) Communication settings in real systems range from single messages, to

message groups, to streams and FTP transfers. b.) Sophisticated attacks can resort

to a variety of techniques to break anonymity: flow correlation attacks, intersection

attacks [99], trickle attacks [12], and so on.

A measure for the anonymity degree should satisfy a number of requirements:

First, the anonymity degree should capture the quality of an anonymity system. It

has been shown for example that information theoretical means, such as entropy, are

more accurate for comparing anonymity systems than, say, anonymity sets. Second,

the anonymity degree should take into account the topology of the network or that

of any overlay defined by the anonymity system. The topology influences how much

information can be gathered by an attacker, and thus has an impact on the system

anonymity degree. For example, a system of fully-connected nodes will have a different

anonymity degree from a chain of nodes. Third, the anonymity degree, as measure

of the effectiveness of the anonymity system. While a large number of users clearly

contributes anonymity, this not necessary reflects on the quality of the anonymity

system. should be independent of the number of users. Finally, the anonymity
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measure must be independent of the threat model, as attackers may use a variety of

attack techniques, or combinations thereof, to break the anonymity.

Since the goal of anonymity attacks is to infer the communication relations in a

system despite countermeasures, it is natural to model such attacks as covert chan-

nels. Increased interest has focused on the interdependence of anonymity and covert

channels [40, 100]. The imperfectness of an anonymity system will result in the in-

formation leaking from the system. This information leakage can be evaluated in

form of a covert channel. The designer of an anonymity system generally faces the

question of how much information may leak from the anonymity network given the

unavoidable imperfectness of the anonymity network and how this may affect the

anonymity degree. The imperfectness of an anonymity system will result in the infor-

mation leaking from the system. This information leakage can be evaluated in form

of a covert channel.

The work presented in this chapter takes a system-level view of covert channels

and anonymity, and differs from previous work, such as [38, 39, 40], in two ways: First,

we assume that the existence of various sources of information leakage in the elements

(mixes, batchers, padders, · · ·) of an anonymity system are a reality that system

designers and operators have to deal with. Some of the resulting covert channels can

be identified and either measured or analyzed using techniques described in [38, 39]1

In addition, any cautious anonymity system designer or operator must assume that

even mixes presumed to be perfect are not so, even if the particular weakness is not

know a priori. In this chapter, we use covert channel capacity as a generic measure to

model weaknesses (known or unknown) in the anonymity system infrastructure. This

gives a tool for designers or operators to uniformly describe both known weaknesses

1Statistical techniques can be used as well, as we describe in Section B.



128

(i.e. results of attacks), or merely suspected ones, and to analyze their effect on the

anonymity provided by the system. Second, the anonymity degree of the mix network

is a result of system-level effects: changes in the user population or application mix

affect the anonymity provided. So do topology of the anonymity system and routing

preferences within the system. As a result, there is no one-to-one mapping from the

anonymity degree to covert channel capacities of elements in a mix network and vice

versa. In this chapter, we investigate the relationship between anonymity degree and

covert channel capacity in terms of what effect one has on the other.

B. Anonymity Degree

A number of attacks have been described recently that give raise to reasonably high

capacity channels on mixes. Several attacks to simple mixes lend themselves to an

accurate analysis of the exploited covert channels, such as in [38, 39, 40]. For other

attacks the covert channel capacity can be merely estimated, using statistical means.

Examples are intersection attacks [99], timing attacks [34], Danezis’s attack on con-

tinuous mixes [35], and the flow correlation attack. The timing attack [34] uses

cross-correlation to match flows given the packet timestamps of the flow. Danezis’s

attack on continuous mix [35] uses likelihood ratios to detect a flow in aggregate traf-

fic. The flow correlation attack employs statistical methods to detect TCP flows in

aggregate traffic. The flow correlation attack can achieve high detection rates for all

the mixes described in [12] and for continuous mixes.

1. Attack Model

We model a single mix (Figure 49) as a communication node that connects m senders

S = (s1, s2, s3, · · · , sm) to n receivers R = (r1, r2, r3, · · · , rn). Every Sender si may



129

communicate to every Receiver rj. We say that a communication exists between

si and rj whenever si communicates to rj . A communication between si and rj is

denoted by the term [si, rj ]. It can consist of a single packet being sent, or of an

established flow.
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Fig. 49. Model of a Mix

We model an attack to such a node in terms of its effectiveness in determining who

is talking to whom: the set of probabilities p([su, rv]s|[si, rj ]a) denotes the probability

that Communication [su, rv]s is suspected, given that communication [si, rj] is actually

taking place. In other words, a probability p([su, rv]s|[si, rj]a) denotes the probability

of erroneously suspecting su sending to rv when in actuality si is sending to rj . This

model allows for an accurate description of many different attacks, as the probability

p([·, ·]s|[·, ·]a) can be defined based on the observation of single packets, a number of

packets, a flow or a session, depending on the particular attack method used. For

example, the passive attack described in [33] determines a flow successfully when the

flow is alone on a link. So the probability p([si, rj]s|[si, rj]a) of correctly identifying

communication [si, rj] is equal to the chance that the flow is alone on the output

link from the mix to Receiver rj . Alternatively, Danezis’s attack on the continuous

mix, the probability p([si, rj]s|[si, rj]a) is the probability that the likelihood of the

hypothesis assuming that the flow of interest is going through the link between the mix

and Receiver rj is greater than any other hypothesis assuming that the flow of interest
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is going to any other receiver. Finally, for the flow correlation attack, the probability

of p([si, rj]s|[si, rj]a) is equal to the probability that the mutual information between

the flow of interest and the aggregate traffic on the link between the mix and Receiver

rj is larger than the mutual information between the flow of interest and the aggregate

traffic on any other outgoing link.

We note that the attacker may use different attack methods to estimate the

probability p([su, rv]s|[si, rj]a) for different communications on different mixes, or even

on the same mix.

The model above describes attacks on sender-receiver anonymity, where both

sender and receiver are anonymous. It can be easily extended to sender anonymity or

receiver anonymity, that is, cases where the sender only or the receiver only are anony-

mous, respectively. For example, we can describe the results of a sender-anonymity

attack in terms of p([su, ∗]s|[si, ∗]a) or just p([su]s|[si]a). To keep the following dis-

cussion simple and general, we will focus on sender-receiver anonymity, with the

understanding that sender anonymity or receiver anonymity can be modeled just as

well.

2. Proposed Anonymity Degree

We define a new measure, D, for the anonymity degree based on the following ra-

tionale: Let the random variable [S, R]a indicate the actual sender and receiver pair,

and the random variable [S, R]s in turn indicate the suspected sender and receiver

pair. If the attack identifies the communicating pairs with high accuracy, then the

dependence between the two random variables [S, R]a and [S, R]s will be high.

In general, the dependence of two random variables can be measured using the

mutual information of the two random variables. The mutual information I(X; Y ) of
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two random variables X and Y is a function of the entropies of X and Y as follows:

I(X; Y ) = H(X) − H(X|Y ). (7.1)

Therefore, the effectiveness of the attack can be described in terms of the mutual

information I([S, R]a; [S, R]s).

To give a more figurative interpretation of mutual information as measure of the

attack effectiveness, we use an analogy to communication channels: Mutual informa-

tion is typically used to describe the amount of information sent across a channel from

a sender X to a receiver Y where H(X) is the information at the input of the channel

and H(X|Y ) describes the information attenuation caused by noise on the channel.

(See [101] for an easy-to-read introduction to the information theory used in this con-

text.) This gives an intuition of why mutual information describes the effectiveness

of an anonymity attack: Let [S, R]a be the random variable that describes the actual

sender and receiver pair. Let the attacker’s estimate of [S, R]a through observation

of the system, i.e. the attack, be [S, R]s. The information carried through the obser-

vation channel provided by the attack is therefore I([S, R]a; (S, R]s). The higher this

carried information, the more accurate the anonymity attack. Using the textbook

definition for entropy, the effectiveness of an anonymity attack can be described as

follows:

I([S, R]a; [S, R]s) = H([S, R]a) − H([S, R]a|[S, R]s)

=
∑

[s,r]a,[s,r]s

p([s, r]a, [s, r]s) log
p([s, r]s|[s, r]a)

p([s, r]s)
. (7.2)

In Equation (7.2), we let p([s, r]a, [s, r]s) = p([s, r]a)p([s, r]s|[s, r]a) and p([s, r]s) =∑
[s,r]a p([s, r]a, [s, r]s). We let p([s, r]a) denote the a priori probability of s communi-

cating to r, typically derived from the expected traffic from s to r.
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We can now formulate the Anonymity Degree D as a function of the attack

effectiveness as follows:

D = 1 − I([S, R]a; [S, R]s)

log(m · n)
. (7.3)

Since I([S, R]a; [S, R]s) ≤ H([S, R]a) ≤ log(m ·n), we use log(m ·n) to normalize

the anonymity degree into the range of [0, 1] in Equation (7.3). Alternatively, one

could choose H([S, R]a) as normalization factor. However the latter depends on a

priori probability of communication between each pair of sender and receiver. The

impact of this a priori probability been taken into account by the term p([s, r]a) in

Equation (7.2).

The equality I([S, R]a; [S, R]s) = H([S, R]a) holds when perfect identification is

achieved, that is,

p([si, rj]s|[si, rj]a) = 1 for each pair of sender and receiver. This corresponds to the

situation where anonymity is totally broken, in which case the anonymity degree

measure D is zero

3. Relationship to Previous Anonymity Degree Definitions

The anonymity degree definition D is a generalization of the entropy-based definitions

proposed in [4, 5]. In fact, we can rewrite the attack effectiveness I([S, R]a; [S, R]s)

as

I([S, R]a; [S, R]s) = H([S, R]s) − H([S, R]s|[S, R]a)

= H([S, R]s)

− ∑
[s,r]a

p([s, r]a)H([S, R]s|[S, R]a = [s, r]a) (7.4)

In Equation (7.4), the term H([S, R]s|[S, R]a = [s, r]a) represents the conditional
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entropy of the suspected sender-receiver pair distribution given the communication

[s, r]. This corresponds to the anonymity degree definition described in [5] and also

to the core of the anonymity degree defined in [4].

In our mutual-information based anonymity degree, the entropy-based degree is

included by averaging according to p([s, r]a), the a priori probability of traffic between

each pair. In comparison with previous entropy-based definitions (for example [4, 5]),

our proposed definition describes the anonymity provided by a network of mixes.

C. Anonymity-based Covert Channels

Less-than-perfect anonymity systems give raise to a form of covert channel that is

exploited by anonymity attacks. We call this form of covert channel anonymity-based

covert channel. The input symbols of this type of covert channel are the actual sender-

receiver pairs [s, r]a, and the channel output symbols are the suspected sender-receiver

pairs [s, r]s. The channel transition probability p([s, r]s|[s, r]a) (i.e. the probability

that [s, r]s is suspected as communication given that [s, r]a is the actual communica-

tion) describes the result of the anonymity attack.

 

 

S1 

S2 

R1 

R2 
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Fig. 50. Single-Mix Scenario
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Fig. 51. Anonymity-based Covert Channel Model

We use the simple scenario shown in Figure 50 as an example. We assume that

the attacker can collect data at the output ports of the mix as well as some additional

information about incoming traffic from the senders. The details on how this infor-

mation is collected and evaluated depend on the particular attack. See Section 1 for

examples. Given sufficient collected data, the attacker can detect individual commu-

nications, such as [s2, r2], with some non-negligible probability, despite the anonymity

preserving count-measures in the mix.

The fact that the attacker is able to gain information about communications in-

dicates that a covert channel of the following form exists: A covert channel sender can

send a symbol by establishing a communication from some Sender s2 to Receiver r1

and send another symbol by establishing a communication from Sender s2 to another

Receiver, r2. The covert channel receiver can use the anonymity attack to detect the

flow’s direction and then make the decision. The channel model is as shown in Fig-

ure 51. For sake of simplicity, in this example we limit the covert channel sender to

establishing communications from Sender s2. Allowing communications from Sender

s1 increases the set of input symbols accordingly.

We compute the capacity of the (anonymity-based) covert channel in textbook
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fashion by maximizing the mutual information over all input symbol distributions:

C = max
p([s2,r]a)

I([s2, R]a; [s2, R]s) (7.5)

= max
p([s2,r]a)

2∑
i=1

2∑
j=1

(p([s2, ri]a, [s2, rj]s)· log
p([s2, rj]a, [s2, ri]s)

p([s2, ri]a)p([s2, rj]s)
).

The covert channels previously proposed in the context of mix networks [38,

39, 40] are not anonymity-based in the sense described above, as the signal is not

received across the channel as the result of an anonymity attack. Rather, they describe

information leakage in low-level mechanisms that are used to realize mixes, such as

batching mechanisms in [38, 40]. These covert channels are then exploited by the

anonymity attacks, which in turn can be used to establish the type of anonymity-

based covert channels described in this chapter.

D. Single-mix Case

In a mix with a single Sender s1, a covert-channel sender can establish a covert channel

by having s1 communicate with any combination of j among the n receivers. For this

covert channel, the set of input symbols is {[s1, rk]a : 1 ≤ k ≤ n} and the set of output

symbols is {[su, rv]s : 1 ≤ u ≤ m, 1 ≤ v ≤ n}. We can include all communications into

the set of output symbols because the improbability of any particular communication

being declared as suspected by a particular attack can be appropriately reflected by

a zero transition probability.

Therefore
∑n

j=1

(
n
j

)
different covert channels can be established. Similarly, if the

covert channel sender has control over multiple senders, there are at least∑m
i=1

(
m
i

)∑n
j=1

(
n
j

)
different covert channels that can be established. Which of these∑m

i=1

(
m
i

)∑n
j=1

(
n
j

)
covert channels has the maximum capacity?

Lemma 3 For a single sender si on a single mix, maximum covert channel capacity
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is achieved when si communicates to all receivers.

Proof: By having si communicate to all receivers, the covert channel sender can

send all the possible symbols [si, rj]a, 1 ≤ j ≤ n. We call this covert channel x.

Without loss of generality, we assume another covert channel y is established by

communicating only to a subset of receivers, r1, r2, · · ·, rl, 1 ≤ l < n.

By definition, the capacity of channel x is the maximal mutual information over

the distributions p([si, r1]a), p([si, r2]a), · · · , p([si, rn]a), where
n∑

j=1
p([si, rj]a) = 1, that

is:

Cx = max
p([si,r1]a),p([si,r2]a),
···,p([si,rn]a)

I([S, R]a; [S, R]s) . (7.6)

If Sender si does not send to Receiver rj , the probability p([si, rj]a) is zero. By

constraining some of the probabilities to zero, the maximum value of the capacity

does not increase.

Cx ≥ max
p([si,r1]a),p([si,r2]a),···,
p([si,rl]a),0, · · · , 0︸ ︷︷ ︸

n−l

I([S, R]a; [S, R]s)

= max
p([si,r1]a),p([si,r2]a),
···,p([si,rl]a)

I([S, R]a; [S, R]s) = Cy

Hence, the capacity of Channel x communicating to all receivers is larger or equal

to the capacity of all other covert channels that communicating to only a subset of

receivers.

Theorem 3 For a single mix, the maximum covert channel capacity is achieved when

the covert channel sender controls all the Senders s1,s2, · · ·,sm, and the input symbols

of the corresponding channel include all the possible pairs [si, rj]a.
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The proof of Theorem 3 follows the same approach as the proof of Lemma 4.

From Theorem 3, we can get the following corollary.

Corollary 2 For the single-mix model shown in Figure 49, the maximum covert-

channel capacity is

C = max
p([s,r]a)

I([S, R]a; [S, R]s).

From Corollary 2 and Equation (7.3), we get the relationship between the quality

of a single mix (i.e. the capacity of any covert channel that allows information to leak

from the mix) and the anonymity degree. (Note that this relationship is trivial for

the single-mix case. However, we make use of this result in the analysis of networks

of mixes.)

Lemma 4 Given a single mix with a possible maximum information leakage that is

upper-bounded by Cupper, the anonymity degree of the single mix is lower-bounded

by 1 − Cupper

log (m·n)
. Similarly, given that the anonymity degree provided by a single mix

is upper-bounded by Dupper, the maximum information leakage of the mix is lower-

bounded by (1 − Dupper) log (m · n).

Proof: If the covert channel capacity is upper-bounded by Cupper,

D = 1 − I([S, R]a; [S, R]s)

log (m · n)

≥ 1 − C

log (m · n)

≥ 1 − Cupper

log (m · n)
.

If the anonymity degree is upper-bounded by Dupper,

C = max(I([S, R]a; [S, R]s))

≥ I([S, R]a; [S, R]s)
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= (1 − D) log (m · n)

≥ (1 − Dupper) log (m · n) .

Lemma 4 describes how the design and implementation quality of a mix affects effec-

tiveness. In the following sections, we will describe this relation for the case of mix

networks.

E. Mix Network Case

1. Anonymity Degree of a Mix Network

We generalize the anonymity degree for a single mix defined in Equation (7.3) to the

network case by observing that the effectiveness of a mix network can be represented

similarly to that of a “super mix”. Let RM and SM represent the set of senders and

receivers of the super mix, respectively. The anonymity degree of the super mix (and

of the mix network) is

D = 1 − I([SM , RM ]a; [SM , RM ]s)

log(m · n)
(7.7)

where, similarly to the single-mix case,

I([SM , RM ]a; [SM , RM ]s) =

∑
[si,rj ]a,[su,rv]s

(p([si, rj ]a, [su, rv]s)· log
p([su, rv]s|[si, rj]a)

p([su, rv]s)
). (7.8)

I([SM , RM ]a; [SM , RM ]s) is determined by p([si, rj]a) and p([su, rv]s|[si, rj]a), where

probability p([si, rj]a) is the proportion of traffic between si and rj , and the probabil-

ity p([su, rv]s|[si, rj]a) is determined by the results of the anonymity attack at one or

more mixes in the mix network. In the following sections, we describe how to make
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use of the single-mix attack result to describe the effectiveness of a mix network.

2. Effectiveness of Single-Mix vs. Super Mix

In the following, we use the term ph([su, rv]s|[si, rj ]a) to represent the transition prob-

abilities that are the result of some anonymity attack on Mix Mh, and

p([su, rv]s|[si, rj]a) to represent the end-to-end transition probability for the super mix.

Without loss of generality, we assume in the following that the super mix transition

probability we are interested in is p([su, rv]s|[si, rj]a). The process to determine the

relationship between

ph([su, rv]s|[si, rj]a) and p([su, rv]s|[si, rj ]a) can be divided into three steps.

a. Step 1

Find the set Puv of all the possible paths between su and rv. Clearly

p([su, rv]s|[si, rj]a) =
∑

Pa∈Puv

p([su, rv]s,Pa|[si, rj]a) (7.9)

where p([su, rv]s,Pa|[si, rj ]a) denotes the probability of suspecting communication [si, rj]a

to be communication [su, rv]s over Path Pa. Note that the actual communication be-

tween si and rj takes only one path, which we call Path P0.

b. Step 2

Determine the probability of suspecting an actual communication over Path P0 to be

the communication over another path Pa. Depending on how Path Pa and Path P0

overlap, we distinguish three situations: (i) There is only one segment where the two

paths overlap. (ii) The two paths share multiple segments. (iii) There is no overlap

between the two paths. Since there is no overlap in Situation (iii), the probability of

suspecting a communication over path P0 to be the communication over path Pa is
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Fig. 52. Case (2)

zero. Hence, we only need to further pursue Situation (i) and Situation (ii).

Situation (i) can be divided into four sub-cases:

Case (1): P0 and Pa are identical. This implies that su = si and rv = rj . In this case,

the probability of suspecting correctly is the product of the probabilities of locally

suspecting correctly at all mixes along Path P0. If we denote the mixes on Path P0

to be M1, M2, · · ·, Ml, then

p([si, rj]s,P0|[si, rj]) = p1([si, M2]s|[si, M2]a)

·(
l−1∏
d=2

pd([Md−1, Md+1]s|[Md−1, Md+1]a)) · pl([Ml−1, rj]s|[Ml−1, rj]a). (7.10)

This follows directly from the fact that correct guesses at each mix on the path cause

the attacker to correctly suspect the actual path.

Case (2): P0 and Pa share the same path from si through the first Mix M1 to some

Mix Ml, and then diverge due to an error at Mix Ml. This is illustrated in Figure 52

where, in order to emphasize the path P0 and Pa, other possible connections among

the mixes and other possible mixes are ignored. The fact that P0 and Pa share the

same path from si means that si is correctly suspected, i.e. su = si.
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In this subcase, the probability of erroneously suspecting some receiver rv other

than rj is the result of correctly identifying the path up to some Mix Ml−1, and then

making a mistake at Mix Ml. Once an error has been made, the remaining mixes on

the path to any erroneously suspected Receiver rv are not on Path P0. According

to the attack model described in Section B, no differentiation can be made between

rv and any other receiver that can be reached after making an error at Mix Ml. We

therefore aggregate all receivers that can be reached after an error at Mix Ml into

what we call a cloud of receivers. We denote by Cij
l/q the cloud that is a result of an

error at Mix Ml, where communication [si, rj]a is incorrectly identified because Port

q was erroneously selected instead of the port taken by [si, rj]a. For the example in

Figure 52, the probability of suspecting receiver to be inside Cloud Cij
l/q is

p([si, C
ij
l/q]s|[si, rj]) = p1([si, M2]s|[si, M2]a)

·(
l−1∏
d=2

pd([Md−1, Md+1]s|[Md−1, Md+1]a)) · pl([Ml−1, C
ij
l/q]s|[Ml−1, rj]a).(7.11)

Since we are only interested in receivers in the cloud, we call C ij
l/q a receiver cloud in

this case. Whenever the context requires, we distinguish between sender clouds and

receiver clouds, denoted SC and RC, respectively. We aggregate receiver into clouds

because, without additional evidence about the actual flow, it is impossible to dif-

ferentiate suspects in a cloud by assigning different probabilities. More sophisticated

anonymity attacks may make it possible to better differentiate receivers and senders

in local attacks on mixes. In such a case we would modify our detector model and

extend Equation (7.11) accordingly. In some cases, a cloud can consist of a single

receiver or sender.

The dashed line between Mix Ml and Receiver rj in Figure 52 is to emphasize that

the existence of intermediate mixes after Ml will not further contribute to suspecting
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communication [si, rj ]a as communication [si, C
ij
l/q]s.

Case (3): P0 and Pa share the same path from some Mix Ml to the receiver. Similarly

to Case (2), we introduce a sender cloud Cij
l/q, which is connected to the (input) Port

q of Mix Ml. Since the anonymity attacks from Mix M1 to Mix Ml−1 may make

wrong decision to suspect communication [si, rj]a as communications from senders

attached to the Mixes M1 to Ml−1, the probability of suspecting communication

[si, rj]a as communications from senders attached to the Mixes after Ml−1 will be

p1([si, M2]s|[si, M2]a)

·( l−1∏
d=2

pd([Md−1, Md+1]s|[Md−1, Md+1]a)). Then a wrong guess at Mix Ml and correct

guesses till the end of path will result in the suspected communication [SC ij
l/q, rj]s.

For the situation in Figure 53, the probability of suspecting communication [C ij
l/q, rj]s

is

p([Cij
l/q, rj]s|[si, rj]) = p1([si, M2]s|[si, M2]a)

·(
l−1∏
d=2

pd([Md−1, Md+1]s|[Md−1, Md+1]a))

·pl([C
ij
l/q, Ml+1]s|[Ml−1, Ml+1]a)
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·(
L−1∏

d=l+1

pd([Md−1, Md+1]s|[Md−1, Md+1]a))

·pL([ML−1, rj]s|[ML−1, rj ]a). (7.12)

Case (4): P0 and Pa only share their path in middle of each path, as shown in

Figure 54.

In this case, we combine Case (2) and Case (3) as follows:

p([SCij
l/p, RCij

L/q]s|[si, rj]) = p1([si, M2]s|[si, M2]a)

·(
l−1∏
d=2

pd([Md−1, Md+1]s|[Md−1, Md+1]a))

·pl([SCij
l/p, Ml+1]s|[Ml−1, Ml+1]a)

·(
L−1∏

d=l+1

pd([Md−1, Md+1]s|[Md−1, Md+1]a))

·pL([ML−1, RCij
L/q]s|[ML−1, rj]a), (7.13)

We point out that Case (1), Case (2), and Case (3) can all be regarded as special

cases of Case (4). In Case (1), both sender cloud and receiver cloud have only one

sender and one receiver respectively. In Case (2), the sender cloud has only one

sender, while in Case (3) the receiver cloud has only one receiver.
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Situation (ii) can have two or more overlaps between path P0 and Pa. However,

the attacker loses the ability to infer anything about communication [si, rj]a after the

first mistake, where the two paths split. All the nodes reachable after the first mistake

have to be aggregated in a receiver cloud. This situation is therefore no different than

the single-overlap situation described above.

The result of Step 2 is the probability p([SCij
l/p, RCij

L/q]s|[si, rj]) of suspecting

communication [si, rj ]a as communication [SCij
l/p, RCij

L/q]s.

c. Step 3

In Step 1 and Step 2 we determined path-dependent end-to-end transition probabil-

ities of the form p([SCij
l/p, RCij

L/q]s|[si, rj]a) from the local transition probabilities at

the mixes. This allows us to determine the end-to-end transition probabilities of the

super-mix (and – as a side result – the anonymity degree of the mix network) by

solving the following optimization problem:

Given:

• Local transition probabilities ph([·]s|[·]a) at each mix Mh in the network

• Path-dependent transition probabilities p([SC ij
l/p, RCij

L/q]s|[si, rj]a).

• Traffic volume in form of a priori probability p([si, rj]a).

Objective Function: Minimize the Anonymity Degree D in Equation (7.3). This is

equivalent to maximizing the mutual information I([S, R]a; [S, R]s) in Equation (7.2).

Constraints: The optimization problem is subject to the following three sets of

constraints:

[Constraint Set 1:] The sum of all path-independent transition probabilities to all

the end nodes in a group of clouds is identical to the sum of path-dependent end-to-

end transition probabilities to the clouds in the group. For simplicity of notation, we
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formulate this for the special case of a correctly suspected Sender si. The extension

to the general case is cumbersome, but straightforward. Let GRi,j
v be the smallest set

of receiver clouds that contain rv and all receivers in GRi,j
v .

∀rv :
∑

rw∈GRi,j
v

p([si, rw]s|[si, rj]a) =
∑

RCi,j
l/q

∈GRi,j
v

p([si, RCi,j
l/q]s,Pb

|[si, rj]a). (7.14)

[Constraint Set 2:] The sum of all path-independent transition probabilities to

a sub-group of receivers is larger than the sum of the path-dependent end-to-end

transition probabilities to the clouds which only contain the receivers in the sub-

group. It is true because one receiver in the sub-group may be contained in another

cloud which contains the receivers not in the sub-group. Let Rsub be a subset of

the set R of all receivers. Define H i,j
Rsub

to be the set of all clouds that contain only

receivers in Rsub. For the simple case of a correctly suspected Sender si:

∀Rsub :
∑

rv∈Rsub

p([si, rv]s|[si, rj]a) ≥
∑

RCi,j
l/q

∈Hi,j
Rsub

p([si, RCi,j
l/q]s,Pb

|[si, rj]a). (7.15)

[Constraint Set 3:] The sum of all path-independent transition probabilities to a

sub-group of receivers is less than the sum of the path-dependent end-to-end transition

probabilities to the clouds which have at least one receiver in the sub-group. It is true

because these clouds may have other receivers which are not in the sub-group. Let

Rsub be a subset of the set R of all receivers. Define I i,j
Rsub

to be the set of all clouds

that contains at least one of the receivers in Rsub. We can conclude:

∀Rsub :
∑

rv∈Rsub

p([si, rv]s|[si, rj]a) ≤
∑

RCi,j
l/q

∈Ii,j
Rsub

p([si, RCi,j
l/q]s,Pb

|[si, rj]a). (7.16)

[Constraint set 4:] The end-to-end transition probabilities for all suspects for all
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actual communications sum up to 1:

∀i, j
∑
su,rv

p([su, rv]s|[si, rj ]a) = 1 . (7.17)

The solution of this optimization problem is the set of the end-to-end transition

probabilities of the super mix that minimize the anonymity degree of the mix network.

3. A Small Example

We use the example mix network displayed in Figure 55 to illustrate how to compute

end-to-end transition probabilities as described in Step 2 of Section 2.

We focus on communication [s1, r1]. Suppose the actual communication takes the

route P0: s1 → M1 → M3 → M5 → r1. In this case, the probability of (erroneously)

suspecting communications [s1, r3] is computed as follows:

p([s1, r3]s|[s1, r1]a) = p1([s1, M3]s|[s1, M3]a) · p3([M1, r3]s|[M1, M3]a) . (7.18)

This computation is simple, since there is only one path from s1 to r3.

The situation of (correctly) suspecting communication [s1, r1]a is more compli-

cated, because two paths can be taken. One is P0 : s1 → M1 → M3 → M5 → r1, the
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other is P1 : s1 → M1 → M4 → M5 → r1. Clearly, we have

p([s1, r1]s,P0|[s1, r1]) = p1([s1, M3]s|[s1, M3]a)

·p3([M1, M5]s|[M1, M5]a) · p5([M3, r1]s|[M3, M1]a) (7.19)

of suspecting [s1, r1] over Path P0.

For path P1, we can not get express

p([s1, r1]s,P1|[s1, r1]a) directly in terms of anonymity attack result at mixes, because

the wrong guess at Mix M1 will possibly lead to two receivers, r1 and r2. So we have

to aggregate Receiver r1 and r2 in receiver cloud C1,1
1/q, where q denotes the wrongly

selected output port at Mix M1. So what we can get is

p([s1, C
1,1
1/q]s|[s1, r1]a) = p1([s1, M4]s|[s1, M1]a) , (7.20)

where the erroneous selection of Port q on Mix M1 leads to the suspected Path

s1 → M1 → M4. Clearly both Receiver r1 and Receiver r2 can be reached after

selecting Port q on Mix M1.

In turn, by following Equation (7.14), we can get

p([s1, r1]s|[s1, r1]a) + p([s1, r2]s|[s1, r1]a) =

p1([s1, M4]s|[s1, M1]a) + p1([s1, M3]s|[s1, M3]a)

·p3([M1, M5]s|[M1, M5]a) · p5([M3, r1]s|[M3, M1]a) . (7.21)

After repeating this for all possible sender-receiver pairs, expressions for the

end-to-end transition can be formulated, and the optimization described in Step 3 of

Section 2 can be used to determine the anonymity degree of the network.
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F. Covert Channel Capacity vs. Anonymity Degree in Mix Networks

The analysis of the effectiveness of anonymity networks is rendered difficult for two

reasons, among others: First, attacks on such networks are typically out-of-the-box

attacks (for example none of the intersection attacks, trickle attacks, or others target

measures taken by the mix network). Second, it is unknown where and how traffic

information is collected. Is the attack targeting individual mixes or clusters of mixes?

Is the information collected on a per-mix or a per-link basis?

In this section we describe how the anonymity in mix networks can be system-

atically analyzed and bounded based on estimates of either per-mix weakness (using

local covert channels) or the entire mix network (using network-wide covert channels).

For this purpose, we investigate the relation between the covert channel capacity of

a mix network and the anonymity provided by the network.

1. Upper Bound on the Covert Channel Capacity in Mix Networks

Let the mix network have K mixes. For Mix Mh, we use Sh and Rh to represent the

set of senders and receivers of Mix Mh respectively. Any anonymity attack on Mix

Mh will lead to a set of probabilities of the form ph([su, rv]s|[si, rj]a) with su and si

in Sh and rv and rj in Rh.

In a mix network, there are various ways to establish covert channels. For exam-

ple, in the mix network shown in Figure 56, there are at least two ways to establish

the covert channels using the two mixes MA and MB. One way is to establish one

covert channel on MA and MB separately. Alternatively, one can establish a covert

channel on the super mix containing both MA and MB. We assume each mix can

only be contained in one covert channel as before. In the following, we use the nota-

tion cc(M) to denote the covert channel that can be established over the set of the
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mixes M. If we denote the capacities of cc({MA}) and cc({MB}) to be CA and CB,

respectively, then the sum of the covert channel capacity clearly is CA +CB. We have

the following lemma:

Lemma 5 The capacity of cc({MA, MB}) will be no greater than CA + CB .

Proof: The input and output alphabet of cc({MA}) are {[s, r]a : s ∈ SA, r ∈ RA}
where SA = {s1, s2, · · · , smA

, MB} and RA = {r1, r2, · · · , rnA
, MB}. Please note that

Mix MB can be both a sender and a receiver for Mix MA and vice versa. We can

construct a new channel v1 from cc({MA}) with reduced set of input symbols. The

input symbols of Channel v1 are {[s, r]a : s ∈ SA − {MB}, r ∈ RA}⋃{[MB, MB]a}.
According to Theorem 3, the capacity of cc({MA}) will be no less than the capacity

of Channel v1.

Now we consider a covert channel v2. The covert channel sender of channel

v2 controls all the senders s ∈ SA − {MB} attached to Mix MA to communicate

with any Receiver r attached to both mixes, r ∈ RA
⋃

RB − {MA, MB}, where RB =

{r′1, r′2, · · · , r′nB
, MA}. Let I2 to denote the set {[s, r]a : s ∈ SA−{MB}, r ∈ RA

⋃
RB−

{MA, MB}}. Assuming the covert channel sender can also send the symbol [MB, MB]a,
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the input symbols of v2 are I2
⋃{[MB, MB]a}. The receiver of the covert channel v2

can only observe all the links connected to Mix MA. So the channel output symbols

are {[s, r]s : s ∈ SA, r ∈ RA}. The transition probability for Channel v2 is fully

determined by the anonymity attack on Mix MA. For example, for input symbol

[s1, r1]a and output symbol [s1, r1]s, the transition probability is

pMA
([s1, r1]s|[s1, r1]a). Please note:

p([s1, rx]s|[s1, r
′
i]a) = p([s1, rx]s|[s1, r

′
j]a) = pMA

([s1, rx]s|[s1, MB]a), (7.22)

where rx ∈ RA, r′i ∈ RB and r′j ∈ RB.

We can observe that because of Equation (7.22), we can get channel v1 by aggre-

gating Channel v2’s input symbols [sx, r
′
1]a, [sx, r

′
2]a, · · · , [sx, r

′
nB

]a (sx ∈ SA − {MB})
into [sx, MB]a. It is obvious that

nB∑
i=1

p([sx, r
′
i]a) = p([sx, MB]a) . (7.23)

The mutual information I(X; Y ) is a concave function of p(x) for fixed p(y|x). From

Jensen’s Inequality [102], we can infer that the mutual information between Channel

v1’s input and output will be no less than the mutual information between Channel

v2’s input and output. So the capacity of Channel v1, Cv1 is no less than the capacity

of Channel v2, Cv2 .

Furthermore, we can extend the output symbols of Channel v2. The extension is

as follows: (a) extend [sx, MB]s to [sx, r
′
1]a, [sx, r

′
2]a, · · · , [sx, r

′
nB

]a (b) extend [MB, ry]s

to [s′1, ry]s, [s
′
2, ry]s, · · · , [s′mB

, ry]s (c) extend [MB, MB]s to {[s, r] : s ∈ SB −{MA}, r ∈
RB − {MA}}.

Then we can get Channels v3. Its input symbols are the output symbols of

Channel v2 and its output symbols are the extended output symbols of the Channel

v2. Clearly the transition probabilities of Channel v3 are determined by the anonymity
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attack on Mix MB. So the Channel v3’s output is determined by the Channel v3’s

input and it is independent of Channel v2’s input given Channel v3’s input. So we

have the Markov Chain: Channel v2’s input → Channel v2’s output, i.e. Channel v3’s

input → Channel v3’s output.

According to Data Processing Inequality [102], the mutual information between

Channel v2’s input and Channel v2’s output will be no less than the mutual informa-

tion between Channel v2’s input and Channel v3’s output. We can create a Channel

v4 whose input is Channel v2’s input and whose output is Channel v3’s output. Then

we have Cv4 , the capacity of Channel v4 will be no less than Cv2 , the capacity of the

Channel v2.

So far we have

CA ≥ Cv1 ≥ Cv2 ≥ Cv4 (7.24)

and

Cv4 = max∑
[si,rj ]a∈I2⋃

{[MB,MB]}

p([si,rj ]a)=1
I([si, rj]a; [su, rv]s) (7.25)

where su ∈ SA
⋃

SB − {MA, MB}, rv ∈ RA
⋃

RB − {MA, MB}, and

SB = {s′1, s′2, · · · , s′mB
, MA}.

Clearly the output symbols of Channel v4 is the same as the output symbols of

Channel cc({MA, MB}) which is built on the super mix. The input symbols of Channel

v4 contains a part of the input symbols of Channel cc({MA, MB}) and [MB, MB]a.

Similarly, we can get

CB ≥ max∑
[si,rj ]a∈I′

2⋃
{[MA,MA]}

p([si,rj ]a)=1
I([si, rj]a; [su, rv]s) (7.26)

where I ′
2 = {[s, r]a : s ∈ SB − MA, r ∈ RA

⋃
RB − {MA, MB}} and
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SB = {s′1, s′2, · · · , s′mB
, MA}. The other part of the input symbols cc({MA, MB}) are

included in I ′
2.

The capacity of Channel cc({MA, MB}) is

Cs = max∑
[sl,rj ]a∈
I2
⋃

I′2

p([sl,rj ]a)=1
I([si, rj]a; [su, rv]s) (7.27)

≤ max∑
[si,rj ]a∈I2

⋃
{[MB,MB]a}

p([si,rj ]a)=1
I([si, rj]a; [su, rv]s)

+ max∑
[s′i,rj ]a∈I′2

⋃
{[MA,MA]a}

p([s′i,rj ]a)=1
I([s′i, rj]a; [su, rv]s) (7.28)

≤ CA + CB. (7.29)

It is true from step 7.27 to step 7.28 because of two reasons. First, the maximization

range
∑

[si,rj ]a∈I2
⋃

{[MB ,MB]}
p([si, rj ]a) = 1,

∑
[s′i,rj ]a∈I′2

⋃
{[MA,MA]}

p([s′i, rj]a) = 1 includes

the maximization range
∑

[sl,rj ]a∈I2
⋃

I′2

p([sl, rj]a) = 1. Second, according to Log Sum

Inequality [102],

∑
[si,rj ]s∈O2

(p([MB, MB]a, [si, rj ]s)· log
p([MB, MB]a, [si, rj]s)

p([MB, MB]a)p([si, rj]s)
)

≥ ∑
[si,rj ]s∈O2

(p([MB, MB]a, [si, rj]s)· log

∑
[si,rj ]s∈O2

p([MB, MB]a, [si, rj]s)∑
[si,rj ]s∈O2

p([MB, MB]a)p([si, rj]s)

= 0

where O2 is the set of output symbols of Channel v4 and cc({MA, MB}). Adding

non-negative terms will not change the direction of the inequality. From step 7.28 to

step 7.29, Inequalities (7.26), (7.24) and Equation (7.25) are used.

Extending the two mixes case in Lemma 5, we can get the following Lemma.

Lemma 6 For two mixes connected with more than one links, the capacity of the
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covert channel built on the super mix, cc({MA, MB}) will be no greater than CA +CB.

The proof is similar to that of Lemma 5. Instead of only one path between MA and

MB, there are more than one paths between MA and MB. But it will not affect the

use of the inequalities employed in the proof of Lemma 5.

Theorem 4 In a mix network of K mixes, the sum of the capacities of all the covert

channels in the mix network will be no greater than
K∑

h=1
Ch.

Proof: This theorem can be proved by induction on K mixes with the help of

Lemma 6, as any set K +1 mixes can be partitioned into a supermix of K mixes and

a single mix.

2. Relationship

Similarly to the single-mix case in Section D, we are interested in how bounds on the

achievable anonymity degree are affected by the covert channel capacity of the system,

and vice versa. For example, it is obvious that an upper bound on the anonymity

degree will result in a lower bound on the total covert-channel capacity, following the

observation that anonymity attacks are more effective in less anonymous mixes.

The upper bound Dupper on the anonymity gives raise to a lower bound Clower

on the sum of the local channel capacities:

Clower = min(
K∑

n=1

Ch) (7.30)

Equation (7.30) gives raise to a minimization problem over anonymity attack

results ph([su, rv]s|[si, rj ]a), with the following three constrains: First, the local a

priori probabilities for communications at each Mix Mh must sum to one:
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mh∑
i=1

nh∑
j=1

ph([si, rj ]a) = 1. (7.31)

Second, the transition probability from each input symbol [si, rj]a of each mix should

sum up to one:
mh∑
u=1

nh∑
v=1

ph([su, rv]s|[si, rj]a) = 1, (7.32)

Third, the anonymity of the system, as computed in Section 1, should not exceed

Dupper.

We can solve this constrained optimization problem analytically by using La-

grange multipliers and Kuhn-Tucker conditions. Or we can use numerical methods

such as Monte-Carlo.

Similarly, given upper bound Cupper on the total covert channel capacity of the

mix network, we would like to find out a lower bound Dlower for anonymity degree of

the mix network.

The objective function becomes

Dlower = min[1 − I([SM , RM ]a; [SM , RM ]s)

log(m · n)
] (7.33)

This optimization problem is over all possible anonymity attack result

ph([su, rv]s|[si, rj]a). Constraints (7.31) and (7.32) still in this case. The new con-

straint is

Cupper ≥
K∑

h=1

Ch (7.34)

G. Evaluation

We use the mix network shown in Figure (57) as an example to illustrate the rela-

tionships established in the previous section. We choose six mixes because it is not
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a trivial topology, and both a mix cascade and a stratified network case [103] can be

established on the six mixes.

We assume that communications between each sender-receiver pair have the same

a priori probability (alternatively, the same share of total traffic volume). Since there

are two senders and two receivers, we have four sender-receiver pairs. The actual path

for Communication [si, rj]a is shown in Table III if the actual path is not specified

and the path is possible in the topology. We assume the anonymity attack at each

mix is useful, meaning the attack can identify the actual local communication [si, rj]a

with a probability equal or larger than random guess. For our examples, we use

adaptive simulated annealing to solve the optimization problem to establish Dlower

from a known bound on the mix network capacity.

 

M1 M3 

M2 

r1 

r2 

s1 

s2 

M4 

M5 

M6 

1 

2 

3 

4 

Fig. 57. An Example Mix Network

1. Impact of the Connectivity

Obviously the connectivity will affect the anonymity degree in a mix network. In

our first set of examples, the base topology contains only the solid lines in Figure 57.

Then edges are incrementally added to the base topology in the order of the label
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Table III. Path of the Actual Communications

Communication Actual Path

[s1, r1]a s1 → M1 → M3 → M5 → r1

[s1, r2]a s1 → M1 → M3 → M6 → r2

[s2, r1]a s2 → M2 → M4 → M5 → r1

[s2, r2]a s2 → M2 → M4 → M6 → r2

assigned to each edge. The average degree of the topologies including base topology

are 2, 14
6
, 16

6
, 3, 20
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respectively.
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Fig. 58. Impact of the Connectivity

For every mix in the base topology, there is only one input link and one output

link. So there is only one sender receiver pair for the mix in the base topology. A

channel which has only one input symbol and one output symbol will have capacity

zero. So the capacity Csum is zero for base topology.
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From Figure 58, first we can observe that the lower bound of the anonymity

degree decreases with increasing bound on the capacity, just as we expect. In addition,

the capacity Csum increases with increasing connectivity. For a given upper bound of

the capacity Csum, increasing connectivity will increase the anonymity degree. Third,

we can observe that there is large gap between the base topology and the topology

of the next higher average degree. This is because adding the edge of label 1 will

connect s1 and r2 and the Communication [s1, r2]a can be suspected as [s1, r1]s. So

the initial edge added to the topology can increase the anonymity degree significantly.

In comparison, the effect of adding edge with Label 4 is marginal.

2. Effect of Adding Different Edges

In the second set of examples, we use the solid lines and edge with label 1 as base

topology. Then we add one more edge 2, 3 or 4 to the base topology. We label the

new topology as A, B and C respectively. Clearly these topologies are of the same

average degree. From Figure 59, we can observe that the anonymity degree increase

cause by adding edge with label 3 is smaller than adding the other two edges. This is

because adding the other two edges can make Communication [s2, r1]a possible and

the Communication [s2, r1]a can be suspected as other communications.

3. Effect of Path Selection

In this set of examples, we focus on the topology containing all the solid and dashed

lines except the edge with label 3. We consider two cases. In one case, the actual

path for Communication [s2, r1]a follows Path A as in Table III. In the other case,

the actual path B for Communication [s2, r1]a is s1 → M2 → M3 → M5 → r1.

We can observe going though Mix M3 will slightly increase the anonymity from

Figure 60. This is because Mix M3 has more output and input links than the other
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Fig. 59. Effect of Adding Different Edges

mixes. So the communication through Mix M3 is more easy to hide.

H. Summary

In this chapter we propose a new mutual information based anonymity degree. It gives

out one number which is between zero and one to indicate the overall effectiveness

of a whole mix network. We also gives out a proof on how to achieve maximal

covert channel capacity for a single mix based on anonymity attacks on the mix.

The relationship between the anonymity degree and anonymity attack based covert

channel capacity is derived for both a single mix case and mix network case.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

In this dissertation, we investigated if the current anonymous communication system

can achieve anonymity. We proposed several traffic analysis methods to analyze the

effectiveness of current anonymity system.

Traffic analysis based on flow correlation, presented in Chapter III, can deter-

mine the dependence between individual traffic flows and aggregate traffic flows. We

proposed to measure the dependency in the time domain using mutual information

and frequency domain using cross-correlation. We theoretically analyze the effective-

ness of flow correlation attack for different mix strategies. We formally prove that

given sufficient length of trace data, flow correlation attack can achieve detection rate

arbitrary close to 100%. We derive the formulae to reveal the relationship between

effectiveness of flow correlation attack and parameters of different mix strategies. To

counter the passive flow correlation attack, we proposed adaptive output traffic con-

trol which can be immune to flow correlation attack and achieve high throughput for

payload traffic.

Traffic analysis based on flow separation, presented in Chapter V, can separate

individual traffic flows by using Blind Source Separation.In a mix network, the mix-

ture of traffic flows can be observed on the input and output links of a mix. By

applying blind source separation algorithms to maximize the independence between

individual traffic flows, the attacker can separate the traffic flows through the mix

network. Furthermore, the passive attacker can get the traffic map of the mix net-

work by matching frequency spectrum of flows separated at each mix. In contrast to

previous research results, we experimentally and analytically showed that multicast

traffic can be in some cases dangerous for anonymity network.
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We propose a location estimation method based on packet timing information in

Chapter VI. The location estimation method is based on Blind Source Separation.

Our experiments show that the proposed method can both precisely and accurately

estimate the location of wireless nodes.

In chapter VII, we propose an anonymity degree to evaluate the quality of an

anonymity network. In comparison with previously proposed anonymity degrees

mostly defined with respect to a message or a packet, our proposed anonymity degree

can capture the quality of an anonymity network. Our proposed anonymity degree

takes into account both network topology and heterogeneity in deployed anonymity

measures and possible attack methods. The proposed anonymity degree is based on

mutual information, and it can generalize all the previously proposed information-

theoretical measures. The imperfectness of an anonymity network can result in in-

formation leakage from the anonymity network in the form of covert channel. We

formally derived the relationship between our proposed anonymity degree and maxi-

mum capacity of covert channels inside the anonymity network.

Our future work will focus on building an anonymity system. To build an

anonymity system, the following aspects need to be addressed: First new techniques

to mix the traffic flow and defeat traffic analysis attack can be invented based on

statistical signal processing and randomized algorithm. Next the fundamental trade

off between anonymity and usability needs to be evaluated. Low-latency anonymity

system was proposed recently for interactive traffic flows. But the study on the per-

formance of TCP traffic flow in anonymity system is still blank. Finally our initial

research in this area indicates the need for a new MAC protocol in consideration of

both efficiency and privacy. I would like to continue the study in this area.
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[36] D. Kesdogan, J. Egner, and R. Büschkes, “Stop-and-go MIXes: Providing prob-

abilistic anonymity in an open system,” in Proc. of Information Hiding Work-

shop (IH 1998), Portland, OR, April 1998, pp. 83–98.

[37] Y. Guan, X. Fu, R. Bettati, and W. Zhao, “An optimal strategy for anonymous

communication protocols,” in Proc. of the 22 nd International Conference on

Distributed Computing Systems (ICDCS’02), Vienna, Austria, July 2002, pp.

257–266.

[38] I. S. Moskowitz, R. E. Newman, D. P. Crepeau, and A. R. Miller, “Covert

channels and anonymizing networks,” in Proc. of the Workshop on Privacy

in the Electronic Society (WPES 2003), Washington, DC, October 2003, pp.

79–88.



167

[39] R. E. Newman, V. R. Nalla, and I. S. Moskowitz, “Anonymity and covert chan-

nels in simple timed mix-firewalls,” in Proc. of Privacy Enhancing Technologies

Workshop (PET 2004), Toronto, Canada, May 2004, pp. 1–16.

[40] I. S. Moskowitz, R. E. Newman, and P. F. Syverson, “Quasi-anonymous chan-

nels,” in Proc. of the IASTED International Conference on Communication,

Network, and Information Security, New York, NY, December 2003, pp. 126–

131.

[41] A. M. Ladd, K. E. Bekris, A. Rudys, G. Marceau, L. E. Kavraki, and D. S. Wal-

lach, “Robotics-based location sensing using wireless Ethernet,” in Proc. of the

Eighth ACM International Conference on Mobile Computing and Networking

(MOBICOM), Atlanta, GA, September 2002, pp. 227–238.

[42] P. Bahl and V. N. Padmanabhan, “Radar: An in-building rf-based user location

and tracking system,” in INFOCOM, Tel Aviv, Israel, March 2000, pp. 775–784.

[43] D. Niculescu and B. Nath, “Vor base stations for indoor 802.11 positioning,” in

Proc. of the 10th Annual International Conference on Mobile Computing and

Networking, Philadelphia, PA, September 2004, pp. 58–69.

[44] D. Niculescu and B. R. Badrinath, “Ad hoc positioning system (aps) using aoa,”

in INFOCOM, San Francisco, CA, March 2003, pp. 1734–1743.

[45] R. J. Ismail Guvenc, Chaouki T. Abdallah and O. Dedeoglu, “Enhancements

to rss based indoor tracking systems using kalman filters,” in GSPx &

International Signal Processing Conference, Dallas, TX, April 2003. [Online].

Available: http://www.ece.unm.edu/controls/papers/Guv CTA Jor Ded.pdf



168
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APPENDIX A

MAXIMUM FREQUENCY COMPONENT OF A TCP FLOW

In this appendix we prove Corollary 1 that a TCP flow has a feature frequency

component with the maximum power density at 1/RTT .

RTT

θ

WW/2

t
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θ
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t
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Fig. 61. TCP Congestion Window in Congestion Avoidance Phase

Based on [104, 105], a stable TCP flow’s rate changing trend can approximately

be illustrated as in Figure 61 if TCP-reno [106] version of congestion control algorithm

is used. When a TCP flow is in additive increase phase, one more packet is sent each

round trip time. While in multiplicative decrease phase, the packet number in one

round trip time decreases by half from W to W
2

. The inter-departure time θ of two

adjacent packets is determined by the smallest bandwidth along the flow path and

jitter of queueing delay. Usually, θ is much smaller than RTT.

So we can model the TCP packet train in congestion control phase as

x(t) =

W
2∑

k=0

W
2

+k−1∑
l=0

δ(t − l · θ − k · RTT ) (A.1)

where δ(t) is the unit impulse function.

Its Fourier transformation is

X(ω) =

W
2∑

k=0

W
2

+k−1∑
l=0

e−jω(k·RTT+l·θ) (A.2)
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.

Its energy-density spectrum is

|X(w)|2 = [

W
2∑

k=0

W
2

+k−1∑
l=0

cos(k · RTT · ω + l · θ · ω)]2

+[

W
2∑

k=0

W
2

+k−1∑
l=0

sin(k · RTT · ω + l · θ · ω)]2

=
∑

0≤k≤W
2

,0≤l≤W
2

+k−1

0≤m≤W
2

,0≤n≤W
2

+m−1

cos(k · RTT · ω + l · θ · ω) cos(m · RTT · ω + n · θ · ω)

+
∑

0≤k≤W
2

,0≤l≤W
2

+k−1

0≤m≤W
2

,0≤n≤W
2

+m−1

sin(k · RTT · ω + l · θ · ω) sin(m · RTT · ω + n · θ · ω)

=
∑

0≤k≤W
2

,0≤l≤W
2

+k−1

0≤m≤W
2

,0≤n≤W
2

+m−1

cos(((k − m)RTT + (l − n)θ)ω) (A.3)

Since θ � RTT , |l − n| ≤ W and (l − n)θ → 0, Equation (A.3) can be approxi-

mated as follows,

|X(w)|2 ≈ ∑
0≤k≤W

2
,0≤l≤W

2
+k−1

0≤m≤W
2

,0≤n≤W
2

+m−1

cos((k − m) · RTT · ω) (A.4)

This corresponds to the case that all packets in one RTT are sent out at roughly

the same time at the beginning of the RTT. When ω = 2π h
RTT

(h is an integer), we

get the maximum |X(w)|2 since cos((k − m) · RTT · ω) = 1.

Thus, the maximum frequency component of a FTP flow is around frequency

1
RTT

.
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APPENDIX B

PROOF OF LEMMAS ON MEAN AND VARIANCE OF MUTUAL

INFORMATION ESTIMATION

In this appendix, we provide the major steps for proving Lemma 1 and Lemma 2.

Lemma 1: The mean of mutual information estimation Î(f, l) is given by

E(Î(f, l)) ≈ I(f, l) +
(r − 1)(s − 1)

N

where I(f, l) is the original mutual information, and r and s are defined in (4.1) and

(4.2) respectively.

Proof:

We estimate mutual information I(f, l) in (4.4) as follows,

Î(f, l) =
r∑

a=0

s∑
b=0

p̂(a, b) log
p̂(a, b)

p̂(a)p̂(b)

=
∑
a,b

p̂(a, b) log p̂(a, b) −∑
a

p̂(a) log p̂(a) −∑
b

p̂(b) log p̂(b). (B.1)

If we apply a second order Taylor expansion1 to the three items in (B.1) at p(a, b),

p(a), and p(b)2, respectively, after a series of rearrangements, we have

Î(f, l) ≈ ∑
a,b

p̂(a, b) log
p(a, b)

p(a)p(b)
+

1

2

∑
a,b

1

p(a, b)
[p̂(a, b) − p(a, b)]2

−1

2

∑
a

1

p(a)
[p̂(a) − p(a)]2 − 1

2

∑
b

1

p(b)
[p̂(b) − p(b)]2 (B.2)

1Since the functions to be expanded are smooth functions, it is appropriate to
ignore remainder terms. Same is true for Step B.6 in proof of Lemma 2.

2The reason for the expansion at the points of the underlying distribution is that
the original mutual information is based on the underlying distribution.
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Now we are ready to compute the mean of Î(f, l):

E[Î(f, l)] =
∑

n0,0,···,nr,s

n0,0+···+nr,s=N

p(n0,0, · · · , nr,s)Î(f, l) (B.3)

where na,b is the the number of occurrences of (a, b). One sample in (4.3) corre-

sponds to a (n0,0, · · · , nr,s), which gives one possible mutual information estimation.

p(n0,0, · · · , nr,s) satisfies a multinomial distribution3.

Substituting (B.2) into (B.3) and using properties of the multinomial distribu-

tion, we have, after rearrangements,

E[Î(a, b)] =
∑
a,b

p(a, b) log
p(a, b)

p(a)p(b)
+

1

2N

∑
a,b

(1 − p(a, b)) − 1

2N

∑
a

(1 − p(a))

− 1

2N

∑
b

(1 − p(b)) (B.4)

= I(f, l) +
rs − 1

2N
− r − 1

2N
− s − 1

2N

= I(f, l) +
(r − 1)(s − 1)

2N
. (B.5)

Q.E.D.

Lemma 2 The variance of the mutual information estimation Î(f, l) is given by

var(Î(f, l)) ≈ Cf,l

N

3In the simplified case where there are only two possible outcomes of (a, b), the
distribution will be binomial distribution. For the case where there are more than
two outcomes, the distribution will be multinomial.
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where Cf,l is a constant and is defined as follows

Cf,l =
∑
a,b

p(a, b)

(
log

p(a, b)

p(a)p(b)

)2

−
⎛
⎝∑

a,b

p(a, b) log
p(a, b)

p(a)p(b)

⎞
⎠2

where p(a, b) is the original probability distribution of (a, b).

Proof:

To obtain the variance of Î(f, l), we perform an approximation by only keeping

the first item in the Taylor expansion (B.2). Thus,

Î(f, l) ≈ ∑
a,b

p̂(a, b) log
p(a, b)

p(a)p(b)
(B.6)

According to the definition, we know

p̂(a, b) =
na,b

N
(B.7)

Substituting (B.7) into (B.6), we have

Î(f, l) =
1

N

∑
a,b

na,b log
p(a, b)

p(a)p(b)
(B.8)

The multinomial distribution has the following property

∑
a,b

sa,bna,b = N

⎛
⎝∑

a,b

p(a, b)s2
a,b − (

∑
a,b

p(a, b)sa,b)
2

⎞
⎠ (B.9)

where sa,b is a constant. Applying this property to (B.8) with

sa,b = log
p(a, b)

p(a)p(b)
,

we have

V ar[Î(a, b)] ≈ 1

N2
V ar

⎡
⎣∑

a,b

na,b log
p(a, b)

p(a)p(b)

⎤
⎦

=
1

N

∑
a,b

p(a, b)

(
log

p(a, b)

p(a)p(b)

)2

− 1

N

⎛
⎝∑

a,b

p(a, b) log
p(a, b)

p(a)p(b)

⎞
⎠2
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=
Cf,l

N
(B.10)

Q.E.D.
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APPENDIX C

PROOF OF DETECTION RATE THEOREM

In this appendix, we describe the major steps for proving Theorem 2.

Theorem 1 For a mix with any number of output links, the detection rate, v, is

given by

v ≈ 1 −
√

Cf,lM→R1

N
×
∫ −I(f,lM→R1

)
√

N
Cf,lM→R1

−∞
N(0, 1)dx

where N is the sample size, I(f, lM→R1) is the mutual information of the input flow

f and its corresponding output link aggregated flow lM→R1 , N(0, 1) is the density

function of the standard normal distribution, and Cf,lM→R1
is defined in (4.8).

Proof:

We know that Î(f, l) satisfies a normal distribution. Its mean and variance can

be derived from Lemma 1 and Lemma 2, respectively. Thus, the detection rate can

be obtained by (4.5).

Now, let us examine the distribution of the mutual information estimation. The

mutual information estimation Î(f, lM→R1) between the input flow f and its corre-

sponding output link aggregated flow lM→R1 has the following normal distribution:

Î(f, lM→R1) ∼ N

(
I(f, lM→R1) +

(r − 1)(s − 1)

N
,

Cf,lM→R1

N

)
. (C.1)

Since the input flow goes through linkM→R1 , it is easy to see that

Cf,lM→R1
=

∑
a,b

p(a, b)

(
log

p(a, b)

p(a)p(b)

)2

−
⎛
⎝∑

a,b

p(a, b) log
p(a, b)

p(a)p(b)

⎞
⎠2

�= 0, (C.2)

where p(a, b) refers to the joint distribution of input flow f and its corresponding
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output link aggregated flow lM→R1
4.

The mutual information Î(f, lM→Ri
) (i �= 1) between the input flow f and aggre-

gated flow lM→Ri
has the following normal distribution:

Î(f, lM→Ri
) ∼ N

(
I(f, lM→Ri

) +
(r − 1)(s − 1)

N
,

Cf,lM→Ri

N

)
.

where

Cf,lM→Ri
=
∑
a,b

p(a, b)(log
p(a, b)

p(a)p(b)
)2 −

⎛
⎝∑

a,b

p(a, b) log
p(a, b)

p(a)p(b)

⎞
⎠2

If we assume that the input flow f is approximately independent of the output

link aggregated flow lM→Ri
(i �= 1), it is easy to see

Cf,lM→Ri
= 0,

and

I(f, lM→Ri
) = 0.

That is, the mutual information estimation Î(f, lM→Ri
) (i �= 1) degenerates into

a constant (r−1)(s−1)
N

.

Now, we assume the same size N is sufficiently large and the mix’s links have

the same bandwidth, the detection rate formula (4.5) becomes

v = Pr

(
I(f, lM→R1) >

(r − 1)(s − 1)

N
, · · · , I(f, lM→R1) >

(r − 1)(s − 1)

N

)

= Pr

(
I(f, lM→R1) >

(r − 1)(s − 1)

N

)

Since I(f, lM→R1) has a normal distribution as in (C.1), we can easily obtain

4Rigorously, p(a, b) should be pf,lM→R1
(a, b). The subscript is removed for the sake

of brevity.
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detection rate v

v =
∫ +∞

(r−1)(s−1)
N

N

(
I(f, lM→R1) +

(r − 1)(s − 1)

N
,

Cf,lM→R1

N

)
dx

= 1 −
∫ (r−1)(s−1)

N

−∞
N

(
I(f, lM→R1) +

(r − 1)(s − 1)

N
,

Cf,lM→R1

N

)
dx (C.3)

After some transformations, (C.3) becomes

v ≈ 1 −
√

Cf,lM→R1

N
×
∫ −I(f,lM→R1

)
√

N
Cf,lM→R1

−∞
N(0, 1)dx

Q.E.D.
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APPENDIX D

JOINT DISTRIBUTION DERIVATION FOR SIMPLE MIX

In this appendix, we derive the joint distribution of the input flow packet count a and

the output flow packet count b for a simple proxy. Denote Alice’s flow as f . There

are two cases: (1) an output link carries the flow from Alice to Bob, lM→R1; (2) an

output link does not carry the flow from Alice to Bob, lM→Ri
, i > 1.

Joint Distribution for flows f and lM→R1

Denote p(a, b) as the joint distribution

p(a, b) = p(a)p(b|a) (D.1)

Since each packet is padded to the same size in a mix network, the service time

for each packet is constant. Because the arrival is Poisson distributed, we can model

the simple proxy as a M/D/1 queuing system.

The conditional probability p(b|a) in (D.1) is determined by the queue length

Q and noise traffic to Bob. Denote the packet count of noise packets as N1 and the

maximum number of output packets during a sampling interval as C1. We need to

consider two cases:

(1) b < C1: Since the simple proxy is modeled as M/D/1 queue, this case means

that the output link bandwidth is not fully used and the number of output packets

is greater than Alice’s packets into the mix during the sampling interval, thus

p(b|a) = p(Q + N1 = b − a)

=
b−a∑
q=0

p(Q = q)p(N1 = b − a − q) (D.2)
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(2) b = C1: This case means that the output link bandwidth is fully used, thus

p(C1|a) = p(Q + N1 ≥ C1 − a)

=
∞∑

v=C1−a

v∑
q=0

p(Q = q)p(N1 = v − q) (D.3)

Now we determine the queue length distribution p(Q = q). Denote the noise

packet arrival rate as λN1 , Alice’s packet arrival rate as λf and output link band-

width as c1 (C1 = c1T , T is the sampling interval). From basic queuing theory, the

equilibrium state queue length distribution of M/D/1 queue is:

p(Q = 0) = 1 − ρ (D.4)

p(Q = 1) = (1 − ρ)(eρ − 1) (D.5)

p(Q = q) = (1 − ρ)
q∑

j=1

(−1)q−j[
(jρ)q−j

(q − j)!
+ (1 − δqj)

(jρ)q−j−1

(q − j − 1)!
]ejρ, q ≥ 2(D.6)

where

ρ =
λN1 + λf

c1

and

δqj =

⎧⎪⎪⎨
⎪⎪⎩

0, q �= j

1, q = j

Recalling that noise traffic packet count (P (N1)) and Alice’s packet count (P (a))

is Poisson distributed, we can get the joint distribution by substituting (F.19), (F.20),

(F.21), (D.2) and (D.3) into (D.1).

Joint Distribution for flows f and lM→Ri
, i ≥ 2

Here we assume that Alice’s flow f and the mix’s output flows into receivers

other than Bob are independent, thus Therefore

p(a, b) = p(a)p(b) (D.7)
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Clearly, p(b) can be easily got from the M/D/1 queue model if we assume that

all traffic is Poisson and the average rate of traffic to receiver Ri is λNi
. Denoting the

maximum number of output packets to Ri as Ci and the corresponding link bandwidth

as ci, we have two cases as above,

(1) b < Ci:

p(b) = p(Ni + Q = b) =
b∑

q=0

p(Q = q)p(Ni = b − q) (D.8)

(1) b = Ci:

p(Ci) = p(Ni + Q ≥ Ci) =
∞∑

v=Ci

v∑
q=0

p(Q = q)p(Ni = v − q) (D.9)

Noting that the noise traffic is Poisson distributed, the probability of queue length

and the joint distribution can be easily got as above.
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APPENDIX E

JOINT DISTRIBUTION DERIVATION FOR TIMED MIX

In this appendix, we derive the joint distribution of the input flow packet count a and

the output flow packet count b for a timed mix. For a timed mix queue, our model

is a little different from that of a simple proxy. In the deduction, we use a sampling

interval equal to the period of the timed mix. Thus, packets queued in the current

sampling interval will be served by the output link in the next sampling interval. In

Figure 62, we can see that the output flow packet count b and the input flow packet

count a have a shift of one sampling interval and we denote the queue length Q as

the number of packets queued exactly before the output link begins to process the

packets. Thus,

p(a, b) = p(a)p(b|a) (E.1)

p(a) follows a Poisson distribution from the assumption of Poisson traffic. Below

we discuss the derivation of p(b|a).

 

a b 

Q=r 

ith interval (p re iod) i+1th interval (period) 

Q=s 

Fig. 62. Timed Mix Queue

Denote Alice’s flow as f . There are two cases: (1) an output link carries the flow

from Alice to Bob, lM→R1 ; (2) an output link does not carry the flow from Alice to

Bob, lM→Ri
, i > 1.

Joint Distribution for flows f and lM→R1
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Similarly the discussion of the simple proxy, we denote C1 as the maximum

number of packets that can be sent out by the output link and L as the maximum

queue length. We consider two cases in terms of b.

(1) b < C1:

p(b|a) = p(b, Q ≤ C1|a) + p(b, Q > C1|a)

=
C1∑
q=0

p(Q = q)p(b|a, Q = q) +
L∑

q=C1+1

p(Q = q)p(b|a, Q = q)

Denoting N1 as the number of noise packets,

p(b|a) =
C1∑
q=0

p(Q = q)P (N1 = b − a)

+
L∑

q=C1+1

p(Q = q)p(N1 = b − a − (q − C1)) (E.2)

(1) b = C1: For this case, clearly

p(C1|a) = 1 −
C1−1∑
b=0

p(b|a) (E.3)

In equations (E.2) and (E.3), the terms related with noise traffic is easy to get

since noise traffic is Poisson. Now we focus on the derivation of the queue-length

probability.

Queue Model

We model the queue using an embedded Markov chain. Denote Prs as the state

transition probability matrix, where r is the current queue length exactly before the

ith interval) and s the queue length exactly before the (i + 1)th interval. We consider

two cases, (1) When r > C1, to move the state from Q = r to Q = s, there must be

s − (r − C1) packets coming during the ith interval as shown in Figure 62. Then (2)

When r ≤ C1, to move the state from Q = r to Q = s, there must be s incoming
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r  L  r-
1 

1 r+1  r+2  r-
2 

2 r-C1  

kL-(r-C1) 

KC1+2 
 KC1+1 

kC1 
k C1-1 

KC1-2 

k0 

 

r  L  r-1  r+1  r+2   r-2   

kL 

kl+2 
 kl+1 

kl 

kl-1 
kl-2 

k0 

 0  

(a) r > C1 (b) r ≤ C1

Fig. 63. Embedded Markov Chain

packets during the ith interval. Denoting kn as the probability that n packets coming

in the ith interval, Figure 63 shows the state transition probability from the current

state r to the next state s.

Thus, we have the following (L + 1) × (L + 1) transmission matrix,

[Prs] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0 k1 k2 k3 k4 k5 · · · kL

k0 k1 k2 k3 k4 k5 · · · kL

...
...

...
...

...
...

...
...

k0 k1 k2 k3 k4 k5 · · · kL

0 k0 k1 k2 k3 k4 · · · kL−1

0 0 k0 k1 k2 k3 · · · kL−2

...
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 k0 k1 · · · kC1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E.4)

Thus, we can easily use the following equilibrium equations (E.6) and (E.6) to

get the state probability.


π = 
πPrs, (E.5)
L∑

i=0

πi = 1. (E.6)
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where 
π = (p(Q = 0) p(Q = 1) · · · p(Q = L))T is the state probabilities. The final

result is


π = (PT
m − IL+1 +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · 0 0

...
. . .

... 0

0 · · · 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

)−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

...

0

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E.7)

where IL+1 is a (L + 1) × (L + 1) identity matrix and

Pm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0 k1 k2 k3 k4 k5 k6 · · · kL

k0 k1 k2 k3 k4 k5 k6 · · · kL

...
...

...
...

...
...

...
...

...

k0 k1 k2 k3 k4 k5 k6 · · · kL

0 k0 k1 k2 k3 k4 k5 · · · kL−1

0 0 k0 k1 k2 k3 k4 · · · kL−2

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0 0 0 0 k0 k1 k2 · · · kC1+1

1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E.8)

Joint Distribution for flows f and lM→Ri
, i > 1

We assume that Alice’s traffic is independent of noise traffic, thus (E.1) becomes

p(a, b) = p(a)p(b)

Similar to the discussion above, denoting Ci as the maximum number of packets

to the output link to receiver i in one sampling interval and Ni as the corresponding

packet count, we have

(1) b ≤ Ci
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p(b) =
Ci∑

q=0

P (Q = q)p(Ni = b) +
L∑

q=C1+1

P (Q = q)p(Ni = b + Ci − q) (E.9)

where Ni is the noise traffic packet count to Receiver i.

(2) b = Ci

p(Ci) = 1 −
Ci−1∑
b=0

p(b) (E.10)

The queue length distribution in (E.9) and (E.10) can be derived similarly as in

(E.4) and (E.8).
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APPENDIX F

JOINT DISTRIBUTION DERIVATION FOR EXPONENTIAL MIX

Overview

The formation of (4.9) in Theorem 2 is generic in terms of traffic and mix character-

istics. However, both constant Ci (1 ≤ i ≤ M) and the original mutual information

Ii depend on the joint distribution function p(u, vi), which in turn depends on the

traffic and the mix characteristics. For the case of a continuous-time mix, the effect

of the mix on the traffic can be modeled as a two-queue model shown in Figure 64.

 

 

 

 

 

Output Link Queue 
(M/D/1) 

Packet Delay Module 
(M/M/�) 

Fig. 64. Model of a Continuous-time Mix

The first queue of the continuous-time mix is introduced by the packet delay

module, while the second queue represents the fixed capacity output link of the mix.

Based on the definition of continuous-time mix, the delay module can be modeled as

a M/M/∞ queue. Since the output traffic of this queue is still a Poisson process and

since packets in a mix network are typically padded to a fixed size, the output link

queue can be modeled as M/D/1 queue.

Based on this model of a continuous-time mix, it is straightforward to derive the

joint distribution of (X, Yi) if we can model the incoming traffic into the mix. In

the following, to demonstrate the modeling framework, we assume that the incoming

traffic is a Poisson process.
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Denote Y ′
i as the packet count of the delay module’s output flow, and Y ′

i is also

the packet count of the input flow of the ith output link queuing module where this

link may correspond to a possible receiver. Thus X → Y ′
i → Yi forms a Markov

chain. So the joint probability of (X, Yi) is

p(X = u, Yi = vi)

=
∞∑

v′i=0

p(X = u, Y ′
i = v′

i, Yi = vi) (F.1)

=
∞∑

v′i=0

p(X = u)

× p(Y ′
i = v′

i|X = u)

× p(Yi = vi|Y ′
i = v′

i) (F.2)

According to our assumption about traffic arrival, the first term p(X = u) in (F.2)

follows a Poisson distribution. The second term p(Y ′
i = v′

i|X = u) is determined by

the packet delay module and the third term p(Yi = vi|Y ′
i = v′

i) is determined by the

output link queuing module.

Derivation of p(Y ′
i = v′

i|X = u) based on M/M/∞ queuing

Without loss of generality, we assume that Y ′
1 represents the packet count of flow

to receiver Bob. Below we first derive p(Y ′
1 = v′

1|X = u) for Bob and then p(Y ′
i =

v′
i|X = u) (2 ≤ i ≤ M) for receivers other than Bob.

Derivation of p(Y ′
1 = v′

1|X = u)

Three sources of packets contribute to Y ′
1 , the number of packet leaving the packet

delay module during the sampling interval: (i) packets left over from the previous

sampling interval, denoted as nq, (ii) Alice’s packets arriving in the current sampling
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interval, denoted as nf , and (iii) noise packets arriving during the current sampling

interval, denoted as nz. Thus,

p(Y ′
1 = v′

1|X = u) =
∑

nq+nf+nz=v′1

p(Nq = nq)p(Nf = nf |X = u)p(Nz = nz) (F.3)

The derivation of the three terms in (F.3) is as following:

1. p(Nq = nq)

Obviously,

p(Nq = nq) =
∞∑

q=nq

p(Q = q) ·
(

q

nq

)
p

nq

qdep(1 − pqdep)
q−nq , (F.4)

where pqdep denotes the probability of a packet delayed from a previous interval by

delay module of the continuous mix being released during the sample interval, and

p(Q = q) denotes the probability of q packets held by the delay module.

Due to the memoryless property of the exponential distribution employed by

the delay module, the distribution of remaining delay time after the beginning of a

sample interval still follows an exponential distribution with the same parameter. If

we assume that the delay module uses an exponential distribution with parameter

λd,

pqdep =

T∫
0

λde
−λdtdt (F.5)

Since the system can be modeled as M/M/∞ queue, the distribution of queue

size Q at the beginning of a sample interval is:

p(Q = q) =
rqe−r

q!
(F.6)

where r =
λf +λz

C1
, λf and λz are the Poisson arrival rate for the flow from Alice and

noise traffic coming in through the same port. Equation (F.6) holds because of the

fact that the flow from Alice is independent of the other traffic through the same port
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and the sum of the two Poisson process is also a Poisson process with arrival rate

λf + λz.

So from Equation (F.4), (F.5) and (F.6), we can compute the probability p(Nq =

nq).

2. p(Nf = nf |X = u)

Clearly, when u < nf , the probability p(Nf = nf |X = u) is zero because the

number of packet departures from the flow from Alice in one sampling interval should

be no greater than u, the packet arrivals of the flow. There are
(

u
nf

)
combinations of

nf departures from the u arrivals.

We first label the u incoming packets with sequence number from 1 to u. Suppose

the nf departures contain the packets with sequence number d1, d2, · · · , dnf
. We use

Sd to denote the set of the sequence number. So Sd = {d1, d2, · · · , dnf
}.

Since the packet count arrival is Poisson distributed, the probability of exactly

u arrivals in a sample interval T is

P (u) =

T∫
t1=0

λfe
−λf t1 ·

T−t1∫
t2=0

λfe
−λf t2 · · ·

T−
u−1∑
i=1

ti∫
tu=0

λfe
−λf tu ·

(1 −
T−

u∑
i=1

ti∫
tu+1=0

λfe
−λf tu+1dtu+1)dtu · · · dt1 (F.7)

Let Δi(t, tH) be defined as follows:

Δi(t, tH) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λfe
−λf t · (1 −

tH−t∫
t′=0

λde
−λdt′dt′), if i /∈ Sd

λfe
−λf t ·

tH−t∫
t′=0

λde
−λdt′dt′, if i ∈ Sd

(F.8)
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The probability that the nf packets in Sd are released by the delay module of the

continuous-time mix is then

pu(λf , Sd) =

T∫
t1=0

Δ1(t1, T )

T−t1∫
t2=0

Δ2(t2, T − t1) · · ·

T−
u−1∑
i=1

ti∫
tu=0

Δu(tu, T −
u−1∑
i=1

ti)

·(1 −
T−

u∑
i=1

ti∫
tu+1=0

λfe
−λf tu+1dtu+1)dtudtu−1 · · ·dt1 (F.9)

For example, when u = 4 and Sd = {2, 4}, we can get

p4(λf , {2, 4}) =

T∫
t1=0

λfe
−λf t1 · (1 −

T−t1∫
t′1=0

λde
−λdt′1dt′1)

·
T−t1∫

t2=0

λfe
−λf t2 ·

T−t1−t2∫
t′2=0

λde
−λdt′2dt′2

·
T−t1−t2∫
t3=0

λfe
−λf t3 · (1 −

T−t1−t2−t3∫
t′3=0

λde
−λdt′3dt′3)

·
T−t1−t2−t3∫

t4=0

λfe
−λf t4 ·

T−t1−t2−t3−t4∫
t′4=0

λde
−λdt′4dt′4

·(1 −
T−t1−t2−t3−t4∫

t5=0

λde
−λdt5dt5)dt4dt3dt2dt1 (F.10)

By summing up all the probabilities for the set of the same size, we can get

p(Nf = nf |X = u) =
∑

|Sd|=nf

pu(λf , Sd) (F.11)

3. p(Nz = nz)

The probability p(Nz = nz) can be calculated in a similar way as the probability
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p(Nf = nf |X = u). For the same port noise traffic, we can get pz(λz, Sd) in a similar

way deriving Equation (F.9), where λz denotes the traffic rate of the same port noise

traffic.

Thus we can get

p(Nz = nz) =
∞∑

z=nz

∑
|Sd|=nz

pz(λz, Sd) (F.12)

B. Derivation of p(Y ′
i = v′

i|X = u) where i > 1

Since Alice’s traffic is independent from traffic of receivers other than Bob, easily

we have

p(Y ′
i = v′

i|X = u) = p(Y ′
i = v′

i) . (F.13)

We can derive the probability p(Y ′
i = v) in the same way of deriving p(Nz = nz).

We use λYi
to denote the average rate of the traffic through Port 2.

p(Y ′
i = v′

i) =
∞∑

z=v′i

∑
|Sd|=v′i

pz(λY ′
i
, Sd) (F.14)

Derivation of p(Y ′
i = v′

i|X = u) for i > 1

Since Alice’s traffic is independent from traffic of receivers other than Bob, easily we

have

p(Y ′
i = v′

i|X = u) = p(Y ′
i = v′

i) . (F.15)

We can derive the probability p(Y ′
i = v) in the same way of deriving p(Nz = nz).

We use λY ′
i

to denote the average rate of the traffic to the possible (link) receiver i

(i > 1).

p(Y ′
i = v′

i) =
∞∑

z=v′i

∑
|Sd|=v′i

pz(λY ′
i
, Sd) (F.16)
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Derivation of p(Yi = vi|Y ′
i = v′

i) based on M/D/1 queuing

Similar to the above, we differentiate the case of p(Y1 = v1|Y ′
1 = v′

1) and p(Yi =

vi|Y ′
i = v′

i) where i > 1.

Derivation of p(Y1 = v1|Y ′
1 = v′

1)

The probability p(Y1 = v1|Y ′
1 = v′

1) is determined by the M/D/1 queue. We use Q1 to

denote the size of the queue at output Port 1. So the probability p(Y1 = v1|Y ′
1 = v′

1)

can be expressed as follows:

p(Y1 = v1|Y ′
1 = v′

1) = p(Q1 = v1 − v′
1) (F.17)

when v1 < C1T , where in this subsection, C1 is the bandwidth of the link to Bob.

Obviously, when v1 < C1T , the probability p(Y1 = v1|Y ′
1 = v′

1) is zero if v′
1 > v1.

Because v1 < C1T means the link bandwidth is not fully utilized, the queue size will

be zero. So all the v′
1 incoming packets should depart in the sample interval. When

v1 = C1T , we have

p(Y1 = v1|Y ′
1 = v′

1) = p(Q1 > C1T − v′
1)

=
∞∑

q=C1T−v′1

p(Q1 = q) (F.18)

According to queuing theory results, the equilibrium state queue length distrib-

ution of M/D/1 queue will be:

p(Q1 = 0) = 1 − ρ (F.19)

where ρ =
λz+λf

C1
, λz is the average rate of noise traffic to Bob and λf is the

average rate of Alice’s traffic to Bob.
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p(Q1 = 1) = (1 − ρ)(eρ − 1) (F.20)

p(Q1 = q) = (1 − ρ)
q∑

j=1

(−1)q−j[
(jρ)q−j

(q − j)!

+(1 − δqj)
(jρ)q−j−1

(q − j − 1)!
]ejρ (F.21)

where q ≥ 2 and δqj = {1,n=j
0,n �=j.

Derivation of p(Yi = vi|Y ′
i = v′

i), i > 1

The probability p(Yi = vi|Y ′
i = v′

i) can be derived in the same way as in Equa-

tion (F.17) and (F.18).
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