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ABSTRACT 
 
 
 

An Analysis of International Energy Conservation Code (IECC)-Compliant Single-Family 

Residential Energy Use. (August 2006) 

Seongchan Kim, B.S., Dongguk University; 

M.S., Yonsei University 

Chair of Advisory Committee: Dr. Jeff S. Haberl 

 

 In 2001, the Texas State Senate passed Senate Bill 5 to reduce ozone levels by encouraging 

the reduction of emissions of NOx that were not regulated by the Texas Natural Resource 

Conservation Commission, including point sources (power plants), area sources (such as residential 

emissions), road mobile sources, and non-road mobile sources. For the building energy section, the 

Texas State Legislature adopted the 2000/2001 International Energy Conservation Code, as 

modified by the 2001 Supplement, as the state’s building energy code. The 2000/2001 IECC is a 

comprehensive energy conservation code that establishes a standard for the insulation levels, 

glazing and cooling and heating system efficiencies through the use of prescriptive and 

performance-based provisions. 

 Therefore, the purpose of this research is to improve the accuracy of a 2000/2001 IECC-

compliant performance simulation using the DOE-2.1e simulation program to investigate the energy 

performance of a typical single-family house. To achieve this purpose, several objectives had to be 

accomplished, including: 1) the development of an IECC-compliant simulation model, 2) the 

development and testing of specific improvements to the existing code-traceable model, 3) the 

calibration and installation of sensors in a case-study house, 4) the validation of the improved 
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simulation model with measured data from the case-study house, and 5) use the validated model to 

simulate the energy-conserving features of single-family residences that cannot be simulated with 

existing versions of the DOE-2.1e program. 

 In order to create the code-traceable IECC-compliant simulation model, a base-case house 

simulation was created and the results calibrated with measured energy and environmental data 

from the case-study house. This was done in order to obtain an improved simulation model that 

would more accurately represent the case-study building. The calibrated model was then used to 

verify the accuracy of the improved simulation methods against previous models and measured data.  

After validation of the new simulation methodologies, the IECC simulation model was used 

to simulate different energy-conserving features for a single-family residence that could not be 

simulated with the previous version of the DOE-2 input file. Finally, areas for future work were 

identified in an effort to continue to improve the model. 
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CHAPTER I 

INTRODUCTION 

1.1 Background1 

 In 1990, the U.S. Environmental Protection Agency (EPA) classified four areas 

including Beaumont-Port Arthur, El Paso, Dallas-Ft. Worth, and Houston-Galveston-Brazoria in 

Texas as non-attainment areas based on the EPA’s 1-hour ozone standard where exceeding the 

national one-hour level standard of 0.12 parts-per-million (ppm). Specially, Houston-Galveston-

Brazoria area was designated as a Severe II Non-Attainment Area and must reach attainment by 

November, 2007 (Texas Natural Resource Conservation Commission (TNRCC) 2000). The state 

of Texas’ goal is to demonstrate attainment. In order to do that, significant reductions in NOx 

emissions are necessary in Texas’s non-attainment areas to prevent sanctions including the 

withholding of federal highway funds of billions of dollars per year, or the withholding of EPA 

grants for state air pollution planning and control programs (Im 2003). 

 In 2001, the Texas State Senate passed Senate Bill 5 to reduce ozone levels by 

encouraging the reduction of emissions of NOx by sources that were not regulated by the 

TNRCC, including point sources (power plants), area sources (residential emissions, etc.), road 

mobile sources, and non-road mobile sources (TNRCC 2002). 

 For the building energy section, the Texas State Legislature adopted the 2000/2001 

International Energy Conservation Code (IECC) as modified by the 2001 Supplement as the 

state’s energy code (TNRCC 2002). The 2000/2001 IECC is a comprehensive energy 

conservation code that establishes a minimum for design and construction parameters such as the 
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thermal properties of insulation on a wall, floor, roof, and the efficiency of the cooling and 

heating systems through the use of prescriptive and performance-based provisions. 

 However, although the 2000/2001 IECC provided fixed requirements such as the U-

value for glazing, and R-values for exterior wall, ceiling, floor, basement wall, perimeter slab, 

and crawl spaces, different simulation results can occur when testing the same houses because 

the analyst needs to define other conditions not directly defined by the 2000/2001 IECC.  

 Furthermore, although there are serious heat losses or gains through duct system in the 

unconditioned space such as the attic and crawl space especially in the hot and humid climate 

zone, two of the most widely-used energy simulation programs cannot consider those losses (i.e., 

Depart of Energy (DOE)-2 or Building Load Analysis and System Thermodynamics (BLAST)) 

without specially written routines. Therefore, the energy simulation programs should also 

calculate the heat loss or gain through duct system using a specially-written routine. 

 Therefore, this research will concentrate on efforts to improve the IECC-compliant 

simulation and provide affordable solutions for analyzing the energy-efficiency single-family 

residential house. This research also investigated the individual and combined energy saving 

potential of various energy conservative strategies to minimize energy use of a residence in hot 

and humid climates. 
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1.2 Purpose and Objective 

 The purpose of this research is to improve the accuracy of a 2000/2001 IECC code 

simulation using the DOE-2.1e simulation program to evaluate the energy performance of a 

single-family residential house.   To achieve this purpose, the following objectives have been 

defined: 

1. Develop an accurate, code-traceable IECC model, which can then be used to simulate 

residential single-family houses in Texas according to the International Energy Conservation 

Code (IECC) (ICC 1999, 2001). 

2. Develop and test specific improvements to the existing code-traceable model. These methods 

include:  

- A comparison of various thermal mass walls according to the 2000/2001 IECC. 

- Use of the Window-5 (LBNL 2001) simulation program 

- Application of improved underground surface heat transfer calculations (Winkelmann 1998). 

- Application of new residential HVAC system performance curves (Henderson et al. 2000). 

- Application of new domestic hot water system curve (NREL 2001). 

- Development of the duct model in an attic space using American Society of Heating, 

Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 152-2004 with a DOE-

2.1e FUNCTION commands (ASHRAE 2004). 

3. Calibrate and install proper sensors on a nearby case-study site in order to gather data to 

validate various aspects of the simulation models. 

4. Validate the improved simulation model with measured data from the instrumented case-study 

house. 

5. Use the validated model to simulate various types of energy-conserving features to a single-

family residence that could not be simulated with the previous program. 
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1.3 Organization of the Dissertation 

 This chapter has discussed the background of the proposed research topic and purpose 

and objectives of the research. 

 Chapter II surveys and discusses the previous research in the area relating to this work to 

provide the basis for the development of this research. These areas surveyed previous studies 

about energy savings in residential houses, specific approaches to develop the simulation code 

for the residential house, reviews of existing building energy codes and standards, validation of 

computer simulation using calibrated simulation, and previous studies about the case-study 

house. 

 Chapter III discusses the importance of the study and contributions in this research area. 

The scope and limitation of the research are also discussed in this chapter. 

 Chapter IV discusses the methodology developed and applied in this research. It 

explains the case-study house, the data acquisition system and the calibration and installation of 

the sensors. It also describes the process of developing the International Energy Conservation 

Code (IECC) simulation code. 

 Chapter V presents the results of the data collection and simulation of the as-built, base-

case house. It discusses the development and calibration process of the input file for the as-built 

case-study house. Several new simulation methodologies are also explained in this chapter. 

 Chapter VI discusses the International Energy Conservation Code (IECC) compliant 

house. It discusses the development process of the input file for the IECC-compliant house.  

 Chapter VII discusses the application of improved DOE-2 simulation methods to the 

IECC-compliant simulation with different wall types, attic types, window types, duct types, and 

system efficiency according to IECC requirement. 
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 Finally, Chapter VIII summarizes this research work and proposes conclusions for the 

improvement of the research in this area. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Introduction 

 The study of energy use in residential houses in the United States has been of interest to 

many authors since the early 1970s, when the oil embargo made energy an important topic. The 

relevant literature for this thesis includes previous studies concerning: 1) energy savings in 

residential houses; 2) specific approaches to developing the simulation codes for residential 

houses; 3) reviews of existing building energy codes and standards; 4) validation of computer 

simulation model using calibrated simulation; and 5) previous works on the case-study buildings. 

This literature review includes ASHRAE publications, the Proceedings of the Symposium on 

Improving Systems in Hot and Humid Climates, selections from the journal of Energy and 

Buildings, Building and Environment and Energy, the Lawrence Berkeley National Laboratory 

(LBNL) reports, the Florida Solar Energy Center (FSEC) reports, the Energy System Laboratory 

publications, and related theses and dissertations from Texas A&M and other universities. 

2.2 Previous Studies about Energy Savings on Residential Houses 

 There are numerous studies available for saving energy in residential houses. Significant 

research has also been published on the topic of reducing energy consumption. The studies 

reviewed include studies about improved glazing with low-e windows, shading devices, attic 

insulation, radiant barriers, duct leakage, and roof solar reflectance.  

2.2.1 Glazing and Shading 

 Proper glazing type and shading devices on residential houses can make a significant 

contribution to reduce heating and cooling loads. Numerous studies have reported about glazing 
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and shading device systems, including: Arasteh et al. (1985), Pletzer et al. (1987), Dubrous 

(1991), McCluney and Mills (1993), Soebarto and Degelman (1994), Sullivan et al. (1994), 

Carpenter et al. (1998), Anello et al. (2000), Farrar-Nagy et al. (2000), Tsangrassoulis et al. 

(2001), and Capeluto (2003); of these, the following are most important to this thesis. 

 Pletzer et al.(1987) studied load reduction and potential annual energy savings resulting 

from different glazing and shading devices on three residences in Austin, Texas. He investigated 

various types of windows and shading device such as blinds, draperies, window films, tinted 

windows, solar screens, overhangs and recessed windows.  The analysis was performed by DOE-

2 energy simulation program. In order to characterize the thermal properties of the windows and 

shading devices, their U-value and Shading Coefficient (SC) method were used for simulations. 

They concluded that when annual heating and cooling energy savings are normalized to glazing 

area they correlated well with the shading coefficient and overall U-value. Their study provides 

useful information to this study on energy savings from glazing and shading devices.  

 Farrar-Nagy et al. (2000) evaluated the interactions of solar heat gain reductions that 

impact the energy use of a specific house design in a hot and dry climate (Tucson, Arizona). This 

study described the hourly DOE-2 modeling which was compared with measured hourly data, as 

well as the testing procedures used to evaluate the prototype house, and summarized the relative 

impact of several solar load control strategies. They tested four combinations of glazing and 

shading, which are as follows: (1) standard glazing without shading, (2) spectrally-selective 

glazing (i.e., low-e) without shading, (3) standard glazing with shading, and (4) spectrally-

selective glazing with shading. In order to define the window thermal properties, the shading 

coefficient (SC) and U-value were used for input of DOE-2 simulations. They found that a 

combination of high performance glazing (i.e., low-e) and shading achieves a 0.4 kW (14%) 

reduction in afternoon peak electricity demands and a 12.4 kWh (30%) reduction in daily total 
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electricity used for air conditioning. For this study, window tests will be simulated according to 

similar kinds of glazing such as single-pane, double-pane and low-e glazing and simulation 

methods such as the Shading Coefficient method (LBNL 1981) and the spectrally-selective, 

multi-layer model used in the Window Library method (LBNL 1981). 

 Anello et al. (2000) compared single-pane windows in a side-by-side field test with 

double-pane, spectrally-selective, thermally-broken low-e windows. Two identical 2,122 square-

foot houses were constructed in the same neighborhood in the Melbourne, Florida. One house 

had standard single-pane windows, and one house had the advanced spectrally-selective low-e 

windows. They performed a detailed simulation to compare the actual energy savings versus the 

predicted savings. The DOE-2 models of both houses were then created with both models 

identical except for the windows. This study also used the U-value and shading coefficient (SC) 

method to define the window thermal properties. They found that the simulation results indicated 

a 15% cooling energy savings, while measured results indicated a 14.7% cooling energy savings 

during the 17-day unoccupied period, which indicated good agreement between the model and 

the measured data. The simulation also showed that a standard house would consume 5,408 kWh 

for annual cooling while the improved house would consume only 4,471 kWh, a reduction in 

annual cooling use of 17%. The method and results from this study are important to this study 

because a similar simulation method using the DOE-2 program will be performed in order to 

compare and evaluate the impact of different glazing types on an IECC-compliant single-family 

house. 

2.2.2 Attic Insulation and Radiant Barriers 

 Attic insulation and radiant barriers have been found to be an important component in 

reducing heating and cooling loads in residential buildings. Numerous studies have been 

performed including: Levins and Hall (1990), Medina (1992), Wilkes and Childs (1993), Al-
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Asmar et al. (1996), Moujaes (1996), Noboa et al. (1996), Parker (1998), Walker (1998), and 

Petrie et al. (1998); of these, the following are the most important to this study. 

 Medina (1992) tested the performance of radiant barriers under full weather conditions 

in central Texas using a side-by-side comparison of two test houses with identical floor plans 

and thermal characteristics. The ceiling heat flux was reduced as a result of retrofitting with 

radiant barriers by approximately 34 percent when the attics were vented, and 28 percent when 

the attics were not vented. The ceiling cooling load reductions translated to an approximately 2-4 

percent space cooling reduction. Parker (1998) performed a similar study on an attic space. He 

developed an attic model using the DOE-2 simulation program in order to determine the possible 

savings in cooling electricity use according to the amount of insulation and ventilation of attics 

in Florida. The author found an average savings of 19%. These findings are important to the 

thesis because an estimation of the savings attributable to the attic modification will be simulated 

using a specially modified version of a DOE-2 simulation on the case-study house.  

 Al-Asmar et al. (1996) performed an experimental study to evaluate the impact of 

radiant barrier systems on summer cooling loads in residential buildings under ASHRAE 

Research Project 577-RP, "Attic radiant barrier systems". In this study, a simulated attic was 

built inside the entire area of a 24-ft by 12-ft environmental chamber with roof temperatures that 

varied from 120°F to 160°F. For the experiment, attic ventilation rates varied from 0 to 2.0 

cfm/ft2, nominal R-11 and R-19 insulations were used, and a radiant barrier mounted under the 

roof was used. The results showed reductions in attic heat gains ranging from 17% to 26% with 

no ventilation and from 24% to 42% when the attic was ventilated. The radiant barrier reduced 

attic temperatures 10°F to 15°F under typical conditions. This study is important to this study 

because the attic temperature change with and without radiant barrier could be simulated to 

investigate the effect of radiant barrier in the case-study house.  
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 Finally, according to Walker (1998), a radiant barrier is one method of reducing 

summer-time temperatures in attics. Furthermore, during the cooling season, the attic must be 

well ventilated to have a significant impact. However, during heating season, radiant barriers 

were shown to have a small effect. This study is also important to this thesis because the effect 

of radiant barriers can be simulated in order to evaluate the energy savings for hot and humid 

climates where cooling energy is dominant. 

2.2.3 Duct Leakage 

 Duct systems in residential houses, especially in an unconditioned space such as the attic 

or crawl space can have significant heat loss or gain to the surrounding unconditioned space 

through the duct systems. Numerous studies have reported on the residential duct system, 

including: Andrews et al. (1996, 1998), Lambert and Robison (1989), Modera (1989), 

Cummings (1991), Proctor (1992a, 1992b), Parker et al. (1993), O’Neal et al. (1996), Gu et al. 

(1998), Cummings et al. (2000), and Levinson et al. (2000); of these, the following are the most 

important to this thesis. 

 Cummings (1991) tested duct leakage using tracer gas tests in 91 homes in Florida.  He 

found, on average, about 12% of the house infiltration occurs in the duct system. Duct repairs 

were made on 25 homes and cooling energy use was monitored before and after the duct repair. 

The study showed that the air-conditioning energy use decreased 18% due to the duct repairs. 

 O’Neal et al. (1996) performed a study to quantify the effect of return air leakage and 

humidity from hot and humid attic spaces on the performance of residential air conditioners. 

They found that the effective capacity decreased with an increased return air leakage and high 

humidity in the same temperature condition, and that leakage rates that have high attic humidity 

caused more reduction of capacity. If the maximum capacity occurred at 0% duct leakage in 

150ºF of attic temperature, the system capacity dropped 25.8% at 9.1% duct leakage for 10% 
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relative humidity in the attic space. When the relative humidity in the attic space reached to 

14.2%, the system capacity dropped to 39.5%. They concluded that attic conditions, especially 

attic humidity, were important factors in decreasing the capacity with increased duct air leakage. 

Both of these studies are important because the case-study house for this study has the duct 

system in a humid attic space, and the evaluation of the heat loss and gain of the measured 

conditions will be examined. 

2.2.4 Roof Solar Reflectance 

 According to the EPA (2004), over 90% of the roofs in the United States are dark-

colored. These low-reflectance surfaces reach temperatures of 150 to 190°F in the summer, 

which contributes to an increase in the cooling energy use, higher utility bills, and requires 

higher peak electricity use. Therefore, the roof color and thermal properties also play an 

important part in improving the energy efficiency of a residential building. Several studies 

related to this issue have been published by Parker and Barkaszi (1997), Konopacki and Akbari 

(1998), Akbari et al. (1997, 1999), Akridge (1998), Hens (1998), Hildebrant (1998), Parker and 

Sherwin (1998), and Petrie et al. (1998); of these, the following are the most important to this 

thesis. 

 Parker and Barkaszi (1997) experimented on the impact of reflective roof coatings on 

air-conditioning energy use in nine residential houses in the Florida region. They found that 

measured cooling energy savings were from 2% to 43%, with the average at 19%. This research 

is important to this study because the effect of the color of a roof on the house’s cooling energy 

use could be investigated for similar climate such as Texas (a hot and humid climate). 

 Akbari et al. (1999) performed quantitative estimates of the savings on cooling and 

heating energy use for residential and commercial buildings by changing roof reflectivity from 

0.25 to 0.70 in several climates. Prototypical buildings were simulated with reflective (light 
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color) and absorptive (dark color) roofs. Savings were estimated for 11 US metropolitan 

statistical areas (MSAs) in a variety of climates including: Atlanta, Chicago, Los Angeles, 

Dallas/Fort Worth, Houston, Miami/Fort Lauderdale, New Orleans, New York, Philadelphia, 

Phoenix and the DC/Baltimore. Simulation for single-family residential and commercial 

buildings including offices, retail stores, primary and secondary schools, hospitals, nursing 

homes, and grocery stores were developed using the DOE-2 building energy simulation model. 

Building energy simulation showed peak cooling demand savings of 20%-40% in residences and 

5%-10% in offices. The total savings for all 11 MSAs were: annual electricity savings-2.6 

terawatt hours (TWh), with peak electricity savings of 1.7 gigawatts (GW). This study also 

mentioned that the more complex DOE-2 models including a roof composite model, and a duct 

loss model in the attic space, were needed in order to evaluate the electricity usage more 

precisely. This study is important to this study because the DOE-2.1e program with an added 

duct model will be used to evaluate a building’s energy performance and to investigate the 

effects of the color of different roof systems. 

2.3 Development of a Code-compliant Simulation for Single-family Residences. 

 As a building energy simulation program, DOE-2 is widely used and well-known to 

most building energy analysts. DOE-2.1e version 119 is a recently released version of the DOE-

2 building energy simulation program. It has the capability to calculate both the annual and the 

peak energy performance of buildings. In addition, more accurate simulation methods such as 

National Fenestration Rating Council’s (NFRC) procedure for window calculation with the 

Window 5 computer program (LBNL, 2001), the modeling of exterior envelopes with the DOE-

2.1’s custom-weighting-factors (CWFs), use of LBNL’s new procedure for slab heat flows, 

improved models for the attic, duct, A/C, furnaces and heat pumps have all been developed to be 

combined with the DOE-2.1e program to improve its performance. 
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2.3.1 National Fenestration Rating Council (NFRC) Calculation and Window Simulation 

 The National Fenestration Rating Council (NFRC) has developed a fair, accurate, and 

credible rating system for the optical and thermal performance of windows and other fenestration 

products (NFRC 2002a, 2002b). NFRC's rating systems are aimed at facilitating the selection 

and development of efficient window products. Several studies were performed to test window 

simulations and apply NFRC window calculation procedures to the DOE-2.1e program by Baker 

et al. (1990), Dubrous and Wilson (1992), Smith et al. (1993), Harrison and Wonderen (1994), 

Reilly et al. (1995), LBNL (1981), and NFRC (2002a, 2002b); of these, the following are most 

relevant to this study. 

 Reilly et al. (1995) performed widow simulations using the DOE 2.1e program to 

evaluate the difference between the detailed approach (National Fenestration Rating Council U-

value procedure 100-91) and a constant shading-coefficient approach (i.e., ASHRAE method). 

The detailed modeling approach utilize the WINDOW-4 computer program (LBNL 1992), 

which uses the NFRC procedures. They found that ASHRAE method has limitations, which can 

seriously affect the accuracy of calculating peak cooling loads since ASHRAE method determine 

the solar gain using a reference glazing consisting of 1/8-in clear glass under ASHRAE standard 

summer conditions (95ºF outside temperature and 75ºF inside temperature and 7.5 mph wind 

speed). The solar gain for different glazing is then determined each hour by multiplying the solar 

gain of the reference glazing by the shading coefficient of the selected glazing. For example, in 

the case of hourly solar gain, the results showed that the commonly used shading-coefficient 

method underpredicts by up to 35% for single/reflective glass and overpredicts by up to 12% for 

double/clear glass compared to the detailed method when using vertical, south-facing glazing on 

a clear June day in Chicago. Therefore, they recommended the use of a detailed method of 

NFRC based window calculations for any simulation. This study is important to this research 
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because a similar testing for the modeling of the window will be used to develop an accurate 

IECC simulation model. 

 According to LBNL (1993), there are three methods for specifying window properties 

on DOE-2 program: 1) the Shading Coefficient method, 2) Glass-Type-Code ≤ 11 and 3) Glass-

Type-Code ≥ 1000 (Window Library method). The first input method requires users to input 

shading coefficient and glazing conductance, the second input method restricts user to the 

predefined U-values and SHGF of the window library and the third input method allows users to 

add new windows to the DOE-2 library. The Shading Coefficient method can be convenient for 

conceptual design because of simple input requirements. However, the results can be inaccurate 

for multipane, low-e glazing. The Window Library method has a more detailed angular 

calculation and conduction consideration. However, it can result on a 50-100% increase in the 

LOAD calculation time depending on the number of unique windows. Nevertheless, as the 

calculation capability of modern computers improved, the consideration of LOAD calculation 

time is not a primary for most simulations. For the current study, this report provides the 

information about how to use the two methods of window simulation with the DOE-2 program 

and uses the two methods to simulate various window types to compare how the two methods 

are different. 

 The NFRC (2002a, 2002b) developed a uniform and accurate means for evaluating 

window U-factors (NFRC 2002a), and Solar Heat Gain Coefficient (SHGC) (NFRC 2002b) of 

fenestration systems using state-of-the-art simulation procedures validated with physical testing. 

The U-factors and SHGC established by this procedure were determined at a fixed set of 

environmental conditions. The Window-5 simulation program, which was mentioned previously, 

was developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for 

calculating total window thermal performance indices such as U-value, solar heat gain 
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coefficients, shading coefficient, and visible transmittance (LBNL 2001). The Window-5 

program provides a versatile heat transfer analysis tool, which is consistent with the rating 

procedure developed by the NFRC. Therefore, this program can be used to design a specific 

window, and to rate and compare performance characteristics of different windows in the 

Window-5 library. Furthermore, the window data, which is created in this program, can be 

linked with the DOE-2.1E simulation program to provide more accurate simulation. Therefore, 

Window-5 (i.e., the new version of Window-4) will be used to create the window types that have 

the same thermal properties as the 2000/2001 IECC code-compliant simulations to evaluate the 

window performance of residential building.  

2.3.2 Exterior Envelope 

 DOE-2 has different simulation methods for simulating exterior walls that show 

different results for the same architectural dimension and same total R-value. This is because 

DOE-2 allows for a wall to be modified using a single R-value, or modeled using layers and real 

materials. Since the 2000/2001 IECC gives only R-values of the exterior wall, the proper 

simulation method of an exterior wall should be considered for reasonable results. Several 

authors have previously studied exterior wall performance including Christian (1991), Lam 

(1995), Kosny et al. (1998), Meldem and Winkelmann (1998), Bakos (2000), Kossecka and 

Kosny (2002), and Ghatti et al. (2003); of these, the following are the most important to this 

study. 

 According to Christian (1991), the Council of American Building Officials’ Model 

Energy Code Committee (CABO MEC) accepted the use of exterior thermal mass credits (i.e., 

for heat capacity greater than or equal to 6 Btu/ft2-ºF), which allowed for the creation of Thermal 

Mass Credit Tables for builders according to thermal mass located on the inside or the outside of 

the insulation and an integral case. However, Christian (1991) stated that these tables couldn’t 
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satisfy the various types of thermal mass walls because of over-simplification. Therefore, work 

on the alternative method for predicting the effect of exterior envelope thermal mass was 

performed. They performed thermal performance measurements on 14 test houses in two 

locations (the National Institute of Standards and Technology in Maryland and Santa Fe, New 

Mexico) with various amounts of external wall mass, including wood-frame, masonry, adobe 

and log, and modeled test houses. More than 100 comparisons of model predictions with 

measured data were made using the DOE-2.1c, BLAST and DEROB. The experimental data and 

the DOE-2.1c predictions came reasonably close within a tolerance of 20% to the measured data. 

Next, the heating and cooling loads and the characteristic influence of thermal mass wall on the 

hourly behavior from computer simulations were reinvestigated to validate the MEC table. He 

concluded that although the MEC table may not be the right values to be used for all typical 

conditions, in general, the experiments, simulation data, and MEC mass credit tables show that 

insulation placed on the outside of the thermal mass is best for most climate. This study is 

important to this research because the 2000/2001 IECC also has a high-mass wall of 6 Btu/ft2-°F 

or higher. Therefore, this study will also evaluate the thermal mass effect according to different 

kinds of wall types. 

 Meldem and Winkelmann (1998) performed thermal measurements on test houses and 

compared these measurements with the predictions of DOE-2.1e to validate the thermal analysis 

capability of DOE-2. Three buildings were measured: 1) A house with conventional stud wall 

construction (low-mass house), 2) A house of the same geometry, but with 4-inch thick concrete 

walls with exterior insulation (high-mass house), 3) A medium-mass house with clerestory 

windows. In the research, the low-mass and high-mass houses, which are identical except for the 

construction of the exterior and interior walls were investigated. They developed DOE-2 models 

and calibrated the input models to reduce discrepancies between the DOE-2 predictions and the 
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measurements of inside air temperature by modifying infiltration rates, ground surface 

absorptance, ground surface temperature, and foundation heat transfer. Finally, they concluded 

that DOE-2 is in excellent agreement with the measurements for all of the configurations for 

both the low-mass and high-mass houses. The method and results from this results provide 

useful information because this study will also investigate the thermal performance of the light-

mass wall in the Habitat for Humanity case-study house, and several theoretical high-mass walls 

which are typical of those in use. Various parameters which are mentioned in this research will 

be considered during calibration process of DOE-2 input model. 

2.3.3 Heat Flow in Underground Surfaces 

 Heat flow through a building foundation represents one of more complicated aspects in 

building thermal simulation due to large thermal mass and slow time response. Studies about 

heat flow through underground surface were performed by Kusuda and Achenbach (1965), 

Huang et al. (1988), Mathew and Richards (1989), Swaid and Hoffman (1989), Mihalakakou et 

al. (1992), Winkelmann (1998), Meldem and Winkelmann (1998), and Huang et al. (2000); of 

these, the following are most important to this study because they provide detailed information 

about modeling of heat transfer to an underground surface in DOE-2.1e. 

 The heat transfer from the building to the ground through the slab-on-grade is calculated 

by DOE-2 as U·A·∆T, where U is the conductance of the slab, A is its area, and ∆T is the 

temperature difference between the inside air and the ground temperature (LBNL 1981). 

However, this formulation is over-simplified in that it ignores 2-dimensional conduction effects 

(Meldam and Winkelmann 1998). Therefore, Huang et al. (1988) developed the foundation heat 

flow method to combine the DOE 2.1c program with a two-dimensional finite difference 

foundation model in order to better simulate foundations in a prototypical house, because energy 
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simulation programs generally model a building’s foundation as a one-dimensional layer using a 

very approximate method. Huang et al. developed tables based on a two-dimensional finite-

difference method for the DOE input that include the perimeter conductance per perimeter foot 

for slab, basement, and crawl space conditions.  

 Winkelmann (1998) performed a similar study. He developed an improved method for 

modeling underground surfaces based on the previous work by Huang et al. (1988). He 

suggested that DOE-2 users should specify an effective U-value instead of using raw U-value 

with a U-EFFECTIVE DOE-2 keyword when modeling the underground surface. He determined 

that if the raw U-value of a surface was used, the heat transfer would be grossly overcalculated 

because the heat transfer occured mainly through the surface’s exposed perimeter region, rather 

than uniformly over the whole area of the surface. He also showed details such as: 1) how to 

model the effective resistance of an underground surface that can consider that underground 

surface and the inside air film, soil, and a fictitious insulation layer; 2) how to calculate U-

EFFECTIVE; and 3) how to write DOE-2 input code for slab-on-grade, basement wall, and 

crawl space wall conditions. Furthermore, Meldem and Winkelmann (1998) tested the difference 

between simple models, which DOE-2 used for the heat transfer calculation for an underground 

surface, and a detailed model developed by Huang et al. (1988). Their results showed that the 

finite difference model by Huang et al. (1998) was substantially in better agreement with the 

measurement.  

 Huang et al. (2000) continued to develop an improved ground surface model using a 

two-dimensional finite difference method based on previous works by Huang et al. (1988) and 

Winkelmann (1998). In order to give more detailed simulation modeling method, they divided a 

foundation into two regions. One is the perimeter area that is coupled to outside air and the other 

is the core region that is couple to the ground temperature. They provided a set of the five-
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foundation conductance in a tabular format for DOE-2.1e modeling. These foundation 

conductances were derived from multi-linear regressions of heat flow of 52 slab foundations, 21 

crawl spaces, and 23 basements. In order to incorporate an improved method in DOE-2.1e, 

several new DOE-2 keywords of the input were required. Those are PERIM-EXPOSED, 

PERIM-COND-WEEK, PERIM-COND-MONTH, PERIM-COND-YEAR, CORE-COND-

MONTH and CORE-COND-YEAR, which were added to the commands UNDERGROUND-

WALL and UNDERGROUND-FLOOR (to be available in a future version of DOE-2.1e). The 

authors also provided an example of DOE-2.1e input file including new keywords for the 

modeling of underground surfaces and described how the various input values were determined. 

 These studies are important to this study because this detailed modeling method for 

underground surface is applicable to this study when the new version of DOE-2.1e is published, 

and should provide an improved modeling method for underground surfaces of slab-on-grade in 

order to improve the IECC simulation code beyond the work performed in this study. 

2.3.4 Attic Model 

 In the case of duct systems in an unconditioned space such as an attic or a crawl space, 

the heat loss or gain of the duct systems to the unconditioned space is often greater than expected. 

In the case of an attic space, summer afternoon temperature often reaches 122°F or higher 

(Parker et al. 1993). Since the attic space is directly affecting the duct systems in many cases, an 

improved modeling of the attic space is important to investigate duct heat loss more accurately. 

Several studies about attic thermal behavior and attic modeling were performed by Parker et al. 

(1991), Medina (1992), Winiarski and O'Neal (1996), Parker and Sherwin (1998), Romero and 

Brenner (1998), Holton and Beggs (1999) and Parker et al. (1999).  Of these, the following are 

most important to this research. 
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 Medina (1992) developed a transient heat and mass transfer model to predict ceiling and 

roof heat gain/loss through the attic space in residences, and to accurately estimate savings in 

cooling and heating loads produced by the use of radiant barriers. This model considered all 

modes of heat transfer such as transient conduction, natural and forced convection, radiation 

within the attic, and the solar load on the external surfaces of the attic using the Heat Balance 

Method in the attic space. This simulation model was also used to run simulations and 

parametric studies under diverse climates, insulation levels and attic airflow patterns. This study 

is important for this study in order to understand the effect of thermal behaviors on the attic 

space, and provides useful information to develop an improved attic model for simulating the 

IECC-compliant residential house.  

 Parker et al. (1999) modeled the residential attic with the DOE-2 simulation program as 

a buffer space for the conditioned residential zone. Convective and radiative exchange between 

the roof decking and the attic insulation was accomplished by setting the interior film coefficient 

according to the values suggested in the ASHRAE Handbook of Fundamentals (1997) depending 

on the slope and surface emittance. Ventilation to the attic is specified in the model as a free 

ventilation inlet area into the attic. Common attic spaces were assumed to have soffit and ridge 

ventilation such that they meet the current code recommendation for a 1:300 ventilation area to 

attic floor area ratio. This paper provides specific information to this study to develop an attic 

model and also mentions the need to run more detailed attic models for accurate results. 

2.3.5 Duct Model 

 There are a number of computer simulation programs that predict energy use in 

buildings. However, the inclusion of heat loss or gain through duct systems has received little 

attention in most simulation programs. Even the nationally-supported DOE-2 program (i.e., 

DOE-2.1e, version 119) has an over-simplified duct heat loss calculation that is driven by a 
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constant duct air loss and a constant delta-T heat gain. Therefore, several studies of duct models 

were reviewed, including: Francisco and Palmiter (1998, 2000), Walker (1998), Parker et al. 

(1998, 1999), Gu et al. (1996), Xu et al. (2002), Siegel et al. (2003), Proctor (1998a, 1998b), 

Strunk (2000), Andrews et al. (1998), and ASHRAE (2004). The following are the most relevant 

to this study. 

 Walker (1998) developed the default values of many of the input parameters required to 

perform the ASHRAE Standard 152-2004 - Method of Test for Determining the Design and 

Seasonal Efficiencies of Residential Thermal Distribution Systems (ASHRAE 2004). Standard 

152-2004 is a proposed method of testing the efficiency of HVAC energy distribution within 

residential buildings. These default values were taken from measured field data in houses, 

laboratory testing, simple heat transfer analyses, etc. They included the information related to the 

modeling of the duct system, and a duct surface area estimation method for supply ducts and 

return ducts, default duct leakage as a fraction of the fan flow, equipment efficiency as a function 

of fan flow, delivery effectiveness (DE) and the distribution system’s efficiency. This study is 

important for this study because the default values in Standard 152-2004 can be used to develop 

residential simulation models and compare with published delivery effectiveness values, by 

applying specific values to each simulation case. 

 The Florida Solar Energy Center (FSEC) developed EnergyGauge, which allows for the 

calculation and rating of energy use of residential buildings around the United States (FSEC 

1992). This software uses the DOE 2.1e hourly simulation program. Therefore, the calculations 

of hour-by-hour performance allow users to examine many different forms of energy 

conservation. This software also has the capability to analyze the interaction between the 

building’s thermal distribution system and the building’s envelope, because the researchers 

found that conductive gains or losses and leakage from the distribution system can represent as 
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much as 30% of the building’s peak heating and cooling loads (Parker et al. 1998). FSEC’s duct 

heat transfer model was implemented as a function command within the SYSTEM simulation 

module in the DOE 2.1e for the residential system type. This duct heat transfer model considers 

both the heat gain and loss of the duct system from environments such as the attic, crawl space, 

basement, or garage, the system’s coefficient of performance (COP), and the air conditioner 

electricity demand. Although the researchers suggested a concept and provided selected formulas 

for the duct heat transfer model in their study, their program source code for DOE 2.1e are not 

available to the public. Nevertheless, this work is important to this study because a similar 

modeling concept for the duct heat transfer model will be used to develop the proposed IECC 

code-traceable simulation model, which can then be tested against the FSEC model. 

2.3.6 Air Conditioner, Furnace, Heat Pump and Boiler Performance Curves 

 HVAC system simulation models have a critical role in analyzing the energy 

performance of a building. The performance of HVAC systems in residential buildings have 

improved significantly over the past ten years. Therefore, new HVAC system models are 

sometimes required to simulate the newer systems. Modera (1993), Meier and Hill (1997), Al-

Homoud (1997), Henderson et al. (2000), Jaber (2002), and Gu et al. (2003) studied the 

efficiency and performance curves of residential HVAC systems. The following is the most 

important to this study. 

 Henderson et al. (2000) developed an improved approach to properly account for the 

part load performance of the RESYS (residential air conditioning system) in DOE-2. This was 

badly needed because DOE-2 provides default empirical curves for residential systems that were 

developed almost 20 years ago. The residential air conditioning system (RESYS) in DOE-2 uses 

a time constant (τ or tau) of 76 seconds for the air conditioner capacity at startup, and a 

maximum thermostat cycling rate (Nmax) of 3.125 cycles per hour. However, according to 
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Henderson et al. (2000), modern air conditioners typically have a time constant of 40 to 60 

seconds, and 2.5 cycles per hour for the thermostat cycling rate. Therefore, their study suggested 

a new Energy Input Ratio (EIR) coefficient that is more appropriate for defining modern air 

conditioning systems. The results showed that the new curves improved the performance to 

within 4 and 11% of measurements from newer A/C systems whereas the default curves could 

only predict 24% of the part load efficiency loss when compared to field studies that showed a 5-

10% energy loss. This means that the improved model’s predictions are much closer to the field 

study. They also suggested improved furnace, heat pump, and boiler performance curves using 

similar field studies. This study is important to this study because the RESYS system in DOE-2 

is used for the primary system in the IECC-compliant house, which can be improved using the 

suggested efficiency curves. 

2.4 Reviews of Existing Building Energy Codes and Standards  

 A number of energy codes and standards have been developed to improve the energy 

performance of residential houses. These include the Model Energy Code (MEC) (International 

Code Council, 1995), the International Energy Conservation Code (IECC) 2000 and the 2001 

IECC Supplement (International Code Council 1999, 2001), California Title 24 (California 

Energy Commission 2004), and ASHRAE Standard 90.2-2001 - Energy Efficient Design of New 

Low-Rise Residential Buildings (ASHRAE 2001a). These codes are all based on thermal load 

calculations of the building’s envelop and efficient HVAC systems according to climate zones. 

Their purpose is to improve the energy efficiency of the nation’s buildings through new 

technologies and better building practices. In order to develop a reasonable base-case residential 

model for this study, a review of the existing building energy codes, programs and standards is 

necessary. 
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2.4.1 Model Energy Code (MEC) 

 The Model Energy Code (MEC) contains energy-related building requirements that 

apply to many new U.S. residences. The MEC was previously maintained by the Council of 

American Building Officials (CABO), which was comprised of three U.S. model code groups: 

the Building Officials and Code Administrators, International (BOCA), the International 

Conference of Building Officials (ICBO), and the Southern Building Code Congress 

International (SBCCI). These groups subsequently combined into the International Code Council 

(ICC) and the ICC issued the 1998 MEC under a new name, the 1998 International Energy 

Conservation Code (ICC 1998). Both the MEC and the IECC codes specify thermal envelope 

requirements for one and two-family residential buildings as well as multifamily residential 

buildings. Thermal envelope requirements include the maximum allowable U-value for walls, 

ceilings, floors, crawl space walls, and basement walls, and the minimum R-value for slab floors. 

To comply with the code, a building must be constructed with components either meeting or 

exceeding these requirements.  

 The MEC provides three methods for checking compliance with the code: 1) the 

Prescriptive Approach, 2) the Trade-Off Approach, and 3) the Software Approach. For the 

Prescriptive Approach, the builder must select a package of insulation and window requirements 

from a list of packages developed for a specific climate zone. Once selected, the building simply 

meets or exceeds all requirements in order to achieve compliance. For the Trade-Off Approach, 

the builder can trade-off insulation for ceiling, wall, floor, basement wall, slab-edge, crawl space, 

and window efficiency levels in different parts of the building. This approach calculates whether 

or not the house as a whole meets the overall code insulation and window requirements.  

 The Software Approach allows builders to compare different insulation levels to select a 

package that works best for the proposed work with a minimum level of input, as well as to trade 
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off basement wall, slab-edge, and crawl space wall insulation and insulation R-values when 

necessary. For this approach, researchers developed the REScheck software for the PC version 

3.5 (Energy Efficiency and Renewable Energy 2003) and REScheck for the web. REScheck 

performs a simple UA calculation (U is U-factor and A is Area) to determine the overall UA of 

the suggested building. This UA is then compared against the building conforming to the code 

requirement. If the total heat loss (UA) through the envelope of the suggested building does not 

exceed the total heat loss from the same building conforming to the code, then the software 

declares that the suggested building is passed. Although this software allows a user to check total 

heat loss conveniently, the result cannot consider complex affects such as thermal mass, 

underground surface, etc. because of the simple calculation method. The MEC is important to 

this study because it explains how the current IECC has been developed and improved up to the 

current version. 

2.4.2 2000/2001 International Energy Conservation Code (IECC) 

 As previously mentioned, the 2000 International Energy Conservation Code (IECC) 

including the 2001 Supplement addresses the design of energy-efficient building envelopes and 

the installation of energy-efficient mechanical, lighting and power systems through requirements 

emphasizing performance. This comprehensive code establishes minimum regulations for 

energy-efficient buildings by using prescriptive and performance-related provisions. The code 

for this area (i.e., HDD 1500- 1999, Texas) sets a minimum requirement for the building 

envelope, and HVAC system specifications for residential houses. In the case of a residence with 

a window area that is 15 percent of the gross exterior area, these provisions include an envelope 

requirement of R-13 insulation for exterior walls, R-26 for the ceiling, and R-0 for the slab 

perimeter. For the HVAC system, R-8 is required for the supply ducts, R-4 is required for the 

return duct, the air conditioner should have a minimum Seasonal Energy Efficient Rating 
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(SEER) of 10 or higher, the furnace should have an Annual Fuel Utilization Efficiency (AFUE) 

of 78% or higher, and heat pumps should have a Heating Seasonal Performance Factor (HSPF) 

of 6.8 or higher. The 2000/2001 IECC is important for this study to develop the residential house 

model because Texas adopted the 2000 IECC as modified by the 2001 Supplement as its official 

building energy efficiency code. 

2.4.3 California Title 24 

 California Title 24 was established in 1978 in response to a state mandate to reduce 

California's energy consumption and contain energy efficiency standards for both residential and 

non-residential buildings. With the 2000/2001 California energy crises, the importance of 

conservation and efficiency has been brought to the forefront again. California’s Title 24 has 

resulted in a savings of over $36 billion in electricity and natural gas costs since 1978, and is 

estimated to save an additional $43 billion by 2013 (California Energy Commission, 2004). The 

approach of Title 24 is similar to that of the 2000/2001 IECC because it defines a minimum 

insulation R-value for ceiling, wall and floor insulation, glazing/fenestration, a minimum HVAC 

efficiency and water heating equipment efficiencies, as well as other requirements. Title 24 

provides Residential Compliance Forms as templates to compare against the code requirement. 

As the requirements of templates are filled-out, each category such as exterior, fenestration, 

HVAC system and other appliances is evaluated a “Pass” or “Fail”. Title 24 also provides an 

energy analysis computer program for residential and non-residential buildings to predict the 

energy usage of proposed houses, as well as to evaluate whether or not the performance of the 

house is in accordance with the California’s Title 24. The approved programs for Residential 

Buildings include CALRES2 (California Energy Commission 2001), Energy Pro (Energy Soft 

2002), and Micropas 6 (Enercomp Inc. 2002). This standard is also important to this research 
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because the procedure of California’s Title 24 is similar to the proposed IECC procedure and 

also provides helpful information to understand the IECC procedure. 

2.4.4 ASHRAE Standard 90.2-2001 

 ASHRAE Standard 90.2-2001 (Energy Efficient Design of New Low-Rise Residential 

Buildings) (ASHRAE 2001) sets forth design requirements for new residential dwelling units for 

human occupancy. For the purposes of this standard, residential dwelling units include single-

family houses, multi-family houses (of three stories or fewer, above grade), and manufactured 

houses (mobile and modular homes).  

 This standard covers the building’s envelope, heating equipment and systems, air-

conditioning equipment and systems, domestic hot water heating equipment and systems, as well 

as provisions for overall building design alternatives and trade-offs. This standard allows two 

optional methods. One is an envelope performance path trade-off method that allows the user the 

option of demonstrating compliance by trading the performance of individual envelope 

components. The other is the annual energy cost method, which is a compliance path that 

recognizes innovative designs, materials and equipment when they cannot adequately be 

evaluated under prescriptive procedures. Although this standard is not considered to this study 

since this study is limited to the 2000/2001 IECC, this standard provides comparative 

requirements of residential houses for energy efficient design. 

 

2.5 Validation of Computer Simulation Using Calibrated Simulation 

 Design engineers, architects, and energy management specialists typically use building 

simulation programs to assist in preliminary calculations for equipment selection, new building 

code compliance and energy conservation studies (Bronson 1992). Therefore, well-calibrated 
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simulation models play a major role in the measurement of the retrofit savings since they can be 

used to calculate the energy savings for specific combinations of retrofits (Haberl et al. 1995). 

Several authors have studied calibrated simulations, including  Hsieh (1988), Kaplan et al. 

(1990), Subbarao et al. (1990), Bronson (1992), Bronson et al. (1992), Koran et al. (1992), Bou-

Saada (1994), Soebarto and Degelman (1994), Haberl et al. (1995), Elberling and Bourne (1996), 

and Bou-Saada (1998). Some significant studies in this area include Koran et al. (1992), 

Elberling and Bourne (1996), Haberl and Bou-Saada (1998), and Neymark et al. (2002). 

 Koran et al. (1992) applied two methodologies for calibrating a building energy 

simulation using a small building. These included the monthly end-use energy consumption 

tuning (MCT) methodology and the short term energy monitoring (STEM) tuning methodology. 

Both calibrations incorporated hourly monitored site weather data and information from building 

audits. The Monthly Consumption Tuning (MCT) adjusted the simulation to match monitored 

data for each end-use on a monthly and a seasonal basis, and Short-Term Energy Monitoring 

(STEM) methodology focused on evaluating the building’s shell such as the building’s overall 

conductance, glazing shading coefficient, thermal capacities, and heating system efficiency using 

a three-day period measurements. The two calibrated models estimated annual HVAC energy 

use within 11% of monitored consumption. Although the case-study building of Koran et al.’s 

research was a small office building, the overall calibration procedure gives helpful advice to the 

current study. 

 Elberling and Bourne (1996) conducted a comparison of energy savings between an 

existing home and 2 newly constructed homes in California, which was applied to California’s 

Title 24 Building Efficiency Standards using the DOE-2.1e model. In order to ensure the DOE-

2.1e model accurately represented the new homes, the model was calibrated using one-year of 

monitored site weather, indoor and outdoor temperatures, relative humidity, and electric and gas 
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consumption data (i.e., whole-building and end-use data). The results showed that 64% and 61% 

of the energy savings were estimated from the 2 new homes. This study provides useful guidance 

to the current work, which seek to calibrate the IECC simulation model to one-year of measured 

data from the case-study house, and to evaluate several types of IECC residential houses.  

 Haberl and Bou-Saada (1998) reviewed calibration methods such as graphical methods 

and architectural rendering, and presented new hourly calibration methods with graphical 

procedures and statistical goodness-of-fit parameters in order to quantitatively compare 

simulated data to measured data. These statistical methods include a monthly mean difference, 

and hourly mean bias error (MBE) for each month, and an hourly coefficient of variation of the 

root mean squared error (CV (RMSE)) (Kreider and Haberl 1994a, 1994b; Haberl and 

Thamilseran 1996). They achieved an MBE of -0.7% and an hourly CV (RMSE) of 23.1%, 

which was considered acceptable as a final calibration, because according to Kreider and Haberl 

(1994a, 1994b), the best empirical models were capable of producing an hourly CV (RMSE) in 

the 10 to 20% range. This specific calibration procedure using the statistical CV (RMSE) and 

MBE will be used to calibrate the case-study house in the residential DOE-2 model. 

 Neymark et al. (2002) developed the procedures to test the ability of whole-building 

simulation programs to model the performance of unitary space-cooling equipment that is 

typically modeled using manufacturer design data presented as empirically derived performance 

maps. DOE-2 program was verified partially using the developed procedures after correcting 

errors using HVAC BESTEST diagnostics. Neymarks’ results showed that the mean of all 

simulated results of total energy consumption for the program were on average within <1% of 

the analytical solution results, with variations of up to 2%. Their research provided a procedure 

to correct the simulation input file in the case that system information could be obtained from the 

manufacturers. Since their procedures need to have the detailed experimental conditions and 
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manufacturer’s data for each HVAC system to compare the simulation results with the measured 

data, the BESTEST method was not used for this research. 

2.6 Previous Works on the Case-Study Buildings 

 The case-study building, a Habitat for Humanity house in Bryan, Texas, is a low cost, 

high quality, energy efficient house constructed with volunteer labor and materials that utilize no 

or low-interest loans to keep monthly payments low (Kootin-Sanwu et al. 2000). Houses 

constructed as part of the Habitat for Humanity program are equipped with energy saving 

features incorporated to lower the owners’ costs. Several of the previous residential studies were 

performed using a case-study house with measured data including: Dumont and Snodgrass 

(1990), Sieber et al. (1993), Parker et al. (1995), Lister et al. (1996), Haberl et al. (1998), Henry 

and Patenaude (1998), Kootin-Sanwu et al. (2000), NREL (2001), and Kootin-Sanwu (2004). Of 

these, the following are the most relevant to this study because they studied very similar case-

study house which will be used for this research. 

 Haberl et al. (1998) used a calibrated simulation and measured data to study an 

evaluation of residential energy conservation options using two identical Haibtat for Humanity 

houses in Houston. They developed calibrated DOE-2 models, which matched measured data to 

within an acceptable range (5-10%). The calibrated DOE-2 model was then used to perform the 

analysis to determine the energy savings of several energy conservation options such as 

improved air conditioner efficiency, adding solar screens to the house, and shell tightening. This 

study is important to this study because the detailed procedures to measure the performance of 

the Houston Habitat for Humanity houses are very similar to the procedures proposed to evaluate 

the case-study house in Bryan, Texas. 

 In the work by Kootin-Sanwu et al. (2000), the case-study building is a single-story 

1,120 ft2, three-bedroom house with an attic space, located in Bryan, Texas. They studied the 



 

 

31

energy consumption and environmental consumption by installing a 48-channel data logger to 

record 15-minute data. Measured data included air conditioner, blower, clothes washer / dryer, 

refrigerator, and other appliances, natural gas monitoring for monitoring energy consumption, 

and environmental monitoring such as temperature and relative humidity for return, supply, attic 

space, and outside air, horizontal solar radiation, carbon dioxide and wind speed. Kootin-Sanwu 

(2004) also developed guidelines for cost-effective and low-income housing using that Habitat 

for Humanity house. To confirm his results, he developed baseline energy models of the 28 

Habitat for Humanity using the PRIncton Scorekeeping Method (PRISM) (Fels 1986). The case-

study house was then compared to the 28 selected Habitats for Humanity homes to ascertain 

normal energy use levels. Detailed and calibrated building energy simulation model of the case-

study house using DOE-2.1e was then developed with data obtained from an on-site weather 

station. This calibrated model was then used to evaluate the energy conservation design options 

to determine the projected energy use. These studies are important to the current work because 

the previously studied Habitat Humanity house will be used for the current case-study house. 

The previous studies also provided detailed information about the architectural dimensions of 

house, sensor types and locations. 

 Im (2003) used ASHRAE’s Inverse Model Toolkit (IMT) to compare the normalized 

energy use before and after IECC (International Energy Conservation Code) application of the 

case-study house. ASHRAE’s Inverse Model Toolkit (IMT) is a FORTRAN 90 application for 

regression modeling of building energy use (Kissock et al. 2001). This toolkit can identify best-

fit regression models for measuring retrofit savings in buildings. The IMT includes PRISM’s 

variable-based degree-day algorithms, and it includes traditional linear, least square regression 

models, change-point linear models, multi-linear regression models, and combined models. For 

this study, IMT toolkit will be used to normalize energy use for case-study house. 
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2.7 Previous Work on the 2000/2001 IECC-Compliant Simulation 

 In order to quantify the reduction of NOx emissions by the implementation of the 

2000/2001 IECC in new construction, simulation models have been being developed for both 

single-family and multi-family configuration by the Energy Systems Laboratory (ESL) and the 

developed simulation input models were previously utilized for several studies including Haberl 

et al. (2003a, 2003b, 2004a, 2004b, 2004c, 2004d), Ahmad et al. (2005), Malhotra (2005), and 

Mukhopadhyay (2005); of these, the following are most important to this study. 

 Ahmad et al. (2005) modified the single-family and multi family residential simulation 

input model developed by the Energy Systems Laboratory (ESL) to accommodate the different 

scenarios of envelope construction and HVAC equipment according to the 2000/2001 IECC. 

Then, simulation models, created with the DOE-2.1e simulation program were then linked to a 

web-based graphic user interface and the US EPA’s eGRID which is the EPA’s Emissions and 

Generation Resource Integrated database to convert the energy savings to NOx emissions 

reduction.  A complete set of comparisons includes three simulation runs were performed; 1) a 

Pre-code run based on the construction characteristics published by the National Association of 

Home Builders (2004) for 1999, 2) a Code-compliant run based on the minimum construction 

requirement of the 2000/2001 IECC, and 3) a run using the user input. This paper is important to 

this study, because the single-family simulation input file for this study was modified based on 

Ahmad et al.’s study. 

 Malhotra (2005) analyzed the energy-efficient design strategies about the building 

configuration, materials, mechanical and electrical systems, equipment and applies using a 

simulation model of a prototype house with the DOE-2 energy simulation program. The 

simulation model was also adopted from the input file (SNGFAM2ST.INP) developed by the 

ESL. This study developed generalized design guidelines for achieving maximum energy-
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efficiency in single-family detached house. This study also used the simulation model which was 

developed by Energy Systems Laboratory (ESL). For a great number of simulations, the 

following supplementary programs (BDI (Batch DOE-2 Input)) and files (BDI spreadsheet) 

developed by the ESL were used to perform the DOE-2 simulation in the batch mode. This study 

provided useful information to perform a lot of simulations using batch mode because the current 

work used the same supplementary programs of BDI and BDI spreadsheet for numerous 

simulations. 

2.8 Summary of Literature Review 

 The literature review has presented the background of energy savings on residential 

houses, specific approach to develop the simulation code for the residential house, review of 

existing building energy codes and standards, validation of computer simulation using calibrated 

simulation and previous works on the case-study buildings. 

 Portions of this research will make use of information from the described methods in 

each section. Works by National Fenestration Rating Council (NFRC 2002a, 2002b), Reilly et al. 

(1995), Christian (1991), Meldem and Winkelmann (1998), Huang et al. (1998), Medina (1992), 

Parker et al. (1999), and Henderson et al. (2000) are useful in the development of improved 

simulation input file of the base-case house and International Energy Conservation Code (IECC) 

compliant house. The work of ASHRAE (2004) is important to develop the duct model on DOE-

2.1e simulation program. Researches by Koran et al. (1992), Elberling and Bourne (1996), 

Haberl and Bou-Saada (1998) are also important in the examination of the energy use of the 

developed simulation model. Works by Ahmad et al. (2005) and Malhotra (2005) provide useful 

information about DOE-2 simulation input files for the current study. 
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CHAPTER III 

SIGNIFICANCE AND LIMITATION OF THE WORK 

3.1 Expected Contributions from the Research 

 This research is expected to provide the following benefits toward the development of 

energy efficient residential building modeling. 

1) The installation of new sensors in the case-study house and recalibration of existing sensors to 

provide measured data for calibration purpose. 

2) The provision of an improved residential simulation models, including: thermal mass, detailed 

window simulation method, improved underground heat transfer and improved HVAC model. 

3) The development of residential HVAC duct model to be used for evaluating duct heat loss / 

gain in unconditioned spaces. 

4) Use of the improved model to make recommendations for changes in residential construction 

and HVAC installation that could save energy, reduce peak demands and result in more 

comfortable residential housing according to climate variations. 

3.2 Limitations of the Research 

 The limitations of this study include: 

1) This research focuses on the analysis of residential house based on the 2000/2001 

International Energy Conservation Code (IECC). Therefore, the code-compliant model was 

adjusted to match the requirements of the 2000/2001 IECC. 

2) The analysis of energy use of the as-built house and code compliant house are limited to those 

that DOE-2.1e version 119 can simulate. 
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3) The analyses were performed using a single-family house in the hot and humid climate of 

Texas. 

4) Duct loss calculations in this research follow the method of ASHRAE 152-2004 (Method of 

Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution 

Systems). 
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CHAPTER IV 

METHODOLOGY 

 This chapter discusses the methodology used in this research. It includes a description of 

the case-study building, measurements and data collection, the calibrated DOE-2 simulation 

method, analysis of the International Energy Conservation Code (IECC) and development of the 

computer simulation model of an IECC-compliant residence. 

4.1 Introduction 

 The methodologies used in this dissertation consist of a number of tasks:  

1) Measurement and analysis of the case-study house, 2) Building thermal simulation of the 

case-study house, 3) Analysis of the 2000 International Energy Conservation Code (IECC) and 

2001 Supplement, 4) Development of the IECC-compliant computer simulation model, and 5) 

Analysis of energy-efficient construction using the improved model. 

 Figure 4.1 shows the steps that were followed in this study. First, the calibration and 

installation of sensors that measure the 15-minute energy use, weather conditions and the indoor 

environmental conditions of the case-study house were performed. In the second step, the DOE-

2.1e (version 119) building simulation program was used to analyze the energy use and to apply 

new simulation methodologies such as attic space, duct model, new system / domestic hot water 

curves and new underground surface simulation method. A weather file developed by the case-

study house from on-site measured weather data using the DOE-2 weather processor and other 

data processing routines developed by Bronson (1992) saved considerable effort in the pre-

processing of measured data. The calibration process was initiated by creating an as-built case-

study house input file. 
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Figure 4.1   Research method diagram 
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 This required repeated runs of the as-built base-case input file using the measured data 

while varying different parameters in the computer model. The best model was selected 

statistically by comparing the measured data and the DOE-2.1e simulation results using the 

CV(RMSE) and the MBE. Definitions of these terms are explained later in this chapter. 

 The third step involved the development of the initial simulation model of the code-

compliant base-case model using the 2000/2001 IECC specification. This includes the decision 

and incorporation of the size of the house, layout, occupancy, envelope, HVAC / DHW systems, 

lighting, and equipment to DOE-2 simulation input file. The fourth step involved the application 

of the improved simulation methods which were verified from the as-built case-study house 

simulation. The fifth step involved the energy efficiency analysis using the modified IECC-

compliant simulation model. This analysis included the variation of different thermal mass wall, 

fenestration system, duct location, system efficiency, etc. 

4.2 Analysis of the Case-Study House 

 This section of the dissertation presents drawings of the case-study house, the details of 

the materials use in the construction and the installed equipment. It also describes the sensors 

used in the monitoring of the case-study house, data analysis, and analysis of the case-study 

house which uses the DOE-2.1e building energy simulation program. 

4.2.1 Information of the Case-Study House in Bryan, Texas 

 The case-study house located at Bryan, Texas is a single-story Habitat for Humanity 

house built in 1997. This house has one living room, a dining room, a kitchen, a utility area, 3 

bedrooms, 1 ½ bathrooms, a front and a back porch. The total area is 1,333 ft2 (Kootin-Sanwu 

2004). Table 4.1 shows the material specification of the case-study house. 
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Table 4.1   Material used in construction 

 Material 

Floor - 4” concrete slab and 30” deep ground beams which are 12” wide 
- Linoleum tile 

Exterior walls 
- Vinyl siding and ½” plywood wrapped with “Tyvek” moisture barrier 
- ½“ gypsum, R-13 insulation 
- Composite 2x4” stud wall 

Interior walls 
- 2x4” stud wall  
- ½ ”gypsum 
- Blown-in treated cellulose insulation. 

Ceiling - 5/8” fire coded gypsum board 
- 12” of blown-in fiberglass insulation. 

Roof 
- Composite shingles 
- 5/8” plywood deck 
- 2x4” trusses set at 24” centers 

Window - Double pane clear with aluminum frame, without thermal break 

  

 

 The heating, ventilation and air-conditioning system consists of a 10.5 SEER (Seasonal 

Energy Efficiency Ratio) air-conditioning unit (2.5 tons), a furnace with 80% AFUE (Annual 

Fuel Utilization Efficiency), and a 0.56 EF (Energy Factor) domestic hot water system with 40-

gallon tank size. Figures 4.2 to 4.5 show the pictures of the case-study house. 
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Figure 4.2   Front side of case-study house (facing northeast) 

 

 

 

Figure 4.3   Back side of case-study house (facing southwest) 
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Figure 4.4   Left side of case-study house (facing southeast) 

 

 

 

Figure 4.5   Right side of case-study house (facing northwest) 
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4.2.2 Measurement and Data Collection 

 This section discusses the equipment and the sensors used for monitoring the case-study 

house. This includes: the description of data acquisition system, the instrument calibration, 

installation of sensors, collection of data and cross checking of data against utility bills. 

4.2.2.1 Instrument Calibration 

 Several sensors were used to measure the indoor and outdoor environmental condition 

and energy consumption. To measure environmental condition, temperature, humidity, solar 

radiation and wind speed were used. Electricity, gas, and domestic hot water use were used for 

measurement of the energy consumption. With the exception of the newly installed sensors in 

the attic space, the sensors at the case-study house were installed as a part of the previous study 

by Kootin-Sanwu (2004). Therefore, all sensors were inspected and recalibrated. National 

Institute of Standards and Technology (NIST) and American Society for Testing and Materials 

(ASTM 2001a, 2001b) calibration methods were used for the calibration procedures. The results 

using the pre-installation calibration are presented in this section. The post-morten calibration 

procedures, results and discussions are presented in Appendix A. 

 For the measurement of electricity use from the case-study house, the current from the 

transducers at the electric panel using a hand-held amp meter was measured and compared with 

the measurement from the readings on the data logger. In the case of the measurement of gas 

meter, manual readings of the utility for one-week were compared with data logger for the same 

period.  

 

 

 



 

 

43

4.2.2.2 Installation of Sensors 

 Figure 4.6 shows the location of each sensor. A gas meter was installed at the rear of the 

house and was connected with the house’s gas system and the data logger. In order to collect 

data from the case-study house, a C180E Synergistics Data Logger (Figures 4.7 and 4.8) was 

used and located in the backyard of the case-study house. This data logger has 16 power inputs, 

16 digital inputs and 16 analog inputs, and can simultaneously monitored the analog, power and 

digital signals from the sensors located in the house (Kootin-Sanwoo 2004). This synergistics 

data logger can be remotely operated and data from logger can be downloaded using a computer 

program via modem using the Parset program that is supplied by the manufacturer (Synergistics 

1994). After recalibrating the sensors, they were connected to the data logger to measure indoor 

and outdoor environmental conditions, and the energy use of the house every 15 minutes. The 

temperature and humidity sensors were installed in the supply air duct, the end of the duct, attic 

space, and in the return grill. A flow meter was installed on the domestic hot water heater in the 

utility room and was connected to the Btu meter at the rear of the house. Three new portable 

sensors were also located in the attic to measure inside roof surface temperatures.  
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Figure 4.6   Diagram of sensor location 

  

 

 

Figure 4.7   Data logger (Synergistics C180E) with weather station on case-study house 
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Figure 4.8   Data logger (Synergistics Data Logger C180E) 
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 Table 4.2 describes specific information about various monitoring channels and Figures 

4.9 to 4.17 are photos of the sensors installed on the case-study house. 

 

Table 4.2   Monitoring channel description 
Power channels ESL Channel 
Phase I The electricity use for the first phase of the house   (kW) CH3789 
Phase II The electricity use for the second phase of the house   (kW) CH3790 
Dryer The electricity use for the dryer (kW) CH4151 
Air conditioner The electricity use for the air conditioner (kW) CH4152 
Air conditioner Blower The electricity use air conditioner blower (kW) CH4153 
Refrigerator The electricity use refrigerator (kW) CH3794 
Freezer This electricity use for the freezer (kW) CH4154 
Washer This electricity use for the dishwasher (kW) CH3796 
Dishwasher This electricity use for the washer (kW) CH3797 
  
Analog channels ESL Channel 
Ground Temperature -N The ground temperature for the north sensor (°F) CH3798 
Ground Temperature -C The ground temperature for the center sensor (°F) CH3799 
Ground Temperature -S The ground temperature for the south sensor (°F) CH3800 
Supply Relative Humidity The relative humidity of the supply air from the air-conditioning 

coils   (%) CH3801 

Supply Temperature The temperature of the supply air from the air-conditioning 
system (°F) CH3802 

Return Relative Humidity The relative humidity of indoor air of the house (%) CH3803 
Return Temperature The temperature of the indoor air of the house (°F) CH3804 
CO2 sensor The carbon dioxide concentration inside the house (ppm) CH3805 
Duct Temperature The temperature of the duct air from the air-conditioning system 

(°F) CH3806 

Solar Radiation The solar radiation at the on-site weather station at the house 
(W/m2) CH3807 

Wind Speed The wind speed outside the house (mph) CH3808 
OA Relative Humidity The relative humidity of the outdoor air at the on-site weather 

station (%) CH3809 

OA Temperature The temperature of the outdoor air the on-site weather station (°F) CH3810 
Attic Relative Humidity The relative humidity of the attic air of the house (%) CH3811 
Attic Temperature The temperature of the attic air of the house (°F) CH3812 
  
Digital channels ESL Channel 
Flow Meter  The flow meter of the of the house (gallons) CH3813 
Btu Meter The Btu meter of domestic water heater (Btu) CH3814 
Gas Meter The gas meter the house (Cubic Feet) CH3815 
  
Portable sensors ESL Channel 
Surface temperature 1 Inside roof surface temperature (Southeast facing) N/A 
Surface temperature 2 Inside roof surface temperature (Northwest facing) N/A 
Surface temperature 3 Inside roof surface temperature (Attic floor) N/A 
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Figure 4.9   Indoor temperature / relative humidity sensor and carbon dioxide sensor 

 
 

 

Figure 4.10   Attic temperature / relative humidity sensor with radiation shield and insulation 
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Figure 4.11   Supply temperature / relative humidity sensor with insulation 

 

 

 

Figure 4.12   Duct temperature sensor with insulation 
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Figure 4.13   J-type thermocouple for measuring surface temperature of roof 

 

 

 

Figure 4.14   Gas meter with pulse initiator 
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Figure 4.15   Flow meter attached to the domestic hot water heater 
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Figure 4.16   DHW Btu meter 

 

 

 

Figure 4.17   Electrical panel with the current transducers, face on (left) and face off (right) 
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4.2.2.3 Collection of Data 

 The data collection process includes: 1) polling, 2) error-checking and 3) uploading of 

the data to the ESL’s UNIX database (Figure 4.18). Polling data from the data logger at the case-

study house was performed remotely with a computer in the Energy Systems Laboratory (ESL) 

using a modem and the telephone line connected to the data logger. The previous week’s data, 

which is stored in the memory of the logger, were downloaded into the Energy Systems 

Laboratory’s database every week using the PARSET program (Synergistics 1994), and were 

then loaded to the ESL database. The error-checking task includes the inspection of downloaded 

data from case-study house. This includes 1) the examination of the maximum and the minimum 

value of the data, 2) graphical inspection to validate the pattern of the data and 3) checking for 

any occurrence of data points that were shown by -99 at the series records, which means no data 

or out of range. 

 Figures 4.19 to 4.41 are two-week sample data plots of a summer period (Aug 1, 2004 – 

Aug 14, 2004) that show energy use and environmental data from the case-study house.  
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Figure 4.18   Procedure for collecting data 
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Figure 4.19   Whole-building electricity use of house (CH3789+CH3790) 
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Figure 4.20   Electricity use for the dryer (CH4151) 
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Figure 4.21   Electricity use for the air conditioner (CH4152) 
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Figure 4.22   Electricity use for the air conditioner blower (CH4153) 
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Figure 4.23   Electricity use for the refrigerator (CH3794) 
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Figure 4.24   Electricity use for the freezer (CH4154) 
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Figure 4.25   Electricity use for the washer (CH3796) 
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Figure 4.26   DHW flow meter (CH3813) 
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Figure 4.27   Btu meter for domestic water heater (CH3814) 
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Figure 4.28   Gas meter for the house (CH3815) 
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Figure 4.29   Supply relative humidity and temperature (CH3801, CH3802) 
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Figure 4.30   Return relative humidity and temperature (CH3803, CH3804) 



 

 

60

0

20

40

60

80

100

8/
01

/2
00

4

8/
02

/2
00

4

8/
03

/2
00

4

8/
04

/2
00

4

8/
05

/2
00

4

8/
06

/2
00

4

8/
07

/2
00

4

8/
08

/2
00

4

8/
09

/2
00

4

8/
10

/2
00

4

8/
11

/2
00

4

8/
12

/2
00

4

8/
13

/2
00

4

8/
14

/2
00

4

RH
(%

)

0

20

40

60

80

100

120

140

160

Te
m

p(
F)

RH-Attic Temp-Attic
 

Figure 4.31   Attic relative humidity and temperature (CH3811, CH3812) 
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Figure 4.32   Duct temperature (CH3806) 
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Figure 4.33   Supply, attic and duct temperature (CH3802, CH3812, CH3806) 
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Figure 4.34   Attic temperature and roof surface temperatures 
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Figure 4.35   West side of inside roof surface temperature 
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Figure 4.36   East side of inside roof surface temperature 
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Figure 4.37   Ceiling surface temperature in the attic 
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Figure 4.38   Outside air relative humidity and temperature (CH3809, CH3810) 
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Figure 4.39   Ground temperature (north, center and south) (CH3798, CH3799, CH3800) 
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Figure 4.40   Wind speed (CH3808) 



 

 

65

0

200

400

600

800

1000

1200

8/
01

/2
00

4

8/
02

/2
00

4

8/
03

/2
00

4

8/
04

/2
00

4

8/
05

/2
00

4

8/
06

/2
00

4

8/
07

/2
00

4

8/
08

/2
00

4

8/
09

/2
00

4

8/
10

/2
00

4

8/
11

/2
00

4

8/
12

/2
00

4

8/
13

/2
00

4

8/
14

/2
00

4

W
/m

2

 

Figure 4.41   Global horizontal solar radiation (CH3807) 

 
 
 

4.2.2.5 Comparison of IECC-Compliant Model with the Case-Study House Using 

 ASHRAE Inverse Modeling Toolkit (IMT) 

 The IMT was used to examine the pattern of electricity and natural gas energy use of the 

as-built case-study house and to compare with the code-compliant IECC simulation model. The 

IMT is a FORTRAN 90 application of calculating linear, change-point linear, variable-based 

degree-day, multilinear and combined regression models.  

4.2.2.5.1 IMT Input Files 

 In order to run IMT, two files are required: a data file and an instruction file. The IMT is 

provided with two sample data files, DAILY2.DAT and NONUNIPP.DAT. DAILY2.DAT is a 

uniform time-scale data file which contains daily ambient temperatures and energy consumption 
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data. The DAILY2.DAT file format can be used to run the mean (1P), linear (2P), three-

perimeter (3P), four-parameter (4P), five-parameter (5P), and multi-variable regression (MVR) 

models. The second sample is a nonuniform time-scale data file called NONUNIPP.DAT. This 

file format includes monthly energy use and other data and daily ambient temperatures. This file 

can be used to run the variable-based degree-day (VBDD) and combined VBDD-MVR models. 

 Using the IMT instruction file, the user identifies the input data file, the desired fields 

and record in the input data file, and can select the proper regression model.  Figure 4.42 shows 

an example of a data file. Each column contains the following information: 

Column 1: Site Number 

Column 2: Month 

Column 3: Day 

Column 4: Year 

Column 5: Group field (1 for pre-retrofit period and 2 for post-retrofit period) 

Column 6: Cooling energy use (mBtu/day) 

Column 7: Heating energy use (mBtu/day) 

Column 8: Whole energy use (mBtu/day) 

Column 9: Daily average ambient temperature (°F) 



 

 

67

 

Figure 4.42   Sample DAILY2.DAT file 

 

 
  

For the IMT instruction file, the user gives the IMT instructions about the locations of 

the input data file, the specific fields in the data file that are being used for analysis, and 

regression model which is to be used. Figure 4.43 shows the DAILY2INS.TXT instruction file to 

generate a multivariable regression (MVR) model of cooling energy use as a function of building 

electricity use and ambient temperature. The instruction file consists of 14 lines of a single field. 

The first line is for the path and name of the input data file. The second line is for the value of 

the no-data flag. In this sample file, “-99” was used for the no-data flag. The third and fourth line 

is for the column number of group field and the value of valid group field. The fifth line is for 

residential file. If the user needs the residual file, this option will be input as 1. From the sixth 

line, the appropriate model is selected from the list shown. In this model, the MVR model (7) is 

selected. The seventh line is for the column number of dependent variable Y. The value in this 

             114      10      16      90       1    61.8   27.23     -99      76 
             114      10      17      90       1    65.2   25.68     -99      79 
             114      10      18      90       1    44.2   35.21     -99      64 
             114      10      19      90       1    42.6   38.66     -99      62 
             114      10      20      90       1      52   32.76      -99      70 
             114      10      21      90       1    44.8   41.29     -99      63 
             114      10      22      90       1    36.8    44.2      -99      57 
             114      10      23      90       1     -99     -99       -99      58 
             114      10      24      90       1      41   39.66      -99      63 
             114      10      25      90       1    41.8   37.66     -99      64 
             114      10      26      90       1    43.2   37.39     -99      62 
             114      10      27      90       1    45.2   33.49     -99      65 
             114      10      28      90       1    46.8   32.49     -99      68 
             114      10      29      90       1    48.4   34.21     -99      68 
             114      10      30      90       1    52.8   33.85     -99      67 
             114      10      31      90       1    55.6   33.31     -99      68 
             114      11        1      90       1    53.2   32.13     -99      68 
             114      11        2      90       1    57.2   31.67     -99      70 
             114      11        3      90       1      61   29.86      -99      75 
             114      11        4      90       1    40.4   43.02     -99      57 
             114      11        5      90       1    37.2   47.01     -99      51 
             114      11        6      90       1    40.2   41.02     -99      57 
             114      11        7      90       1    41.2   38.84     -99      60 
             114      11        8      90       1      37   44.56      -99      53 
             114      11        9      90       1      37   44.65      -99      57 
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record indicates the column number for the dependent variable such as the cooling or heating 

energy consumption. The eighth line indicates the number of independent variables. In this 

sample file, two independent variables are used. The corresponding column numbers of 

independent variables are indicated from the ninth to the fourteenth lines. Since this sample file 

has two independent variables, the ninth and the tenth lines show the corresponding numbers 8, 9, 

which are the eighth and ninth columns in the input file. 

 
 
 

 

Figure 4.43   Sample instruction file 

 
 
 

4.2.2.5.2 IMT Output Files  

 Model coefficients and goodness of fit parameters are reported in the ASCII output file 

IMT.OUT. This output can be viewed from any text editor. Figure 4.44 shows an example of an 

IMT.OUT file. As mentioned previously, the IMT also creates a residual file that includes all the 

input data, predicted values of the dependent variable, and the difference between predicted and 

measured values of the dependent variable (i.e., the residual). This is named IMT.RES. It can be 

Line 1: Path and name of input data file = daily2.dat 
Line 2: Value of no-data flag = -99 
Line 3: Column number of group field = 5 
Line 4: Value of valid group field = 1 
Line 5: Residual file needed (1 yes, 0 no) = 1 
Line 6: Model type (1:Mean,2:2p,3:3pc,4:3ph,5:4p,6:5p,7:MVR,8:HDD,9:CDD) = 7 
Line 7: Column number of dependent Y variable = 6 
Line 8: Number of independent X variables (0 to 6)  = 2 
Line 9: Column number of independent variable X1 = 8 
Line 10: Column number of independent variable X2 = 9 
Line 11: Column number of independent variable X3 = 0 
Line 12: Column number of independent variable X4 = 0 
Line 13: Column number of independent variable X5 = 0 
Line 14: Column number of independent variable X6 = 0 
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used to create plots using the Microsoft EXCEL program. It is also used to calculate average 

billing-period temperatures as a preprocessor to linear and change-point linear models, which are 

run with monthly utility billing data.  

 
 
 

 

Figure 4.44   Sample IMT output file 

 
******************************************** 
  ASHRAE INVERSE MODELING TOOLKIT (1.9) 
 ******************************************** 
    Output file name = IMT.Out                                          
 ******************************************** 
    Input data file name =  daily2.dat                                      
    Model type =           MVR                      
    Grouping column No =    5 
    Value for grouping =    1 
    Residual mode =         1 
    # of X(Indep.) Var =    2 
    Y1 column number =      6 
    X1 column number =   8 
    X2 column number =   9 
    X3 column number =   0 (unused) 
    X4 column number =   0 (unused) 
    X5 column number =   0 (unused) 
    X6 column number =   0 (unused) 
 ******************************************** 
    Regression Results 
   -------------------------------------- 
           N =    167 
   -------------------------------------- 
          R2 =     0.845 
   -------------------------------------- 
       AdjR2 =     0.845 
   -------------------------------------- 
        RMSE =      6.4314 
   -------------------------------------- 
     CV-RMSE =    11.328% 
   -------------------------------------- 
           p =     0.627 
   -------------------------------------- 
          DW =     0.740 (p>0) 
   -------------------------------------- 
           a =    -50.6026 (      5.8082) 
   -------------------------------------- 
          X1 =      0.0035 (      0.0007) 
   -------------------------------------- 
          X2 =      1.2576 (      0.0421) 
   -------------------------------------- 
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4.2.2.5.3 Three Parameter Change-Point Models 

 In general, 3P models are used for modeling residential building energy use that is 

constant over one portion of the temperature range and varies linearly with temperature over the 

other portion (Kissock et al. 2001). For this research, two 3P models were selected (Figure 4.45): 

3PC for cooling and 3PH for heating. The 3PC model uses ambient temperature as a independent 

variable and cooling energy use as a dependent variable above a certain change-point. The 3PH 

model uses ambient temperature as an independent variable and heating energy use as a 

dependent variable below a certain change-point. After running the IMT for the 3PC and 3PH 

models, weather-normalized IMT coefficients were identified from the IMT.OUT, which 

includes a constant term, a slope, and a change point. The following formula explains the typical 

three-parameter change-point model. 

Yc = β1 + β 2(X1 - β3)+                                                     (4.1) 

Yh = β1 + β2(β3 - X1)+                                                                                     (4.2) 

where, β1 is the constant term, β2 is the slope term, and β3 is the change point. The ( )+ indicates 

that the value of the parenthetic term should be zero when they are negative.  
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Figure 4.45   IMT three parameter change-point models 
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4.2.3 Analysis of the As-built Case-Study House Using the DOE-2.1e Building Energy 

Simulation Program 

 The DOE-2.1e (ver.119) building energy simulation program was used to perform this 

study. The DOE-2 program was selected because of its ability to simulate the overall thermal 

performance of a building using specially prepared hourly weather file that were measured from 

the case-study house for the 2004 period in Bryan, Texas. 

4.2.3.1 Development of the On-Site Weather File 

 Figure 4.46 shows a flowchart diagram for the DOE-2 weather processing. The DOE-2 

program was designed to calculate hourly building energy consumptions by using hourly 

weather data available in several file formats. The available types of weather files include the 

Test Reference Year (TRY or TRY2), the Typical Meteorological Year (TMY or TMY2), the 

California Climate Zone (CTZ), and the Weather Year for Energy Consumption (WYEC and 

WYEC2). However, users need to convert ASCII files into binary files recognized by DOE-2 

program before running the DOE-2 program. 

 In order to pack the actual case-study weather data into DOE-2 weather file, the hourly 

weather data from the case-study house must be in the TRY, TRY2, TMY, TMY2, CTZ or 

WYEC file formats. Since the TRY format contains all necessary data for this research, TRY 

format was used to pack the weather file. The flowchart in Figure 4.46 demonstrates how the raw 

hourly weather data obtained from the on-site weather station were converted into the TRY file 

needed by the DOE-2 weather packer. 

 In this study, packing the weather file included combining the hourly outdoor dry bulb 

temperature, outdoor relative humidity, wind speed and beam and diffuse solar radiation into a 

data file. The hourly outdoor temperature, relative humidity, wind speed and global horizontal 
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solar radiation were obtained from the on-site weather station. These were then combined into a 

data file and processed by Bronson’s LS2TRY (1992) packing routine that converts global 

horizontal solar radiation into beam and diffuse radiation using the method developed by Erbs et 

al. (1982). This can be passed to the DOE-2 weather packing routine (LBNL 1993). 

T
df k
I

I
09.00.1 −=                                                                           for 0 ≤ kT ≤ 0.22      (4.3) 

432 336.12638.16388.416404.09511.0 TTTT
df kkkk
I

I
+−+−=    for 0.22 ≤kT≤ 0.80  (4.4) 

165.0=
I

I df                                                                                        for kT > 0.80           (4.5) 

 Where Idf is the hourly diffuse solar radiation, I is the hourly horizontal solar radiation, 

and kT is the hourly clearness index (the ratio of the terrestrial and extraterrestrial solar radiation) 

that is calculated by the formula: 

s
T I

Ik
θcos0

=                                                                                                                     (4.6) 

 In the equation θs is the zenith angle of the sun. I0 is the extraterrestrial solar radiation, 

which is calculated by the following formulae: 

2.435
25.365

)360cos033.01(
0 ×

×°×+
=

nI   (Btu/hr-ft2) (IP)                                                 (4.7) 

1373
25.365

)360cos033.01(
0 ×

×°×+
=

nI    (W/m2) (SI)                                                      (4.8) 

 Where n is the day of the year 

 The packed on-site weather file, once prepared, was ready to be converted to binary 

format by the DOE-2 weather processor and used in the simulation. 
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Figure 4.46   Flowchart of the DOE-2 weather data processing 

 
 
 

4.2.3.2 Development of the DOE-2.1 Input File for the Case-Study House 

 A computer model of the as-built case-study house was constructed using the DOE-2 

program (LBNL 1981). The building dimensions and installed equipment were obtained from 

the architectural drawings of the case-study house and documentation from the manufacturer and 

thesis by Kootin-Sanwu (2004). 

 The DrawBDL architectural rendering program (Huang and Associates 2000) was used 

to check the accuracy of the building’s geometry in the DOE-2 model. The output of the DOE-

2.1e program provides an annual energy use for a building in a Building Energy Summary 

Report (BEPS), monthly energy use, and hourly energy use depending on the specific 

requirements made for reports in the input file. 

 A DOE-2 input file generally contains a series of input variables assigned to four major 

DOE-2 sub-programs: LOADS, SYSTEM, PLANT and ECONOMICS. However, this research 

used only LOADS and SYSTEM sub-programs. These contain the building’s location, materials, 

general space definition, building zones, and building systems. The modeling of case-study 
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house is divided into an attic zone (unconditioned space) and room zone (conditioned space) 

(Figure 4.47).  

 
 
 

 

Figure 4.47   Zones of the as-built base-case house 

  
 
 
 The following figures (Figures 4.48 to 4.50) describe how the building’s materials were 

used in the construction of the input file. Tables 4.3 to 4.5 specify thermal properties of the 

materials to develop DOE-2.1e simulation model. Figure 4.51 shows the 3-dimensional 

geometry of the building created by the DrawBDL program. 

 Since DOE-2 calculates the weight of building materials to find out custom-weighting 

factor, it was important to put the proper materials into the DOE-2 simulation model. To 

simplify the DOE-2 input model, the wall of the case-study house simulation input file was 

modeled with two different constructions, one presenting the framed area of 12.6% of the wall 

area, and another presenting the insulated area of 87.4% of the wall area. The roof of the case-

study house input file was also modeled with two different constructions, one presenting the 
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frame area of 18.9% of the roof area and another presenting non-frame area of 81.1% of the roof 

area. 

 The walls of the case-study house were constructed with 2x4 studs placed 24 inches on 

center. These walls had 3 ½ inches of cellular insulation blown into the cavity between the studs. 

The exterior of the house was vinyl sheathing over plywood with a TYVEK moisture barrier. 

The interior of the walls were ½ inch gypsum board. The windows were double-pane clear 

glazing with aluminum frame without thermal break. The ceilings were 5/8” gypsum board on 2 

x 6” trusses with fiberglass insulation. The roof construction consisted of composite shingles on 

5/8” plywood deck placed on 2x6” trusses set at 24” centers. Attic ventilation was provided by a 

continuous perforated vinyl soffit on all sides of the house. 
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Figure 4.48   Details of wall construction 
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Table 4.3   Details of  wall thermal properties and DOE-2 code-word 

Thickness Conductivity Density Specific heat Resistance 
No. Description 

ft Btu-ft/hr-ft2-
°F lb/ft3 Btu/lb-°F hr-ft2-°F/Btu 

DOE-2 
code-
word 

1 VINYL-TILE    0.3 0.050 AV01 

2 TYBEK MOISTURE 
PAPER     0.060 BP01 

3 PLYWOOD-1/2IN 0.0417 0.0667 34 0.29 0.625 PW03 
4 CELLULOSE-R13 0.2917 0.0225 3 0.33 12.964 IN13 
5 STUD - 4INCH 0.3333 0.0667 32 0.33 4.997 WD05 

6 GYPSUM-BOARD-
1/2IN 0.0417 0.0926 50 0.2 0.450 GP01 
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Figure 4.49   Details of roof construction 

 

 

 

Table 4.4   Details of  roof thermal properties and DOE-2 code-word 

Thickness Conductivity Density Specific heat Resistance 
No. Description 

ft Btu-ft/hr-ft2-
°F lb/ft3 Btu/lb-°F hr-ft2-°F/Btu 

DOE-2 
code-
word 

1 SHINGLE-SIDING   70.00 0.35 0.44 AR02 

2 PLASTIC-FILM-SEAL     0.01 BP03 

3 PLYWOOD-3/8IN 0.05 0.07 34.00 0.29 0.71 PW04 

4 STUD-6IN 0.50 0.07 32.00 0.33 7.14  
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Figure 4.50   Details of ceiling construction 

 
 
 

Table 4.5   Details of  ceiling thermal properties and DOE-2 code-word 

Thickness Conductivity Density Specific heat Resistance 
No. Description 

ft Btu-ft/hr-ft2-°F lb/ft3 Btu/lb-°F hr-ft2-
°F/Btu 

DOE-2 
code-word 

1 WOOL-FIBER-R19 0.45 0.03 0.63 0.20 16.81 IN12 

2 STUD-6IN 0.50 0.07 32.00 0.33 7.50  

3 GYPSUM-BOARD-
5/8IN 0.05 0.09 50.00 0.20 0.56 GP02 
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Figure 4.51   Image of the as-built case-study house simulation input using the DrawBDL 
program 

 
 
 

4.2.3.3 Incorporating Duct Model 

 As mentioned at Chapter 2.3.5, ASHRAE developed ASHRAE Standard 152-2004 - 

Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal 

Distribution Systems (ASHRAE 2004) to estimate design and seasonal efficiency for residential 

building systems. This calculation considers the impacts of duct leakage, location (i.e., attic 

space, crawl space, etc.), insulation level, climate, etc.  

 Figure 4.52 shows the concept of duct works which are located in two buffer zones, one 

for return side and one for the supply side (Palmiter and Francisco 1996) and this concept was 

applied to DOE-2.1e simulation program using DOE-2 FUNCTION commands. 
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Figure 4.52   Schematic diagram of duct model (ASHRAE 152-2004) 

 

 
 
 
 Duct leakage rates of supply and return side of the case-study house were assumed as 

10% for supply and return sides based on the research by Cummings (1991). 

 Supply air flow (cfm) was 992cfm obtained from the previous research by Kootin-

Sanwoo (2004). For the supply cfm measurement, air-handler fan flow measurement using an 

Alnor air flow meter was performed. By placing the air flow plate over a return grill and turning 

on the air-handler fan, the air-flow cfm going through the flow meter was measured (Kootin-

Sanwu 2004). To assure maximum accuracy, the foam gasket along the top of the frame should 

be firmly in contact with the surface all around the return grill and ensure that other materials 

were not accidentally affecting the reading by blocking or diverting the air flow at the return grill. 

According to manufacturer manual (Alnor 2002), the accuracy range is ±3%. 
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 Following equations show the procedure of calculation of the delivery efficiency of the 

heating and cooling systems considering conduction loss and air leakage of supply duct and 

return duct side. 

e

s
ss

e

r
rrssssheating t

t
Ba

t
t

aBBaBaDE
∆
∆

−−
∆
∆

−−= )1()1(                                                        (4.9) 

)))(1()1())(1(
60

( ,, sambspsprrprinrambr
ine

cap

cap

ines
cooling ttBCtBCahha

Q
E

E
QaDE −−+∆−+−−+=

ρ
ρ                 (4.10) 

where, 

Bs = conduction efficiency of supply duct = ))
60

exp(
spine

s

RCQ
A
ρ
− ,                   (4.11)

Br 
= conduction efficiency of return duct = ))

60
exp(

rpine

r

RCQ
A
ρ
− ,                     (4.12) 

as 
= air leakage efficiency of the duct of supply duct = (

e

se

Q
QQ − ),               (4.13)

ar = air leakage efficiency of the duct of return duct =  (
e

re

Q
QQ − ),             (4.14)

Ecap  = capacity of the equipment (Btu/hr), 

Qe  = system air flow (CFM), 

Cp  = specific heat (Btu/(lbm⋅ºF)), 

∆te 
= temperature rise across the equipment (ºF) = 

pine

cap

CQ
E
ρ60

,                     (4.15)

∆ts 
= temperature difference between the building and the ambient temperature   
surrounding the supply (ºF) sambin tt ,−= ,                                               (4.16) 

∆tr 
= temperature difference between the building and the ambient temperature 
surrounding the return (ºF) rambin tt ,−= ,                                                (4.17) 

tin = temperature of indoor air (ºF), 

tsp = supply plenum air temperature (ºF), 

tamb,s = ambient temperature for supply ducts (ºF), 

tamb,r = ambient temperature for return ducts (ºF), 

hamb,r = enthalpy of ambient air for return (Btu/hr), 

hin = enthalpy of air inside conditioned space (Btu/hr), 
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As = supply duct area (ft2), 

Ar = return duct area (ft2), 

ρin = density of air (lb/ft3), 

Rs = thermal resistance of supply duct (hr-ft2-ºF /Btu), 

Rr = thermal resistance of return duct (hr-ft2-ºF /Btu). 

 

 Figures 4.53 and 4.54 show the procedures of the function method developed for the 

DOE-2.1e to apply the duct model using concepts of ASHRAE 152-2004. Three function 

methods (SAVETEMP, DUCT, and DUCT 2) are used. 1) The SAVETEMP function saves the 

buffer zone temperature and conditioned space temperature to send these temperature data to the 

next function. 2) The DUCT function calculates the delivery efficiency using temperature. Data 

from the hourly report and user inputs, and it modifies the Energy Input Ratio (EIR) every hour 

in proportion to the losses. The concept for this EIR modification came from Huang (personal 

communication, October 2001), 3) the DUCT2 function changes the modified EIR to the original 

value for the next calculation. The duct model on DOE-2.1e program was presented at Appendix 

B. 
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Save  RM-1 temperature
(TATTIC)

Save  RM-1 temperature
(TRETURN)

SYSTEM-1 = SYSTEM
                      ..
                     ZONE-NAMES = (RM-1,ATTIC-1)
                      ..

- TRETURN
- TATTIC

DOE-2 LOADS Simulation

Hour Loop

DOE-2 SYSTEMS
Simulation

FUNCTION = SAVETEMP

FUNCTION = DUCT

DUCT LEAKAGE FACTOR FOR SUPPLY(as) AND RETURN (ar).
as = (Qe-Qs)/Qe, ar = (Qe-Qr)/Qe, ASHRAE152, P.22

Qe: Flow through air handler fan at operating conditions (CFM),
      Measured value: 992CFM
Qs: Supply duct leakage to outside (CFM)  = Qe*Leakage percentage
      Assume 10% from VERIFICATION TEST OF ASHRAE STANDARD 152P)
Qr: Return duct leakage to outside (CFM) = Qe* Leakage percentage
      Assume 10% from VERIFICATION TEST OF ASHRAE STANDARD 152P)

Calculate enthalpy of RM-1 and ATTIC-1
- h=0.240t + W(1061+0.444t), ASHRAE FUNDAMENTAL 2001 6.13

- Rankin temp. for RM-1
  TLIVINRAN = TRETURN + 459.67

- Saturation pressure over liquid water for RM-1
  ASHRAE FUNDAMENTAL 2001 6.2
  LNPWSL = C8/TLIVINRAN + C9 + C10*TLIVINRAN +
                    C11*(TLIVINRAN^2) + C12*(TLIVINRAN^3) +
                    C13*ALOG(TLIVINRAN)
  PWSL = EXP(LNPWSL)

- Humidity ratio of RM-1, ASHRAE FUNDAMENTAL 2001 6.12
  ASSUME RH(%) of RM-1 IS 50%.
   WRM-1 = 0.62198 * ((PWSL* 0.5) / (14.696-(PWSL*0.5)))

- ENTHLPY OF RM-1, ASHRAE FUNDAMENTAL 2001 6.13
  IRM-1 = 0.24*TRETURN + WRM-1*(1061.2+0.444*TRETURN)

RM-1 Enthalpy ( IRM-1)

ATTIC-1 Enthalpy (IA)

  IA = 0.24*TAMBR + ATTIC_HUM*(1061.2+0.444*TAMBR)

Calculate specific volume of air of RM-1 and ATTIC-1, DOE-2 FUNCTION from DOE-2
SUPPLEMENT 1.12
       VATTIC = V(TAMBR,WA,PATM)
       VLIVIN = V(TRETURN,WL,PATM)

Constant value form calculating saturation pressure over
liquid water, ASHRAE FUNDAMENTAL 2001 6.2
       C8 = -10440.397
       C9 = -11.29465
       C10= -0.027022355
       C11= 0.00001289036
       C12 = -0.0000000024780681
       C13 = 6.5459673

- Ambient temperature of supply (TAMBS) and return duct
  (TAMBR)
       TAMBS = TATTIC
       TAMBR = TATTIC
- Humidity of ATTIC-1 is OA humidity ratio (LB/LB)
       ATTIC_HUM=OA HUMIDITY
- Outdoor atmospheric pressure (in-Hg)
       PATM=PATM

1 2 3 4

ZONE=RM-1

ZONE=ATTIC-1

END OF ZONE

 

Figure 4.53   Diagram of DOE-2 FUNCTION command for ASHRAE 152-2004 duct loss 
model (a) 
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Calculate density of air of ATTIC-1 and RM-1
       DATTIC = 1/VATTIC
       DLIVIN = 1/VLIVIN

Calculate supply (BS) and return duct conduction fraction(Br), ASHRAE152, P.22
       Bs = exp(-As/(60*Qe*DLIVIN*Cp*Rs))
       Br = exp(-Ar/(60*Qe*DLIVIN*Cp*Rr))

- As: Surface area of supply duct outside conditioned
         space (sq.ft), use measured value(340 sq.ft) or
         As=0.27 * Fout * Afloor
         where Fout is 1 if single-story house, 0.75 of more
         than one-story, ASHRAE152, P.20

- Ar: Surface area of return duct outside conditioned
        space(sq.ft), use measured value(60 sq.ft) or
         Ar=br * Fout * Afloor
         where br is 0.05 if # of return registers is 1, 0.1 if # of
         return registers is 2, 0.15 if # of return registers is 3,
         0.2 if # of return registers is 4, and 0.25 if # of return
         registers is 5 or more.
         Fout is 1 if single-story house, 0.75 of more
         than one-story, ASHRAE152, P.20

- Cp: Specific heat of air (Btu/lb-F), use 0.24

- Rs: Thermal resistance of supply duct (h-sq.ft-F/Btu),
         use 6 from case study house

- Rr: Thermal resistance of return duct (h-sq.ft-F/Btu),
        use 6 from case study house

Calculate temperature difference between indoors and attictemperature for return (DTR) and
supply(DTS). ASHRAE152, P.22
       DTR = TRETURN-TAMBS
       DTS = TRETURN-TAMBS

Calculate temperature rise across the furnace. ASHRAE152, P.22
      DTE = Ecapheat / (60*Qe*DLIVIN*CP)

- TC: Supply air temperature (F), Use average measured
         temperature (61.7F) or DOE-2 calculated value
- Ecapcool: Equipment efficiency (Btu/hr) for cooling
                       (Negative for cooing equipment)
                      =2.5TON = 2.5*12000 = -30000Btu/hr from
                        case stugy house.
- Ecapheat: Equipment efficiency (Btu/hr) for heating
                      45000 (Btu/hr) from case study house

8760 hrs?

Yes

END

- COOLEIR=COOLING-EIR
   COOLING-EIR: EIR at design point for A/C from DOE-2
    user input

- FURNHIR=FURNACE-HIR
   FURNACE-HIR: Heat input for gas furnace  from DOE-2
    user input

DOE-2 SYSTEMS
Simulation

NO

FUNCTION = DUCT2DOE-2 FUNCTION

Modify COOLING-EIR with Delivery Effiiciency (DE)
       COOLEIR = COOLEIR/DE152C

Modify FURNACE-HIR with Delivery Effiiciency (DE)
       FURNHIR = FURNHIR/DE152H

Back to original COOLING-EIR
       COOLEIR = COOLEIR * DE152C

Back to FURNACE-HIR
       FURNHIR = FURNHIR * DE152H

Delivery Efficiency (DE) for cooling system. ASHRAE152, P.22
       DE152P1 = (as*60*Qe*DLIVIN) / Ecapcool
       DE152P2 = Ecapcool/(60*Qe*DLIVIN)
       DE152P3 = (1-ar)*(IA-IL)
       DE152P4 = ar*Cp*(Br-1)*DTR
       DE152P5 = Cp*(Bs-1)*(TC-TAMBS)
       DE152C = DE152P1*(DE152P2+DE152P3+DE152P4+DE152P5)

Delivery Efficiency (DE) for heating system. ASHRAE152, P.22
       DE152P6 = as*Bs
       DE152P7 = (as*Bs*(1-Br*ar)*DTR)/DTE
       DE152P8 = (as*(1-Bs)*DTS)/DTE
       DE152H = DE152P6-DE152P7-DE152P8

1 2 3 4

 

Figure 4.54   Diagram of DOE-2 FUNCTION command for ASHRAE 152-2004 duct loss 
model (b) 
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4.2.3.4 New Air Conditioning System Curves 

 It is important to accurately predict the performance of air conditioning systems over a 

range of full and part load operating conditions in hourly energy simulations. Henderson et al. 

(2000) presented new approaches to account for the part load performance of residential and 

light commercial air conditioning system in DOE-2 simulation program. They provided three 

different air conditioner curves of typical, good and poor conditions and Figure 4.55 shows 

curves for a residential cooling system from Henderson et al.’s and DOE-2 default curves. Table 

4.6 lists the corresponding Energy Input Ratio (EIR) coefficients for testing each curve using 

DOE-2 program. 
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Figure 4.55   AC system curves for DOE-2 program (Henderson et al. 2000) 
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Table 4.6   Coefficients for DOE-2 program 
Coefficients for DOE-2 input 

(EIR-FPLR = a + b*PLR + c*PLR2 + d*PLR3) 
 

a b c d 

Typical AC (Henderson et al.) 0.0101858 1.18131 -0.246748 0.0555745 

Good AC (Henderson et al.) 0.00988125 1.08033 -0.105267 0.0151403 

Poor AC (Henderson et al.) 0.0300924 1.20211 -0.311465 0.0798283 

OLD SDL-C17 
(Old DOE-2 default curve) 0.125 0.875   

NEW SDL-C17 
(New DOE-2 default curve) 0.00000273404 1.05259 -0.0552087 0.00262236 

   
 
 
 In order to implement new curves in DOE-2 program, the following DOE-2 commands 

(Figure 4.56) were used. 

 

Figure 4.56   DOE-2 code for new system curves 

   
 
 
 For this study, the five different air conditioning system curves were tested using the 

DOE-2 simulation model of the base-case house and compared with measured data from the 

case-study house. Then, the best curve, which was matched with the measured data, was selected. 

4.2.3.5 New Domestic Hot Water Curves 

 The efficiency specification of hot-water systems is the Energy Factor (EF), which 

accounts for the annual average burner efficiency and tank losses. The 2000/2001 IECC uses an 

Energy Factor (EF) to describe the efficiency of a domestic hot water system. Therefore, the EF 

NEWACPLR = CURVE-FIT                                       
           TYPE = LINEAR OR CUBIC 
           COEFFICIENTS = (a,b,c,d)  .. 
 
           COOL-EIR-FPLR = NEWACPLR  .. 
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will be used for the simulation of the domestic hot water heater in this effort. The EF is 

determined from the following equation: (Section 504.2.1 of the 2000/2001 IECC) 

Minimum Performance of Storage Type Gas Water Heating Equipment = 0.62 – 0.0019V  (4.18) 

where, V=Rated Storage Volume in Gallon, 40 gallon for base-case house. 

 NREL (2001) has developed an improved DOE-2 part-load performance curve (Figure 

4.57) for simulating domestic hot water equipment, which eliminates inefficiencies due to partial 

loads. Figure 4.58 shows the DOE-2 commands for simulating a domestic hot water system with 

the new NREL commands. 

 Before applying NREL method to the domestic hot water energy use calculations, 0.76 

of the gas water heater efficiency from DOE-2 was used with 3% of the domestic hot water tank 

loss (DOE-2 keyword: DHW-LOSS). In order to investigate the reasonable method for the 

domestic hot water, the four different results of 1) the measured data from the case-study house, 

2) the simple calculation using ASHRAE 90.2 (2001a), 3) the simulation results using NREL 

suggested method, and 4) the simulation results using previous method with DHW-LOSS were 

compared. 
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Figure 4.57   Domestic hot water efficiency curves for the DOE-2 program (NREL 2001) 

 
 
 

Table 4.7   DHW coefficients for DOE-2 program 

Coefficients for DOE-2 input 
 

a b c Equation 

DOE-2 default curve 0.021826 0.97763 0.000543 PLF=0.021826+0.97763xPLR+0.000543PLR2 

NEW NREL curve 0 1  PLF=PLR 
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Figure 4.58   DOE-2 code for domestic hot water 

  
 
 
 For the verification of this simulation, the domestic hot water load is calculated from the 

following equation in ASHRAE 90.2 (2001a) Section 8.9.2 and 8.9.2. Then, calculation results 

will be compared with simulation results using NREL suggested method. 

Domestic Hot Water Load (DHWL) = ((30*Units)+(10*Bedrooms))*8.28*(135-Tinlet)        (4.19) 

DHW Gas Use (DHWG) = (DHWL/Er +Heaters*(41,000/EF-41,000/Er))/100,000               (4.20) 

where, 

DHWL = domestic hot water load for the building (Btu/day), 

Units = number of living units in the proposed design, 

Bedrooms = total number of bedroom in the all the living units in the proposed design, 

Tinlet = inlet mean water temperature, which may be assumed to be equal to the average annual 

outdoor dry-bulb air temperature for the location or 40F, whichever is higher (College station: 

68ºF), 

DHWG = domestic hot water gas use (therms/day), 

Heaters = number of water heaters in the proposed design, 

EF = Energy Factor, 

Er = recovery efficiency (if E, is not known, use 0.76). 

 

NEWDHW =   CURVE-FIT                                       
           TYPE = LINEAR 
           COEFFICIENTS = (0,1)  .. 
 
     DHW-EIR = 1.85                  $=1/ENERGY FACTOR=1/0.54=1.85         
           DHW-EIR-FPLR = NEWDHW   
           DHW-LOSS = 0   .. 
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 From these equations, the outlet temperature (135°F) can be replaced by 120°F, since the 

2000/2001 IECC (402.1.3.7) provides the domestic hot water set point temperature as 120°F. 

Therefore, 

Domestic Hot Water Load (DHWL) = ((30*1)+(10*3))*8.28*(120-68) 

                                                         = 25833.6 Btu/day 

DHW Gas Use (DHWG) = (DHWL/Er +Heaters*(41,000/EF-41,000/Er))/100,000 

                                       = 25833.6/0.76 + 1*(41000/0.56-41000/0.76))/100000 

                                       = 0.53 therms/day * 365 

                                       = 194.39 therms/year  

 This value will be used for the comparison and verification of the domestic hot water 

calculation methods. 

4.2.3.6 Underground Surface Heat Transfer 

 Winkelmann (1998) reported corrections and bug fixes in calculating the heat transfer 

through underground surfaces in DOE-2.1e. Since the program calculates the thermal mass of 

the underground surfaces according to custom weighting factors (CWFs) by multiplying the U-

value with the surface area, and the temperature differences between zone temperature and 

ground temperature, the results of heat transfer are grossly overcalculated. Therefore, he 

suggested the use of U-EFFECTIVE and a procedure for defining the underground surface 

construction using a perimeter conduction factor. Table 4.8 shows the thermal properties and 

shape of a slab on grade construction at the base-case house. The case-study house has a 4” 

concrete slab and 30”x12” ground beams approximately 12ft center (Figure 4.59). 
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Table 4.8   Thermal properties of slab on grade at base-case house 

Conductivity R Thickness No Name 
Btu-ft/hr-ft2-°F ft2-hr-°F/Btu ft 

DOE code 

1 Concrete Slab 1.0417 0.32 0.3333 CC14 

2 Ground Beam 1.0417 2.40 2.5 CC14 

 
 
 

1

2144"

1 2 42ft

27.8ft4.2ft

Non Ground Beam 

Ground Beam Part

 

Figure 4.59   Draw of the slab 

 
 
 
 The following procedure presents how Winkelmann’s method was applied to the base-

case simulation input file. The value and procedure used for this procedure are from the 

“Underground Surface: How to get a Better Underground Surface Heat Transfer Calculation in 

DOE-2.1E” by Fred Winkelmann (1998).  

1. Choose a value of the perimeter conduction factor, F2 for the configuration that best matches 

the type of surface. 

• For the case-study house, a value of F2=0.77, was chosen. 

2. Using F2, calculating Reff, the effective resistance of the underground surface. 

• Reff = A / (F2*Pexp)                                                                                                      (4.21) 

• Reff-1 = (42*4.2) / (0.77 * (42+4.2*2)) = 4.55 
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• Reff-2 = (42*27.8) / (0.77 * (42+27.8*2)) = 15.54 

3. Set U-EFFECTIVE = 1 / Reff                                                                                                                                                       (4.22) 

• U1 = 1 / 4.55 = 0.22 

• U2 = 1 / 15.54 = 0.064 

4. Define a construction 

Reff = Rus + Rsoil + Rfic                                                                                                                                                                    (4.23) 

Rfic = Reff – Rus - Rsoil                                                                                                                                                                      (4.24) 

• Actual slab resistance: Rus1 = 2.4 + 0.77 = 3.17 

                                                  Rus2 = 0.32 + 0.77 = 1.09   

• Rfic1 = Reff1 – Rus1 - Rsoil = 4.55 – 3.17 – 1.0 = 0.38 

• Rfic2 = Reff2 – Rus2 - Rsoil = 15.54 – 1.09 – 1.0 = 13.45 

where, 

F2 = perimeter conduction for concrete slab on-grade from Table 1 (Winkelmann 1998), 

Reff = the effective resistance of the underground surface, 

U1 and U2 = U-effective, 

A = area of the surface (ft2), 

Pexp = length of the surface’s perimeter that is exposed to the outside air (ft), 

Rus = overall resistance of the underground wall or floor and inside film resistance, 

Rsoil = resistance of a 1-ft layer of soil, 

Rfic = resistance of a fictitious insulating layer. 

This study examined: 1) the use of raw U-value without U-effective method, 2) U-effective 

method with ground temperature from TRY weather file, and 3) U-effective method with the 

measured ground temperature from the case-study house for the underground surface. Figure 

4.60 shows the DOE-2 input of underground surface heat transfer. 
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Figure 4.60   DOE-2 input of underground surface heat transfer 

 
CONCRETE-SLAB        = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = 0.3333          $(FT) 
                     CONDUCTIVITY = 1.0417          $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 140             $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
GROUND-BEAM          = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = 2.40            $(FT) 
                     CONDUCTIVITY = 1.0417          $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 140             $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
MAT-FIC-1            = MATERIAL 
                     RESISTANCE = 0.38   ..         $THE Rfic VALUE 
 
MAT-FIC-2            = MATERIAL 
                     RESISTANCE = 13.45   ..        $THE Rfic VALUE 
 
SOIL-12IN            =  MATERIAL 
                     THICKNESS = 1.0 
                     CONDUCTIVITY = 1.0 
                     DENSITY = 115 
                     SPECIFIC-HEAT = 0.1   .. 
 
FL-1 = LAYERS  
       MATERIAL = (MAT-FIC-2, SOIL-12IN, CONCRETE-SLAB)  .. 
              $ Non Ground-beam Part of Slab 
              $ CONCRETE-SLAB = 4" Concrete, Heavy weight 
              $ The percentage of FL-1 = 87 %  
 
FL-2 = LAYERS  
       MATERIAL = (MAT-FIC-1, SOIL-12IN, GROUND-BEAM, CONCRETE-SLAB)  .. 
              $ Ground-beam Part of Slab 
              $ CONCRETE-SLAB = 4" Concrete, Heavy Weight 
              $ GROUND-BEAM = 26" Concrete, Heavy Weight 
              $ The percentage of FL-2 = 13 % 
 
FLOR-1    = CONSTRUCTION      
            LAYERS = FL-1   .. 
 
FLOR-2    = CONSTRUCTION      
            LAYERS = FL-2   .. 
 
FLOOR-R1 = UNDERGROUND-FLOOR                   $NON-GROUND BEAM PART   
           AREA = 176.4                       
           CONSTRUCTION = FLOR-1                
           TILT = 0                             
           U-EFFECTIVE = 0.22       ..                  
 
FLOOR-R2 = UNDERGROUND-FLOOR                   $GROUND BEAM PART 
           AREA = 1167.6                        
           CONSTRUCTION = FLOR-2                
           TILT = 0                             
           U-EFFECTIVE = 0.064       ..      
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4.2.3.7 Calibrated Simulation Model to the Case-Study House 

 A two-week period of summer and winter was selected for the calibration of the 

simulation model for this study. The calibration of the two week period for the summer was 

performed using monitored hourly data from August 1 to August 14, 2004, which shows 

continuous running of the air conditioner. The calibration of the two week period for the winter 

was performed from December 18 through December 31, 2004, which shows a regular use of 

natural gas. The calibration of the model was performed using the attic temperature, indoor 

temperature, building electricity use, and gas energy use for both summer and winter two-week 

periods. The statistic methods include the hourly coefficient of root mean square error (RMSE) 

and the mean bias error (MBE), which were used for comparison between simulated results and 

measured results.  

4.2.3.8 Statistical Evaluation of the Calibration Results 

 After the calibration process, the Mean Bias Error (MBE) and the coefficient of variation 

of the root Mean Square Error (CV (RMSE)) were calculated. The Mean Bias Error, MBE (%) 

(Kreider and Haberl 1994a, b; Haberl and Thamilseran 1996) determines the non-dimensional 

bias measure (the sum of errors) between the simulated data and the measured data.  

( )[ ] 100/)/(,, ×−−= ∑ ∑ dataidataipred ypnyyMBE                                    (4.25) 

 The coefficients of variation of the root mean squared error, CV (RMSE) (%) (Draper 

and Smith 1981) is essentially the root mean squared error divided by the measured mean of all 

the data, which is a convenient way of reporting a non-dimensional result. CV (RMSE) allows 

one to determine how well a model fits the data; the lower the CV (RMSE), the better the 

calibration. 

 ( )[ ] 100/)/()(%)(
2/12

,, ×−−= ∑∑ dataidataipred ypnyyRMSECV                    (4.26) 
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where, 

 ypred,i      is a predicted dependent variable value for the same set of independent varialbles, 

 ydata,i       is a data value of the dependent variable corresponding to a particular set of the   

                         independent varialbles, 

 datay       is the mean value of the dependent variable of the data set, 

               n        is the number of data points in the data set, 

               p        is the total number of regression parameters in the model (arbitrarily assigned as 

  1 for all models). 

4.3 The International Energy Conservation Code (IECC) 

 The building characteristics required in the 2000/2001 IECC (ICC 1999, 2001) were 

reviewed to develop a initial input file for a single-family residential building. Chapter 3 of the 

2000/2001 IECC presents the climate zones for the United States, and Chapter 5 contains 

prescriptive tables to determine the building envelope requirements, and the requirement of the 

building mechanical systems and other equipment. 

4.3.1 Climate Zone 

 In Chapter 3 of the 2000/2001 IECC, climate zones are classified by Heating Degree 

Days (HDD) and building envelope requirements are specified based on climate zones. Table 4.9 

explains the classification of 41 non-attainment and affected counties in Texas by climate zones. 
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Table 4.9   Texas counties by climate zones 

HDD Climate Zone Counties 

2500 – 2999 6 Collin , Denton, El Paso, Gregg, Harrison, Hunt, Kaufman, Parker, 
Rockwall, Upshur 

2000 – 2499 5 Dallas, Ellis, Hays, Henderson, Hood, Johnson, Rusk, Smith, Tarrant, Travis, 
Williamson 

1500 – 1999 4 Bastrop, Bexar, Caldwell, Chambers, Comal, Fort Bend, Guadalupe, Hardin, 
Harris, Jefferson, Liberty, Montgomery, Orange, Waller, Wilson 

1000 – 1499 3 Brazoria, Galveston, Nueces, San Patricio, Victoria 

 
 
 

4.3.2 Prescriptive Building Envelope Requirement 

 Chapter 5 of the 2000/2001 IECC provides prescriptive tables to determine the building 

envelope requirements. In order to decide the envelope requirement, the type of house (i.e., Type 

A-1 is single-family house and Type A-2 is multi-family house) and the window-to-wall ratio 

should be identified. The proper insulation level of the ceiling, exterior, floor, basement, slab 

perimeter, crawl space and glazing properties are determined according to the Heating Degree 

Days (HDD) based on the type of house, window-to-wall ratio and other features. This chapter 

also provides alternative table for high-mass wall construction whose heating capacity is greater 

than or equal to 6 Btu / ft2-°F. 

4.3.3 Building Mechanical Systems and Equipment 

 Chapter 5 of the 2000/2001 IECC also describes the requirements of the building 

mechanical systems and other equipment. In this chapter, the minimum efficiency of air 

conditioning system, heat pump, furnace, boiler and domestic hot water system is defined. The 

minimum duct insulation is also specified in this chapter. 
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4.3.4 Procedure to Determine Building Envelope Requirements 

 The procedure to determine the building envelope requirements is shown on Figure 4.61. 

In order to determine the building envelope requirements, the type (i.e., single-family or multi-

family) and the location of the building should be decided. Heating Degree Days (HDD) is 

selected based on the location from Chapter 3 of the 2000/2001 IECC. Then, building envelope 

requirements are determined according to the window-to-wall ratio of the building from Chapter 

5. Minimum equipment performances are also determined according to the type and size of 

equipment. 

4.3.5 Simulation of the IECC-Compliant House with DOE-2 program  

 The DOE-2.1e (Version 119) program was selected as the simulation program to be used 

for this study. The characteristics of this simulation program were already explained in section 

4.2.3.2. For the IECC simulations, specially prepared programs such as the Input Macro Method, 

Batch DOE Input (BDI), and GAWK (Aho et al. 1988) are used. These procedures are explained 

in the next section. Appendix C presented the examples of working with BDI and GAWK 

programs. 

 The DOE-2 simulation model for this study was adopted from the input file 

(SNGFAM2ST.INP version 1.20), developed by the Energy Systems Laboratory (ESL). This 

input file was developed and used to evaluate amendments of the building energy codes for 

single-family house, and to quantify the resulting energy savings and emission reductions for the 

Senate Bill 5 (SB5 2004). This DOE-2 input file uses DOE-2 PARAMETERS instead of fixed 

values for various building characteristics that include the building geometry, location, building 

envelope components, HVAC and DHW system, lighting, equipment, and occupancy. 
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Select Building Type
(Type A-1: Single family, Type A-2: Multi family)

Select County

Select Heating Degree Days (HDD) According to
County

The 2000 IECC /
2001 Supplement Chapter 3

Select Window-to-Wall Ratio.
(8%, 12%, 15%, 18%, 20%, 25% Max)

Select Prescriptive Building Envelope Requirements

Select Minimum Equipment Performance

Decide on Required Building Envelope and Equipment
Characteristics

Glazing
U-factor

Ceiling
R-value

Exterior
wall

R-value

Slab
Perimeter
R-value

Basement
Wall

R-value

Crawl
Space Wall

R-value

Air
Conditioner

(SEER)

Furnace
(AFUE)

Boiler
(AFUE)

Heat Pump
(HSPF)

Duct
Insulation
(R-value)

The 2000 IECC /
2001 Supplement Chapter 3

The 2000 IECC /
2001 Supplement Chapter 5

 

Figure 4.61   Procedure to determine the building envelope and equipment characteristics 
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 Figures 4.62 to 4.64 show the parameters used to generate a single-family simulation 

model. The parameters are divided into two major categories: LOADS and SYSTEMS. The 

LOADS are then further divided into building, construction, space and shading PARAMETERS 

(Ahmad et al. 2005).  

 In the ESL’s input file, the building parameters are used to define the location, 

orientation, basic dimensions and layout of the building. The current ESL simulation model has 

the provision of either one or two stories with a crawlspace or a slab on grade. There is also 

switch between quick (i.e., pre-calculated ASHRAE weighting factors with the floor-weight 

equal to 11.5 lb/ft2, as required by Chapter 4 of the 2000/2001 IECC, section 402.1.3.3) and 

thermal mass (i.e., DOE-2’s custom weighting factors) mode. The construction PARAMETERS 

are divided into two categories: construction I and construction II. The construction I 

PARAMETERS include the material properties and U-values of the different components 

usually for quick construction mode and the glazing properties and the window-to-wall area ratio. 

The user has the option of changing the window areas for the different orientations. The 

construction II PARAMETERS include the material properties of the different components for 

the thermal mass construction mode. The space PARAMETERS are currently fixed at 2 

occupants and 3 bedrooms per house. The number of bedrooms is used to calculate the daily 

domestic hot water consumption, which in turn is used to size the domestic hot water heater 

according to the section 420.1.3.7 of the 2000/2001 IECC, including the 2001 Supplement.  

 In this study, the shade PARAMETERS were fixed to no-shading. For the simulation of 

the impact of different tree shading types (live oak, deciduous and evergreen), two new 

parameters were added to the existing PARAMETERS of SNGFAM2ST.INP version 1.20: 1) 

tree shade (no shading, east side, west side and both sides, s05) and 2) shading types (live oak, 

deciduous and evergreen, s06). 
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 The system PARAMETERS include the type of systems, the system capacity and the 

efficiencies of the system selected. The user can choose from three kinds of systems; 1) gas 

heating, gas DHW and electric cooling, 2) electric heating, electric DHW and electric cooling, 

and 3) electric heat pump heating, electric DHW and electric cooling.  

 Currently, the ESL’s heating and cooling system is auto-sized by DOE-2 according to 

the heating/cooling loads entered in DOE-2’s LOADS sub-program. The user can define the 

system efficiencies according to the system type that is selected. For the additional analysis for 

the duct system, new PARAMETERS were added to existing PARAMETERS since the current 

version of the ESL’s input file did not include a duct model, which was already explained in 

section 4.2.3.3. The new parameters for the duct analysis in this study are: 1) supply air (CFM, 

sy12), 2) supply leakage fraction (sy13), 3) return leakage fraction (sy14), 4) supply duct area 

(ft2, sy15), 5) return duct area (ft2, sy16), 6) R-value for supply duct (sy17), 7) R-value for return 

duct (sy18), 8) cooling system capacity (Btu/hr, sy19), 9) heating system capacity (Btu/hr, sy20), 

and 10) duct location (attic or room, sy21). The highlighted rows in Figure 4.64 show the new 

PARAMETERS for tree shades and duct system analyses. 

 Figure 4.65 presents three DrawBDL views to show the development procedures of the 

single-family residential house for simulations. Figure 4.65a is the initial input model which is a 

1-story residence with flat roof. This input file includes only the quick mode of construction and 

does not contain an attic or duct model. Figure 4.65b has the option for one and two-story 

residence, and crawl space or slab-on-grade with flat roof. This input file also does not consider 

the thermal mass construction mode, attic space and duct model. Figure 4.65c was developed for 

this simulation and has all the PARAMETERS of Figures 4.62 to 4.64. This input file can 

analyze the thermal mass construction mode, pitched roof with attic space, tree shading, and duct 

model. 



 

 

100

PARAMETER NO DESCRIPTION DEFAULT STATUS COMMENTS

b01 Quick or thermal mode (Q or T) T User defined Q simulates the building as massless, T simulates thermal mass

b02 Location HAR User defined 41 Counties, ( ): DOE WEATHER FILE

b03 Azimuth of building (degree) 0 User defined Orientation of the building

b04 Width of building (ft) 49.87 User defined From NAHB survey (2002)
b05 Depth of building (ft) 49.87 User defined From NAHB survey (2002)
b06 Height of wall (ft) 9 User defined From NAHB survey (2002)
b07 Door height (ft) 6.67 Fixed From survey of manufactured doors
b08 Door width (ft) 3 Fixed From survey of manufactured doors
b09 Run year 2001 Fixed

b10 Option of second floor (1 or 2) 1 User defined Control activation/deactivation of one and two story portions of BDL input

b11 Activation/ Deactivation of crawl (C or S) S User defined Control activation/deactivation of crawl space and slab on grade floor types for the 
residence

b12 Height of crawl space wall  above ground(ft) 1.5 User defined

b13
Height of crawl  space walll under 
ground(ft) 1 User defined

b14 Pitch of roof 23 User defined Measured from the case study house
c01 Roof outside emissivity 0.90 User defined
c02 Roof absorptance 0.50 User defined

c03 Roof roughness 1 Fixed
This is used to calculate the outside film coefficienct for heat transfer calculations, DOE-
2 allows values from 1 to 6 increasing in smoothness

c04 Roof R-value (Hr-sq.ft-F/Btu) 26 User defined
c05 Wall absorptance 0.55 User defined c05 and c07 are used to define "Wall Color"

c06 Wall roughness 2 User defined
This is used to calculate the outside film coefficienct for heat transfer calculations, DOE-
2 allows values from 1 to 6 increasing in smoothness

c07 Wall outside emissivity 0.90 User defined c05 and c07 are used to define "Wall Color"
c08 Wall R-value (Hr-sq.ft-F/Btu) 13 User defined
c09 Ground reflectance 0.24 Fixwd This defines the fraction of sunlight reflected from the ground

c10 Window option (S or D) S (Same) User defined S: Same widow ratio for all side, D: Different winow ratio for each side. Activate from 
c21 to c25

c11 U-Factor of glazing (Btu/hr-sq.ft-F) 0.75 User defined
c12 Solar Heat Gain Coefficient(SHGC) 0.40 User defined
c13 Number of panes of glazing 2 Fixed
c14 Frame absorptance of glazing 0.7 Fixed

c15 Frame type - A,B,C,D,E
A (Aluminum without 

thermal break) User defined 5 kinds of window frames

c16

c17 Floor weight (lb/sq-ft) 11.50 Fixed Activated if b01 is Q (Quick mode), from IECC2000 p.64 (If T:themal mass mode), 
Floor weight = 0), DOE Default 30=light; 70 = medium; 130 = heavy

c18

c19 R-value of concrete slab (hr-sq.ft-F/Btu) 0.44 Fixed
R-value of concrete slab, Now 4" heavy weight concrete(CC03 in DOE Library). For 
Winkelmann calculation

c20 Air film resistance (hr-sq.ft-F/Btu) 0.77 Fixed
The average of the air film resistance, Current heat flow up from article by Winkelmann. 
For Winkelmann calculation

c21
Percentage of window area (%) for whole 
area or front side wall 15.00 User defined

If c10 is S, then this percentage is applied to all window area. Or If c21 is D, then this 
percentage is applied only to front side wall.

c22 Percentage of window area (%) for back side 
wall 15.00 User defined Only when c10 is D, this percentage is applied to back side wall.

c23 Percentage of window area (%) for right side 
wall 15.00 User defined Only when c10 is D, this percentage is applied to right side wall.

c24
Percentage of window area (%) for left side 
wall 15.00 User defined Only when c10 is D, this percentage is applied to left side wall.

c25
Percentage of window area (%) for 2nd floor 
left side wall 15.00 User defined Only when c10 is D, this percentage is applied to 2nd floor left side wall.

c26 Floor R-Value (hr-sq.ft-F/Btu) 11 User defined Default from IECC2000, page 81 (Window 15%, R-11). Crawl space only

c27 Crawl space wall R-value (hr-sq.ft-F/Btu) F (R-5) User defined Option (A, B, C, D, E, F, G, H, I, J, K, L, M, N). Default from IECC2000, page 81 
(Window 15%, R-5). Crawl space only

c28 Slab perimeter R-value and depth A (R-0) User defined
Option (A, B, C, D, E, F, G, H, I, J, K). Default from IECC2000, page 81 (Window 15%, 
R-0). Slab only

cc01 Wall type selection A User defined
A: Wood frame
B: Metal
C: Masonary
a: 2 x4" stud dimensions
b: 2 x 6" stud dimensions

cc03 Wall stud position WSPA User defined Fixed at WSPA: Postion of studs at 16" c/c

Corresponding insulation values in the DOE-2 material library:  
CIA: R-11
CIB: R-13
CIC: R-15
CID: R-19
CIE: R-20

cc02 Wall stud type

cc04 Wall cavity insulation

c01 and c02 are used to define "Roof Color"

VOID

BUILDING

CONSTRUCTION I

CONSTRUCTION II

VOID

User defined

User definedCIA

a

 

Figure 4.62   Single-Family input parameters (a) 
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PARAMETER NO DESCRIPTION DEFAULT STATUS COMMENTS

Corresponding Exterior insulation/ sheathing values from DOE-2 material library:

EIA: R-0
EIB: R-5
EIC: R-7.5
EID: R-10
EIE: Polyisocyanurate R 3.6
Corresponding finishing values from DOE-2 material library: 
EFA: Stucco R 0.2
EFB: Vinyl Siding R 0.045
EFC: Brick Siding R 0.33
EFD: Hardi-Plank R 0.24
EFE: Wood-Siding R 0.494

cc07
cc08
cc09

WOODFRAME: Custom made frame for both ceiling and roof
TRUSS: Pre-designed/Engineered truss
a: 2 x 6" stud dimensions
b: 2 x 8" stud dimensions
a: 2 x 6" stud dimensions
b: 2 x 8" stud dimensions
a: 2 x 4" stud dimensions
b: 2 x 6" stud dimensions

Roof insulation: No
Ceiling insulation: yes

Roof insulation: No
Ceiling insulation: No

Roof insulation: yes
Ceiling insulation: no

Roof insulation: yes
Ceiling insulation: yes
Corresponding exterior finish values from DOE-2 material library: 
CCIA: R-19
CCIB: R-26

CCIC: R-28

CCID: R-30
cc17 Stud position for roof and ceiling RSPA User defined Fixed at RSPA: Postion of studs at 16" c/c
cc18 Choice of exterior insulation for roof Place holder
cc19 Choice of exterior finish for roof Asphalt shingles User defined Fixed value obtained from DOE-2 library: Asphalt shingles

cc20 Ceiling finish Fixed at GP01 Fixed Fixed value obtained from DOE-2 library: GP01 (1/2 " thick Gypsum or Plaster Board)

a: 2 x 10" stud dimensions
b: 2 x 12" stud dimensions
TRUSS: Engineered Truss
IFSPA: Postion of studs at 16" o.c.
IFSPB: Position of studs at 24" o.c.
IFSPC: Position of studs at 16" o.c.
Corresponding floor finish values from DOE-2 material library. Activated when second 
story present: 
FIFA: CP01 (Carpet finish) R 2.08
FIFB: ST01 (Stone finish) R .08
FIFC: Hardwood R 0.68

cc24 Floor slab structure Fixed at 4" concrete Fixed Fixed value obtained from DOE-2 library: CC14
a: 2 x 10" stud dimensions
b: 2 x 12" stud dimensions
c: 3"x2" chord size wirh 11 7/8" truss
d: 3"x4" chord size wirh 16" truss
FSPA: Postion of studs at 16"
FSPB: Position of studs at 24"
Vented
Unvented
Corresponding insulation values from DOE-2 material library:
FCIA: R-11
FCIB: R-13
FCIC: R-15
FCID: R-19
FCIE: R-4
FCIF: R-5
FCIG: R-6
FCIH: R-10
FCII: R-12
Corresponding floor finish values from DOE-2 material library: 
FFA: CP01 (Carpet finish)  R-2.08
FFB: ST01 (Stone finish) R-0.08
FFC: Hard wood R-0.68
Corresponding floor finish values from DOE-2 material library: 
CSWA: CB31 (Concrete block, 8" medium weight, hollow) R 1.72
CSWB: CB32 (Concrete block, 8" medium weight, concrete filled) R 1.34
CSWC: CB33 (Concrete block, 8" medium weight perelite filled) R 5.84

cc14

User defined

CONSTRUCTION II

User defined

User defined

Choice of cavity insulation CCIA

User defined

User defined

User defined

User defined

User defined

User defined

Crawl space floor finish FFA

Crawlspace wall finish CSWA

Crawl space insulation FCIAcc28

cc29

cc30

Vented

Void

FIFA

Interior floor stud position IFSPA

a

yes

User defined

User defined

User definedcc23 Interior floor finish

cc27 Type of crawlspace

cc26 Crawl space stud position FSPA

cc25 Choice of studs for floor over crawl space a

cc21 Interior floor structure

cc22

Void

cc16

User defined

User defined

User defined

User defined

User defined

a

cc13 Roof truss size a

cc12 Ceiling stud selection

cc15

cc11 Roof stud selection a

cc10 Roof type selection

Placement of cavity insulation in ceiling

Exterior finish EFA

EIB

WOODFRAME

Placement of cavity insulation in roof no

Void

User defined

cc05 Wall exterior Insulation

cc06

 

Figure 4.63   Single-Family input parameters (b) 
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PARAMETER NO DESCRIPTION DEFAULT STATUS COMMENTS
sp01 Number of people 2

sp02 Number of bedroom 3 Default calculated from IECC 2001(402.1.3.7)  HOT WATER CONSUMPTION/MIN = 
((30*a)+(10*b))/1440, a=living unit, b=# of bedroom

s01 Front eave shade (ft) 0 User defined Front eave shade (ft)
s02 Back eave shade (ft) 0 User defined Back eave shade (ft)
s03 Left eave shade (ft) 0 User defined Left eave shade (ft)
s04 Right eave shade (ft) 0 User defined Right eave shade (ft)

NO: No shading
E: East side of the house
W: West of the house
EW: East and west side of house
Activated only when s05 has shade
Liveoak
Deciduous
Evergreen

sy01 Mode  of system: 1, 2, 3 1 User defined Allows user to select all-electric, gas/electric or heat pump for HVAC

sy02 Cooling capacity of cooling system (Btu/hr) 0 User defined 0: Let DOE2 calculate

sy03 Heating capacity of heating system (Btu/hr) 0 User defined 0: Let DOE2 calculate

sy04 Seasonal Energy Efficiency Ratio (SEER) 10 User defined C-EIR: 0.1-1 (3.41/SEER = C-EIR)

sy05 Annual Fuel Utilization Efficiency (AFUE) 0.78 User defined F-HIR: 1-1.75 (1/AFUE = F-HIR)

sy06 Heating Seasonal Performance Factor 
(HSPF) 6.8 User defined H-EIR: 0.1-2 (3.41/HSPF = H-EIR) (ResCheck HSPF: 6.6 - 12)

sy07 The number of pilot lights of DHW 1 User defined Each pilot light is 500 BTU/HR
sy08 The number of pilot lights of Furnace 0 User defined Each pilot light is 500 BTU/HR
sy09 The number of pilot lights of others 0 User defined Each pilot light is 500 BTU/HR

sy10 Switch for Energy Factor for Domestic Hot 
Water consumption A User defined If "A", then macro in DOE-2 calculates the Energy Factor, if S then the EF is calculated 

using values input by the user in sys11 parameter. 

sy11 Energy Factor (%) for Domestic Hot Water 0.55 User defined

MIN MAX values available only when sy10 = S. If fuel is Electric, EF(Energy Factor) is 
calculated by 0.93-0.00132*DHW-SIZE(Gallon), or if fuel is Gas, EF(Energy Factor) is 
calculated by 0.62-0.0019*DHW-SIZE(Gallon). DHW-SIZE in Gallon = (30*a) + (10*b) 
(a: Number of living units, b: Number of bedrooms). IECC2000(p.65) 402.1.3.7. The 
criteria listed in section 504.2.1 decribing the efficiency is overruled as the EF is 
calculated per DHW heater which is installed per unit.

sy12 Supply air (CFM) 2487 User defined 1CFM/ft2

sy13 Supply leakage fraction 0 User defined
sy14 Return leakage fraction 0 User defined
sy15 Supply duct area (ft2) 746.17 User defined From ASHRAE 152-2004, 30% of Building Area
sy16 Return duct area(ft2) 124.36 User defined From ASHRAE 152-2004, 5% of Building Area
sy17 R-value for supply duct 8 User defined From IECC 2000/2001
sy18 R-value for return duct 4 User defined From IECC 2000/2002
sy19 Cooling system capacity (Btu/hr) User defined From DOE-2 calculation (SV-A report)
sy20 Heating system capacity  (Btu/hr) User defined From DOE-2 calculation (SV-A report)
sy21 Duct location Attic User defined Attic or Room

SYSTEM

SPACE

SHADE

s06 User definedShading type Liveoak

s05 User definedNOTree shade

 

Figure 4.64   Single-Family input parameters (c) 

  
 

            

 (a)                                                      (b)                                                      (c) 

Figure 4.65   DrawBDL views of the development procedure of the code compliant house 
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4.3.5.1 DOE-2 Input Macro Method  

 According to LBNL (1993), the Input Macro feature was added to the Building 

Description Language (BDL) in DOE-2.1d to increase the flexibility of BDL. The Input Macro 

allows DOE-2 users to 1) incorporate external files containing pieces of BDL into the main BDL 

input stream, 2) selectively accept or skip portions of the input, 3) define a block of input with 

parameters and later reference this block and 4) perform arithmetic and logical HVAC and DHW 

systems. The input file for this research (SNGFAM2ST.INP) calculates PARAMETERS using 

data from the external INCLUDE file and assigns values to LOADS and SYSTEMS part for 

DOE-2 simulation. 

4.3.5.2 DOE-2 Input Function Method 

 The Input Function feature allows DOE-2 users to modify DOE-2 LOADS or 

SYSTEMS calculations without recompiling the DOE-2 program. According to LBNL (1993), 

there are three types of applications for Input Functions: 1) calculation of variables that influence 

the simulation results, thus allowing users to modify or replace the algorithms used by the 

program without recompiling the program, 2) calculation of variables for reporting or debugging 

purposes, 3) reading in data files for use in the simulation. Input Functions are written as 

FORTRAN routines that are included in regular DOE-2 input file. 

 For this research, ASHRAE 152-2004 (Method of Test for Determining the Design and 

Seasonal Efficiencies of Residential Thermal Distribution Systems)(ASHRAE 2004) was 

applied to the SYSTEMS part of the DOE-2 simulation using the Input Function method for 

DOE-2.1e (Figure 4.66) to incorporate a duct model. This function calculates duct loss or gain in 

a conditioned space or unconditioned space because the current DOE-2-1e doesn’t consider a 

variable duct loss or gain. The detailed procedure was explained on section 4.2.3.3. 
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DOE-2 LOADS Simulation

DOE-2 SYSTEMS Simulation

8760 hrs?

Yes

DOE-2 PLANT Simulation

DOE-2 ECONOMIC Simulation

END

No

DOE-2 FUNCTION
Command

ASHRAE 152-2004

 

Figure 4.66   DOE-2 input function method for ASHRAE 152-2004 
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4.3.5.3 Batch DOE-2 Input (BDI) 

 The BDI program (version 1.08) was developed by ESL to perform the DOE-2 

simulation in the batch mode. In order to use the BDI, a specially prepared spreadsheet 

(SNGFAM2ST.XLS) is utilized to assign values to all the PARAMETERS that are specified in 

the input file. In this spreadsheet, each row has information for the PARAMETERS for the 

DOE-2 INCLUDE file which is used with the input file (SNGFAM2ST.INP) for different runs. 

Using this spreadsheet, the BDI makes the INCLUDE files that correspond to the rows of 

spreadsheet, runs the DOE-2 simulation using SNGFAM2ST.INP in the batch mode, generates 

and saves output files. Figure 4.67 explains the steps of the BDI. Appendix C shows the 

examples of working with BDI and GAWK programs. 

4.3.6 The Development of IECC-Compliant Simulation Model 

 Figure 4.68 represents the initial views of the building model constructed in the DOE-

2.1e input file using the DrawBDL program. The initial input file has equal percentage of 

windows on all orientations as section 402.1.3.1.1 of the 2000/2001 IECC requires. The default 

model is a single-storied structure without garage, and the size is 50 ft by 50 ft (2500ft2) with 

15% of window-to-wall ratio. The default value for envelope components, space conditions, and 

system efficiency are based on Houston (HDD 1500 – 1999) for initial test. In addition, the input 

file provides options to incorporate a second story, crawl space, attic space, flexible house size, 

and different window-to-wall area ratios on each orientation. 
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Generate .INC Files Using
SNGFAM2ST.XLS

Run Batch DOE-2 Input (BDI)

Spreadsheet
SNGFAM2ST.XLS

End of the Row of
Spreadsheet?

Run DOE-2 Simulation

Yes

No

End of the .INC Files?

Yes

No

Batch DOE-2 Input
(BDI)

Extract Data from
Output Files

Output Fliles
n_SNGFAM.OUT

OUTPUT.TXT

AWK Setup File
Run AWK

Extract Required Data from BEPU and
Hourly Report From n_SNGFAM.OUT

TRY Weather File
According to

County

SNGFAM2ST.INP

County Name

Extract County Name

Select Weather File

.INC Fliles
n_SNGFAM.INC

DOE-2 Simulation with
Input Macro

 

Figure 4.67   Procedure for using the BDI 



 

 

107

                            

Figure 4.68   DrawBDL views of the code compliant initial input model 

 
 
 

4.3.6.1 Shape 

 In order to analyze different types of residential houses according to the IECC model, 

various shapes were developed including: detached garage, second story, attic space and crawl 

space. Different shapes and sizes can be achieved automatically using DOE-2 MACRO method. 

Figures 4.69 and 4.70 show the DrawBDL views of different shapes of input file. 

 
 
 

                     

Figure 4.69   DrawBDL views of the code compliant two-story house with detached garage 
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Figure 4.70   DrawBDL views of the code compliant two-story house with detached garage 
and attic space 

 
 
 

4.3.6.2 Building Location Specifications 

 For this analysis, nine TMY2 weather files were used to represent the 41 non-attainment 

and affected counties. These are: 1) Austin, 2) Corpus Christi, 3) El Paso, 4) Fort Worth, 5) 

Houston, 6) Lufkin, 7) Port Arthur, 8) San Antonio and 9) Victoria. These 9 weather files 

represent 41 counties based on the location of county. Figure 4.71 and Table 4.10 show the 

climate zone of each county and the corresponding location of the weather data source for each 

county, including the Typical Meteorological Year (TMY2) stations, the Weather Year for 

Energy Calculations (WYEC2) weather stations, and the National Weather Service weather 

stations (NWS). Counties in the bold dash line on Figure 4.71 are 41 non-attainment and affected 

counties. 
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Figure 4.71   Map of climate zone (Haberl et al. 2004) 
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Table 4.10   TMY2 weather files according to counties 

No. County Assigned TMY2 Weather File 

1 Bastrop 
2 Caldwell 
3 Hays 
4 Travis 
5 Williamson 

Austin 

6 Nueces  
7 San Patricio 

Corpus Christi 

8 El Paso El  Paso 
9 Ellis 

10 Johnson 
11 Kaufman 
12 Parker 
13 Rockwall 
14 Collin 
15 Dallas 
16 Denton 
17 Tarrant 
18 Hood 
19 Henderson 
20 Hunt 

Fort Worth 

21 Brazoria 
22 Fort Bend 
23 Galveston 
24 Harris 
25 Montgomery 
26 Waller 

Houston 

27 Gregg 
28 Harrison 
29 Rusk 
30 Smith 
31 Upshur 

Lufkin 

32 Chambers 
33 Hardin 
34 Jefferson 
35 Liberty 
36 Orange 

Port Arthur 

37 Bexar 
38 Comal 
39 Guadalupe  
40 Wilson 

San Antonio 

41 Victoria Victoria 
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4.3.6.3 Envelope Components Options 

 Table 4.11 shows excerpts from the prescriptive building envelope requirement table in 

the Chapter 5 of the 2000/2001 IECC (ICC 1999, 2001). The specifications provided for the 

envelope components correspond to a range of Heating Degree Days (HDD) identified by the 

2000/2001 IECC for Texas. Climate zone 3 to 6 include the 41 non-attainment and affected 

counties. The specifications for the envelope requirements vary based on the climate zone. 

 
 
 

Table 4.11   Table of prescriptive building envelope requirements of climate zones 3, 4, 5 and 6 
as specified by the 2000/2001 IECC 

Glazing and Insulation Foundation Type Climate 
Zone HDD Path 

Area % U-Factor SHGC Ceiling Wall Floor Basement Slab 
Perimeter 

Crawl 
Space 

1 15 .60 .40 R-30 R-13 R-19 R-6 R-4, 2ft R-7 

2 20 .50 .40 R-38 R-13 R-19 R-6 R-0 R-7 6 
2500 

– 
2999 3 25 .46 .40 R-38 R-16 R-19 R-6 R-0 R-7 

1 15 .65 .40 R-30 R-13 R-11 R-5 R-0 R-6 

2 20 .52 .40 R-38 R-13 R-11 R-5 R-0 R-6 5 
2000 

– 
2499 3 25 .50 .40 R-38 R-13 R-19 R-8 R-0 R-10 

1 15 .75 .40 R-26 R-13 R-11 R-5 R-0 R-5 

2 20 .60 .40 R-30 R-13 R-11 R-5 R-0 R-5 4 
1500 

– 
1999 3 25 .52 .40 R-30 R-13 R-13 R-6 R-0 R-6 

1 15 .75 .40 R-19 R-11 R-11 R-0 R-0 R-5 

2 20 .70 .40 R-30 R-13 R-11 R-0 R-0 R-5 3 
1000  

-  
1499 3 25 .55 .40 R-30 R-13 R-11 R-0 R-0 R-5 

 
 
 

4.3.6.4 Space Conditions 

 Table 4.12 shows the space conditions for the IECC-compliant, DOE-2 simulation input 

file. Most values were taken from the 2000/2001 IECC specifications. For sensible and latent 

heat gain from the occupants, Chapter 26 of the ASHRAE Handbook of Fundamentals 

(ASHRAE 2001b) was used for the nominal heat gain values from occupants. For weather factor 
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to calculate air-change, ASHRAE Standard 136 (ASHRAE 1993) presents different weather 

factor according to different location. 

 
 
 

Table 4.12   Space conditions on DOE-2 input file 

Space Conditions on DOE-2 Input 
File Default Value Description 

TEMPERATURE 73ºF 

Average value of winter and summer set points which 
are taken from table 402.1.3.5 of IECC 2001. 
Winter set point = 68 
Summer set point = 78 

NUMBER-OF-PEOPLE 2 Assume that there are 2 people because of no 
specification on the IECC 

PEOPLE-HG-LAT 200 Btu/hr ASHRAE handbook of fundamentals 2001 Chapter 29 
PEOPLE-HG-SENS 200 Btu/hr ASHRAE handbook of fundamentals 2001 Chapter 29 

LIGHTING-TYPE INCAND Assume that house uses incandescent light because of 
no specification on the 2000/2001 IECC 

LIGHTING-KW 0.44 or 0.22 kW 

Fraction of 879 watts constant internal heat gain of a 
type A1 house according to the 2000/2001 IECC, 
section 402.1.3.6. 
1-stoty: 0.44kW 
2-story: 0.22kW 

EQUIPMENT-KW 0.44 or 0.22 kW 

Fraction of 879 watts constant internal heat gain of a 
type A1 house according to the 2000/2001 IECC, 
section 402.1.3.6. 
1-stoty: 0.44kW 
2-story: 0.22kW 

INF-METHOD AIR-CHANGE The 2000/2001 IECC, section 402.1.3.3 

AIR-CHANGES/HR 0.46 (Houston) 

ACH = Normalized Leakage x Weather Factor.               
Where Normalized Leakage is 0.57 from section 
402.1.3.3 on IECC 2000 and  
Weather Factor is determined in accordance with the 
weather factors given by ASHRAE standard 136, as 
taken from the weather station nearest the building 
site. 
Abilene: 1.05, Amarillo: 1.14, Austin: 0.8 
Brownsville: 0.9, Corpus Christi: 0.86 
El Paso: 0.76 , Fort Worth: 0.89 
Houston: 0.81, Kingsville: 0.72 
Laredo: 0.91, Lubbock: 1.00 
Lufkin: 0.64, Midland: 0.96 
Port Arthur: 0.79, San Angelo: 0.84 
San Antonio: 0.83, Sherman: 0.80 
Waco: 0.92, Wichita Falls: 0.99 

FLOOR-WEIGHT 11.5 lb/ft2 2000/2001 IECC, section 402.1.3.3 



 

 

113

4.3.6.5 HVAC and DHW Systems 

 In order to simulate the HVAC system in the IECC-compliant input file, the RESYS 

option was used. Table 4.13 presents the specifications used for the system simulation, and 

Figure 4.72 shows the procedure to decide HVAC and DHW system characteristics. Most values 

for the system simulation were taken from the 2000/2001 IECC. 

 The method to simulate DHW using the Energy Factor (EF) on DOE-2.1e is based on 

NREL REPORT (NREL/TP-550-27754) "Building America House Performance Analysis 

Procedures" (NREL 2001). For the DHW-EIR, the EF (Energy Factor) was calculated from the 

2000/2001 IECC, Table 504.2. If electricity is used, the EF (Energy Factor) was calculated as 

0.93-0.00132*DHW-SIZE (Gallon), and if gas is used, the EF (Energy Factor) was calculated by 

0.62-0.0019*DHW-SIZE (Gallon). The DHW-SIZE is from the 2000/2001 IECC 402.1.3.7, 

which states that the DHW-SIZE (Gallon per day) = (30*a) + (10*b) (a: Number of living units, 

b: Number of bedrooms). In order to change gallon per day to gallon per minute for DOE-2 input, 

gallon per day was divided by 1440 (= 24hr/day * 60mim/hr). The DHW-GAL (Gal/min) was 

DHW-SIZE (Gallon per day) / 1440. 
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Table 4.13   System characteristics for the DOE-2 input file 

Specification on 
DOE-2 Input File Default Value Description 

DESIGN-HEAT-T 68 ºF 

DESIGN-COOL-T 78 ºF 

THROTTLING-RANGE 5 ºF 

Values are taken from table 
402.1.3.5 of the 2000/2001 
IECC. ZONE-CONTROL 

THERMOSTAT-TYPE PROPORTIONAL 
Default for residential building 

SUPPLY-STATIC 2 INCH W.G. 
SYSTEM FANS 

SUPPLY-EFF 0.75 

Typical value for residential 
building 

COOLING-EIR 0.341 

HEATING-EIR 0.50 SYSTEM-
EQUIPMENT 

FURNACE-HIR 1.25 

Refer to Figure 4.72 for 
calculation. 

SYSTEM-TYPE RESYS Residential System in DOE-
2.1e 

SYSTEM 
HEAT-SOURCE GAS 

Options given in the 
2000/2001 IECC: Gas 
Furnace, Heat-Pump, Electric 
Heating 

DHW-TYPE GAS 
Options given in the 
2000/2001 IECC: Electric, 
Gas 

DHW-SUPPLY-T 120ºF 
Value is taken from section 
402.1.3.7 of the 2000/2001 
IECC 

DHW-EIR 1.83 (EF=0.55) Refer to Figure 4.72 for 
calculation. 

DHW-SIZE 40 Gal 

DHW-GAL 0.027 Gal/min 

Calculated by equation 
specified in section 402.1.3.7 
of the 2000/2001 IECC 

PLANT-
ASSIGNMENT 

DHW-EIR-FPLR NEWDHW NREL Report (NREL/TP-550-
27754) (NREL 2001) 
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- COOLING-EIR = 3.41/SEER
- FURNACE-HIR = 1/AFUE
- DHW-TYPE = GAS

Select System Type

- COOLING:ELECTRIC A/C
- HEATING:GAS
- DHW:GAS

- COOLING:ELECTRIC A/C
- HEATING:ELECTRIC
- DHW:ELECTRIC

- COOLING:ELECTRIC A/C
- HEATING:HEAT-PUMP
- DHW:ELECTRIC

Option 1 Option 2 Option 3

- COOLING-EIR = 3.41/SEER
- HEATING-EIR  = 3.41/HSPF
- DHW-TYPE = GAS

- COOLING-EIR = 3.41/SEER
- HEATING-EIR = 1
- DHW-TYPE = ELECTRIC

The 2000 IECC / 2001 Supplement
- Gas Domestic Hot Water EF (Energy Factor)  = 0.62 - (0.0019 * Tank Size in Gallon)
- Electric Domestic Hot Water EF (Energy Factor) = 0.93 - (0.00132 * Tank Size in Gallon)

DHW-EIR = 1/ EF

System Simulation
 

Figure 4.72   Procedure to decide HVAC and DHW system characteristics 
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4.3.6.6 Quick and Delayed Construction Modes  

 There are two methods to specify the construction of the DOE-2 simulation input file:  

1) the “quick” mode option, which uses U-values for the walls and roofs and pre-calculated 

ASHRAE weighting factors for building components (III.A.3, LBNL 1981), and 2) delayed 

mode option which uses layered construction and DOE-2’s Custom Weighting Factors (CWFs) 

to calculate heat transfer through the building components in a space (III.A.3, LBNL 1981). 

Therefore, this study evaluated both the quick and the delayed methods since the 2000/2001 

IECC specifies the thermal properties of the wall and roof for normal and thermal mass walls. 

 According to the 2000/2001 IECC, exterior walls that are constructed with high-mass 

materials having heat-capacity greater than or equal to 6 Btu/ft2-℉ shall meet the equivalent 

insulation R-values in Table 502.2.1.1.2(1) or 502.2.1.1.2(2) (Table 4.14). Therefore, each wall 

type for the simulations was matched to the recommended overall U-value of the 2000/2001 

IECC. 

 
 
 

Table 4.14   Recommended overall U-value of high-mass materials 

HDD: 0 - 1,999 
Wood framed wall R-value 

Table 502.2.4.17(1) Table 502.2.4.17(2) 

Exterior insulation (Uw) Interior insulation (Uw) 
R-13 (Uw=0.076) 

Uw = 0.130 Uw  = 0.090 
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 The building model used for the DOE-2.1e input file was based on the 2000/2001 IECC 

specifications for a single-family building of 2500 ft2 gross floor area. The version of the model 

used for this analysis was the ‘SNGFAM2ST.INP’, which was developed by the Energy Systems 

Laboratory, Texas A&M University as part of the Texas Emission Reduction Plan (TERP) 

(Haberl et al. 2003a, 2003b, 2004a, 2004b, 2004c and 2004d). Houston was chosen as the 

building location for this analysis and the TMY2 weather file for Houston was used to carry out 

the simulations. The size of base-case model for the simulation was an average house as 

specified by the National Association of Home Builders (NAHB) with HVAC equipment 

efficiencies meeting the 2000/2001 International Energy Conservation Code (IECC). Figure 4.73 

and Table 4.15 show the single-story simulation model of the base-case house. Shape of the roof 

side is created using rectangular shape for simplicity because DOE-2 usually considers the area 

instead of shape to calculate heat transfer and the area of rectangular shape of the roof side is 

equivalent to the area of the roof side. 

 
 
 

        

Figure 4.73   DrawBDL view of base-case model 
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Table 4.15   House description for analysis 

Floor Area 
(sq.ft)

Wall Height 
(ft)

Wall R-
Value

Ceiling R-
value

Glazing U-
factor SHGC Duct 

Insulation SEER AFUE(%)
Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%

NAHB 2002 NAHB 2002 IECC 2000 IECC 2000 IECC 2000 IECC 2000 IECC 2000 IECC 2000 IECC 2000 ASHRAE 
152-2004

ASHRAE 
152-2004

Window to 
Wall RatioLocation Climate 

Zone

746.17 124.36

HDD Range

DHW 
PILOT 

LIGHT (500 
BTU/HR)

2487.22 
(49.87ft* 
49.87ft)

9 SR-8,RR-4 10 0.78 Y0.75 0.415%Houston 4 1500-1999 13 26

 

 

 
 
 The effect of different construction types was analyzed for different building 

configurations to find the effect of high thermal materials in the IECC. Besides the base-case 

construction type of quick mode, several different wall types of thermal mass mode were 

investigated including: 1) a quick mode wall that uses U-values instead of the layered materials, 

2) a 2x4, wood-framed wall with studs 16” O.C. with insulation between the studs, 3) a 3” facia 

brick wall with 2x4 wood-framed with studs 16” O.C. with insulation between the studs, 4) an 8” 

concrete block wall with perlite fill in the cells of the block and insulation between the block and 

the interior gypsum board, 5) an 8” concrete block wall with perlite and concrete fill in the cells 

of the block and insulation between the block and the interior gypsum board, 6) an 8” concrete 

block wall with perlite fill in the cells of the block and insulation outside the block, covered by 

stucco, and 7) an 8” concrete block with perlite and concrete fill in the cells of the block and 

insulation outside the block, covered by stucco. 

  The details of different construction types of exterior walls and their overall R-values are 

summarized in Table 4.16. DOE-2 commands of these wall types were shown at Appendix D. 
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 Table 4.16   Summary of wall description of each simulation 

No 
R-value 
hr- ft2-
°F/Btu 

Uw 
Btu/ hr-ft2-

°F 

Heat Capacity 
Btu/ft2-°F Insulation Description 

1 13.0 0.076 N/A N/A Quick construction mode 

2 13.0 0.077 4.39 Center 
Asbestos-vinyl tile + 

Plywood + Insulation + 
Stud + Gypsum board 

3 11.0 0.091 8.05 Inside 
3” Face Brick + Plywood 
+ Insulation + Gypsum 
board 

4 11.1 0.090 7.94 Inside 
8” Block with perlite filled 
+ Insulation + Gypsum 
board 

5 11.1 0.090 10.77 Inside 
8” Block with perlite and 
concrete filled + Insulation 
+ Gypsum board 

6 7.8 0.129 10.87 Outside 

Stucco + Insulation + 8” 
Block with perlite filled + 
Stud + Air + Gypsum 
board 

7 7.7 0.130 13.68 Outside 

Stucco + Insulation + 8” 
Block with perlite and 
concrete filled + Stud + 
Air + Gypsum board 

 
 
 

4.3.6.6.1 Base-Case Model (Quick Construction Mode) 

 The values that were used to develop base-case model are from a Type A-1 Residential 

Buildings of the 2000/2001 IECC. The base-case house had an R-13 for wall, R-26 for roof 

insulation and floor-weight of 11.5 lb/ft2 as specified in the 2000/2001 IECC for a standard 

design with 15% window-to-wall ratio (Table 4.17). Figure 4.74 shows the DOE-2 code of quick 

construction wall 
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Table 4.17   Base-case house according to the 2000/2001 IECC 

Maximum Minimum 
Heating 

Degree Days Glazing 
U-factor SHGC Ceiling 

R-value 
Exterior wall 

R-value 
Floor 

U-value 
Floor weight 

(Lb/ft2) 

1,500-1,999 0.75 0.40 R-26 R-13 Slab 11.5 

* Table 502.2.4(3) of the 2000/2001 IECC Type A-1 Residential Buildings and window area 15 
percent of gross exterior wall area 
 
 
 

 

Figure 4.74   DOE-2 code of quick construction wall 

 
 
 

4.3.6.6.2 2x4, Wood-Framed Wall with Studs 16” O.C. with Insulation between the 

Studs (Delayed Construction Mode) 

 Several changes were applied to the base-case model such as a layered roof, wall and the 

new method for ground surface (Winkelmann 1998) to perform the delayed construction mode 

simulation. The R-value of the layered materials that were applied to wood frame wall 

construction was identical to the recommended R-value of Table 502.2.4(3) (Table 4.14). The 

material used in this wall type included vinyl siding on ½” plywood. The interiors of the walls 

were ½” gypsum board on 2x4” stud construction set at 16” centers with insulation (Table 4.18). 

Figure 4.75 shows the wood frame wall dimension and calculated R-value. 

 

P-WALLUVALUE = 0.0769                        $ U-value = 1/R = 1/13                   
 
WALL-CON1 = CONSTRUCTION        
           ABSORPTANCE = P-WALLABSORPTANCE        
           ROUGHNESS = P-WALLROUGHNESS             
           U = P-WALLUVALUE .. 
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Table 4.18   Thermal properties of wood frame wall 

Conductivity

(Btu-ft/hr-ft2-ºF)
Insulation 
Section

Stud 
Section

1 Vinyl Siding 0.05 0.30 AV01

2 Plywood ½” 0.0417 0.0667 0.63 34.00 0.29 PW03

3 Mineral wool / 
fiber Insulation 0.4050 0.0270 15.00 0.60 0.20 IN

4 2*4” stud 0.3333 0.0667 4.37 32.00 0.33 WD05

5 Gypsum board 
½” 0.0417 0.0926 0.45 50.00 0.20 GP01

Tot

Specific Heat 
(Btu/Lb-ºF)

R (Ft2-hr-ºF/Btu)

13.00  (Uw=0.077)

DOE-2 
CodeNo Name Thickness 

(ft)
Density 
(lb/ft3)

 

 
 
 
 Insulation Section Frame Section   

  
1 0.05 0.05 

2 0.63 0.63 

3 15  

4  4.37 

5 0.45 0.45 

Tot 16.13 5.5 
     

Atot (16”*12”): 192 in2  
Ains (14”*12”): 168 in2  
Astud (2”*12”): 18in2 
 
Ut = 1/Rt = (1/At) * ((Astud/Rstud)+(Ains/Rins)) 
     = (1/192)*((24/5.5)+(168/16.13))  
     = 0.077 Btu/hr-ft2-°F 
  
Rtot= 13.0 hr-ft2 -ºF/Btu 
 
The required R-value of wall of the 2000/2001 
IECC code is R-13 

 

 

 

Figure 4.75   Wood frame wall dimension and calculated R-value 
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 While the original base-case uses U-value of the wall, the wood frame wall construction 

uses real layout to investigate thermal mass effects. DOE-2 commands were shown at Appendix 

D. 

4.3.6.6.3 3” Facia Brick Wall with 2x4 Wood-Framed with Studs 16” O.C. with 

Insulation between the Studs 

 The following table (Table 4.19) describes the thermal properties and other dimensions 

which are used for face brick wall. The material used in this wall type included face brick on ½” 

plywood. The interiors of the walls were ½” gypsum board on 2x4” stud construction set at 16” 

centers with insulation. DOE-2 commands were shown at Appendix D. 

 
 
 

Table 4.19   Thermal properties of face brick wall 

Thickness Density

(ft) Insulation 
Section

Stud 
Section (lb/ft3)

1 Face Brick 0.2500 0.7600 0.33 0.33 130.00 0.22 BK04

2 Plywood 0.0400 0.0700 0.63 0.63 34.00 0.29 PW03

3 Insulation 0.2900 0.0300 10.80 6.00 0.20 IN11

4 2*4 Stud 0.3300 0.0700 5.00 32.00 0.33 WD05

5 Gypsum Board 0.0400 0.0900 0.45 0.45 50.00 0.20 GP01

Tot

Specific Heat 
(Btu/Lb-ºF)

DOE-2 
Code

11.00 (Uw=0.091)

No Name
Conductivity 

(Btu-ft/hr-ft2-ºF)

R (Ft2-hr-ºF/Btu)

 

* The insulation is located at the interior side. 
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 In order to check whether the R-value and the heat capacity of the brick wall agree with 

the 2000/2001 IECC, the following calculation procedures (Figure 4.76) are performed. 

 
 
 

No Insulation Section Frame Section 

  

  

1 0.33 0.33 

2 0.63 0.63 

3 10.80  

4  5.00 

5 0.45 0.45 

Tot 12.21 6.41 

     

tot (16”*12”): 192 in2 
Ains (14”*12”): 168 in2 
Astud (2”*12”): 24in2 
Ut = 1/Rt = (1/At) * ((Astud/Rstud)+(Ains/Rins)) 
     = (1/192)*((24/6.41)+(168/12.21))  
     = 0.091 Btu/hr-ft2-°F 
  
Rtot= 11.0 hr-ft2-ºF/Btu, Uw=0.091 Btu/ hr-ft2-ºF 
 
The required U of wall of the 2000/2001 IECC is 
0.09 (Table 502.2.1.1.1.2(2) Interior Insulation) 
 
Heat Capacity =  
0.25*130*0.22+0.04*34*0.29+0.29*6*0.2+0.33*3
2*0.33+0.04*50*0.2 = 8.05 Btu/ft2-°F  
(>6 Btu/ft2-°F: High mass material) 

1

2

3

4

5

 

Figure 4.76   Facia brick wall dimension and calculated R-Value 
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4.3.6.6.4 8” Concrete Block Wall with Perlite Fill in the Cells of the Block and 

Insulation between the Block and the Interior Gypsum Board (I) 

 The following table (Table 4.20) and figure (Figure 4.77) describe the thermal properties 

and other dimensions which are used for 8” block with perlite fill. The material used in this wall 

type included 8” concrete block with perlite fill and the interiors of the walls were ½” gypsum 

board with insulation. DOE-2 commands were shown at Appendix D. 

 
 
 

Table 4.20   Thermal properties of 8" block with perlite fill 

Thickness Density

(ft) (lb/ft3)

1 Block 0.6667 0.1140 56.00 0.20 CB33

2 Insulation 0.096 0.0200 1.80 0.29 IN34

3 Gypsum Board 0.0417 0.0930 50.00 0.20 GP01

Tot

4.80

0.45

11.10  (Uw=0.090)

DOE-2 
Code

R

(Ft2-hr-ºF/Btu)

5.84

No Name
Conductivity 

(Btu-ft/hr-ft2-ºF)
Specific Heat 
(Btu/Lb-ºF)

 
* The insulation is located at the interior side. 
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Figure 4.77   8" concrete block wall with perlite fill 
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 The calculated R-value was 11.10 hr-ºF-ft2 /Btu, and the Uw was 0.090 Btu/hr-ft2-ºF, 

which the Uw agrees with the required Uw-value of wall of Table 502.2.1.1.2(2) on the 

2000/2001 IECC (Uw = 0.09). The heat capacity is 7.94 Btu/ft2-ºF. This value also agrees with 

high mass material (6 Btu/ft2-℉). 

4.3.6.6.5 8” Concrete Block Wall with Perlite and Concrete Fill in the Cells of the 

Block and Insulation between the Block and the Interior Gypsum Board(II) 

 The following table (Table 4.21) and the figure (Figure 4.78) describe the thermal 

properties and other dimensions which are used for 8” block with perlite and concrete fill. The 

material used in this wall type included 8” concrete block with perlite and concrete fill and the 

interiors of the walls were ½” gypsum board with insulation.  DOE-2 commands were shown at 

Appendix D. 

 
 
 

Table 4.21   Thermal properties of 8" block with perlite and concrete fill 

Thickness Density

(ft) (lb/ft3)

1 Block 0.6667 0.2410 77.00 0.20 CB35

2 Insulation 0.1580 0.0200 1.80 0.29 IN34

3 Gypsum Board 0.0417 0.0930 50.00 0.20 GP01

Tot

2.77

8.34

0.45

11.12  (Uw=0.090)

Specific Heat 
(Btu/Lb-ºF)

DOE-2 
Code

(Ft2-hr-ºF/Btu)

R
No Name

Conductivity 
(Btu-ft/hr-ft2-ºF)

* The insulation is located at the interior side. 
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Figure 4.78    8" concrete block wall with perlite and concrete fill 

  
 
 
The calculated R-value was 11.12 hr-ºF-ft2 /Btu, and the Uw was 0.090 Btu/hr-ft2-ºF, 

which the Uw agrees with the required Uw-value of wall of Table 502.2.1.1.2(2) on the 

2000/2001 IECC (Uw = 0.09). The heat capacity is 10.77 Btu/ft2-ºF, and this value also agrees 

with high mass material (6 Btu/ft2-℉). 

4.3.6.6.6 8” Concrete Block Wall with Perlite Fill in the Cells of the Block and 

Insulation Outside the Block, Covered by Stucco (III) 

 The following table (Table 4.22) and figure (Figure 4.79) describe the thermal properties 

and other dimensions which are used for 8” block with perlite fill. The material used in this wall 

type included 1” stucco and insulation on 8” block with perlite fill. The interiors of the walls 

were ½” gypsum board on 2x4” stud construction set at 16” centers with air layer. DOE-2 

commands were shown at Appendix D. 
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Table 4.22   Thermal properties of 8" block with perlite fill 

Conductivity

(Btu-ft/hr-ft2-ºF) Air Section Stud 
Section

1 Stucco 0.0833 1.0420 0.08 0.08 166.00 0.20 SC01

2 Insulation 0.0081 0.0270 0.30 0.30 0.60 0.20 IN11

3 Block 0.6667 0.1140 5.84 5.84 56.00 0.20 CB33

4 Stud 0.1670 0.0670 2.50 32.00 0.33 WD05

5 Air 0.0167 0.89 AL21

6 Gypsum Board 0.0417 0.0926 0.45 0.45 50.00 0.20 GP01

Tot 7.73 (Uw=0.130)

DOE-2 
Code

Thickness 
(ft)

R (Ft2-hr-ºF/Btu) Density 
(lb/ft3)

No Name Specific Heat 
(Btu/Lb-ºF)

* The insulation is located at the exterior side. 
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Figure 4.79   8" concrete block wall with perlite fill 
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 The calculated R-value was 7.73 hr-ºF-ft2 /Btu, and the Uw was 0.13 Btu/hr-ft2-ºF, which 

the Uw agrees with the required Uw-value of wall of Table 502.2.1.1.2(1) on the 2000/2001 IECC 

(Uw = 0.13). The heat capacity is 10.88 Btu/ft2-ºF, and this value also agrees with high mass 

material (6 Btu/ft2-℉). 

4.3.6.6.7 8” Concrete Block with Perlite and Concrete Fill in the Cells of the Block 

and Insulation Outside the Block, Covered by Stucco (IV) 

 The following table (Table 4.23) and picture (Figure 4.80) describe the thermal 

properties and other dimensions which are used for 8” block with perlite and concrete fill. The 

material used in this wall type included 1” stucco and insulation on 8” block with perlite and 

concrete fill. The interiors of the walls were ½” gypsum board on 2x4” stud construction set at 

16” centers with air layer. DOE-2 commands were shown at Appendix D. 

 
 
 

Table 4.23   Thermal properties of 8" block with perlite and concrete filled 

Conductivity

(Btu-ft/hr-ft2-ºF) Air Section Stud 
Section

1 Stucco 0.0833 1.0420 0.08 0.08 166.00 0.20 SC01

2 Insulation 0.0900 0.0270 3.33 3.33 0.60 0.20 IN11

3 Block 0.6667 0.2410 2.76 2.76 77.00 0.20 CB35

4 Stud 0.1670 0.0670 2.50 32.00 0.33 WD05

5 Air 0.0167 0.89 AL21

6 Gypsum Board 0.0417 0.0926 0.45 0.45 50.00 0.20 GP01

Tot

DOE-2 
Code

R (Ft2-hr-ºF/Btu)

7.68  (Uw=0.130)

Density 
(lb/ft3)

No Name Specific Heat 
(Btu/Lb-ºF)

Thickness 
(ft)

* The insulation is located at the exterior side. 
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Figure 4.80   8” concrete block wall with perlite and concrete filled 

  
 
 
 The calculated R-value was 7.68 hr-ºF-ft2 /Btu, and the Uw was 0.13 Btu/hr-ft2-ºF, which 

Uw agrees with the required Uw-value of wall of Table 502.2.1.1.2(1) on the 2000/2001 IECC 

(Uw = 0.13). The heat capacity is 13.68 Btu/ft2-ºF, and this value agrees with high mass material 

(6 Btu/ft2-℉). 

4.3.6.8 Window Input Mode (Window-5 vs. SC Method) 

 In this study, two methods were investigated for modeling windows in the DOE-2 

program: The Window-5 method which requires the Window-5 program, which can be modified 

by the user and incorporated into a DOE-2 window library, and the Shading Coefficient (SC) 

method which needs simple input information about the shading coefficient and the glass 

conductance. 

 The SC method calculates solar heat gain and loads using algorithms developed for 

single pane clear glass (ASHRAE 1975 and 1989). In Shading Coefficient (SC) method, the 
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solar gain was first determined for a reference glazing consisting of 1/8 inch clear glass under 

ASHRAE standard summer conditions (95ºF outside temperature, 75ºF inside temperature, 

7.5mph wind speed, and near-normal irradiance of 248 Btu/hr-ft2). The reference glazing had a 

solar transmittance of 86% and an absorptance of 8.8% at normal incidence (0°). The solar gain 

for the selected glazing was then determined each hour by multiplying the solar gain of the 

reference glazing by the shading coefficient of the selected glazing. However, DOE-2.1e 

window library developed by the Window-5 program contained detailed information on the 

window system. The information included the solar and visible optical properties, and the solar 

heat gain coefficient for the glazing system at 10° increments from 0° to 90°. The infrared 

hemispherical transmittance and emittances, the thickness, the conductivity for each glazing 

layer, the gas properties and gap width for the individual gas layers were also included. This 

window information converted to WIN.DAT library which is required in the DOE-2 program. 

 In order to investigate the difference between two methods, the window simulation tests 

were performed using single-pane, double-pane, and low-e glass on two standard IECC single-

family houses which have the same characteristics for analysis on the Chapter 4.3.6.6: 1) A 

model which has just an R-value for the wall, roof and floor according to the 2000/2001 IECC 

(i.e., pre-calculated ASHRAE weighting factors or the “quick” mode), 2) the model which has a 

layered wood frame wall with the same R-value as the first one (i.e., custom-weighting factors or 

the “thermal mass” mode). The objective of this analysis was to test the differences in the results 

from the modeling of different window types using the Window-5 options against the SC options 

in the DOE-2 input file. A detailed simulation scheme for this comparison is presented in Table 

4.24.  
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Table 4.24   Simulation scheme for window analysis 

 Single Pane Double Pane Double Pane Low-e 

Shading Coefficient Shading Coefficient Shading Coefficient “Quick” 
construction 

mode Window-Library Window-Library Window-Library 

Shading Coefficient Shading Coefficient Shading Coefficient “Thermal mass” 
construction 

mode Window-Library Window-Library Window-Library 

 
 
 
 In order to compare the differences between the two methods, a two-step test was 

adopted. The first step looked at the properties of the glazing using the DOE-2 LV-H report to 

check that the same window shapes and thermal properties were being used, including: the glass 

area, the shading coefficient, the number of panes and the glass U-value. The second step 

examined the impact of using each of these options on the annual energy consumption, including 

heating and cooling energy use. The Window-5 output files of three window types (single-pane 

clear, double-pane clear and double-pane low-e glass) from the Window-5 program simulations 

can be found in the Appendix E. These Window-5 output files were incorporated to the window 

library of DOE-2 program for the simulations. The LV-H report of DOE-2 from the different 

window type can be found in the Appendix F. 

4.4 Analysis of an IECC-Compliant Simulation Model 

 In this section, an efficiency analysis of an IECC-compliant residence was performed 

that compared a base-case building with the same building modified by an energy efficiency 

strategy. To perform this analysis, the following programs and files were used: 1) a thermal mass 

wood frame wall of an IECC-compliant DOE-2 simulation model (SNGFAM2ST.inp version 

1.20), 2) the ESL’s Batch DOE-2 Input (BDI) program (version 1.13), 3) the GAWK program, 

which was described at Chapter 4.3.5.3, and 4) the TMY2 weather data for Amarillo, Fort Worth, 
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Houston, and Brownsville, Texas. The primary input model had the same thermal properties for 

the window and building envelopes, and HVAC system efficiencies shown in Tables 4.12 and 

4.13. Table 4.25 presents the primary input model information about the building envelope, 

fenestration, duct properties, HVAC systems, etc. HVAC and duct systems were located at the 

attic space where it was unconditioned. 

 
 
 

Table 4.25   Primary input model for the efficiency analysis 

Floor Area 
(sq.ft)

Wall Height 
(ft) Wall R-Value Ceiling R-

value
Window Area 

(%)
Glazing U-

value SHGC

NAHB NAHB IECC 2000 IECC 2000 IECC 2000 IECC 2000 IECC 2000
9 Amarillo 2487.22 9 13 38 15 0.45 0.66
5 Fort Worth 2487.22 9 13 30 15 0.65 0.40
4 Houston 2487.22 9 13 26 15 0.75 0.40
2 Brownsville 2487.22 9 11 19 15 0.90 0.40

Weather file 
(TMY2)Climate Zone

 

ACH SEER AFUE(%) AC Size 
(TON)

Heating Size 
(Bru/hr)

Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%
ASHRAE 136-

1993 IECC 2000 IECC 2000 Manual Manual
ASHRAE 152-

2004
ASHRAE 152-

2004
SR-8, RR-4 0.65 10 78 Y 5.0 75000 746.17 124.36
SR-8, RR-4 0.51 10 78 Y 5.0 75000 746.17 124.36
SR-8, RR-4 0.46 10 78 Y 5.0 75000 746.17 124.36
SR-8, RR-4 0.51 10 78 Y 5.0 75000 746.17 124.36

Duct 
Insulation

DHW PILOT 
LIGHT (500 

BTU/HR)

 

  
 
 

The 2000/2001 IECC provides the different levels of insulation for the wall and ceiling, 

and fenestration properties according to the climate zones. The wall insulation level is R-13 and 

the ceiling insulation level is R-38 for the climate zone 9, while the wall insulation level is R-11 

and the ceiling insulation level is R-19 for the climate zone 2. Because of the different levels of 

insulation, the insulation levels of the wall and ceiling were adjusted using the thickness variable 

in the DOE-2 input (SNGFAM2ST.INP) to perform the simulations. Tables 4.26 to 4.28 and 

Figures 4.81 to 4.83 show the details of the construction for exterior wall and roof and ceiling, 
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and their thermal properties of each component. The walls of the base-case house were 

constructed with 2x4 studs placed 24 inches on center. These walls had insulation in the cavity 

between the studs. The exterior of the house was vinyl sheathing over plywood and the interior 

of the walls was ½ inch gypsum board. The roof construction consisted of composite shingles on 

5/8” plywood deck placed on 2x6” trusses set at 24” centers. The ceilings were 5/8” gypsum 

board on 2 x 6” trusses set at 24” centers with insulation.  

 
 
 

Table 4.26   Wall thermal properties of the primary input file 
Thickness Conductivity Density Specific heat

ft Btu-ft/hr-ft2-F lb/ft3 Btu/lb-F
1 VINYL-SIDING 0.0036 0.08 79.48 0.33
2 PLYWOOD-1/2IN 0.0417 0.0667 34 0.29
3 INSULATION Depend on location 0.0225 3 0.33
4 STUD - 4INCH 0.3333 0.0667 32 0.33
5 GYPSUM-BOARD-1/2IN 0.0417 0.0926 50 0.2

No. Description
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Figure 4.81   Wall dimensions of the primary input file 
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Table 4.27   Roof thermal properties of the primary input file 
Thickness Conductivity Density Specific heat

ft Btu-ft/hr-ft2-F lb/ft3 Btu/lb-F
1 ASPHALT SHINGLE-SIDING 70 0.35
2 PLYWOOD-5/8IN 0.0417 0.0667 34 0.29
3 STUD-6IN 0.5 0.07 32 0.33

No. Description

 

 
 
 

1

23

24  

Figure 4.82   Roof dimensions of the primary input file 

 
 
 

Table 4.28   Ceiling thermal properties of the primary input file 
Thickness Conductivity Density Specific heat

ft Btu-ft/hr-ft2-F lb/ft3 Btu/lb-F
1 INSULATION Depend on location 0.03 0.63 0.2
2 STUD-6IN 0.5 0.0667 32 0.33
3 GYPSUM-BOARD-1/2IN 0.0417 0.0926 50 0.2

No. Description
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Figure 4.83   Ceiling dimensions of the primary input file 
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 In order to investigate the efficiency analysis of the IECC-compliant simulation model, 

several different elements were tested: 1) the fenestration properties such as the U-value and 

Solar Heat Gain Coefficient (SHGC), 2) duct insulation levels and leakage, 3) the Seasonal 

Energy Efficiency Ratio (SEER) for the air conditioner system, 4) the Annual Fuel Utilization 

Efficiency (AFUE) for the gas furnace, 5) the Heating Seasonal Performance Factor (HSPF) for 

the heat pump, 6) the Energy Factor (EF) for the domestic hot water, 7) the different locations of 

HVAC system and ductwork including the attic space and conditioned space, and 8) the different 

types of tree shading, including: all year (Live Oak), a deciduous tree, and an evergreen tree with 

different shading schedules. 

4.4.1 Fenestration Properties 

 The effect of improving the fenestration properties on annual energy use was analyzed to 

investigate the individual performance and to find the optimum combinations of fenestration 

properties that could result in the minimum energy use. The simulation scheme for fenestration 

properties is presented in Table 4.29.  

 The base-case U-value (Btu/hr-ft2-ºF) was 0.45 for the climate zone 9, 0.65 for the 

climate zone 5, 0.75 for climate zone 4, and 0.90 for the climate zone 2. The SHGC of the base 

case was fixed to 0.40 for the entire climate zone except for the climate zone 8 and 9. Therefore, 

in the case of the climate zone 8 and 9, the SHGC of the double pane clear glass (0.66) was used 

according to the table 102.5.2(3) of the 2000/2001 IECC. The locations of analysis were the 

climate zone 2 (Brownsville), 4(Houston), 5(Fort Worth) and 9 (Amarillo), and the window 

distribution was 15% for all four sides of the house. HVAC and duct systems were located at the 

attic space where it was unconditioned. 

 In the analysis, the U-value was changed up to 20% in decrements of 5% from the base 

case. The SHGC was changed from 0.40 to 0.36 in decrements of 0.02 for climate zones 5, 4 and 
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2; and was changed from 0.66 to 0.62 in increments of 0.02 for climate zone 9. Table 4.29 

presents the simulation plan for the fenestration types. 

 
 
 

Table 4.29   Simulation plan for the fenestration types 

Location U-value (Btu/hr-ft2-ºF) SHGC 

0.450 (Base case) 1) 0.66 (Base case), 2) 0.64, 3) 0.62 

0.428 1) 0.66, 2) 0.64, 3) 0.62 

0.405 1) 0.66, 2) 0.64, 3) 0.62 

0.383 1) 0.66, 2) 0.64, 3) 0.62 

Climate zone 9 

0.360 1) 0.66, 2) 0.64, 3) 0.62 

0.650 (Base case) 1) 0.40 (Base case), 2) 0.38, 3) 0.36 

0.618 1) 0.40, 2) 0.38, 3) 0.36 

0.585 1) 0.40, 2) 0.38, 3) 0.36 

0.555 1) 0.40, 2) 0.38, 3) 0.36 

Climate zone 5 

0.520 1) 0.40, 2) 0.38, 3) 0.36 

0.750 (Base case) 1) 0.40 (Base case), 2) 0.38, 3) 0.36 

0.713 1) 0.40, 2) 0.38, 3) 0.36 

0.675 1) 0.40, 2) 0.38, 3) 0.36 

0.638 1) 0.40, 2) 0.38, 3) 0.36 

Climate zone 4 

0.600 1) 0.40, 2) 0.38, 3) 0.36 

0.90 (Base case) 1) 0.40 (Base case), 2) 0.38, 3) 0.36 

0.855 1) 0.40, 2) 0.38, 3) 0.36 

0.810 1) 0.40, 2) 0.38, 3) 0.36 

0.765 1) 0.40, 2) 0.38, 3) 0.36 

Climate zone 2 

0.720 1) 0.40, 2) 0.38, 3) 0.36 
 

 

 

 



 

 

137

4.4.2 Duct insulation level and leakage rate 

 In order to investigate the energy impact of varying duct insulation levels and leakage 

rates, simulations were performed for different insulation R-values and duct leakage rate. For 

this analysis, the duct R-values of the supply and return side were changed from R-8 for the 

supply duct and R-4 for the return duct (which is same as the base case) to R-12 for the supply 

duct and the return duct in increments of 2 for 4 different climate zones. For the simulations, the 

different levels of the duct R-value and duct leakages were simulated from 0 % to 20 % in 

increments of 5%. Since the 2000/2001 IECC does not define the duct leakages, the duct leakage 

for the base-case house was set at 0%. Duct systems were located in the attic space where it was 

unconditioned.  Table 4.30 shows the simulation plan of variations in the duct insulation levels 

and duct leakages of the different climate zones for the analysis. 

 
 
 

Table 4.30   Simulation plan for duct insulation level and leakage 

Duct R-value 
Location 

Supply Return 
Duct Leakage (%) 

8 (Base case) 4 (Base case) 1) 0 (Base case),   2) 5,   3) 10,   4) 15,  5)20 
6 6 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
8 8 1) 0,    2) 5,    3) 10,     4) 15,    5) 20 

10 10 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
Climate zone 9 

12 12 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
8 (Base case) 4 (Base case) 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 

6 6 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
10 10 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
8 8 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 

Climate zone 5 

12 12 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
8 (Base case) 4 (Base case) 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 

6 6 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
10 10 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
8 8 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 

Climate zone 4 

12 12 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
8 (Base case) 4 (Base case) 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 

6 6 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
8 8 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 

10 10 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
Climate zone 2 

12 12 1) 0,    2) 5,    3) 10,    4) 15,    5) 20 
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4.4.3 HVAC and DHW systems 

 Table 4.31 shows the simulation plan of the air conditioner, the gas furnace, the heat 

pump and the domestic hot water heater for the analysis. Simulations with systems of different 

efficiencies were performed to analyze the effect of using more efficient systems on reducing 

energy use. In addition, simulations were performed for different climate zones. 

 
 
 

Table 4.31   Simulation plan for HVAC and DHW systems 

Air conditioner Gas Furnace Heat Pump Domestic Hot Water 
Location 

SEER AFUE (%) HSPF EF 
10 (Base case) 0.78 (Base case) 6.8 (Base case) 0.55 (Base case) 

11 0.80 7.0 0.60 
12 0.85 7.5 0.65 
13 0.90 8.0 0.70 
14   0.75 
15   0.80 
16    

Climate zone 9 

17    
10 (Base case) 0.78 (Base case) 6.8 (Base case) 0.55 (Base case) 

11 0.80 7.0 0.60 
12 0.85 7.5 0.65 
13 0.90 8.0 0.70 
14   0.75 
15   0.80 
16    

Climate zone 5 

17    
10 (Base case) 0.78 (Base case) 6.8 (Base case) 0.55 (Base case) 

11 0.80 7.0 0.60 
12 0.85 7.5 0.65 
13 0.90 8.0 0.70 
14   0.75 
15   0.80 
16    

Climate zone 4 

17    
10 (Base case) 0.78 (Base case) 6.8 (Base case) 0.55 (Base case) 

11 0.80 7.0 0.60 
12 0.85 7.5 0.65 
13 0.90 8.0 0.70 
14   0.75 
15   0.80 
16    

Climate zone 2 

17    
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4.4.4 The Locations of the HVAC systems 

 Table 4.32 shows the simulation plans for the analysis of the locations of the HVAC 

system. Simulations were performed for the different locations (i.e., the attic space and the 

conditioned space) of the HVAC systems which were provided by the current simulation input 

file (SNGFAM2ST.INP). Duct leakage rates were changed from 0% to 20% in increments of 5% 

for both locations, including the attic and conditioned space. For the system efficiency, a 10 

SEER air conditioner and a 78% AFUE for the gas furnace (base case) were used for the 

simulation.  

 
 
 

Table 4.32   Simulation plan for the location of the HVAC system 

Air conditioner Gas furnace 
Location 

SEER AFUE (%) 
Duct leakage Location 

1) 0% (Base case), 2) 
5%, 3) 10%,  
4) 15%, 5) 20% 

Attic space 
Climate zone 

9 1) 0% (Base case), 2) 
5%, 3) 10%,  
4) 15%, 5) 20% 

Conditioned space 

1) 0% (Base case), 2) 
5%, 3) 10%,  
4) 15%, 5) 20% 

Attic space 
Climate zone 

5 1) 0% (Base case), 2) 
5%, 3) 10%,  
4) 15%, 5) 20% 

Conditioned space 

1) 0% (Base case), 2) 
5%, 3) 10%,  
4) 15%, 5) 20% 

Attic space 
Climate zone 

4 1) 0% (Base case), 2) 
5%, 3) 10%,  
4) 15%, 5) 20% 

Conditioned space 

1) 0% (Base case), 2) 
5%, 3) 10%,  
4) 15%, 5) 20% 

Attic space 
Climate zone 

2 

10 (Base case) 78 (Base case)  

1) 0% (Base case), 2) 
5%, 3) 10%,  
4) 15%, 5) 20% 

Conditioned space 
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4.4.5 Tree shading 

 In order to investigate the shading effects from trees, the simulations were performed on 

three tree types at 4 different climate zones. In this analysis, it was assumed that the height of 

tree was a 30 ft with 20 ft branches, and the trees were directly next to the house (Figures 4.84 to 

4.86).  

 
 
 

 

Figure 4.84   DrawBDL view of base-case model (east side shade) 

 

Figure 4.85   DrawBDL view of base-case model (west side shade) 
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Figure 4.86   DrawBDL view of base-case model (both side shade) 

  
 
 

Tree types include: 1) leaves all year (Live Oak), 2) a deciduous tree, 3) and an 

evergreen tree. The shading effects according to the tree types, the different shading schedule 

were used using DOE-2’s SCHEDULE command. Figure 4.87 shows the DOE-2 commands for 

this analysis. Table 4.33 presents the simulation plans for the tree shadings. 
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Figure 4.87   Shading schedules according to tree types 

 
 
 

Table 4.33   Simulation plan for the tree shadings 

Location Tree Shading side 
leaves all year (Live Oak) 1) East, 2) West, 3) Both 

a deciduous tree 1) East, 2) West, 3) Both Climate zone 9 
evergreen tree 1) East, 2) West, 3) Both 

leaves all year (Live Oak) 1) East, 2) West, 3) Both 
a deciduous tree 1) East, 2) West, 3) Both Climate zone 5 
evergreen tree 1) East, 2) West, 3) Both 

leaves all year (Live Oak) 1) East, 2) West, 3) Both 
a deciduous tree 1) East, 2) West, 3) Both Climate zone 4 
evergreen tree 1) East, 2) West, 3) Both 

leaves all year (Live Oak) 1) East, 2) West, 3) Both 
a deciduous tree 1) East, 2) West, 3) Both Climate zone 2 
evergreen tree 1) East, 2) West, 3) Both 

 

 

 

 

##IF #[TREESHAPE[] EQS "LIVEOAK"] 
 
B-SH-1 = SCHEDULE          
          THRU MAR 31 (ALL) (1,24)  (0.1) 
          THRU APR 30 (ALL) (1,24)  (0.7)  
          THRU DEC 31 (ALL) (1,24)  (0.1)   .. 
 
##ELSEIF #[TREESHAPE[] EQS "DECIDUOUS"] 
 
B-SH-1 = SCHEDULE          
          THRU MAR 31 (ALL) (1,24)  (0.7) 
          THRU OCT 31 (ALL) (1,24)  (0.1)  
          THRU DEC 31 (ALL) (1,24)  (0.7)   .. 
 
##ELSEIF #[TREESHAPE[] EQS "EVERGREEN"] 
 
B-SH-1 = SCHEDULE          
          THRU DEC 31 (ALL) (1,24)  (0.1)   .. 
##ENDIF 
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4.5 Summary 

 In summary, this chapter has discussed the methodology used for the installation of 

sensors, polling and archiving measured data from the case-study house. It explained the plan for 

analyzing the energy use of the house. This chapter discussed the methodologies for analyzing 

the case house using the DOE-2 building energy simulation program beginning with the 

development of an on-site weather file, creating the input files for the house, and calibrating the 

input files for the two representative periods. This chapter also discussed improved simulation 

methods for the as-built and code complaint simulation model. 

 In addition, this chapter explained the development of the DOE-2 simulation model 

using the characteristics of the code-compliant, base-case house which include size, envelope, 

HVAC and DHW systems based on the 2000/2001 International Energy Conservation Code 

(IECC) as well as verification of the new simulation methods from the as-built base-case 

simulation model. It also explained the analysis methodology for studying thermal mass effects 

based on the 2000/2001 IECC and the different window input methods. 

 Finally, it ends with an efficiency analysis, including: 1) the fenestration properties such 

as the U-value and Solar Heat Gain Coefficient (SHGC), 2) duct insulation levels and leakage, 3) 

the Seasonal Energy Efficiency Ratio (SEER) for the air conditioner system, 4) the Annual Fuel 

Utilization Efficiency (AFUE) for the gas furnace, 5) the Heating Seasonal Performance Factor 

(HSPF) for the heat pump, 6) the Energy Factor (EF) for the domestic hot water, 7) the different 

locations of HVAC system and ductwork including the attic space and conditioned space, and 8) 

the different types of tree shading as varying the possible conditions affecting the energy 

performances of the residential buildings. 
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CHAPTER V 

RESULTS OF THE SIMULATIONS OF THE CASE-STUDY HOUSE  

 This chapter presents the results of the data collection and calibration procedures of the 

simulation model of the case-study house DOE-2 program. This chapter contains data analysis of 

the case-study house, calibration of the simulation model of the case-study house using a two-

week period for the summer and winter, and analysis of the results, including the duct model, 

application of new A/C curves, National Renewable Energy Laboratory (NREL)’s domestic hot 

water heater method and new heat flow method for underground surface. 

5.1 Data Analysis of the Case-Study House 

5.1.1 Comparison Results of IECC-Compliant Model with the Case-Study House Using 

ASHRAE Inverse Modeling Toolkit (IMT) 

 In order to compare the annual electricity and natural gas of the case-study house with a 

similarly sized (1,333 ft2) IECC-compliant house, three-parameter change-point (3P) cooling and 

heating models were developed using the ASHRAE Inverse Model Toolkit (IMT). Detailed 

modeling procedures using the IMT were described in Chapter IV. Tables 5.1 and 5.2 show the 

monthly average temperature and natural gas use from case-studuy house and IECC-code 

compliant house, respectively. Figure 5.1 shows the output files of three-parameter change-point 

(3P) cooling and heating models of the base-case house and IECC-compliant house.  

 For the analysis of the natural gas, the adjusted R2 value for the case-study house and 

IECC-compliant house were 99.0% and 93.7% respectively, which were considered statistically 

significant. The CV (RMSE) values for the case-study house and IECC-compliant house are 

7.2% and 8.7%, which are also considered statistically acceptable (Haberl et al. 1998). The Ycp 
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is the baseline heating energy use below the change point, where RS is the slope of the model, 

and Xcp is the change point of the model. As shown, the baseline use of the IECC-compliant 

house (54.2 kBtu/day) was slightly lower than that of the case-study house (58.2 kBtu/day). The 

change-point temperature of the case-study and IECC-compliant house were 62.3ºF and 64.5ºF, 

respectively. Using the IMT coefficients, Figure 5.2 can be plotted to show the monthly 

electricity use and the IMT model. 

 Since the case-study house does not have the garage space and the IECC-code complaint 

house has the garage space, the comparison of with and without garage space of the IECC-code 

compliant model was performed and Appendix J showed the comparison results. 

 
 
 

Table 5.1   Monthly average temperature and natural gas use from case-study house 

Month Date Number 
of Days 

Average 
Temperature 

(F) 

Monthly 
mBtu Daily kBtu 

Jan 01/07/2004 – 02/05/2004 30 51.2 6.8 226.7 

Feb 02/06/2004 – 03/05/2004 29 51.6 6.0 206.9 

Mar 03/06/2004 – 04/06/2004 32 67.6 1.8 56.3 

Apr 04/07/2004 – 05/07/2004 31 71.9 1.7 54.8 

May 05/08/2004 – 06/08/2004 32 73.4 1.5 46.9 

Jun 06/09/2004 – 07/08/2004 30 80.0 1.6 53.3 

Jul 07/09/2004 – 08/06/2004 29 85.9 1.6 55.2 

Aug 08/07/2004 – 09/07/2004 32 82.3 2.2 68.8 

Sep 09/08/2004 – 10/06/2004 29 81.2 2.0 69.0 

Oct 10/07/2004 – 11/04/2004 29 74.3 1.8 62.1 

Nov 11/05/2004 – 12/06/2004 32 59.7 3.1 96.9 

Dec 12/07/2004 – 01/06/2005 31 52.4 6.4 206.5 
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Table 5.2   Monthly average temperature and natural gas use from IECC simulation 

Month Date Number 
of Days 

Average 
Temperature 

(F) 

Monthly 
mBtu 

Daily 
kBtu 

Jan 01/01/2004 – 01/31/2004 31 53.4 3.5 112.9 

Feb 02/01/2004 – 02/28/2004 28 51.6 3.0 107.1 

Mar 03/01/2004 – 03/31/2004 31 61.2 2.1 67.7 

Apr 04/01/2004 – 04/30/2004 30 68.9 1.8 60.0 

May 05/01/2004 – 05/31/2004 31 75.1 1.8 58.1 

Jun 06/01/2004 – 06/30/2004 30 79.8 1.7 56.7 

Jul 07/01/2004 – 07/31/2004 31 82.4 1.6 51.6 

Aug 08/01/2004 – 08/31/2004 31 81.1 1.6 51.6 

Sep 09/01/2004 – 09/30/2004 30 77.5 1.5 50.0 

Oct 10/01/2004 – 10/31/2004 31 69.7 1.6 51.6 

Nov 11/01/2004 – 11/30/2004 30 62.8 1.8 60.0 

Dec 12/01/2004 – 12/31/2004 31 52.6 2.9 93.5 
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******************************************** 
  ASHRAE INVERSE MODELING TOOLKIT (1.9) 
 ******************************************** 
    Output file name = IMT.Out                                          
 ******************************************** 
Input data file name=HABITAT_HEATING_DAILY.dat    
Model type =           3P Heating               
Grouping column No =    5 
Value for grouping =    1 
Residual mode =         1 
# of X(Indep.) Var =    1 
Y1 column number =      4 
X1 column number =   9 
X2 column number =   0 (unused) 
X3 column number =   0 (unused) 
X4 column number =   0 (unused) 
X5 column number =   0 (unused) 
X6 column number =   0 (unused) 
 ******************************************** 
    Regression Results 
   -------------------------------------- 
           N =     12 
   -------------------------------------- 
          R2 =     0.990 
   -------------------------------------- 
       AdjR2 =     0.990 
   -------------------------------------- 
        RMSE =      7.2641 
   -------------------------------------- 
     CV-RMSE =     7.244% 
   -------------------------------------- 
           p =     0.415 
   -------------------------------------- 
          DW =     1.147 (p>0) 
   -------------------------------------- 
          N1 =      4 
   -------------------------------------- 
          N2 =      8 
   -------------------------------------- 
         Ycp =     58.2466 (      2.4837) 
   -------------------------------------- 
          LS =    -14.6572 (      0.4641) 
   -------------------------------------- 
          RS =      0.0000 (      0.0000) 
   -------------------------------------- 
         Xcp =     62.3340 (      0.6940) 
   -------------------------------------- 

 
******************************************** 
  ASHRAE INVERSE MODELING TOOLKIT (1.9) 
 ******************************************** 
    Output file name = IMT.Out                                          
 ******************************************** 
    Input data file name =  IECC_HEATING_DAILY.dat    
    Model type =           3P Heating               
    Grouping column No =    5 
    Value for grouping =    1 
    Residual mode =         1 
    # of X(Indep.) Var =    1 
    Y1 column number =      4 
    X1 column number =   9 
    X2 column number =   0 (unused) 
    X3 column number =   0 (unused) 
    X4 column number =   0 (unused) 
    X5 column number =   0 (unused) 
    X6 column number =   0 (unused) 
 ******************************************** 
    Regression Results 
   -------------------------------------- 
           N =     12 
   -------------------------------------- 
          R2 =     0.937 
   -------------------------------------- 
       AdjR2 =     0.937 
   -------------------------------------- 
        RMSE =      5.9693 
   -------------------------------------- 
     CV-RMSE =     8.727% 
   -------------------------------------- 
           p =     0.294 
   -------------------------------------- 
          DW =     0.935 (p>0) 
   -------------------------------------- 
          N1 =      5 
   -------------------------------------- 
          N2 =      7 
   -------------------------------------- 
         Ycp =     54.1550 (      2.0804) 
   -------------------------------------- 
          LS =     -4.1612 (      0.3405) 
   -------------------------------------- 
          RS =      0.0000 (      0.0000) 
   -------------------------------------- 
         Xcp =     64.5360 (      0.6160) 
   -------------------------------------- 

Figure 5.1   Three-parameter change-point natural gas models (Left: case-study house, Right: 
IECC model) 
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 Month Average Temperature (F) Daily mBtu Modeled Use kBtu Residual 
Jan 51.23 226.70 220.98 5.72 
Feb 51.63 206.90 215.11 -8.21 
Mar 67.60 56.30 58.25 -1.95 
Apr 71.88 54.80 58.25 -3.45 
May 73.36 46.90 58.25 -11.35 
Jun 79.96 53.30 58.25 -4.95 
Jul 85.93 55.20 58.25 -3.05 

Aug 82.28 68.80 58.25 10.55 
Sep 81.15 69.00 58.25 10.75 
Oct 74.28 62.10 58.25 3.85 
Nov 59.66 96.90 97.39 -0.49 

Case-study house 

Dec 52.44 206.50 203.24 3.26 
Jan 53.40 112.90 100.50 12.40 
Feb 51.60 107.14 107.99 -0.85 
Mar 61.20 67.74 68.05 -0.31 
Apr 68.90 60.00 54.20 5.80 
May 75.10 58.06 54.20 3.86 
Jun 79.80 56.67 54.20 2.47 
Jul 82.40 51.61 54.20 -2.59 

Aug 81.10 51.61 54.20 -2.59 
Sep 77.50 50.00 54.20 -4.20 
Oct 69.70 51.61 54.20 -2.59 
Nov 62.80 60.00 61.40 -1.40 

IECC-compliant 

Dec 52.60 93.55 103.83 -10.28 

Figure 5.2   Three parameter change-point natural gas models for the base-case house and 
IECC-compliant house 
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 A similar procedure was used to model the electricity use for the case-study house and 

IECC-compliant house. Tables 5.3 and 5.4 show the monthly average temperature and electricity 

use from case-studuy house and IECC-code compliant house, respectively. Figure 5.3 shows the 

output file of the 3P cooling model. The results show that the baseline use of the case-study 

house (14.8 kWh/day) is significantly lower than that of the IECC-compliant house (23.7 

kWh/day). The change points of temperature of the base case-study house and the IECC-

compliant house are 68.5ºF and 59.6ºF respectively. Using the IMT coefficients, the model can 

be plotted as shown in Figure 5.4. In this figure, the monthly electricity use is also shown. 

 
 
 

Table 5.3   Monthly average temperature and electricity use from case-study house 

Month Date Number 
of Days 

Average 
Temperature (F) 

Monthly 
Electricity Use 

(kWh) 

Daily Electricity 
Use (kWh) 

Jan 01/01/2004 – 0/31/2004 31 52.7 450 14.5 
Feb 02/01/2004 – 2/29/2004 29 48.0 441 15.2 
Mar 03/01/2004 – 3/31/2004 31 65.7 397 12.8 
Apr 04/01/2004 – 4/30/2004 30 68.5 381 12.7 
May 05/01/2004 – 5/31/2004 31 75.4 1080 34.8 
Jun 06/01/2004 – 6/30/2004 30 79.4 1340 44.7 
Jul 07/01/2004 – 7/31/2004 31 82.1 1719 55.5 

Aug 08/01/2004 – 8/31/2004 31 81.5 1850 59.7 
Sep 09/01/2004 – 9/30/2004 30 79.7 1686 56.2 
Oct 10/01/2004 – 0/31/2004 31 75.6 1234 39.8 
Nov 11/01/2004 – 1/30/2004 30 60.3 514 17.1 
Dec 12/01/2004 – 2/31/2004 31 68.5 524 16.9 
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Table 5.4   Monthly average temperature and electricity use from IECC simulation 

Month Date Number 
of Days 

Average 
Temperature (F) 

Monthly 
Electricity Use 

(kWh) 

Daily Electricity 
Use (kWh) 

Jan 01/012004 – 1/31/2004 31 53.4 742 23.9 
Feb 02/01/2004 – 2/28/2004 28 51.6 667 23.8 
Mar 03/01/2004 – 3/31/2004 31 61.2 788 25.4 
Apr 04/01/2004 – 4/30/2004 30 68.9 872 29.1 
May 05/01/2004 – 5/31/2004 31 75.1 1046 33.7 
Jun 06/01/2004 – 6/30/2004 30 79.8 1148 38.3 
Jul 07/01/2004 – 7/31/2004 31 82.4 1262 40.7 

Aug 08/01/2004 – 8/31/2004 31 81.1 1222 39.4 
Sep 09/01/2004 – 9/30/2004 30 77.5 1078 35.9 
Oct 10/01/2004 – 0/31/2004 31 69.7 963 31.1 
Nov 11/01/2004 – 1/30/2004 30 62.8 804 26.8 
Dec 12/01/2004 – 2/31/2004 31 52.6 726 23.4 
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******************************************** 
  ASHRAE INVERSE MODELING TOOLKIT (1.9) 
 ******************************************** 
    Output file name = IMT.Out                                          
 ******************************************** 
Input data file name=HABITAT_COOLING_DAILY.dat 
Model type =           3P Cooling               
Grouping column No =    5 
Value for grouping =    1 
Residual mode =         1 
# of X(Indep.) Var =    1 
Y1 column number =      4 
X1 column number =   9 
X2 column number =   0 (unused) 
X3 column number =   0 (unused) 
X4 column number =   0 (unused) 
X5 column number =   0 (unused) 
X6 column number =   0 (unused) 
 ******************************************** 
    Regression Results 
   -------------------------------------- 
           N =     12 
   -------------------------------------- 
          R2 =     0.974 
   -------------------------------------- 
       AdjR2 =     0.974 
   -------------------------------------- 
        RMSE =      3.1967 
   -------------------------------------- 
     CV-RMSE =    10.098% 
   -------------------------------------- 
           p =     0.625 
   -------------------------------------- 
          DW =     0.713 (p>0) 
   -------------------------------------- 
          N1 =      4 
   -------------------------------------- 
          N2 =      8 
   -------------------------------------- 
         Ycp =     14.8102 (      1.2699) 
   -------------------------------------- 
          LS =      0.0000 (      0.0000) 
   -------------------------------------- 
          RS =      3.2082 (      0.1661) 
   -------------------------------------- 
         Xcp =     68.4600 (      0.6820) 
   -------------------------------------- 

 
******************************************** 
  ASHRAE INVERSE MODELING TOOLKIT (1.9) 
 ******************************************** 
    Output file name = IMT.Out                                          
 ******************************************** 
   Input data file name =  IECC_COOLING_DAILY.dat     

    Model type =           3P Cooling               
    Grouping column No =    5 
    Value for grouping =    1 
    Residual mode =         1 
    # of X(Indep.) Var =    1 
    Y1 column number =      4 
    X1 column number =   9 
    X2 column number =   0 (unused) 
    X3 column number =   0 (unused) 
    X4 column number =   0 (unused) 
    X5 column number =   0 (unused) 
    X6 column number =   0 (unused) 
 ******************************************** 
    Regression Results 
   -------------------------------------- 
           N =     12 
   -------------------------------------- 
          R2 =     0.990 
   -------------------------------------- 
       AdjR2 =     0.990 
   -------------------------------------- 
        RMSE =      0.6938 
   -------------------------------------- 
     CV-RMSE =     2.241% 
   -------------------------------------- 
           p =     0.102 
   -------------------------------------- 
          DW =     1.766 (p>0) 
   -------------------------------------- 
          N1 =      3 
   -------------------------------------- 
          N2 =      9 
   -------------------------------------- 
         Ycp =     23.7487 (      0.3080) 
   -------------------------------------- 
          LS =      0.0000 (      0.0000) 
   -------------------------------------- 
          RS =      0.7090 (      0.0230) 
   -------------------------------------- 
         Xcp =     59.6080 (      0.6160) 
   -------------------------------------- 

Figure 5.3   Three-parameter change-point electricity models(Left: case-study house, Right: 
IECC model) 
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 Month Average Temperature 
(F) 

Daily Electricity Use 
(kWh) Modeled Use kWh Residual 

Jan 52.7 14.5 14.80 -0.30 
Feb 48 15.2 14.80 0.40 
Mar 65.7 12.8 14.80 -2.00 
Apr 68.5 12.7 14.93 -2.23 
May 75.4 34.8 37.01 -2.21 
Jun 79.4 44.7 49.81 -5.11 
Jul 82.1 55.5 58.45 -2.95 

Aug 81.5 59.7 56.53 3.17 
Sep 79.7 56.2 50.77 5.43 
Oct 75.6 39.8 37.65 2.15 
Nov 60.3 17.1 14.80 2.30 

Case-study house 

Dec 68.5 16.9 14.93 1.97 
Jan 53.4 23.9 23.70 0.20 
Feb 51.6 23.8 23.70 0.10 
Mar 61.2 25.4 24.84 0.56 
Apr 68.9 29.1 30.30 -1.20 
May 75.1 33.7 34.71 -1.00 
Jun 79.8 38.3 38.04 0.26 
Jul 82.4 40.7 39.89 0.81 

Aug 81.1 39.4 38.97 0.44 
Sep 77.5 35.9 36.41 -0.51 
Oct 69.7 31.1 30.87 0.23 
Nov 62.8 26.8 25.97 0.83 

IECC-compliant 

Dec 52.6 23.4 23.70 -0.30 

Figure 5.4   Three parameter change-point electricity models for the base-case house and 
IECC-compliant house 
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5.1.2 Investigation of Applying the IECC Strategies and Results 

 Once the base-case simulation model was calibrated against the measured data from the 

case-study house, 6 strategies that are compliant with the 2000/2001 IECC were applied to the 

base-case simulation model to determine the most effective strategy from the 2000/2001 IECC. 

The calibration procedures of the base-case simulation input were presented in Chapter 5.3. 

Descriptions of these IECC strategies and combinations are shown in Table 5.5.  

  
 
 

Table 5.5   Summary of the IECC Strategies 

Description 
Strategy IECC Strategy 

Base Case Modified Base Case 
1 Use Houston weather file On-site weather Houston weather 
2 Strategy 1 + SEER 13 SEER 10.5 SEER 13 

3 Strategy 2 + Duct insulation R-6 of the supply and 
return duct  

R-8 for the supply duct 
and R-4 for the return 
duct 

4 Strategy 3 + Low-e window Double pane clear 
glass 

Double pane low-e 
glass 

5 Strategy 4 + Setting temperature 
74ºF for summer and 
winter setting 
temperature  

68 ºF for winter and 78 
ºF for summer with 5 
ºF set back temperature 
from 1 to 6 in the 
morning 

6 Strategy 5 + Internal Load 

LIGHTING-W/SQFT 
= 0.892 and 
EQUIPMENT-
W/SQFT = 0.552 with 
different schedule 

LIGHTING-KW = 0.44 
and EQUIPMENT-KW 
= 0.44 
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 Figures 5.5 and 5.6 shows the calibrated simulation and measured results from the case-

study house, and the IECC-compliant simulation results.  

 Since the IECC-compliant house simulation is performed using Houston TMY2 weather 

file and the case-study house simulation uses the on-site measured weather file, strategy 1 starts 

from changing weather file from on-site measured weather file to Houston TMY2 weather file 

(Figure 5.7 for electricity use and Figure 5.8 for natural gas use). This change results in an 

increase of the total electricity consumption by 2.6 percent and a decrease of total natural gas 

consumption by 6.2 percent. Strategy 2 aims to increase the SEER of air conditioner from 10.5 

to 13, since the 2000/2001 IECC provides 13 as a SEER of the air conditioner (Figure 5.9 for 

electricity use and Figure 5.10 for natural gas use). The results show a decrease in the total 

electricity consumption by 5.9 percent but no change of total natural gas consumption because 

SEER affects only cooling electricity energy use. 

 Strategy 3 adds the duct insulation level on the strategy 2 by changing the supply and 

return duct of R-6 to the supply duct of R-8 and the return duct of R-4 (Figure 5.11 for electricity 

use and Figure 5.12 for natural gas use). The results show a decrease of the electricity 

consumption by 0.5 percent and accumulated decrease of 6.4 percent from the strategy 2. For 

natural gas, there were a 0.3 percent of decreases in the natural gas consumption and 6.5 percent 

of accumulated natural gas consumption from the strategy 2. Changing insulation level (from R-

6 for supply and return to R-8 for supply and R-4 for return) to the IECC level doesn’t 

significantly reduce the energy consumption. 

In the strategy 4, there was a change in window thermal properties from the double pane 

clear glass to the double pane low-e glass (Figure 5.13 for electricity use and Figure 5.14 for 

natural gas use). This change decreases 3.5 percent from strategy 3 results and accumulates 10 

percent decrease of the electricity use. For the natural gas use, the window property increases the 
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gas usage by 5.1 percent on the strategy 3 and accumulates 1.4 percent increase. Since the 

double pane low-e window blocks the heat gain from solar energy, it is helpful in decreasing the 

cooling loads. However, it also has the negative effect of increasing heating loads. 

Strategy 5 changes the set point temperature for cooling and heating (Figure 5.15 for 

electricity use and Figure 5.16 for natural gas use). According to the 2000/2001 IECC, 68 ºF for 

winter and 78 ºF for summer with 5 ºF set back temperature are recommended, while the case-

study house sets to 72 ºF for the cooling and heating set point temperature. This change results in 

significant decrease for the electricity and natural gas use. For the electricity, this change adds 

14.5 percent of decrease on the strategy 4 results and the total decrease shows 24.7 percent. For 

the natural gas use, this change also adds 14.6 percent of decrease on the strategy 4 and 16 

percent of the total decrease. It is found that the set point temperature of the heating and cooling 

is the most effective strategy for the case-study house. 

Strategy 6 changes internal loads to match the IECC (LIGHTING-KW = 0.44 and 

EQUIPMENT-KW = 0.44). This modification increases the electricity consumptions due to 

increase in the internal load, while decrease natural gas consumption (Figure 5.17 for electiricy 

use and Figure 5.18 for natural gas use). Figures 5.19 and 5.20 show the total results due to each 

strategy. From this figure, ‘IECC’ refers to IECC-compliant house simulation and ‘Habitat’ is 

the calibrated simulation result of the base-case house. 
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Figure 5.5   Measurement and calibration results of the electricity 
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Figure 5.6   Measurement and calibration results of the natural gas 
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Figure 5.7   Comparison between the IECC and strategy #1 of electricity 
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Figure 5.8   Comparison between the IECC and strategy #1 of natural gas 
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Figure 5.9   Comparison between the IECC and strategy #2 of electricity 
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Figure 5.10   Comparison between the IECC and strategy #2 of natural gas 
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Figure 5.11   Comparison between the IECC and strategy #3 of electricity 
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Figure 5.12   Comparison between the IECC and strategy #3 of natural gas 
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Figure 5.13   Comparison between the IECC and strategy #4 of electricity 
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Figure 5.14   Comparison between the IECC and strategy #4 of natural gas 
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Figure 5.15   Comparison between the IECC and strategy #5 of electricity 
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Figure 5.16   Comparison between the IECC and strategy #5 of natural gas 
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Figure 5.17   Comparison between the IECC and strategy #6 of electricity 
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Figure 5.18   Comparison between the IECC and strategy #6 of natural gas 
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Figure 5.19   One-year electricity use of each simulation 
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Figure 5.20   One-year natural gas use of each simulation 
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 Table 5.6 shows a summary of the statistics of CV(RMSE) and MBE as adding each 

strategy to the base-case house. Figures 5.21 through 5.23 show the CV(RMSE) and MBE of 

electricity use, natural gas and total energy use graphically. From Table 5.6, the results can be 

seen to show that the base-case house used more electricity by approximately 7.6% (the 

CV(RMSE) was 37.9%, and MBE was -8.3%), natural gas by 49.06% (the CV(RMSE) was 

75.1%, and MBE was -53.5%) and total of (electricity and natural gas) by 28.3% (the 

CV(RMSE) was 56.5%, and MBE was -30.9%). 

 After 6 strategies that are compliant with the 2000/2001 IECC were applied to the base-

case simulation model, the results showed that base-case model was determined to have a 7.5% 

CV (RMSE) and a 2.3% MBE for electricity use, a 21.7% CV(RMSE) and -21.94% MBE for 

natural gas use, and 14.6% CV(RMSE)  and -9.84% MBE for total energy use (electricity and 

natural gas). 

 From the comparison results, if the base-case house was followed by the 2000/2001 

IECC, the energy use of electricity and natural gas use could be reduced by 9.2% for electricity 

use and 20.0% for natural gas use. 

 
 
 

Table 5.6   Each strategy statistics summary 

Difference (%) CV(RMSE) % MBE % Difference (%) CV(RMSE) % MBE % Difference (%) CV(RMSE) % MBE %
Base Case 7.56 37.89 -8.25 49.06 75.11 -53.52 28.31 56.50 -30.88
Strategy #1 10.33 41.77 -11.27 39.18 50.51 -42.74 24.76 46.14 -27.01
Strategy #2 1.23 30.55 -1.34 39.18 50.51 -42.74 20.20 40.53 -22.04
Strategy #3 0.64 29.87 -0.70 38.79 49.89 -42.31 19.71 39.88 -21.51
Strategy #4 -3.12 26.22 3.41 50.51 69.04 -55.10 23.69 47.63 -25.84
Strategy #5 -18.83 20.69 20.54 24.60 27.50 -26.84 2.89 24.09 -3.15
Strategy #6 -2.08 7.47 2.26 20.11 21.68 -21.94 9.02 14.58 -9.84

Electricity Natural Gas Average
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Figure 5.21   Each strategy graphical summary of electiricy use 
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Figure 5.22   Each strategy graphical summary of natural gas use 
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Figure 5.23   Each strategy graphical summary of total energy use 

 
 
 

5.2 Data Analysis Tasks for Pre-Calibration of the Case-Study House 

 Data analysis tasks required to improve the quality of the final calibration were: 1) a 

investigation of a conditions space and an unconditioned space (attic) temperature patterns, and 

annual energy consumptions using the whole year measured data, 2) a characterization of the 

thermostat setting of the case-study house for a two-week cooling and two-week heating period, 

and 3) a investigation of the duct heat loss to the unconditioned space using clear days. The two-

week calibration period of cooling (August 1 to August 14, 2004) and heating (December 18 to 

December 31, 2004) period were shown in Figures 5.24 and 5.25. 
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5.2.1 Measured Data for the Whole Year 

 The case-study house consists of a conditioned space, an unconditioned space (attic), 

and a duct system located in the unconditioned space. Thus, measurements of thermal conditions 

and energy consumption of the case-study house were performed for the purpose of investigating 

the duct heat loss / gain to the unconditioned space and the pattern of energy use.   

 Figure 5.24 shows the measured attic, indoor and outdoor temperature as well as heating 

and cooling energy use for the period of January 1 to December 31, 2004. The attic temperature 

covers a wider range than that of the outdoor temperature, while the indoor temperature 

(conditioned space) is in a narrow range between 70 ºF and 80 ºF. It can be clearly seen that the 

cooling energy use increases during the summer period due to the air conditioner load. Also, the 

heating energy use increases during the winter period due to the use of the gas furnace. 

Summertime gas use is considerable due to domestic water heating, cooking and five pilot lights 

(furnace, DHW and stove-3).  

 Figure 5.25 shows the temperature characteristics of the attic, supply, duct (close to 

diffuser) temperature, and the temperature difference (diffuser temperature – supply 

temperature) to investigate the duct heat / gain in the attic space. The detail measurement 

methods are explained in the next Section 5.1.5. In this plot, the negative value of the 

temperature difference between the duct (close to diffuser) and the supply temperature indicates 

that there is the heat loss to the attic space because the attic temperature is lower than the supply 

temperature. On the other hand, the positive value of temperature difference denotes that there is 

the heat gain from the attic space because the attic temperature is higher than the supply 

temperature.  
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 Therefore, for the heating season (January, February, November and December), the 

negative values were used in the analysis. The positive values are used for the cooling season 

from May to October. 

5.2.2 Temperature Profiles of the Conditioned Zone and Unconditioned Zone for the 

Summer Period 

 To characterize the thermostat settings of the conditioned space (i.e., the living space of 

the case-study house) and investigate the temperature pattern of the unconditioned space (i.e., the 

attic space of the case-study house), an examination of the conditioned and unconditioned space 

temperatures was performed. This examination investigates the minimum, maximum values and 

the range of temperatures for the study period.  
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Figure 5.24   Measured attic, indoor, outdoor temperature, and heating and cooling energy 
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Figure 5.25   Measured attic, supply and duct temperature, and difference between duct and supply temperature 
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 Figures 5.26 and 5.27 illustrate the outdoor environmental conditions and the 

comparison of the conditioned space and outdoor temperatures during the period August 1 and 

August 14, 2004. An examination of the data for this cooling period shows that the outdoor 

temperature range is 33ºF (from 65ºF to 98 ºF). The maximum indoor temperature is 79ºF and 

the minimum indoor temperature is 70ºF. The average temperature during this period is 74ºF. 

The maximum hourly solar radiation measurement for the period was 995 W/m2. For ten days in 

the period, the solar radiation measurements were in excess of 800 W/m2. Over the period, the 

wind measurements varied between 0 to 21mph. The ground temperature for the period 

fluctuated between 73ºF and 79ºF. Figure 5.28 presents a 24-hour profile of the indoor 

temperature for the two-week period. Using the statistical procedures developed by Abushakra et 

al. (2001), the maximum, minimum, 90th, 75th, 50th, 25th, and 10th percentiles of the temperatures 

were developed for this period. Using the 50th percentile to evaluate the temperature, the lowest 

indoor temperature was 73ºF at the 7:00 a.m. and the highest values were 74ºF at 4:00 p.m. The 

average temperature (71.4ºF) measured from the case-study house for one year was used on 

LOADS part of DOE-2 to calculate the HVAC size and the average temperature (74.3ºF) 

measured from the case-study house for two weeks provides a characterization of the thermostat 

settings for the house, which was used for the SYSTEMS part on the DOE-2 input file. 
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Figure 5.26   The indoor, outdoor temperature and solar radiation for the period August 1 to 
August 14, 2004 
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Figure 5.27   The ground temperature and wind speed for the period August 1 to August 14, 
2004 
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Figure 5.28   Indoor temperature profile for the period August 1 to August 14, 2004 

  
 
 
 Since the duct system is located in the attic space at the case-study house, the attic 

temperature for the same period of the conditioned space was also analyzed to investigate the 

temperature pattern. Figure 5.29 illustrates the attic and outdoor temperature measurements. The 

maximum attic temperature during this period was 131 ºF and the minimum value was 63 ºF, a 

range of 68ºF. The maximum temperature difference between attic space and outdoor was 34 ºF 

at 2:00 p.m. and the minimum temperature difference is -5ºF at 7:00 a.m. 

 This high attic temperature can cause heat gain from the attic space to the duct system 

because the duct system is located in the attic space. Figure 5.30 shows the attic temperature 

profile for the period. By examining the 50th percentile, it was found that the lowest mean value 

was 72ºF at 6:00 a.m. and the highest value was 117 ºF at 3:00 p.m. 
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Figure 5.29   The attic and outdoor temperature for the period August 1 to August 14, 2004 
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Figure 5.30   Attic temperature profile for the period August 1 to August 14, 2004 
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5.2.3 Temperature Profiles of the Conditioned Zone and Unconditioned Zone for the 

Winter Period 

 An examination of the winter conditions was made for the two-week calibration period. 

Figures 5.31 and 5.32 illustrate the environmental conditions for the two-week winter calibration 

period December 18 to December 31, 2004. The maximum outdoor temperature measurements 

during this period was 77.2ºF and the minimum outdoor temperature was 25.3ºF. This represents 

a temperature range of 51.9ºF and an average outdoor temperature of 50.3ºF. The maximum 

hourly solar radiation measurement for the period was 675 W/m2. For nine days in the period, 

the solar radiation measurements were in excess of 600 W/m2. Over the period, the wind 

measurements varied between 0 to 20.7 mph. The ground temperature for the period fluctuated 

between 65.4 ºF and 74.4 ºF. 

 Figure 5.31 illustrates the comparison of the indoor and outdoor temperatures for the 

period December 18 to December 31, 2004. The indoor temperature shows a larger amount of 

fluctuation in range than during the summer period. The maximum indoor temperature was 78.7 

ºF and the minimum indoor temperature was 61.0ºF. This represented a range of 17.7ºF and an 

average of 74.3ºF. 

 The profile of the indoor temperature during this two-week period is illustrated in Figure 

5.33. An examination of the 50th percentile for the period shows that the maximum value was 

76.1 ºF at 7:00 p.m. and the minimum value was 72.4 ºF at 4:00 a.m. The one-year measured 

average temperature (71.4ºF) from the case-study house was used on LOADS part of DOE-2 as 

the summer period. The average temperature measured from the case-study house for two weeks 

provides a characterization of the thermostat settings for the house, which was used for the 

SYSTEMS on the DOE-2 input file. 
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Figure 5.31   The indoor, outdoor temperature and solar radiation for the period December 18 
to December 31, 2004 
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Figure 5.32   The ground temperature and wind speed  for the period December 18 to 
December 31, 2004 
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Figure 5.33   Indoor temperature profile for the period December 18 to December 31, 2004 

 
 
 
 The case-study house has the duct system in the attic space. The attic temperature for the 

same period of the conditioned space for the winter period was also analyzed to investigate the 

temperature pattern. Figure 5.34 illustrates the attic and outdoor temperature measurements. The 

maximum attic temperature during this period was 87ºF and the minimum value was 33ºF, a 

range of 54ºF. The maximum temperature difference between attic space and outdoor was 30ºF 

at 2:00 p.m. and the minimum temperature difference is -3ºF at 9:00 a.m. This low attic 

temperature can cause heat loss from the duct system to the attic space since the duct system is 

located in the attic space. Figure 5.35 shows the attic temperature profile for the period. Using 

the 50th percentile, it was found that the lowest value was 44ºF at 7:00 a.m. and the highest value 

was 80ºF at 2:00 p.m. 
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Figure 5.34   The attic and outdoor temperature for the period December 18 to December 31, 
2004 
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Figure 5.35   Attic temperature profile for the period December 18 to December 31, 2004 
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5.2.4 Measured Duct Heat Losses 

 In order to measure the duct loss in the attic space in detail, three measured temperatures 

from the return, supply and end of duct (diffuser) were used. Several clear days (Figure 5.28) 

were selected to investigate the duct heat gain from the attic space more clearly. Figure 5.36 

shows the location of sensor. The area of supply duct is 170 ft2, return duct is 60 ft2, and the 

insulation level of the supply and return side is R-6. 

 

 

 

Figure 5.36   The location of sensor on case study house 
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 Figure 5.37 illustrates the measured solar radiation, attic and OA temperature on clear 

days, and Figure 5.38 shows the air conditioner use of the same clear days. The maximum solar 

radiation measurement for several clear days was 975 W/m2. For clear days, the solar radiation 

measurements were in excess of 900 W/m2. The maximum hourly outdoor temperature for the 

same period was 99.2ºF, and the minimum measured outdoor temperature was 52.4ºF, 

representing a range of 46.8ºF with an average outdoor temperature of 75.6ºF. The maximum 

attic temperature was 132.9ºF. The minimum attic temperature was 62.9ºF. This represents a 

temperature range of 70ºF, and average attic temperature on clear days of 91.5ºF. During this 

period, the maximum attic temperature and outdoor temperature was recorded on July 14. It 

corresponds to the day when the air conditioner showed the maximum electricity use for the 

cooling. 

 An examination of the data for the measured air conditioner electricity use for the same 

days showed that the maximum air conditioner electricity use was 3.1 kWh, occurring at 3:00 

p.m. The average air conditioner during this period was 1.6 kW. 
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Figure 5.37   Measured solar radiation, attic and OA temperature on clear days 
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Figure 5.38   Measured AC and AC blower electricity (AC + AC blower) use 

 
 
 
 Figure 5.39 illustrates the relationship between the attic temperature and ∆t (the duct 

temperature – the supply temperature). The positive value of ∆t (the duct temperature – the 

supply temperature) represents heat gain from the attic space to the duct system, while the 

negative value indicates heat loss to the attic space. Figure 5.39 shows that the maximum ∆t (the 

duct temperature – the supply temperature) was 9.8 ºF and the average ∆t was 3.2 ºF at the 

selected days. For the peak operation period from selected days, the maximum ∆t was 9.1 ºF and 

the average ∆t was 5.5 ºF. According to the average ∆t, the duct heat gain is more serious at the 

peak operation period from selected days than other periods from selected days relatively. The 

pattern of the plots also shows the linear relationship between attic temperature and ∆t (duct 

temperature – supply temperature) as the attic temperature reaches high. 

 Therefore, the unconditioned space with duct system such as attic space plays a very 

significant role for duct heat loss or gain and should be recognized important in terms of thermal 

properties of the attic space or the duct insulation levels. 

Peak operation period.
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Figure 5.39   Plots of measured attic temp. vs. the difference between duct and supply 
temperatures 
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5.3 Base-Case Model Calibration 

 In order to develop a calibrated DOE-2 simulation of the case-study house, a series of 

simulations were used to assess the improved accuracy. The calibration process included the 

calibration of the attic temperature, the zone temperature, the electricity use and the natural gas 

use. The calibration process for the attic and zone temperatures were performed using hourly 

measured and simulated data. In this simulation, the input model was divided into two adjacent 

zones, a living space and an attic space. In the base-case model calibration, an accurate attic 

temperature is critical since the attic space is the direct environmental condition for the duct 

system. Therefore, the hourly attic and indoor temperatures were calculated and reported by 

using the DOE-2 hourly report capability. Table 5.7 shows the attic temperature calibration 

process. Calibration process started from quick mode which used only U-value of building 

envelopes. Then layered materials, which were explained at Chapter 4.2.3.2, were added to base-

case model. Finally, several air change rates in the attic space were applied to achieve the 

accurate attic temperature. 

 
 
 

Table 5.7   Attic temperature calibration process 
Run No. Summer Period Winter Period 

1 Quick mode, Air-change = 0 Quick mode, Air-change = 0 

2 Thermal mass mode, Air-change = 0, Infiltration 
Schedule = 1 

Thermal mass mode, Air-change = 0, Infiltration 
Schedule = 1 

3 Thermal mass mode, Air-change = 5, Infiltration 
Schedule = 1 

Thermal mass mode, Air-change = 5, Infiltration 
Schedule = 1 

4 Thermal mass mode, Air-change = 10, Infiltration 
Schedule = 1 

Thermal mass mode, Air-change = 10, Infiltration 
Schedule = 1 

5 Thermal mass mode, Air-change = 15, Infiltration 
Schedule = 1 

Thermal mass mode, Air-change = 15, Infiltration 
Schedule = 1 

6 Thermal mass mode, Air-change = 20, Infiltration 
Schedule = 1 

Thermal mass mode, Air-change = 20, Infiltration 
Schedule = 1 

7 Thermal mass mode, Air-change = 25, Infiltration 
Schedule = 1 

Thermal mass mode, Air-change = 25, Infiltration 
Schedule = 1 

8 Thermal mass mode, Air-change = 30, Infiltration 
Schedule = 1 

Thermal mass mode, Air-change = 30, Infiltration 
Schedule = 1 

9 Thermal mass mode, Air-change = 25, Infiltration 
Schedule = (1,7) (1) (8,20) (0.20) (21,24) (1) 

Thermal mass mode, Air-change = 25, Infiltration 
Schedule = (1,7) (0.2) (8,17) (0.40) (18,24) (0.2) 
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5.3.1 Attic and Indoor Temperature Calibration 

 The calibrations for attic and indoor temperature were performed using the developed 

initial simulation input file of the case-study house. Attic temperature calibration was especially 

crucial because the well-calibrated attic temperature was the direct environmental conditions to 

the duct model in the attic space. 

The hourly attic temperature comparisons shown in Figure 5.40 demonstrate that there 

were wide differences between the uncalibrated simulated and the measured attic temperatures. 

The uncalibrated, simulated attic temperatures from Figure 5.40, which used overall U-value of 

the attic space and pre-calculated ASHRAE weighting factors showed constant patterns 

compared to the measured attic temperatures. 

Figure 5.41 shows the uncalibrated simulation (run #1) and measured results of the 

indoor temperature for the period August 1 to August 14, 2004 

The calibration results of the attic temperature and indoor temperature for the period of 

August 1 to August 14, 2004 (summer season) are illustrated in the Figures 5.41 to 5.43. Figure 

5.44 includes the Coefficient of Variation for the Root Mean Squared Error (CV(RMSE)) and 

the Mean Biased Error (MBE).  

 For the first simulation of the attic temperatures, the Coefficient of Variation for the 

Root Mean Squared Error (CV(RMSE)) was 14.5 %, and the Mean Biased Error (MBE) was 

6.9 %. For the living space, CV(RMSE) was 2.5 %, and the MBE -1.3 %. In run #2, actual 

layered materials with DOE-2’s custom weighting factors were added to the base-case model, 

called the “thermal mass mode”, with the same infiltration rate as the quick mode model. This 

caused the CV(RMSE) and MBE for the attic temperature to be reduced from 14.5 % to 8.0 % 

and 6.9 % to 2.0 %.  
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These results showed that using layered materials with DOE-2’s custom weighting 

factors predicted more accurately than using overall U-value and pre-calculated ASHRAE 

weighting factors.  

 For the conditioned space, in general, the model predicted the indoor temperatures fairly 

well since the indoor temperature were usually constant over the year. From run #3 and run #7, it 

was found that an infiltration schedule of 25 ACH for the nighttime (from 9:00 p.m. to 7:00 

a.m.) and 5 ACH for the daytime (from 8:00 a.m. to 8:00 p.m.) yielded the best results. 

Therefore, a modified infiltration schedule was used on run #9, as shown in Figures 5.42 and 

5.43 that the simulated temperatures were significantly closer to the actual data than the results 

of run #1 (Figure 5.40). In terms of statistical analysis, the CV(RMSE) has decreased from 

14.5 % to 5.9 %, and MBE also has decreased from 6.9 % to 0.1 %. 
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Figure 5.40   The uncalibrated simulation (run #1) and measured results of the attic 
temperature for the period August 1 to August 14, 2004 
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Figure 5.41   The uncalibrated simulation (run #1) and measured results of the indoor 
temperature for the period August 1 to August 14, 2004 
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Figure 5.42   The calibrated simulation (run #9) and measured results of the attic temperature 
for the period August 1 to August 14, 2004 
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Figure 5.43   The calibrated simulation (run #9)  and measured results of the indoor 
temperature for the period August 1 to August 14, 2004 
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Figure 5.44   CV(RMSE) and MBE of attic and indoor temperature calibration 
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 The calibration results of the simulation of the attic temperature and indoor temperature 

for the period December 18 to December 31, 2004 (winter season) are also performed using the 

similar procedure in the calibration of the summer period. 

 From Figures 5.45 and 5.46, the uncalibrated attic and indoor temperatures which were 

performed using the quick mode, showed constant patterns as the summer period simulation. For 

the first simulation of the attic temperatures for the winter period, the Coefficient of Variation 

for the Root Mean Squared Error (CV(RMSE)) was 14.1 %, and the Mean Biased Error (MBE) 

was -1.7 %. For the living space, CV(RMSE) was 3.3 %, and the MBE was -0.4 %. In run #2, 

actual layered materials were modeled. The CV(RMSE) for attic temperature decreased to 

13.71 % for CV(RMSE), but MBE increased to -4.7 %. Although the MBE of the attic 

temperatures of run #2 increased, the pattern of the attic temperatures were close to the measured 

attic temperatures. The reason for the MBE increase is that the measured attic temperature for 

winter period did not fluctuate as did for the summer period. 

 From run #3 and run #4, it was found that an ACH of 5 for the nighttime (from 6:00 p.m. 

to 7:00 a.m.) and ACH of 10 for the daytime (from 8:00 a.m. to 5:00 p.m.) yielded the best 

results. Therefore, the modified infiltration schedule was used on run #9. Figures 5.47 and 5.48 

show that the simulated temperatures were closer to the actual data than the results of run #1 

(Figures 5.45 and 5.46). In terms of statistical analysis, the CV(RMSE) has decreased from 

14.1 % to 10.1 %, but MBE has increased from -1.7  % to 6.5 %, which were considered 

statistically acceptable (Figure 5.49). 
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Figure 5.45   The uncalibrated simulation (run #1) and measured results of the attic 
temperature for the period December 18 to December 31, 2004 
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Figure 5.46   The uncalibrated simulation (run #1) and measured results of the indoor 
temperature for the period December 18 to December 31, 2004 
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Figure 5.47   The calibrated simulation (run #9) and measured results of the attic temperature 
for the period December 18 to December 31, 2004 
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Figure 5.48   The calibrated simulation (run #9) and measured results of the indoor 
temperature for the period December 18 to December 31, 2004 



 

 

193

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

15.00

20.00

#1 #2 #3 #4 #5 #6 #7 #8 #9

Run Number

Pe
rc

en
t (

%
)

CV(RMSE) Attic Temp. MBE  Attic Temp. CV(RMSE) Indoor Temp. MBE  Indoor Temp.
 

Figure 5.49   CV(RMSE) and MBE of attic and indoor temperature calibration 
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5.4 Analysis of the Results 

 In order to apply new simulation methodologies such as duct model, new system / 

domestic hot water heater performance curves and new underground surface simulation method, 

the DOE-2.1e (version 119) building simulation program was used. This chapter discusses the 

results of new simulation methodologies using the base-case house simulation model. 

5.4.1 Duct Model 

 Once the calibration of the attic temperature and the indoor temperature were completed, 

duct model using the ASHRAE 152-2004 (Chapter 4.2.3.3) was incorporated into the calibrated 

DOE-2 model. As mentioned before, the exact simulation of the attic temperatures was critical, 

since attic temperature was the direct environmental condition of the duct systems.  

 Figure 5.50 illustrates temperatures, and cooling and heating energy over the entire year 

before duct model is incorporated into the temperature calibrated simulation models. The results 

show that the measured maximum cooling energy was 3.26 kW (11110.70 Btu/hr), but the 

simulated maximum cooling energy was 1.97 kW (6729.75 Btu/hr), since heat gains to duct 

system from attic space were not considered at this simulation. On average, the measured 

cooling energy use was 0.72 kW for one-year, but the simulated cooling energy use was 0.46 kW, 

which was lower than the measured cooling energy use. From two-week data from August 1 to 

August 14, 2004 (Figure 5.51), the results show the range of 0.44 kW to 3.20 kW for the 

measured results and 0.33 kW to 2.48 kW for the simulation results in the cooling energy use, 

which indicate that there is major difference between the measured and simulated cooling energy 

use (i.e., the simulated cooling energy had less energy consumption than the measured cooling 

energy.). 
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Figure 5.50   Temperature and cooling energy plots without duct model for the whole year 
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Figure 5.51   Cooling energy plots without duct model for two weeks (08/01/2004 – 
08/14/2004) 
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 In terms of statistic analyses, the Coefficient of Variation for the Root Mean Squared 

Error (CV (RMSE)) was 40.24 %, and the Normalized Mean Biased Error (MBE) was -29.10 % 

which were statistically inappropriate. 

 Figures 5.52 and 5.53 present results after duct model was incorporated to the DOE-2 

simulation model. From a one-year plot (Figure 5.52), it was found that simulated cooling 

energy use increased compared to a one-year plot (Figure 5.50) which the duct model was not 

applied to the DOE-2 simulation model.  

 On average, the simulated average cooling energy increased from 0.46 kW to 0.66 kW 

after the duct model was added to DOE-2 model. As shown in Figure 5.53, the range of 

simulated cooling energy was 0.38 kW to 3.44 kW after the duct model was incorporated into 

DOE-2 input, while the range of simulated cooling energy was 0.33 kW to 2.48 kW before 

incorporating the duct model into DOE-2 input.  

 From this plot, the amounts of cooling energy use were closer to the measured cooling 

energy use than the simulation results before duct model was applied to the DOE-2 simulation 

model. Furthermore, the Coefficient of Variation for the Root Mean Squared Error (CV 

(RMSE)) was reduced from 40.24% to 25.4 %, and the Normalized Mean Biased Error (MBE) 

was reduced from -29.10% to -8.25 %. 
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Figure 5.52   Temperature and cooling energy plots with duct model for whole year 
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Figure 5.53   Cooling energy plots with duct model for two weeks (08/01/2004 – 08/14/2004)  
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5.4.2 Application of New A/C Curves 

 As mentioned in the literature review, Henderson et al. (2000) developed several new, 

improved part load performance curves for air conditioners in the RESYS (residential air 

conditioning system) system in DOE-2. According to LBNL (2000), a new AC performance 

curve was added for DOE-2.1e version 107 that includes Henderson el al.’s different curves to 

replace the old DOE-2 performance curves. For an additional test, the old AC performance curve 

(old SDL-C17) was also tested to compare with the new curve (new SDL-C17). 

 In this chapter, the five AC performance curves, which were introduced at Chapter 

4.2.3.4 were simulated to investigate whether there are improvements in the accuracy of the 

simulation results. Figures 5.54 to 5.58 show two-week plots of the measured data and the 

calibrated simulation results according to the different types of curves. The maximum measured 

data for the A/C plus fan was 3.2 kW and the result using the new default curve (new SDL-C17) 

had the closest maximum values (3.4 kW) compared with the measured data. The poor A/C 

curve reached to the highest maximum value of 3.7 kW, and the new default A/C curve (new 

SDL-C17) resulted in the smallest maximum value of 3.4 kW, which is the closest to the 

measured data. The average electricity consumption of the new default curve (new SDL-C17) 

was 1.55 kW for the period and the old default curve (old SDL-C17) was 1.79 kW. This 

indicates that the current A/C system was considered more efficient. 

 In terms of statistical analysis, the range of the CV (RMSE) was between 24.7 % and 

25.4 %, which had little difference among the different curves. In the case of the MBE, the range 

was between -8.3 % and -0.79 %, and the typical A/C curve from Henerson et al. (2000) had the 

lowest value (-0.79 %). From the measured data, there were periods of time when the air 

conditioner electric consumptions dropped to “0” for no apparent reason. In this period, the 

resident seemed to have shut off the A/C manually, and data from this period made the CV 
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(RMSE) and the MBE worse, because the schedule of DOE-2 simulation was set to turn on A/C 

and it calculated the air conditioner electric consumption. 

 For the base-case house simulation, the typical A/C curve from Henderson et al. (2000) 

was used because the pattern and the maximum electricity consumption were the most close to 

the measured consumption and the CV (RMSE) and MBE showed the best results. 

5.4.3 Domestic Hot Water Method of National Renewable Energy Laboratory (NREL) 

 From Figure 5.2, an average base-line gas energy use of 58.2 kBtu/day was observed 

during the summer months in the case-study house. This gas use represented gas used by the 

DHW and pilot lights. In the case-study house, pilot lights were found in three locations 

including the gas-furnace, the DHW heater and the cooking equipment. Table 5.8 shows the 

possible DHW energy use according to the numbers of pilot lights. The DHW energy use 

(Btu/year) was calculated by subtracting use of the pilot lights from the base line use of the 

natural gas. If the gas use of the pilot light is 600 Btu/hr, then the DHW energy use was 

15,987,000 which was calculated as 21,243,000 Btu/year - (600 Btu/hr * 8,760 hr/year).  

 
 
 

Table 5.8   DHW energy use according to the use of the pilot lights 

Pilot light DHW energy use (Btu/year) 
No pilot light 21,243,000 

300 Btu/hr 18,615,000 
600 Btu/hr 15,987,000 
900 Btu/hr 13,359,000 
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Figure 5.54   Cooling energy with default A/C curve (new SDL-C17) 
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Figure 5.55   Cooling energy with old DOE-2.1e A/C curve (old SDL-C17) 
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Figure 5.56   Cooling energy with good A/C curve from Henderson et al. (2000) 



 

 

205

0

1

2

3

4

5

0 20 40 60 80 100 120

Outdoor Temperature (F)

H
ou

rly
 E

le
ct

ric
ity

 U
sa

ge
 (k

W
h/

h)

Measured Simulated

 

 

0

1

2

3

4

5

8/
01

/0
4 

1:
00

8/
01

/0
4 

20
:0

0

8/
02

/0
4 

15
:0

0

8/
03

/0
4 

10
:0

0

8/
04

/0
4 

5:
00

8/
04

/0
4 

24
:0

0

8/
05

/0
4 

19
:0

0

8/
06

/0
4 

14
:0

0

8/
07

/0
4 

9:
00

8/
08

/0
4 

4:
00

8/
08

/0
4 

23
:0

0

8/
09

/0
4 

18
:0

0

8/
10

/0
4 

13
:0

0

8/
11

/0
4 

8:
00

8/
12

/0
4 

3:
00

8/
12

/0
4 

22
:0

0

8/
13

/0
4 

17
:0

0

8/
14

/0
4 

12
:0

0

T ime

H
ou

rly
 A

ir 
Co

nd
iti

on
er

 E
le

ct
ric

ity
 U

se
  (

kW
h/

h)

Measured Simulated

 

Figure 5.57   Cooling energy with typical A/C curve from Henderson et al. (2000) 
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Figure 5.58   Cooling energy with poor A/C curve from Henderson et al. (2000) 
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Figure 5.59   CV (RMSE) and MBE according to the different A/C curves 
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Figure 5.60   BEPS results according to the different A/C curves 
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 The DHW energy use calculated with ASHRAE 90.2-2001, 8.9.2 was previously 

discussed in Chapter 4.2.3.5. In addition, the DOE-2 simulation results using the NREL method 

and the DOE-2 default were also discussed in Chapter 4.2.3.5. Table 5.9 shows the comparison 

results of each calculation method of the DHW energy use according to the different analysis of 

pilot lights. 

 
 
 

Table 5.9   Comparison of DHW energy use (Btu/year) 

Pilot light use DHW use ASHRAE 90.2-
2001, 8.9.2 

DOE-2 
(NREL) DOE-2 default 

No pilot light 21,243,000 

300 Btu/hr 18,612,000 

600 Btu/hr 15,984,000 

900 Btu/hr 13,356,000 

19,439,000 17,300,000 26,500,000 

 
 
 
 Figures 5.61 to 5.63 show the difference between the measured data and simulation 

results using the NREL method and the DOE-2 methods. The maximum difference between 

simulation result using the NREL method and the measured data was 29.5% when the pilot light 

use was 900 Btu/hr. The other differences were -7.1% for a 300 Btu/hr pilot light use and 8.2% 

for a 600 Btu/hr pilot light use.  

 The maximum difference between the ASHRAE 90.2-2001 value and the measured data 

was 45.6% when the pilot light use was 900 Btu/hr, and 4.5 % and 21.6% when the pilot light 

use was 300 Btu/hr and 600 Btu/hr, respectively. On the other hand, the previous DOE-2 DHW 
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calculation method with a tank loss of 3% shows quite a large difference between the measured 

data and the NREL method. When the pilot light used 300 Btu/hr, 600 Btu/hr and 900 Btu/hr, the 

difference was 42.4%, 65.8% and 98.4%, which were more than three times as large as the 

NREL method. Furthermore, the comparison using the ASHRAE 90.2-2001 also shows twice as 

much of difference between the NREL method and the measured data.  

 This analysis indicates that the previous DOE-2 method with the tank loss over-

estimated the DHW energy use. From the simulation results, the calculation using the NREL 

method was the most reasonable because the results from this method was the closest to the 

results of both the measured data and the ASHRAE 90.2-2001 calculations. 
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Figure 5.61   Comparison of DHW energy use (pilot light = 300 Btu/hr) 
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Figure 5.62   Comparison of DHW energy use (pilot light = 600 Btu/hr) 
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Figure 5.63   Comparison of DHW energy use (pilot light = 900 Btu/hr) 
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5.4.4 New Heat Flow Method for Underground Surface 

 In order to investigate a more accurate method to calculate the underground surface heat 

transfer, several simulations were performed using the DOE-2 program. Detailed methods of the 

base-case model and the DOE-2 simulation commands were previously discussed in Chapter 

4.2.3.6. Since the base-case house has three ground temperature sensors which are located at 

north, center and south side of the house under the slab of the house, these three measured 

temperatures were converted to monthly average temperatures and incorporated into DOE-2 

simulation using the GROUND-T DOE-2 keyword. Before converting three measured 

temperatures to the monthly average temperatures, the data verification process of the measured 

ground temperatures was performed.  

 As shown in Figures 5.64 and 5.65, the ground temperatures for the summer period 

fluctuated more than those for the winter period because hot solar radiation for the summer 

season affected the ground temperatures. Hourly ground temperature plots (Figure 5.66) for 

August showed obviously that the ground temperatures for the summer period had more 

fluctuated pattern than those for the winter period for December. In order to investigate the 

impacts due to the temperature increases because of the temperature fluctuations, two 

calculations were performed and compared including: 1) the monthly average temperatures 

before removing the fluctuated peak temperatures (Figure 5.66), and 2) the monthly average 

temperature after removing the fluctuated peak temperatures (Figure 5.67).  
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Figure 5.64   Three ground temperatures versus solar radiation for summer period 
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Figure 5.65   Three ground temperatures versus solar radiation for winter period 
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Figure 5.66   Monthly ground temperature plots for summer period (August, left) and winter period (December, right) 
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Figure 5.67    Hourly ground temperature plot for summer period (August) after removing the fluctuated peak temperatures. 
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 Table 5.10 showed the average temperatures of August from the calculations of three 

ground temperatures before and after removing the fluctuated peak temperatures. From this table, 

it was found that both calculated average temperatures were very similar and the temperature 

differences between two cases were in the range of 0.02 ºF to 0.05 ºF. Therefore, the monthly 

average temperatures before removing temperatures were used. 

 
 
 

Table 5.10   Monthly average ground temperatures for August before and after removing 
fluctuated temperature (°F) 

Location Before removing fluctuated  
temperatures  (°F) 

After removing fluctuated  
temperature  (°F) 

North 76.93 76.91 

Center 73.51 73.47 

South 78.15 78.10 

 
 
 
 Figure 5.68 presents the measured monthly ground temperatures (north, center, south 

and average of north, center and south side), return temperature and TRY ground temperature. 

From this plot, it was found that the center ground temperature showed lower for June, July, 

August and September for space cooling and higher temperature for January, February, 

November and December for space heating. Furthermore, the center ground temperature showed 

the similar pattern with the return temperature in the conditioned space.  

 In addition, for the summer period, the solar heat gain seemed to make the south side 

ground temperatures higher than the north side ground temperatures. However, for the winter 

period, the north side ground temperatures was slightly higher than the south side ground 

temperature, because the heating air from the HVAC system affected the north side ground 

temperature under the living room, which was close to the main entrance, while the heating air 



 

 

216

hardly reached to spot above the south side ground temperature sensor which was located under 

the closet between the bedrooms on the south side. 
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Figure 5.68   Measured ground temperatures 

  
 
 
 Simulations for underground surface included several methods: 1) with U-EFFECTIVE, 

with the ground temperature from a packed TRY weather tape with weather data corresponding 

to the measured energy use, 2) without U-EFFECTIVE, with the ground temperature from the 

packed TRY weather tape, 3) with U-EFFECTIVE, with the ground temperature from the 

measured north ground temperature, 4) with U-EFFECTIVE, with the ground temperature from 

the measured center ground temperature, 5) with U-EFFECTIVE, with the ground temperature 

from the measured south ground temperature, and 6) with U-EFFECTIVE, with the ground 

temperature from the measured average ground temperature (i.e., the average of north, south and 



 

 

217

center). Table 5.11 presents the simulation conditions with and without U-EFFECTIVE, and the 

run numbers which appear on Figures 5.69 to 5.74.  

 The comparison of the simulated monthly energy use from the six simulations and the 

measured data from the case-study house was performed to find the most accurate method. 

Figures 5.69 to 5.71 showed the results of monthly natural gas use from the six simulations and 

from the case-study site data. Figures 5.72 to 5.74 show the results of the monthly electricity use. 

Data presented in the figures were in the unit of energy use per month. 

 
 
 

Table 5.11   Simulation conditions of underground heat transfer 

Run No. Description 

1. Measured data from the case-study house. 

2. Simulation with U-EFFECTIVE, with TRY ground temperature. 

3. Simulation without U- EFFECTIVE, with TRY ground temperature. 

4. Simulation with U- EFFECTIVE, with measured north ground temperature. 

5. Simulation with U- EFFECTIVE, with measured center ground temperature. 

6. Simulation with U- EFFECTIVE, with measured south ground temperature. 

7. Simulation with U- EFFECTIVE, with measured average ground temperature. 
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Figure 5.69   Monthly natural gas use from the measured data of the case-study house and 
DOE-2 simulations 
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Figure 5.70   Monthly natural gas use from the measured data of the case-study house and 
DOE-2 simulations vs. average monthly outdoor temperature 
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Figure 5.71   Total natural gas use and the difference from the measured data 
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Figure 5.72   Monthly electricity use from the measured data of the case-study house and 
DOE-2 simulations 
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Figure 5.73   Monthly electricity use from the measured data of the case-study house and 
DOE-2 simulations vs. average monthly outdoor temperature  
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Figure 5.74   Total electricity use and the difference from the measured data 
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 As seen from the figures above, there were significant changes between simulating the 

model using the U-EFFECTIVE versus the simulations without U-EFFECTIVE. Results show 

that monthly gas use from simulation with U-EFFECTIVE and TRY ground temperatures (run 

no. 2) was close to the measured data, and obviously lower than the gas uses using the previous 

method without U-EFFECTIVE, although there was not a significant difference of electricity 

uses according to each simulation method. The simulation with U-EFFECTIVE and ground 

temperature from TRY weather file shows the least difference (-5.5%) from the measured gas 

use from the case-study house, and simulation result using the previous method without U-

EFFECTIVE shows the largest difference (43.6%). In the case of the electricity use, the 

simulation with U-EFFECTIVE and ground temperature from TRY weather file and simulation 

with the previous method show the least difference (3.3 %). However, none of simulation 

methods made a significant difference toward improving the simulation results of the electricity 

use of the case-study house.  

 In terms of statistical analysis (from Figures 5.75 to 5.77), for the natural gas uses 

(Figure 5.75), the CV (RMSE) was 30.68% and the MBE was -5.98% for run no. 2, which was 

simulation with U-EFFECTIVE and TRY ground temperatures. This run showed the closest to 

the measured data. In run no. 3 which was simulation without U-EFFECTIVE, the CV (RMSE) 

was 84.25% and the MBE was 47.52%, which showed the largest CV (RMSE) and MBE.  

 For the electricity uses (Figure 5.76), there was no significant improvement, but 

statistically accepted for all runs. The CV (RMSE) was in the range of 10.0 % and 16.1% and the 

MBE was in the range of 3.47 % and 5.57 %.  
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 For the total energy use (Figure 5.77), the run no. 2, which was simulation with U-

EFFECTIVE and TRY ground temperatures showed the least CV (RMSE) and MBE as the 

natural gas uses. The CV (RMSE) was 17.54% and the MBE was -0.97. In the run no. 3, which 

was simulation without U-EFFECTIVE, the results showed the largest CV (RMSE) and the 

MBE, which was 43.54% and 24.65%, respectively. In addition, although the simulations with 

U-EFFECTIVE and the measured temperatures (from run no. 4 to run no. 7) showed the more 

reasonable results than the simulation results without U-EFFECTIVE, the simulation with the U-

EFFECTIVE and TRY ground temperatures showed the best results. 

 These results do suggest that the use of U-EFFECTIVE in defining the underground 

surface heat transfer makes a significant difference in improving the accuracy of the simulation 

of the case-study house. 
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Figure 5.75   CV (RMSE) and MBE of natural gas uses 
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Figure 5.76   CV (RMSE) and MBE of electricity uses 
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Figure 5.77   CV (RMSE) and MBE of total energy uses 
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5.5 Summary 

 This chapter has presented the results of the simulation of the case-study house including 

the calibration of the base-case model against the measured data. This chapter also showed how 

new improved simulation methods such as a duct model, improved system performance curves, 

an  improved domestic hot water model, and an improved underground heat transfer model were 

utilized and incorporated into the base-case simulation model to improve the case-study 

simulation model. In order to verify the results from the simulation, the statistical method of the 

CV (RMSE) and the MBE were used to compare the results with the measured data from the 

case-study house. 
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CHAPTER VI 

RESULTS OF THE SIMULATION OF THE IECC-COMPLIANT HOUSE 

6.1 Analysis of Results 

 As discussed in Section 4.3.6.6, simulations were performed for seven construction wall 

types (Table 6.1): 1) a quick mode wall that uses U-values instead of the layered materials, 2) a 

2x4, wood-framed wall with studs 16” O.C. with insulation between the studs, 3) a 3” facia brick 

wall with 2x4 wood-framed with studs 16” O.C. with insulation between the studs, 4) an 8” 

concrete block wall with perlite fill in the cells of the block and insulation between the block and 

the interior gypsum board, 5) an 8” concrete block wall with perlite and concrete fill in the cells 

of the block and insulation between the block and the interior gypsum board, 6) an 8” concrete 

block wall with perlite fill in the cells of the block and insulation outside the block, covered by 

stucco, and 7) an 8” concrete block with perlite and concrete fill in the cells of the block and 

insulation outside the block, covered by stucco. The primary purpose of this exercise was to 

investigate the thermal mass effect according to the 2000/2001 IECC.  
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Table 6.1   Different construction types for each simulation 

No R-value 
hr-ft2-°F/Btu 

Uw 
Btu/ hr-ft2-°F 

Heat Capacity 
Btu/ft2-°F Insulation DOE-2 calc. 

method Description 

1 13.0 0.076 N/A N/A Quick Quick construction mode 

2 13.0 0.077 4.39 Center CWFs Asbestos-vinyl tile + Plywood + 
Insulation + Stud + Gypsum board 

3 11.0 0.091 8.05 Inside CWFs 3” Face Brick + Plywood + 
Insulation + Gypsum board 

4 11.1 0.090 7.94 Inside CWFs 8” Block with perlite filled + 
Insulation + Gypsum board 

5 11.1 0.090 10.77 Inside CWFs 8” Block with perlite and concrete 
filled + Insulation + Gypsum board 

6 7.8 0.129 10.87 Outside CWFs 
Stucco + Insulation + 8” Block with 
perlite filled + Stud + Air + Gypsum 
board 

7 7.7 0.130 13.68 Outside CWFs 
Stucco + Insulation + 8” Block with 
perlite and concrete filled + Stud + 
Air + Gypsum board 

 
 
 

6.2 Thermal Mass Analysis 

 Figure 6.1 shows the annual energy consumption from the simulations using DOE-2’s 

Building Energy Performance Summary (BEPS) report. The number on the figure corresponds to 

the number on Table 6.1 for all the construction types. Figure 6.2 shows the difference between 

the quick construction mode (#1) and the delayed construction mode (from #2 to #7), and Figure 

6.3 shows the difference between without high thermal mass wall which is less than 6 Btu/ft2-℉ 

of heat-capacity and with high thermal mass wall which is more than 6 Btu/ft2-℉ of heat-

capacity from the delayed construction mode.  

 In order to compare the thermal mass effect, the typical wood frame wall (#2) which has 

the same U-value with the quick construction mode (#1) was created. The detail calculation 

method of the U-value was presented at the Chapter 4.3.6.6.2. From the simulation results (#1 

and #2) (Figure 6.2), it was observed that the quick construction mode shows more annual 

energy consumptions from 92.9 mBtu to 90.7 mBtu, which is a 2.4% difference even though the 
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models had the same U-value in the walls. This shows that the quick mode construction mode 

over-states the annual energy use. The reason for this is complex. However, one of the primary 

observed reasons is that the quick (i.e., ASHRAE pre-calculated weighting factors) method 

requires additional heating and cooling to maintain thermostat settings. 

 In terms of the total annual energy use, the #4 wall type (an 8” concrete block wall with 

perlite fill in the cells of the block and insulation (R-5.21) between the block and the interior 

gypsum board) was the most efficient wall type, even though the R-value of the #4 wall type was 

less that the of the typical wood frame wall (#2). It was also found that the high thermal mass 

wall type #7 with external insulation (R-3.33) had the most annual energy consumption, slightly 

higher than the typical wood frame wall. 
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Figure 6.1   Total energy use 
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Figure 6.2   Annual energy consumption difference between quick mode and thermal mass 
modes 

 
 
 
 Figures 6.3 to 6.5 show the percent difference in annual energy consumption, cooling 

energy consumption, and heating energy consumption in simulations without high thermal mass 

wall (#2) and simulations with high thermal mass wall (#3 to #7). In addition, the different 

insulation levels were applied to high thermal mass walls according to the location of the 

insulation (exterior and interior) as explained at the Chapter 4.3.6.6, since the 2000/2001 IECC 

(Table 502.2.1.1.2(1) and 502.2.1.1.2(2)) provides for different requirements. From Figures 6.3 

to 6.5, the following observations were made: 

1) In Figure 6.3, it was found that the high thermal mass wall type #4 with the interior insulation 

(R-5.21) had the least annual energy consumptions of 88.4 mBtu/yr, which decreased by 2.5% 

from the typical wood frame wall (90.7 mBtu/yr). Both wall types were simulated with DOE-2’s 

Custom Weighting Factors (CWFs), and layered walls and Winkelmann’s (1998) floor model for 

a slab-on-grade. The high thermal mass wall type #7 with exterior insulation (R-3.33) had almost 
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similar annual energy consumption (91.1 mBtu/yr) as the typical wood frame of with R-13 (90.7 

mBtu/yr). This implies that the a appropriate combination of heat capacity and correctly-placed 

R-value is important because a lower R-value can have the same annual energy use as a larger R-

value if there is proper heat-capacity of the building materials and if the insulation is properly 

placed. 

2) It was found that from Figure 6.4 that the high thermal mass wall type #7 was the most 

efficient in terms of the cooling energy savings. This wall type has the largest heat capacity and 

the smallest R-value of the other high thermal mass wall types. This shows that the heat capacity 

of the building materials can play a significant role in reducing the cooling energy consumption. 

3) From Figure 6.5, it was found that the high thermal mass wall type #4 was the most efficient 

in terms of the heating energy savings. This wall type has the highest R-value and the smallest 

heat capacity among other high thermal mass wall type. This implies that a high R-value with 

low heat capacity of the building materials can be crucial to reducing the heating energy 

consumption. 
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Figure 6.3   Annual energy consumption difference between thermal mass modes 
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Figure 6.4   Cooling energy consumption difference between thermal mass modes 
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Figure 6.5   Heating energy consumption difference between thermal mass modes 

 
 
 

Since the IECC defines the thermostat setback (6 hours setup and setback to 63°F from 

68°F winter set-point temperature for heating and 83°F from 78°F summer set-point temperature 

for cooling), simulations for thermal mass effect analyses were performed using thermostat 

setback. In order to investigate the effects of thermostat setback, simulations without thermostat 

setback were performed. 

 From the simulation results of #1 and #2, which have the same U-value (Figures 6.6 and 

6.7), it was found that the quick construction mode (#1) shows more annual energy 

consumptions from 94.7 mBtu to 93.6 mBtu, which is a 1.2% difference. In terms of the total 

annual energy use, the #4 wall type (an 8” concrete block wall with perlite fill in the cells of the 

block and insulation (R-5.21) between the block and the interior gypsum board) was the most 

efficient wall type, and the #7 wall type with exterior insulation showed the most annual energy 

consumption as the simulation results with thermostat setback. 
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Figure 6.6   Total energy use without thermostat setback 
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Figure 6.7   Annual energy consumption difference between quick mode and thermal mass 
modes without the thermostat setback 
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 When comparing the annual energy consumption between simulation with and without 

thermostat setback, simulation without thermostat setback showed more energy consumptions in 

the range of 1.94% (quick construction mode) and 3.62% (#7 wall type). 

 From the results of total energy difference (Figure 6.8), it was found that the thermostat 

setback affected the thermal mass walls (from #2 to #7) more than the massless wall type (quick 

construction mode, #1). It was also found that the highest thermal mass wall (#7, 13.68 Btu/ft2-

°F) showed the most difference of 3.62% among the thermal mass walls from #2 to #7 wall types. 

 The results implied that the thermostat setback plays a significant role for the high 

thermal mass walls because the high heat capacity of thermal mass wall could maintain the 

indoor condition constantly during the thermostat setback. 
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Figure 6.8   Total energy difference between with thermostat setback and without thermostat 
setback 
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 From the case-study house simulation using the Habitat for Humanity house described in 

Chapter 5.2, it was found that the delayed construction mode calculated the energy consumptions 

more accurately than the quick mode construction mode. Nevertheless, the current 2000/2001 

IECC defines the wall and roof constructions using only R-value and the fixed floor weight, 

which makes it impossible to simulate a code-compliant house and properly evaluate the thermal 

mass effects with the DOE-2 program. Therefore, the new version of the IECC needs to consider 

the prescriptive table in terms of the delayed construction mode. 

6.3 Window Input Mode Analysis 

 In order to investigate the window input mode analysis of the SC method and the 

Window-5 method, the results were obtained from DOE-2’s BEPS (Building Energy 

Performance Summary) reports. The simulation of the window input mode analysis was also 

performed using two different construction modes (i.e., the quick construction mode and the 

thermal mass construction mode). Then, the percentage savings were calculated by changing 

from lower performance window to higher performance windows: 1) from the single pane clear 

to the double pane clear, 2) the single pane clear to the double pane low-e glass, and 3) the 

double pane clear to the double pane low-e glass. Finally, results are presented as total BEPS 

energy use as well as a difference in percentage savings for the SC and the Window-5 for both 

quick and thermal mass construction methods of input. Figures 6.9 to 6.11 present the complete 

results obtained from the BEPS report according to the different window types using the quick 

construction mode and the thermal mass construction mode. The results presented in Figures 6.9 

to 6.11 for overall energy consumption, space heating and cooling are described in Tables 6.2 

and 6.3 in detail to compare the SC, Window-5, quick construction mode and thermal mass 

construction mode. 
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 It was found that there was little difference, which was less than 1% difference when 

comparing the Window-5 and the SC method for all glazing for either the quick construction 

mode or the thermal mass construction mode because there was compensating changes in 

heating and cooling loads. Figures 6.10 to 6.12 indicate the percentage difference of 

compensating change in the heating and cooling loads. 

 From Figures 6.9 to 6.12 and Tables 6.2 to 6.3, it was found that when the quick 

construction mode of the single pane clear glass is changed to the double pane clear glass using 

the SC method, the annual energy use decreases from 96.0 mBtu to 89.6 mBtu, a difference of 

6.4 mBtu, or a 6.67 % decrease in total consumption. When using the Window-5 method with 

the quick construction method to simulate the single pane clear glass to compare the double pane 

clear glass, the annual energy use decreases from 96.6 mBtu to 89.9 mBtu, a difference of 6.7 

mBtu, which is a 6.94% decrease. This indicates that the use of the SC method which is 

combined with the quick construction mode understates the total savings by 4.04% when 

compared to the Window-5 method using the quick construction mode. From this result, a 

difference of 0.27 % is observed in the savings. 

 In the case of options from the single pane clear glass to the double pane low-e glass in 

the quick construction mode using the SC method, the annual energy use decreases from 96.0 

mBtu to 85.9 mBtu, a difference of 10.1 mBtu, which is a 10.52 % decrease. When using the 

Window-5 method, changing from the single pane clear glass to the double pane low-e glass 

decreased the annual energy use from 96.0 mBtu to 85.9 mBtu, a decrease of 10.1 mBtu, which 

is a 10.52% decrease. The comparison of the SC method and the Window-5 method results for 

the quick construction mode shows that a difference of 0.87 % is observed in the savings, which 

represents 8.23% of the SC savings. 
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 For the results for the double pane clear glass compared to the double pane low-e glass 

in the quick construction mode, the annual energy use decreases from 89.6 mBtu to 85.9 mBtu, a 

difference of 3.7 mBtu, which is 4.13 % decrease. When using the Window-5 method with the 

same window change option, the result decreases from 89.9 mBtu to 85.6 mBtu, a difference of 

4.3 mBtu, which is a 4.78 % decrease. When comparing the results from the SC and the 

Window-5 methods, savings increased by 0.65%, which represents a change in savings of 

15.83 %. 
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Figure 6.9   Annual building energy performance report using the quick mode 
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Figure 6.10   Percentage difference between SC and W-5 using the quick mode 
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Figure 6.11   Annual building energy performance report using the thermal mass mode 
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Figure 6.12   Percentage difference between SC and W-5 using the thermal mass mode 
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 Table 6.2   Difference in energy consumption 

SC Window-5 Difference
Savings (mBtu/yr) Savings (mBtu/yr) SC-W5 (mBtu/yr)

Annual BEPS -6.4 -6.7 0.3
Annual Heating -4.3 -3.5 -0.8
Annual Cooling -1.8 -2.8 1.0
Annual BEPS -10.1 -11.0 0.9
Annual Heating -4.7 -3.9 -0.8
Annual Cooling -4.8 -6.3 1.5
Annual BEPS -3.7 -4.3 0.6
Annual Heating -0.4 -0.4 0.0
Annual Cooling -3.0 -3.5 0.5
Annual BEPS -2.5 -4.9 2.4
Annual Heating -2.3 -3.4 1.1
Annual Cooling -0.2 -1.3 1.1
Annual BEPS -8.2 -8.7 0.5
Annual Heating -4.9 -4.2 -0.7
Annual Cooling -3.0 -4.0 1.0
Annual BEPS -5.7 -3.8 -1.9
Annual Heating -2.6 -0.8 -1.8
Annual Cooling -2.8 -2.7 -0.1

From SP to Low-e

From DP to Low-e

Quick mode

Thermal Mass Mode

From SP to DP

From SP to Low-e

From DP to Low-e

From SP to DP

  

 
 
 

Table 6.3   Percentage difference in energy consumption 
SC Window-5 Difference % Difference

% Savings % Savings SC-W5 ((SC-W5)/SC)*100
Annual BEPS -6.67 -6.94 0.27 -4.04
Annual Heating -23.89 -19.89 -4.00 16.75
Annual Cooling -7.73 -11.57 3.84 -49.77
Annual BEPS -10.52 -11.39 0.87 -8.23
Annual Heating -26.11 -22.16 -3.95 15.14
Annual Cooling -20.60 -26.03 5.43 -26.37
Annual BEPS -4.13 -4.78 0.65 -15.83
Annual Heating -2.92 -2.84 -0.08 2.84
Annual Cooling -13.95 -16.36 2.40 -17.21
Annual BEPS -2.68 -5.22 2.54 -94.96
Annual Heating -12.50 -18.89 6.39 -51.11
Annual Cooling -0.97 -6.07 5.10 -525.70
Annual BEPS -8.79 -9.28 0.49 -5.53
Annual Heating -26.63 -23.33 -3.30 12.38
Annual Cooling -14.56 -18.69 4.13 -28.35
Annual BEPS -6.28 -4.27 -2.00 31.91
Annual Heating -16.15 -5.48 -10.67 66.07
Annual Cooling -13.73 -13.43 -0.29 2.13

Quick mode

From SP to DP

From SP to Low-e

From DP to Low-e

Thermal Mass Mode

From SP to DP

From SP to Low-e

From DP to Low-e
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 When using the thermal mass construction mode with the SC method, a change from the 

single pane clear glass to the double pane clear glass results in annual energy consumption from 

93.3 mBtu to 90.8 mBtu, a difference of 2.5 mBtu, which is 2.68 % decrease. When using the 

Window-5 method with same window change options, the annual energy use decrease from 93.8 

mBtu to 88.9 mBtu, a difference of 4.9 mBtu, which is a 5.22 % decrease. When the SC and 

Window-5 method are compared, a difference of 2.54 % is observed in the total percentage 

savings. 

 For the single pane clear glass to the double pane low-e glass option using the SC 

method with the thermal mass construction mode, the annual energy use decreases from 93.3 

mBtu to 85.1 mBtu, a difference of 8.2 mBtu, which is a 8.79 % decrease. When using the 

Window-5 method from the single pane clear glass to the double pane low-e glass option, the 

annual energy use decreases from 93.8 mBtu to 85.1 mBtu, a difference of 8.7 mBtu, which is a 

9.28% decrease. While comparing the SC and the Window-5 method, a difference of 0.49% is 

observed in the savings which is a 5.53% increase in the savings when compared to the SC 

method for the total energy consumption. 

 Finally, for the option from the double pane clear to the double pane low-e glass with the 

thermal mass construction mode and the SC method, the annual energy use decreases from 90.8 

mBtu to 85.1 mBtu, a difference of 5.7 mBtu, which is 6.28% decrease. When using the 

Window-5 method with the same option, the annual energy use decrease from 88.9 mBtu to 85.1 

mBtu, a difference of 3.8 mBtu, which is 4.27 % decrease. When comparing the results from the 

SC and the Window-5 method using the thermal mass construction mode, a increase of 2.00% is 

observed, which is a 31.91% savings in overall energy consumption. 

 In general, the comparison of the performance of the different glazing types (the single 

pane clear, the double pane clear and the double pane low-e glass) using the SC or Window-5 
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method, and the quick construction mode or the thermal mass construction mode showed that the 

thermal mass construction mode option had lower annual energy use than the quick construction 

mode. When comparing the percent savings from lower performance glazing to a higher 

performance glazing while using either the SC or the Window-5 methods, it was observed that 

the percent savings obtained from the Window-5 method were greater than the percent savings 

obtained from the SC method for two cases (from single-pane clear to double-pane clear, and 

from single-pane clear to double-pane low-e). However, in the case of change from double-pane 

clear to double-pane low-e, the percent savings obtained from the SC method are greater than the 

percent savings obtained from the Window-5 method. In comparing the percent savings from 

lower performance glazing to a higher performance glazing based on two construction modes, 

the savings from the quick construction mode were greater than the percent savings from the 

thermal mass construction mode except for change from the double-pane clear to double-pane 

low-e glass. 

 According to the previous researches by Reilly (1995) and Mukhopadhyay (2005), it 

was determined that the Window-5 method was more accurate method to calculate the window 

heat transfer. Hence, it is suggested that the Window-5 method be used in the future code 

traceable building simulation model to prevent the discrepancy in results from the two different 

methods (i.e. the SC method and the Window-5 method) even though the same U-value and 

SHGC of window types were calculated using DOE-2 simulation program. It is also 

recommended that custom weighting factors (CWFs) be used to properly account for the thermal 

mass. 
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6.4 An Energy Efficiency Analysis Using the IECC-Compliant Model 

 This chapter presents the results of an energy efficiency analysis simulation with 

different simulation conditions. The simulation conditions of the base-case house were altered 

individually and in combination with others. For this analysis, different values were assigned to 

the parameters of the DOE-2 input that represent the characteristics of the building systems and 

components, as seen in Figures 4.62 to 4.64. The simulations were performed in four different 

climate zones (climate zones 9, 5, 4 and 2). 

 In order to investigate the impacts of the annual energy use, the Building Energy 

Performance Summary (BEPS) of the DOE-2 output was used to determine the values of those 

parameters that resulted in energy savings, when applied individually and in combination. The 

annual energy results consisted of four categories: 1) an annual other category which included 

lighting, equipment, etc., 2) the annual DHW (Domestic Hot Water) energy use, 3) the annual 

heating use and 4) the annual cooling use. Using DOE-2’s BEPS output, the heating, cooling and 

total energy differences were calculated and plotted against the heating degree days, according to 

each climate zone. 

 Simulations were performed using the simulation plans described in Chapter 4. The 

results are shown as annual energy use plots and energy savings plots, according to the different 

climate zones. In order to present the results of the simulations, stacked bar charts were used to 

plot the annual energy use for the different values of the parameters and the climate zones, and 

line graphs were used to show the percentage differences of the energy savings for changes in 

the value of the parameters. Detailed results of the simulation runs are presented in Appendix G. 
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6.4.1 Analysis of the Fenestration Properties 

 The following plots show the effect of the various fenestration properties. In order to 

find the savings from the fenestration properties, the annual energy use was plotted using 

simulation results from the base-case code-compliant simulation, the U-value and the SHGC 

changes. All other properties remain the same as in the base-case simulation. For the base case, 

the code-compliant window U-value was 0.45 for climate zone 9, 0.65 for climate zone 5, 0.75 

for climate zone 4, and 0.90 for climate zone 2. The SHGC was 0.66 for climate zone 9 and 0.40 

for climate zones 5, 4 and 2. From the simulations, the following results were observed: 

1) The cooling energy savings obtained from decreasing the SHGC was higher than the savings 

obtained from decreasing both the SHGC and the U-value for all climate zones, and the cooling 

energy savings from decreasing the SHGC were higher for windows with lower U-values in all 

climate zones. In addition, the percentage of cooling savings from climate zones 2 to 9 were 

higher because climate zone 9 had lower cooling loads and showed small differences. This 

caused a larger percent of difference than that of climate zone 2 which had large cooling loads.  

2) The heating energy savings from decreasing the window U-values were higher than those 

from decreasing both the SHGC and the U-values for all climate zones. The percentage of 

heating savings from climate zones 9 to 2 were higher because climate zone 2 had low heating 

loads, and small differences made a larger percent of difference than that of climate zone 9 (as 

happened with the cooling energy use). 
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3) The total energy savings from decreasing the U-value and the SHGC were higher than those 

obtained from decreasing only the U-value or the SHGC. For these simulations, the windows 

with the U-value decreased by 20%, and an SHGC decreased by 0.04 showed the largest savings 

for climate zones 5, 4 and 2 (all of which had less heating degree days). For climate zone 9, the 

window U-value decrease of 20% showed the largest savings. Therefore, for cold climate zones 

a less conductive window is desirable, and for hot climate zones, less conductive windows with 

low SHGCs are desirable.  

 The following sections contain detailed explanations of the results from the different 

simulation conditions according to the window types. 

6.4.1.1 Base case vs. modified (0.02 decrease in SHGC) 

 In the case of the 0.02 decrease in SHGC, there was an increase in total energy use 

compared to the base-case house for climate zones 9 and 5, and a reduction in total energy use 

for climate zones 4 and 2 (Figures 6.13 and 6.14). For total energy use, there was an increase of 

0.19% for climate zone 9, no change for climate zone 4 and reductions of 0.12% for climate zone 

4 and 0.35% for climate zone 2. The heating energy use showed increases of 1.40% for climate 

zone 9, 1.63% for climate zone 5, 2.45% for climate zone 4 and 1.45% for climate zone 2. 

Cooling energy use showed reductions of 1.54% for climate zone 9, 1.89% for climate zone 5, 

and 1.79% for climate zones 4 and 2. 
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Figure 6.13   Percent difference of annual energy use (base case vs. SHGC-0.02) 
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Figure 6.14   Annual energy use (base case vs. SHGC-0.02) 
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6.4.1.2 Base case vs. modified (0.04 decrease in SHGC) 

 For the SHGC windows where the SHGC was decreased by 0.04, the results showed the 

same patterns of heating, cooling and total energy differences as those of the 0.02 decreased 

SHGC (Figures 6.15 and 6.16). The annual energy use increased by 0.47% for climate zone 9, 

and decreased by 0.02% for climate zone 5, 0.25% for climate zone 4, and 0.69% for climate 

zone 2. For heating energy use, there were increases of 2.80% for climate zone 9, 3.80% for 

climate zone 5, 4.09% for climate zone 4 and 2.89% for climate zone 2. For cooling energy, the 

simulations showed reductions of 3.85% for climate zone 9, 3.77% for climate zone 5, and 

3.57% for climate zones 4 and 2. 
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Figure 6.15   Percent difference of annual energy use (base case vs. SHGC-0.04) 
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Figure 6.16   Annual energy use (base case vs. SHGC-0.04) 

 
 
 
6.4.1.3 Base case vs. modified (5% decrease in U-value) 

 Simulations with the window where the U-value was decreased by 5% showed a 

reduction in total energy use and heating energy use, and an increase in cooling energy use, for 

all climate zones (Figures 6.17 and 6.18). For the total energy use, the simulations showed a 

reduction of 0.69% compared to the base-case house for climate zone 9, a reduction of 0.58% for 

climate zone 5, 0.38% for climate zone 4, and 0.19% for climate zone 2, as compared to the 

base-case house. For heating energy use, each case also showed reductions of 2.10% for climate 

zone 9, 3.26% for climate zone 5, 3.27% for climate zone 4, and 2.89% for climate zone 2. For 

cooling energy use, there were increases of 0.77% for climate zone 9, 0.63% for climate zone 5, 

0.60% for climate zone 4, and no change for climate zone 2. In these simulations, it seemed that 
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manipulating the U-value decreased the heating energy use, but increased the cooling energy use 

for all climate zones. 

 
 
 

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Heating Degree Days

D
iff

er
en

ce
 (%

)

Total (-5% U-value) Cooling (-5% U-value) Heating (-5% U-value)

CZ 2 CZ 4 CZ 5 CZ 9

 

Figure 6.17   Percent difference of annual energy use (base case vs. -5% U-value) 
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Figure 6.18   Annual energy use (base case vs. -5% U-value) 

 
 
 
6.4.1.4 Base case vs. modified (5% decrease in U-value, 0.02 decrease in SHGC) 

 In simulations where the window’s U-value was decreased by 5% and the SHGC 

decreased by 0.02, the total energy use, heating energy use and cooling energy use showed 

reductions, as compared to the base-case house for all climate zones (Figures 6.19 and 6.20). For 

total energy use, there were reductions of 0.51% for climate zone 9, 0.59% for climate zone 5, 

0.54% for climate zone 4 and 0.56% for climate zone 2. The heating energy use showed 

reductions of 0.70% for climate zone 9, 1.63% for climate zone 5, 1.64% for climate zone 4 and 

1.45% for climate zone 2. Cooling energy use also showed reductions of 1.54% for climate zone 

9, 1.89% for climate zone 5, 1.19% for climate zone 4, and 1.34% for climate zone 2. 
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Figure 6.19   Percent difference of annual energy use (base case vs. -5% U-value, SHGC-
0.02) 
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Figure 6.20   Annual energy use (base case vs. -5% U-value, SHGC-0.02) 
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6.4.1.5 Base case vs. modified (5% decrease in U-value, 0.04 decrease in SHGC) 

 When a window with a 5% decreased U-value and a 0.04 decreased SHGC was 

simulated, there were reductions in total energy use and cooling energy use, and an increase in 

heating energy use (Figures 6.21 and 6.22). The annual energy use decreased by 0.30% for 

climate zone 9, 0.58% for climate zone 5, 0.67% for climate zone 4, and 0.92% for climate zone 

2. For heating energy use, there were increases of 0.47% for climate zone 9, 0.54% for climate 

zone 5 and no changes for climate zone 4 and 2. For cooling energy, the simulations showed 

reductions of 3.08% for climate zone 9, 3.77% for climate zone 5, 3.57% for climate zone 4 and 

3.13% for climate zone 2. 

 
 
 

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Heating Degree Days

D
iff

er
en

ce
 (%

)

Total (-5% U-value, -0.04 SHGC) Cooling (-5% U-value, -0.04 SHGC) Heating (-5% U-value, -0.04 SHGC)

CZ 2 CZ 4 CZ 5 CZ 9

 

Figure 6.21   Percent difference of annual energy use (base case vs. -5% U-value, SHGC-
0.04) 
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Figure 6.22   Annual energy use (base case vs. -5% U-value, SHGC-0.04) 

 
 
 
6.4.1.6 Base case vs. modified (10% decrease in U-value) 

 A house with a U-value that was decreased by 10% from the base-case house produced 

reductions in total energy use and heating energy use, and an increase in cooling energy use at 

the same percentage condition as a house with a U-value that was decreased by 5% (Figures 6.23 

and 6.24). For the total energy use, there were reductions of 1.41% for climate zone 9, 1.18% for 

climate zone 5, 0.85% for climate zone 4, and 0.33% for climate zone 2. Heating energy results 

also showed reductions of 4.20% for climate zone 9, 6.51% for climate zone 5, 7.36% for 

climate zone 4 and 5.78% for climate zone 2. However, cooling energy results showed increases 

of 1.54% for climate zone 9, 0.63% for climate zone 5, 1.19% for climate zone 4 and 0.45% for 

climate zone 2. 
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Figure 6.23   Percent difference of annual energy use (base case vs. -10% U-value, same 
SHGC) 
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Figure 6.24   Annual energy use (base case vs. -10% U-value, same SHGC) 
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6.4.1.7 Base case vs. modified (10% decrease in U-value, 0.02 decrease in SHGC) 

 When a house with a U-value that was decreased by 10% and an SHGC that was 

decreased by 0.02 was simulated, the results showed decreases compared to the base-case house 

in total energy use, heating energy use and cooling energy use (Figures 6.25 and 6.26). For the 

total energy use, there were reductions of 1.26% for climate zone 9, 1.17% for climate zone 5, 

1.03% for climate zone 4 and 0.70% for climate zone 2. In the case of the heating energy use, 

there were reductions of 3.04% for climate zone 9, 4.89% for climate zone 5, 5.73% for climate 

zone 4 and 4.34% for climate zone 2. In the case of the cooling energy use, there were also 

reductions of 0.77% for climate zone 9, 1.26% for climate zone 5, 1.19% for climate zone 4 and 

1.34% for climate zone 2. 
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Figure 6.25   Percent difference of annual energy use (base case vs. -10% U-value, SHGC-
0.02) 
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Figure 6.26   Annual energy use (base case vs. -10% U-value, SHGC-0.02) 

 
 
 
6.4.1.8 Base case vs. modified (10% decrease in U-value, 0.04 decrease in SHGC) 

 The results for a house with a U-value that was decreased by 10% and an SHGC that 

was decreased by 0.04 showed similar reductions in total energy use, heating energy use and 

cooling energy use as a house with a 10% decreased U-value with 0.02 decreased SHGC 

(Figures 6.27 and 6.28). For the total energy use, they showed reductions of 1.05% for climate 

zone 9, 1.22% for climate zone 5, 1.14% for climate zone 4 and 1.12% for climate zone 2. 

Results of heating energy use produced a 1.87% drop for climate zone 9, a 3.26% drop for 

climate zone 5, a 3.27% drop for climate zone 4, and a 4.34% drop for climate zone 2. For the 

cooling energy use, there were also reductions of 3.08% for climate zone 9, 3.14% for climate 

zone 5, 2.98% for climate zone 4, and 2.68% for climate zone 2. 
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Figure 6.27   Percent difference of annual energy use (base case vs. -10% U-value, SHGC-
0.04) 
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Figure 6.28   Annual energy use (base case vs. -10% U-value, SHGC-0.04) 
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6.4.1.9 Base case vs. modified (15% decrease in U-value) 

 When a house with a U-value that was decreased by 15% was simulated, the annual 

energy use and heating energy use both decreased, while the cooling energy use increased in all 

climate zones (Figures 6.29 and 6.30). For the total energy use, there were reductions of 2.10% 

for climate zone 9, 1.69% for climate zone 5, 1.22% for climate zone 4, and 0.50% for climate 

zone 2. For the heating energy use, there were also reductions of 6.31% for climate zone 9, 

9.77% for climate zone 5, 10.64% for climate zone 4 and 10.12% for climate zone 2. For the 

cooling energy use, there were increases of 2.31% for climate zone 9, 1.26% for climate zone 5, 

1.19% for climate zone 5, and 0.89% for climate zone 2. 
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Figure 6.29   Percent difference of annual energy use (base case vs. -15% U-value, same 
SHGC) 
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Figure 6.30   Annual energy use (base case vs. -15% U-value, same SHGC) 

 
 
 
6.4.1.10  Base case vs. modified (15% decrease in U-value, 0.02 decrease in SHGC) 

 Using a house with a U-value that was decreased by 15% and an SHGC that was 

decreased by 0.02, the results produced reductions compared to the base-case house in the total 

energy use, heating energy use and cooling energy use (Figures 6.31 and 6.32). In the case of the 

total energy use, they showed reductions of 1.94% for climate zone 9, 1.76% for climate zone 5, 

1.43% for climate zone 4, and 0.89% for climate zone 2. In the case of the heating energy use, 

there were reductions of 5.14% for climate zone 9, 8.14% for climate zone 5, 9.00% for climate 

zone 4 and 8.67% for climate zone 2. In the case of the cooling energy, there were reductions of 

0.63% for climate zone 5, 0.60% for climate zone 4, and 0.89% for climate zone 2, but there was 

no change for climate zone 9. 
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Figure 6.31   Percent difference of annual energy use (base case vs. -15% U-value, SHGC-
0.02) 
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Figure 6.32   Annual energy use (base case vs. -15% U-value, SHGC-0.02) 

 
 
 
6.4.1.11  Base case vs. modified (15% decrease in U-value, 0.04 decrease in SHGC) 

 A house with a U-value that was decreased by 15% and an SHGC that was decreased by 

0.04 produced reductions in the total energy use, heating energy use and cooling energy use 

(Figures 6.33 and 6.34). For the total energy use, there were reductions of 1.79% for climate 

zone 9, 1.77% for climate zone 5, 1.66% for climate zone 4, and 1.26% for climate zone 2 (as 

compared to the base-case house). For the heating energy use, there were drops of 3.97% for 

climate zone 9, 5.97% for climate zone 5, 8.18% for climate zone 4 and 7.23% for climate zone 

2. In the case of the cooling energy use, there were also drops of 2.31% for climate zone 9, 

2.52% for climate zone 5, 2.38% for climate zone 4, and 2.68% for climate zone 2. 
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Figure 6.33   Percent difference of annual energy use (base case vs. -15% U-value, SHGC-
0.04) 
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Figure 6.34   Annual energy use (base case vs. -15% U-value, SHGC-0.04) 



 

 

262

6.4.1.12  Base case vs. modified (20% decrease in U-value) 

 In the simulations with a house with a U-value that was decreased by 20%, the heating 

energy savings were the largest for all climate zones and the total energy savings were the largest 

for climate zone 9 (Figures 6.35 and 6.36). For the total energy savings, there were reductions of 

2.90% for climate zone 9, 2.33% for climate zone 5, 1.76% for climate zone 4 and 0.69% for 

climate zone 2. For the heating energy savings, 8.64% for climate zone 9, 13.03% for climate 

zone 5, 15.55% for climate zone 4 and 13.01% for climate zone 2 were all reduced, whereas for 

cooling energy savings, 2.31% for climate zone 9, 1.89% for climate zone 5, 1.79% for climate 

zone 4 and 1.34% for climate zone 2 were all increased. 
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Figure 6.35   Percent difference of annual energy use (base case vs. -20% U-value, same 
SHGC) 
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Figure 6.36   Annual energy use (base case vs. -20% U-value, same SHGC) 

 
 
 
6.4.1.13  Base case vs. modified (20% decrease in U-value, 0.02 decrease in SHGC) 

 When a house with a U-value that was decreased by 20% and an SHGC that was 

decreased by 0.02 was simulated (Figures 6.37 and 6.38), there were reductions of 2.71% for 

climate zone 9, 2.40% for climate zone 5, 1.90% for climate zone 4 and 1.06% for climate zone 

2 for the total energy savings. For the heating energy savings, there were also drops of 7.47% for 

climate zone 9, 11.40% for climate zone 5, 13.90% for climate zone 4 and 11.56% for climate 

zone 2, whereas for cooling energy savings, there was an increase of 0.77% for climate zone 9 

and a drop of 0.45% for climate zone 2. There were no changes for climate zones 5 and 4. 
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Figure 6.37   Annual energy use and percent difference (base case vs. -20% U-value, SHGC-
0.02) 
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Figure 6.38   Annual energy use (base case vs. -20% U-value, SHGC-0.02) 
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6.4.1.14  Base case vs. modified (20% decrease in U-value, 0.04 decrease in SHGC) 

 When a house with a U-value that was decreased by 20% and an SHGC that was 

decreased by 0.04 was simulated, the total energy use, heating energy use and cooling energy use 

were all reduced (Figures 6.39 and 6.40). In addition, this window type showed the largest 

savings of the total energy savings for climate zones 5, 4 and 2. For the total energy savings, 

there were drops of 2.54% for climate zone 9, 2.45% for climate zone 5, 2.05% for climate zone 

4 and 1.41% for climate zone 2, as compared to the base-case house. For the heating energy 

savings, there were drops of 6.31% for climate zone 9, 9.77% for climate zone 5, 11.46% for 

climate zone 4 and 10.12% for climate zone 2. For the cooling energy savings, there were also 

drops of 1.54% for climate zone 9, 2.52% for climate zone 5, 1.79% for climate zone 4 and 

2.23% for climate zone 2. 
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Figure 6.39   Percent difference of annual energy use (base case vs. -20% U-value, SHGC-
0.04) 
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Figure 6.40   Annual energy use (base case vs. -20% U-value, SHGC-0.04) 

 
 
 

6.4.2 Analysis of the Duct Properties 

 The following plots show the annual total energy use, and the heating, cooling and total 

energy savings achieved by changing the duct properties. In these figures, the percent savings 

were plotted against the number of heating degree days according to the climate zones. 

 In order to find the savings achieved from the duct properties, the annual energy use was 

plotted by changing the R-value for the supply and return side, and the duct leakage rate. The 

other properties were the same as in the base-case house. For the base-case house, the insulation 

level for the supply duct was R-8 and the return duct was R-4. Furthermore, since the IECC 

2000/2001 does not define the duct leakage rate, the duct leakage rate for the base-case house 

was set at 0%, and the duct systems were located in the attic space where it was unconditioned. 

From these simulations, the following traits were observed: 
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1) The duct leakage rate affected the cooling and heating energy savings more than did different 

levels of duct insulation. 

2) There were more variations in cooling energy in hot climate zones, while more heating energy 

variations were detected in cold climate zones. 

3) Changes for the duct insulation levels from R-8 for the supply side and R-4 for the return side 

to R-6 for the supply and return sides with the same duct leakage rates produced negative effects 

for the total, heating and cooling energy levels. Other improvements in duct insulation (from R-8 

for the supply and R-4 for the return to R-8 for both the supply and return, R-10 for the supply 

and return and R-12 for the supply and return) produced significant total, heating and cooling 

energy savings for ducts located in the attic. 

 The following are detailed explanations of the results created by the different simulation 

conditions according to the duct properties. 

 Simulations were performed by changing duct leakage rates from 5% to 20% in 

increments of 5%  
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6.4.2.1 Base case (0% duct leakage rate (DLR), R-8 for supply /R-4 for return) vs. 

 modified (5% duct leakage rate (DLR), R-8 for supply /R-4 for return) 

For 5% duct leakage rate (Figure 6.41), there were increases of the total energy 

consumption of 3.95% for climate zone 9, 3.68% for climate zone 5, 3.89% for climate zone 4 

and 4.23% for climate zone 2 compared to the base-case house. For the heating energy use, there 

were also increases of 8.87% for climate zone 9, 8.14% for climate zone 5, 8.18% for climate 

zone 4 and 7.23% for climate zone 2. For the cooling energy use, there were increases of 6.92% 

for climate zone 9, 11.95% for climate zone 5, 13.69% for climate zone 4 and 13.39% for 

climate zone 2.  
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Figure 6.41   Percent difference of annual energy use (base case (0%, SR-8, RR-4) vs. 5% 
(SR-8, RR-4)) 
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6.4.2.2 Base case (0% duct leakage rate (DLR), R-8 for supply /R-4 for return) vs. 

 modified (10% duct leakage rate (DLR), R-8 for supply /R-4 for return) 

When a 10% leakage rate was applied to the base-case house in the simulation (Figure 

6.42), there were increases of 8.47% for climate zone 9, 8.07% for climate zone 5, 8.63% for 

climate zone 4 and 9.45% for climate zone 2 in the total annual energy use. For the annual 

heating energy use, there were increases of 18.92% for climate zone 9, 17.37% for climate zone 

5, 18.00% for climate zone 4 and 15.90% for climate zone 2. For the annual cooling energy use, 

there were also increases of 15.38% for climate zone 9, 26.42% for climate zone 5 and 30.36% 

for climate zones 4 and 2. 
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Figure 6.42   Percent difference of annual energy use (base case(0%, SR-8, RR-4) vs. 10% 
(SR-8, RR-4)) 
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6.4.2.3 Base case (0% duct leakage rate (DLR), R-8 for supply /R-4 for return) vs. 

 modified (15% duct leakage rate (DLR), R-8 for supply /R-4 for return) 

 In the case of a 15% duct leakage rate (Figure 6.43), there were total energy use 

increases of 13.70% for climate zone 9, 13.38% for climate zone 5, 14.58% for climate zone 4 

and 15.99% for climate zone 2. For the heating energy use, the simulation showed increases of 

30.38% for climate zone 9, 28.23% for climate zone 5, 28.64% for climate zone 4 and 24.57% 

for climate zone 2. For cooling energy use, there were increases of 24.62% for climate zone 9, 

44.65% for climate zone 5, 52.98% for climate zone 4 and 51.79% for climate zone 2. 
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Figure 6.43   Percent difference of annual energy use (base case(0%, SR-8, RR-4) vs. 15% 
(SR-8, RR-4)) 
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6.4.2.4 Base case (0% duct leakage rate (DLR), R-8 for supply /R-4 for return) vs. 

 modified (20% duct leakage rate (DLR), R-8 for supply /R-4 for return) 

 Using a 20% duct leakage rate (Figure 6.44), the simulations showed increases of 

19.77% for climate zone 9, 20.15% for climate zone 5, 22.41% for climate zone 4 and 24.50% 

for climate zone 2. For the heating energy use, there were also increases of 43.90% for climate 

zone 9, 40.72% for climate zone 5, 41.73% for climate zone 4 and 38.13% for climate zone 2, 

and for the cooling energy use, there were increases of 36.15% for climate zone 9, 69.18% for 

climate zone 5, 83.33% for climate zone 4 and 80.36% for climate zone 2. 

 Figure 6.45 shows the annual energy use of SR-8 and RR-4 according to the duct 

leakage rate 
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Figure 6.44   Percent difference of annual energy use (base case(0%, SR-8, RR-4)  vs. 20% 
(SR-8, RR-4)) 
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Figure 6.45   Annual energy use of SR-8 and RR-4 according to the duct leakage rate 
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 In order to investigate the impacts of the duct insulation levels, the duct R-value was 

changed to R-6 for the supply and return side in the base-case house, which had R-8 for supply 

and R-4 for return in these simulations. Duct leakage rate was also increased from 0% to 20% in 

increments of 5%.  

6.4.2.5 Base case (0% duct leakage rate (DLR), R-8 for supply /R-4 for return) vs. 

 modified (0% duct leakage rate (DLR), R-6 for supply / R-6 for return) 

When the R-value of duct was changed to R-6 for the supply and return in the 

simulations, the total energy use, heating energy use and cooling energy use increased compared 

to the base-case house (Figure 6.46). For the total energy use, there were increases of 1.16% for 

climate zone 9, 1.00% for climate zone 5, 1.03% for climate zone 4 and 1.15% for climate zone 

2. For the heating energy use, there were increases of 2.10% for climate zone 9, 1.63% for 

climate zone 5, 1.64% for climate zone 4 and 1.45% for climate zone 2. For the cooling energy 

use, there were also increases of 4.62% for climate zone 9, 3.77% for climate zone 5, 4.17% for 

climate zone 4 and 3.57% for climate zone 2. 
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Figure 6.46   Percent difference of annual energy use (base case (0%, SR-8,RR-4) vs. 0% (SR-
6,RR-6)) 

 
 
 
6.4.2.6 Base case (0% DLR, SR-8/RR-4) vs. modified (5% DLR, SR-6/RR-6) 

When a duct leakage rate was increased to 5% (Figure 6.47), the total energy use 

increased by 5.23% for climate zone 9, 4.86% for climate zone 5, 5.12% for climate zone 4 and 

5.63% for climate zone 2. The heating energy use increased by 10.98% for climate zone 9, 

10.31% for climate zone 5, 10.64% for climate zone 4 and 8.67% for climate zone 2. The 

cooling energy use also increased by 11.54% for climate zone 9, 16.35% for climate zone 5, 

18.45% for climate zone 4 and 18.30% for climate zone 2.  
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Figure 6.47   Percent difference of annual energy use (base case (0%, SR-8,RR-4) vs. 5% (SR-
6,RR-6)) 

 
 
 
6.4.2.7 Base case (0% DLR, SR-8/RR-4) vs. modified (10% DLR, SR-6/RR-6) 

Using a 10% duct leakage rate in the simulation (Figure 6.48), for the total energy use, 

they showed increases of 9.89% for climate zone 9, 3.47% for climate zone 5, 10.17% for 

climate zone 4 and 11.19% for climate zone 2. For the heating energy use, there was a 21.25% 

increase for climate zone 9, a 19.54% increase for climate zone 5, a 19.64% increase for climate 

zone 4 and a 17.34% increase for climate zone 2. For cooling energy use, there was a 20.00% 

increase for climate zone 9, a 32.08% increase for climate zone 5, a 36.90% increase for climate 

zone 4 and a 36.16% increase for climate zone 2. 
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Figure 6.48   Percent difference of annual energy use (base case (0%, SR-8, RR-4) vs. 10% 
(SR-6,RR-6)) 

 
 
 
6.4.2.8 Base case (0% DLR, SR-8/RR-4) vs. modified (15% DLR, SR-6/RR-6) 

 The results of a 15% duct leakage rate (Figure 6.49) showed a 15.30% increase for 

climate zone 9, a 15.12% increase for climate zone 5, a 16.59% increase for climate zone 4 and a 

18.25% increase for climate zone 2 in the total energy use. The results also showed a 33.16% 

increase for climate zone 9, a 30.40% increase for climate zone 5, a 31.10% increase for climate 

zone 4 and a 27.46% increase for climate zone 2 for the heating energy use, and a 30.77% 

increase for climate zone 9, a 52.20% increase for climate zone 5, a 61.31% increase for climate 

zone 4 and a 59.82% increase for climate zone 2 for the cooling energy use. 
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Figure 6.49   Percent difference of annual energy use (base case (0%, SR-8, RR-4) to 15% 
(SR-6,RR-6)) 

 
 
 
6.4.2.9 Base case (0% DLR, SR-8/RR-4) vs. modified (20% DLR, SR-6/RR-6) 

 When a 20% duct leakage rate was applied to the simulations (Figure 6.50), there were 

increases of 21.58% for climate zone 9, 22.67% for climate zone 5, 25.23% for climate zone 4 

and 27.54% for climate zone 2 for the total energy use. For the heating energy use, they showed 

a 46.94% increase for climate zone 9, a 42.83% increase for climate zone 5, a 44.19% increase 

for climate zone 4 and a 37.57% increase for climate zone 2. For cooling energy use, they also 

showed a 42.31% increase for climate zone 9, a 81.18% increase for climate zone 5, a 95.83% 

increase for climate zone 4 and a 91.07% increase for climate zone 2. 

 Figure 6.51 shows the annual energy use of SR-6 and RR-6 vs. SR-8 and RR-4 

according to the duct leakage rate. 
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Figure 6.50   Percent difference of annual energy use (base case (0%, SR-8,RR-4) vs. 20% 
(SR-6,RR-6)) 
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Figure 6.51   Annual energy use of SR-6 and RR-6 vs. SR-8 and RR-4 according to the duct leakage rate 
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When duct insulation levels were increased to R-8 for the supply and return from the 

base-case house and the duct leakage rate increased from 0% to 20% in increments of 5%. 

6.4.2.10   Base case (0% DLR, SR-8/RR-4) vs. modified (0% DLR, SR-8/RR-8) 

 The improvement of duct insulation with a 0% duct leakage rate decreased the total 

energy use, heating energy use and cooling energy use compared to the base-case house, which 

had R-8 for the supply, R-4 for the return and 0% duct leakage rate (Figure 6.52). For the total 

energy use, the results showed reductions of 0.18% for climate zone 9, 0.13% for climate zone 5, 

0.11% for climate zone 4 and 0.08% for climate zone 2. For the heating energy use, there were 

also reductions of 0.47% for climate zone 9 and 0.54% for climate zone 5, and there were no 

changes for climate zones 4 and 2. For the cooling energy use, they showed reductions of 0.63% 

for climate zone 5, 0.60% for climate zone 4, 0.45% for climate zone 2, and there was no change 

for climate zone 9. 
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Figure 6.52   Percent difference of annual energy use (base case (0%, SR-8,RR-4) vs. 0% (SR-
8, RR-8)) 
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6.4.2.11  Base case (0% DLR, SR-8/RR-4) vs. modified (5% DLR, SR-8/RR-8) 

 When increasing the duct leakage rate to 5% in the simulations (Figure 6.53), the total 

energy use, heating energy use and cooling energy use showed increases. Total energy use 

increased by 3.75% for climate zone 9, 3.54% for climate zone 5, 3.76% for climate zone 4 and 

4.14% for climate zone 2. Heating energy use increased by 8.41% for climate zone 9, 8.14% for 

climate zone 5, 8.18% for climate zone 4 and 7.23% for climate zone 2. Cooling energy use 

increased by 6.92% for climate zone 9, 11.32% for climate zone 5, 13.10% for climate zone 4 

and 12.95% for climate zone 2. 
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Figure 6.53   Percent difference of annual energy use (base case (0%, SR-8,RR-4) vs. 5% (SR-
8, RR-8)) 
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6.4.2.12  Base case (0% DLR, SR-8/RR-4) vs. modified (10% DLR, SR-8/RR-8) 

 When a 10% duct leakage rate was used in the simulations (Figure 6.54), there were 

increases of 8.26% for climate zone 9, 7.91% for climate zone 5, 8.49% for climate zone 4 and 

9.33% for climate zone 2 for the total energy use. For the heating energy use, they showed a 

18.45% increase for climate zone 9, a 17.37% increase for climate zone 5, a 17.18% increase for 

climate zone 4 and a 15.90% increase for climate zone 2, and for cooling energy use, they also 

showed a 15.38% increase for climate zone 9, a 25.79% increase for climate zone 5, a 30.36% 

increase for climate zone 4 and a 29.91% increase for climate zone 2. 
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Figure 6.54   Percent difference of annual energy use (base case (0%, SR-8,RR-4) vs. 10% 
(SR-8,RR-8)) 
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6.4.2.13  Base case (0% DLR, SR-8/RR-4) vs. modified (15% DLR, SR-8/RR-8) 

 In the case of a 15% duct leakage rate (Figure 6.55), there were total energy use 

increases of 13.46% for climate zone 9, 13.19% for climate zone 5, 14.40% for climate zone 4 

and 15.86% for climate zone 2. For the heating energy use, they showed increase of 29.89% for 

climate zone 9, 27.69% for climate zone 5, 28.64% for climate zone 4 and 24.57% for climate 

zone 2, and for cooling energy use, 24.62% for climate zone 9, 44.03% for climate zone 5, 

52.38% for climate zone 4 and 51.34% for climate zone 2 were increased due to the duct leakage 

rates. 
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Figure 6.55   Percent difference of annual energy use (base case (0%, SR-8,RR-4) vs. 15% 
(SR-8,RR-8)) 

 

 

 



 

 

284

6.4.2.14  Base case (0% DLR, SR-8/RR-4) vs. modified (20% DLR, SR-8/RR-8) 

 Using a 20% duct leakage rate (Figure 6.56), they also showed increase of 19.52% for 

climate zone 9, 19.88% for climate zone 5, 22.17% for climate zone 4 and 24.32% for climate 

zone 2 in the total energy use. For the heating energy use, there were also increases of 43.20% 

for climate zone 9, 40.17% for climate zone 5, 40.92% for climate zone 4 and 36.13% for 

climate zone 2, and for the cooling energy use, there were increases of 35.38% for climate zone 

9, 68.55% for climate zone 5, 82.74% for climate zone 4 and 79.91% for climate zone 2.  

 Figure 6.57 shows the annual energy use of SR-8 and RR-8 vs. SR-8 and RR-4 

according to the duct leakage rate 
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Figure 6.56   Percent difference of annual energy use (base case (0%, SR-8,RR-4) to 20% 

(SR-8,RR-8)) 
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Figure 6.57   Annual energy use of SR-8 and RR-8 vs. SR-8 and RR-4 according to the duct leakage rate 
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 When the duct insulation levels were increased to R-10 for the supply and return from 

the base-case house and the duct leakage rate was changed from 0% to 20% in increments of 5%.  

6.4.2.15  Base case (0% DLR, SR-8/RR-4) vs. modified (0% DLR, SR-10/RR-10) 

 Improving R-value for supply and return (R-10) with the same duct leakage rate of the 

base-case house produced reductions for all types of the energy use compared to the base-case 

house (Figure 6.58). For the total energy use, the results showed reductions of 0.96% for climate 

zone 9, 0.77% for climate zone 5, 0.75% for climate zone 4 and 0.78% for climate zone 2. 

Heating energy use decreased by 1.63% for climate zone 9, 1.63% for climate zone 5, 1.64% for 

climate zone 4 and 1.45% for climate zone 2. Cooling energy use decreased by 2.31% for 

climate zone 9, 2.52% for climate zone 5, 2.98% for climate zone 4 and 2.65% for climate zone 

2. 
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Figure 6.58   Percent difference of annual energy use (base case (0%, SR-8,RR-4) to 0% (SR-
10,RR-10)) 
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6.4.2.16  Base case (0% DLR, SR-8/RR-4) vs. modified (5% DLR, SR-10/RR-10) 

 When a duct leakage rate was increased to 5% (Figure 6.59), the total energy use 

increased by 2.90% for climate zone 9, 2.80% for climate zone 5, 2.99% for climate zone 4 and 

3.29% for climate zone 2. The heating energy use increased by 6.77% for climate zone 9, 6.51% 

for climate zone 5, 6.55% for climate zone 4 and 5.78% for climate zone 2. The cooling energy 

use also increased by 4.62% for climate zone 9, 8.18% for climate zone 5, 10.12% for climate 

zone 4 and 10.27% for climate zone 2. 
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Figure 6.59   Percent difference of annual energy use (base case (0%, SR-8,RR-4) to 5% (SR-
10,RR-10)) 
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6.4.2.17  Base case (0% DLR, SR-8/RR-4) vs. modified (10% DLR, SR-10/RR-10) 

 When a 10% duct leakage rate was used in the simulations (Figure 6.60), there were 

increases of 7.32% for climate zone 9, 7.01% for climate zone 5, 7.54% for climate zone 4 and 

8.29% for climate zone 2 for the total energy use. For the heating energy use, the results showed 

a 16.58% increase for climate zone 9, a 15.74% increase for climate zone 5, a 16.37% increase 

for climate zone 4 and a 14.45% increase for climate zone 2. For the cooling energy use, the 

results also showed a 12.31% increase for climate zone 9, a 22.01% increase for climate zone 5, 

a 26.19% increase for climate zone 4 and a 26.34% increase for climate zone 2. 
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Figure 6.60   Percent difference of annual energy use (base case (0%, SR-8, RR-4) to 10% 
(SR-10, RR-10)) 
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6.4.2.18  Base case (0% DLR, SR-8/RR-4) vs. modified (15% DLR, SR-10/RR-10) 

 In the case of a 15% duct leakage rate (Figure 6.61), there were total energy use 

increases of 12.41% for climate zone 9, 12.11% for climate zone 5, 13.19% for climate zone 4 

and 14.53% for climate zone 2. For the heating energy use, the results showed an increase of 

28.02% for climate zone 9, 26.60% for climate zone 5, 27.00% for climate zone 4 and 23.12% 

for climate zone 2. For the cooling energy use, 21.54% for climate zone 9, 39.62% for climate 

zone 5, 47.02% for climate zone 4 and 46.88% for climate zone 2 were increased due to the duct 

leakage rates. 
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Figure 6.61   Percent difference of annual energy use (base case(0%, SR-8,RR-4) to 15%(SR-
10,RR-10)) 
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6.4.2.19  Base case (0% DLR, SR-8/RR-4) vs. modified (20% DLR, SR-10/RR-10) 

 When a 20% duct leakage rate was used in the simulations (Figure 6.62), there were 

increases of 18.33% for climate zone 9, 18.47% for climate zone 5, 20.53% for climate zone 4 

and 22.55% for climate zone 2 for the total energy use. For the heating energy use, the results 

showed a 41.10% increase for climate zone 9, 38.55% increase for climate zone 5, 39.28% 

increase for climate zone 4 and 34.68% increase for climate zone 2, and for the cooling energy 

use, the results also showed a 31.54% increase for climate zone 9, a 62.26% increase for climate 

zone 5, a 75.60% increase for climate zone 4 and a 73.66% increase for climate zone 2.  

 Figure 6.63 shows the annual energy use of SR-10 and RR-10 vs. SR-8 and RR-4 

according to the duct leakage rate. 
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Figure 6.62   Percent difference of annual energy use (base case (0%, SR-8,RR-4) to 20% 
(SR-10, RR-10)) 
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Figure 6.63   Annual energy use of SR-10 and RR-10 vs. SR-8 and RR-4 according to the duct leakage rate 
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 Finally, when duct insulation levels were increased to R-12 for the supply and return 

with a 0% duct leakage rate from the base-case house which had R-8 for the supply, R-4 for the 

return and 0% duct leakage rates.  

6.4.2.20  Base case (0% DLR, SR-8/RR-4) vs. modified (0% DLR, SR-12/RR-12) 

 The improvement of R-value (R-12) showed reductions of the total energy use, heating 

energy use and cooling energy use compared to the base-case house (Figure 6.64). Total energy 

use decreased by 1.45% for climate zone 9, 1.20% for climate zone 5, 1.16% for climate zone 4 

and 1.23% for climate zone 2. Heating energy use decreased by 2.57% for climate zone 9, 2.17% 

for climate zone 5, 2.45% for climate zone 4 and 1.45% for climate zone 2. Cooling energy use 

decreased by 3.85% for climate zone 9, 4.40% for climate zone 5, 4.17% for climate zone 4 and 

4.02% for climate zone 2. 
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Figure 6.64   Percent difference of annual energy use (base case (0%, SR-8,RR-4) to 0% (SR-
12, RR-12)) 
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6.4.2.21  Base case (0% DLR, SR-8/RR-4) vs. modified (5% DLR, SR-12/RR-12) 

 For a 5% duct leakage rate (Figure 6.65), there were increases of 2.35% for climate zone 

9, 2.31% for climate zone 5, 2.49% for climate zone 4 and 2.76% for climate zone 2 compared to 

the base-case house for the total energy consumptions. For the heating energy use, there were 

also increases of 5.84% for climate zone 9, 5.97% for climate zone 5, 5.73% for climate zone 4 

and 5.78% for climate zone 2. For the cooling energy use, 2.31% for climate zone 9, 6.29% for 

climate zone 5, 8.33% for climate zone 4 and 8.48% for climate zone 2 were increased, 

respectively.  
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Figure 6.65   Percent difference of annual energy use (base case (0%, SR-8,RR-4) to 5% (SR-
12, RR-12)) 
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6.4.2.22  Base case (0% DLR, SR-8/RR-4) vs. modified (10% DLR, SR-12/RR-12) 

 When a 10% leakage was used in the simulations (Figure 6.66), there were increases of 

6.71% for climate zone 9, 6.45% for climate zone 5, 6.93% for climate zone 4 and 7.61% for 

climate zone 2 in the total annual energy use. For the annual heating energy use, there were 

increases of 15.65% for climate zone 9, 15.20% for climate zone 5, 15.55% for climate zone 4 

and 13.01% for climate zone 2. For the annual cooling energy use, there were also increases of 

10.00% for climate zone 9, 20.13% for climate zone 5, 23.81% for climate zone 4 and 24.11% 

for climate zone 2. 
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Figure 6.66   Percent difference of annual energy use (base case(0%, SR-8,RR-4)  to 10% 
(SR-12,RR-12)) 
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6.4.2.23  Base case (0% DLR, SR-8/RR-4) vs. modified (15% DLR, SR-12/RR-12) 

 In the case of a 15% duct leakage rate (Figure 6.67), there were total energy use 

increases of 11.73% for climate zone 9, 11.41% for climate zone 5, 12.43% for climate zone 4 

and 13.67% for climate zone 2. For the heating energy use, the results showed an increase of 

26.86% for climate zone 9, 25.52% for climate zone 5, 26.19% for climate zone 4 and 23.12% 

for climate zone 2, and for the cooling energy use, 19.23% for climate zone 9, 36.48% for 

climate zone 5, 44.05% for climate zone 4 and 44.20% for climate zone 2 were increased due to 

the duct leakage rates. 
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Figure 6.67   Percent difference of annual energy use (base case(0%, SR-8,RR-4)  to 15% 
(SR-12,RR-12)) 
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6.4.2.24  Base case (0% DLR, SR-8/RR-4) vs. modified (20% DLR, SR-12/RR-12) 

 Using a 20% duct leakage rate (Figure 6.68), the results showed increases of 17.57% for 

climate zone 9 and 5, 19.51% for climate zone 4 and 21.43% for climate zone 2. For the heating 

energy use, there were also increases of 39.70% for climate zone 9, 37.46% for climate zone 5, 

38.46% for climate zone 4 and 33.24% for climate zone 2, and for the cooling energy use, there 

were increases of 29.23% for climate zone 9, 58.49% for climate zone 5, 71.43% for climate 

zone 4 and 69.64% for climate zone 2.  

 Figure 6.69 shows the annual energy use of SR-12 and RR-12 vs. SR-8 and RR-4 

according to the duct leakage rate. 
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Figure 6.68   Percent difference of annual energy use (base case(0%, SR-8,RR-4) to 20% (SR-
12, RR-12) 
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Figure 6.69   Annual energy use of SR-12 and RR-12 vs. SR-8 and RR-4 according to the duct leakage rate 
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6.4.3 Analysis of the Air conditioner Efficiency 

 In order to find the savings from an air conditioner’s efficiency, the annual energy use 

was plotted from the SEER-10 (the base-case house) to the SEER-17 in increments of 1. All 

other properties were kept the same as in the base-case house. The following are detailed 

explanations of the results obtained when using the different levels of the SEER in the 

simulations.  

6.4.3.1 Base case (SEER-10) vs. modified (SEER-11) 

 When using the SEER-11 instead of the SEER-10 (the base-case house) in the 

simulations (Figure 6.70), the SEER-11 air conditioner resulted in a 1.06 % decrease in the total 

annual energy use for climate zone 9, a 1.84% decrease for climate zone 5, a 2.16% decrease for 

climate zone 4 and a 2.89% decrease for climate zone 2 compared to the base-case house. For 

the cooling energy use, the SEER-11 air conditioner also resulted in a 9.33% decrease in the total 

annual energy use for climate zone 9, a 9.45% decrease for climate zone 5, a 8.68% decrease for 

climate zone 4 and a 9.25% decrease for climate zone 2. 
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Figure 6.70   Percent difference of annual energy use (base case (SEER 10) vs. SEER 11) 

 
 
 
6.4.3.2 Base case (SEER-10) vs. modified (SEER-12) 

 The SEER-12 air conditioner (Figure 6.71) produced a 1.95% reduction in the total 

annual energy use for climate zone 9, a 3.38% reduction for climate zone 5, a 3.96% reduction 

for climate zone 4 and a 5.31% reduction for climate zone 2, and a 16.67% reduction in the 

cooling energy use for climate zone 9, a 16.92% reduction for climate zone 5, a 16.44% 

reduction for climate zone 4 and a 16.78% reduction for climate zone 2. 
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Figure 6.71   Percent difference of annual energy use (base case (SEER 10) vs. SEER 12) 

 
 
 
6.4.3.3 Base case (SEER-10) vs. modified (SEER-13) 

 Simulations using the SEER-13 air conditioner (Figure 6.72) resulted in a 2.70% 

reduction in the total annual energy use for climate zone 9, a 4.66% reduction for climate zone 5, 

a 5.48% reduction for climate zone 4 and a 7.35% reduction for climate zone 2. This yielded a 

23.33% reduction in the cooling energy use for climate zone 9, a 23.38% reduction for climate 

zone 5, a 22.83% reduction for climate zone 4 and a 22.95% reduction for climate zone 2. 
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Figure 6.72   Percent difference of annual energy use (base case (SEER 10) vs. SEER 13) 

 
 
 
6.4.3.4 Base case (SEER-10) vs. modified (SEER-14) 

 The SEER-14 air conditioner (Figure 6.73) produced a 3.34% drop of the total annual 

energy use for climate zone 9, a 5.77% drop for climate zone 5, a 6.78% drop for climate zone 4 

and a 9.09% drop for climate zone 2, and a 28.67% drop in the cooling energy use for climate 

zone 9, a 28.86% drop for climate zone 5, a 28.31% drop for climate zone 4 and a 28.42% drop 

for climate zone 2. 
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Figure 6.73   Percent difference of annual energy use (base case (SEER 10) vs. SEER 14) 

 
 
 
6.4.3.5 Base case (SEER-10) vs. modified (SEER-15) 

 When the SEER-15 air conditioner was used in the simulation (Figure 6.74), the results 

showed 3.90% total energy savings for climate zone 9, 6.74% for climate zone 5, 7.91% for 

climate zone 4 and 10.60% for climate zone 2, and 33.33% cooling energy savings for climate 

zone 9, 5 and 4 and 33.22% for climate zone 2, respectively.  
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Figure 6.74   Percent difference of annual energy use (base case (SEER 10) vs. SEER 15) 

 
 
 
6.4.3.6 Base case (SEER-10) vs. modified (SEER-16) 

 The SEER-16 air conditioner (Figure 6.75) produced a 4.38% reduction in the total 

energy use for climate zone 9, a 7.59% reduction for climate zone 5, a 8.89% reduction for 

climate zone 4 and a 11.93% reduction for climate zone 2, and a 37.33% reduction in cooling 

energy use for climate zone 9, a 37.81% reduction for climate zone 5, a 37.44% reduction for 

climate zone 4 and a 37.67% reduction for climate zone 2.  
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Figure 6.75   Percent difference of annual energy use (base case (SEER 10) vs. SEER 16) 

 
 
 
6.4.3.7 Base case (SEER-10) vs. modified (SEER-17) 

 Finally, when the SEER-17 air conditioner (Figure 6.76) was simulated, it produced a 

4.81% reduction in the total energy use for climate zone 9, a 8.32% reduction for climate zone 5, 

a 9.77% reduction for climate zone 4 and a 13.10% reduction for climate zone 2, and a 41.33% 

reduction in the cooling energy use for climate zone 9, a 41.29% reduction for climate zone 5, a 

41.10% reduction for climate zones 4 and 2. Figure 6.77 shows the annual energy use of 

different air conditioner efficiency 
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Figure 6.76   Percent difference of annual energy use (base case (SEER 10) vs. SEER 17) 
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Figure 6.77   Annual energy use of different air conditioner efficiency 
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6.4.4 Analysis of the Gas Furnace Efficiency 

 The following plots showed the annual total energy use, heating and the total energy 

savings by changing the gas-furnace’s efficiency. The percent savings were plotted against 

heating degree days according to the climate zones. In order to find the savings from gas-furnace 

efficiency, the annual energy use was plotted by changing it from 0.78 AFUE to 0.90 AFUE in 

increments of 0.05. The other properties remained the same as in the base-case house. 

 The total energy savings aa compared to the base-case house from climate zone 2 (the 

hotter climate) to climate zone 9 (the colder climate) were higher, because heating energy use 

from climate zone 2 to climate zone 9 was higher. It was also found that energy savings from an 

energy efficienct furnace was significant where the climate was cold, whereas energy savings 

from an energy efficient furnace was insignificant where the climate was hot and less heating 

energy was needed. 

 The following are detailed explanations of the results obtained when using different 

levels of AFUE for the furnace in the simulations. 

6.4.4.1 Base case (AFUE 0.78) vs. modified (AFUE 0.80) 

 When applying AFUE 0.80 to the base-case (Figure 6.78), the total annual energy use 

and heating energy use started showing reductions. For the total energy use, there were 

reductions of 0.99% for climate zone 9, 0.55% for climate zone 5, 0.39% for climate zone 4 and 

0.22% for climate zone 2. For the heating energy use, there were also reductions of 2.55% for 

climate zone 9, 2.31% for climate zone 5, 2.77% for climate zone 4 and 2.49% for climate zone 

2. 
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Figure 6.78   Percent difference of annual energy use (base case (AFUE 0.78) vs. AFUE 0.80) 

 
 
 
6.4.4.2 Base case (AFUE 0.78) vs. modified (AFUE 0.85) 

 Using AFUE 0.85 (Figure 6.79) resulted in a 3.27% reduction for climate zone 9, a 

1.80% reduction for climate zone 5, a 1.29% reduction for climate zone 4 and a 1.17% reduction 

for climate zone 2 in the total energy use. There were also a 8.25% reduction for climate zone 9, 

a 7.86% reduction for climate zone 5, a 8.32% reduction for climate zone 4 and a 8.73% 

reduction for climate zone 2 in the heating energy use. 
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Figure 6.79   Percent difference of annual energy use (base case (AFUE 0.78) vs. AFUE 0.85) 

 
 
 
6.4.4.3 Base case (AFUE 0.78) vs. modified (AFUE 0.90) 

 AFUE 0.90 furnace (Figure 6.80) produced a 5.30% drop for climate zone 9, a 2.92% 

drop for climate zone 5, a 2.09% drop for climate zone 4 and a 1.17% drop for climate zone 2 in 

the total annual energy use, and a 13.35% drop for climate zone 9, a 12.95% drop for climate 

zone 5, a 13.18% drop for climate zone 4 and a 13.72% drop for climate zone 2 in the heating 

energy use. Figure 6.81 shows the annual energy use of different gas furnace efficiency. 
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Figure 6.80   Percent difference of annual energy use (base case (AFUE 0.78) vs. AFUE 0.90) 
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Figure 6.81   Annual energy use of different gas furnace efficiency 
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6.4.5 Analysis of the Heat Pump Efficiency 

 The following shows the annual total energy use and the heating and total energy 

savings by changing the heat pump’s efficiency. The percent savings were plotted against the 

heating degree days according to the climate zones. In order to find the savings from the heat 

pump’s efficiency, the annual energy use was plotted by changing the levels from 6.8 HSPF to 

8.0 HSPF in increments of 0.5. The other properties remained the same as in the base-case house. 

 The pattern of the total energy savings against the base-case house was similar to the 

results of the gas-furnace. It was found that the total energy savings got higher as it moved from 

climate zone 2 (a hotter climate) to climate zone 9 (a colder climate). It was also found that 

energy savings from an energy-efficient heat pump was insignificant where there were less space 

heating uses. 

 The following are detailed explanations of the results obtained when using different 

level of HSPF for the heat pump in the simulations. 

6.4.5.1 Base case (HSPF 6.8) vs. modified (HSPF 7.0) 

 When using HSPF 7.0 (Figure 6.82), the total annual energy use and heating energy use 

showed decreases. For the total annual energy use, there were reductions of 0.81% for climate 

zone 9, 0.48% for climate zone 5, 0.35% for climate zone 4 and 0.21% for climate zone 2. For 

the heating annual energy use, there were also reductions of 2.19% for climate zone 9, 2.02% for 

climate zone 5, 2.19% for climate zone 4 and 3.03% for climate zone 2. 
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Figure 6.82   Percent difference of annual energy use (base case (HSPF 6.8) vs. HSPF 7.0) 

 
 
 
6.4.5.2 Base case (HSPF 6.8) vs. modified (HSPF 7.5) 

 Applying HSPF 7.5 (Figure 6.83) resulted in a 2.63% reduction for climate zone 9, a 

1.58% reduction for climate zone 5, a 1.14% reduction for climate zone 4 and a 0.67% reduction 

for climate zone 2 in the total annual energy use. There were also a 6.78% reduction for climate 

zone 9, a 7.58% reduction for climate zone 5, a 7.30% reduction for climate zone 4 and a 9.09% 

reduction for climate zone 2 in the heating annual energy use. 
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Figure 6.83   Percent difference of annual energy use (base case (HSPF 6.8) vs. HSPF 7.5) 

 
 
 
6.4.5.3 Base case (HSPF 6.8) vs. modified (HSPF 8.0) 

 HSPF 8.0 heat pump (Figure 6.84) produced a 4.22% drop for climate zone 9, a 2.55% 

drop for climate zone 5, a 1.85% drop for climate zone 4 and a 1.08% drop for climate zone 2 in 

the total energy use, and a 10.94% drop for climate zone 9, a 12.12% drop for climate zone 5, a 

11.68% drop for climate zone 4 and a 15.15% drop for climate zone 2 in the cooling annual 

energy use. Figure 6.85 Annual energy use of different heat pump efficiency. 
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Figure 6.84   Percent difference of annual energy use (base case (HSPF 6.8) vs. HSPF 8.0) 
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Figure 6.85   Annual energy use of different heat pump efficiency 
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6.4.6 Analysis of the Domestic Hot Water Heater Efficiency 

 The following show the annual total energy use and domestic hot water energy use, as 

well as the total energy and domestic hot water savings obtained by changing the domestic hot 

water efficiency (Energy Factor or EF). The percent savings were plotted against the heating 

degree days according to the climate zones. In order to find the savings from the domestic hot 

water efficiency, the annual energy use was plotted by changing 0.55 EF to 0.80 EF in 

increments of 0.05. The other properties were the same as in the base-case house. 

 It was found that the total energy savings and domestic hot water energy savings were 

constant through all the climate zones. This means that the domestic hot waster energy use was 

hardly influenced by the different climates. However, energy efficient water heaters offered 

significant savings potentials in all climate zones. 

 The following are detailed explanations of the results obtained when different levels of 

EF were applied to the simulations. 

6.4.6.1 Base case (0.55 EF) vs. modified (0.60 EF) 

 Applying a 0.60 EF water heater (Figure 6.86) resulted in a 1.90% reduction for climate 

zone 9, a 2.09% reduction for climate zone 5, a 2.12% reduction for climate zone 4 and a 1.95% 

reduction for climate zone 2 in the total energy use. This yielded a 8.53% reduction in the 

domestic hot water energy use for climate zone 9, a 8.47% reduction for climate zone 5, a 8.51% 

reduction for climate zone 4 and a 8.37% reduction for climate zone 2. 
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Figure 6.86   Percent difference of annual energy use (base case (0.55 EF) vs. 0.60 EF) 

 
 
 
6.4.6.2 Base case (0.55 EF) vs. modified (0.65 EF) 

 On going from the base case to 0.65 EF (Figure 6.87), the total annual energy 

consumptions reduced by 3.51% for climate zone 9, 3.85% for climate zone 5, 3.91% for climate 

zone 4 and 3.60% for climate zone 2, and the domestic hot water energy consumptions decreased 

by 15.36% for climate zone 9, 15.32% for climate zone 5, 15.32% for climate zone 4 and 

15.35% for climate zone 2. 



 

 

319

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Heating Degree Days

D
iff

er
en

ce
 (%

)

Total (EF=0.65) DHW (EF=0.65)

CZ 2 CZ 4 CZ 5 CZ 9

 

Figure 6.87   Percent difference of annual energy use (base case (0.55 EF) vs. 0.65 EF) 

 
 
 
6.4.6.3 Base case (0.55 EF) vs. modified (0.70 EF) 

 A 0.70 EF water heater (Figure 6.88) produced a 4.89% drop for climate zone 9, a 

5.36% drop for climate zone 5, a 5.44% drop for climate zone 4 and a 5.01% drop for climate 

zone 2 in the total annual energy use, and a 21.50% drop for climate zone 9, a 21.37% drop for 

climate zone 5, a 21.70% drop for climate zone 4 and a 21.40% drop for climate zone 2 in the 

domestic hot water energy use. 
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Figure 6.88   Percent difference of annual energy use (base case (0.55 EF) vs. 0.70 EF) 

 
 
 
6.4.6.4 Base case (0.55 EF) vs. modified (0.75 EF) 

 Application of 0.75 EF water heater (Figure 6.89) resulted in 6.08% total energy savings 

for climate zone 9, 6.67% for climate zone 5, 6.76% for climate zone 4 and 6.23% for climate 

zone 2, and 26.62% domestic hot water energy savings for climate zone 9, 26.61% for climate 

zone 5, 26.81% for climate zone 4 and 36.98% for climate zone 2, respectively.  
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Figure 6.89   Percent difference of annual energy use (base case (0.55 EF) vs. 0.75 EF) 

 
 
 
6.4.6.5 Base case (0.55 EF) vs. modified (0.80 EF) 

 When a 0.80 EF water heater was simulated (Figure 6.90), it produced a 7.13% drop for 

climate zone 9, a 7.82% drop for climate zone 5, a 7.93% drop for climate zone 4 and a 7.31% 

drop for climate zone 2 in the total energy use, and a 31.40% drop for climate zone 9, a 31.05% 

drop for climate zone 5, a 31.49% drop for climate zone 4 and a 31.16% drop for climate zone 2 

in the domestic hot water energy use. 

Figure 6.91 shows the annual energy use of different domestic hot water efficiency. 
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Figure 6.90   Percent difference of annual energy use (base case (0.55 EF) vs. 0.80 EF) 
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Figure 6.91   Annual energy use of different domestic hot water efficiency 
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6.4.7 Analysis of the Location of the HVAC Systems 

 In an attempt to evaluate the effects of placing the ducts in the conditioned space as 

opposed to the attic space, the duct leakage rates were varied from 0% to 20% for those HVAC 

systems located in the attic space and as well as in the conditioned space. 

 The following show the annual total energy use, total energy, heating energy and cooling 

energy savings by placing the duct in the conditioned space and by changing the duct leakage 

rate from 0% to 20% in increments of 5%. The other properties remained the same as in the 

base-case house. Both energy uses in the attic space and the conditioned space with the same 

duct leakage rate were compared in order to investigate the energy use difference between the 

attic space and the conditioned space. 

 The following are detailed explanations of the results obtained according to the duct 

locations and the duct leakage rate in each of the simulations. It was found that climate zone 9 

produced the highest total energy savings and heating energy savings, and climate zone 5 

produced the highest cooling energy savings.  

6.4.7.1 0% DLR, the attic space vs. 0% DLR, the conditioned space 

 In the case of 0% duct leakage rate (Figure 6.92), the total energy use decreased by 

1.44% for climate zone 9, 0.97% for climate zone 5, 0.82% for climate zone 4 and 0.63% for 

climate zone 2 when duct location was changed from the attic space to the conditioned space. 

The heating energy use also decreased by 3.27% for climate zone 9, 2.71% for climate zone 5, 

2.45% for climate zone 4 and 1.45% for climate zone 2. The cooling energy use decreased by 

1.54% for climate zone 9, 2.52% for climate zone 5, 2.38% for climate zone 4 and 1.79% for 

climate zone 2. 
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Figure 6.92   Percent difference according to HVAC location (the attic space vs. the 
conditioned space (0% duct leakage rate)) 

 
 
 
6.4.7.2  5% DLR, the attic space vs. 5% DLR, the conditioned space 

 The results using a 5% duct leakage rate (Figure 6.93) showed reductions of 2.90% for 

climate zone 9, 2.16% for climate zone 5, 1.91% for climate zone 4 and 1.50% for climate zone 

2. Results of heating energy use produced a 6.44% drop for climate zone 9, a 5.02% drop for 

climate zone 5, a 5.30% drop for climate zone 4 and a 4.04% drop for climate zone 2. For the 

cooling energy use, there were also reductions of 3.60% for climate zone 9, 6.18% for climate 

zone 5, 5.24% for climate zone 4 and 3.94% for climate zone 2. 



 

 

326

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Heating Degree Days

D
iff

er
en

ce
 (%

)

Total (5% leakage) Cooling (5% leakage) Heating (5% leakage)

CZ 2 CZ 4 CZ 5 CZ 9

 

Figure 6.93   Percent difference according to HVAC location (the attic space vs. the 
conditioned space (5% duct leakage rate)) 

 
 
 
6.4.7.3  10% DLR, the attic space vs. 10% DLR, the conditioned space 

 When a 10% duct leakage rate was used in the simulation (Figure 6.94), there were 

reductions of 4.52% for climate zone 9, 3.60% for climate zone 5, 3.27% for climate zone 4 and 

2.64% for climate zone 2 for total energy use. For the heating energy use, there were also 

reductions of 9.62% for climate zone 9, 7.86% for climate zone 5, 8.32% for climate zone 4 and 

6.23% for climate zone 2. For the cooling energy use, there were reductions of 6.00% for climate 

zone 9, 9.45% for climate zone 5, 8.22% for climate zone 5 and 6.85% for climate zone 2. 
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Figure 6.94   Percent difference according to HVAC location (the attic space vs. the 
conditioned space (10% duct leakage rate)) 

 
 
 
6.4.7.4  15% DLR, the attic space vs. 15% DLR, the conditioned space 

 A 15% duct leakage rate (Figure 6.95) produced reductions of 6.30% for climate zone 9, 

5.36% for climate zone 5, 5.04% for climate zone 4 and 4.13% for climate zone 2 in the total 

energy use. For the heating energy use, there were 12.72% decrease for climate zone 9, 10.58% 

for climate zone 5, 10.81% for climate zone 4 and 6.96% for climate zone 2. In the case of the 

cooling energy use, there were also decreases of 8.02% for climate zone 9, 13.48% for climate 

zone 5, 12.45% for climate zone 4 and 9.71% for climate zone 2. 
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Figure 6.95   Percent difference according to HVAC location (the attic space vs. the 
conditioned space (15% duct leakage rate)) 

 
 
 
6.4.7.5  20% DLR, the attic space vs. 20% DLR, the conditioned space 

 In the case of 20% duct leakage rate (Figure 6.96), there were reductions of 8.25% for 

climate zone 9 which was the largest savings, 7.68% for climate zone 5, 7.47% for climate zone 

4 and 6.17% for climate zone 2 for the total energy use. For the heating energy use, there were 

also decreases of 15.90% for climate zone 9 which was the largest savings, 13.50% for climate 

zone 5, 13.86% for climate zone 4 and 9.55% for climate zone 2. For the cooling energy use, 

there were reductions of 10.73% for climate zone 9 and 18.59% for climate zone 5 which was 

the largest saving, 17.53% for climate zone 4 and 13.61% for climate zone 2. 



 

 

329

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Heating Degree Days

D
iff

er
en

ce
 (%

)

Total (20% leakage) Cooling (20% leakage) Heating (20% leakage)

CZ 2 CZ 4 CZ 5 CZ 9

 

Figure 6.96   Percent difference according to HVAC location (the attic space vs. the 
conditioned space (20% duct leakage rate)) 

 
 
 
 According to the IECC Chapter 402.1.3.9, the heating/cooling system efficiency should 

be proportionately adjusted for portions of the ductwork located outside or inside the conditioned 

space. According to the IECC, if the duct system was relocated from outside to inside, there 

could be 20% savings for the heating and cooling energy. 

 From this analysis, it was found that there were savings variations from 1.54% to 

18.59% for the cooling system, from 1.45% to 15.90% for the heating system depending on the 

amount of the duct leakage rates and the climate zones. Nevertheless, the current 2000/2001 

IECC defines the fixed adjustment factor. Therefore, the new version of the IECC needs to 

consider system adjustment factors according to different conditions.  

 Figure 6.97 shows the annual energy use according to the locations of the HVAC 

systems. 
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Figure 6.97   Annual energy use according to the locations of the HVAC systems 
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6.4.8 Analysis of the Tree Shading Impacts 

 The following results include two different types of graphs to show the effect of tree 

shading. The annual energy use was plotted by changing the tree shading type from the base case 

(no shading). The other properties remained the same as in the base case house. From the 

simulations, the following were observed: 

1) Cooling energy savings from evergreen tree shading on the east and west sides were the 

highest for all climate zones. However, this tree shading resulted in the largest energy use for 

heating because the tree shading blocked much of the solar heat gain throughout the year.  

2) Heating energy savings from deciduous tree shading on the west side were the highest for all 

climate zones. However, this tree shading also offered less cooling energy savings than any other 

tree shading because this tree shading allowed solar heat gain to enter the house in the summer 

season. 

3) Total energy savings from deciduous trees on the east and west sides were the highest for 

climate zones 9, 5, and 4, and total savings from the east and west sides of evergreen trees was 

the highest for climate zone 2. For climate zones 9, 5 and 4, the results showed a large reduction 

of the cooling energy and a small increase for heating energy use. There were compensations for 

each other due primarily to the east and west deciduous tree shading leading to the highest total 

energy savings. However, the east and west side of evergreen tree shading provided the most 

benefits to climate zone 2 because climate zone 2 was the hottest climate zone in this analysis, 

and the resulting cooling energy savings was higher than any other tree shading option. 

 The following are detailed explanations of the results obtained from the different 

simulation conditions according to the tree shading types.  
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6.4.8.1 Base case (no shading) vs. modified (shading on the ease side, live oak tree) 

 In the case of the east side live oak tree shadings (Figure 6.98), there was a decrease in 

total energy use for climate zones 9, 5, 4 and 2 compared to the base-case house. For the heating 

energy use, all climate zones showed an increase in the heating energy use. However, there was 

a reduction in the cooling energy for all climate zones. For the total energy use, there were 

reductions of 0.01% for climate zone 9, 0.64% for climate zone 5, 0.69% for climate zone 4 and 

1.24% for climate zone 2. For the heating energy use, there were increases of 3.14% for climate 

zone 9, 3.24% for climate zone 5, 2.77% for climate zone 4 and 1.25% for climate zone 2, and 

for the cooling energy use, there were reductions of 10.00% for climate zone 9, 5.97% for 

climate zone 5, 4.57% for climate zone 4 and 4.11% for climate zone 2. 
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Figure 6.98   Percent difference of annual energy use (base case (no shading) vs. east side 
shading of live oak)) 
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6.4.8.2 Base case (no shading) vs. modified (shading on the ease side, deciduous tree) 

 In the case of the east side deciduous tree shading (Figure 6.99), the total energy use 

decreased by 0.63% for climate zone 9, 1.05% for climate zone 5, 0.94% for climate zone 4 and 

1.26% for climate zone 2. The heating energy use increased by 1.57% for climate zone 9, 1.39% 

for climate zone 5 and 4, no change for climate zone 2. The cooling energy use decreased by 

10.00% for climate zone 9, 5.97% for climate zone 5, 4.11% for climate zone 4 and 3.77% for 

climate zone 2.  
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Figure 6.99   Percent difference of annual energy use (base case (no shading) vs. east side 
shading of deciduous tree)) 
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6.4.8.3 Base case (no shading) vs. modified (shading on the ease side, evergreen tree) 

 When using the east side evergreen tree shading (Figures 6.100 and 6.101), there were a 

0.06% increase for climate zone 9, a 0.70% decrease for climate zone 5, a 0.72% decrease for 

climate zone 4 and a 1.31% decrease for climate zone 2 in the total energy use. The heating 

energy showed a 3.34% increase for climate zone 9, a 3.24% increase for climate zone 5, a 

2.77% increase for climate zone 4 and a 1.25% increase for climate zone 2. The cooling energy 

showed a 10.00% drop in climate zone 9, a 6.47% drop in climate zone 5, a 4.57% drop for 

climate zone 4 and a 4.11% drop for climate zone 2. 
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Figure 6.100   Percent difference of annual energy use (base case (no shading) vs. east side 
shading of evergreen)) 
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Figure 6.101   Annual energy use of east side tree shading 

 
 
 
6.4.8.4 Base case (no shading) vs. modified (shading on the west side, live oak tree) 

 In case of the west side live oak tree shading (Figure 6.102), the total energy use 

decreased by 0.14% for climate zone 9, 0.40% for climate zone 5, 0.38% for climate zone 4 and 

0.50% for climate zone 2. For the heating energy use, the results showed increases of 0.59% for 

climate zone 9, 0.93% for climate zone 5 and 0.69% for climate zone 4. There was no change for 

climate zone 2. For the cooling energy use, the results showed reductions of 2.67% for climate 

zone 9, 2.99% for climate zone 5, 1.83% for climate zone 4 and 1.71% for climate zone 2.  
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Figure 6.102   Percent difference of annual energy use (base case (no shading) vs. west side 
shading of live oak)) 

 
 
 
6.4.8.5 Base case (no shading) vs. modified (shading on the west side, deciduous tree) 

 Application of the deciduous tree shading (Figure 6.103) produced a 0.27% reduction for 

climate zone 9, a 0.50% reduction for climate zone 5, a 0.46% reduction for climate zone 4 and a 

0.51% reduction for climate zone 2 in the total energy use. The heating energy use increased by 

0.20% for climate zone 9 and 0.46% for climate zone 5, and there were no changes for climate 

zone 4 and 2. The cooling energy use decreased by 2.67% for climate zone 9, 2.99% for climate 

zone 5, 1.83% for climate zone 4, 1.71% for climate zone 2.  
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Figure 6.103   Percent difference of annual energy use (base case (no shading) vs. west side 
shading of deciduous)) 

 
 
 
6.4.8.6 Base case (no shading) vs. modified (shading on the west side, evergreen tree) 

 The results with the evergreen tree shading (Figure 6.104) showed reductions of 0.14% 

for climate zone 9, 0.41% for climate zone 5 and 4, 0.53% for climate zone 2 in the total energy 

use. Results of the heating energy use produced a 0.59% increase for climate zone 9, a 0.93% 

increase for climate zone 5, a 0.69% increase for climate zone 4 and there was no change for 

climate zone 2. For the cooling energy use, there were reductions of 3.33% for climate zone 9, 

2.99% for climate zone 5, 1.83% for climate zone 4 and 1.71% for climate zone 2. 
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Figure 6.104   Percent difference of annual energy use (base case (no shading) vs. west side 
shading of evergreen)) 
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Figure 6.105   Annual energy use of west side tree shading 
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6.4.8.7 Base case (no shading) vs. modified (shading on the east/west side, live oak tree) 

 In case of both the east and west side live oak tree shading (Figure 6.106), the total 

annual energy decreased by 0.14% for climate zone 9, 1.00% for climate zone 5, 1.10% for 

climate zone 4 and 1.74% for climate zone 2. There were increases of 3.73% for climate zone 9, 

4.16% for climate zone 5, 3.47% for climate zone 4 and 2.49% for climate zone 2 in the heating 

energy use, and there were 12.67% decrease in for climate zone 9, 8.46% in climate zone 5, 

6.39% in climate zone 4 and 5.82% in climate zone 2.  
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Figure 6.106   Percent difference of annual energy use (base case (no shading) vs. both (east 
and west) side shading of live oak)) 
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6.4.8.8 Base case (no shading) vs. modified (shading on the east/west side, deciduous tree) 

 For the east and west side shading with the deciduous trees (Figure 6.107), the total 

annual energy use yielded a 0.86% drop for climate zone 9, a 1.51% drop for climate zone 5, a 

1.40% drop for climate zone 4 and a 1.77% drop for climate zone 2. The heating energy use 

yielded a 1.77% increase for climate zone 9, a 1.85% increase for climate zone 5, a 1.39% 

increase for climate zone 4 and there was no change for climate zone 2. The cooling energy use 

yielded a 12.67% drop for climate zone 9, a 8.46% drop for climate zone 5, a 6.39% drop for 

climate zone 4 and a 5.48% drop for climate zone 2. 
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Figure 6.107   Percent difference of annual energy use (base case (no shading) vs. both (east 
and west) side shading of deciduous)) 
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6.4.8.9 Base case (no shading) vs. modified (shading on the east and west side, evergreen 

 tree) 

 Finally, using the evergreen tree on both the east and west side (Figures 6.108 and 

6.109) produced a 0.06% reduction for climate zone 9, a 1.07% reduction for climate zone 5, a 

1.16% reduction for climate zone 4 and a 1.83% reduction for climate zone 2 in the total energy 

use. For the heating energy use, there were increases of 3.93% for climate zone 9, 4.16% for 

climate zone 5 and 4, and 2.49% for climate zone 2. Cooling energy use decreased by 13.33% 

for climate zone 9, 8.96% for climate zone 5, 6.85% for climate zone 4 and 5.82% for climate 

zone 2. 
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Figure 6.108   Percent difference of annual energy use (base case (no shading) vs. both (east 
and west) side shading of evergreen)) 
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Figure 6.109   Annual energy use of both (east and west) side tree shading 

 
 
 
6.5  Summary 

 This chapter has presented and discussed the IECC-compliant simulation model 

including a thermal mass analysis and a window input mode analysis. For the thermal mass 

analysis, a quick construction wall and six thermal mass construction wall types were simulated 

to investigate their impact on the annual, cooling and heating energy use. It was found that the 

quick construction mode usually overestimated the total, the cooling and the heating energy use. 

For the window input mode analysis, the simulations of the SC (Shading Coefficient) method 

and the Window-5 method were compared. Simulations were also performed based on the two 

different construction modes (the quick construction mode and the thermal mass construction 

mode). It was observed that the percent savings obtained from the Window-5 method were 

usually greater than those from the SC method in almost all the cases. In comparing the percent 
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savings based on the two construction modes, the savings from the quick construction mode 

were usually greater than the percent savings from the thermal mass construction mode. 

 Using the IECC-compliant simulation model, efficiency tests were performed. Results 

from the fenestration properties suggested that cooling energy savings could be achieved from 

decreasing only the SHGC, and heating energy savings could be achieved from decreasing only 

the U-value. However, the combination of proper SHGC and U-values produced the largest total 

energy savings. From duct properties simulations, it was found that duct leakage rates affected 

the cooling and heating energy use more than duct insulation levels. From a system efficiency 

simulation of an air conditioner, furnace and heat pump, it was found that a highly efficient air 

conditioner has a high potential energy savings in a hot climate zone, whereas a highly efficient 

furnace and heat pump have a high potential for energy savings in a cold climate zone. From 

domestic hot water efficiency simulations, it was found that an energy efficient water heater had 

a significant savings potential regardless of the climate zones. The results of the different 

locations of the HVAC system suggested that the HVAC system in the conditioned space could 

produce cooling and heating energy savings up to 18.59% and 15.90%. Finally, the results from 

the simulations of various tree shadings could provide the highest cooling energy savings with 

east and west side evergreen tree shading, and a total annual energy savings with east and west 

deciduous tree shading. 
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CHAPTER VII 

SUMMARY AND FUTURE RECOMMENDATIONS 

7.1 Summary of the Methodology 

 A methodology was developed for the purpose of creating a code-traceable IECC 

simulation model. Before creating the code-traceable IECC simulation model, a base-case model 

was created and calibrated with measured data collected from the case-study house to obtain a 

simulation model that would more accurately represent the case-study house. The calibrated 

model was then used to verify the accuracy of the new simulation methods against previous 

models and the measured data. These methods include:  

• An application of multi-layered window models (i.e., Window-5) combined with 

improved thermal mass modeling (i.e., DOE-2’s Custom Weighting Factors) 

• The development of a duct model in an attic space using ASHRAE Standard 152-2004 

using DOE-2.1e FUNCTION commands (ASHRAE 2004). 

• The application of new, more accurate residential HVAC system performance curves 

(Henderson et al. 2000). 

• The application of a new, more accurate domestic hot water system curve (NREL 2001). 

• The application of improved underground surface heat transfer calculations 

(Winkelmann 1998). 

 The measurements in the case-study house in Bryan, TX, were performed from January 

to December of 2004. These measurements were used to validate various aspects of the results 

taked from the improved simulation model of the base-case house. After the validation was 

accomplished, the improved model was then used to simulate the various types of energy-
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conserving features of a single-family residence that could not be simulated with the previous 

version of the DOE-2 input file. 

7.2 Summary of the Results 

 This section consists of two types of results obtained from this dissertation: 1) the results 

from the calibrated simulation of the case-study house, and 2) the results from the use of the 

improved IECC simulation model. 

7.2.1 The Results of the Case-Study House 

 The results obtained from these analyses include measurement results and DOE-2 

simulations of the base-case house. 

• In order to verify the accuracy of the base-case house simulation model, measurements of 

the indoor and outdoor environmental condition and energy consumption were used to 

calibrate the new model. The results show that the new model had an improved calibration 

of CV (RMSE) (24.7%) and MBE (-0.79%) over the previous model of CV (RMSE) 

(40.24%) and MBE (-29.10%) of the house.  

• Three-parameter change-point (3P) cooling and heating models using ASHRAE’s Inverse 

Model Tool Kit (IMT) were developed to compare the annual electricity and natural gas use 

of the case-study house with a similarly sized IECC-compliant house. The comparison 

showed that if the base-case house had been built to the 2000/2001 IECC standard, the 

annual electricity and natural gas use could be reduced by 9.2% and 20.0% respectively. 

• From the measurements of the HVAC and duct systems in the attic during the summer 

periods, it was found that the fluctuating conditions in the unconditioned space played a very 

significant role in the duct heat loss or gain which requires an improved thermal mass 

simulations.  
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• For the base-case house simulation, the results from the new model agreed well with the 

measurements from the base-case model. The improved methods in the new model include: 

o The development of a duct model using DOE-2.1e FUNCTION commands, and 

ASHRAE 152-2004 equations. After applying the duct model to the base-case house 

simulation model, the simulated energy use provided a better match to the measured 

energy use than the previous simulation results that did not include a duct model. 

Thus the improved simulation input file with the duct model can properly evaluate 

the impact of duct properties in residential energy use, which could not have been 

considered in the previous residential simulation model. 

o Three new performance curves (good, typical and poor) were tested to improve the 

A/C system simulations from Henderson et al. (2000) along with two new DOE-2 

performance (the new SDL-C17 and the old SDL-C17) performance curves. After 

applying these residential A/C system performance curves, it was found that the 

cooling energy use from the new A/C system performance curves better matched the 

measured performance data than did the previous model. Therefore, simulations 

using the new system performance curves could investigate cooling energy use more 

accurately than did the previous model. 

o In order to investigate a new method of designing a domestic hot water system, 

simulations of four different results were compared: 1) the measured data from the 

case-study house, 2) a calculation using the ASHRAE 90.2 (2001a) method, 3) 

simulation results using a new method suggested by NREL, and 4) simulation results 

using the previous DOE-2 default method. It was found that the results from the 

NREL method were the closest to the results of both the measured data and the 
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ASHRAE 90.2 (2001a) calculations. Therefore, a simulation of the DHW using an 

EF is now recommended for residential houses. 

o In order to investigate a more accurate method to calculate the underground surface 

heat transfer, simulations for an underground surface were performed using LBNL’s 

U-EFFECTIVE method (Winkelmann 1998). The results showed that the use of U-

EFFECTIVE, when combined with TRY ground temperatures, offered a significant 

improvement in the accuracy of the simulation of the heating energy uses of the 

case-study house. Thus, the simulation with LBNL’s U-EFFECTIVE method should 

be used to calculate the heat transfer from the underground surface. 

7.2.2 The Results of the IECC-Compliant Simulation Model 

 The results obtained from the IECC-compliant simulation include an improved thermal 

mass analysis, an improved window input mode analysis, and an improved efficiency analysis. 

Thermal mass analysis 

• The IECC simulation model was used to perform a thermal mass analysis with the “quick” 

construction mode (i.e., pre-calculated ASHRAE weighting factors) and a thermal mass 

construction model (i.e., DOE-2’s custom weighting factors with layered walls, roof, etc.). 

For this analysis, seven wall construction types were created according to the 2000/2001 

IECC: 1) a quick mode wall that uses U-values instead of layered materials, 2) a 2x4, wood-

framed wall with studs 16” O.C. with insulation between the studs, 3) a 3” facia brick wall 

with a 2 x 4 wood-frame with studs 16” O.C. with insulation between the studs, 4) an 8” 

concrete block wall with perlite fill in the cells of the block and insulation between the block 

and the interior gypsum board, 5) an 8” concrete block wall with perlite and concrete fill in 

the cells of the block and insulation between the block and the interior gypsum board, 6) an 

8” concrete block wall with perlite fill in the cells of the block and insulation outside the 
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block, covered by stucco, and 7) an 8” concrete block with perlite and concrete fill in the 

cells of the block and insulation outside the block, covered by stucco. 

• It was found that the quick construction mode usually over-estimated the total, cooling and 

heating energy uses when compared to the thermal mass mode. In the case of the total annual 

energy use, an 8” concrete block wall with perlite fill in the cells of the block and insulation 

between the block and the interior gypsum board was the most energy-conserving wall. The 

results from this wall type showed a 2.54% total annual savings compared to the base-case 

wall type, which was a 2 x 4, wood-framed wall with studs 16” O.C. with insulation between 

the studs. 

Window input mode analysis 

• A window input mode analysis was also performed using DOE-2’s SC input method and the 

Window-5 input method which compared single-pane, double-pane and low-e glass, using 

the quick construction mode and the thermal mass construction mode. The results showed 

that the annual percent savings obtained from the Window-5 method were usually greater 

than the annual percent savings obtained from the SC method in almost all cases.  

• It was also found that the savings from the “quick” construction mode (i.e., pre-calculated 

ASHRAE weighting factors) were usually greater than the percent savings from the thermal 

mass construction mode (i.e., DOE-2’s custom weighting factors). 

• Several researches proved that the W-5 method calculated the window heat transfer more 

accurately than the SC method. Performing the simulations in this study, this research found 

that there were differences between the two methods even though exactly the same thermal 

window properties were used for the simulations. However, since the current IECC provides 

only a U-value and an SHGC for the window properties, the SC method must still be used 

for analyzing the IECC-code compliant house. Thus, the LBNL needs to provide an 
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automatic Window-5 preprocessor that allows for Window-5 files to be produced given only 

U-values, SHGC and several assumptions about frame size, type, etc. 

Efficiency analysis 

An Efficiency analysis using the IECC-compliant traceable simulation model was performed 

with varying fenestration properties, duct properties, air conditioner efficiencies, furnace 

efficiencies, heat pump efficiencies, domestic hot water heater efficiencies, locations of the 

HVAC system, and tree shading effects. 

• Results from the fenestration properties showed that additional annual cooling energy 

savings could be achieved by decreasing the SHGC. Heating energy savings could be 

achieved by decreasing the U-value. However, the combination of the proper SHGC and U-

values produced the largest total energy savings.  

• From the duct simulations, it was found that duct leakage rates affected the cooling and 

heating energy use more than did duct insulation levels.  

• From the system efficiency simulations of air conditioners, furnaces and heat pumps, it was 

found that a highly efficient air conditioner had substantial potential for energy savings in 

the hot-humid climate zones, whereas a high efficiency furnacess and heat pumps had the 

most energy savings in cold climate zones. 

• From the domestic hot water efficiency simulations, energy efficient water heaters had 

significant savings potential regardless of the climate zones.  

• The results of the simulation using different locations of the HVAC system suggested that an 

HVAC system in a conditioned space could produce significant cooling and heating energy 

savings because duct losses could be eliminated. 
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• Finally, the results from simulations of tree shading showed the highest cooling energy 

savings with evergreen trees shading the east and west sides, and the highest total annual 

energy savings with deciduous trees  shading the east and west sides of a building. 

7.3 Impacts of the Study 

This research was performed to improve an existing IECC-compliant simulation model 

for Texas and to analyze the energy efficiency of a single family residential house, which could 

not have been evaluated to the same extent using the previous residential simulation model. 

After testing and verifying the new and improved simulation methodologies, it became possible 

to provide an improved residential simulation model in order to make recommendations for 

changes in residential construction and HVAC installation that could save energy in residential 

housing according to climate variations. 

 Since it was found that a highly efficient air conditioner offered more potential energy 

savings in hot climate zones as compared to cold climate zones, highly efficient air conditioners 

should be considered for use in hot climate zones when installing a cooling system. On the other 

hand, it was found that highly efficient gas furnaces and heat pump had more energy savings 

potential in cold climate zones compared to hot climate zones in Texas. Therefore, a highly 

efficient gas furnace and heat pump need to be considered when installing a heating system in a 

cold climate zone. In addition, DHW system efficiency was found to be an important factor in 

energy savings regardless of the climate zones. Therefore, it is recommended that highly 

efficient DHW systems be installed in all climate zones for energy savings in residential 

construction. 

Duct leakage rates were found to be a significantly important factor in increasing energy 

consumption in unconditioned space. Thus, sealing or repairing leaky ducts could immensely 

reduce energy consumption in all climate zones. Changing the locations of duct systems from 
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unconditioned spaces to conditioned spaces also has a significant effect on energy savings. 

Currently, most of the duct systems in Texas are located in unconditioned spaces (i.e., the attic). 

Therefore, relocating these duct systems to conditioned spaces needs to be considered for 

possible energy savings when designing residential houses. 

In case of window installation, it was found that both the U-value and the SHGC 

influence energy consumption in opposite ways. Thus, combinations of improved U-values and 

SHGCs need to be considered when selecting window types. 

 Lastly, tree shading effects showed a slight influence on energy savings depending upon 

the type of tree shading. Although the amount of energy savings might be more minor than that 

taken from other components stated above, it can be a cost-effective way of saving energy by 

using existing natural resources. 

7.4  Recommendations for Future Research 

 Although this study developed, tested and used a number of simulation features of the 

DOE-2 program, many simulation features still remain that are outside the capabilities of the 

DOE-2.1e program, including: 

Simulation of a multi-story house with varying shapes 

 This study was performed using a one-story, single-family house with a slab-on-grade. 

Therefore, a two-story house and a multi-family house were not considered for analyses in this 

study. This study did not investigate the effects of different building configurations in terms of 

form, orientation, or different window sizes. Therefore, an analysis considering different types of 

residential houses and building configurations is recommended. 

A duct model with an improved radiant model of the interior of the attic 

 The new duct model didn’t consider the radiation effects from the inside surface of the 

roof, since the duct model in the analysis followed the methodology of the ASHRAE 152-2004 
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(2004). Therefore, future research concerning the radiation effects on the duct model is 

recommended. 

Analysis with an improved ground heat transfer model 

 The newest version of the underground heat transfer methodology by Huang et al. 

(2000) was not applied in this study because the version of the DOE-2 used in this analysis did 

not have the capability to apply the new methodology. Therefore, it is recommended that the 

new methodology (Huang et al. 2000) needs to be tested. 

Direct conversion of SC to Window-5 model 

 For the efficiency analysis using the IECC-compliant simulation model, the SHGC of 

the windows must be converted to a Shading Coefficient (SC) in order to be entered into the 

DOE-2 simulations. As discussed in Chapter 6.3, for more accurate simulations of any window, 

a generic Window-5 library needs to be used for the IECC-compliant simulation. Unfortunately, 

this cannot be accomplished with the current version of the Window-5 program. 

Use of an improved thermal mass model 

It was found that the delayed construction mode (i.e., DOE-2’s custom weighting factors 

or CWFs) calculated energy consumption more accurately than the quick mode construction 

mode (i.e., pre-calculated ASHRAE weighting factors). Unfortunately, the current 2000/2001 

IECC defines construction using only R-values and a fixed floor weight, which makes it difficult 

to use CWFs. Therefore, the IECC needs to be rewritten to allow for proper treatment of thermal 

mass using CWFs. 

Combined effects of system sizing and reduced loads 

 In the current study, the system size was auto-sized with the DOE-2 program 

(SNGFAM2ST.INP). However, a more realistic analysis would resize the HVAC system as the 

heating and cooling loads decreased. Therefore, a combined analysis should be conducted. 
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Analysis of the IECC with varying duct locations 

 The results from the different duct locations (conditioned space vs. unconditioned space) 

and varying duct leakage rates showed that there could be a difference from 1.54% to 18.59% in 

saving varying by climate zone and duct leakage rates when changing the duct location from that 

which is in unconditioned space to that which is in conditioned space. Nevertheless, the current 

2000/2001 IECC has a fixed adjustment factor at 0.80. Therefore, it is recommended that the 

new version of the IECC considers various system adjustment factors when changing duct 

locations according to climate zone and duct leakage rate.  

Application of the ACH rate (air-change / hour) in the attic space to the IECC-code compliant 

simulation model 

 From the temperature calibration procedures with measured data in the attic space, it was 

found that the air-change rate with the adjusted infiltration schedules for both the daytime and 

nighttime showed the most reasonable results. However, for the IECC-code compliant 

simulations, the fixed air-change rate was used in the attic space for all climate zones because of 

the lack of available measured data. If there were no measurement data for the model calibration, 

it was recommended that other infiltration calculation methods of the DOE-2 (INF-METHOD: 

CRACK, RESIDENTIAL, and S-G) could be considered. 
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CALIBRATION OF MEASURING DEVICES 

 

A.1. Calibration of Temperature Sensors 

A.2. Statistical Evaluation of the Calibration Results. 

A.3. Calibration of Relative Humidity Sensors 

A.4. Portable Data Loggers 

A.5. Calibration of Solar Radiation Sensors: Pyramometer 

A.6. Comparison of Supply and Duct Temperature Sensors 
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 With the exception of the newly installed sensors in the attics, the sensors at the case 

study house were installed as part of a previous study by Kootin-Sanwu (2004). Therefore, all 

sensors were inspected and recalibrated. NIST (National Institute of Standards and Technology) 

and ASTM (American Society for Testing and Materials) calibration methods were used for the 

calibration procedures. 

A.1. Calibration of Temperature Sensors 

In order to measure temperature and humidity, Vaisala HMD60Y duct mounted relative 

humidiy and temperature sensors were used. Those sensors have a range from -4°F to 176°F, and 

± 0.2-0.6°F accuracy on temperature measurements (Vaisala 2003). In order to convert the 

temperature measurement (°F) into an electronic signal, a correctly calibrated scale and offset 

must be calculated. To accomplish this, an ASTM certificated liquid-in-glass thermometer and 

Type-T thermocouple (RTD thermometer) with the Synergistics portable data logger (C180-XP, 

Figure A.1) were used for the reference temperature. Type-T thermocouple was calibrated using 

an ice point and a boiling point (ASTM E 77–98 2001) using an ASTM certificated liquid-in-

glass thermometer and distilled water to make the ice and boiling water. Figure A.2 shows the 

calibration of the RTD thermometer that was calibrated. After calibrating the RTD sensor, the 

Vaisala relative humidity and temperature sensors and calibrated RTD sensor is connected to the 

data logger and placed in a glass container to perform the calibration of the temperature and 

relative humidity. This container and the sensors were then placed to the refrigerator to maintain 

a constant temperature (Figure A.3). In order to change the temperature, a 60W incandescent 

lamp and small fan were used in the refrigerator. The temperature of the refrigerator was then set 

to three different temperature conditions: 1) low temperature which represents the lowest 

temperature position of the refrigerator’s thermostat, 2) room temperature (the refrigerator was 

off), and 3) a high temperature where the 60W incandescent lamp was turned on. During these 
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three different conditions, a small fan was used to maintain a uniform temperature in the 

refrigerator. The calibration of the humidity was performed at the same time. 

In the case-study house, there are five Vaisala sensors which measure: 1) attic, 2) return, 

3) supply, 4) duct, and 5) outside condition. Figures A.4 to A.18 compare the temperatures of 

each Vaisala sensor agianst calibrated RTD thermometer before and after the calibration. The 

graphs provide the time seriese plot of the RTD thermometer vs. the Vaisala sensors and a 

residual plot of the five Vaisala sensors. Table A.1 lists the scale and offset parameters for all 5 

sensors before and after calibration. 

 
 
 

 

Figure A.1   Synergistics portable data logger (C180-XP) used for the calibration procedure 
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Figure A.2   Experimental setting showing the Vaisala  and RTD sensors 

 

0

50

100

150

200

250

0 50 100 150 200 250

RTD Temperature (F)

Re
fe

re
nc

e 
Te

m
pe

ra
tu

re
 (F

)

Before Calibration After Calibration
 

Figure A.3   Calibration of the RTD sensor (Before and after calibration) 
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Figure A.4   Residual plot of the RTD sensor against reference temperature 
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A.1.1 Sensor No.1 
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Figure A.5   Time series and residual plot of the RTD sensor and sensor #1 before calibration 
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Figure A.6   Comparison of sensor #1 against the RTD sensor before calibration 
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Figure A.7   Time series and residual plot of the RTD sensor and sensor #1 after calibration 
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Figure A.8   Comparison of sensor #1 against RTD temperature after calibration 
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Figure A.9   Residual plot of before and after calibration 
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A.1.2. Sensor No.2 
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Figure A.10   Time series and residual plot of the RTD sensor and sensor #2 before 
calibration 
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Figure A.11   Comparison of sensor #2 against RTD temperature before calibration 
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Figure A.12   Time series and residual plot of the RTD sensor and sensor #2 after calibration 
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Figure A.13   Comparison of sensor #2 against RTD temperature after calibration 
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Figure A.14  Residual plot of before and after calibration 
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A.1.3. Sensor No.3. 
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Figure A.15   Time series and residual plot of the RTD sensor and sensor #3 before 
calibration 
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Figure A.16 Comparison of sensor #3 against RTD temperature before calibration 
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Figure A.17   Time series and residual plot of the RTD sensor and sensor #3 after calibration 
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Figure A.18   Comparison of sensor #3 against RTD temperature after calibration 
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Figure A.19   Residual plot of before and after calibration 
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A.1.4. Sensor #4 
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Figure A.20   Time series and residual plot of the RTD sensor and sensor #4 before 
calibration 

 

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

RTD Temperature

Te
m

pe
ra

tu
re

(F
), 

Se
ns

or
 #

4

 

Figure A.21   Comparison of sensor #4 against RTD temperature before calibration 



 

 

380

-20

0

20

40

60

80

100

120

140

0 80 160 240 320 400 480 560 640 720 800 880 960 1040 1120

Time (Minutes)

Te
m

pe
ra

tu
re

 (F
)

RTD(F) Sensor #4 Temperature difference
 

Figure A.22   Time series and residual plot of the RTD sensor and sensor #4 after calibration 
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Figure A.23   Comparison of sensor #4 against RTD temperature after calibration 
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Figure A.24   Residual plot of before and after calibration 
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A.1.5. Sensor #5 
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Figure A.25   Time series plot of new sensor #5 and calibrated sensor#1 
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Figure A.26   Comparison of new sensor #5 against calibrated sensor #1 
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A.2. Statistical Evaluation of the Calibration Results. 

 After the calibration process, the Mean Bias Error (MBE) and the coefficient of variation 

of the root Mean Square Error (CV (RMSE)) were calculated. The Mean Bias Error, MBE (%) 

(Kreider and Haberl 1994a, b; Haberl and Thamilseran, 1996) determines the non-dimensional 

bias measure (the sum of errors) between the simulated data and the measured data. For the 

sensor calibration procedure, the simulated data were data from Vaisala sensors and measured 

data were from reference sensor. 

( )[ ] 100/)/(,, ×−−= ∑ ∑ dataidataipred ypnyyMBE  

 The coefficient of variation of the root mean squared error, CV (RMSE) (%) (Draper 

and Smith 1981) is essentially the root mean squared error divided by the measured mean of all 

the data, a convenient way of reporting a non-dimensional result. CV(RMSE) allows one to 

determine how well a model fits the data; the lower the CV(RMSE), the better the calibration. 

( )[ ] 100/)/()(%)(
2/12

,, ×−−= ∑∑ dataidataipred ypnyyRMSECV  

Where 

 ypred,i is a predicted dependent variable value for the same set of independent varialbles. 

 ydata,i  is a data value of the dependent variable corresponding to a particular set of the   

             independent varialbles. 

 ydata is the mean value of the dependent variable of the data set 

             n is the number of data points in the data set 

             p is the total number of regression parameters in the model (arbitually assigned as 1 for                     

             all models) 
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Figure A.27   CV(RMSE) and MBE plot before and after calibration. 

 
 
 
Table A.1   Scale and Offset parameters for temperature 

Before Calibration After Calibration Sensor No. Scale Offset Scale Offset 
1 56.39 -48.98 60.37 -54.88 
2 56.39 -48.98 59.03 -52.26 
3 56.39 -48.98 59.74 -59.84 
4 56.39 -48.98 56.79 -51.59 
5   56.39 -48.98 
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A.3. Calibration of Relative Humidity Sensors 

 The sensor for measuring the relative humidity on case study house has a range from 0% 

to 100%, and ± 2% accuracy (Vaisala 2003). The methodology for calibrating the relative 

humidity sensor was followed by ASTM E 104–85 (2001), Standard practice for maintaining 

constant relative humidity by means of aqueous solutions. This standard states that saturated salt 

solutions were used to generate a known humidity in the sealed flask. According to ASTM E 

104–85 (2001), Lithium Chloride generates low humidity (11.3% ± 0.3), Magnesium Chloride 

generates medium humidity (33.1% ± 0.2) and Sodium Chloride generates high humidity (75.5% 

± 0.1), and Greenspan (1977) collected data on salt solutions from various studies and provide 

the equations of the experimentally determined relative humilities for the different salts at 

various temperature conditions. He also provided the following equation according to the 

temperature for these three saturated salt solutions. 

Table A.2   Summary of Least Square Fits to RH=∑
=

3

0i
i

itA for selected saturated salt solutions 

(t is in °C) 
Salt A0 A1 A2 A3 

Lithium Chloride 11.2323 -0.00824245 -0.214890 * 10-3  

Magnesium Chloride 33.6686 -0.00797397 -0.108988 * 10-2  

Sodium Chloride 75.5164 0.0398321 -0.265459 * 10-2 0.284800 * 10-4 
 

The experiment was performed by using these three types of aqueous salt solutions. In 

order to generate constant relative humidity, each saturated salt solution in the container was put 

in the container, and then Vaisala HMD 60Y sensors and RTD thermometer were located above 

the salt solution in the container (Figure A.3). As I mentioned earlier, for each solution, the 

procedures for calibration of temperature and relative humidity such as three different 

temperatures were performed at the same time. 
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There are 4 sensors that are going to measure the relative humidity; 1) return, 2) supply, 

3) attic, and 4) outside air on case study house. The following graphs (from Figures A.19 to 

A.30) provide the time seriese plot of relative humidity according to ambient temeprature, time 

seriese plot of each solution, and calibration procedures. Table A.3 lists the scale and offset 

parameters for 5 sensors for the relative humidity before and after calibration. 
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A.3.1. Sensor No.1 
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Figure A.28   Time series and residual plot of sensor #1 and calculated RH for Lithium 
Chloride before calibration 
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Figure A.29   Time series and residual plot of sensor #1 and calculated RH for Magnesium 
Chloride before calibration 
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Figure A.30   Time series and residual plot of sensor #1 and calculated RH for Sodium 
Chloride before calibration 
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Figure A.31   Comparison of sensor #1 against calculated RH before calibration 
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Figure A.32   Comparison of sensor #1 against calculated RH after calibration 
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Figure A.33   Residual plot before and after calibration 
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A.3.2. Sensor No.2 
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Figure A.34   Time series and residual plot of sensor #2 and calculated RH for Lithium 
Chloride before calibration 
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Figure A.35  Time series and residual plot of sensor #2 and calculated RH for Magnesium 
Chloride before calibration 
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Figure A.36   Time series and residual plot of sensor #2 and calculated RH for Sodium 
Chloride before calibration 
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Figure A.37   Comparison of sensor #2 against calculated RH before calibration 
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Figure A.38   Comparison of sensor #2 against calculated RH after calibration 
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Figure A.39   Residual plot before and after calibration 
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A.3.3. Sensor No.3 
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Figure A.40   Time series and residual plot of sensor #3 and calculated RH for Lithium 
Chloride before calibration 
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Figure A.41   Time series and residual plot of sensor #3 and calculated RH for Magnesium 
Chloride before calibration 
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Figure A.42   Time series and residual plot of sensor #3 and calculated RH for Sodium 
Chloride before calibration 
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Figure A.43   Comparison of sensor #3 against calculated RH before calibration 
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Figure A.44   Comparison of sensor #3 against calculated RH after calibration 
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Figure A.45 Residual plot before and after calibration 
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A.3.4. Sensor No.5 

Since sensor #5 is a new sensor, it was calibrated against a previously calibrated sensor 

(#1).  The data matched well each other (R2 is 0.9959). Therefore, there was no calibration 

procedure for sensor #5.  
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Figure A.46   Comparison plot of sensor #5 vs. sensor #1 
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Figure A.47   Difference plot of sensor #5 and sensor #1 

 

-20

-15

-10

-5

0

5

10

15

20

SENSOR #1 SENSOR #2 SENSOR #3

Pe
rc

en
t

CV(RMSE) before calibration MBE before calibration

CV(RMSE) after calibration MBE after calibration
 

Figure A.48   CV(RMSE) and MBE plot before and after calibration 
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Table A.3   Scale and Offset parameters for relative humidity 

Before Calibration After Calibration 
Sensor No. Scale Offset Scale Offset 

1 31.25 -25.00 30.34 -23.21 
2 31.25 -25.00 29.47 -22.77 
3 31.25 -25.00 31.30 -27.19 
4 N/A (Sensor 4 measures only temperature) 
5 31.25 -25.00 31.25 -25.00 
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A.4. Portable Data Loggers 

In order to measure the underside roof surface temperature in the attic space, three Onset 

portable data loggers are used with type J thermocouple sensor. These data loggers have a range 

from 32°F to 482°F, and accuracy of ±5.7°F at 257°F. Since data from portable data logger 

should match with measurement from the calibrated Vaisala sensor, the measurement test was 

performed between portable loggers and Vaisala sensor that will measure attic temperature. To 

accomplish this test, temperature was adjusted to three different temperatures (low, medium, and 

high temperature) using the same procedure for calibrating temperature and humidity sensors. 

Figure A.41 shows the time series plot according to three different temperature conditions and 

Figure A.42 shows each portable data logger vs. Vaisala HMD 60Y temperature and humidity 

sensor. 
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Figure A.49   Temperature plots of the three Onset portable data loggers versus the Vaisala 
sensor 
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Figure A.50   Comparison of portable data logger #1 and Vaisala sensor before calibration. 
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Figure A.51   Comparison of portable data logger #1 and Vaisala sensor after calibration. 
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Figure A.52   Residual plot before and after calibration. 
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Figure A.53   Comparison of portable data logger #2 and Vaisala sensor before calibration. 
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Figure A.54   Comparison of portable data logger #2 and Vaisala sensor after calibration. 
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Figure A.55   Residual plot before and after calibration. 
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Figure A.56   Comparison of portable data logger #3 and Vaisala sensor before calibration. 
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Figure A.57   Comparison of portable data logger #3 and Vaisala sensor after calibration. 
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Figure A.58   Residual plot before and after calibration. 
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Figure A.59   CV(RMSE) and MBE plot before and after calibration. 
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A.5. Calibration of  Solar Radiation Sensors: Pyramometer 

A photovoltaic-type sensor (Li-Cor LI-200SA pyranometer solar radiation sensor) was 

installed to measure horizontal solar radiation (W/m2) at the weather station on case study house.  

Since the installed Li-Cor sensor’s output is 0-20 millivolt, a millivolt transmitter was attached 

to convert the signal to a 4-20 milliamps signal. This current was then transmitted to the data 

logger (Synergestic C-180E) and converted to a voltage signal using 200 Ohm resistor. 

Klima (2000) and Rasisuttha (2004) calibrated Li-Cor sensors against an Eppley Precision 

Spectral Pyranometer (PSP) at solar test bench at Langford Architecture building that was 

reconditioned by the Eppley Laboratory and compared a NIST-traceable Epply Precision 

Spectral Pyranometer (PSP). 

According to LI-COR, inc. (2004), the Li-Cor pyranometer has been calibrated against 

an Eppley Precision Spectral Pyranometer (PSP) under natural daylight conditions in units of 

watts per squre meter (W/m2). Under most conditions of natural daylight, the erros is less than 

5%. 

For the research, an Eppley Precision Spectral Pyranometer (PSP) at solar test bench at 

River Side campus was used for reference sensor for calibrating Li-Cor of case study house. 

Several clear days were selected. Figures A.60 to A.64 show time series and x-y plot of the PSP 

and the Li-Cor data every 15-minute for 3 clear days before and after the calibration procedure. 
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Figure A.60   PSP and Li-Cor time series plot before calibration. 
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Figure A.61   PSP versus Li-Cor before calibration. 
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Figure A.62   PSP and Li-Cor time series plot after calibration. 
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Figure A.63   PSP versus Li-Cor after calibration. 
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Figure A.64   CV(RMSE) and MBE plot before and after calibration. 
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A.6. Comparison of Supply and Duct Temperature Sensors 

 Two temperature sensors were installed in order to measure the supply side and the 

diffuser side to investigate the heat loss / gain to duct system from the attic space. The locations 

of sensors were explained in Chapter 4.2.2.2. After one-year measurement, two-sensors were 

tested to verify the data using RTD temperature sensor. Installment procedure of sensors for the 

calibration was explained in Section A.1. 

 The comparison between the measurements of the RTD temperature sensor and two 

Vaisala sensors showed a response time difference varying the environment temperatures. From 

Figures A.65 and A.70, it was found that the supply temperature and the duct temperature were 

2°F and 3°F higher respectively than the reading from the RTD temperature sensor at 

temperatures of 130°F to 140°F. Decreasing the temperature to 45°F showed a 2°F and 3°F 

lower temperatures respectively than the reading from RTD temperature sensor. Temperatures at 

70°F were in good agreement. 

 These differences may be attributed to the heating/cooling of the transducers. According 

to Sparks et al. (1992), the temperature of the transducer can affect the error in the measurements 

in the case of the severe environmental conditions. Their results showed that while the 

temperature dependency of analog measurements was slight in the conditions normally found in 

a building’s mechanical room, a logger exposed to very cold climate temperatures showed a 

2°F+ temperature difference. 

 Since the Vaisla tranducers were located at the attic space where the temperature 

reached up to 135°F in the summer, there could be potential errors of measuring temperatures. 

Therefore, in order to prevent the potential bias of the measurements in the hot or cold space, 3 

or 4-wire RTD temperature sensor are recommened for measuring attic temperature in future 

experiments. 
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Figure A.65   RTD sensor temperature vs. Vaisala temperature sensor 
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Figure A.66   Time series plot of RTD sensor vs. Vaisala sensor 
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Figure A.67   Time series plot of supply sensor vs. RTD sensor 
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Figure A.68   Residual plot between supply and RTD sensor 
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Figure A.69   Time series plot of duct sensor vs. RTD sensor 
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Figure A.70   Residual plot between duct and RTD sensor 
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Figure A.71   Supply sensor temperature vs. duct sensor temperature 
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Figure A.72   Time series plot of supply sensor vs. duct sensor 
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Figure A.73   Residual plot between supply and duct sensor 
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APPENDIX B 

DUCT MODEL FUNCTION FOR DOE-2.1e 

 

B.1. Concept of Duct Model 

B.2. Duct Model FUNCTION for DOE-2.1e 
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B.1. Concept of Duct Model 

 ASHRAE developed ASHRAE Standard 152-2004 – Method of Test for Determining 

the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems (ASHRAE 

2004) to estimate design and seasonal efficiency for residential building systems. This 

calculation considers the impacts of duct leakage, location, insulation level, climate, etc. 

 Figure B.1 shows the concept of duct works which are located in two buffer zones, one 

for return side and one for the supply side (Palmiter and Francisco 1996) and this concept was 

applied to DOE-2.1e simulation program using DOE-2 FUNCTION commands. Detailed 

procedures for duct model were explained at this chapter in detail. 
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Figure B.1   Schematic diagram of duct model (ASHRAE 152-2004) 

 

 Following equations show the procedure of calculation of the delivery efficiency of the 

heating and cooling systems considering conduction loss and air leakage of supply duct and 

return duct side. 
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where, 

Bs = conduction efficiency of supply duct = ))
60

exp(
spine

s

RCQ
A
ρ
− ,                              (B.3) 

Br 
= conduction efficiency of return duct = ))

60
exp(

rpine

r

RCQ
A
ρ
− ,                                (B.4) 

as 
= air leakage efficiency of the duct of supply duct = (

e

se

Q
QQ − ),                            (B.5) 

ar = air leakage efficiency of the duct of return duct =  (
e

re

Q
QQ − ),                          (B.6) 

Ecap  = capacity of the equipment (Btu/hr), 
Qe  = system air flow (CFM), 
Cp  = specific heat (Btu/(lbm⋅ºF)), 

∆te 
= temperature rise across the equipment (ºF) = 

pine

cap

CQ
E
ρ60

,                                  (B.7) 

∆ts 
= temperature difference between the building and the ambient temperature   
surrounding the supply (ºF) sambin tt ,−= ,                                                           (B.8) 

∆tr 
= temperature difference between the building and the ambient temperature 
surrounding the return (ºF) rambin tt ,−= ,                                                            (B.9) 

tin = temperature of indoor air (ºF), 
tsp = supply plenum air temperature (ºF), 
tamb,s = ambient temperature for supply ducts (ºF), 
tamb,r = ambient temperature for return ducts (ºF), 
hamb,r = enthalpy of ambient air for return (Btu/hr), 
hin = enthalpy of air inside conditioned space (Btu/hr), 
As = supply duct area (ft2), 
Ar = return duct area (ft2), 
ρin = density of air (lb/ft3), 
Rs = thermal resistance of supply duct (hr-ft2-ºF /Btu), 
Rr = thermal resistance of return duct (hr-ft2-ºF /Btu). 
 

 Figures B.2 and B.3 show the procedures of the function method developed for the 

DOE-2.1e to apply the duct model using concepts of ASHRAE 152-2004. Three function 

methods (SAVETEMP, DUCT, and DUCT 2) are used. This section of the appendix contains 

DOE-2 commands of the duct model, which were explained in the section 4.2.3.3. 
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Save  RM-1 temperature
(TATTIC)

Save  RM-1 temperature
(TRETURN)

SYSTEM-1 = SYSTEM
                      ..
                     ZONE-NAMES = (RM-1,ATTIC-1)
                      ..

- TRETURN
- TATTIC

DOE-2 LOADS Simulation

Hour Loop

DOE-2 SYSTEMS
Simulation

FUNCTION = SAVETEMP

FUNCTION = DUCT

DUCT LEAKAGE FACTOR FOR SUPPLY(as) AND RETURN (ar).
as = (Qe-Qs)/Qe, ar = (Qe-Qr)/Qe, ASHRAE152, P.22

Qe: Flow through air handler fan at operating conditions (CFM),
      Measured value: 992CFM
Qs: Supply duct leakage to outside (CFM)  = Qe*Leakage percentage
      Assume 10% from VERIFICATION TEST OF ASHRAE STANDARD 152P)
Qr: Return duct leakage to outside (CFM) = Qe* Leakage percentage
      Assume 10% from VERIFICATION TEST OF ASHRAE STANDARD 152P)

Calculate enthalpy of RM-1 and ATTIC-1
- h=0.240t + W(1061+0.444t), ASHRAE FUNDAMENTAL 2001 6.13

- Rankin temp. for RM-1
  TLIVINRAN = TRETURN + 459.67

- Saturation pressure over liquid water for RM-1
  ASHRAE FUNDAMENTAL 2001 6.2
  LNPWSL = C8/TLIVINRAN + C9 + C10*TLIVINRAN +
                    C11*(TLIVINRAN^2) + C12*(TLIVINRAN^3) +
                    C13*ALOG(TLIVINRAN)
  PWSL = EXP(LNPWSL)

- Humidity ratio of RM-1, ASHRAE FUNDAMENTAL 2001 6.12
  ASSUME RH(%) of RM-1 IS 50%.
   WRM-1 = 0.62198 * ((PWSL* 0.5) / (14.696-(PWSL*0.5)))

- ENTHLPY OF RM-1, ASHRAE FUNDAMENTAL 2001 6.13
  IRM-1 = 0.24*TRETURN + WRM-1*(1061.2+0.444*TRETURN)

RM-1 Enthalpy ( IRM-1)

ATTIC-1 Enthalpy (IA)

  IA = 0.24*TAMBR + ATTIC_HUM*(1061.2+0.444*TAMBR)

Calculate specific volume of air of RM-1 and ATTIC-1, DOE-2 FUNCTION from DOE-2
SUPPLEMENT 1.12
       VATTIC = V(TAMBR,WA,PATM)
       VLIVIN = V(TRETURN,WL,PATM)

Constant value form calculating saturation pressure over
liquid water, ASHRAE FUNDAMENTAL 2001 6.2
       C8 = -10440.397
       C9 = -11.29465
       C10= -0.027022355
       C11= 0.00001289036
       C12 = -0.0000000024780681
       C13 = 6.5459673

- Ambient temperature of supply (TAMBS) and return duct
  (TAMBR)
       TAMBS = TATTIC
       TAMBR = TATTIC
- Humidity of ATTIC-1 is OA humidity ratio (LB/LB)
       ATTIC_HUM=OA HUMIDITY
- Outdoor atmospheric pressure (in-Hg)
       PATM=PATM

1 2 3 4

ZONE=RM-1

ZONE=ATTIC-1

END OF ZONE

 

Figure B.2   Diagram of DOE-2 FUNCTION command for ASHRAE 152-2004 duct loss 
model (a) 
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Calculate density of air of ATTIC-1 and RM-1
       DATTIC = 1/VATTIC
       DLIVIN = 1/VLIVIN

Calculate supply (BS) and return duct conduction fraction(Br), ASHRAE152, P.22
       Bs = exp(-As/(60*Qe*DLIVIN*Cp*Rs))
       Br = exp(-Ar/(60*Qe*DLIVIN*Cp*Rr))

- As: Surface area of supply duct outside conditioned
         space (sq.ft), use measured value(340 sq.ft) or
         As=0.27 * Fout * Afloor
         where Fout is 1 if single-story house, 0.75 of more
         than one-story, ASHRAE152, P.20

- Ar: Surface area of return duct outside conditioned
        space(sq.ft), use measured value(60 sq.ft) or
         Ar=br * Fout * Afloor
         where br is 0.05 if # of return registers is 1, 0.1 if # of
         return registers is 2, 0.15 if # of return registers is 3,
         0.2 if # of return registers is 4, and 0.25 if # of return
         registers is 5 or more.
         Fout is 1 if single-story house, 0.75 of more
         than one-story, ASHRAE152, P.20

- Cp: Specific heat of air (Btu/lb-F), use 0.24

- Rs: Thermal resistance of supply duct (h-sq.ft-F/Btu),
         use 6 from case study house

- Rr: Thermal resistance of return duct (h-sq.ft-F/Btu),
        use 6 from case study house

Calculate temperature difference between indoors and attictemperature for return (DTR) and
supply(DTS). ASHRAE152, P.22
       DTR = TRETURN-TAMBS
       DTS = TRETURN-TAMBS

Calculate temperature rise across the furnace. ASHRAE152, P.22
      DTE = Ecapheat / (60*Qe*DLIVIN*CP)

- TC: Supply air temperature (F), Use average measured
         temperature (61.7F) or DOE-2 calculated value
- Ecapcool: Equipment efficiency (Btu/hr) for cooling
                       (Negative for cooing equipment)
                      =2.5TON = 2.5*12000 = -30000Btu/hr from
                        case stugy house.
- Ecapheat: Equipment efficiency (Btu/hr) for heating
                      45000 (Btu/hr) from case study house

8760 hrs?

Yes

END

- COOLEIR=COOLING-EIR
   COOLING-EIR: EIR at design point for A/C from DOE-2
    user input

- FURNHIR=FURNACE-HIR
   FURNACE-HIR: Heat input for gas furnace  from DOE-2
    user input

DOE-2 SYSTEMS
Simulation

NO

FUNCTION = DUCT2DOE-2 FUNCTION

Modify COOLING-EIR with Delivery Effiiciency (DE)
       COOLEIR = COOLEIR/DE152C

Modify FURNACE-HIR with Delivery Effiiciency (DE)
       FURNHIR = FURNHIR/DE152H

Back to original COOLING-EIR
       COOLEIR = COOLEIR * DE152C

Back to FURNACE-HIR
       FURNHIR = FURNHIR * DE152H

Delivery Efficiency (DE) for cooling system. ASHRAE152, P.22
       DE152P1 = (as*60*Qe*DLIVIN) / Ecapcool
       DE152P2 = Ecapcool/(60*Qe*DLIVIN)
       DE152P3 = (1-ar)*(IA-IL)
       DE152P4 = ar*Cp*(Br-1)*DTR
       DE152P5 = Cp*(Bs-1)*(TC-TAMBS)
       DE152C = DE152P1*(DE152P2+DE152P3+DE152P4+DE152P5)

Delivery Efficiency (DE) for heating system. ASHRAE152, P.22
       DE152P6 = as*Bs
       DE152P7 = (as*Bs*(1-Br*ar)*DTR)/DTE
       DE152P8 = (as*(1-Bs)*DTS)/DTE
       DE152H = DE152P6-DE152P7-DE152P8

1 2 3 4

 

Figure B.3   Diagram of DOE-2 FUNCTION command for ASHRAE 152-2004 duct loss 
model (B) 
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B.2. Duct Model FUNCTION for DOE-2.1e 

 

INPUT SYSTEMS  ..                                            

 
SUBR-FUNCTIONS RESYS-0=*DUCT* 
                 RESYS-3Z=*SAVETEMP* 
  DAYCLS-4=*DUCT2*  ..  
                                                                               
 
TITLE           LINE-1 *HABITAT FOR HUMANITY HOUSE, BRYAN,TEXAS* 
                LINE-2 *1126 COMMERCE STREET, BRYAN TX 77803* 
                LINE-3 *PH.D. DISSERTATION BY SEONGCHAN KIM*  .. 
 
 
$************************************************************************************************ 
$       PROGRAM:                        DOE-2 SIMULATION INPUT FILE 
$ 
$       LANGUAGE:                       DOE-2.1E BDL VERSION 119 
$ 
$       SPONSOR:                        TEXAS STATE LEGISLATURE 
$ 
$       PURPOSE:                        This input file is a duct loss simulation using function  
$                                       method of DOE-2.1e version 119 program. 
$                                       The calculation methods follow ASHRAE 152-2004 (Method of Test  
$                                       for Determining the Design and Seasonal Efficiencies of  
$                                       Residential Thermal Distribution Systems). 
$                                       To simulate duct loss on DOE-2 program, the following  
$                                       parameter need to be specified; 
$                                       1)SUPPLY AIR(CFM), 2)SUPPLY LEAKAGE, 3)RETURN LEAKAGE 
$                                       4)SUPPLY AREA(SQ.FT), 5)RETURN AREA(SQ.FT),  
$                                       6)R-VALUE FOR SUPPLY DUCT, 7)R-VALUE FOR RETURN DUCT 
$                                       8)COOLING CAPACITY(BTU/HR), 9)HEATING CAPACITY(BTU/HR) 
$ 
$       COPYRIGHT:                      TEES, 2006. 
$                                       This program bears a copyright notice to prevent rights  
$                                       from being claimed by any other party. This program  
$                                       shall not be redistributed or sold without written  
$                                       approval from the Texas Engineering Experiment Station  
$                                       (TEES). 
$ 
$                                       The program is distributed "as is". TEES DOES NOT  
$                                       WARRANT THAT THE OPERATION OF THE PROGRAM WILL BE  
$                                       UNINTERRUPTED OR ERROR-FREE, AND MAKES NO  
$                                       REPRESENTATIONS OR OTHER WARRANTIES, EXPRESS OR IMPLIED,  
$                                       INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES  
$                                       OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  
$ 
$                                       No support service will be provided unless  
$                                       written arrangements have been made to do so. Certain  
$                                       manufacturers and trade names are mentioned in this code  
$                                       for the purpose of describing  their product parameters  
$                                       Such reference does not constitute an  
$                                       endorsement or recommendation of such equipment, but is  
$                                       provided for informational purposes only. 
$        
$       DEVELOPER:   SEONGCHAN KIM 
$                                       Graduate Assistant Research  
$                                       Department of Architecture 
$                                       Energy Systems Laboratory 
$                                       Texas A&M University, College Station, TX 77843 
$ 
$                                       JEFF HABERL  Ph.D, P.E 
$                                       Professor 
$                                       Department of Architecture 
$                                       Energy Systems Laboratory 
$                                       Texas A&M University, College Station, TX 77843 
$                                       PHONE: (979)458-4315,   FAX: (979)862-2457 
$                                       Email: jhaberl@esl.tamu.edu  
$ 
$************************************************************************************************ 
 
 
FUNCTION NAME = DUCT  .. 
ASSIGN MON=IMO  
       DAY=IDAY  
       HR=IHR 
       HUMRAT=HUMRAT 
       PATM=PATM 
       TRETURN = XXX24 $ RM-1 TEMP 
       TATTIC = XXX25 $ ATTIC TEMP 
       DE152C=XXX40 
       DE152H=XXX41 
       PDE152H=XXX42 
       HPDE152H=XXX43 
       DE152HHEATPUMP=XXX44 
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       FURNHIR=FURNACE-HIR 
       COOLEIR=COOLING-EIR 
       HEATEIR=HEATING-EIR 
       NZ=NZ 
       TC=TC       $SUPPLY TEMPERATURE 
       CP=0.24     $SPECIFIC HEAT OF AIR, BTU/LB.F 
       QSPL=P-SUPPLYAIR[]   $MEASURED, SUPPLY AIR(CFM),SY12 
       SLF=P-SUPPLYLEAK[]     $SUPPLY LEAKAGE FRACTION(FROM "VERIFICATION TEST OF ASHRAE STANDARD 152P"),SY13 
       RLF=P-RETURNLEAK[]     $RETURN LEAKAGE FRACTION(FROM "VERIFICATION TEST OF ASHRAE STANDARD 152P"),SY14      
       AS=P-SUPPLYAREA[]      $MEASURED, SUPPLY DUCT AREA OF OUTSIDE CONDITIONED SPACE,SY15 
       AR=P-RETURNAREA[]       $MEASURED, RETURN DUCT AREA OF OUTSIDE CONDITIONED SPACE,SY16 
       RS=P-RSUPPLY[]        $THERMAL RESISTANCE OF SUPPLY DUCT (H-SQ.FT-F/BTU),SY17 
       RR=P-RRETURN[]        $THERMAL RESISTANCE OF RETURN DUCT (H-SQ.FT-F/BTU),SY18 
       ECAPCOOL=P-ECAPCOOL[] $2.5TON = 2.5*12000 = 30000BTU/HR, SY19 
       ECAPHEAT=P-ECAPHEAT[] $SY20 
       .. 
 
 CALCULATE  ..        
 
C DUCT LEAKAGE FACTOR FOR SUPPLY 
       aas = (QSPL-(QSPL*SLF))/QSPL 
 
C DUCT LEAKAGE FACTOR FOR RETURN 
       aar = (QSPL-(QSPL*RLF))/QSPL 
 
C CONSTANT VALUE FOR CALCULATING ENTHALPY, ASHRAE FUNDAMENTAL 2001 6.2 
       C8 = -10440.397 
       C9 = -11.29465          
       C10= -0.027022355          
       C11= 0.00001289036         
       C12 = -0.0000000024780681          
       C13 = 6.5459673 
        
C AMBIENT TEMP. OF SUPPLY AND RETURN DUCT, ATTIC TEMP 
       TAMBS = TATTIC 
       TAMBR = TATTIC 
 
C CALCULATION FOR ENTHALPY OF AMBIENT TEMP. FOR RETURN DUCT(ATTIC) FROM ASHRAE FUNDAMENTAL 2001 6.2 
 
C      ENTHALPY OF ATTIC, ASHRAE FUNDAMENTAL 2001 6.13 
       IA = 0.24*TAMBR + HUMRAT*(1061.2+0.444*TAMBR) 
 
C      AMBIENT RANKIN TEMP. FOR LIVING SPACE 
       TLIVINRAN = TRETURN + 459.67 
        
C      SATURATION PRESSURE OVER LIQUID WATER FOR LIVING SPACE, ASHRAE FUNDAMENTAL 2001 6.2         
       LNPWSL = C8/TLIVINRAN + C9 + C10*TLIVINRAN + C11*(TLIVINRAN**2) +   
     + C12*(TLIVINRAN**3) + C13*ALOG(TLIVINRAN)        
       PWSL = EXP(LNPWSL) 
 
C      HUMIDITY RATIO OF LIVING SPACE, ASHRAE FUNDAMENTAL 2001 6.12  
C      ASSUME RH(%) IS 50% ON LIVING SPACE 
       WL = 0.62198 * ((PWSL* 0.5) / (14.696-(PWSL*0.5))) 
 
C      ENTHLPY OF LIVING SPACE, ASHRAE FUNDAMENTAL 2001 6.13 
       IL = 0.24*TRETURN + WL*(1061.2+0.444*TRETURN) 
 
 
C      SPECIFIC VOLUME OF AIR FOR ATTIC AND LIVING SPACE, DOE-2 SUPPLEMENT 1.12 
       VATTIC = V(TAMBR,WA,PATM) 
       VLIVIN = V(TRETURN,WL,PATM) 
 
C      DENSITY OF AIR FOR ATTIC AND LIVING SPACE 
       DATTIC = 1/VATTIC 
       DLIVIN = 1/VLIVIN 
 
C      SUPPLY CONDUCTION FRACTION 
       BS1 = -AS/(60*QSPL*DLIVIN*CP*RS) 
       BS = EXP(BS1) 
 
C      RETURN CONDUCTION FRACTION 
       BR1 = -AR/(60*QSPL*DLIVIN*CP*RR) 
       BR = EXP(BR1) 
      
C      TEMPERATURE DIFFERENCE BETWEEN INDOORS AND AMBIENT FOR THE RETURN(F) 
       DTR = TRETURN-TAMBS 
       DTS = TRETURN-TAMBS 
 
C      DTE, THE TEMPERATURE RISE ACROSS THE FURNACE 
       DTE = ECAPHEAT / (60*QSPL*DLIVIN*CP) 
C      
       DE152P1 = (aas*60*QSPL*DLIVIN) / ECAPCOOL 
       DE152P2 = ECAPCOOL/(60*QSPL*DLIVIN) 
       DE152P3 = (1-aar)*(IA-IL) 
       DE152P4 = aar*CP*(BR-1)*DTR 
       DE152P5 = CP*(BS-1)*(TC-TAMBS) 
       DE152C = DE152P1*(DE152P2+DE152P3+DE152P4+DE152P5) 
  
       DE152P6 = aas*BS 
       DE152P7 = (aas*BS*(1-BR*aar)*DTR)/DTE 
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       DE152P8 = (aas*(1-BS)*DTS)/DTE 
       DE152H = DE152P6-DE152P7-DE152P8 
       DE152HHEATPUMP = DE152P6-DE152P7-DE152P8 
       PDE152H = FURNHIR/100  
       HPDE152H = HEATEIR/2  
 
98     IF (DE152C .GT. 1) DE152C = 1 
       IF (DE152C .LT. COOLEIR) DE152C = COOLEIR 
       COOLEIR = COOLEIR/DE152C 
 
99     IF (DE152H .GT. 1) DE152H = 1 
       IF (DE152H .LT. PDE152H) DE152H = PDE152H 
       IF (DE152HHEATPUMP .LT. HPDE152H) DE152HHEATPUMP = HPDE152H 
       FURNHIR = FURNHIR/DE152H 
       HEATEIR = HEATEIR/DE152HHEATPUMP 
 
C       PRINT 20,  
C     + MON,DAY,HR,TATTIC,DE152C,DE152H,CFMINFATT 
C20     FORMAT 
C     + (3F3.0,' ',F5.1,' ',F5.3,' ',F5.3,' ',F6.0) 
 
100    CONTINUE 
 
       END 
        
END-FUNCTION  .. 
 
 
 
 
 
FUNCTION NAME = DUCT2  .. 
ASSIGN MON=IMO  
       DAY=IDAY  
       HR=IHR 
       TC=TC 
       TH=TH 
       FURNHIR=FURNACE-HIR 
       COOLEIR=COOLING-EIR 
       HEATEIR=HEATING-EIR 
       TRETURN = XXX24 $ RM-1 TEMP 
       TATTIC = XXX25 $ ATTIC TEMP 
       DE152C=XXX40 
       DE152H=XXX41 
       .. 
 
 CALCULATE  ..        
 
       IF (DE152C .NE. 0 .AND. TC .GT. 0.1) GOTO 98 
       IF (DE152C .EQ. 0) GOTO 100 
        
98     COOLEIR = COOLEIR*DE152C 
 
       IF (ABS(QH) .GT. 0.1) GOTO 99 
       IF (DE152H .EQ. 0) GOTO 100 
        
99     FURNHIR = FURNHIR*DE152H 
       HEATEIR = HEATEIR*DE152H 
 
100    CONTINUE 
       END 
       
END-FUNCTION  .. 
 
 
 



 

 

423

FUNCTION NAME = SAVETEMP  .. 
ASSIGN TRETURN = XXX24  $ RM-1 TEMP 
       TATTIC = XXX25   $ ATTIC TEMP 
       TNOW=TNOW  
       NZ=NZ .. 
 CALCULATE .. 
       IF (NZ .EQ. 1) TRETURN=TNOW 
       IF (NZ .EQ. 2) TATTIC=TNOW 
      END 
 
END-FUNCTION .. 
 
FUNCTION NAME = SAVETEMP2 .. 
 
ASSIGN TRETURN = XXX24  $ RM-1 TEMP 
       TATTIC = XXX25   $ ATTIC TEMP 
       TNOW=TNOW  
       NZ=NZ .. 
 CALCULATE .. 
        IF (NZ .EQ. 1) TRETURN=TNOW 
        IF (NZ .EQ. 2) TATTIC=TNOW 
      END 

END-FUNCTION  .. 
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APPENDIX C 

EXAMPLES OF BDI AND GAWK PROGRAMS 

  

C.1. BDI spreadsheet for the efficiency test (THESIS_DUCTLOCATION.xls) 

C.2. Include file generated by the BDI program. 

C.3. BDI program to run DOE-2 simulation in batch mode. 

C.4. Commands of GAWK program to extract the data from the BEPS of DOE-2 output 

generated by BDI runs 

C.5. Batch file run to extract data using commands of GAWK from DOE-2 output 

C.6. Summary output after extracting specific output from DOE-2 output using GAWK and 

batch file run 

C.7. Data from summary output using EXCEL spreadsheet 

 

 



 

 

426

 The Batch DOE-2 Input (BDI) program developed by ESL was used to perform the 

DOE-2 simulation in the batch model. Gawk program was used to extract required output from 

BEPU and hourly report from output file generated by BDI program. 

 This section presents a specially prepared spreadsheet to assign values to all 

PARAMETERS, INCLUDE file generated by BDI program, DOE-2 run in the batch mode and 

GAWK commands to extract data from DOE-2 output, which were explained in the section 

4.2.3.3. 
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C.1. BDI spreadsheet for the efficiency test (THESIS_DUCTLOCATION.xls) 

 

 

C.2. Include file generated by the BDI program. 
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C.3. BDI program to run DOE-2 simulation in batch mode. 

 

 
 
C.4. Commands of GAWK program to extract the data from the BEPS of DOE-2 
output generated by BDI runs 
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C.5. Batch file run to extract data using commands of GAWK from DOE-2 output 

 

 

C.6. Summary output after extracting specific output from DOE-2 output using GAWK 
and batch file run 
 

 



 

 

430

C.7. Data from summary output using EXCEL spreadsheet 
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APPENDIX D 

DOE-2 INPUT COMMANDS FOR THERMAL MASS ANALYSIS 

 

D.1. DOE-2 code of a 2x4, wood-framed wall with studs 16” O.C. with insulation between 

the studs  

D.2. DOE-2 code of a 3” facia brick wall with 2x4 wood-framed with studs 16” O.C. with 

insulation between the studs 

D.3. DOE-2 code of an 8” concrete block wall with perlite fill in the cells of the block and 

insulation between the block and the interior gypsum board (I) 

D.4. DOE-2 code of an 8” concrete block wall with perlite and concrete fill in the cells of the 

block and insulation between the block and the interior gypsum board (II) 

D.5. DOE-2 code of an 8” concrete block wall with perlite fill in the cells of the block and 

insulation outside the block, covered by stucco (III) 

D.6. DOE-2 code of an 8” concrete block with perlite and concrete fill in the cells of the 

block and insulation outside the block, covered by stucco (IV) 
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 This study evaluated both the quick and the delayed methods since the 2000/2001 IECC 

specifies the thermal properties of the wall and roof for normal and thermal mass walls.  

 Therefore, the effect of different construction type was analyzed for different building 

configurations to find the effect of high thermal materials in the IECC including: 1) a quick 

mode wall that uses U-values instead of the layered materials, 2) a 2x4, wood-framed wall with 

studs 16” O.C. with insulation between the studs, 3) a 3” facia brick wall with 2x4 wood-framed 

with studs 16” O.C. with insulation between the studs, 4) an 8” concrete block wall with perlite 

fill in the cells of the block and insulation between the block and the interior gypsum board, 5) 

an 8” concrete block wall with perlite and concrete fill in the cells of the block and insulation 

between the block and the interior gypsum board, 6) an 8” concrete block wall with perlite fill in 

the cells of the block and insulation outside the block, covered by stucco, and 7) an 8” concrete 

block with perlite and concrete fill in the cells of the block and insulation outside the block, 

covered by stucco. 

 This section presents the DOE-2 commands of each wall type, which were explained in 

the section 4.3.6.6. 
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D.1. DOE-2 code of a 2x4, wood-framed wall with studs 16” O.C. with insulation 

between the studs  

 

VINYL-TILE           = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     RESISTANCE   = .05             $(HR.FT^2.F/BTU) 
                     SPECIFIC-HEAT= .30  ..         $(BTU/LB.F)                      
 
PLY-WOOD             = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY)                        
                     THICKNESS    = .0417            $(FT) 
                     CONDUCTIVITY = .0667            $(BTU.FT/HR.FT^2.F)  
                     DENSITY      = 34               $(LB/FT^3) 
                     SPECIFIC-HEAT = .29   ..        $(BTU/LB.F), PW03 
 
INSULATION-R15       = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .405            $(FT) 
                     CONDUCTIVITY = .027            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 0.6             $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
GYPSUM-BOARD         = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .0417            $(FT) 
                     CONDUCTIVITY = .0926            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 50               $(LB/FT^3) 
                     SPECIFIC-HEAT = .2   ..         $(BTU/LB.F), GP01     
 
STUD                = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .3333           $(FT) 
                     CONDUCTIVITY = .0667           $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 32              $(LB/FT^3) 
                     SPECIFIC-HEAT= .33  ..         $(BTU/LB.F) 
 
WA-1 = LAYERS  
       MATERIAL = (VINYL-TILE, PLY-WOOD,  
                   INSULATION-R15, GYPSUM-BOARD)  .. 
              $ Insulation Part of Wall 
              $ VINYL-TILE = Asbestos Vinyl Siding 
              $ PLY-WOOD = Plywood 1/2" 
              $ INSULATION-R15 = MINERAL WOOL/FIBER 
              $ GYPSUM-BOARD = Gypsum Board 1/2" 
              $ The percentage of WA-1 = 87.5 %  
 
WA-2 = LAYERS  
       MATERIAL = (VINYL-TILE, PLY-WOOD,  
                   STUD, GYPSUM-BOARD)  .. 
              $ Stud Part of Wall 
              $ VINYL-TILE = Asbestos Vinyl Siding 
              $ PLY-WOOD = Plywood 1/2" 
              $ STUD = 2*4 STUD 
              $ GYPSUM-BOARD = Gypsum Board 1/2" 
              $ The percentage of WA-2 = 12.5 % 
 
WALL-1    = CONSTRUCTION      
            LAYERS = WA-1   .. 
 
WALL-2    = CONSTRUCTION      
            LAYERS = WA-2   ..  
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D.2. DOE-2 code of a 3” facia brick wall with 2x4 wood-framed with studs 16” O.C. 

with insulation between the studs 

 

BRICK-BK04           = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .25             $(FT) 
                     CONDUCTIVITY = .7576           $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 130             $(LB/FT^3) 
                     SPECIFIC-HEAT= .22  ..         $(BTU/LB.F) 
 
PLY-WOOD             = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY)                        
                     THICKNESS    = .0417            $(FT) 
                     CONDUCTIVITY = .0667            $(BTU.FT/HR.FT^2.F)  
                     DENSITY      = 34               $(LB/FT^3) 
                     SPECIFIC-HEAT = .29   ..        $(BTU/LB.F), PW03 
 
INSULATION-R15       = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .405            $(FT) 
                     CONDUCTIVITY = .027            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 0.6             $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
STUD                = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .3333           $(FT) 
                     CONDUCTIVITY = .0667           $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 32              $(LB/FT^3) 
                     SPECIFIC-HEAT= .33  ..         $(BTU/LB.F) 
 
GYPSUM-BOARD         = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .0417            $(FT) 
                     CONDUCTIVITY = .0926            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 50               $(LB/FT^3) 
                     SPECIFIC-HEAT = .2   ..         $(BTU/LB.F), GP01     
 
WA-1 = LAYERS  
       MATERIAL = (BRICK-BK04, PLY-WOOD,  
                   INSULATION-R15, GYPSUM-BOARD)  .. 
              $ Insulation Part of Wall 
              $ BRICK = 3 INCH FACE BRICK 
              $ PLY-WOOD = Plywood 1/2” 
              $ INSULATION-R15 = MINERAL WOOL/FIBER 
              $ GYPSUM-BOARD = Gypsum Board 1/2” 
              $ The percentage of WA-1 = 87.5 %  
 
WA-2 = LAYERS  
       MATERIAL = (BRICK-BK04, PLY-WOOD,  
                   STUD, GYPSUM-BOARD)  .. 
              $ Stud Part of Wall 
              $ BRICK = 3 INCH FACE BRICK            $ PLY-WOOD = Plywood 1/2” 
              $ STUD = 2*4 STUD 
              $ GYPSUM-BOARD = Gypsum Board 1/2” 
              $ The percentage of WA-2 = 12.5 %  
 
WALL-1    = CONSTRUCTION      
            LAYERS = WA-1   .. 
 
WALL-2    = CONSTRUCTION      
            LAYERS = WA-2   .. 
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D.3. DOE-2 code of an 8” concrete block wall with perlite fill in the cells of the block 

and insulation between the block and the interior gypsum board (I) 

 

BLOCK-CB33           = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = 0.6667          $(FT) 
                     CONDUCTIVITY = 0.1141          $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 56              $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
INSULATION-IN34      = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY), R-5.21 
                     THICKNESS    = 0.1042          $(FT) 
                     CONDUCTIVITY = 0.02            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 1.8             $(LB/FT^3) 
                     SPECIFIC-HEAT= .29  ..         $(BTU/LB.F) 
 
GYPSUM-BOARD         = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .0417            $(FT) 
                     CONDUCTIVITY = .0926            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 50               $(LB/FT^3) 
                     SPECIFIC-HEAT = .2   ..         $(BTU/LB.F), GP01     
 
WA-3 = LAYERS  
       MATERIAL = (BLOCK-CB33, INSULATION-IN34, GYPSUM-BOARD)  .. 
              $ BLOCK-CB33 – PERLITE FILLED CONCRETE BLCOK 
              $ INSULATON-IN34 – R5.21 
              $ GYPSUM-BOARD = Gypsum Board 1/2” 
 
WALL-3    = CONSTRUCTION      
            LAYERS = WA-3   .. 
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D.4. DOE-2 code of an 8” concrete block wall with perlite and concrete fill in the cells of 

the block and insulation between the block and the interior gypsum board (II) 

 

BLOCK-CB35           = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = 0.6667          $(FT) 
                     CONDUCTIVITY = 0.2413          $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 77              $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
INSULATION-IN35      = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY), R-8.33 
                     THICKNESS    = 0.158           $(FT) 
                     CONDUCTIVITY = 0.02            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 1.8             $(LB/FT^3) 
                     SPECIFIC-HEAT= .29  ..         $(BTU/LB.F) 
 
GYPSUM-BOARD         = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .0417            $(FT) 
                     CONDUCTIVITY = .0926            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 50               $(LB/FT^3) 
                     SPECIFIC-HEAT = .2   ..         $(BTU/LB.F), GP01     
 
WA-3 = LAYERS  
       MATERIAL = (BLOCK-CB35, INSULATION-IN35, GYPSUM-BOARD)  .. 
              $ BLOCK-CB35 – CONCRETE AND PERLITE FILLED 
              $ INSULATON-IN35 – R8.33 
              $ GYPSUM-BOARD = Gypsum Board 1/2” 

 
WALL-3    = CONSTRUCTION      
            LAYERS = WA-3   .. 
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D.5. DOE-2 code of an 8” concrete block wall with perlite fill in the cells of the block 

and insulation outside the block, covered by stucco (III) 

STUCCO-SC01          = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = 0.0833          $(FT) 
                     CONDUCTIVITY = 0.4167          $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 166             $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
INSULATION-IN31      = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY), R-2.08 
                     THICKNESS    = 0.01            $(FT) 
                     CONDUCTIVITY = 0.027           $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 0.6             $(LB/FT^3) 
                     SPECIFIC-HEAT= .29  ..         $(BTU/LB.F) 
 
BLOCK-CB33           = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = 0.6667          $(FT) 
                     CONDUCTIVITY = 0.1141          $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 56              $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
AIR-AL21              = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     RESISTANCE   = .89  ..         $(HR.FT^2.F/BTU) 
 
GYPSUM-BOARD         = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .0417            $(FT) 
                     CONDUCTIVITY = .0926            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 50               $(LB/FT^3) 
                     SPECIFIC-HEAT = .2   ..         $(BTU/LB.F), GP01     
 
STUD1                = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .167            $(FT) 
                     CONDUCTIVITY = .0667           $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 32              $(LB/FT^3) 
                     SPECIFIC-HEAT= .33  ..         $(BTU/LB.F) 
 
WA-1 = LAYERS  
       MATERIAL = (STUCCO-SC01, INSULATION-IN31,  
                   BLOCK-CB33, AIR-AL21, GYPSUM-BOARD)  .. 
              $ AIR Part of Wall 
              $ STUCC0-SC01 – 1” 
              $ INSULATION-IN31 – R-2.08 
       $ BLOCK 8 INCH – PERLITE FILLED 
       $ AIR-AL21 – FOR VERTICAL WALL 
       $ GYPSUM-BOARD = Gypsum Board 1/2” 
              $ The percentage of WA-1 = 87.5 %  
 
WA-2 = LAYERS  
       MATERIAL = (STUCCO-SC01, INSULATION-IN31,  
                   BLOCK-CB33, STUD1, GYPSUM-BOARD)  .. 
              $ STUD Part of Wall 
              $ STUCC0-SC01 – 1” 
              $ INSULATION-IN31 – R-2.08 
       $ BLOCK 8 INCH – PERLITE FILLED 
       $ STUD – 2*2” 
       $ GYPSUM-BOARD = Gypsum Board 1/2” 
              $ The percentage of WA-1 = 12.5 %  
 
WALL-1    = CONSTRUCTION      
            LAYERS = WA-1   .. 
 
WALL-2    = CONSTRUCTION      
            LAYERS = WA-2   .. 
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D.6. DOE-2 code of an 8” concrete block with perlite and concrete fill in the cells of the 

block and insulation outside the block, covered by stucco (IV) 

 
STUCCO-SC01          = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = 0.0833          $(FT) 
                     CONDUCTIVITY = 0.4167          $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 166             $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
 
INSULATION-IN31      = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY), R-2.08 
                     THICKNESS    = 0.01            $(FT) 
                     CONDUCTIVITY = 0.027           $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 0.6             $(LB/FT^3) 
                     SPECIFIC-HEAT= .29  ..         $(BTU/LB.F) 
 
BLOCK-CB35           = MATERIAL                     $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = 0.6667          $(FT) 
                     CONDUCTIVITY = 0.2413          $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 77              $(LB/FT^3) 
                     SPECIFIC-HEAT= .20  ..         $(BTU/LB.F) 
                                                    $8"        
AIR-AL21              = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     RESISTANCE   = .89  ..         $(HR.FT^2.F/BTU) 
 
GYPSUM-BOARD         = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .0417            $(FT) 
                     CONDUCTIVITY = .0926            $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 50               $(LB/FT^3) 
                     SPECIFIC-HEAT = .2   ..         $(BTU/LB.F), GP01     
 
STUD1                = MATERIAL                      $DOE2.1E(MATERIALS LIBRARY) 
                     THICKNESS    = .167            $(FT) 
                     CONDUCTIVITY = .0667           $(BTU.FT/HR.FT^2.F) 
                     DENSITY      = 32              $(LB/FT^3) 
                     SPECIFIC-HEAT= .33  ..         $(BTU/LB.F) 
 
WA-1 = LAYERS  
       MATERIAL = (STUCCO-SC01, INSULATION-IN31,  
                   BLOCK-CB35, AIR-AL21, GYPSUM-BOARD)  .. 
              $ AIR Part of Wall 
              $ STUCC0-SC01 - 1" 
              $ INSULATION-IN31 - R-2.08 
       $ BLOCK 8 INCH - PERLITE AND CONCRETE FILLED 
       $ AIR-AL21 - FOR VERTICAL WALL 
       $ GYPSUM-BOARD = Gypsum Board 1/2" 
              $ The percentage of WA-1 = 87.5 %  
 
WA-2 = LAYERS  
       MATERIAL = (STUCCO-SC01, INSULATION-IN31,  
                   BLOCK-CB35, STUD1, GYPSUM-BOARD)  .. 
              $ STUD Part of Wall 
              $ STUCC0-SC01 - 1" 
              $ INSULATION-IN31 - R-2.08 
       $ BLOCK 8 INCH - PERLITE AND CONCRETE FILLED 
       $ STUD - 2*2" 
       $ GYPSUM-BOARD = Gypsum Board 1/2" 
              $ The percentage of WA-1 = 12.5 % 
 
WALL-1    = CONSTRUCTION      
            LAYERS = WA-1   .. 
 
WALL-2    = CONSTRUCTION      
            LAYERS = WA-2   .. 
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APPENDIX E 

WINDOW-5 OUTPUT FILES 

 

E.1. Single-Pane Clear Glass 

E.2. Double-Pane Clear Glass 

E.3. Double Pane Low-e Glass 
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 This study investigated methods of modeling windows in the DOE-2 program: Window 

Library method and the Shading Coefficient (SC) method. In order to compare the differences 

between the two methods, Window-5 program was used to create three window types (single-

pane clear, double-pane clear and double-pane low-e glass) which were explained in the section 

4.3.6.8.  

 This section presents the window properties created by Window-5 program which were 

converted to WIN.DAT library in the DOE-2 program.  
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E.1. Single-Pane Clear Glass 

 

Window 5.2a  v5.2.17a  DOE-2 Data File  
 
Unit System : SI 
Name        : DOE-2 WINDOW LIB 
Desc        : SNG CLEAR(S.KIM 
Window ID   : 1000 
Tilt        : 90.0 
Glazings    : 1 
Frame       :  1 Al no break          10.790 
Spacer      :  1 Class1                2.330  -0.010   0.138 
Total Height: 1500.0 mm 
Total Width : 1200.0 mm 
Glass Height: 1385.7 mm 
Glass Width : 1085.7 mm 
Mullion     : None 
Gap        Thick    Cond  dCond    Vis   dVis   Dens   dDens     Pr     dPr 
1              0       0      0      0      0      0       0      0       0 
2              0       0      0      0      0      0       0      0       0 
3              0       0      0      0      0      0       0      0       0 
4              0       0      0      0      0      0       0      0       0 
5              0       0      0      0      0      0       0      0       0 
Angle     0    10    20    30    40    50    60    70    80    90 Hemis 
Tsol  0.834 0.833 0.831 0.827 0.818 0.797 0.749 0.637 0.389 0.000 0.753 
Abs1  0.091 0.092 0.094 0.096 0.100 0.104 0.108 0.110 0.105 0.000 0.101 
Abs2      0     0     0     0     0     0     0     0     0     0     0 
Abs3      0     0     0     0     0     0     0     0     0     0     0 
Abs4      0     0     0     0     0     0     0     0     0     0     0 
Abs5      0     0     0     0     0     0     0     0     0     0     0 
Abs6      0     0     0     0     0     0     0     0     0     0     0 
Rfsol 0.075 0.075 0.075 0.077 0.082 0.099 0.143 0.253 0.506 1.000 0.136 
Rbsol 0.075 0.075 0.075 0.077 0.082 0.099 0.143 0.253 0.506 1.000 0.136 
Tvis  0.899 0.899 0.898 0.896 0.889 0.870 0.822 0.705 0.441 0.000 0.822 
Rfvis 0.083 0.083 0.083 0.085 0.091 0.109 0.156 0.272 0.536 1.000 0.148 
Rbvis 0.083 0.083 0.083 0.085 0.091 0.109 0.156 0.272 0.536 1.000 0.148 
SHGC  0.858 0.858 0.857 0.853 0.844 0.825 0.778 0.667 0.418 0.000 0.780 
SC: 0.92 
 
 
 
Layer ID#          102        0        0        0        0        0  
Tir              0.000        0        0        0        0        0 
Emis F           0.840        0        0        0        0        0 
Emis B           0.840        0        0        0        0        0 
Thickness(mm)      3.0        0        0        0        0        0 
Cond(W/m2-K     )328.1        0        0        0        0        0     
Spectral File  CLEAR_3.DAT         None         None         None         None  
None 
 
Overall and Center of Glass Ig U-values (W/m2-K) 
Outdoor Temperature                 -17.8 C      15.6 C      26.7 C      37.8 C 
Solar      WdSpd  hcout hrout  hin 
(W/m2)     (m/s)     (W/m2-K) 
   0        0.00   4.00  3.54  7.16  3.63 3.63  3.67 3.67  3.75 3.75  4.11 4.11  
   0        6.71  30.84  3.30  7.26  5.88 5.88  5.51 5.51  5.52 5.52  6.22 6.22  
 783        0.00   4.00  3.64  7.08  3.63 3.63  3.67 3.67  3.75 3.75  4.11 4.11  
 783        6.71  30.84  3.33  7.25  5.88 5.88  5.51 5.51  5.52 5.52  6.22 6.22 
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E.2. Double-Pane Clear Glass 

 

 

 

Window 5.2a  v5.2.17a  DOE-2 Data File  
 
Unit System : SI 
Name        : DOE-2 WINDOW LIB 
Desc        : DBL CLEAN(S.KIM 
Window ID   : 2000 
Tilt        : 90.0 
Glazings    : 2 
Frame       :  1 Al no break          10.790 
Spacer      :  1 Class1                2.330  -0.010   0.138 
Total Height: 1500.0 mm 
Total Width : 1200.0 mm 
Glass Height: 1385.7 mm 
Glass Width : 1085.7 mm 
Mullion     : None 
Gap        Thick    Cond  dCond    Vis   dVis   Dens   dDens     Pr     dPr 
1 Air       12.0 0.02407  7.760  1.722  4.940  1.292 -0.0046  0.720 -0.0002  
2              0       0      0      0      0      0       0      0       0 
3              0       0      0      0      0      0       0      0       0 
4              0       0      0      0      0      0       0      0       0 
5              0       0      0      0      0      0       0      0       0 
Angle     0    10    20    30    40    50    60    70    80    90 Hemis 
Tsol  0.607 0.606 0.601 0.593 0.577 0.546 0.483 0.362 0.165 0.000 0.510 
Abs1  0.167 0.168 0.170 0.175 0.182 0.190 0.200 0.209 0.202 0.000 0.185 
Abs2  0.113 0.113 0.115 0.116 0.118 0.119 0.115 0.101 0.067 0.000 0.111 
Abs3      0     0     0     0     0     0     0     0     0     0     0 
Abs4      0     0     0     0     0     0     0     0     0     0     0 
Abs5      0     0     0     0     0     0     0     0     0     0     0 
Abs6      0     0     0     0     0     0     0     0     0     0     0 
Rfsol 0.114 0.114 0.114 0.115 0.123 0.145 0.201 0.328 0.566 1.000 0.184 
Rbsol 0.114 0.114 0.114 0.115 0.123 0.145 0.201 0.328 0.566 1.000 0.184 
Tvis  0.786 0.786 0.784 0.779 0.766 0.735 0.663 0.510 0.253 0.000 0.683 
Rfvis 0.144 0.144 0.144 0.147 0.157 0.185 0.253 0.403 0.662 1.000 0.229 
Rbvis 0.144 0.144 0.144 0.147 0.157 0.185 0.253 0.403 0.662 1.000 0.229 
SHGC  0.700 0.699 0.697 0.690 0.676 0.647 0.584 0.455 0.236 0.000 0.605 
SC: 0.76 
 
 
 
Layer ID#          103      103        0        0        0        0  
Tir              0.000    0.000        0        0        0        0 
Emis F           0.840    0.840        0        0        0        0 
Emis B           0.840    0.840        0        0        0        0 
Thickness(mm)      5.7      5.7        0        0        0        0 
Cond(W/m2-K     )175.0    175.0        0        0        0        0     
Spectral File  CLEAR_6.DAT  CLEAR_6.DAT         None         None         None  
None 
 
Overall and Center of Glass Ig U-values (W/m2-K) 
Outdoor Temperature                 -17.8 C      15.6 C      26.7 C      37.8 C 
Solar      WdSpd  hcout hrout  hin 
(W/m2)     (m/s)     (W/m2-K) 
   0        0.00   4.00  3.39  7.00  2.12 2.12  2.24 2.24  2.32 2.32  2.48 2.48  
   0        6.71  30.84  3.23  7.08  2.70 2.70  2.79 2.79  2.88 2.88  3.11 3.11  
 783        0.00   4.00  3.71  6.39  2.12 2.12  2.24 2.24  2.32 2.32  2.48 2.48  
 783        6.71  30.84  3.32  6.78  2.70 2.70  2.79 2.79  2.88 2.88  3.11 3.11 
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E.3. Double Pane Low-e Glass 

 

Window 5.2a  v5.2.17a  DOE-2 Data File  
 
Unit System : SI 
Name        : DOE-2 WINDOW LIB 
Desc        : DBL LOEW(S.KIM) 
Window ID   : 2661 
Tilt        : 90.0 
Glazings    : 2 
Frame       :  1 Al no break          10.790 
Spacer      :  1 Class1                2.330  -0.010   0.138 
Total Height: 1500.0 mm 
Total Width : 1200.0 mm 
Glass Height: 1385.7 mm 
Glass Width : 1085.7 mm 
Mullion     : None 
Gap        Thick    Cond  dCond    Vis   dVis   Dens   dDens     Pr     dPr 
1 Air       12.7 0.02407  7.760  1.722  4.940  1.292 -0.0046  0.720 -0.0002  
2              0       0      0      0      0      0       0      0       0 
3              0       0      0      0      0      0       0      0       0 
4              0       0      0      0      0      0       0      0       0 
5              0       0      0      0      0      0       0      0       0 
Angle     0    10    20    30    40    50    60    70    80    90 Hemis 
Tsol  0.408 0.410 0.404 0.395 0.383 0.362 0.316 0.230 0.106 0.000 0.338 
Abs1  0.177 0.180 0.188 0.193 0.195 0.201 0.218 0.239 0.210 0.001 0.201 
Abs2  0.060 0.060 0.061 0.061 0.063 0.063 0.061 0.053 0.038 0.000 0.059 
Abs3      0     0     0     0     0     0     0     0     0     0     0 
Abs4      0     0     0     0     0     0     0     0     0     0     0 
Abs5      0     0     0     0     0     0     0     0     0     0     0 
Abs6      0     0     0     0     0     0     0     0     0     0     0 
Rfsol 0.355 0.350 0.348 0.350 0.359 0.374 0.405 0.478 0.646 0.999 0.392 
Rbsol 0.289 0.285 0.283 0.282 0.285 0.296 0.328 0.411 0.594 1.000 0.322 
Tvis  0.696 0.700 0.690 0.677 0.660 0.625 0.548 0.399 0.187 0.000 0.581 
Rfvis 0.207 0.201 0.198 0.201 0.212 0.234 0.278 0.374 0.582 0.999 0.260 
Rbvis 0.180 0.174 0.173 0.176 0.189 0.215 0.271 0.401 0.648 1.000 0.250 
SHGC  0.469 0.471 0.466 0.458 0.448 0.427 0.381 0.291 0.152 0.000 0.399 
SC: 0.54 
 
 
 
Layer ID#          925      103        0        0        0        0  
Tir              0.000    0.000        0        0        0        0 
Emis F           0.840    0.840        0        0        0        0 
Emis B           0.033    0.840        0        0        0        0 
Thickness(mm)      3.2      5.7        0        0        0        0 
Cond(W/m2-K     )315.0    175.0        0        0        0        0     
Spectral File CMFTIR_3.AFG  CLEAR_6.DAT         None         None         None  
None 
 
Overall and Center of Glass Ig U-values (W/m2-K) 
Outdoor Temperature                 -17.8 C      15.6 C      26.7 C      37.8 C 
Solar      WdSpd  hcout hrout  hin 
(W/m2)     (m/s)     (W/m2-K) 
   0        0.00   4.00  3.31  6.86  1.37 1.37  1.35 1.35  1.38 1.38  1.44 1.44  
   0        6.71  30.84  3.21  6.92  1.66 1.66  1.53 1.53  1.56 1.56  1.63 1.63  
 783        0.00   4.00  3.63  6.33  1.37 1.37  1.35 1.35  1.38 1.38  1.44 1.44  
 783        6.71  30.84  3.29  6.55  1.66 1.66  1.53 1.53  1.56 1.56  1.63 1.63 
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APPENDIX F 

LV-H REPORT FROM DOE-2 SIMULATION 

 

F.1. Single Pane Clear 

F.2. Double Pane Clear 

F.3. Double Pane Low-e 
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 In order to verify that the same window thermal properties were simulated by the SC 

method and the Window-5 library method for window input mode test in the DOE-2 program, 

LV-H report from DOE-2 outputs was used to compare the window thermal properties from the 

SC method and the Window-5 library method. 

 This section presents LV-H reports of three different window types from the SC method 

and the Window-5 library method, which were explained in the section 4.3.6.8. 
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F.1. Single Pane Clear 
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F.2. Double Pane Clear 
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F.3. Double Pane Low-e 
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APPENDIX G 

RESULTS OF THE SIMULATION RUNS FOR EFFICIENCY TEST 

  

G.1. Fenestration simulation results 

G.2. Duct simulation results 

G.3. Air conditioner efficiency simulation results 

G.4. Furnace efficiency simulation results 

G.5. Heat pump efficiency simulation results 

G.6. Domestic hot water heater efficiency simulation results 

G.7. Duct location simulation results 

G.8. Tree shading simulation results 
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 Over 400 simulations using the IECC-compliant simulation model were performed to 

compare a base-case building with the same building modified by an energy efficiency strategy 

during this study.  

 For energy efficiency analysis, the DOE-2.1e (version 119) program was selected as the 

simulation program and the modified SNGFAM2ST.INP (version 1.20) was adopted as the 

DOE-2 simulation model. In order to perform the DOE-2 simulation in the batch mode, the 

Batch DOE-2 Input (BDI) (version 1.13) was used as explained at Chapter 4.3.5.3. 

 For the different climate zone simulations, four TMY2 weather data were used: 1) 

Amarillo TMY2 (climate zone 9), 2) Fort Worth TMY2 (climate zone 5), 3) Houston TMY2 

(climate zone 4), and 4) Brownsville TMY2 (climate zone 2). 

Following tables were used to present the results for the efficiency analysis using the 

2000/2001 IECC-complaint simulation model in Chapter 6.4. 
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G.1. Fenestration simulation results 

 

SEER AFUE(%)
Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%

Duct 
Leakage

Ceiling R-
value

ROOF R-
value

Glazing U-
factor SHGC

IECC 2000 IECC 2000 ASHRAE 
152-2004

ASHRAE 
152-2004

ASHRAE 
152-2004 IECC 2000 IECC 2000 IECC 2000 IECC 2000

1 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO BASE CASE 33.14 29.3 42.82 13 118.26 47.2
2 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.64 NO SHGC-0.2 32.97 29.3 43.42 12.8 118.49 47.8 2.40% -1.36% -0.27%
3 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.62 NO SHGC-0.4 32.99 29.3 44.02 12.5 118.81 48.4 0.00% 0.00% 0.00%
4 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.428 0.66 NO ONLY U-VALUE 33.12 29.3 41.92 13.1 117.44 46.3 4.80% -4.77% -1.15%
5 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.428 0.64 NO SHGC-0.2 33.04 29.3 42.52 12.8 117.66 46.9 2.40% -3.41% -0.97%
6 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.428 0.62 NO SHGC-0.4 32.99 29.3 43.02 12.6 117.91 47.4 0.80% -2.27% -0.76%
7 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.405 0.66 NO ONLY U-VALUE 33.07 29.3 41.02 13.2 116.59 45.4 5.60% -6.82% -1.87%
8 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.405 0.64 NO SHGC-0.2 33.05 29.3 41.52 12.9 116.77 45.9 3.20% -5.68% -1.72%
9 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.405 0.62 NO SHGC-0.4 33.1 29.3 42.02 12.6 117.02 46.4 0.80% -4.54% -1.51%

10 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.383 0.66 NO ONLY U-VALUE 33.06 29.3 40.12 13.3 115.78 44.5 6.40% -8.86% -2.55%
11 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.383 0.64 NO SHGC-0.2 33.04 29.3 40.62 13 115.96 45 4.00% -7.72% -2.40%
12 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.383 0.62 NO SHGC-0.4 33.02 29.3 41.12 12.7 116.14 45.5 1.60% -6.59% -2.25%
13 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.36 0.66 NO ONLY U-VALUE 33.11 29.3 39.12 13.3 114.83 43.5 6.40% -11.13% -3.35%
14 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.36 0.64 NO SHGC-0.2 33.03 29.3 39.62 13.1 115.05 44 4.80% -10.00% -3.16%
15 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.36 0.62 NO SHGC-0.4 33.04 29.3 40.12 12.8 115.26 44.5 2.40% -8.86% -2.99%
16 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO BASE CASE 32.72 24.8 18.42 15.9 91.84 22.8
17 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.38 NO SHGC-0.2 32.72 24.8 18.72 15.6 91.84 23.1 1.96% -2.09% 0.02%
18 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.36 NO SHGC-0.4 32.6 24.8 19.12 15.3 91.82 23.5 0.00% 0.00% 0.00%
19 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.618 0.4 NO ONLY U-VALUE 32.69 24.8 17.82 16 91.31 22.2 4.58% -6.80% -0.56%
20 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.618 0.38 NO SHGC-0.2 32.78 24.8 18.12 15.6 91.3 22.5 1.96% -5.23% -0.57%
21 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.618 0.36 NO SHGC-0.4 32.69 24.8 18.52 15.3 91.31 22.9 0.00% -3.14% -0.56%
22 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.585 0.4 NO ONLY U-VALUE 32.74 24.8 17.22 16 90.76 21.6 4.58% -9.94% -1.15%
23 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.585 0.38 NO SHGC-0.2 32.75 24.8 17.52 15.7 90.77 21.9 2.61% -8.37% -1.14%
24 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.585 0.36 NO SHGC-0.4 32.7 24.8 17.82 15.4 90.72 22.2 0.65% -6.80% -1.20%
25 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.555 0.4 NO ONLY U-VALUE 32.77 24.8 16.62 16.1 90.29 21 5.23% -13.08% -1.67%
26 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.555 0.38 NO SHGC-0.2 32.7 24.8 16.92 15.8 90.22 21.3 3.27% -11.51% -1.74%
27 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.555 0.36 NO SHGC-0.4 32.59 24.8 17.32 15.5 90.21 21.7 1.31% -9.41% -1.75%
28 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.52 0.4 NO ONLY U-VALUE 32.68 24.8 16.02 16.2 89.7 20.4 5.88% -16.21% -2.31%
29 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.52 0.38 NO SHGC-0.2 32.62 24.8 16.32 15.9 89.64 20.7 3.92% -14.64% -2.37%
30 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.52 0.36 NO SHGC-0.4 32.67 24.8 16.62 15.5 89.59 21 1.31% -13.08% -2.43%
31 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO BASE CASE 32.67 23.5 12.22 16.8 85.19 16.6
32 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.38 NO SHGC-0.2 32.57 23.5 12.52 16.5 85.09 16.9 1.85% -1.57% 0.13%
33 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.36 NO SHGC-0.4 32.56 23.5 12.72 16.2 84.98 17.1 0.00% 0.00% 0.00%
34 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.713 0.4 NO ONLY U-VALUE 32.65 23.5 11.82 16.9 84.87 16.2 4.32% -7.08% -0.13%
35 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.713 0.38 NO SHGC-0.2 32.61 23.5 12.02 16.6 84.73 16.4 2.47% -5.50% -0.29%
36 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.713 0.36 NO SHGC-0.4 32.7 23.5 12.22 16.2 84.62 16.6 0.00% -3.93% -0.42%
37 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.675 0.4 NO ONLY U-VALUE 32.65 23.5 11.32 17 84.47 15.7 4.94% -11.01% -0.60%
38 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.675 0.38 NO SHGC-0.2 32.69 23.5 11.52 16.6 84.31 15.9 2.47% -9.43% -0.79%
39 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.675 0.36 NO SHGC-0.4 32.6 23.5 11.82 16.3 84.22 16.2 0.62% -7.08% -0.89%
40 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.638 0.4 NO ONLY U-VALUE 32.73 23.5 10.92 17 84.15 15.3 4.94% -14.15% -0.98%
41 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.638 0.38 NO SHGC-0.2 32.65 23.5 11.12 16.7 83.97 15.5 3.09% -12.58% -1.19%
42 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.638 0.36 NO SHGC-0.4 32.66 23.5 11.22 16.4 83.78 15.6 1.23% -11.79% -1.41%
43 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.6 0.4 NO ONLY U-VALUE 32.77 23.5 10.32 17.1 83.69 14.7 5.56% -18.87% -1.52%
44 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.6 0.38 NO SHGC-0.2 32.65 23.5 10.62 16.8 83.57 15 3.70% -16.51% -1.66%
45 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.6 0.36 NO SHGC-0.4 32.62 23.5 10.82 16.5 83.44 15.2 1.85% -14.94% -1.81%
46 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO BASE CASE 33.02 21.5 6.92 22.4 83.84 11.3
47 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.38 NO SHGC-0.2 33.03 21.5 7.02 22 83.55 11.4 1.85% -1.40% 0.35%
48 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.36 NO SHGC-0.4 33.04 21.5 7.12 21.6 83.26 11.5 0.00% 0.00% 0.00%
49 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.855 0.4 NO ONLY U-VALUE 33.06 21.5 6.72 22.4 83.68 11.1 3.70% -5.62% 0.50%
50 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.855 0.38 NO SHGC-0.2 32.95 21.5 6.82 22.1 83.37 11.2 2.31% -4.21% 0.13%
51 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.855 0.36 NO SHGC-0.4 32.95 21.5 6.92 21.7 83.07 11.3 0.46% -2.81% -0.23%
52 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.81 0.4 NO ONLY U-VALUE 33.04 21.5 6.52 22.5 83.56 10.9 4.17% -8.43% 0.36%
53 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.81 0.38 NO SHGC-0.2 33.03 21.5 6.62 22.1 83.25 11 2.31% -7.02% -0.01%
54 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.81 0.36 NO SHGC-0.4 32.98 21.5 6.62 21.8 82.9 11 0.93% -7.02% -0.43%
55 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.765 0.4 NO ONLY U-VALUE 33.1 21.5 6.22 22.6 83.42 10.6 4.63% -12.64% 0.19%
56 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.765 0.38 NO SHGC-0.2 33.07 21.5 6.32 22.2 83.09 10.7 2.78% -11.24% -0.20%
57 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.765 0.36 NO SHGC-0.4 33.06 21.5 6.42 21.8 82.78 10.8 0.93% -9.83% -0.58%
58 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.72 0.4 NO ONLY U-VALUE 33.04 21.5 6.02 22.7 83.26 10.4 5.09% -15.45% 0.00%
59 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.72 0.38 NO SHGC-0.2 33.03 21.5 6.12 22.3 82.95 10.5 3.24% -14.04% -0.37%
60 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.72 0.36 NO SHGC-0.4 33.04 21.5 6.22 21.9 82.66 10.6 1.39% -12.64% -0.72%

Heating 
Differ. (%)

Total Differ. 
(%)

Annual 
Heating+DH
W (mBtu/yr)

Cooling 
Differ. (%)

Annual 
Cooling 

(mBtu/yr)

Total 
(mBtu/yr)

TREE 
SHADING

Annual  
Other 

(mBtu/yr)

Annual DHW 
(mBtu/yr)

Annual 
Heating 

(mBtu/yr)
No Location Duct 

Insulation
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G.2. Duct simulation results 

 

SEER AFUE(%) Supply Duct Area 
(sq.ft), 30%

Return Duct Area 
(sq.ft), 5% Duct Leakage Ceiling R-value Glazing U-

factor SHGC

IECC 2000 IECC 2000 ASHRAE 152-2004 ASHRAE 152-
2004

ASHRAE 152-
2004 IECC 2000 IECC 2000 IECC 2000

1 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0 38 0.45 0.66 NO S-8, R-4 (0%) 33.14 29.3 42.82 13 118.26 47.2
2 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.05 38 0.45 0.66 NO S-8, R-4 (5%) 33.11 29.3 46.62 13.9 122.93 51 6.92% 8.87% 3.95%
3 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO S-8, R-4 (10%) 33.06 29.3 50.92 15 128.28 55.3 15.38% 18.92% 8.47%
4 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.15 38 0.45 0.66 NO S-8, R-4 (15%) 33.14 29.3 55.82 16.2 134.46 60.2 24.62% 30.36% 13.70%
5 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.2 38 0.45 0.66 NO S-8, R-4 (20%) 33.02 29.3 61.62 17.7 141.64 66 36.15% 43.90% 19.77%
6 Amarillo 10 78 746.17 124.36 SR-6,RR-6 0 38 0.45 0.66 NO S-6, R-6 (0%) 33.01 29.3 43.72 13.6 119.63 48.1 4.62% 2.10% 1.16%
7 Amarillo 10 78 746.17 124.36 SR-6,RR-6 0.05 38 0.45 0.66 NO S-6, R-6 (5%) 33.12 29.3 47.52 14.5 124.44 51.9 11.54% 10.98% 5.23%
8 Amarillo 10 78 746.17 124.36 SR-6,RR-6 0.1 38 0.45 0.66 NO S-6, R-6 (10%) 33.14 29.3 51.92 15.6 129.96 56.3 20.00% 21.25% 9.89%
9 Amarillo 10 78 746.17 124.36 SR-6,RR-6 0.15 38 0.45 0.66 NO S-6, R-6 (15%) 33.03 29.3 57.02 17 136.35 61.4 30.77% 33.16% 15.30%

10 Amarillo 10 78 746.17 124.36 SR-6,RR-6 0.2 38 0.45 0.66 NO S-6, R-6 (20%) 33.06 29.3 62.92 18.5 143.78 67.3 42.31% 46.94% 21.58%
11 Amarillo 10 78 746.17 124.36 SR-8,RR-8 0 38 0.45 0.66 NO S-8, R-8 (0%) 33.13 29.3 42.62 13 118.05 47 0.00% -0.47% -0.18%
12 Amarillo 10 78 746.17 124.36 SR-8,RR-8 0.05 38 0.45 0.66 NO S-8, R-8 (5%) 33.08 29.3 46.42 13.9 122.7 50.8 6.92% 8.41% 3.75%
13 Amarillo 10 78 746.17 124.36 SR-8,RR-8 0.1 38 0.45 0.66 NO S-8, R-8 (10%) 33.01 29.3 50.72 15 128.03 55.1 15.38% 18.45% 8.26%
14 Amarillo 10 78 746.17 124.36 SR-8,RR-8 0.15 38 0.45 0.66 NO S-8, R-8 (15%) 33.06 29.3 55.62 16.2 134.18 60 24.62% 29.89% 13.46%
15 Amarillo 10 78 746.17 124.36 SR-8,RR-8 0.2 38 0.45 0.66 NO S-8, R-8 (20%) 33.12 29.3 61.32 17.6 141.34 65.7 35.38% 43.20% 19.52%
16 Amarillo 10 78 746.17 124.36 SR-10,RR-10 0 38 0.45 0.66 NO S-10, R-10 (0%) 33.01 29.3 42.12 12.7 117.13 46.5 -2.31% -1.63% -0.96%
17 Amarillo 10 78 746.17 124.36 SR-10,RR-10 0.05 38 0.45 0.66 NO S-10, R-10 (5%) 33.07 29.3 45.72 13.6 121.69 50.1 4.62% 6.77% 2.90%
18 Amarillo 10 78 746.17 124.36 SR-10,RR-10 0.1 38 0.45 0.66 NO S-10, R-10 (10%) 33.1 29.3 49.92 14.6 126.92 54.3 12.31% 16.58% 7.32%
19 Amarillo 10 78 746.17 124.36 SR-10,RR-10 0.15 38 0.45 0.66 NO S-10, R-10 (15%) 33.02 29.3 54.82 15.8 132.94 59.2 21.54% 28.02% 12.41%
20 Amarillo 10 78 746.17 124.36 SR-10,RR-10 0.2 38 0.45 0.66 NO S-10, R-10 (20%) 33.12 29.3 60.42 17.1 139.94 64.8 31.54% 41.10% 18.33%
21 Amarillo 10 78 746.17 124.36 SR-12,RR-12 0 38 0.45 0.66 NO S-12, R-12 (0%) 33.02 29.3 41.72 12.5 116.54 46.1 -3.85% -2.57% -1.45%
22 Amarillo 10 78 746.17 124.36 SR-12,RR-12 0.05 38 0.45 0.66 NO S-12, R-12 (5%) 33.12 29.3 45.32 13.3 121.04 49.7 2.31% 5.84% 2.35%
23 Amarillo 10 78 746.17 124.36 SR-12,RR-12 0.1 38 0.45 0.66 NO S-12, R-12 (10%) 33.07 29.3 49.52 14.3 126.19 53.9 10.00% 15.65% 6.71%
24 Amarillo 10 78 746.17 124.36 SR-12,RR-12 0.15 38 0.45 0.66 NO S-12, R-12 (15%) 33.01 29.3 54.32 15.5 132.13 58.7 19.23% 26.86% 11.73%
25 Amarillo 10 78 746.17 124.36 SR-12,RR-12 0.2 38 0.45 0.66 NO S-12, R-12 (20%) 33.12 29.3 59.82 16.8 139.04 64.2 29.23% 39.70% 17.57%
26 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0 30 0.65 0.4 NO S-8, R-4 (0%) 32.72 24.8 18.42 15.9 91.84 22.8
27 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.05 30 0.65 0.4 NO S-8, R-4 (5%) 32.7 24.8 19.92 17.8 95.22 24.3 11.95% 8.14% 3.68%
28 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO S-8, R-4 (10%) 32.73 24.8 21.62 20.1 99.25 26 26.42% 17.37% 8.07%
29 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.15 30 0.65 0.4 NO S-8, R-4 (15%) 32.71 24.8 23.62 23 104.13 28 44.65% 28.23% 13.38%
30 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.2 30 0.65 0.4 NO S-8, R-4 (20%) 32.73 24.8 25.92 26.9 110.35 30.3 69.18% 40.72% 20.15%
31 Fort Worth 10 78 746.17 124.36 SR-6,RR-6 0 30 0.65 0.4 NO S-6, R-6 (0%) 32.74 24.8 18.72 16.5 92.76 23.1 3.77% 1.63% 1.00%
32 Fort Worth 10 78 746.17 124.36 SR-6,RR-6 0.05 30 0.65 0.4 NO S-6, R-6 (5%) 32.68 24.8 20.32 18.5 96.3 24.7 16.35% 10.31% 4.86%
33 Fort Worth 10 78 746.17 124.36 SR-6,RR-6 0.1 30 0.65 0.4 NO S-6, R-6 (10%) 32.72 24.8 22.02 21 100.54 26.4 32.08% 19.54% 9.47%
34 Fort Worth 10 78 746.17 124.36 SR-6,RR-6 0.15 30 0.65 0.4 NO S-6, R-6 (15%) 32.71 24.8 24.02 24.2 105.73 28.4 52.20% 30.40% 15.12%
35 Fort Worth 10 78 746.17 124.36 SR-6,RR-6 0.2 30 0.65 0.4 NO S-6, R-6 (20%) 32.74 24.8 26.32 28.8 112.66 30.7 81.13% 42.89% 22.67%
36 Fort Worth 10 78 746.17 124.36 SR-8,RR-8 0 30 0.65 0.4 NO S-8, R-8 (0%) 32.8 24.8 18.32 15.8 91.72 22.7 -0.63% -0.54% -0.13%
37 Fort Worth 10 78 746.17 124.36 SR-8,RR-8 0.05 30 0.65 0.4 NO S-8, R-8 (5%) 32.67 24.8 19.92 17.7 95.09 24.3 11.32% 8.14% 3.54%
38 Fort Worth 10 78 746.17 124.36 SR-8,RR-8 0.1 30 0.65 0.4 NO S-8, R-8 (10%) 32.68 24.8 21.62 20 99.1 26 25.79% 17.37% 7.91%
39 Fort Worth 10 78 746.17 124.36 SR-8,RR-8 0.15 30 0.65 0.4 NO S-8, R-8 (15%) 32.73 24.8 23.52 22.9 103.95 27.9 44.03% 27.69% 13.19%
40 Fort Worth 10 78 746.17 124.36 SR-8,RR-8 0.2 30 0.65 0.4 NO S-8, R-8 (20%) 32.68 24.8 25.82 26.8 110.1 30.2 68.55% 40.17% 19.88%
41 Fort Worth 10 78 746.17 124.36 SR-10,RR-10 0 30 0.65 0.4 NO S-10, R-10 (0%) 32.71 24.8 18.12 15.5 91.13 22.5 -2.52% -1.63% -0.77%
42 Fort Worth 10 78 746.17 124.36 SR-10,RR-10 0.05 30 0.65 0.4 NO S-10, R-10 (5%) 32.79 24.8 19.62 17.2 94.41 24 8.18% 6.51% 2.80%
43 Fort Worth 10 78 746.17 124.36 SR-10,RR-10 0.1 30 0.65 0.4 NO S-10, R-10 (10%) 32.76 24.8 21.32 19.4 98.28 25.7 22.01% 15.74% 7.01%
44 Fort Worth 10 78 746.17 124.36 SR-10,RR-10 0.15 30 0.65 0.4 NO S-10, R-10 (15%) 32.64 24.8 23.32 22.2 102.96 27.7 39.62% 26.60% 12.11%
45 Fort Worth 10 78 746.17 124.36 SR-10,RR-10 0.2 30 0.65 0.4 NO S-10, R-10 (20%) 32.68 24.8 25.52 25.8 108.8 29.9 62.26% 38.55% 18.47%
46 Fort Worth 10 78 746.17 124.36 SR-12,RR-12 0 30 0.65 0.4 NO S-12, R-12 (0%) 32.72 24.8 18.02 15.2 90.74 22.4 -4.40% -2.17% -1.20%
47 Fort Worth 10 78 746.17 124.36 SR-12,RR-12 0.05 30 0.65 0.4 NO S-12, R-12 (5%) 32.74 24.8 19.52 16.9 93.96 23.9 6.29% 5.97% 2.31%
48 Fort Worth 10 78 746.17 124.36 SR-12,RR-12 0.1 30 0.65 0.4 NO S-12, R-12 (10%) 32.64 24.8 21.22 19.1 97.76 25.6 20.13% 15.20% 6.45%
49 Fort Worth 10 78 746.17 124.36 SR-12,RR-12 0.15 30 0.65 0.4 NO S-12, R-12 (15%) 32.7 24.8 23.12 21.7 102.32 27.5 36.48% 25.52% 11.41%
50 Fort Worth 10 78 746.17 124.36 SR-12,RR-12 0.2 30 0.65 0.4 NO S-12, R-12 (20%) 32.66 24.8 25.32 25.2 107.98 29.7 58.49% 37.46% 17.57%
51 Houston 10 78 746.17 124.36 SR-8,RR-4 0 26 0.75 0.4 NO S-8, R-4 (0%) 32.67 23.5 12.22 16.8 85.19 16.6
52 Houston 10 78 746.17 124.36 SR-8,RR-4 0.05 26 0.75 0.4 NO S-8, R-4 (5%) 32.68 23.5 13.22 19.1 88.5 17.6 13.69% 8.18% 3.89%
53 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO S-8, R-4 (10%) 32.72 23.5 14.42 21.9 92.54 18.8 30.36% 18.00% 8.63%
54 Houston 10 78 746.17 124.36 SR-8,RR-4 0.15 26 0.75 0.4 NO S-8, R-4 (15%) 32.69 23.5 15.72 25.7 97.61 20.1 52.98% 28.64% 14.58%
55 Houston 10 78 746.17 124.36 SR-8,RR-4 0.2 26 0.75 0.4 NO S-8, R-4 (20%) 32.66 23.5 17.32 30.8 104.28 21.7 83.33% 41.73% 22.41%
56 Houston 10 78 746.17 124.36 SR-6,RR-6 0 26 0.75 0.4 NO S-6, R-6 (0%) 32.65 23.5 12.42 17.5 86.07 16.8 4.17% 1.64% 1.03%
57 Houston 10 78 746.17 124.36 SR-6,RR-6 0.05 26 0.75 0.4 NO S-6, R-6 (5%) 32.63 23.5 13.52 19.9 89.55 17.9 18.45% 10.64% 5.12%
58 Houston 10 78 746.17 124.36 SR-6,RR-6 0.1 26 0.75 0.4 NO S-6, R-6 (10%) 32.73 23.5 14.62 23 93.85 19 36.90% 19.64% 10.17%
59 Houston 10 78 746.17 124.36 SR-6,RR-6 0.15 26 0.75 0.4 NO S-6, R-6 (15%) 32.7 23.5 16.02 27.1 99.32 20.4 61.31% 31.10% 16.59%
60 Houston 10 78 746.17 124.36 SR-6,RR-6 0.2 26 0.75 0.4 NO S-6, R-6 (20%) 32.66 23.5 17.62 32.9 106.68 22 95.83% 44.19% 25.23%
61 Houston 10 78 746.17 124.36 SR-8,RR-8 0 26 0.75 0.4 NO S-8, R-8 (0%) 32.68 23.5 12.22 16.7 85.1 16.6 -0.60% 0.00% -0.11%
62 Houston 10 78 746.17 124.36 SR-8,RR-8 0.05 26 0.75 0.4 NO S-8, R-8 (5%) 32.67 23.5 13.22 19 88.39 17.6 13.10% 8.18% 3.76%
63 Houston 10 78 746.17 124.36 SR-8,RR-8 0.1 26 0.75 0.4 NO S-8, R-8 (10%) 32.7 23.5 14.32 21.9 92.42 18.7 30.36% 17.18% 8.49%
64 Houston 10 78 746.17 124.36 SR-8,RR-8 0.15 26 0.75 0.4 NO S-8, R-8 (15%) 32.64 23.5 15.72 25.6 97.46 20.1 52.38% 28.64% 14.40%
65 Houston 10 78 746.17 124.36 SR-8,RR-8 0.2 26 0.75 0.4 NO S-8, R-8 (20%) 32.66 23.5 17.22 30.7 104.08 21.6 82.74% 40.92% 22.17%
66 Houston 10 78 746.17 124.36 SR-10,RR-10 0 26 0.75 0.4 NO S-10, R-10 (0%) 32.73 23.5 12.02 16.3 84.55 16.4 -2.98% -1.64% -0.75%
67 Houston 10 78 746.17 124.36 SR-10,RR-10 0.05 26 0.75 0.4 NO S-10, R-10 (5%) 32.72 23.5 13.02 18.5 87.74 17.4 10.12% 6.55% 2.99%
68 Houston 10 78 746.17 124.36 SR-10,RR-10 0.1 26 0.75 0.4 NO S-10, R-10 (10%) 32.69 23.5 14.22 21.2 91.61 18.6 26.19% 16.37% 7.54%
69 Houston 10 78 746.17 124.36 SR-10,RR-10 0.15 26 0.75 0.4 NO S-10, R-10 (15%) 32.71 23.5 15.52 24.7 96.43 19.9 47.02% 27.00% 13.19%
70 Houston 10 78 746.17 124.36 SR-10,RR-10 0.2 26 0.75 0.4 NO S-10, R-10 (20%) 32.66 23.5 17.02 29.5 102.68 21.4 75.60% 39.28% 20.53%
71 Houston 10 78 746.17 124.36 SR-12,RR-12 0 26 0.75 0.4 NO S-12, R-12 (0%) 32.68 23.5 11.92 16.1 84.2 16.3 -4.17% -2.45% -1.16%
72 Houston 10 78 746.17 124.36 SR-12,RR-12 0.05 26 0.75 0.4 NO S-12, R-12 (5%) 32.69 23.5 12.92 18.2 87.31 17.3 8.33% 5.73% 2.49%
73 Houston 10 78 746.17 124.36 SR-12,RR-12 0.1 26 0.75 0.4 NO S-12, R-12 (10%) 32.67 23.5 14.12 20.8 91.09 18.5 23.81% 15.55% 6.93%
74 Houston 10 78 746.17 124.36 SR-12,RR-12 0.15 26 0.75 0.4 NO S-12, R-12 (15%) 32.66 23.5 15.42 24.2 95.78 19.8 44.05% 26.19% 12.43%
75 Houston 10 78 746.17 124.36 SR-12,RR-12 0.2 26 0.75 0.4 NO S-12, R-12 (20%) 32.59 23.5 16.92 28.8 101.81 21.3 71.43% 38.46% 19.51%
76 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0 19 0.9 0.4 NO S-8, R-4 (0%) 33.02 21.5 6.92 22.4 83.84 11.3
77 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.05 19 0.9 0.4 NO S-8, R-4 (5%) 33.07 21.5 7.42 25.4 87.39 11.8 13.39% 7.23% 4.23%
78 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO S-8, R-4 (10%) 33.04 21.5 8.02 29.2 91.76 12.4 30.36% 15.90% 9.45%
79 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.15 19 0.9 0.4 NO S-8, R-4 (15%) 33.13 21.5 8.62 34 97.25 13 51.79% 24.57% 15.99%
80 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.2 19 0.9 0.4 NO S-8, R-4 (20%) 33.06 21.5 9.42 40.4 104.38 13.8 80.36% 36.13% 24.50%
81 Brownsville 10 78 746.17 124.36 SR-6,RR-6 0 19 0.9 0.4 NO S-6, R-6 (0%) 33.08 21.5 7.02 23.2 84.8 11.4 3.57% 1.45% 1.15%
82 Brownsville 10 78 746.17 124.36 SR-6,RR-6 0.05 19 0.9 0.4 NO S-6, R-6 (5%) 33.04 21.5 7.52 26.5 88.56 11.9 18.30% 8.67% 5.63%
83 Brownsville 10 78 746.17 124.36 SR-6,RR-6 0.1 19 0.9 0.4 NO S-6, R-6 (10%) 33.1 21.5 8.12 30.5 93.22 12.5 36.16% 17.34% 11.19%
84 Brownsville 10 78 746.17 124.36 SR-6,RR-6 0.15 19 0.9 0.4 NO S-6, R-6 (15%) 33.02 21.5 8.82 35.8 99.14 13.2 59.82% 27.46% 18.25%
85 Brownsville 10 78 746.17 124.36 SR-6,RR-6 0.2 19 0.9 0.4 NO S-6, R-6 (20%) 33.11 21.5 9.52 42.8 106.93 13.9 91.07% 37.57% 27.54%
86 Brownsville 10 78 746.17 124.36 SR-8,RR-8 0 19 0.9 0.4 NO S-8, R-8 (0%) 33.05 21.5 6.92 22.3 83.77 11.3 -0.45% 0.00% -0.08%
87 Brownsville 10 78 746.17 124.36 SR-8,RR-8 0.05 19 0.9 0.4 NO S-8, R-8 (5%) 33.09 21.5 7.42 25.3 87.31 11.8 12.95% 7.23% 4.14%
88 Brownsville 10 78 746.17 124.36 SR-8,RR-8 0.1 19 0.9 0.4 NO S-8, R-8 (10%) 33.04 21.5 8.02 29.1 91.66 12.4 29.91% 15.90% 9.33%
89 Brownsville 10 78 746.17 124.36 SR-8,RR-8 0.15 19 0.9 0.4 NO S-8, R-8 (15%) 33.12 21.5 8.62 33.9 97.14 13 51.34% 24.57% 15.86%
90 Brownsville 10 78 746.17 124.36 SR-8,RR-8 0.2 19 0.9 0.4 NO S-8, R-8 (20%) 33.01 21.5 9.42 40.3 104.23 13.8 79.91% 36.13% 24.32%
91 Brownsville 10 78 746.17 124.36 SR-10,RR-10 0 19 0.9 0.4 NO S-10, R-10 (0%) 33.07 21.5 6.82 21.8 83.19 11.2 -2.68% -1.45% -0.78%
92 Brownsville 10 78 746.17 124.36 SR-10,RR-10 0.05 19 0.9 0.4 NO S-10, R-10 (5%) 33.08 21.5 7.32 24.7 86.6 11.7 10.27% 5.78% 3.29%
93 Brownsville 10 78 746.17 124.36 SR-10,RR-10 0.1 19 0.9 0.4 NO S-10, R-10 (10%) 33.07 21.5 7.92 28.3 90.79 12.3 26.34% 14.45% 8.29%
94 Brownsville 10 78 746.17 124.36 SR-10,RR-10 0.15 19 0.9 0.4 NO S-10, R-10 (15%) 33.1 21.5 8.52 32.9 96.02 12.9 46.88% 23.12% 14.53%
95 Brownsville 10 78 746.17 124.36 SR-10,RR-10 0.2 19 0.9 0.4 NO S-10, R-10 (20%) 33.03 21.5 9.32 38.9 102.75 13.7 73.66% 34.68% 22.55%
96 Brownsville 10 78 746.17 124.36 SR-12,RR-12 0 19 0.9 0.4 NO S-12, R-12 (0%) 32.99 21.5 6.82 21.5 82.81 11.2 -4.02% -1.45% -1.23%
97 Brownsville 10 78 746.17 124.36 SR-12,RR-12 0.05 19 0.9 0.4 NO S-12, R-12 (5%) 33.03 21.5 7.32 24.3 86.15 11.7 8.48% 5.78% 2.76%
98 Brownsville 10 78 746.17 124.36 SR-12,RR-12 0.1 19 0.9 0.4 NO S-12, R-12 (10%) 33.1 21.5 7.82 27.8 90.22 12.2 24.11% 13.01% 7.61%
99 Brownsville 10 78 746.17 124.36 SR-12,RR-12 0.15 19 0.9 0.4 NO S-12, R-12 (15%) 32.98 21.5 8.52 32.3 95.3 12.9 44.20% 23.12% 13.67%

100 Brownsville 10 78 746.17 124.36 SR-12,RR-12 0.2 19 0.9 0.4 NO S-12, R-12 (20%) 33.09 21.5 9.22 38 101.81 13.6 69.64% 33.24% 21.43%
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G.3. Air conditioner efficiency simulation results 

 

SEER AFUE(%)
Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%

Duct 
Leakage

Ceiling R-
value

ROOF R-
value

Glazing U-
factor SHGC

IECC 2000 IECC 2000 ASHRAE 
152-2004

ASHRAE 
152-2004

ASHRAE 
152-2004 IECC 2000 IECC 2000 IECC 2000 IECC 2000

1 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 10 (BASE CASE) 33.06 29.3 50.92 15 128.28 55.3
2 Amarillo 11 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 11 33.1 29.3 50.92 13.6 126.92 55.3 8.80% 0.00% 0.91%
3 Amarillo 12 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 12 33.06 29.3 50.92 12.5 125.78 55.3 0.00% 0.00% 0.00%
4 Amarillo 13 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 13 33.1 29.3 50.92 11.5 124.82 55.3 -8.00% 0.00% -0.76%
5 Amarillo 14 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 14 33.08 29.3 50.92 10.7 124 55.3 -14.40% 0.00% -1.42%
6 Amarillo 15 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 15 33.06 29.3 50.92 10 123.28 55.3 -20.00% 0.00% -1.99%
7 Amarillo 16 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 16 33.04 29.3 50.92 9.4 122.66 55.3 -24.80% 0.00% -2.48%
8 Amarillo 17 78 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 17 33.09 29.3 50.92 8.8 122.11 55.3 -29.60% 0.00% -2.92%
9 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 10 (BASE CASE) 32.73 24.8 21.62 20.1 99.25 26

10 Fort Worth 11 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 11 32.8 24.8 21.62 18.2 97.42 26 8.98% 0.00% 1.58%
11 Fort Worth 12 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 12 32.78 24.8 21.62 16.7 95.9 26 0.00% 0.00% 0.00%
12 Fort Worth 13 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 13 32.8 24.8 21.62 15.4 94.62 26 -7.78% 0.00% -1.33%
13 Fort Worth 14 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 14 32.8 24.8 21.62 14.3 93.52 26 -14.37% 0.00% -2.48%
14 Fort Worth 15 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 15 32.74 24.8 21.62 13.4 92.56 26 -19.76% 0.00% -3.48%
15 Fort Worth 16 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 16 32.8 24.8 21.62 12.5 91.72 26 -25.15% 0.00% -4.36%
16 Fort Worth 17 78 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 17 32.77 24.8 21.62 11.8 90.99 26 -29.34% 0.00% -5.12%
17 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 10 (BASE CASE) 32.72 23.5 14.42 21.9 92.54 18.8
18 Houston 11 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 11 32.62 23.5 14.42 20 90.54 18.8 9.29% 0.00% 1.87%
19 Houston 12 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 12 32.66 23.5 14.42 18.3 88.88 18.8 0.00% 0.00% 0.00%
20 Houston 13 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 13 32.65 23.5 14.42 16.9 87.47 18.8 -7.65% 0.00% -1.59%
21 Houston 14 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 14 32.65 23.5 14.42 15.7 86.27 18.8 -14.21% 0.00% -2.94%
22 Houston 15 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 15 32.7 23.5 14.42 14.6 85.22 18.8 -20.22% 0.00% -4.12%
23 Houston 16 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 16 32.69 23.5 14.42 13.7 84.31 18.8 -25.14% 0.00% -5.14%
24 Houston 17 78 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 17 32.68 23.5 14.42 12.9 83.5 18.8 -29.51% 0.00% -6.05%
25 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 10 (BASE CASE) 33.04 21.5 8.02 29.2 91.76 12.4
26 Brownsville 11 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 11 33.09 21.5 8.02 26.5 89.11 12.4 9.05% 0.00% 2.55%
27 Brownsville 12 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 12 33.07 21.5 8.02 24.3 86.89 12.4 0.00% 0.00% 0.00%
28 Brownsville 13 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 13 33 21.5 8.02 22.5 85.02 12.4 -7.41% 0.00% -2.15%
29 Brownsville 14 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 14 33 21.5 8.02 20.9 83.42 12.4 -13.99% 0.00% -3.99%
30 Brownsville 15 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 15 33.01 21.5 8.02 19.5 82.03 12.4 -19.75% 0.00% -5.59%
31 Brownsville 16 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 16 33.09 21.5 8.02 18.2 80.81 12.4 -25.10% 0.00% -7.00%
32 Brownsville 17 78 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 17 33.02 21.5 8.02 17.2 79.74 12.4 -29.22% 0.00% -8.23%
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G.4. Furnace efficiency simulation results 

 

SEER AFUE(%)
Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%

Duct 
Leakage

Ceiling R-
value

Glazing U-
factor SHGC

IECC 2000 IECC 2000 ASHRAE 
152-2004

ASHRAE 
152-2004

ASHRAE 
152-2004 IECC 2000 IECC 2000 IECC 2000

1 Amarillo 10 0.60 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO 0.60 33.06 29.3 66.22 15 143.58 2.192 20.351 4394 706 70.6 0.00% 41.74% 15.72%
2 Amarillo 10 0.65 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO 0.65 33.06 29.3 61.12 15 138.48 2.192 20.351 4394 655 65.5 0.00% 30.82% 11.61%
3 Amarillo 10 0.70 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO 0.70 33.09 29.3 56.72 15 134.11 2.192 20.351 4394 611 61.1 0.00% 21.40% 8.08%
4 Amarillo 10 0.75 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO 0.75 33.1 29.3 52.92 15 130.32 2.192 20.351 4394 573 57.3 0.00% 13.27% 5.03%
5 Amarillo 10 0.78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO 0.78 (BASE CASE) 33.06 29.3 50.92 15 128.28 2.192 20.351 4394 553 55.3
6 Amarillo 10 0.80 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO 0.80 33.09 29.3 49.62 15 127.01 2.192 20.351 4394 540 54 0.00% 6.21% 2.36%
7 Amarillo 10 0.85 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO 0.85 33.06 29.3 46.72 15 124.08 2.192 20.351 4394 511 51.1 0.00% 0.00% 0.00%
8 Amarillo 10 0.90 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO 0.90 33.06 29.3 44.12 15 121.48 2.192 20.351 4394 485 48.5 0.00% -5.57% -2.10%
9 Fort Worth 10 0.60 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO 0.60 32.63 24.8 28.22 20.1 105.75 3.911 50.757 5876 326 32.6 0.00% 41.67% 8.51%

10 Fort Worth 10 0.65 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO 0.65 32.66 24.8 26.02 20.1 103.58 3.911 50.757 5876 304 30.4 0.00% 30.62% 6.28%
11 Fort Worth 10 0.70 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO 0.70 32.71 24.8 24.12 20.1 101.73 3.911 50.757 5876 285 28.5 0.00% 21.08% 4.38%
12 Fort Worth 10 0.75 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO 0.75 32.69 24.8 22.52 20.1 100.11 3.911 50.757 5876 269 26.9 0.00% 13.05% 2.72%
13 Fort Worth 10 0.78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO 0.78 (BASE CASE) 32.73 24.8 21.62 20.1 99.25 3.911 50.757 5876 260 26
14 Fort Worth 10 0.80 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO 0.80 32.68 24.8 21.12 20.1 98.7 3.911 50.757 5876 255 25.5 0.00% 6.02% 1.27%
15 Fort Worth 10 0.85 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO 0.85 32.64 24.8 19.92 20.1 97.46 3.911 50.757 5876 243 24.3 0.00% 0.00% 0.00%
16 Fort Worth 10 0.90 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO 0.90 32.63 24.8 18.82 20.1 96.35 3.911 50.757 5876 232 23.2 0.00% -5.52% -1.14%
17 Houston 10 0.60 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO 0.60 32.75 23.5 18.72 21.9 96.87 3.41 43.162 6430 231 23.1 0.00% 41.60% 6.04%
18 Houston 10 0.65 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO 0.65 32.7 23.5 17.32 21.9 95.42 3.41 43.162 6430 217 21.7 0.00% 31.01% 4.46%
19 Houston 10 0.70 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO 0.70 32.77 23.5 16.02 21.9 94.19 3.41 43.162 6430 204 20.4 0.00% 21.18% 3.11%
20 Houston 10 0.75 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO 0.75 32.7 23.5 15.02 21.9 93.12 3.41 43.162 6430 194 19.4 0.00% 13.62% 1.94%
21 Houston 10 0.78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO 0.78 (BASE CASE) 32.72 23.5 14.42 21.9 92.54 3.41 43.162 6430 188 18.8
22 Houston 10 0.80 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO 0.80 32.76 23.5 14.02 21.9 92.18 3.41 43.162 6430 184 18.4 0.00% 6.05% 0.91%
23 Houston 10 0.85 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO 0.85 32.73 23.5 13.22 21.9 91.35 3.41 43.162 6430 176 17.6 0.00% 0.00% 0.00%
24 Houston 10 0.90 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO 0.90 32.69 23.5 12.52 21.9 90.61 3.41 43.162 6430 169 16.9 0.00% -5.30% -0.81%
25 Brownsville 10 0.60 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO 0.60 33.05 21.5 10.42 29.2 94.17 4.323 54.438 8555 148 14.8 0.00% 42.35% 3.37%
26 Brownsville 10 0.65 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO 0.65 33.04 21.5 9.62 29.2 93.36 4.323 54.438 8555 140 14 0.00% 31.42% 2.48%
27 Brownsville 10 0.70 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO 0.70 33.06 21.5 8.92 29.2 92.68 4.323 54.438 8555 133 13.3 0.00% 21.86% 1.73%
28 Brownsville 10 0.75 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO 0.75 33.06 21.5 8.32 29.2 92.08 4.323 54.438 8555 127 12.7 0.00% 13.66% 1.08%
29 Brownsville 10 0.78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO 0.78 (BASE CASE) 33.04 21.5 8.02 29.2 91.76 4.323 54.438 8555 124 12.4
30 Brownsville 10 0.80 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO 0.80 33.04 21.5 7.82 29.2 91.56 4.323 54.438 8555 122 12.2 0.00% 6.83% 0.50%
31 Brownsville 10 0.85 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO 0.85 33.08 21.5 7.32 29.2 91.1 4.323 54.438 8555 117 11.7 0.00% 0.00% 0.00%
32 Brownsville 10 0.90 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO 0.90 33.07 21.5 6.92 29.2 90.69 4.323 54.438 8555 113 11.3 0.00% -5.46% -0.45%
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G.5. Heat pump efficiency simulation results 

 

SEER HSPF
Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%

Duct 
Leakage

Ceiling R-
value

ROOF R-
value

Glazing U-
factor SHGC

IECC 2000 IECC 2000 ASHRAE 
152-2004

ASHRAE 
152-2004

ASHRAE 
152-2004 IECC 2000 IECC 2000 IECC 2000 IECC 2000

1 Amarillo 10 5.00 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 5.0 28.85 29.3 57.7 15 130.85 0.00% 35.45% 13.06%
2 Amarillo 10 5.50 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 5.5 28.93 29.3 53.5 15 126.73 0.00% 25.59% 9.50%
3 Amarillo 10 6.00 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 6.0 28.89 29.3 50.1 15 123.29 0.00% 17.61% 6.53%
4 Amarillo 10 6.50 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 6.5 28.88 29.3 47.2 15 120.38 0.00% 10.80% 4.02%
5 Amarillo 10 6.80 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 6.8 (BASE CASE) 28.85 29.3 45.7 15 118.85
6 Amarillo 10 7.00 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 7.0 28.89 29.3 44.7 15 117.89 0.00% 4.93% 1.87%
7 Amarillo 10 7.50 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 7.5 28.83 29.3 42.6 15 115.73 0.00% 0.00% 0.00%
8 Amarillo 10 8.00 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 8.0 28.84 29.3 40.7 15 113.84 0.00% -4.46% -1.63%
9 Fort Worth 10 5.00 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 5.0 28.32 24.8 25.5 20.1 98.72 0.00% 39.34% 7.82%

10 Fort Worth 10 5.50 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 5.5 28.37 24.8 23.5 20.1 96.77 0.00% 28.42% 5.69%
11 Fort Worth 10 6.00 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 6.0 28.34 24.8 21.9 20.1 95.14 0.00% 19.67% 3.91%
12 Fort Worth 10 6.50 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 6.5 28.36 24.8 20.5 20.1 93.76 0.00% 12.02% 2.40%
13 Fort Worth 10 6.80 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 6.8 (BASE CASE) 28.33 24.8 19.8 20.1 93.03
14 Fort Worth 10 7.00 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 7.0 28.28 24.8 19.4 20.1 92.58 0.00% 6.01% 1.11%
15 Fort Worth 10 7.50 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 7.5 28.36 24.8 18.3 20.1 91.56 0.00% 0.00% 0.00%
16 Fort Worth 10 8.00 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 8.0 28.36 24.8 17.4 20.1 90.66 0.00% -4.92% -0.98%
17 Houston 10 5.00 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 5.0 28.33 23.5 17.6 21.9 91.33 0.00% 38.58% 5.64%
18 Houston 10 5.50 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 5.5 28.4 23.5 16.2 21.9 90 0.00% 27.56% 4.11%
19 Houston 10 6.00 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 6.0 28.39 23.5 15.1 21.9 88.89 0.00% 18.90% 2.82%
20 Houston 10 6.50 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 6.5 28.35 23.5 14.2 21.9 87.95 0.00% 11.81% 1.74%
21 Houston 10 6.80 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 6.8 (BASE CASE) 28.35 23.5 13.7 21.9 87.45
22 Houston 10 7.00 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 7.0 28.34 23.5 13.4 21.9 87.14 0.00% 5.51% 0.80%
23 Houston 10 7.50 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 7.5 28.35 23.5 12.7 21.9 86.45 0.00% 0.00% 0.00%
24 Houston 10 8.00 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 8.0 28.33 23.5 12.1 21.9 85.83 0.00% -4.72% -0.72%
25 Brownsville 10 5.00 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 5.0 28.7 21.5 8.8 29.2 88.2 0.00% 46.67% 3.31%
26 Brownsville 10 5.50 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 5.5 28.63 21.5 8.1 29.2 87.43 0.00% 35.00% 2.41%
27 Brownsville 10 6.00 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 6.0 28.68 21.5 7.4 29.2 86.78 0.00% 23.33% 1.65%
28 Brownsville 10 6.50 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 6.5 28.64 21.5 6.9 29.2 86.24 0.00% 15.00% 1.02%
29 Brownsville 10 6.80 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 6.8 (BASE CASE) 28.65 21.5 6.6 29.2 85.95
30 Brownsville 10 7.00 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 7.0 28.67 21.5 6.4 29.2 85.77 0.00% 6.67% 0.47%
31 Brownsville 10 7.50 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 7.5 28.67 21.5 6 29.2 85.37 0.00% 0.00% 0.00%
32 Brownsville 10 8.00 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 8.0 28.72 21.5 5.6 29.2 85.02 0.00% -6.67% -0.41%
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G.6. Domestic hot water heater efficiency simulation results 

 

SEER AFUE(%) EF
Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%

Duct 
Leakage

Ceiling R-
value

ROOF R-
value

Glazing U-
factor SHGC

IECC 2000 IECC 2000 IECC 2000 ASHRAE 
152-2004

ASHRAE 
152-2004

ASHRAE 
152-2004 IECC 2000 IECC 2000 IECC 2000 IECC 2000

1 Amarillo 10 0.78 0.45 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 0.45 33.07 35.8 50.92 15 134.79 55.3 44.35% 8.89%
2 Amarillo 10 0.78 0.5 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 0.50 33.09 32.2 50.92 15 131.21 55.3 29.84% 6.00%
3 Amarillo 10 0.78 0.55 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO BASE CASE (0.55) 33.06 29.3 50.92 15 128.28 55.3
4 Amarillo 10 0.78 0.6 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 0.60 33.12 26.8 50.92 15 125.84 55.3 8.06% 1.66%
5 Amarillo 10 0.78 0.65 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 0.65 33.06 24.8 50.92 15 123.78 55.3 0.00% 0.00%
6 Amarillo 10 0.78 0.7 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 0.70 33.09 23 50.92 15 122.01 55.3 -7.26% -1.43%
7 Amarillo 10 0.78 0.75 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 0.75 33.06 21.5 50.92 15 120.48 55.3 -13.31% -2.67%
8 Amarillo 10 0.78 0.8 746.17 124.36 SR-8,RR-4 0.1 38 NO 0.45 0.66 NO 0.80 33.11 20.1 50.92 15 119.13 55.3 -18.95% -3.76%
9 Fort Worth 10 0.78 0.45 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 0.45 32.74 30.3 21.62 20.1 104.76 26 44.29% 9.78%

10 Fort Worth 10 0.78 0.5 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 0.50 32.71 27.3 21.62 20.1 101.73 26 30.00% 6.60%
11 Fort Worth 10 0.78 0.55 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO BASE CASE (0.55) 32.73 24.8 21.62 20.1 99.25 26
12 Fort Worth 10 0.78 0.6 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 0.60 32.76 22.7 21.62 20.1 97.18 26 8.10% 1.83%
13 Fort Worth 10 0.78 0.65 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 0.65 32.71 21 21.62 20.1 95.43 26 0.00% 0.00%
14 Fort Worth 10 0.78 0.7 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 0.70 32.71 19.5 21.62 20.1 93.93 26 -7.14% -1.57%
15 Fort Worth 10 0.78 0.75 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 0.75 32.71 18.2 21.62 20.1 92.63 26 -13.33% -2.93%
16 Fort Worth 10 0.78 0.8 746.17 124.36 SR-8,RR-4 0.1 30 NO 0.65 0.4 NO 0.80 32.67 17.1 21.62 20.1 91.49 26 -18.57% -4.13%
17 Houston 10 0.78 0.45 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 0.45 32.73 28.7 14.42 21.9 97.75 18.8 44.22% 9.93%
18 Houston 10 0.78 0.5 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 0.50 32.77 25.8 14.42 21.9 94.89 18.8 29.65% 6.71%
19 Houston 10 0.78 0.55 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO BASE CASE (0.55) 32.72 23.5 14.42 21.9 92.54 18.8
20 Houston 10 0.78 0.6 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 0.60 32.76 21.5 14.42 21.9 90.58 18.8 8.04% 1.87%
21 Houston 10 0.78 0.65 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 0.65 32.7 19.9 14.42 21.9 88.92 18.8 0.00% 0.00%
22 Houston 10 0.78 0.7 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 0.70 32.79 18.4 14.42 21.9 87.51 18.8 -7.54% -1.59%
23 Houston 10 0.78 0.75 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 0.75 32.76 17.2 14.42 21.9 86.28 18.8 -13.57% -2.97%
24 Houston 10 0.78 0.8 746.17 124.36 SR-8,RR-4 0.1 26 NO 0.75 0.4 NO 0.80 32.78 16.1 14.42 21.9 85.2 18.8 -19.10% -4.18%
25 Brownsville 10 0.78 0.45 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 0.45 33.11 26.2 8.02 29.2 96.53 12.4 43.96% 9.12%
26 Brownsville 10 0.78 0.5 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 0.50 33.09 23.6 8.02 29.2 93.91 12.4 29.67% 6.16%
27 Brownsville 10 0.78 0.55 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO BASE CASE (0.55) 33.04 21.5 8.02 29.2 91.76 12.4
28 Brownsville 10 0.78 0.6 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 0.60 33.05 19.7 8.02 29.2 89.97 12.4 8.24% 1.71%
29 Brownsville 10 0.78 0.65 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 0.65 33.04 18.2 8.02 29.2 88.46 12.4 0.00% 0.00%
30 Brownsville 10 0.78 0.7 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 0.70 33.04 16.9 8.02 29.2 87.16 12.4 -7.14% -1.47%
31 Brownsville 10 0.78 0.75 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 0.75 33.12 15.7 8.02 29.2 86.04 12.4 -13.74% -2.74%
32 Brownsville 10 0.78 0.8 746.17 124.36 SR-8,RR-4 0.1 19 NO 0.9 0.4 NO 0.80 33.03 14.8 8.02 29.2 85.05 12.4 -18.68% -3.85%
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G.7. Duct location simulation results 

 

SEER AFUE(%)
Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%

Duct 
Leakage

Ceiling R-
value

Glazing U-
factor SHGC

IECC 2000 IECC 2000 ASHRAE 
152-2004

ASHRAE 
152-2004

ASHRAE 
152-2004 IECC 2000 IECC 2000 IECC 2000

1 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0 (Attic) 38 ATTIC 0.45 0.66 NO 0% (Attic) 33.14 29.3 42.82 13 118.26 47.2
2 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0 (Indoor) 38 ROOM 0.45 0.66 NO 0% (Indoor) 33.04 29.3 41.42 12.8 116.56 45.8 -1.54% -3.27% -1.44%
3 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.05 (Attic) 38 ATTIC 0.45 0.66 NO 5% (Attic) 33.11 29.3 46.62 13.9 122.93 51
4 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.05 (Indoor) 38 ROOM 0.45 0.66 NO 5% (Indoor) 33.04 29.3 43.62 13.4 119.36 48 -3.60% -6.44% -2.90%
5 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 (Attic) 38 ATTIC 0.45 0.66 NO 10% (Attic) 33.06 29.3 50.92 15 128.28 55.3
6 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 (Indoor) 38 ROOM 0.45 0.66 NO 10% (Indoor) 33.06 29.3 46.02 14.1 122.48 50.4 -6.00% -9.62% -4.52%
7 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.15 (Attic) 38 ATTIC 0.45 0.66 NO 15% (Attic) 33.14 29.3 55.82 16.2 134.46 60.2
8 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.15 (Indoor) 38 ROOM 0.45 0.66 NO 15% (Indoor) 33.07 29.3 48.72 14.9 125.99 53.1 -8.02% -12.72% -6.30%
9 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.2 (Attic) 38 ATTIC 0.45 0.66 NO 20% (Attic) 33.02 29.3 61.62 17.7 141.64 66

10 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.20 (Indoor) 38 ROOM 0.45 0.66 NO 20% (Indoor) 33.04 29.3 51.82 15.8 129.96 56.2 -10.73% -15.90% -8.25%
11 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0 (Attic) 30 ATTIC 0.65 0.4 NO 0% (Attic) 32.72 24.8 18.42 15.9 91.84 22.8
12 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0 (Indoor) 30 ROOM 0.65 0.4 NO 0% (Indoor) 32.73 24.8 17.92 15.5 90.95 22.3 -2.52% -2.71% -0.97%
13 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.05 (Attic) 30 ATTIC 0.65 0.4 NO 5% (Attic) 32.7 24.8 19.92 17.8 95.22 24.3
14 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.05 (Indoor) 30 ROOM 0.65 0.4 NO 5% (Indoor) 32.74 24.8 18.92 16.7 93.16 23.3 -6.18% -5.02% -2.16%
15 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 (Attic) 30 ATTIC 0.65 0.4 NO 10% (Attic) 32.73 24.8 21.62 20.1 99.25 26
16 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 (Indoor) 30 ROOM 0.65 0.4 NO 10% (Indoor) 32.76 24.8 19.92 18.2 95.68 24.3 -9.45% -7.86% -3.60%
17 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.15 (Attic) 30 ATTIC 0.65 0.4 NO 15% (Attic) 32.71 24.8 23.62 23 104.13 28
18 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.15 (Indoor) 30 ROOM 0.65 0.4 NO 15% (Indoor) 32.73 24.8 21.12 19.9 98.55 25.5 -13.48% -10.58% -5.36%
19 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.2 (Attic) 30 ATTIC 0.65 0.4 NO 20% (Attic) 32.73 24.8 25.92 26.9 110.35 30.3
20 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.20 (Indoor) 30 ROOM 0.65 0.4 NO 20% (Indoor) 32.75 24.8 22.42 21.9 101.87 26.8 -18.59% -13.50% -7.68%
21 Houston 10 78 746.17 124.36 SR-8,RR-4 0 (Attic) 26 ATTIC 0.75 0.4 NO 0% (Attic) 32.67 23.5 12.22 16.8 85.19 16.6
22 Houston 10 78 746.17 124.36 SR-8,RR-4 0 (Indoor) 26 ROOM 0.75 0.4 NO 0% (Indoor) 32.67 23.5 11.92 16.4 84.49 16.3 -2.38% -2.45% -0.82%
23 Houston 10 78 746.17 124.36 SR-8,RR-4 0.05 (Attic) 26 ATTIC 0.75 0.4 NO 5% (Attic) 32.68 23.5 13.22 19.1 88.5 17.6
24 Houston 10 78 746.17 124.36 SR-8,RR-4 0.05 (Indoor) 26 ROOM 0.75 0.4 NO 5% (Indoor) 32.69 23.5 12.52 18.1 86.81 16.9 -5.24% -5.30% -1.91%
25 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 (Attic) 26 ATTIC 0.75 0.4 NO 10% (Attic) 32.72 23.5 14.42 21.9 92.54 18.8
26 Houston 10 78 746.17 124.36 SR-8,RR-4 0.1 (Indoor) 26 ROOM 0.75 0.4 NO 10% (Indoor) 32.69 23.5 13.22 20.1 89.51 17.6 -8.22% -8.32% -3.27%
27 Houston 10 78 746.17 124.36 SR-8,RR-4 0.15 (Attic) 26 ATTIC 0.75 0.4 NO 15% (Attic) 32.69 23.5 15.72 25.7 97.61 20.1
28 Houston 10 78 746.17 124.36 SR-8,RR-4 0.15 (Indoor) 26 ROOM 0.75 0.4 NO 15% (Indoor) 32.67 23.5 14.02 22.5 92.69 18.4 -12.45% -10.81% -5.04%
29 Houston 10 78 746.17 124.36 SR-8,RR-4 0.2 (Attic) 26 ATTIC 0.75 0.4 NO 20% (Attic) 32.66 23.5 17.32 30.8 104.28 21.7
30 Houston 10 78 746.17 124.36 SR-8,RR-4 0.20 (Indoor) 26 ROOM 0.75 0.4 NO 20% (Indoor) 32.67 23.5 14.92 25.4 96.49 19.3 -17.53% -13.86% -7.47%
31 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0 (Attic) 19 ATTIC 0.9 0.4 NO 0% (Attic) 33.02 21.5 6.92 22.4 83.84 11.3
32 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0 (Indoor) 19 ROOM 0.9 0.4 NO 0% (Indoor) 32.99 21.5 6.82 22 83.31 11.2 -1.79% -1.45% -0.63%
33 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.05 (Attic) 19 ATTIC 0.9 0.4 NO 5% (Attic) 33.07 21.5 7.42 25.4 87.39 11.8
34 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.05 (Indoor) 19 ROOM 0.9 0.4 NO 5% (Indoor) 33.06 21.5 7.12 24.4 86.08 11.5 -3.94% -4.04% -1.50%
35 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 (Attic) 19 ATTIC 0.9 0.4 NO 10% (Attic) 33.04 21.5 8.02 29.2 91.76 12.4
36 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.1 (Indoor) 19 ROOM 0.9 0.4 NO 10% (Indoor) 33.12 21.5 7.52 27.2 89.34 11.9 -6.85% -6.23% -2.64%
37 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.15 (Attic) 19 ATTIC 0.9 0.4 NO 15% (Attic) 33.13 21.5 8.62 34 97.25 13
38 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.15 (Indoor) 19 ROOM 0.9 0.4 NO 15% (Indoor) 33.01 21.5 8.02 30.7 93.23 12.4 -9.71% -6.96% -4.13%
39 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.2 (Attic) 19 ATTIC 0.9 0.4 NO 20% (Attic) 33.06 21.5 9.42 40.4 104.38 13.8
40 Brownsville 10 78 746.17 124.36 SR-8,RR-4 0.20 (Indoor) 19 ROOM 0.9 0.4 NO 20% (Indoor) 33.02 21.5 8.52 34.9 97.94 12.9 -13.61% -9.55% -6.17%
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G.8. Tree shading simulation results 

 

SEER AFUE(%)
Supply Duct 
Area (sq.ft), 

30%

Return Duct 
Area (sq.ft), 

5%

Duct 
Leakage

Ceiling R-
value

Glazing U-
factor SHGC

IECC 2000 IECC 2000 ASHRAE 
152-2004

ASHRAE 
152-2004

ASHRAE 
152-2004 IECC 2000 IECC 2000 IECC 2000

1 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 NO BASE CASE 33.06 29.3 50.92 15 128.28 55.3
2 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 E LIVEOAK (E) 32.95 29.3 52.52 13.5 128.27 56.9 -7.53% 2.54% 0.13%
3 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 W LIVEOAK (W) 32.98 29.3 51.22 14.6 128.1 55.6 0.00% 0.00% 0.00%
4 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 EW LIVEOAK (EW) 32.88 29.3 52.82 13.1 128.1 57.2 -10.27% 3.12% 0.00%
5 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 E DECIDUOUS (E) 32.95 29.3 51.72 13.5 127.47 56.1 -7.53% 0.98% -0.49%
6 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 W DECIDUOUS (W) 33.01 29.3 51.02 14.6 127.93 55.4 0.00% -0.39% -0.13%
7 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 EW DECIDUOUS (EW) 32.96 29.3 51.82 13.1 127.18 56.2 -10.27% 1.17% -0.72%
8 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 E EVERGREEN (E) 32.94 29.3 52.62 13.5 128.36 57 -7.53% 2.73% 0.20%
9 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 W EVERGREEN (W) 33.08 29.3 51.22 14.5 128.1 55.6 -0.68% 0.00% 0.00%

10 Amarillo 10 78 746.17 124.36 SR-8,RR-4 0.1 38 0.45 0.66 EW EVERGREEN (EW) 32.98 29.3 52.92 13 128.2 57.3 -10.96% 3.32% 0.08%
11 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 NO BASE CASE 32.73 24.8 21.62 20.1 99.25 26
12 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 E LIVEOAK (E) 32.59 24.8 22.32 18.9 98.61 26.7 -3.08% 2.29% -0.24%
13 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 W LIVEOAK (W) 32.73 24.8 21.82 19.5 98.85 26.2 0.00% 0.00% 0.00%
14 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 EW LIVEOAK (EW) 32.54 24.8 22.52 18.4 98.26 26.9 -5.64% 3.21% -0.60%
15 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 E DECIDUOUS (E) 32.59 24.8 21.92 18.9 98.21 26.3 -3.08% 0.46% -0.65%
16 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 W DECIDUOUS (W) 32.73 24.8 21.72 19.5 98.75 26.1 0.00% -0.46% -0.10%
17 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 EW DECIDUOUS (EW) 32.53 24.8 22.02 18.4 97.75 26.4 -5.64% 0.92% -1.11%
18 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 E EVERGREEN (E) 32.64 24.8 22.32 18.8 98.56 26.7 -3.59% 2.29% -0.29%
19 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 W EVERGREEN (W) 32.72 24.8 21.82 19.5 98.84 26.2 0.00% 0.00% -0.01%
20 Fort Worth 10 78 746.17 124.36 SR-8,RR-4 0.1 30 0.65 0.4 EW EVERGREEN (EW) 32.57 24.8 22.52 18.3 98.19 26.9 -6.15% 3.21% -0.67%
21 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 NO BASE CASE 32.72 23.5 14.42 21.9 92.54 18.8
22 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 E LIVEOAK (E) 32.68 23.5 14.82 20.9 91.9 19.2 -2.79% 2.07% -0.31%
23 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 W LIVEOAK (W) 32.67 23.5 14.52 21.5 92.19 18.9 0.00% 0.00% 0.00%
24 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 EW LIVEOAK (EW) 32.6 23.5 14.92 20.5 91.52 19.3 -4.65% 2.75% -0.73%
25 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 E DECIDUOUS (E) 32.55 23.5 14.62 21 91.67 19 -2.33% 0.69% -0.56%
26 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 W DECIDUOUS (W) 32.69 23.5 14.42 21.5 92.11 18.8 0.00% -0.69% -0.09%
27 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 EW DECIDUOUS (EW) 32.62 23.5 14.62 20.5 91.24 19 -4.65% 0.69% -1.03%
28 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 E EVERGREEN (E) 32.65 23.5 14.82 20.9 91.87 19.2 -2.79% 2.07% -0.35%
29 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 W EVERGREEN (W) 32.64 23.5 14.52 21.5 92.16 18.9 0.00% 0.00% -0.03%
30 Hoston 10 78 746.17 124.36 SR-8,RR-4 0.1 26 0.75 0.4 EW EVERGREEN (EW) 32.55 23.5 15.02 20.4 91.47 19.4 -5.12% 3.44% -0.78%
31 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 NO BASE CASE 33.04 21.5 8.02 29.2 91.76 12.4
32 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 E LIVEOAK (E) 33 21.5 8.12 28 90.62 12.5 -2.44% 1.25% -0.74%
33 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 W LIVEOAK (W) 33.08 21.5 8.02 28.7 91.3 12.4 0.00% 0.00% 0.00%
34 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 EW LIVEOAK (EW) 32.94 21.5 8.22 27.5 90.16 12.6 -4.18% 2.49% -1.25%
35 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 E DECIDUOUS (E) 32.98 21.5 8.02 28.1 90.6 12.4 -2.09% 0.00% -0.77%
36 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 W DECIDUOUS (W) 33.07 21.5 8.02 28.7 91.29 12.4 0.00% 0.00% -0.01%
37 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 EW DECIDUOUS (EW) 33.02 21.5 8.02 27.6 90.14 12.4 -3.83% 0.00% -1.27%
38 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 E EVERGREEN (E) 32.94 21.5 8.12 28 90.56 12.5 -2.44% 1.25% -0.81%
39 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 W EVERGREEN (W) 33.05 21.5 8.02 28.7 91.27 12.4 0.00% 0.00% -0.03%
40 Brownville 10 78 746.17 124.36 SR-8,RR-4 0.1 19 0.9 0.4 EW EVERGREEN (EW) 32.86 21.5 8.22 27.5 90.08 12.6 -4.18% 2.49% -1.34%
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APPENDIX H 

COMPARISON OF WINDOW INPUT METHOD 
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 Since Mukhopadhyay (2005) discussed two window input methods to test the accuracy 

of using the Window-5 option against the Shading Coefficient (SC) option, the comparison 

between results from this study and results from Mukhopadhyay (2005) was performed. 

 The version of the model used for her study was ‘IECC1105.INP’ which has been  

developed by the Energy Systems Laboratory, Texas A&M University on the basis of 

specifications provided by the 2000/2001 IECC. 

 However, since IECC1105.INP (Figure H.1, left) was the initial simulation input model 

for analyzing the IECC-compliant residential house, IECC1105.INP had different characteristics 

from SNGFAM2ST.INP (Figure H.1, right) which was used for this dissertation. IECC1105.INP 

did not consider the duct model in the attic space, the attic space and NREL DHW heater 

performance curve. 

 Because the simulation house of Mukhopadhyay (2005) was 1,500 ft2 and 25% window-

to-wall ratio, the size of the house (SNGFAM2ST.INP) was modified to the same size to 

compare the saving differences by changing window types. Figure H.2 shows the simulation 

results using SNGFAM2ST.INP, Figure H.3 shows the simulation results from Mukhopadhyay 

(2005) which used IECC1105.INP, and Figure H.4 shows the saving differences between this 

study and Mukhopadhyay (2005). 

                

Figure H.1   DrawBDL view of IECC1105.INP (left) and SNGFAM2ST.INP (right) 
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Figure H.2   Annual building energy performance (BEPS) report from this study 
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Figure H.3   Annual building energy performance (BEPS) report from Mukhopadhyay (2005) 
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Figure H.4   Saving differences between this study and Mukhopadhyay (2005) 
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APPENDIX I 

VERIFICATION TEST OF DUCT MODEL 
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 In order to verify the duct model, the model was compared with the manual calculation 

based on ASHRAE 152-2004 and EnergyGuage version 2.42 from the Florida Solar Energy 

Center (FSEC), which can consider the duct loss/gain from the attic space. Three results were 

used for comparison including: 1) simulation with duct model based on ASHRAE 152, 2) 

manual calculation of ASHRAE 152 directly entered into the DOE-2 input file without duct 

model, and 3) simulation using EnergyGuage. A house with a size similar to the case-study 

house was developed with EnergyGuage version 2.42, and then several parameters were changed 

to compare with results from each simulation. The Houston TMY2 data was used for all 

simulations. 

 A Sensitivity analysis was performed by changing parameters including supply duct area 

(ft2), return duct area (ft2), supply duct R-value, return duct R-value, and supply duct leakage rate 

(%). 

 The results showed the acceptable difference between the simulation with the duct 

model based on ASHRAE 152 and simulation using the EnergyGuage. The largest difference 

between two results was 4% when changing supply duct R-value from R-6 to R-2. 

 

Table I.1   Simulation variables 

 Original 1 2 3 4 5 6 7 8 9 

Supply duct area (ft2) 340 425 408 391 374 306 289 272 255  

Return duct area (ft2) 60 75 72 69 66 54 51 48 45  

Supply duct R-value 6 2 4 8 10      

Return duct R-value 6 2 4 8 10      

Supply duct leakage (%) 10 2 4 6 8 12 14 16 18 20 
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Figure I.1   The variation of supply duct area and results 
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Figure I.2   The variation of return duct area and results 
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Figure I.3   The variation of supply duct R-value and 
results
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Figure I.4   The variation of return duct R-value and results 
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Figure I.5   The variation of supply duct leakage and results 
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APPENDIX J 

COMPARISON OF WITH AND WITHOUT GARAGE CONSTRUCTION OF IECC-

CODE COMPLIANT SIMULATION MODEL 
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 This study compared energy consumption of the case-study house and IECC-code 

compliant model. Since the case-study house does not have a garage space while the IECC-code 

complaint house includes the garage space, the comparison of with and without garage space of 

the IECC-code compliant model was performed. 

 Figure J.1 showed the DrawBDL views of with garage and without garage space which 

were used for the comparisons. 

 From the simulations, it was found that the garage space plays a part as a significant 

shading device to the residential house. After removing the garage space from the simulation 

input file, annual cooling energy use increased by 9.4%, annual heating energy use decreased by 

5.4%. The total annual energy use increased slightly by 0.9%. This means that the garage space 

could provide the benefit to save the annual energy use consumptions because of the shading 

effects.  

 

 

 

Figure J.1   DrawBDL views of with (left) and without (right) garage space 
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Figure J.2   Comparison results with and without garage space 
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