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ABSTRACT  

 

Regulation of Cytochrome P450 3A4 Gene Expression Through Modulating Pregnane X 

Receptor Transcriptional Activity by NF-κB, Aryl Hydrocarbon Receptor and 

Xenobiotics. (August 2007) 

Xinsheng Gu, B.S., Fudan University;  

M.S., Tongji University  

Chair of Advisory Committee: Dr. Yanan Tian  

 

 

   Cytochrome P450 3A4 (CYP3A4) is a key enzyme responsible for the metabolism of 

drugs and endogenous compounds in human liver and intestine. CYP3A4 gene 

expression is mainly regulated by Pregnane X receptor (PXR) which is a ligand-

dependent nuclear receptor.   

    It is a long-standing observation that inflammatory responses and infections decrease 

drug metabolism capacity in human and experimental animals. In this study, I reported 

that NF-κB activation by LPS and TNF-α plays a pivotal role in the suppression of 

CYP3A4 through interactions of NF-κB with PXR/RXR complex. Inhibition of NF-κB 

by NF-κB specific suppressor SRIκBα reversed the suppressive effects of LPS and TNF-

α. Furthermore, I showed that NF-κB p65 disrupted the association of PXR/RXRα 

complex with DNA sequences as determined by EMSA and chromatin 

immunoprecipitation assays. NF-κB p65 directly interacted with DNA binding domain of 

RXRα and DNA binding domain, hinge domain and ligand-binding domain of PXR and 

may prevent its binding to the consensus DNA sequences, thus inhibiting the 

transactivation by PXR/RXRα complex. This mechanism of suppression by NF-κB 

activation may be extended to other nuclear receptor-regulated systems where RXRα is a 

dimerization partner.  

    Many genes regulated by PXR and AhR are important for phase I, II and III drug 

metabolism. In this study I reported a crosstalk between PXR and AhR pathways. AhR 

physically and functionally interacted with PXR and enhanced the PXR transcriptional 

activity, and the interaction repressed the AhR transcriptional activity. AhR also 
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physically interacted with RXRα. The synergistic induction of Gsta1 in the liver of mice 

by PCN and TCDD might assume a different mechanism. The results suggested the 

metabolism kinetics of mixture drugs was different from and more complicated than that 

of single compound. 

    Using a HepG2 cell-based PXR-driven CYP3A4-Luciferase assay, I reported that E/F 

domain of PXR was responsible for ligand-dependant activation. A/B domain was 

necessary for co-activating the ligand-dependent activation and D domain was 

suppressive. High doses of Valerian Root extraction were PXR-dependent CYP3A4 

inducers. Green tea polyphenols, aflatoxin B1, CuSO4 and MnCl2 enhanced the PXR 

transcription activity activated by rifampicin. The results suggested PXR-mediated drug 

metabolism kinetics altered on xenobiotic exposure.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Xenobiotics and the disposition  

1.1.1 Xenobiotics 

    A xenobiotic is a chemical compound found in an organism but not normally 

produced or expected to be present in it. It can also include substances which are present 

in much higher concentrations than are usual. Xenobiotics are ubiquitous including both 

manufactured and natural chemicals such as as drugs, industrial chemicals, pesticides, 

pollutants, pyrolysis products in cooked food, alkaloids, secondary plant metabolites, 

and toxins produced by molds, plants, and animals. Human may be exposed to 

xenobiotics every day through inhalation, ingestion and dermal absorption. 

    For various practical purposes, xenobiotics are usually classified into several 

categories. Xenobiotics can be classified into organic and inorganic chemicals according 

to their molecular structure (Casarett et al., 2001). The number of inorganic chemicals is 

relatively limited (Table 1). However, the number of xenobiotic organic chemicals is 

much larger. 

    Xenobiotics can be classified into herbicide, food additives, household chemicals, 

industrial chemicals, medicine, misused chemicals, poisonous plants and animal toxins 

etc. according to their applications and sources.  

Pesticides include insecticides, botanical insecticides, herbicides, fungicides, 

fumigants, rodenticides. The insecticides can be organochlorine compounds, 

anticholinesterase agents, pyrethroid esters, avermectins, nitromethylenes, 

chloronicotinyl, phenylpyrazoles according to their chemical constitutes (Casarett et al., 

2001).  

Household chemicals include paints, paint cleaners, removers, strippers, solvents 

( such as chlorinated hydrocarbons,  aromatic hydrocarbons,  alcohols,  glycols,  glycol 
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 ethers, fuels and fuel additives, carbon disulfide), and thinners, antifreeze and deicers, 

glue, cleansing agents, detergents, bleach, corrosive acids and alkalis, rug cleaners and 

rug deodorants, all-purpose cleaners and polishes, glass cleaners, disinfectants, 

dangerous mixtures, mothballs, cosmetics, smoke from fires, tobacco smoke, indoor air, 

combustion gases, formaldehyde. Food related xenobiotics include chemicals involved 

in producing crops such as fertilizers growth regulators, food processing such as food 

additives, toxic substances unintentionally resulting from food production, vitamins and 

minerals(Schiefer et al., 1997).  

 
Table 1 Toxic inorganic xenobitics 

 

Biological properties Metals 

major toxic metals with 

multiple effects 

Lead (Pb), Mercury (Hg), Nickel (Ni), Arsenic (As), Arsine, Beryllium (Be), 

Cadmium (Cd), Chromium (Cr) 

essential metals with 

potential for toxicity 

from elevated exposures 

Cobalt (Co), Trivalent Chromium, Cr (III), Copper (Cu), Iron (Fe), 

Magnesium (Mg), Manganese (Mn), Molybdenum (Mo), Selenium (Se), 

Zinc (Zn) 

metals related to medical 

therapy 

Aluminum (Al), Bismuth (Bi), Gallium (Ga), Gold (Au), Lithium (Li), 

Platinum (Pt) and Related Metals,  

minor toxic metals Antimony (Sb), Barium (Ba), Germanium (Ge), Indium (In), Silver (Ag), 

Tellurium (Te), Thallium (Tl), Tin (Sn), Titanium (Ti), Uranium (U), 

Vanadium (V) 

Industrial chemicals include environmental pollutants and waste chemicals such as 

PBBs, PCBs, dioxins and furans, estrogens in the environment, pulp mill effluents, 

heavy metals, Radon and Radon decay products, Asbestos(Schiefer et al., 1997).  

Medicine includes cough and cold preparations, analgesics, stimulants and sleep aids, 

antacids, antiseptics and astringents, miscellaneous compounds(Schiefer et al., 1997).  

Misused chemicals range from household cleaners to all sorts of things, such as 

overuse of prescription drugs, coffee and alcohol, tobacco, street drugs, cannabis, 

cocaine, crystal meth, solvent abuse, heroin and other opiates, lysergic acid diethylamide, 

look-alike drugs and designer drugs, steroids, chemical weapon(Schiefer et al., 1997).  
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Naturally occurring toxins include bacterial endotoxin (such as liposaccharide), 

mycotoxin (such as aflatoxin), toxins from poisonous plants and toxins from animals, 

etc.. Poisonous plants can be found indoor, in the garden and on the farms, such as 

mushrooms. Animal toxins comes from Arthropods, Arachnida (Scorpions, Spiders, 

Latrodectus Species (Widow Spiders), Loxosceles Species (Brown or Violin Spiders), 

Steatoda Species (Cobweb Spiders), Cheiracanthium Species (Running Spiders), 

Phidippus Species (Jumping Spiders), Ticks), Chilopoda (Centipedes), Diplopoda 

(Millipedes), Insecta (Lepidoptera (Caterpillars, Moths, and Butterflies), Formicidae 

(Ants), Apidae (Bees), Heteroptera (True Bugs)), Reptiles (Lizards, Snakes)(Schiefer et 

al., 1997; Casarett et al., 2001).  

    Xenobiotics also include physical agents, such as sunlight, radiation such as α 

particles Radium exposures (226, 228Ra), beta particles, positrons, and electron capture 

Radium exposure (224Ra), gamma-ray (Photon) emission Iodine (131I)(Schiefer et al., 

1997).  

    Xenobiotics can be classified into organ- or biological function-targeted chemicals 

according to the location of action. Xenobiotics exert a variety of effects on biological 

systems. These effects may be beneficial, in the case of drugs, or deleterious, in the case 

of poisons, depending on the physicochemical properties of the xenobiotic. In many 

instances, chemical modification of a xenobiotic by biotransformation alters its 

biological effects. The organic chemicals especially lipophilic compounds are the subject 

of biotransformation. The metals themselves are unable to be biotransformed. 

    The biological effects are also dependent on the doses of the chemicals contacted. 

“Dose makes the poisons”, which is the key point of toxicology(Casarett et al., 2001).  

 

1.1.2 Transference of xenobiotics in the body  

    Humans are constantly exposed toa broad range of xenobiotic chemicals in the 

environment surrounding them. The environment and the whole body are separated by 

the skin, respiratory tract and alimentary canal. The physiological systems and organs or 

tissues in the body are also separate. The communications between these separate 
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entities are implemented by the circulatory system. When xenobiotics enter our body by 

ingestion through gastrointestinal tract, by inhalation through respiratory tract, by 

contact with skin and by intravenous, intraperitoneal, subcutaneous and intramuscular 

administration, they were absorbed into the bloodstream and distributed throughout the 

body, including target organ or target tissue where they produce effects. Xenobiotics are 

removed from the systemic circulation by biotransformation, excretion, and storage at 

various sites in the body. Transference of the xenobiotics among the compartments and 

subcompartments characterize the disposition of xenobiotics in the body.  

    To transfer among the circulatory system and other physiological systems, xenobiotics 

usually pass through several layers of plasma membranes of a number of cells, such as 

the stratified epithelium of the skin, the thin cell layers of the lungs or the 

gastrointestinal tract, the capillary endothelium, and the cells of the target organ or tissue. 

The plasma membranes which xenobiotics pass through are similar. The cell membrane 

is an 8-nm thick structure of two layers of amphiphilic lipids with protein adhere to it. 

The bilayer consists of phospholipid with hydrophilic groups (phosphatidylcholine, 

phosphatidylethanolamine) heading on both the outer and inner surfaces of the 

membrane and hydrophobic fatty acids filling out the inner space. Proteins are inserted 

and cross in the bilayer. Some proteins are attached in the surface of the bilayer. These 

membrane proteins such as transporters facilitate active transference of xenobiotics 

across membrane. The membranes are semifluid at physiologic temperatures because of 

the structure and relative abundance of unsaturated fatty acids, facilitating more rapid 

active or passive transport.  

The xenobiotics are transported through cell membranes by either active or passive 

transport. Passive transport includes simple diffusion and filtration, and does not require 

energy from the cell. Simple diffusion is the process of movement of substances from an 

area of high concentration to an area of lower concentration. Most xenobiotics cross 

membranes by simple diffusion. Small hydrophilic molecules with molecular weight less 

than 600 presumably permeate membranes through aqueous pores(Benz et al., 1980), 

The smaller a hydrophilic molecule is, the more readily it traverses membranes by 
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simple diffusion through aqueous pores. The hydrophobic molecules diffuse across the 

lipid domain of membranes. Filtration allows any solute small enough to pass through 

the pores when water flows in bulk across a porous membrane, whose size is different 

with different cells.  An active transport system is facilitated by membrane-bound 

proteins, characterized by features of allowing chemicals to be moved against 

electrochemical or concentration gradients, being saturated at high substrate 

concentrations and selective for certain structural features of chemicals, and requiring 

expenditure of energy of the cell. Generally, a transporter forms a complex with 

substances on one side of the membrane, the complex transforms and carrys the 

substances to the other side of the membrane where they are released. The transporter 

then returns to the original surface to repeat the cycle. Xenobiotic transporters are 

responsible for the uptake of some chemicals into cells, and extremely important for the 

export of chemicals out of cells (Table 2) (Casarett et al., 2001; Klaassen, 2002; 

Klaassen and Slitt, 2005; Choudhuri and Klaassen, 2006).  

 
Table 2 Xenobiotic transport systems 

Name (Abbreviation) Function 

Multi-drug–resistant protein or p-glycoprotein (mdr) Decrease GI absorption , Blood-brain barrier, 

Biliary excretion, Placental barrier 

Multi-resistant drug protein (mrp) Urinary excretion, Biliary excretion 

Organic-anion transporting polypeptide (oatp) Hepatic uptake 

Organic-anion transporter (oat) Kidney uptake 

Nucleotide transporter (nt) GI absorption 

Organic-cation transporter (oct) Kidney uptake, Liver uptake, Placental barrier 

Divalent-metal ion transporter (dmt) GI absorption 

Peptide transporter (pept) GI absorption 

 

In general, the Oatps, Oct1 and Oat2 mediate uptake of a large number of xenobiotics 

from blood into liver. Conversely, Mdrs, Mrps, and Bcrp mediate efflux of xenobiotics 

from liver into bile or blood. Microsomal enzyme inducers increase expression of 

various Oatps, Mrps, and Mdrs in liver(Klaassen and Slitt, 2005). ABCB1 (MDR1/P-
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glycoprotein of subfamily ABCB), subfamily ABCC (MRPs), and ABCG2 (BCRP of 

subfamily ABCG), which belongs to the ATP-binding cassette (ABC) transporter family, 

constitute a large family of membrane proteins. These efflux transporters facilitate the 

movement of a variety of compounds out of cells through the membrane against a 

concentration gradient at the cost of ATP hydrolysis. Substrates of the ABC transporters 

include lipids, bile acids, xenobiotics, and peptides for antigen presentation. By 

facilitating the elimination of exogenous and endogenous compounds, these transporters 

reduce the body load of potentially harmful substances(Choudhuri and Klaassen, 2006). 

    Other transport processes include facilitated diffusion which is much like the active 

transport except that the substrate is not moved against an electrochemical or 

concentration gradient and the transport process does not require the input of energy. 

Nutrients are mainly transported by facilitated diffusion, whereas xenobiotics are rarely 

transported by facilitated diffusion. The removal of particulate matter from the alveoli by 

phagocytes and from blood by the reticuloendothelial system of the liver and spleen 

utilizes the mechanisms of phagocytosis and pinocytosis(Casarett et al., 2001).  

The transference of the xenobiotics across membranes is affected by the lipophilicity of 

the xenobiotics, which is frequently expressed as octanol/water partition coefficient logP. 

The rate of transport of the nonionized form is proportional to its lipid solubility. The 

more lipophilic the xenobiotics, the more ready to pass through the cell membranes. 

Most xenobiotics consist of larger organic molecules with different degrees of 

lipophilicity.  

    The transference of the xenobiotics across membrane is also affected by the acidic or 

basic strenghth of the xenobiotics denoted by pKa and pKb, the pH at which a weak 

organic acid or base is 50 percent ionized.  Many xenobiotics are weak organic acids or 

bases. They are ionized. The ionized form usually has low lipid solubility and thus does 

not permeate readily through the lipid domain of a membrane. In general, the nonionized 

form of weak organic acids and bases is to some extent lipid-soluble, resulting in 

diffusion across the lipid domain of a membrane. The molar ratio of ionized to non-

 



 7

ionized molecules of a weak organic acid or base in solution depends on the ionization 

constant. There is a specific ionization constant with a specific weak acid or base.  

    Some transport of organic anions and cations (depending on their molecular weight) 

may occur through the aqueous pores, but this is a slow process (except for compounds 

of very low molecular weight), as the total surface area of aqueous pores is small 

compared with the total surface area of the lipid domain of a membrane. However, the 

rate of the transference should take into consideration the mass action law, surface area, 

and blood flow rate, which influence the balance of the xenobiotics on the both sides of 

the membrane. 

 

1.1.3 Disposition of xenobiotics  

    When human are exposed to xenobitics, the rate of absorption is dependent on a 

number of factors including the route of exposure, solubility of the chemical and 

nutritional status of the individual. The absorbed xenobiotics distribute within the body, 

are biotransformed (metabolized) in the special sites, stored and/or excreted. The body 

biotransforms the xenobiotics mainly in the liver. The products of biotransformation 

may be excreted into urine, feces and/or air. Within the body, the xenobiotics may have 

biological effects on the body depending on their inherent properties, site specificity, the 

disposition and the dose. The disposition of the xenobiotics plays an important role in 

the the exertion of biological effects of the xenobitics. When the rate of absorption 

exceeds the rate of elimination, toxic xenobiotics may accumulate to a critical 

concentration at target site (s) and cause adverse effects on systems. In the case of 

therapeutic drugs, when the rate of absorption is lower than the rate of elimination, drugs 

may be eliminated before reach target site (s) or the effective concentration and has no 

therapeutic effecacy. Many chemicals have little biological effects but have to be 

activated by biotransformation into active metabolites, so the rate of production of active 

metabolites is critical. Thus, the rates of absorption, distribution, biotransformation, and 

excretion critically influence the biological effects of xenobiotics. 
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1.1.3.1 Absorption 

    Absorption of xenobiotics refers to the process that the environmental xenobiotics 

cross body membranes and enter the bloodstream when human are exposed to the 

xenobiotics. The absorption happens mainly at three sites, the gastrointestinal (GI) tract, 

the lung and the skin.  

    The GI tract may be viewed as a tube traversing the body with its contents being 

considered exterior to the body. Many environmental xenobiotics enter the food chain 

and are absorbed together with food from the GI tract. The absorption of the xenobiotics 

in the GI tract can take place along the entire GI tract, even in the mouth and rectum. 

The number of xenobiotics actively absorbed by the GI tract is very low; most 

xenobiotics are transported across the gastrointestinal mucosa by passive diffusion 

which is dependent on surface area and site. Many xenobiotics are weak organic acids or 

bases, so their gastrointestinal absorption is dependent on the pH along the 

gastrointestinal tract. Particles appear to enter intestinal cells by pinocytosis, a process 

that is much more prominent in newborns than in adults (Williams and Beck, 1969). 

Many factors alter the GI absorption of xenobiotics. These factors include the physical 

properties of a compound, changes of the permeability of the intestinal wall, residency 

time in the GI tract, biotransformation in the enterocytes, dirrect excretion into the bile 

through the liver, and gastrointestinal flora which may biotransform the xenobiotics.  

    The xenobiotic gases, vapors of volatile or volatilizable liquids, and aerosols are 

absorbed by the lungs. The absorption of inhaled gases and vapor differs from that of 

aerosols. When inhaled, the gases and vapors pass through the nose which has the 

structure of turbinates to increase the surface area, water-soluble gases and highly 

reactive gases are retained in the nose. The other inhaled gases and vapors are usually 

absorbed in the lungs. When a gas is inhaled into the lungs, gas molecules diffuse from 

the alveolar space into the blood and then dissolve. A chemical diffuses rapidly in the 

lungs, partly because the distance for a chemical to diffuse is very short, and partly 

because chemicals absorbed by the lungs are removed rapidly by the blood (about three-

fourths of a second). Except for some gases with a special affinity for certain body 
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components, the uptake of a gas by a tissue usually involves a simple physical process--

dissolving. The end result is that gas molecules partition between the two phases: air and 

blood during the absorptive phase, and blood and other tissues during the distributive 

phase. For each gas, the solubility ratio (the blood-to-gas partition coefficient) is 

constant and unique, therefore the higher the inhaled concentration of a gas (i.e., the 

higher the partial pressure), the higher the gas concentration in blood. For a substance 

with a low solubility ratio, an increase in the respiratory rate or minute volume does not 

change the transfer of such a gas to blood. An increase in the rate of blood flow 

markedly increases the rate of uptake of that substance (perfusion-limited). For a gas 

with a high solubility ratio, the time required to equilibrate with blood is very much 

longer, the rate-limiting step of absorption is respiration. Increasing the blood flow rate 

does not substantially increase the rate of absorption (ventilation-limited). The blood 

carries the dissolved gas molecules to the rest of the body and gas molecules diffuse into 

the tissues. The blood unloading the part of the gas into the tissues returns to the lungs to 

take up more of the gas. The process continues until a gas reaches equilibrium between 

blood and each tissue according to the tissue-to-blood partition coefficients characteristic 

of each tissue. At this time, no net absorption of gas takes place. However, the change of 

exposure concentration, biotransformation and excretion occurring in the tissues make 

the absorption to continue.  

    The particle size and water solubility of chemicals present in aerosols influence the 

rate of absorption. Particles 5 μm or larger usually are deposited in the nasopharyngeal 

region. Particles of 2 to 5 μm are deposited mainly in the tracheobronchiolar regions of 

the lungs, from which they are cleared by retrograde movement of the mucus layer in the 

ciliated portions of the respiratory tract. These particles eventually may be swallowed 

and absorbed from the GI tract. Particles 1 μm and smaller penetrate to the alveolar sacs 

of the lungs. They may be absorbed into blood or cleared through the lymphatics after 

being scavenged by alveolar macrophages.  

    The skin is relatively impermeable and therefore is a relatively good barrier for 

separating organisms from their environment. However, some chemicals can be 
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absorbed by the skin in sufficient quantities to produce systemic effects. To be absorbed 

through the skin, a xenobiotic must pass through the epidermis or the appendages (sweat 

and sebaceous glands and hair follicles) whose cross-sectional area is probably between 

0.1 and 1.0 percent of the total skin surface. Chemicals are absorbed mainly through the 

epidermis, which constitutes the major surface area of the skin. Chemicals that are 

absorbed through the skin have to pass through several cell layers (a total of seven) 

before entering the small blood and lymph capillaries in the dermis. The rate-

determining barrier in the dermal absorption of chemicals is the uppermost layer of the 

epidermis, the stratum corneum (horny layer), consisting of densely packed keratinized 

cells that have lost their nuclei and thus are biologically inactive. It is clear that all 

xenobiotics move across the stratum corneum by passive diffusion. Generally, polar 

substances appear to diffuse through the outer surface of protein filaments of the 

hydrated stratum corneum, whereas nonpolar molecules dissolve in and diffuse through 

the lipid matrix between the protein filaments. The rate of diffusion of nonpolar 

toxicants is proportional to their lipid solubility and is inversely related to their 

molecular weight. However, the rate of dermal penetration of highly lipophilic or 

hydrophilic chemicals is very limited(Weber et al., 1991). Human stratum corneum 

displays significant differences in structure and chemistry from one region of the body to 

another, and these differences affect the permeability of the skin to chemicals. The 

permeability of the skin depends on both the diffusivity and the thickness of the stratum 

corneum. Agents such as acids, alkalis, water and solvents increase skin permeability. 

The second phase of percutaneous absorption consists of diffusion of the toxicant 

through the lower layers of the epidermis (stratum granulosum, spinosum, and 

germinativum) and the dermis, which contain a porous, nonselective, aqueous diffusion 

medium. Xenobiotics pass through this area by diffusion and enter the systemic 

circulation through the numerous venous and lymphatic capillaries in the dermis. The 

rate of diffusion depends on blood flow, interstitial fluid movement, and perhaps other 

factors, including interactions with dermal constituents.  
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    Naturally, xenobiotics enter the bloodstream after absorption through the skin, lungs, 

or GI tract. For the purpose of studies, xenobiotics are administrated to laboratory 

animals by intraperitoneal, subcutaneous, intramuscular, and intravenous routes. The 

intravenous route introduces the toxicant directly into the bloodstream, eliminating the 

process of absorption. Intraperitoneal injection of xenobiotics into laboratory animals is 

also a common procedure. It results in rapid absorption of xenobiotics because of the 

rich blood supply and the relatively large surface area of the peritoneal cavity. In 

addition, this route of administration circumvents the delay and variability of gastric 

emptying. Intraperitoneally administered compounds are absorbed primarily through the 

portal circulation and therefore must pass through the liver before reaching other organs. 

Subcutaneously and intramuscularly administered toxicants are usually absorbed at 

slower rates but enter directly into the general circulation. The rate of absorption by 

these two routes can be altered by changing the blood flow to the injection site. The 

route of administration may or may not change the biological effects of the xenobiotics.  

1.1.3.2  Distribution 

    After entering the blood by absorption or intravenous administration, a xenobiotic is 

available for distribution (translocation) throughout the body. Distribution usually occurs 

rapidly. The rate of distribution to organs or tissues is determined primarily by blood 

flow and the rate of diffusion out of the capillary bed into the cells of a particular organ 

or tissue. In general, the initial phase of distribution is dominated by blood flow, whereas 

the eventual distribution is determined largely by affinity of a xenobiotic for various 

tissues and/or proteins within the tissue. The penetration of xenobiotics into cells occurs 

by passive diffusion or special transport processes. Some xenobiotics such as very polar 

molecules and ions do not readily cross cell membranes and therefore have restricted 

distribution. Small water-soluble molecules and ions diffuse through aqueous channels 

or pores in the cell membrane. Lipid-soluble molecules readily permeate the membrane 

itself. Very polar molecules and ions of even moderate size (molecular weight of 50 or 

more) cannot enter cells easily except by special transport mechanisms because they are 

surrounded by a hydration shell, making their actual size much larger. 
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    Xenobiotics distribute throughout the body with the flow of the body water. Total 

body water may be divided into extracellular water and intracellular water. Extracellular 

water consists of plasma water and interstitial water. The concentration of a xenobiotic 

in blood depends largely on what compartment of the water it distributes. The 

concentration of a chemical would be high in the plasma if the chemical were distributed 

into plasma water only, and much lower if it were distributed into a larger pool, such as 

extracellular water or total body water.  

    The distribution of chemicals in the body is governed largely by the solubility of the 

chemical and the rate of blood flow into the body. Xenobiotics which are relatively 

insoluble, such as chlorinated pesticides may partition into fats. Most chemicals pass 

through the liver, which has a high rate of blood flow, where the chemical structure is 

altered by phase I and phase II metabolism. Binding to proteins and other biological 

molecules generally increases the retention of xenobiotics. 

    A chemical in storage is assumed to be in equilibrium with the free fraction of the 

xenobiotic in plasma. As a chemical is biotransformed or excreted from the body, more 

is released from the storage site. As a result, the biological half-life of compounds stored 

in lipid or bone can be very long. The initial phase of distribution is determined 

primarily by blood flow to the various parts of the body. Therefore, a well-perfused 

organ such as the liver may attain high initial concentrations of a xenobiotic. However, 

the affinity of less well perfused organs or tissues may be higher for a particular 

xenobiotic, causing redistribution over time.  

    Several plasma proteins such as albumin bind xenobiotics as well as some physiologic 

constituents of the body. The liver and kidney have a high capacity for binding a 

multitude of chemicals. Highly lipophilic toxicants are distributed and concentrated in 

body fat. Toxicants appear to accumulate in fat by dissolution in neutral fats. 

Compounds such as fluoride, lead, and strontium may be incorporated and stored in bone 

matrix. Skeletal uptake of xenobiotics is essentially a surface chemistry phenomenon, 

with exchange taking place between the bone surface and the fluid in contact with it. 

Deposition and storage of toxicants in bone may or may not be detrimental. Xenobiotics 
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may be redistributed after the initial phase of distribution which is primarily determined 

by blood flow. If the affinity of a chemical to the less perfused is high, the chemical will 

redistribute.  

    Blood-brain barrier and the placenta barrier are special structures limiting the 

xenobiotics from entering brain and fetus, respectively.  

1.1.3.3 Metabolism (biotransformation) 

    Most xenobiotics are lipid soluble and thus have affinity to absorb to tissues and 

organs. In some cases, xenobiotics can be reabsorbed prior to excretion and thus may be 

retained in the body for an extended time. Biotransformation is a process that changes 

the lipophilic xenobiotics to relatively more hydrophilic metabolites, facilitating 

elimination. In the absence of biotransformation, lipophilic xenobiotics would 

accumulate in the body and potentially reach toxic concentrations. Thus, xenobiotic 

biotransformation is an essential mechanism for maintaining homeostasis of organisms. 

However, biotansformation does not have a minimal affect on the elimination of volatile 

compounds.  

    In most cases, biotransformation terminates the specific effects of a xenibiotic by 

chemical modifications to facilitate elimination. In many instances, chemical 

modification of a xenobiotic by biotransformation alters its biological effects, not only 

its pharmacokinetic behavior. In the case of pharmacology, some drugs must undergo 

biotransformation to exert their pharmacodynamic effect. In the case of toxicology, 

many xenobiotics must undergo biotransformation to exert their characteristic toxic or 

tumorigenic effect. That is, it is the metabolite of the xenobiotics, and not the 

xenobiotics themselves that exerts the specific biological effects.  

    The chemical conversion of xenobiotics into polar molecules is catalyzed by a broad 

range of biotransforming enzymes (drug-metabolizing enzymes). Phase I and phase II 

enzymes which play central roles in the biotransformation, metabolism and/or 

detoxification of xenobiotics in the liver and other tissues. Enzymes catalyzing 

biotransformation reactions often determine the intensity and duration of biological 
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action of xenobiotics(Jakoby, 1980; Anders et al., 1981; Jakoby et al., 1982; Katåo et al., 

1989). The reaction of biotransformation and drug metabolism is described in 1.1.4. 

1.1.3.4 Excretion 

    Xenobiotics may be eliminated from the body by several pathways. Most water 

soluble xenobiotics are excreted though urinary elimination. Metabolites excreted in 

urine are more hydrophilic than the absorbed form. The kidney is a very efficient organ 

for the elimination of xenobiotics from the body. The major functions of the kidney are 

to retain large biological molecules, maintain chemical balance in the blood, and 

facilitate the eliminateion of water soluble chemicals. Xenobiotic metabolites are 

separated from biological molecules in urine through glomerular filtration, tubular 

excretion by passive diffusion, and active tubular secretion.  

    Many of the less soluble xenobiotics that are either not metabolized or only partially 

metabolized are eliminated in the feces. The biliary route of elimination is perhaps the 

most important contributing source to the fecal excretion of xenobiotics and is even 

more important for the excretion of their metabolites. The liver cells can extract 

compounds from portal blood and prevent their distribution to other parts of the body. 

Furthermore, the liver is the main site of biotransformation of toxicants and the 

metabolites thus formed may be excreted directly into bile. Xenobiotics and/or their 

metabolites entering the intestine with bile may be excreted with feces. Once a 

compound is excreted into bile and enters the intestine, it can be reabsorbed or 

eliminated with feces. Furthermore many chemicals in feces are transferred directly from 

blood into the intestine by passive diffusion. In some instances, rapid exfoliation of 

intestinal cells also may contribute to the fecal excretion of some compounds. Intestinal 

excretion is a relatively slow process. Therefore, it is a major pathway of elimination 

only for compounds that have low rates of biotransformation and/or low renal or biliary 

clearance. The rate of intestinal excretion of some lipid-soluble compounds can be 

substantially enhanced by increasing the lipophilicity of the GI contents. Active 

secretion of organic acids and bases also has been demonstrated in the large intestine. A 

considerable proportion of fecally excreted xenobiotic is associated with the excreted 
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bacteria which may biotransform the xenobiotics. Chemicals originating from the 

nonabsorbed portion of an oral dose, the bile, or the intestinal wall are taken up by these 

microorganisms according to the principles of membrane permeability(Casarett et al., 

2001).  

    Substances that exist predominantly in the gas phase at body temperature are 

eliminated mainly in exhaled air. These substances seem to be eliminated by simple 

diffusion. Elimination of gases is roughly inversely proportional to the rate of their 

absorption. No specialized transport systems have been described for the excretion of 

xenobiotics by the lungs. Therefore, gases with low solubility in blood, are rapidly 

excreted, those which have much higher solubility in blood, are eliminated very slowly 

by the lungs. Undoubtedly, this prolonged retention is due to deposition in and slow 

mobilization from adipose tissue of these very lipid-soluble agents. The rate of 

elimination of a gas with low solubility in blood is perfusion-limited, whereas that of a 

gas with high solubility in blood is ventilation-limited.  

    Liquid aerosols and particles can be removed from the alveoli. The removal of 

particulate matter from the alveoli (usually less than 1 μm in diameter) appears to occur 

by three major mechanisms. First, particles may be removed from the alveoli by a 

physical process to the mucociliary escalator of the tracheobronchial region. From there, 

they are transported to the mouth and may be swallowed. Second, particles from the 

alveoli may be removed by phagocytosis of the mononuclear phagocytes (the 

macrophages). They apparently migrate to the distal end of the mucociliary escalator and 

are cleared and eventually swallowed. Third, removal may occur via the lymphatics. The 

endothelial cells lining lymphatic capillaries are permeable for very large molecules 

(molecular weight 106) and for particles, although the rate of penetration is low for 

particles with a molecular weight above 10, 000. Nevertheless, the lymphatic system 

plays a prominent role in collecting high-molecular-weight proteins leaked from cells or 

blood capillaries and particulate matter from the interstitium and the alveolar spaces. 

Particulate matter may remain in lymphatic tissue for long periods, and this explains the 

name “dust store of the lungs.” For the reasons discussed above, the overall removal of 
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particles from the alveoli is relatively inefficient. The rate of clearance by the lungs can 

be predicted by a compound’s solubility in lung fluids. The lower the solubility, the 

lower the removal rate. Thus, it appears that removal of particles from the lungs is 

largely due to dissolution and vascular transport. Some particles may remain in the 

alveoli indefinitely.  

    Minor pathways for elimination of xenobiotics include sweat, saliva, tears, hair and 

milk. Xenobiotics are excreted into milk by simple diffusion. Because milk is more 

acidic (pH6.5) than plasma, basic compounds may be concentrated in milk, whereas 

acidic compounds may attain lower concentrations in milk than in plasma(Findlay, 1983; 

Wilson, 1983). More important, about 3 to 4 percent of milk consists of lipids, and the 

lipid content of colostrum after parturition is even higher. Lipid-soluble xenobiotics 

diffuse along with fats from plasma into the mammary gland and are excreted with milk 

during lactation. Metals such as lead chemically similar to calcium and chelating agents 

that form complexes with calcium also form complexes and can be excreted into milk to 

a considerable extent. The excretion of toxic agents in sweat and saliva is quantitatively 

of minor importance. Toxic compounds excreted into sweat may produce dermatitis. 

Substances excreted in saliva enter the mouth, where they are usually swallowed and 

thus are available for GI absorption. 

    The liver is the major site of metabolism in a mammalian system, and as such is the 

primary organ where xenobiotics are converted into more polar compounds. The liver is 

a target for many toxic xenobiotics due to a first pass effect. Following absorption into 

systemic circulation, xenobiotics pass through the liver where they may be metabolized. 

First-pass metabolism increases the solubility of xenobiotics, and also the rate of 

elimination. This has overall impact of protecting the body from deleterious effects of 

toxicants and toxins. However, first-pass metabolism has implications on the selection of 

therapeutic drugs on route of administration and dosages. 

 

1.1.4  Drug metabolism and drug metabolism enzymes 

    The reactions catalyzed by xenobiotic biotransforming enzymes are generally 
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categorized into two groups, phase I (Table 3) and phase II (Table 4)(Casarett et al., 

2001).  

 
Table 3  The phase I biotransformation of xenobiotics(Casarett et al., 2001) 

Reactions Enzymes Locations 

Hydrolysis Esterase  

Peptidase  

Epoxide hydrolase  

Microsomes, cytosol, lysosomes, blood 

Blood, lysosomes  

Microsomes, cytosol 

Reduction  Azo- and nitro-reduction 

 Carbonyl reduction  

Disulfide reduction  

Sulfoxide reduction  

Quinone reduction  

Reductive dehalogenation 

Microflora, microsomes, cytosol 

Cytosol, blood, microsomes 

Cytosol 

Cytosol 

Cytosol, microsomes 

Microsomes 

Oxidation Alcohol dehydrogenase 

 Aldehyde dehydrogenase 

 Aldehyde oxidase  

Xanthine oxidase  

Monoamine oxidase  

Diamine oxidase 

 Prostaglandin H synthase 

 Flavin-monooxygenases 

 Cytochrome P450 

Cytosol 

Mitochondria, cytosol 

Cytosol 

Cytosol 

Mitochondria 

Cytosol 

Microsomes 

Microsomes 

Microsomes 

 

 

Table 4 The phase II biotransformation of xenobiotics(Casarett et al., 2001) 

Reactions Enzymes Locations 

Glucuronide conjugation UDP-glucuronosyltransferases Microsomes 

Sulfate conjugation sulfotransferase Cytosol 

Glutathione conjugation glutathione S-transferase Cytosol, microsomes 

Amino acid conjugation acyl-CoA:amino acid N- acyltransferase Mitochondria, microsomes 

Acylation arylamine N-acetyltransferase Mitochondria, cytosol 

Methylation Methytransferase Cytosol, microsomes, blood 
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    Phase I reactions such as hydrolysis, reduction, and oxidation expose or introduce a 

functional group (–OH, –NH2, – SH or –COOH) to xenobiotics. Phase I reactions 

generally render a molecule more polar and more susceptible to phase II metabolism. 

Phase II biotransformation reactions include glucuronidation, sulfation, acetylation, 

methylation, conjugation with glutathione (mercapturic acid synthesis), and conjugation 

with amino acids (such as glycine, taurine, and glutamic acid). The cofactors for these 

reactions react with functional groups that are either present on the xenobiotic or are 

introduced/exposed during phase I biotransformation. Phase I reactions result in only a 

small increase in hydrophilicity. Most phase II biotransformation reactions result in a 

large increase in xenobiotic hydrophilicity, hence they greatly facilitate the excretion of 

foreign chemicals. Phase II biotransformation of xenobiotics may or may not be 

preceded by phase I biotransformation. 

    Xenobiotic biotransforming enzymes are widely distributed throughout mammalian 

systems. The liver has the largest concentration of biotransformation reaction enzymes 

and thus plays an important role in the first-pass elimination. Enzymes are also located 

in the skin, lung, nasal mucosa, eye, and gastrointestinal tract, as well as numerous other 

tissues, including the kidney, adrenal, pancreas, spleen, heart, brain, testis, ovary, 

placenta, plasma, erythrocytes, platelets, lymphocytes, and aorta(Gram, 1980; Farrell, 

1987; Krishna and Klotz, 1994). Intestinal microflora also play an important role in the 

biotransformation of certain xenobiotics. Although some extrahepatic sites contain high 

levels of xenobiotic biotransforming enzymes, their overall contribution to the 

biotransformation of xenobiotics is generally less than that of the liver. For example, the 

abundance of certain xenobiotic biotransforming enzymes in nasal epithelium rival those 

found in the liver. The nasal epithelium plays an important role in the biotransformation 

of inhaled xenobiotics, including odorants, but is quantitatively unimportant in the 

biotransformation of orally ingested xenobiotics(Brittebo, 1993). Tissues and cells 

within an organism differ enormously in their capacity to biotransform xenobiotics. This 

heterogeneity has important biological implications in terms of tissue-specific action of 

xenobiotics.  
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    Xenobiotic biotransforming enzymes are present in several subcellular compartments. 

Within the liver and most other organs, the xenobiotic biotransforming enzymes are 

located primarily in the endoplasmic reticulum (microsomes) or the cytosol, with lesser 

amounts in mitochondria, nuclei, and lysosomes (see Table 3 and Table 4). The presence 

of enzymes in the endoplasmic reticulum facilitates the metabolism of lipophilic 

xenobiotics thus enhancing the rate of urinary or biliary excretion.  

    Drug-metabolizing enzymes have multiple isoforms in the structure and thus have 

broad substrate specificities. Enzymes are capable of metabolizing a large variety of 

endogenous chemicals such as steroid hormones, bilirubin, bile acids, fatty acids, and 

eicosanoids. The structures, activities and levels of a given biotransforming enzyme may 

differ heritably among individuals, resulting in the variation in the rate of xenobiotic 

biotransformation. Most enzymes are expressed constitutively, however, many drug 

metabolism enzymes are also inducible. This enables xenobiotics to accelerate their own 

biotransformation and elimination, and therefore, enzyme induction is an adaptive and 

feedback response to xenobiotic exposure.  

    Among the phase I biotransforming enzymes, the cytochrome P450 system ranks first 

in terms of catalytic versatility and the number of xenobiotics it detoxifies or activates to 

reactive intermediates(Waterman and Johnson, 1991; Casarett et al., 2001; Johnson and 

Waterman, 2002). The highest concentration of P450 enzymes involved in xenobiotic 

biotransformation is found in liver endoplasmic reticulum (microsomes), but P450 

enzymes are present in virtually all tissues. The liver microsomal P450 enzymes play a 

very important role in determining the intensity and duration of action of drugs, and they 

also play a key role in the detoxication of xenobiotics. P450 enzymes in liver and other 

tissues play important roles in the activation of xenobiotics to toxic and/or carcinogenic 

metabolites. Microsomal and mitochondrial P450 enzymes play key roles in the 

biosynthesis or catabolism of steroid hormones, bile acids, fat-soluble vitamins, fatty 

acids, and eicosanoids, which underscores the catalytic versatility of cytochrome P450. 

    All P450 enzymes are heme-containing proteins. The heme iron in cytochrome P450 

is usually in the ferric (Fe3+) state. When reduced to the ferrous (Fe2+) state, cytochrome 
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P450 can bind ligands such as O2 and carbon monoxide (CO). The complex between 

ferrous cytochrome P450 and CO absorbs light maximally at 450 nm, from which 

cytochrome P450 derives its name. The absorbance maximum of the CO complex differs 

slightly among different P450 enzymes and ranges from 447 to 452 nm. All other 

hemoproteins that bind CO absorb light maximally at 420 nm. The absorbance 

maximum of cytochrome P450 is due to an unusual fifth ligand to the heme (a cysteine-

thiolate). The amino acid sequence around the cysteine residue that forms the thiolate 

bond with the heme moiety is highly conserved in all P450 enzymes(Negishi et al., 

1996). When this thiolate bond is disrupted, cytochrome P450 is converted to a 

catalytically inactive form called cytochrome P420. By competing with oxygen, CO 

inhibits cytochrome P450. The inhibitory effect of carbon monoxide can be reversed by 

irradiation with light at 450 nm, which photodissociates the cytochrome P450–CO 

complex. 

    The basic reaction catalyzed by cytochrome P450 is monooxygenation in which one 

atom of oxygen is incorporated into a substrate, designated RH, and the other is reduced 

to water with reducing equivalents derived from NADPH, as follows:  

Substrate (RH) + O2 + NADPH+ H+→Product (ROH) +H2O +NADP+ 

    The catalytic cycle of cytochrome P450 has been reviewed by many 

scientists(Schlichting et al., 2000; Groves, 2003; Denisov et al., 2005). The cycle 

involves the activation of oxygen and substrate oxidation, which entails the abstraction 

of a hydrogen atom or an electron from the substrate followed by oxygen rebound 

(radical recombination). Following the binding of substrate to the P450 enzyme, the 

heme iron is reduced from the ferric (Fe3+) to the ferrous (Fe2+) state by the addition of a 

single electron from NADPH–cytochrome P450 reductase. Oxygen binds to cytochrome 

P450 in its ferrous state, and the Fe2+O2 complex is converted to an Fe2+OOH complex 

by the addition of a proton (H+) and a second electron, which is derived from NADPH–

cytochrome P450 reductase or cytochrome b5. Introduction of a second proton cleaves 

the Fe2+OOH complex to produce water and an (FeO)3+ complex, which transfers its 

oxygen atom to the substrate. Release of the oxidized substrate returns cytochrome P450 
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to its initial state. If the catalytic cycle is interrupted (uncoupled) following introduction 

of the first electron, oxygen is released as superoxide anion (O2
-). If the cycle is 

interrupted after introduction of the second electron, oxygen is released as hydrogen 

peroxide (H2O2). The final oxygenating species, (FeO)3+ can be generated directly by the 

transfer of an oxygen atom from hydrogen peroxide and certain other hydroperoxides, a 

process known as the peroxide shunt. For this reason certain P450 reactions can be 

supported by hydroperoxides in the absence of NADPH–cytochrome P450 reductase and 

NADPH(Casarett et al., 2001). 

    Although cytochrome P450 functions as a monooxygenase, the products are not 

limited to alcohols and phenols due to rearrangement reactions (Guengerich, 1991; 

Guengerich et al., 1991). Cytochrome P450 catalyzes several types of oxidation 

reactions, including: 1. Hydroxylation of an aliphatic or aromatic carbon; 2. Epoxidation 

of a double bond; 3. Heteroatom (S-, N-, and I-) oxygenation and N-hydroxylation; 4. 

Heteroatom (O-, S-, N- and Si-) dealkylation; 5. Oxidative group transfer; 6. Cleavage of 

esters; 7. Dehydrogenation(Casarett et al., 2001). The products of cytochrome P450 

oxidation are more susceptible to further metabolism and may be acted upon by epoxide 

hydrolase and other cytochrome P450 enzymes. 

 

1.1.5 Regulation of the drug metabolism  

    The rate of phase I and phase II metabolism varies greatly between individuals. 

Metabolic capabilities in an individual are influenced by genetics, age, and prior 

exposure to xenobiotic inducers. 

    A number of different genetic factors can affect drug metabolism. The polymorphism 

of coding sequences of the drug metabolism genes may change the structure of enzyme, 

thus affecting the binding and catalytic activity of the enzymes. The polymorphism of 

the regulatory region of the drug metabolism enzyme genes may change the expression 

levels of the enzymes. Many enzymes are constitutively regulated by endogenous factors 

and thus express persistently. The genetic variation of these endogenous factors may 

affect the expression levels of their target drug metabolism enzyme genes. 
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    The environmental factors may regulate drug metabolism by changing the expression 

level or directly changing the activity of drug metabolism enzymes by interacting with 

the enzymes. Factors in the environment which are capable of producing such changes 

include xenobiotics such as diet, diet supplements, alcohol, tobacco and drugs, and the 

physiological and pathological states such as inflammatory response, fever, liver disease, 

heart disease, lung disease, kidney disease, mineral and vitamin deficiency pregnancy 

and aging. 

1.1.5.1 Xenobiotics impacts on metabolism 

    Absorbed xenobiotics can regulate the drug metabolism by direct interaction with 

drug metabolism enzymes and/or by changing enzyme expression levels. The direct 

interaction between the drug metabolism enzymes and xenobiotics that function as 

enzyme inhibitors usually results in a reduction in the activity of drug metabolism 

enzymes. The competition of multiple drugs as substrates for enzyme binding results in 

the decrease of the drug metabolism. Some enzyme inhibitors block the catalytic activity 

of the enzymes.  

    Xenobiotics modify expression levels of drug metabolism enzymes and drug 

transporters through the regulation of related gene expression by xenosensors such as 

various nuclear receptors and transcription factors including the aryl hydrocarbon 

receptor (AhR), nuclear factor-E2 p45-related factor 2 (Nrf2), hepatocyte nuclear factor 

1α (HNF1α), constitutive androstane receptor (CAR), pregnane X receptor (PXR), 

farnesoid X receptor (FXR), peroxisome proliferator-activated receptor α (PPARα), 

hepatocyte nuclear factor 4α (HNF4α), vitamin D receptor (VDR), liver receptor 

homolog 1 (LRH1), liver X receptor (LXRα), small heterodimer partner-1 (SHP-1), and 

glucocorticoid receptor (GR). For example, the expression of CYP1 genes can be 

induced via the aryl hydrocarbon receptor (AhR) in response to many polycyclic 

aromatic hydrocarbons (PAHs). Similarly, the steroid family of orphan receptors, the 

constitutive androstane receptor (CAR) and pregnane X receptors (PXR) 

transcriptionally activate the promoters of CYP2B and CYP3A gene expression by 

xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and 
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rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR) 

has been shown to be activated by lipid lowering agent fibrate-type of compounds 

leading to transcriptional activation of the promoters on the CYP4A genes. CYP7A was 

recognized as the first target gene of the liver X receptor (LXR), in which the 

elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was 

identified as a bile acid receptor, and its activation results in the inhibition of hepatic 

acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, 

and CYP7A is one of its target genes(Tirona and Kim, 2005).  

    Inducers for the phase II drug metabolism enzymes include the phenolic compounds 

butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol 

(GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, 

sulforaphane). They generally possess electrophilic-mediated stress response, resulting 

in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds 

to the antioxidant/electrophile response element (ARE/EpRE) promoter. This promoter 

which is located in many genes of phase II drug metabolism enzymes as well as many 

cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent 

induction of the expression of these genes. Phase III transporters, for example, P-

glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion 

transporting polypeptide 2 (OATP2) are expressed in many tissues including the liver, 

intestine, kidney, and brain. Theses proteins play crucial roles in drug absorption, 

distribution, and excretion. The orphan nuclear receptors PXR and CAR have been 

shown to be involved in the regulation of these transporters. Along with phase I and 

phase II enzyme induction, pretreatment with several kinds of inducers has been shown 

to alter the expression of phase III transporters, and alter the excretion of xenobiotics. 

This implies that phase III transporters may also be regulated in a coordinated fashion, 

and provides an important means of protecting the body from xenobiotics insults. It 

appears that in general, exposure to phase I, phase II and phase III gene inducers may 

trigger a cellular "stress" response leading to the increase in their gene expression, which 

ultimately enhances the elimination and clearance of these xenobiotics and/or other 
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"cellular stressors". Consequently, this homeostatic response plays a central role in the 

protection of the body against "environmental" insults elicited by exposure to 

xenobiotics(Xu et al., 2005) (Rushmore and Kong, 2002) . These receptors are sensors 

for the signals of specific xenobiotics such as ethyl alcohol, vegetables containing 

flavinoids or indoles, enzyme-inducing drugs, polycyclic or halogenated hydrocarbons, 

and some antibiotics. The magnitude enzyme activity increased by xenobiotic induction 

may be up to 1000-fold. This enzyme activity alters the rate of biotransformation and 

may also change efficacy or the toxicity of drugs.  

1.1.5.2 Enzyme alterations due to physiological and pathological states 

    Changes in physiological and pathologic may alter drug metabolism. It is well 

established that inflammation decreases drug metabolism and clearance of drugs. Fever, 

liver disease, heart, lung or kidney disease, mineral and vitamin deficiency,  pregnancy 

and aging also affect metabolism. Disease of the liver and other organs responsible for 

xenobiotic metabolism generally depresses enzyme activity. 

1.1.5.2.1 Liver disease 

    Since drug oxidation occurs predominantly in the liver, acute or chronic disease of 

this organ has a pronounced effect on metabolism. Liver disease can modify the kinetics 

of drugs biotransformed by the liver. The capacity of the liver to metabolise drugs 

depends on hepatic blood flow and liver enzyme activity. Each of these parameters can 

be affected by liver disease. In addition, liver failure can influence the binding of a drug 

to plasma proteins. These changes can occur alone or in combination; when they coexist 

their effect on drug kinetics is generally synergistic, not simply additive. Drugs with a 

low rate of hepatic extraction are more sensitive to hepatic failure than to changes in 

liver blood flow. However, drugs having a significant first-pass effect are more sensitive 

to alterations in hepatic blood flow. Studies on the effects of liver disease on specific 

isoenzymes of CYP have shown that some isoforms are more susceptible than others to 

liver disease(Rodighiero, 1999). Drug metabolism may also affected by histological 

changes in the liver (acute or chronic hepatitis, cirrhosis). The degree of alteration in 

drug metabolism depends on the severity of liver dysfunction(Paintaud et al., 1996).  
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    Accumulated evidence has demonstrated that liver disease is associated with a 

reduced metabolic capacity with respect to drugs undergoing oxidative 

biotransformation, whereas conjugation reactions, especially glucuronidation, seem less 

affected. Nevertheless, due to the complexity of these activations and gene expressions, 

condlicting data exist in the literature(Sonne, 1996). Liver disease may lead to a 

differential alteration of the cytochrome P450s with regard to protein content and 

activity(Sonne, 1996). The information currently available on specific P450 isoforms 

involved in drug metabolism has increased tremendously over the latest 

years(Rodighiero, 1999). In the group of patients with non-primary biliary cirrhosis type 

liver disease, all enzyme activities measured were impaired relative to the normal group. 

In the primary biliary cirrhosis group, enzyme activities were altered selectively. (a) 

Activities of the methyl cholanthrene-inducible forms of cytochrome P-450 were 

decreased compared to normal controls, whereas the activities of the phenobarbitone-

inducible isozymes were relatively unaffected. (b) Sulfotransferase activities were 

decreased significantly compared to the normal group, whereas sulfatase activities 

remained unaltered(Iqbal et al., 1990). 

    Clinical studies on the efficacy of cardiovascular agents, diuretics, psychoactive and 

anticonvulsant agents, antiemetics, immunosuppressants, naltrexone, tolcapone and 

toremifene indicated that, the kinetics of drug metabolism is altered by liver disease to 

an extent that dosages may have to be adjusted(Rodighiero, 1999). Liver disease not 

only affects pharmacokinetics but also pharmacodynamics(Rodighiero, 1999). A 

detailed knowledge of the particular isoenzyme involved in the metabolism of a drug and 

the impact of liver disease on that enzyme can provide a rational basis for dosage 

adjustment in patients with hepatic impairment(Rodighiero, 1999). From a clinical point 

of view, these findings may have important implications. However, when treating liver 

patients, there is no widely accepted model for dose predictions; the best approach 

should be empiric and based on clinical response. In selected cases, monitoring of 

plasma drug concentrations and liver function is recommended(Sonne, 1996). Specific 

probe drugs may be used in order to study the effect of diseases on each enzyme of drug 
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metabolism. Probe-based assays must be validated during disease, since the 

pharmacokinetics of the parent drug and/or of its metabolites may be altered. Because of 

these limitations, therapeutic drug monitoring may currently be the most reliable way to 

adjust drug dosing(Paintaud et al., 1996). 

1.1.5.2.2 Cardiovascular disease  

    The rate of drug metabolism in the liver may be affected indirectly in patients with 

heart disease. This may occur either because of reduction in liver blood flow or because 

of venous congestion in the liver. The pathophysiologic changes occurring in 

cardiovascular disease can affect the kinetics of drugs in several different ways.  

    Patients with heart disease can have decreased gastric emptying and intestinal 

motility, reduced splanchnic blood flow, and bowel edema. These factors could account 

for a delay and decrease of drug absorption, which could delay the onset of drug action 

and can result in subtherapeutic plasma drug concentrations. 

    A reduction in cardiac output due to heart failure can lead to a reduced blood flow to 

tissues. Thus less drugs can be delivered to poorly perfused organs with possible 

alterations of the volume of distribution. Another factor that can modify the volume of 

distribution is presence of edema, with a possible increase in the distribution of water-

soluble drugs. 

    Changes in plasma protein binding of drugs may occur in cardiac patients due to 

either hypoproteinemia or an increase in α1-acid glycoprotein (AAG). Hyperproteinemia 

may diminish the binding of drugs, increasing the free drug fraction and the volume of 

distribution of highly protein-bound drugs. The change in AA, which is an acute-phase 

reactant to myocardial necrosis, can result in an increase of binding and of total plasma 

concentrations of drugs bound to this protein. Cardiac failure can reduce renal blood 

flow and glomerular filtration rate resulting in a decrease in the renal excretion of drugs. 

Cardiac failure may also impair the active secretion of drugs. Hepatic drug metabolism 

depends on the intrinsic metabolic capacity of the liver and on the rate of drug delivery 

to the liver via hepatic blood flow, both of which can be affected by heart disease.    

Several studies have shown that the presence of cardiovascular disease modifies 
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metabolic kinetics of drugs.  The extent of these alternations is such that in many cases it 

requires a change in the dosage regimen. A rational basis for a correct therapeutic choice 

can be provided by adequate knowledge of these modifications(Rodighiero, 1989). 

1.1.5.2.3 Kidney disease  

    The disposition of many drugs is altered in patients with acute and chronic kidney 

disease. A decline in renal clearance of several drugs has been correlated significantly 

with residual renal function (ie, creatinine clearance) of subjects. Reductions in nonrenal 

clearance of some compounds also have been reported and associated with clearance of 

markers of oxidative and/or conjugative metabolism or P-glycoprotein-mediated 

transport. The selective modulation of hepatic CYP enzyme activity observed in kidney 

disease is caused, at least in part, by differentially altered expression of several CYP 

isoforms. Knowledge of the impact and nature of these alterations associated with 

kidney disease may facilitate the individualization of medication management in this 

patient population(Nolin et al., 2003). 

1.1.5.2.4 Thyroid function 

    Thyroid dysfunction can influence the physiological disposition of drugs. Depending 

on the pharmacokinetic properties of the individual drug, changes in the rate of 

metabolism ranging from profound to moderate or negligible have been observed. Since 

renal function is also influenced by thyroid disease, changes in renal elimination of 

drugs which are excreted in urine is another reason for altered drugs disposition caused 

by thyroid disease. 

    In patients with thyrotoxicosis (lower), or myxoedema (higher) altered digitalis 

plasma levels have been observed. The altered disposition of cardiac glycosides in 

thyroid dysfunction can be attributed to changes in renal elimination and metabolism. 

These findings may explain the clinical observation that patients experiencing thyroid 

toxicity require larger than normal doses of digitalis, while patients with hypothyroid 

condititions generally require a lower dose. Antipyrene half-lives are shortened in 

patients experiencing hyperthyroidism and prolonged appreciably in patients 

experiencing hypothyroidism. The alterations in the disposition of these drugs observed 
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in patients experiencing thyroid dysfunction can be ascribed to changes in rates of 

metabolism which is controlled by the levels of circulating thyroid hormones. N-

demethylation of aminopyrine is depressed both in hyper- and hypothyroid patients as 

compared with normal subjects. The physiological disposition of the antithyroid drug 

propylthiouracil is unchanged during thyrotoxicosis. A decrease in plasma half-life of 

methimazole is however, observed during hyperthyroidism, whereas half-life is 

increased in hypothyroid patients. Absorption of paracetamol was faster in patients with 

untreated thyrotoxicosis than it was following recovery. The peak paracetamol 

concentration, however, was lower in thyrotoxic patients due to an apparent increase in 

the total body clearance and a shorter plasma half-life. Both absorption and elimination 

rates were reduced in hypothyroid patients, but were not significantly different from the 

euthyroid results. When estimated using a two compartment model the total volume of 

distribution and the hybrid distribution rate constants were unrelated to thyroid status, 

although the apparent volume of the central compartment was significantly greater in the 

thyrotoxic group. These changes in drug disposition may contribute to differences in 

drug response seen in patients with thyroid disease(Forfar et al., 1980). Glucuronyl 

transferase activity is increased in hyperthyroidism but is not altered in most patients 

with hypothyroidism. The extent of increase in glucuronyl transferase activity is similar 

to that produced by enzyme inducing drugs(Scott et al., 1984). Studies using rat models 

exhibiting hypothyroid, hyperthyroid and euthyroid condition to determine the effects of 

thyroid dysfunction on the absorption and disposition characteristics of amiodarone 

demonstrated that the disposition kinetics of amiodarone are altered in hypo- and 

hyperthyroidism(Weir and Ueda, 1988). The available data do not allow general 

predictions of how thyroid disease could alter drug metabolism in man (Eichelbaum, 

1976; Forfar et al., 1980; Shenfield, 1981; Scott et al., 1984; Rodighiero, 1985; 

Ostermann et al., 1988; Weir and Ueda, 1988; Pfeifer, 1991). 

1.1.5.2.5 Lung disease 

    Experimental tuberculosis resulted in decreased microsomal cytosolic protein. The 

tuberculosis infection produced a decrease in lung cytochrome b5 NADPH-cytochrome 
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C reductase and microsomal mixed function oxidases (MFO) activities. The pulmonary 

activity of UDP-glucuronyl transferase was elevated in infected animals. Glutathione S-

transferase activity decrease in the lung of tuberculous infected guinea pigs. Some of the 

changes observed in levels of monooxygenase enzymes in tuberculosis patients were 

caused by reduced food consumption. In general, tuberculosis infection can be viewed to 

lower drug metabolizing capacity of the animal, probably due to the damage and 

disturbed membrane integrity(Batra et al., 1987). 

1.1.5.2.6 Mineral and vitamin deficiency 

    Vitamin A deficiency alone significantly reduced cytochrome P-450 levels in male 

Sprague-Dawley rats (Hauswirth, 1987). There is increasing evidence that the liver 

microsomal drug metabolizing system is affected by many different vitamins including 

ascorbic acid, riboflavin, and α-tocopherol. In organisms experiencing ascorbic acid 

deficiency there is a decrease in the quantity of hepatic microsomal electron transport 

components such as cytochrome P450 and NADPH-cytochrome P450 reductase. 

Vitamin C deficient organisms also exhibit decreases in a variety of drug enzyme 

reactions such as N-demethylation, O-demethylation, and steroid hydroxylation. In 

addition, young animals given high supplements of vitamin C have increased quantities 

of electron transport components and overall drug metabolism activities. Kinetic studies 

indicate no change in the apparent Km of N-demethylase, O-demethylase or hydroxylase 

for drug substrates in animals that have vitamin deficiencies or that have been given high 

amounts of the vitamin. However, there are qualitative changes in both type I and II 

substrate-cytochrome P-450 binding. Ascorbic acid is not involved in microsomal lipid 

peroxidation or in any qualitative or quantitative change in phosphatidylcholine. After 

replenishing vitamin C-deficient animals with ascorbic acid required 3 to 7 days were 

required for the electron transport components and drug metabolism activities to return 

to normal levels. Induction with phenobarbital and 3-methylcholanthrene is not impaired 

in the deficient animal since drug metabolism activities are induced to the same extent as 

normal controls(Zannoni and Sato, 1976). In a separate study, vitamin C 
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supplementation had no influence on methacetin metabolism in Gambian men(Powers et 

al., 1991). 

    The administration of delta-aminolevulinic acid, a precursor of heme synthesis, to 

deficient animals caused an increase in the quantity of cytochrome P450. However, The 

effects of riboflavin deficiency on electron transport components and drug metabolism 

activities have been noted only in adult animals after prolonged periods of deficiency. 

Decreases in drug metabolism activities occur with both type I (aminopyrine and 

ethylmorphine) and type II (aniline) substrates. As was observed in animals with 

ascorbic acid deficiency, drug enzyme induction occurred to the same extent following 

administration of phenobarbital in deficient and normal animals. In addition, from 10 to 

15 days were required for the drug metabolism activities to return to normal levels when 

deficient animals were replenished with riboflavin(Zannoni and Sato, 1976).  

    Vitamin E has been shown to interact with the synthesis and activity of drug 

metabolizing enzymes. This interaction appears to be based on both on a protection of 

cytochrome P450 enzymes against oxidative damage and a stabilization of cytochrome 

P450 associated membrane phospholipids. The enzyme interaction also appears to be 

based on the gene-regulatory functions of vitamin E. The consequences vitamin-induced 

alteration of metabolism may be both, beneficial and detrimental: maintenance of an 

optimum xenobiotic metabolizing system may protect against harmful food ingredients 

and environmental poisons. However, induction of drug metabolizing enzymes may  

weaken their therapeutic efficacy (Brigelius-Flohe, 2003). 

1.1.5.2.7 Inflammation and drug metabolism 

    Inflammation and infection have long been known to downregulate the activity and 

expression of cytochrome P450 (CYP) enzymes involved in hepatic drug clearance. 

Regulation of hepatic flavin monooxygenases, UDP-glucuronosyltransferases, 

sulfotransferases, glutathione S-transferases, as well as of hepatic transporters during the 

inflammatory response, exhibits similarities and differences with regulation of 

cytochrome P450s (Aitken et al., 2006). However, expression of various cytochrome 

P450 genes is modulated differentially during inflammation. Whereas the expression of 
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most P450s in the liver is suppressed, some are induced(Morgan, 1997). Inflammation 

and infection may lead to a decrease in the capacity of the liver and other organs 

metabolize xenobiotic chemicals and some endogenous compounds(Renton, 2000). The 

downregulation of some cytochrome P450s and the induction of others may result from a 

complex interaction involving inflammatory cytokines, stress hormones, and metabolic 

perturbations(Iber et al., 1999). The loss in cytochrome P450 enzymes is predominantly 

an effect at the level of the gene expression and the majority of cytochrome P450s forms 

examined to date are involved(Renton, 2000). However, it is likely that modulation of 

RNA and protein turnover, as well as enzyme inhibition, contributes to some of the 

observed effects. The mechanisms whereby these effects are produced may also vary 

with both the P450 under study and the time course of the effect(Morgan, 1997). 

    The loss in drug metabolism is predominantly an effect resulting from the production 

of cytokines and the modulation of the transcription factors that control the expression of 

specific cytochrome P450 forms. Many of the effects observed in vivo can be mimicked 

by pro-inflammatory cytokines and interferons, and P450s are differentially regulated by 

these agents. Therefore, different cytokine profiles and concentrations in the vicinity of 

the hepatocyte in different models of inflammation may result in qualitatively and 

quantitatively different effects on populations of P450s. In addition to cytokines, 

glucocorticoids may have an important role in P450 regulation in stress conditions, 

including that caused by inflammatory stimuli(Morgan, 1997).  

    The complexity of the P450 response to inflammation and infection means many 

factors must be considered when trying to predict the effect of a given infectious or 

inflammatory condition on the clinical or toxic response to an administered drug or toxin 

in humans or animals. The decrease of cytochrome P450 and its dependent drug 

biotransformation is of concern whenever drugs are used in patients with infections or 

disease states that induce inflammation. Numerous examples have been reported in 

clinical studies indicating the occurrence of compromised drug clearance and changes to 

pharmacokinetics. For any drug that is metabolised by cytochrome P450s and has a 

narrow therapeutic index, there is a significant risk in placing patients in a position 
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where an infection or inflammatory response might alter metabolism and an adverse 

drug response(Carcillo et al., 2003; Lee and Lee, 2005; Prandota, 2005; Renton, 2005) 

(Renton, 2000) (Morgan, 1997).  

    The question of whether the down-regulation of the hepatic P450 system to 

inflammation or infection is a homeostatic or pathological response cannot be answered 

at present (Morgan, 1997). Environmental factors do not exist in isolation; they interact 

with each other and with hereditary influences upon drug metabolism. The clinical 

relevance of altered drug metabolism due to environmental factors depends on the 

magnitude of the change, the variance in the population administrated the drug, and the 

safety margin afforded by the drug's therapeutic index. A better understanding of 

molecular mechanisms underlying regulation of drug metabolism will provide valuable 

information for prescribing appropriate dosages of therapeutic agents. 

 

1.2 Nuclear Factor-κB and inflammatory responses 

1.2.1 NF-κB rel family and functions 

    NF-κB family members include RELA (p65), RELB, c-REL, NF-κB1 (p50; p105) and 

NF-κB2 (p52; p100). The N-terminal Rel-homology domain (RHD) contains the 

dimerization, nuclear-localization and DNA-binding domains. The Rel-homology 

domain (RHD) is 300-amino acids long and structurally conserved. NF-κB proteins c-

REL, RELB and RELA also have a carboxy-terminal non-homologous transactivation 

domain (TD). RELB has an additional leucine-zipper motif (LZ). p105 and p100 contain 

ANK repeats at the carboxyl terminus. Proteolytic processing of p105 and p100 at 

residues 435 and 405, respectively, generates the p50 and p52 NF-κB proteins. The 

glycine-rich region (GRR) and the carboxy-terminal sites of inducible phosphorylation 

(in the DSVCDS and EVKEDSAYGS sequences for p105 and p100, respectively) are 

required for processing. Phosphorylation of RELA at Ser276, Ser529 and Ser536 is 

important for its transactivation activity.  

    The carboxy-terminal non-homologous transactivation domains allow c-REL, RELB 

and RELA proteins to strongly activate transcription of their target genes. The other NF-
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κB proteins can still bind to NF-κB consensus sites in DNA and, therefore function as 

transcriptional repressors. NF-κB proteins p100 and p105 contain 33-amino-acid motif 

ankyrin repeats which mediate protein-protein interactions. Each member of the NF-κB 

family, except for RELB, can form homodimers, as well as heterodimers with one 

another. The main activated form of NF-κB is a heterodimer of the p65 subunit 

associated with either a p50 or p52 subunit. The p50 (NF-κB1)/p65 (RELA) heterodimer 

is the most abundant form of NF-κB. p50 and p65 are expressed widely in various cell 

types. The expression of RELB is restricted to specific regions of the thymus, lymph 

nodes and Peyer's patches. The expression of c-REL is confined to haematopoietic cells 

and lymphocytes. The transcription of RELB, c-REL and p105 is regulated by NF-κB. 

    Activated NF-κB complex translocates into the nucleus and binds DNA at κB-binding 

motifs GGGRNNYYCC or HGGARNYYCC (where H is A, C, or T; R is an A or G 

purine; and Y is a C or T pyrimidine). NF-κB can regulate the expression of cytokines, 

chemokines, growth factors, immunoregulatory molecules, cell adhesion molecules, 

acute-phase response proteins, stress response genes, cell surface receptors, regulators of 

apoptosis, viruses, enzymes and others(Kumar et al., 2004). Thus NF-κB has broad 

physiological functions apart from regulating innate as well as adaptive immune systems. 

Aberrant activation of the NF-κB pathway is involved in the pathogenesis of a number 

of human diseases including those related to inflammation, enhanced cellular 

proliferation, viral infection, and genetic diseases(Kumar et al., 2004). 

 

1.2.2  Regulation of NF-κB activation 

    NF-κB activity is also regulated by the direct modification of NF-κB proteins through 

phosphorylation and acetylation. Phosphorylation status determines the association of 

p65 with CBP/p300 which positively regulates gene expression or HDAC1 which 

inhibits the expression of NF-κB-regulated genes at both basal and induced levels. The 

loss of phosphorylation of p65 influences both its DNA-binding and transactivation 

activities.  Phosphorylation of p65 Ser276, Ser529 or Ser536 are required for the 

transactivation function of p65. Glycogen synthase kinase 3β (GSK3β), TBK1, IKKα 
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and PKCζ are important for the control of NF-κB transcriptional activity(Li and Verma, 

2002; Vermeulen et al., 2002). 

    Before activation and translocation to the nucleus, the regulatory proteins IκB retain 

NF-κB proteins in the cytoplasm as an inactive form. IκBα, IκBβ and IκBε are the most 

common IκB forms. The special IκB member BCL-3 interacts specifically with p50 and 

p52 homodimers and can induce the expression of NF-κB-regulated genes in contrast to 

the inhibitory function of the other IκB proteins. IκBα, IκBβ and IκBε act differently in 

the regulation of NF-κB activation. The cytoplasmic localization of the inactive NF-κB 

complexes is achieved by balancing continuous movement between the nuclear and 

cytoplasmic compartments. IκBα masks only one of the two nuclei localization 

sequences (NLSs) in an NF-κB dimer in an NF-κB–IκBα complex, which allows the 

complex to shuttle to the nucleus. At the same time, the nuclear-export signal (NES) at 

the N-terminus of IκBα protein functions to expel the NF-κB–IκBα complex from the 

nucleus. IκBα regulates transient NF-κB activation. IκBα is degraded rapidly in response 

to stimuli and quickly resynthesized owing to NF-κB activation. The newly synthesized 

IκBα has an intrinsic NLS and can enter the nucleus and displace NF-κB from its DNA 

binding sites and transport NF-κB back to the cytoplasm, thereby carrying out a post-

induction repression of NF-κB function. By contrast, IκBβ retains NF-κB–IκBβ 

complexes in the cytoplasm by masking both NLSs on the NF-κB dimmer. IκBβ 

maintains persistent NF-κB activation. IκBβ is less sensitive to stimulus-induced 

degradation than IκBα. The selective interaction between endogenous κB-Ras and IκBβ 

is crucial for inhibiting IκBβ degradation during NF-κB activation. IκBβ does not have a 

functional NES and is not NF-κB inducible, so the resynthesized IκBβ is able to interact 

with NF-κB complexes that are bound to the target promoters but not displace them. The 

outcome is a sustained NF-κB response. NF-κB–IκBε complexes shuttle actively 

between the nucleus and cytoplasm(Li and Verma, 2002).  

    The degradation of IκB is an essential step for releasing NF-κB and its subsequent 

activation for most known stimuli except ultraviolet radiation and hydrogen peroxide. 

The inhibitors of NF-κB (IκB) IκBα, IκBβ and IκBε (two transcripts) and BCL-3 contain 
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ankyrin (ANK) repeats. DSGLDS, DSGLGS and DSGLES induce phosphorylation of 

IκBα, IκBβ and IκBε for their degradation, respectively. The degradation of IκB is 

mediated by phosphorylation at its specific serine residues (for example, Ser32 and 

Ser36 for IκBα) at N-terminus by IκB kinase (IKK) complex. The phosphorylated IκBα 

is then ubiquitylated at Lys21 and Lys22 by β-transducin repeat-containing protein (β-

TRCP) which targets it for degradation by the 26S proteasome, thereby releasing NF-κB 

dimers from the cytoplasmic NF-κB-IκB complex and allowing them to translocate to 

the nucleus. 

The IκB kinase (IKK) complex consists of two catalytic kinases IKKα and IKKβ, and 

the regulatory subunit NF-κB essential modulator (NEMO; IKKγ). The IKK complex is 

a point of convergence for all three signalling pathways in response to the stimuli. IKKα 

and IKKβ share 52% amino acid homology and have similar functional domains, 

including an N-terminal catalytic domain, a centrally positioned leucine-zipper motif 

that is involved in homodimer and heterodimer formation, and a C-terminal helix-loop-

helix domain. NEMO/IKKγ interacts with a C-terminal region of IKKβ, designated the 

NBD, which is critical for the formation of IKK complex. Although NEMO has no 

catalytic function, it is indispensable for signal-dependent NF-κB activation. IKKβ is 

mostly required for the classical (canonical) NF-κB pathway that depends on IκB 

degradation. Despite the structural similarity of IKKα and IKKβ, biological and genetic 

studies indicate that IKKβ is the dominant kinase involved in the phosphorylation of 

IκBs. IKKα provides a partially redundant role in stimulus-induced NF-κB activation. 

Recent studies have shown that IKKα is involved in an alternative (non-canonical) NF-

κB pathway that regulates the RelB/p52 dimer. In unstimulated cells, RelB is retained in 

the cytoplasm as a RelB–p100 precursor complex to repress RelB-mediated 

transcriptional activity. Upon stimulation, the IκB-like C-terminal domain of p100 is 

proteolyzed, releasing RelB–p52 dimers that are translocated to the nucleus. The 

alternative NF-κB pathway is induced in response to only a few members of the TNF 

family, such as B-cell-activating factor, CD40 ligand, and lymphotoxin-β, and is mostly 
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involved in lymphoid organ development (Karin and Ben-Neriah, 2000; Verma, 2004; 

Jimi and Ghosh, 2005; Hayden et al., 2006). 

 

1.2.3  NF-κB signalling pathways 

    NF-κB is activated rapidly in response to a wide range of stimuli, including pathogens, 

stress signals and pro-inflammatory cytokines, such as tumour-necrosis factor (TNF) and 

interleukin-1 (IL-1). NF-κB activity is stimulated by many pathways, including 

lipopolysaccharide (LPS), tumour-necrosis factor (TNF) and T-cell receptor (TCR) 

signalling.  

    LPS binds to TLR4-CD14 and MD-2 complexes on the cell surface and activates an 

intracellular signalling cascade through the TLR cytoplasmic Toll/IL-1 receptor (TIR)-

homology domain, involving the recruitment of MYD88 (myeloid differentiation 

primary response gene 88) and IRAK (interleukin-1-receptor-associated kinase). 

Activation of IRAK results in the phosphorylation of TNF-receptor-associated factor 6 

(TRAF6), which might relay signals through the TAK1–TAB1–TAB2 complex to IKK 

complexes to activate the NF-κB pathway.  

    Cytokine IL-1 activates NF-κB in a similar manner to LPS because of homology 

between the cytoplasmic signalling domains of the IL-1 receptor (IL-1R) and TLRs. 

TNF receptors are present on the surface of a wide range of cells. Receptor engagement 

by TNF results in receptor trimerization and recruitment of the adaptor protein TRADD 

(TNF receptor associated via death domain) to the cytoplasmic receptor tail. In turn, 

TRADD interacts with the carboxyl terminus of TRAF2, an adaptor protein that has 

affinity for various downstream signalling proteins. Mitogen-activated protein 

(MAP)/extracellular signal-regulated kinase (ERK) kinase kinase 3 (MEKK3) and 

receptor-interacting serine/threonine kinase (RIP) are likely to have a key role in linking 

TNF to the activation of IKKs. 

    T-cell receptor (TCR)-induced activation of NF-κB in peripheral T cells requires a co-

stimulatory signal delivered from CD28 in addition to TCR signaling. It also involves 

the activation of protein kinase Cθ (PKCθ) and IKK2 (IKKβ). PKCθ translocates rapidly 
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to the plasma membrane of T cells in response to stimulation by antigen-presenting cells 

or anti-TCR-CD3 antibodies. Although poorly defined, trimolecular complexes of 

membrane-associated guanylate kinase homologue (MAGUK) and the mucosal-

associated lymphoid tissue (MALT)-lymphoma-associated proteins BCL-10 and 

MALT1 have been implicated in signalling from PKCθ to IKK complexes. 

 

1.2.4 Role of NF-κB in inflammatory response  

    Inflammation is a response to infection, antigen challenge or tissue injury that is 

designed to eradicate microbes or irritants and to potentiate tissue repair. Inflammation 

can be divided into two major categories—acute and chronic—based on timing and 

pathological features. Chronic inflammatory disorders are characterized by a prolonged 

duration (weeks to months to years) in which active inflammation, tissue destruction and 

attempts at tissue repair are occurring simultaneously(Liew, 2003). Infiltration of 

mononuclear cells and fibrosis are typical histological features of chronic 

inflammation(Davies et al., 2003). Acute inflammation is typically of relatively short 

duration (hours to days) and is characterized by vasodilatation, the exudation of protein-

rich fluid (plasma) and a migration of cells (primarily neutrophils) into the site of injury. 

In some cases, activation of the coagulation cascade also occurs(Splettstoesser and 

Schuff-Werner, 2002; Carraway et al., 2003). Sepsis, severe trauma and major surgery 

all have acute inflammatory components. A tightly orchestrated process involving 

numerous soluble and cell associated factors mediates these alterations. The innate 

immune system plays a critical role in the activation of inflammation. Macrophages 

produce pro-inflammatory cytokines, chemokines, tissue factor and NO that serve to 

amplify the proinflammatory response and activate the coagulation cascade. Non-

cytokine factors such as the complement system, eicosanoids and PAF are also important. 

The coagulation cascade is a well-recognized component of the pro-inflammatory 

response. Recent studies have shown that thrombin is not only important in the induction 

of fibrin clot formation, but also has direct pro-inflammatory functions. Endogenous 
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anticoagulant factors such as activated protein C, TFPI and anti-thrombin III serve to 

control pro-coagulant mechanisms.(Sherwood and Toliver-Kinsky, 2004).  

    The NF-κB signaling pathway plays a crucial role in the initiation, amplification and 

resolution of inflammation. NF-κB is highly activated at sites of inflammation in diverse 

diseases, such as rheumatoid arthritis, inflammatory bowel diseases, MS, psoriasis and 

asthma. NF-κB is one of the pivotal regulators of pro-inflammatory gene expression and 

also induces the transcription of pro-inflammatory cytokines and chemokines ( such as 

IL-1, IL-6, IL-8 and TNF), adhesion molecules, matrix metalloproteinases (MMPs), 

cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS) (Baeuerle and 

Baichwal, 1997; Lawrence et al., 2001; Tak and Firestein, 2001; Aggarwal, 2004; Karin 

and Greten, 2005; Xiao and Ghosh, 2005). Cellular responses to pro-inflammatory 

stimuli such as cytokines IL-1β or TNF-α and control of the expression of dozens of 

mediators of inflammation is at the center of an amplifying loop that requires subtle 

adjustments in order to be activated and deactivated at the right time. Accordingly, any 

dysfunction of the NF-κB activation process may generate chronic 

inflammation(Makarov, 2000) or to favor cancer development, especially in situations 

where tumorigenesis is associated with an inflammatory environment(Karin and Ben-

Neriah, 2000). The pathogenic effects of NF-κB overactivation in inflammatory diseases 

are indicated by studies of p50- and c-Rel-knockout mice, which do not develop 

eosinophilic airway inflammation when sensitized and challenged with allergen 

ovalbumin(Yang et al., 1998; Donovan et al., 1999). Specific inhibition of NF-κB 

activity has been shown consistently to be effective at controlling inflammatory diseases 

in several animal models. Blocking NF-κB activity by the overexpression of IκBα 

inhibits both the inflammatory response and tissue destruction in rheumatoid 

synovium(Bondeson et al., 1999). Administration of NF-κB decoys seems to be effective 

treatments in animal models of rheumatoid arthritis(Miagkov et al., 1998). 
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1.3 Nuclear receptor as xenosensors 

1.3.1 Nuclear receptors 

    Since the publication in 1985 of a study decribing cloning of the first nuclear receptor 

cDNA encoding the human glucocorticoid receptor (GR) (Hollenberg et al., 1985; Evans, 

2005), the nuclear receptor field has witnessed great progress(Chambon, 2005; Evans, 

2005). To date totoal 49 members of a nuclear receptor superfamily have been 

characterized in mouse and 48 members in humans (Table 5). The Nuclear Receptors 

Nomenclature Committee (1999) set up a system similar to the nomenclature system of 

the cytochrome P450 superfamily(Nebert et al., 1987) to connect all known NR 

sequences based on a phylogenetic tree on the evolution of the two well-conserved 

domains of NRs (the DNA-binding C domain and the ligand-binding E domain). Each 

receptor is described by the letters 'NR' (for 'nuclear receptor') and a three-digit identifier: 

this denotes the subfamily to which a given receptor belongs (indicated by the first digit, 

an Arabic numeral), the group (denoted by capital letters) and the individual gene (again 

denoted by Arabic numerals. For example, PXR (NR1I2), NR stands for nuclear receptor 

superfamily, “1” stands for family, “I” stands for subfamily, and “2” stands for specific 

individual receptors. Members of the same family in general share at least 80%–90% 

identity in the DNA-binding domain and at least 40%–60% in the ligand-binding domain. 

This system is flexible enough to integrate nuclear receptors from invertebrates as well 

as sequences generated from genome projects for which biological data are not yet 

available.  

    Nuclear receptors are one of the most abundant classes of transcriptional regulators in 

animals (metazoans). Nuclear receptors function as ligand-activated transcription factors, 

and thus provide a direct link between signaling molecules and transcriptional responses. 

The superfamily includes receptors for hydrophobic molecules such as steroid hormones 

(e.g. estrogens, glucocorticoids, progesterone, mineralocorticoids, androgens, vitamin 

D3, ecdysone, oxysterols and bile acids), retinoic acids (all-trans and 9-cis isoforms), 

thyroid hormones, fatty acids, leukotrienes, prostaglandins, and lipophilic 

xenobiotics(Robinson-Rechavi et al., 2003). 
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    The mode of action of nuclear receptors (NRs) shares some common features. After 

diffusion through the cytoplasmic membrane, the ligand can interact with its cognate 

receptor where it can exert a 'non-genomic effect' by interacting directly such as with 

kinases. The ratio between cytoplasmic and nuclear location can vary between different 

receptors and is affected by the nature of a ligand. Ligand binding modulates the 

interaction of the receptor with a plethora of factors. In the absence of ligand, several 

nuclear receptors are believed to be bound to the regulatory regions of target genes as a 

corepressor or histone deacetylase (HDAC) complex. Histone deacetylation is 

responsible for the chromatin condensation that accounts for the gene-silencing effect of 

apo receptors. Ligand binding releases the HDAC complex and results in the recruitment 

of histone acetyltransferase (HAT) and chromatin-remodelling (CRM) complexes. The 

temporal order and requirement of these complexes can occur in a receptor-, target-gene- 

and cell-specific manner. In the last step, the polymerase II holoenzyme, which 

comprises the pol II enzyme, TAF (TATA-binding protein-associated factor) and 

mediator complexes, is recruited and increases the frequency of transcription initiation.  
 

Table 5 Human nuclear receptor superfamily  
 

Name Abrevi-

ation 

Nomen-

clature 

Ligands Refseq# 

Glucocorticoid receptor GR NR3C1 Cortisol, dexamethasone, 

RU486 

NM_000176 

Mineralocorticoid receptor MR NR3C2 Aldosterone, spirolactone NM_000901 

Progesterone receptor PR NR3C3 Progesterone, 

medroxyprogesterone acetate, 

RU486 

NM_000926 

Androgen receptor AR NR3C4 Testosterone, flutamide NM_000044 

Estrogen receptor ERα NR3A1 Estradiol-17β, tamoxifen, 

raloxifene 

NM_000125 

Estrogen receptor Erβ NR3A2 Estradiol-17β, various 

synthetic compounds 

NM_001437 

Retnoid X receptor RXRα NR2B1 9-cis-retinoic acid NM_002957 
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Table 5 (Continued) 
Name Abrevi- 

ation 

Nomen-

clature 

Ligands Refseq# 

Retnoid X receptor RXRβ NR2B2 9-cis-retinoic acid NM_021976 

Retnoid X receptor RXRγ NR2B3 9-cis-retinoic acid NM_006917 

Hepatocyte nuclear factor 4 HNF4α NR2A1 fatty acids NM_000457 

Hepatocyte nuclear factor 4 HNF4γ NR2A2 fatty acids NM_004133 

Chicken ovalbumin 

upstream promoter-

transcription factor 

COUP-

TFα 

NR2F1 Orphan NM_005654 

Chicken ovalbumin 

upstream promoter-

transcription factor 

COUP-

TFβ 

NR2F2 Orphan NM_021005 

ErbA2-related gene-2 EAR2 NR2F6 Orphan XM_373407 

Testis receptor TR2 NR2C1 Orphan NM_003297 

Testis receptor TR4 NR2C2 Orphan NM_003298 

Germ cell nuclear factor GCNF NR6A1 Orphan NM_033334 

Reverse erbA Rev-erbα NR1D1 Orphan NM_021724 

Reverse erbA Rev-erbβ NR1D2 Orphan NM_005126 

Thyroid hormone receptor TRα NR1A1 Thyroid hormone, 

triiodothyronine 

NM_199334 

Thyroid hormone receptor TRβ NR1A2 Thyroid hormone, 

triiodothyronine 

NM_000461 

Retinoic acid receptor RARα NR1B1 retinoic acids NM_000964 

Retinoic acid receptor RARβ NR1B2 retinoic acids NM_000965 

Retinoic acid receptor RARγ NR1B3 retinoic acids NM_000966 

Peroxisome proliferator-

activated receptor 

PPARα NR1C1 Fatty acids, leukotriene B4, 

fibrates 

NM_005036 

Peroxisome proliferator-

activated receptor 

PPARβ NR1C2 fatty acids, eicosanoids NM_006238 

Peroxisome proliferator-

activated receptor 

PPARγ NR1C3 Fatty acids, prostaglandin J2,  NM_005037 

Vitamin D receptor VDR NR1I1 1, 25-dihydroxy vitamin D3, 

litocholic acid 

NM_000376 
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Table 5 (Continued) 
Name Abrevi- 

ation 

Nomen-

clature 

Ligands Refseq# 

Liver X receptor LXRα NR1H3 Oxysterols, T0901317, 

GW3965 

NM_005693 

Liver X receptor LXRβ NR1H2 Oxysterols, T0901317, 

GW3965 

NM_007121 

Farnesoid X receptor FXR NR1H4 Bile acids, Fexaramine NM_005123 

Pregnane X receptor PXR NR1I2 xenobiotics, steroids, bile 

acids 

NM_022002 

Constitutive androstane 

receptor 

CAR NR1I3 Xenobiotics, henobarbital, 

steroids 

NM_005122 

Steroidogenic factor 1 SF-1 NR5A1 Orphan NM_004959 

Liver receptor homologous 

protein 1 

LRH-1 NR5A2 Orphan NM_003822 

Estrogen receptor-related 

receptor 

ERRα NR3B1 Orphan NM_004451 

Estrogen receptor-related 

receptor 

ERRβ NR3B2 DES, 4-OH tamoxifen NM_004452 

Estrogen receptor-related 

receptor 

ERRγ NR3B3 DES, 4-OH tamoxifen NM_001438 

NGF-induced factor B NGFI-Bα NR4A1 Orphan NM_002135 

Nur related factor 1 NURR1 NR4A2 Orphan NM_006186 

Neuron-derived orphan 

receptor 1 

NOR1 NR4A3 Orphan NM_006981 

RAR-related orphan 

receptor 

RORα NR1F1 Cholesterol, cholesteryl 

sulphate 

NM_134261 

RAR-related orphan 

receptor 

RORβ NR1F2 Retinoic acid NM_006914 

RAR-related orphan 

receptor 

RORγ NR1F3 Retinoic acid NM_005060 

Tailless (Drosophila) 

homolog 

TLX 

(TLL) 

NR2E1 Orphan NM_003269 

Photoreceptor-specific 

nuclear receptor 

PNR NR2E3 Orphan NM_016346 
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Table 5 (Continued) 
Name Abrevi- 

ation 

Nomen-

clature 

Ligands Refseq# 

DSS-AHC critical region on 

the DAX1 NR0B1 Orphan 

chromosome, gene 1 

DAX1 NR0B1 Orphan NM_000475 

Short heterodimeric partner SHP NR0B2 Orphan NM_021969 

 

 

 
Fig. 1. Functional and structural domains of PXR, CAR and RXRα as examples of nuclear receptors 

 

    Domain length was followed reference (Wu et al., 2006).A/B: sequence highly variable; AF-1 

transactivation function; 3D-structure is unknown. C: sequence most conserved; DNA-binding to 

AGGTCA motif; dimerization of nuclear receptors; may contain part of nuclear localization signal (NLS). 

D: sequence variable; flexible hinge, nuclear localization signal (NLS). E: sequence moderately conserved; 

the largest domain, secondary structure of 12 -helixes is better conserved than the primary sequence; 

ligand-binding and induced, AF-2 transactivation function; another NLS, and often a repression function. 

F: sequence extremely variable; structure and function are unknown(Robinson-Rechavi et al., 2003). 

 

Table 6 Comparison of the domains of PXR and CAR 

Peptides 
PXR 

From-To (Length, aa) 

CAR 

From-To ( Length, aa) 

CHAIN 1-434 (434) 1-352 (352) 

DNA_BIND 38-107 (70) 8-83 (76) 

ZN_FING NR C4-type 41-61 (21) 11-31 (21) 

ZN_FING NR C4-type 77-102 (26) 47-71 (25) 

Hinge 108-204 (97) 84-102 (19) 

LBD 205-434 (230) 103-352 (250) 
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    The molecules of the nuclear receptor family PXR, CAR and RXRα share common 

structural traits (Fig. 1, Table 6) except that subfamily NR0 members lack either the 

DNA or ligand binding domain (Robinson-Rechavi et al., 2003; Gronemeyer et al., 2004; 

McEwan, 2004; Chambon, 2005; Evans, 2005).  

    Nuclear receptors can form monomers, homodimers or heterodimers with the 

promiscuous retinoid X receptor (RXR) (Table 5); the nuclear receptors then bind 

response elements within the regulatory region (s) of target genes. Nuclear receptor 

response elements are derivatives of the canonical sequence RGGTCA (in which R is a 

purine), termed hormone response elements (HREs). Modification, extension and 

duplication (including alternate relative orientations of the repeat (direct, inverted, 

everted)) of this sequence generate response elements that are selective for a given 

receptor (s) or class of receptors(Mangelsdorf and Evans, 1995; Laudet and Gronemeyer, 

2002; Gronemeyer et al., 2004). The ability of a specific nuclear receptor to recognize 

HREs is unique. Data have shown that the most potent of these HREs are direct repeats 

(DRs) of the core AGGTCA half-site. The model in which DRl serves as an RXR and 

peroxisome proliferator response element and a DR2 is a second retinoic acid response 

element, HREs for the vitamin D receptor (VDR), thyroid hormone receptor (TR), and 

retinoic acid receptor (RAR) are composed of DRs spaced by 3, 4, or 5 nt (i.e., DR3, 

DR4, and DR5, respectively) has been developed into a 1-5 rule, as reviewed by 

Mangelsdorf (Sporn et al., 1994) and Leid(Leid et al., 1992).  

    Nuclear receptors are phosphoproteins, and multiple receptor functions can be 

affected by phosphorylation in response to various types of effectors. The majority of the 

nuclear receptor phosphorylation sites lie within the amino-terminal A/B region; they 

can be complex and comprise up to 13 residues, as in the case of the progesterone 

receptor. Most of the modified residues are serines surrounded by prolines and therefore 

correspond to consensus sites for proline-dependent kinases. These include cyclin-

dependent kinases (CDKs) and mitogen-activated protein kinases (MAPKs). MAPKs 

can, independently of hormone, phosphorylate other sites in response to various signals, 

such as growth factors, stress or cytokines. The N-terminal A/B region also contains 

 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve&dopt=Graphics&list_uids=6256,6257,6258
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consensus phosphorylation sites for the kinase Akt, which is important in cell survival 

and proliferation. After translocation into the nucleus, Akt can phosphorylate nuclear 

receptors, such as estrogen receptor-α (ERα) and the androgen receptor, in their N-

terminal A/B region. In addition to the N-terminal domain, the ligand-binding domain 

(LBD) of nuclear receptors is also a target for ligand-independent phosphorylation, 

involving the proline-dependent kinases mentioned above. For example, retinoid X 

receptor α (RXRα) can be targeted by stress kinases (such as c-Jun N-terminal kinases). 

Other kinases, such as tyrosine kinases, can phosphorylate ERα and RXRα or protein 

kinase A (PKA) for retinoic acid receptors (RARs). Nuclear receptors can also be 

phosphorylated in their DNA-binding domain (DBD); examples include PKA acting on 

ERα, and protein kinase C (PKC) acting on RARα or the vitamin D receptor.  

    Nuclear receptors regulate diverse functions, such as homeostasis, reproduction, 

development and metabolism(Robinson-Rechavi et al., 2003; Gronemeyer et al., 2004; 

McEwan, 2004; Chambon, 2005; Evans, 2005). The physiological function of nuclear 

receptors was investigated by relating the expression profile of nuclear receptors in 

multiple tissues with the physiological function of the tissues in mice. The resulting data 

showed that the regulatory function of nuclear receptors form a hierarchy network 

governing two physiologic paradigms on an organismal scale: (1) reproduction, 

development, and growth and (2) nutrient uptake, metabolism, and excretion. Nuclear 

receptors governing reproduction, development, and growth include: The top regulatory 

group of SF1, DAX-1, and FXRβ; The secondary group of AR, ERα, ERβ, PR, RARα, 

RARγ, COUP-TFβ; TLX, COUP-TFα, REV-ERBα and β, RORα and β, ERRβ and γ; 

and the NR4A orphan receptors (NGFI-B, NOR1, and NURR1), TRα, MR, and LXRβ, 

RXRβ and RXRγ. Nuclear receptors governing nutrient uptake, metabolism, and 

excretion are predominantly expressed within the gastro/enterohepatic axis and key 

metabolic tissues (e.g., adipose and muscle). The uptake, metabolism and excretion 

receptors include FXRα, liver receptor homolog-1 (LRH-1), SHP, PXR and CAR, VDR, 

HNF4α and γ, RORγ; PPARα and PPARδ, ERRα, TRβ, RXRα, COUP-TFγ, TR2, and 

GCNF; PPARγ, LXRα, and GR, and PNR(Bookout et al., 2006). Studies on the temporal 
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expression profiles of nuclear receptors in adipose tissue, liver, and skeletal muscle of 

mice showed that of the 45 NRs expressed, 25 are in a rhythmic cycle and 3 exhibit a 

single transient pulse of expression 4 hr into the light cycle. This finding may may offer 

a logical explanation for the known cyclic behavior of lipid and glucose metabolism. It 

also suggests novel roles for endocrine and orphan receptors in coupling the peripheral 

circadian clock to divergent metabolic outputs(Yang et al., 2006). 

    Among nuclear receptors, PXR and CAR are responsible for xenobiotic metabolism 

regulation (Liddle and Goodwin, 2002; Moore et al., 2002; Wei et al., 2002; Willson and 

Kliewer, 2002; Honkakoski et al., 2003; Moore et al., 2003; Kretschmer and Baldwin, 

2005; Wagner et al., 2005). They are restrictly expressed in the metabolic tissues, the 

liver and intestines. PXR does not show obvious rhythmatic expression while CAR does 

show rhythmatic expression in mice. As xenosensors, PXR and CAR generally respond 

to different xenobiotics, and regulate different genes. However, there is also some 

overlap in the response and regulation of these receptors. 

    The aryl hydrocarbon receptor (AhR) belongs to the family of bHLH-PAS proteins. 

However, the AhR behaves much the same as the transcriptional activation of nuclear 

receptors. The AhR is a ligand-dependent transcription factor that regulates the 

expression of several drug-metabolizing enzymes and has been implicated in 

immunosuppression, teratogenesis, cell-specific hyperplasia, and certain types of 

malignancies and toxicities. AhR regulate xenobiotic metabolism by regulating the 

expression of genes of the drug metabolism enzymes such as CYP1 gene family. 

 

1.3.2 Pregnane X receptor 

PXR is a sensor for endogenous and xenobiotic compounds and a trans-regulator for 

the expression of many drug metabolism–related genes. The rodent PXR (Kliewer et al., 

1998) and its human homolog hPXR (Lehmann et al., 1998), also known as SXR 

(Blumberg et al., 1998) or hPAR (Bertilsson et al., 1998) were identified as xenobiotic 

receptors that can be activated by certain xenobiotic and endogenous compounds. The 

primary drug metabolism gene regulated by PXR is the cyp3a subfamily both in human 
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and mouse. Other genes that are regulated by PXR include multiple drug resistant genes 

such as MDR1 (Synold et al., 2001) and MRP2 (Kast et al., 2002) as well as genes 

involved in metabolism and transport of endogenous molecules. PXR/RXR can also 

interact with pathways regulated by other nuclear receptors such as the constitutive 

androstane receptor (CAR)/RXR by mutual binding to the consensus regulatory DNA 

sequences, thus forming a redundant, compensatory network for the metabolism and 

disposition of xenobiotic and endogenous compounds(Xie et al., 2000). 

    PXR is a member of nuclear receptor superfamily. Like most other nuclear receptors, 

PXR acts in three steps, repression, derepression and transcription activation. At  the 

repression step, apo-PXR recruits a histone-deacetylase-active (HDAC) corepressor 

complex silencing mediator of retinoid and thyroid hormone receptors (SMRT)(Johnson 

et al., 2006; Wang et al., 2006). Derepression occurs following ligand binding, holo-

PXR dissociates corepressor complex and recruits histone-acetylase-active (HAT) 

coactivator complex containing peroxisome proliferators-activated receptor gamma co-

activator 1α (PGC-1α) and steroid receptor coactivator-1 (SRC-1)(Watkins et al., 2003a; 

Bhalla et al., 2004; Khan et al., 2006). This complex results in chromatin decondensation, 

which is believed to be necessary but not sufficient for activation of the target gene. In 

the third step, the HAT complex dissociates and a second coactivator complex is 

assembled (TRAP/DRIP/ARC), which is able to establish contact with the basal 

transcription machinery, and thus results in transcription activation of the target 

gene(Robinson-Rechavi et al., 2003; Gronemeyer et al., 2004).  

    Regulation of PXR transcriptional activity can occur in many steps such as ligand 

binding activation, repression, derepression and transcriptional activation. PXR 

transcriptional activity is also regulated by other signaling pathways. The interaction 

between PXR and hepatocyte nuclear factor 4α (HNF4α) enhanced the PXR-activated 

CYP3A4 gene expression(Abdelrahim et al., 2006). The forkhead transcription factor 

FOXO1, an activator of gluconeogenic genes, co-activated PXR-mediated 

transcription(Kodama et al., 2004). The regulation of PXR transcriptional activity may 
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result in the change of PXR target gene expression and thus the alterations of 

physiological and pathological states of human individuals. 

    PXR gene locates at chromosome 3;3q12-q13.3. Dexamethasone and lithocholic acid 

in primary human hepatocytes(Pascussi et al., 2000a; Moore et al., 2002). Clofibrate, 

perfluorodecanoic acid, isoniazid, and troleandomycin have been shown to change PXR 

gene expression level in rat liver(Zhang et al., 1999). In the 5’ upstream regulatory 

sequence of PXR gene, A putative DNA/protein interaction sites for transcription factors 

such as HNFs, C/EBPα, and Sp1, and VDR, GRα, PRE, and PPARα was identified. This 

suggests that the PXR gene expression is potentially regulated by many different stimuli 

including xenobiotics and metabolites(Aouabdi et al., 2006). PXR gene expression is 

also activated by farnesoid X receptor in response to bile acids(Jung et al., 2006). Three 

alternatively spliced transcripts of PXR that encode different isoforms have been 

described, one of which encodes two products through the use of alternative translation 

initiation codons. Additional transcript variants have been derived from alternative 

promoter usage, alternative splicing, and/or alternative polyadenylation exist, Although 

these variants  have not been fully described (Bertilsson et al., 1998; Lehmann et al., 

1998; Dotzlaw et al., 1999; Gardner-Stephen et al., 2004). 

 

1.3.3 Constitutive androstane receptor 

    The primary target drug metabolism genes of CAR are in the cyp2b subfamily. The 

forkhead transcription factor FOXO1 also co-activated CAR-mediated 

transcription(Kodama et al., 2004). CAR inhibits HNF-4 activity by competing with 

HNF-4 for binding to the DR1 motif and to the common coactivators, GRIP-1 and PGC-

1α. Car also down-regulates key genes in hepatic lipid and glucose metabolism. Through 

regulation of distal enhancer PBREM and the proximal element OARE car is able to 

synergistically up-regulate the endogenous CYP2B6 gene in HepG2 cells. In this up-

regulation, CAR acts as both a transcription factor and a co-regulator: directly binding to 

and enhancing PBREM upon activation by xenobiotics such as TCPOBOP and indirectly 

associating with the OARE in response to okadaic acid. The cohesin protein SMC1 acted 
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as a CAR binding protein and a negative regulator of OARE activity, thus repressing 

synergy.  

    CAR acts in the same steps as PXR in the nucleus. CAR interacts with a number of 

coactivators and corepressors such as SRC-1, GR-interacting protein 1, Xenopus SRC-3, 

and PGC-1α. Unlike PXR which is primarily located in the nucleus, CAR is primarily 

located in the cytoplasm. CAR translocation can be triggered by either direct ligand 

binding to the receptor, or indirectly, via a partially elucidated signal transduction 

pathway. CAR exists in a complex with Hsp90, retained in the cytoplasm by the 

cochaperone CCRP. Indirect activators or the direct binding of ligands to CAR 

subsequently recruits PP2A to the complex. Once in the nucleus, further activation steps 

involving calmodulin-dependent kinase and recruitment of coactivators occur before 

DNA binding and transcriptional activation of target genes. Transcription coactivator 

PBP either enhances nuclear import or nuclear retention of CAR in hepatocytes, and that 

PRIP is redundant for CAR function. 

 

1.3.4 Aryl hydrocarbon receptor  

Studies on tissue distribution of the aryl hydrocarbon receptor (AhR) in developing 

and adult animals demonstrated that the AhR is expressed in a tissue-specific and 

developmentally specific manner. Also, the expression level of the AhR in culture cells 

varies more than 50-fold among cell lines. Although the mode of AhR action has been 

studied extensively, the events that control the expression of the AhR gene itself are 

poorly understood(Shimba et al., 2003). The DNA sequence coding AhR locates 

chromosome: 7; 7p15(Le Beau et al., 1994; Micka et al., 1997). The Ah receptor has 

primary sequence homology to its dimerization partner the AH receptor nuclear 

translocator, and to the Drosophila proteins Sim and Per. Characterization of the gene 

encoding the murine AH receptor (Ahr gene) reveals that its structural organization is 

also conserved with respect to the sim gene, since 6 of 11 Ahr exons are spliced at 

homologous sites. Interestingly, little splicing homology was observed between the Ahr 

and per genes. The promoter of the murine Ahr gene is GC-rich and contains no TATA 
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or CCAAT boxes. However, sequence analysis has shown several binding sites for the 

transcription factor Sp1 (GC boxes). A potential cAMP response element, AP-1 and E 

box sites, and two elements demonstrated in other genes to confer placenta-specific 

expression have been identified(Schmidt et al., 1993). The mouse Ahr gene 5' proximal 

promoter region contains four potential Sp1 motifs required for efficient basal 

expression(Fitzgerald et al., 1998). A region between -1431 and -721 represses 

constitutive promoter activity(Garrison and Denison, 2000). The sequence -378/-359 is 

core contributor to differentiation-dependent downregulation of AhR promoter 

activity(Shimba et al., 2003). The 27 bases located between position −197 to −170 of 

human AhR comprise elements relevant for basal expression. Sequence analysis 

revealed that this region contains putative binding sites for Sp1 and CREB. The 

functional relevance of the CREB-site was analyzed using dibutyryl-cAMP. However, 

the reporter gene activities were not significantly altered after dibutyryl-cAMP-

treatment. This result indicates that the CREB-site may have no functional 

relevance(Racky et al., 2004).  

Upon ligand binding, AhR is activated from a dormant state within the cytoplasm in 

association with a complex of HSP90, XAP2 and p23. This complex translocates into the 

nucleus and forms a heterodimer with ARNT protein in the nucleus by dissociating from 

the complex (Perdew, 1988; Pollenz et al., 1994; Hankinson, 1995; Safe and Krishnan, 

1995; Safe, 1995; Carver and Bradfield, 1997; Ma and Whitlock, 1997; Meyer et al., 

1998; Kazlauskas et al., 1999; Mimura and Fujii-Kuriyama, 2003; Fujii-Kuriyama and 

Mimura, 2005). The AhR/ARNT heterodimer can bind to XRE consensus sequence in 

regulatory region of target genes. This binding may or may not transactivate target gene 

expression, as our lab has shown Ahr/ARNT-XRE binding is necessary but not sufficient 

for transactivation(Tian et al., 2003). Transcription elongation is a critical step. Using 

chromatin immunoprecipitation assays, the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin 

(TCDD)-mediated recruitment of the aryl hydrocarbon receptor (AhR) and several co-

regulators to the CYP1A1 promoter was studied. AhR displayed a time-dependent 

recruitment, reaching a peak at 75 min and maintaining promoter occupancy for the 

 



 51

remainder of the time course. Recruitment of AhR was followed by TIF2/SRC2, which 

preceded CBP, histone H3 acetylation, and RNA polymerase II (RNAPII). Simultaneous 

recruitment to the enhancer and the TATA box region suggests the formation of a large 

multiprotein complex bridging the two promoter regions(Matthews et al., 2005). The 

signaling protein complex AhR/ARNT also interacts with other signaling proteins, such 

as estrogen receptors, COUP-TF(Klinge et al., 2000), retinoblastoma protein(Puga et al., 

2000), and crosstalk the other signaling pathways. Induction of CYP1A1 by the 

AhR/DRE has been considered as a paradigm for transcription, receptor regulation, and 

expanding biological roles. The AhR mediated transcription is tightly regulated through, 

at least, two mechanisms: (a) the cytoplasmic AhR interacts with hsp90 and an 

immunophilin chaperone AIP for proper folding and receptivity, and (b) the agonist-

activated, nuclear AhR is degraded through the ubiquitin-26S proteasome mediated 

protein turnover, such that the transcription by AhR is controlled at a physiologically 

adequate level(Ma, 2001). 

    AhR and its nuclear dimmerization partner ARNT belong to bHLH-PAS protein 

family(Fig. 2). 

 

 
Fig. 2. Functional and structural domains of AhR and ARNT(Wu et al., 2006). 

 

 



 52

    The AhR has been shown to regulate the expression of xenobiotic-metabolizing 

enzymes such as cytochrome P450. The primary drug metabolism related target genes of 

AhR include cyp1a1, cyp1a2 and cyp1b1 (Table 7). 

Cytochrome P450 1A1 (CYP1A1) is a member of the cytochrome P450 superfamily 

of enzymes. This protein localizes to the endoplasmic reticulum and its expression is 

induced by a broad range of xenobiotics including polycyclic aromatic hydrocarbons 

(PAHs). The enzyme's endogenous substrate is unknown; however, CYP1A1 is able to 

metabolize some PAHs to carcinogenic intermediates. Overexpression of CYP1A1 has 

been associated with increased lung cancer risk. A related family member, CYP1A2, is 

located approximately 25 kb from CYP1A1 on chromosome 15. CYP1A1 is considered 

to be involved mainly in oxidative metabolism of exogenous chemicals and drugs. 

Synthesis of this hemoprotein may be induced in liver, lung, and other tissues of 

experimental animals by the administration of xenobiotic chemicals. At least two kinds 

of cis-acting regulatory DNA sequences are localized 5' upstream of the gene. One 

sequence is distributed five times in a relatively wide range from -0.5 to -3.5 kb and 

functions as an inducible enhancer-designated xenobiotic responsive element or XRE. 

The other is localized just upstream of the TATA sequence and acts as a regulatory 

element for the constitutive expression. The two DNA elements are required for a high 

level of the inducible expression. Their cognate DNA binding factors are recognized in 

the nuclear extracts of Hepa-1 cells and rat liver cells which exhibit inducible expression 

of CYP1A1(Fujii-Kuriyama et al., 1992). 

 
Table 7  AhR target genes human cyp1 family 

genes cyp1a1 cyp1a2 cyp1b1 

location 15q22-q24 15q24 2p21 

Peptide length (aa) 512  516   543  

Basal level low constitutive Partly constitutive 

Inducibility ~1000 fold ~10 fold ~100 fold 
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    Cytochrome P4501A2 (CYP1A2) is a member of the cytochrome P450 family that is 

involved in phase I drug metabolism in vertebrates. Using 5'-end deletion analysis, two 

functionally important cis elements, i.e., a proximal 42-bp DNA from bp -72 to bp -31 

and a distal 259-bp DNA from bp -2352 to bp -2094, were identified in its 5' flanking 

region. The proximal sequence (bp -72 to -31) contained CCAAT and GC boxes, with 

which well characterized transcription factors such as nuclear factor-1/CCAT 

transcription factor and simian virus 40 promoter factor-1 could interact. With regard to 

the 259-bp fragment (bp -2352 to bp -2094), three protein binding sites within the 259-

bp fragment were identified by DNase I footprinting analysis; these sites contained 

activator protein-1, nuclear factor-E1.7, and one-half hepatic nuclear factor-1 (HNF-1) 

binding consensus sequences. These results suggested that the 259-bp DNA fragment 

contained positive regulator binding sites and HNF-1 could contribute to the liver-

specific expression of human CYP1A2(Chung and Bresnick, 1995). The protein encoded 

by the CYP1A2 gene localizes to the endoplasmic reticulum and its expression is 

induced by polycyclic aromatic hydrocarbons (PAHs). Other xenobiotic substrates for 

this enzyme include caffeine, aflatoxin B1, and acetaminophen. The transcript from this 

gene contains four Alu sequences flanked by direct repeats in the 3' untranslated region.  

    CYP1B1 localizes to the endoplasmic reticulum and metabolizes exogenous and 

endogenous substrates including such as polycyclic aromatic hydrocarbons and 17β-

estradiol. Mutations in this gene have been associated with primary congenital glaucoma; 

therefore it is thought that the enzyme also metabolizes a signaling molecule involved in 

eye development, possibly a steroid. Cytochrome P450 (CYP) 1B1 is known to be 

induced by polycyclic aromatic hydrocarbons including 2, 3, 7, 8-tetrachlorodibenzo-p-

dioxin (TCDD). The constitutive and TCDD-inducible transcriptional expression of 

human CYP1B1 is known to be cell-specific. Constitutive expression increased with the 

regulatory elements that are present at -910 to -852 and -1652 to -1243. Potential 

enhancer elements for TCDD-induction were located from -1022 to -852 including three 

XREs, XRE3 at -853, XRE4 at -940, and XRE5 at -989. Gel shift analyses revealed 

binding of the AhR/ARNT heterodimer to XRE2 at -834, XRE3 at -853, XRE6 at -1024, 
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and XRE7 at -1490. In addition, the binding of a nuclear transcriptional factor, Sp1, near 

XRE2 and XRE8 was observed. It was suggested that mutual interaction of XRE2 and 

XRE3 is important for transcriptional regulation, and that the Sp1 binding to the Sp1-

like motif (-824) enhances both the constitutive and inducible transcriptional activities of 

the human CYP1B1 gene(Tsuchiya et al., 2003). 

 

1.4 Cytochrome P450 3A4 

1.4.1 Enzyme characteristics 

    CYP3A4 is also a member of the cytochrome P450 superfamily of heme-containing 

enzymes(Negishi et al., 1996; Nelson et al., 1996; Nelson, 1999; Kanamura and 

Watanabe, 2000; Danielson, 2002; Nebert and Russell, 2002; Estabrook, 2003). The 

peptide of CYP3A4 enzyme consists of 503 amini acids (NP_059488) and the sequence 

of first 21 amino acids is thought to be the membrane localizing signaling peptide 

( NM_017460.3) ( EC 1.14.14.1, EC 1.1.1.161). CYP3A4 protein localizes to the 

endoplasmic reticulum. The cytochrome P450 proteins are monooxygenases which 

catalyze many reactions involved in drug metabolism and synthesis of cholesterol, 

steroids and other lipids. The metabolic pathways catalyzed by CYP3A4 enzymes 

include hydroxylation, dehydration, epoxidation, C- and N-oxidation, sulfooxidation, N-, 

S- and O-dealkylations, desulfation, deamination, and reduction of azo, nitro, and N-

oxide groups. (Li et al., 1995). CYP3A4 is responsible for the metabolism of a large 

variety of structurally unrelated xenobiotic and endogenous compounds. These 

substrates include drugs such as acetaminophen, codeine, cyclosporin A, diazepam and 

erythromycin. The enzyme also metabolizes bile acids, estrogens, environmental 

contaminants and procarcinogens (Mehmood et al., 1995; Yamazaki et al., 1995; 

Tsuchiya et al., 2005).  

    The CYP3A4 enzyme is the most actively expressed member of CYP3A subfamily 

which is the most abundant group among the cytochrome P450s in the liver. The CYP3A 

subfamily and consists at least 4 members, CYP3A4, CYP3A5, CYP3A7 and 

CYP3A43(de Wildt et al., 1999; Wrighton et al., 2000; Lamba et al., 2002; Stevens et al., 
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2003). CYP3A4 dominantly expresses and accounts for approximately 30-40% of the 

total cytochrome P450 content in both liver and intestinal epithelium (Kolars et al., 1994; 

Koch et al., 2002; von Richter et al., 2004). CYP3A4 is also expressed at lower levels in 

other extrahepatic tissues including adrenal gland, kidney, lung, duodenal tissue and 

prostate(Kivisto et al., 1996; Shimada et al., 1996; Anttila et al., 1997; Mace et al., 1998).  

 

1.4.2 Cytochrome P450 3A4 gene 

    The CYP3A4 gene is part of a cluster of cytochrome P450 genes on chromosome 

7q21.1 (Fig. 3). Previously another CYP3A gene, CYP3A3, was thought to exist; 

however, it is now believed that this sequence represents a transcript variant of CYP3A4. 

 

 

 
 

Fig. 3.  Schematic structure of the CYP3A locus and CYP3A4 gene. The GenBankTM entries that cover the 

locus are indicated at the top. Big arrows show direction of CYP3A genes, whereas small arrows denote 

CYP3A pseudogenes. Note that for the CYP3A genes only exons 1, 2, and 13 are shown (indicated by 

vertical lines and numbers) ((Finta and Zaphiropoulos, 2000; Finta and Zaphiropoulos, 2002) , 

GeneBankTM. 

     

CYP3A4 gene is a member of the CYP3A locus which is 231 kb long in chromosome 

7q21-22. The gene locus sequence contains four CYP3A genes and three 
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pseudogenes(Gellner et al., 2001). The four known cytochrome P450 3A genes in 

humans, CYP3A4, CYP3A5, CYP3A7, and CYP3A43, share a high degree of similarity, 

consist of 13 exons with conserved exon-intron boundaries (Fig. 3). Their intergenic 

mRNA molecules result from trans-splicing (Finta and Zaphiropoulos, 2000; Finta and 

Zaphiropoulos, 2002). 

 

1.4.3 Transcriptional regulation gene expression  

CYP3A4 gene expression is subjected to regulation by many factors. Many cis-

elements in 5’-flanking sequence of CYP3A4 gene have been identified and they are 

located mainly in four regions (Fig4). They can be bound with diverse transcriptional 

factors and regulate CYP3A4 gene expression. 

 

 
Fig. 4.  Factors directly regulate expression of CYP3A4 gene. 

 

In the promoter proximal regulatory element module, there are binding sites for Sp1, 

AP2, CCAAT/enhancer binding protein (C/EBPα), and hepatic nuclear factor-3 (HNF3),  

pregnane X receptor (PXR), and HNF3 binding sites, D site-binding protein (DBP), FXR, 
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VDR (-169 to -152), and CAR ( -150bp)(Ourlin et al., 1997; Goodwin et al., 1999; 

Goodwin et al., 2002; Rodriguez-Antona et al., 2003; Bombail et al., 2004; Gnerre et al., 

2004). At -5.95 kb a 288-bp sequence shows maximal response to C/EBPβ-LAP. 

C/EBPβ-LIP, the truncated form of C/EBPβ-LAP, antagonizes LAP activity and causes 

gene repression. Site-directed mutagenesis of predicted C/EBPβ binding sites 

demonstrated the presence of four functional C/EBPβ-responsive motifs within this 

distal flanking region(Martinez-Jimenez et al., 2005).  

    From -7.87 kb to -7.60 kb, there are many binding sites for nuclear receptors. -7719- 

to -7733 ( DR3) was identified as functional VDRE (Thompson et al., 2002). HNF4  

response element located between positions -7783 and -7771 that confers basal and 

maximal PXR and CAR-mediated transcriptional activation(Tirona et al., 2003). The 

region of -7836 to -7607 is responsible for rifampicin-induced CYP3A4 gene induction. 

Two sites, bases -7738 to -7715 and bases -7698 to -7682, overlapped binding motifs for 

the orphan human pregnane X receptor (hPXR). There is cooperativity between elements 

within the distal enhancer region and cis-acting elements in the proximal promoter of 

CYP3A4. This enhancer module is potent in mediating PXR-activated CYP3A4 gene 

expression(Goodwin et al., 1999). Region of -7870 to -7720 mediated CAR 

responsiveness. The human CAR response elements also mediate trans-activation of 

CYP3A4 by the human pregnane X receptor, suggesting that interplay between these 

receptors is likely to be an important determinant of CYP3A4 expression(Goodwin et al., 

2002). FXR regulates CYP3A4 gene expressionm through a 345-bp element (Gnerre et 

al., 2004).  

The constitutive liver enhancer module of CYP3A4 (CLEM4) is located from -11.4 to 

-10.5 kb of the CYP3A4 gene. Liver-enriched transcription factors HNF1α and HNF4α, 

E-box-binding protein USF1, and the Jun family member AP-1 which binds to a cAMP 

response element region interacted with CLEM4 and were required for the maximal 

enhancer activity(Matsumura et al., 2004). The CYP3A4 5'-flanking region is 35.8 kb 

long (Finta and Zaphiropoulos, 2000). There is a region of more than 20 kb upstream to 

CLEM4 that still needs to be characterized for cis-elements and trans-regulators. 
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1.4.4 Mediation of CYP3A4 gene expression by PXR 

    Among many nuclear receptors including PXR, CAR, HNF4α, VDR, GR and FXR 

which regulate CYP3A4 gene expression, PXR is a key regulator which bridges the 

signals of environmental and/or physiological molecules and transcriptional response of 

target genes. PXR is activated by a range of drugs known to induce CYP3A4 

expression(Lehmann et al., 1998). Without the mediation of PXR, the induction of 

CYP3A4 gene expression by xenobiotics is low(Goodwin et al., 1999).PXR is activated 

by a large number of endogenous compounds. As well as exogenous chemicals(Kliewer 

et al., 2002). Unlike other CYP3A4-regulating nuclear receptors that interact selectively 

with their specific ligands, the crystal structures of the PXR ligand binding domain 

interacting with ligands revealed that PXR has a large, flexible ligand-binding cavity that 

allows it to interact with a wide range of hydrophobic chemicals(Watkins et al., 2001; 

Ekins and Schuetz, 2002; Watkins et al., 2002; Watkins et al., 2003b).  

 

1.5 Objectives 

The objectives of this research include:  

    1. To investigate the role of NF-κB in the suppression of CYP3A4 gene expression 

under inflammatory conditions. 

2. To examine the role of the AhR in the regulation of CYP3A4 gene expression.  

    3. To investigate the ability of seleted xenobiotics to induce CYP3A4 gene expression 

through PXR. 

    The primary human hepatocytes were used for the gene expression study model and 

human heptoma cell line HepG2 was used for the molecular mechanism study model for 

its consistent and availability.  We also used mice as an in vivo model to investigate the 

drug metabolism gene expression on exposure to xenobiotic mixture. In the studies, 

quantitative real-time PCR and reporter gene assay were used to determine the gene 

expression. Techniques including co-immunoprecipitation, GST-pull down, and etc. 

were used to determine the physical interactions between proteins. Electrophoresis 
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mobility shift assay and chromatin imunnoprecipitation assay were employed to 

determine the interaction between nuclear factors and DNA. Other techniques such as 

small RNA interfering and transient transfection were also used. 

 

1.5.1 Role of NF-κB in the suppression of CYP3A4 gene expression under inflammatory 

conditions 

    Inflammatory responses and infections suppress the biotransformation of drugs and 

decrease the hepatointestinal capacity of drug clearance. This results in alterations of 

therapeutic indexes and increases the toxicity of certain administered drugs. 

Inflammatory responses also play important roles in liver pathological conditions such as 

drug-induced hepatitis and cholestatic diseases (Lehmann et al., 1987; Pirovino et al., 

1989). The mechanisms of these clinically important effects have not been well 

understood. It has been shown that most inflammatory cytokines induced during sepsis 

and aseptic responses lead to suppression of CYP3A4 gene expression(Abdel-Razzak et 

al., 1993; Muntane-Relat et al., 1995; Guillen et al., 1998; Jover et al., 2002; Hayney and 

Muller, 2003; Sunman et al., 2004).  

    The mechanisms of the suppression of CYP3A4 caused by inflammatory responses 

and infections have been investigated (Morgan, 1997; Renton, 2004). Several aspects of 

the transcriptional regulation may be involved including decreases of the PXR and RXR 

mRNA levels or induction of the C/EBPβ-liver inhibitory protein (LIP) which 

suppresses CYP3A4 through a distal flanking region (Martinez-Jimenez et al., 2005). It 

is likely that the modulation of transcriptional activation by several pathways leads to 

down-regulation of the PXR-regulated gene expression. Jover R, et al (2002) reported 

that down-regulation of CYP3A4 through translational induction of C/EBPβ-LIP, which 

competes with and antagonizes constitutive C/EBP transactivators(Jover et al., 2002). 

Pascussi JM (2000) reported that suppression of CYP3A4 expression resulted from the 

inhibition of PXR and CAR gene expression(Pascussi et al., 2000b). Beigneux and 

Feingold have observed that LPS treatment down-regulates the PXR mRNA levels in 

cells and animals (Beigneux et al., 2002), and this may potentially result in suppression 
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of CYP3A4 expression. Using PXR and PPARα deficient mice, Richardson and Morgan 

have shown that endotoxin caused about same levels of suppression of P450 in KO mice 

as in the wild type, suggesting nuclear receptors PXR and PPARα are not required for 

regulating the LPS-imposed suppression of the cytochromes P450 including CYP3As 

(Richardson and Morgan, 2005), at least in the animals whose P450s have not been 

induced by exogenous agents, suggesting nuclear receptors PXR and PPARα are not 

required for regulating the LPS-imposed suppression of the cytochromes P450 including 

CYP3As.  

We hypothesize that there may be immediate, early events at transcriptional level 

where the effects of the proinflammatory responses converge. One of the critical 

responses to acute infections and inflammations is the activation of NF-κB (Aggarwal, 

2004; Karin and Greten, 2005; Xiao and Ghosh, 2005), which has pleiotropic functions 

and has been shown to down-regulate the transcriptional activity of multiple 

steroid/nuclear receptors(McKay and Cidlowski, 1999). The NF-κB regulates innate as 

well as adaptive immune systems. One of the pivotal functions of NF-κB is its swift 

activation in response to LPS or proinflammatory cytokines, which is an evolutionally 

conserved defensive mechanism against infections. The classic NF-κB consists of p65 

(RelA) and p50 heterodimer and it is activated in response to various stimuli including 

LPS, TNF-α, dsRNA and UV. We will investigate the role of NF-κB in regulation of the 

transcriptional activity of PXR/RXRα complex in an attempt to address the mechanism 

of suppression of the CYP3A4 by LPS and proinflammatory cytokine TNF-α. The 

preliminary results reveal that NF-κB plays an important role in suppression of the 

PXR/RXRα-regulated gene expression by interfering with the binding of PXR/RXRα to 

the regulatory DNA sequences.  

 

1.5.2 Role of aryl hydrocarbon receptor in the regulation of CYP3A4 gene expression 

    The xenobiotics including environmental chemicals, pharmaceuticals, nutriceuticals, 

etc are ubiquitous. Human individual is commonly exposed to multiple xenobiotics. 

Single or multiple xenobiotics may regulate single or multiple gene expression through 
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single or multiple signaling pathways and modify the physiological or pathological states 

of the body. Both PXR and AhR are such signaling pathways. They are among major 

xenosensors, mainly responsing to different spectrum of xenobiotics and 

transcriptionally regulating different battery of genes, especially drug metabolism 

enzymes, such as CYP3A and CYP1 gene family, respectively.  

    Crosstalk between AhR and PXR pathways was reported to take place on the 

metabolism of omeprazole which is a well-known activator of the aryl hydrocarbon 

receptor (AhR). When PXR was activated by rifampicin and induced CYP3A4 

expression, CYP3A4 enzyme transformed omeprazole into omeprazole-sulphide which 

is a ligand of AhR, inhibits AhR activation to a DNA-binding form(Gerbal-Chaloin et al., 

2006).  

    To date, there has no report on modulation of PXR transcriptional activity by AhR. 

Our preliminary experiments showed AhR directly regulated PXR transcriptional 

activity. We would use methodology of specific ligands, protein-protein interaction and 

Protein-DNA interaction to investigate the direct regulation of PXR-mediated CYP3A4 

gene expression by AhR. 

 

1.5.3 Screening xenobiotics for inducers of CYP3A4 gene expression through PXR 

    Xenobiotics including drug, dietary supplement, cosmetics, pesticides, pollutants, etc 

are ubiquitous. The substrate range of CYP3A4 is wide(Li et al., 1995) and the ligand-

binding cavity of PXR is promiscuous for xenobiotics(Watkins et al., 2001; Ekins and 

Schuetz, 2002; Watkins et al., 2002; Watkins et al., 2003b), thus the ubiquitous 

chemicals might induce CYP3A4 through activating PXR and cause adverse interaction 

between xenobiotics(Dresser and Bailey, 2002; Mannel, 2004; Pal and Mitra, 2006). The 

knowledge of the inducibility of CYP3A4 gene expression will help protect individuals 

from harm caused by adverse xenobiotics interactions. To obtain such knowledge, we 

will use a cell-based PXR-mediated CYP3A4 gene expression model system to screen 

xenobiotics for CYP3A4 inducers through PXR. 
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CHAPTER II 

MATERIALS AND METHODS 

 

2.1 Chemicals and reagents 

    Oligonucleotides as the PCR primers, ER6, XRE, κB EMSA probe, the DNA 

modifying enzymes, and LipofectAMINE were from Invitrogen (Calsbad, CA). 

DULBECO’S modified Eagle’s medium were purchased from Invitrogen or HyClone 

(Logan, Utah), fetal bovine serum was from Atlanta Biologicals (Lawrenceville, Ga). 

Plasmid DNA purification kits were purchased from Sigma Chemical (St. Louis, Mo) and 

Qiagen (Valencia, CA). Rifampicin, lipopolysaccharide, hyperforin, α-naphthaflavone, β-

Naphthaflavone, 5-Pregnen-3β-ol-20-one-16α-carbonitrile (PCN), resveratrol were from 

Sigma Chemical. TCDD was a gift from Professor Stephen Safe ( Texas A&M 

University, College Station). Recombinant human TNF-α was obtained from Roche 

Applied Science (Indianapolis, IN). The human HepG2 cell line was purchased from 

American Type Culture Collection (ATCC, Manassas, VA).  

 

2.2 Plasmids 

pGL3-3A4-Luc. The reporter plasmid pGL3-3A4-Luc was constructed based on the 

literature via the following steps(Goodwin et al., 1999). First, the promoter module (-

362/+53)-containing DNA fragment was generated by PCR amplification using human 

genomic DNA as the template with the primers (5-CATTGCTGGCTGAGGTGGTT-3’ 

and 5’-CATAAGCTTTGTTGCTCTTTGCTGGGCTATGTGC-3’). The 1.13 kb PCR 

product was restricted with Bgl II and Hind III and the resultant 415 bp fragment was 

cloned into pGL3-basic vector (Promega) to yield pGL 3A4 (-362/+53). The DNA 

fragment corresponding to the XREM region (-7836 to –7208) (Goodwin et al., 1999) 

was generated by PCR with the Cyp3A4-3 oligonucleotides primers (5’-GGGGTACCAT 

-TCTAGAGAGATGGTTCATTCC-3’) and Cyp3A4-4 (5’ CCGCTCGAGATCTTCGT 
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CAACAGGTTAAAGGAG-3’), 5’ Kpn I site and 3’ Bgl II sites were created by 

restriction digestion. The Kpn I and Bgl II fragment was then inserted into the Kpn I and 

Bgl II-restricted pGL-3A4 plasmid to yield pGL3-3A4-Luc reporter gene. 

    pCI–hPXR and Flag-hPXR. The expression vector for hPXR, pCI–hPXR and Flag-

hPXR, were generated from the DNA fragment corresponding to the coding region of 

hPXR (amino acids 1 to 434) was generated by RT-PCR using total RNA from HepG2 

cells. For pCI-PXR, the PCR primers were 5-GGGAATTCCCACCAGGAGGTGAGAC 

CCAAAGAAAGCTGG-3’ and 5’-GGGGTCGACGCGGCCGCTCAGCTACCTGTGA 

-TGCCGAACA-3’; for Flag-PXR, the PCR primers were 5’-ATAAGAATGCGGCCGC 

CTGGAGGTGAGACCCAAAGA-3’, and 5’-CGGGATCCTCAGCTACCTGTGATGC 

CG-3’, were based on the published hPXR sequence(Lehmann et al., 1998). The PCR 

products was modified with EcoR I and Not I, or Not I and BamH I, and cloned into the 

pCI-neo vector (Promega) or p3XFLAG-myc -CMV-26 vector (Sigma). 

    Expression plasmids for hPXR and its domain deletion mutants: The expression 

plasmids for hPXR and its domain deletion mutants were constructed by subcloning the 

specific inserts into p3XFLAG-myc-CMV-26 vector (Sigma) with EcoRI/BamHI sites 

for overexpression and reporter gene assay, and subcloning into pGEX-5X-3 (Amersham 

Bioscience, GE Healthcare) with EcoRI/XhoI sites for preparing and purifying GST-PXR 

fusion proteins. 

    Expression plasmids for hRXRα and its domain deletion mutants: The expression 

plasmids for hRXRα and its domain deletion mutants were constructed by subcloning the 

specific inserts into pGEX-5X-3 (Amersham Bioscience, GE Healthcare) with 

EcoRI/XhoI sites for preparing and purifying GST-RXRα fusion proteins. 

    Expression plasmids for hAhR and its domain deletion mutants: The expression 

plasmids for hAhR and its domain deletion mutants were cloned into p3XFLAG-myc-

CMV-26 vector (Sigma) with HindIII/BglII sites for overexpression and reporter gene 

assays.  

    The information on the domain boundaries of PXR, RXRα and AhR has been 

described(Wu et al., 2006). 
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    The expression plasmids for human p65 (1-551aa) and p50 (1-433aa) were subcloned 

into pcDNA3.1/HisA (Invitrogen).  

    The reporter plasmid pGUD-luc 6.1 was from Professor Mike Denison (Davis, CA).  

 

2.3 Cell culture  

    Cell suspension of primary human hepatocytes was purchased from Cambrex 

BioScience (Walkersville, MD). Two 12-well plate of human primary hepatocytes came 

from two donors. The donor of the human hepatocytes for the study described in 3.1 was 

a 26 yr old male without heart disease or hypertension. Serological tests were negative 

for HIV-1/2, HBsAg, HCV, HTLV-1/II and RPR/Syphilis.  

    Upon arrival the cells were resuspended in DMEM containing 5% FBS , antibiotics, 4 

µg/ml insulin, and 1 µmol/L dexamethasone and plated in collagen-coated plate, then 

maintained in WEM containing ITS+ , 0.1 µmol/L dexamethasone and antibiotics 

overnight. Cells were then treated with DMSO, RIF, RIF+LPS and RIF+TNF-α. Twenty-

four hours after the treatment, cells were harvested, total RNA was then isolated and 

mRNA expression was determined by real time RT-PCR. 

    HepG2 and Hep1c1c7 cells were maintained in DMEM medium supplemented with 

10% fetal bovine serum (FBS) and 1% antibiotic-antimycotic (100 units/ml penicillin G 

sodium, 100 µg/ml streptomycin sulfate and 0.25 µg/ml amphotericin B) in 5% CO2 at 37 

°C.  

 

2.4  Experiments on mice 

    The dosing regimen in this study was similar to that described by Maher and 

coworkers(Maher et al., 2005) with modification. Eight-week old male mice (25 ± 2 g) 

were divided into 6 groups with 6 mice in each group. Mice were administered with 

chemicals in 0.5 ml corn oil (Sigma) intraperitoneal injection as indicated in Table 8 for 

4 consecutive days at 2:00pm. Livers were collected and flash frozen in liquid nitrogen 

and stored -80 °C. 
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Table 8 Dosing regimen for intraperitoneal administration 

No. Compound Dosing Regimen 

1 DMSO 50 µl/day (25-30g/per capita) 

2 PCN 50 mg/kg CO i.p. per capita/day 

3 TCDD 10 µg/kg CO i.p. per capita/day 

4 PCN+TCDD 50 mg/kg CO i.p. per capita/day 

10 µg/kg CO i.p. per capita/day 

5 β–NF 50 mg/kg CO i.p. per capita/day 

6 β–NF+ PCN 10 µg/kg CO i.p. per capita/day 

50 mg/kg CO i.p. per capita/day 

 

    Eight-week old male C57BL/6 mice (25 ± 2 g) were divided into 4 groups with 5 mice 

in each group. The groups of mice were administered with chemicals (Table 8) in 0.25 ml 

corn oil (Sigma) via intraperitoneal (ip) injection. Treatments 1-4 were administrered at 

2:00pm each day for 4 consecutive days. Livers were collected and weighed, then flash 

frozened in liquid nitrogen and store at -80 °C.  

 

2.5 Transient transfection and stabilization of transfectants in mammalian cells  

    Transient transfection: HepG2 or Hep1c1c7 cells were seeded in 12-well plates at 

approximately 40% confluence and after 24 hr cells were transfected using 

LipofectAMINE (Invitrogen) according to the protocol provided by Invitrogen. After 6 

hr transfected cells were treated with chemicals for 24 or 48 hr and cells were then 

collected and assayed for luciferase activity.  

    Stably-transfected cells:  After transient transfection with 3xFlag-hPXR or –hAhR into 

HepG2 or Cos-7 cells in 6-well plates, media were added and cells were incubated for 24 

hr. Cells were transferred to 10-cm plates and incubated for 24-48 hr, then digested with 

trypsin to make cells suspending and selected (neomycin 1mg/ml) for 7 days. The 

resistant cells were incubated with non-selecting media for 3-4 days, then incubated with 

selecting media for an additional 2-3 wk. Colonies were tested for expression and 

function of target genes using Western blot or immunocytochemistry and reporter gene 

assays. 
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2.6 Immunocytochemistry 

    Primary human hepatocytes was cultured in 24-well plates and treated with 5 μg/ml 

LPS or 2 ng/ml TNF-α for 1 hr. Cells were washed with cold PBS(3X), then fixed with 

fresh 4% formaldehyde in PBS for 10 min at room temperature. After washing with 

PBS(3X), cells were permeablized with 0.2% Triton X-100 for 10 min at room 

temperature. After again washing with PBS for 5 min (3X), cells were blocked with 5% 

bovine serum albumin in PBS/Tween20 for 1 hr at room temperature. Then primary 

antibody against p65 (Santa Cruz, sc-109X) diluted (1:500) in PBS/Tween20 was added 

and the reaction was incubated at room temperature for 1 h. After washing with 

PBS/Tween20 for 10 min(3X), secondary antibody conjugated with Alexa Fluo-568 

(Molecular Probe, A11011) diluted in PBS/Tween20 (1:1000) was added and incubated 

for 1 hr at room temperature. The cells were washed with PBS/Tween20 for 10 min(3X) 

and DAPI (Vector Laboratories, Inc. Burlingame, CA) was added to stain the cells. The 

images were visualized and representative views of the cells were recorded by 

fluorescence microscopy with an Olympus IX71 microscope.  

 

2.7 Reporter gene assays 

    After cells were treated with the desired chemicals the cells were then harvested to 

determine the activity using the luciferase Assay System (Promega). Results are 

expressed as means±SD or SE for at least 3 replicated experiments for each treatment 

group. 

 

2.8  Western blot analysis 

    Western blot analysis was performed on whole cell lysates from HepG2 cells. Cell 

lysates were prepared in 2xSDS loading buffer and heated at 95ºC for 5-10 min. Then 

centrifuged for 5 min at 16000 g. Proteins were resolved by electrophoresis in a 

denaturing SDS-PAGE 10% polyacrylamide and transferred to nitrocellulose (Bio Rad). 

Protein blots were blocked overnight at room temperature in 5% low-fat skim milk in 
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TBST buffer (Tris-buffered saline with 0.1% Tween 20 ). Immunoblot analysis was 

perform using primary antibodies (1ug:10000ul TBST) to the target proteins and the 

corresponding secondary antibodies (1 ul:10000ul TBST). Detection was performed 

using the chemiluminescence method (Perkin Elmer) or alkaline phosphatase substrate 

depending on the type of the conjugate on the secondary antibodies.  

 

2.9 GST pull-down  

    For studies on the physical interaction between RXRα and p65( Section 3.1), the GST-

pulldown assay was used essentially as described (Tian et al., 2003). [35S] -labeled full-

length p65 protein was generated with a TNT-coupled Reticulocyte Lysate System 

(Promega) using the T7 promoter-driven cDNA plasmid as the template. PCR-generated 

cDNA fragments of RXRα corresponding to the domains of RXRα were inserted into 

pGEX-5X-3, yielding the expression plasmids for GST-RXRα fusion peptides. The 

plasmids were expressed in E. coli (BL21), and fusion polypeptides were purified with 

the Glutathione-Sepharose 4B affinity matrix (Amersham Biosciences) according to the 

manufacturer's instructions. Ten micrograms of each fusion polypeptides (estimated by 

comparison with BSA in an SDS-PAGE gel with Coomassie staining) was incubated 

with 10 μl of radiolabeled p65 in a total of 250 μl binding reaction buffer (20 mM Hepes 

(pH 7.9), 1% Triton X-100, 20 mM DTT, 0.5% bovine serum albumin, and 100 mM KCl) 

for 2 h at 4°C. After incubation, the beads were washed five times with the same buffer 

lacking BSA. The bound proteins were eluted by boiling in the SDS-PAGE sample 

buffer, and resolved by 8% SDS-PAGE gel electrophoresis. The signals were detected by 

autoradiography.  

    For the studies on the physical interactions between PXR and AhR, RXRα and AhR 

(Section 3.2), the procedure was modified. [35S]-labeled full-length human AhR and its 

domain deletion mutants were generated with a TNT-coupled Reticulocyte Lysate 

System (Promega) using the T7 promoter-driven PCR products as the templates. 

Ethidium bromide (200 μg/ml) was added to the binding buffer as previously described 

(Lai and Herr, 1992). The serial washing buffers contained 20 mM Hepes (pH 7.9), 10% 
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glycerol, 200 mM KCl , 1% Triton X-100 ( or 1% NP40 wash twice, 0.2% NP40 or 

none), 3 mM EDTA, 10 mM DTT, 2 mM PMSF, ethidium bromide 200 μg/ml ( first 

wash step).  

 

2.10 Co-immunoprecipitation 

    The coimmunoprecipitation assays were based on a published procedure with some 

modifications (Tian et al., 1999; Tian et al., 2003). HepG2 stably expressing 3XFlag-

PXR were treated with DMSO (control), rifampicin (5 μM) and TCDD (10 nM) for 4 hr, 

and cells were washed with ice-cold phosphate-buffered saline (2X) and collected. Co-IP 

cell lysis buffer (20 mM Hepes, pH 7.4, 125 mM NaCl, 1% Triton X-100, 10 mM EDTA, 

2 mM EGTA, 2 mM Na3VO4, 50 mM NaF, 20 mM ZnCl2, 10 mM sodium 

pyrophosphate, 1 mM PMSF, 1 mm DTT, 5 µg/ml leupeptin) was added and incubate at 

0°C for 10-15 min. After centrifugation for 15 min at 12, 000 x g, supernatant fractions 

were collected and incubated with Staph A cells for 10 min. After centrifugation for 3-5 

min at 12000 g, the supernatant was incubated with G-plus Sepharose beads for 1 hr at 

4°C. An aliquot of the supernatant was centrifuged for 3 min at 5000 g and proper 

antibody pre-bound to 30 µl of G-plus Sepharose beads were added and incubated with 

gentle rocking at 4 °C for 2 hr on a rotary shaker. The beads were washed in lysis buffer 

(3X) and then boiled in 2x SDS sample buffer. The proteins were separated by 8% SDS-

polyacrylamide gel. Proteins on the gel were transferred to nitrocellulose membranes 

(BioRad) and the membranes were blocked with 5% bovine serum albumin in TBST 

buffer (20 mM Tris-HCL, pH 7.6, 137 mM NaCl, 2.68 mM KCl, 0.05% Tween 20), and 

incubated with appropriate primary antibodies at 37 °C for 60 min. Blots were washed 

with TBST (3X), then incubated with a 1:10000 dilution of immunoaffinity-purified goat 

anti-rabbit IgG linked to alkaline phosphatase. Blots were washed with TBST (3X) and 

subsequently developed using Western Blue substrate (Promega).  

 

2.11  Small interfering RNA  

Small interfering RNAs were synthesized using an siRNA Construction Kit (Ambion,  
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Austin) using the sequences summarized in Table 9. 

 
Table 9 Oligonucleotide sequences for small interfering RNAs 

Oligos Sequences 

hAhR-R1/R2 AAATCCTTCCAAGCGGCATAGCCTGTCTC 

AACTATGCCGCTTGGAAGGATCCTGTCTC 

hAhR-R3/R4 AAGGAGAATTCTTATTACAGGCCTGTCTC 

AACCTGTAATAAGAATTCTCCCCTGTCTC 

hAhR-R5/R6 AAGACATCAGACACATGCAGACCTGTCTC 

AATCTGCATGTGTCTGATGTCCCTGTCTC 

hAhR-R7/R8 AATGTCTTTACAGACTTACATCCTGTCTC 

AAATGTAAGTCTGTAAAGACACCTGTCTC 

mh-NGC-R1/R2 AATACTACGAGCTCGATACGCCCTGTCTC 

AAGCGTATCGAGCTCGTAGTACCTGTCTC 

S-GL2-R1/R2* AACGTACGCGGAATACTTCGACCTGTCTC 

AATCGAAGTATTCCGCGTACGCCTGTCTC 

S-AhR-R1/R2* AATACTTCCACCTCAGTTGGCCCTGTCTC 

AAGCCAACTGAGGTGGAAGTACCTGTCTC 

S-ARNT-R1/R2* AACCATCTTACGCATGGCAGTCCTGTCTC 

AAACTGCCATGCGTAAGATGGCCTGTCTC 

* The sequences were described previously(Abdelrahim et al., 2003). 

 

2.12  Real-time PCR 

For qPCR, total RNA samples were reverse-transcribed by using MMLV-reverse 

transcriptase (Invitrogen) and the cDNA samples were used for quantification by PCR. 

Amplifications were performed in the ABI Prism 7900HT (Applied Biosystems) by using 

SYBR Green Master Mix (Applied Biosystems). The PCR primers used are summarized 

in Table 10. 

 

2.13  Microarray assay 

    Six CodeLink Human Whole Genome chips were used in this study. Total RNA was 

extracted from primary human hepatocytes treated with DMSO, RIF (10μM), RIF (10μM) 
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+TNF-α (2ng), RIF (10μM)+LPS (5μg), TNF-α (2ng), LPS (5μg)for 24 hr using 

RNAeasy Kit (Qiagen). The RNA quality testing, hybridization and data acquisition were 

performed in The CERH Genomic Facility Core (Texas A&M University). Data 

clustering was performed by the CERH Biostatistics and Bioinformatics Facility Core 

(Texas A&M University). 

 
Table 10 Primer pairs for quantative real-time PCR 

Target Forward Reverse 

hPXR* GGCCACTGGCTATCACTTCAA TTCATGGCCCTCCTGAAAA 

hRXRα* TCAATGGCGTCCTCAAGGTC TTGCCTGAGGAGCGGTCC 

hCYP3A4** CCACAAAGCTCTGTCCGATCT GAACACTGCTCGTGGTTTCACA 

hCYP1A1*** CAAATGCAGCTGCGCTCTT CCCAACCAGACCAGGTAGACA 

h β-actin** CCATCGAGCACGGCATC ATTGTAGAAGGTGTGGTGCCAGA

* primer pairs were previously described(Nishimura et al., 2004); 

** primer pairs were previously described (Gu et al., 2006); 

*** primer pair were previously described (McFadyen et al., 2003). 

 

2.14  EMSA assay 

    Human PXR and human RXRα polypeptides were generated by in vitro transcription 

coupled to translation using TNT coupled Reticulocyte Lysate System (Promega, 

Madison, I). Oligonucleotides used for EMSA were the ER-6 consensus sequences in 

CYP3A4 promoter region as described (Xie et al., 2000) taTGAACTcaaaggAGGTCAgt 

with 5’ overhang gg. The double-stranded oligonucleotide was labeled with [α-32P] dCTP 

using Klenow enzyme (USB, Cleveland, Ohio). For EMSA assays, PXR and RXRα, 

recombinant p50 (Progema) and p65 (produced by baculoviral expressions) in various 

combinations were incubated for 30 min in a reaction mixture containing 40 mM KCl, 

1 mM MgCl2, 0.1 mM EGTA, 0.5 mM dithiothreitol, 20 mM Hepes, pH 7.9, and 4% 

Ficoll (400 K) and ~30000 cpm of radiolabeled double-stranded oligonucleotide probe. 

After incubation for 30 min, at room temperature, the reaction mixtures were separated 

by electrophoresis in 4.5% nondenaturing polyacrylamide gel using ¼ TBE buffer. The 

results were recorded by autoradiography.  
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2.15  Chromatin immunoprecipitation assay 

    The ChIP assay was based on a published procedure with modifications(Tian et al., 

2003). HepG2 cells were transfected with 3XFlag-tagged PXR and pGL3-3A4-Luc and 

were maintained in 10-cm plates under standard cell culture conditions. At 95% 

confluence formaldehyde was added directly to tissue culture media to a final 

concentration of 1% for cross-linking, and the plates were incubated for 15 min at room 

temperature on a rocker. The cross-linking reaction was stopped by adding glycine to a 

final concentration of 0.125 M. The plates were incubated at room temperature for 5 min. 

The plates were then rinsed with ice-cold PBS (2X). The cells were scraped off the plates 

and collected into 50-ml conical tubes by centrifugation (600 g for 5 min at 4 °C), and 

the pellet was washed with phosphate-buffered saline containing 1 mM PMSF and 

resuspended in 2 ml of cell lysis buffer (5 mM PIPES, (pH 8), 1 mM EDTA, 0.5 mM 

EGTA, 85 mM KCl, 0.5% Nonidet P-40, 1 mM PMSF, 1 mM DTT, and 5 µg/ml each of 

leupeptin and aprotinin), and incubated for on ice for 10 min. The cells were 

homogenized on ice using a B type pestle by douncing 200 times to aid the release of 

nuclei. The nuclei were collected by centrifugation (5000 x g for 10 min at 4 °C) and 

then resuspended in nuclei lysis buffer (50 mM Tris-HCl, pH 8.1, 10 mM EDTA, 0.5 

mM EGTA, 1% SDS, 1 mM PMSF, 1 mM DTT, 5 µg/ml each of leupeptin and aprotinin) 

and incubated again on ice for 10 min. The samples were sonicated into DNA fragments 

of 0.5–1.5 kbp (checked by agarose gel electrophoresis/ethidium bromide staining) and 

microcentrifuged at 16000 x g for 10 min at 4 °C. The supernatant was cleared by 

incubation with Staph A cells (2.5 µg/per sample, Roche Applied Science) for 15 min 

and AG beads for 30-60 min sequentially at 4 °C on a rotating platform. The supernate 

was aliquoted after centrifugation at 12, 000 x g for 5 min to the clean tubes. Appropriate 

antibodies (1 µg each) were added to the aliquots and then 25 µl of precleared 50% 

protein A/G beads (Amersham Biosciences) was added. The final volume of each sample 

was adjusted to no more than 500 µl with the same amount of IP dilution buffer (0.01% 

SDS, 1.1% Trition X-100, 1.2 mM EDTA, 16.7 mM Tris-Cl, pH 8.1, 167 mM NaCl, 100 
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µg/ml sonicated salmon sperm DNA) as the nuclei lysis buffer. The mixtures were 

incubated on the rotating platform at 4 °C, overnight. After incubation and collecting the 

beads by centrifugation at 5000 g for 1 min in a microcentrifuge, and pellets were 

washed with 1 ml of 1x Dialysis buffer (2 mM EDTA; 50 mM Tris-Cl, pH 8.0;) with 100 

µg/ml sonicated salmon sperm DNA, with 1x dialysis buffer (2X) and with 1 ml of IP 

Wash buffer (100 mM Tris-Cl, pH 9.0, 500 mM LiCl, 1% Nonidet P-40, 1% deoxycholic 

acid) (3X) for 10 min. After washing, 200 µl of PK digestion buffer (50 mM Tris, pH8.0, 

1 mM EDTA, 100 mM NaCl, 0.5% SDS, 100 mg/ml proteinase K) was added to each 

sample, and the reaction mixture was incubated at 55 oC for 3 hr and then at 65 oC for 6 

hr to reverse the cross-linking. The sample was extracted once with phenol-chloroform-

isoamyl alcohol and precipitated with ethanol in the presence of 20 µg of glycogen 

overnight. The precipitated pellets were collected by centrifugation at 14000×g in a 

microcentrifuge and the pellets were resuspended in 20 µl of TE buffer. Aliquots from 

each tube were amplified by PCR and PCR products were separated by 1.2% agarose gel 

electrophoresis and visualized by ethidium bromide staining. The PCR primer pairs were 

5’-TTGGACTCCCCAGTAACATTG-3’ and 5’-TGCATGGAGCTTTCCTGC-3’, for 

amplifying the CYP3A4 promoter region, and 5’-ACTCATGTCCCAATTAAAGGTC-3’ 

and 5’-TGTTCTTGTCAGAAGTTCAGC-3’, amplifying the enhancer module. 

 

2.16  Statistics 

    Discriptive statistics such as mean, standard deviation, standard error, and analytic 

statistics such as student t test were performed. 
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CHAPTER III 

RESULTS 

 

3.1 Role of NF-κB in regulation of PXR-mediated gene expression: a mechanism for the 

suppression of cytochrome P450 3A4 by proinflammatory agents* 

3.1.1 Suppression of PXR-mediated gene activation by LPS and TNF-α in human liver 

cells 

The effects of LPS and TNF-α on the expression of PXR, RXRα and CYP3A4 were 

investigated in primary human hepatocytes by quantitative real time PCR. Treatment of 

hepatocytes with the prototypical human PXR agonist RIF resulted in a 34-fold increase 

in CYP3A4 mRNA, and the RIF-induced CYP3A4 mRNA levels were suppressed by 

more than 50% and 90% after co-treatment with either TNF-α (2 ng/ml, 24 hr) or LPS (5 

μg/ml, 24 hr), respectively (Fig. 5A). In contrast, PXR mRNA levels were unchanged by 

TNF-α treatment, and there was approximately a 30% decrease in hPXR mRNA in LPS 

treated samples (Fig. 5B). RXRα mRNA levels were not significantly changed after 

treatments with either LPS or TNF-α alone (Fig. 5C). Activation of NF-κB by LPS or 

TNF-α was confirmed by immunocytochemistry for p65 nuclear translocation (Fig. 5D). 

The RNA samples were also analyzed by microarray profiling and the results were 

consistent with those obtained by quantitative PCR, with respect to the changes of PXR, 

RXRα levels and the suppression of CYP3A4 by LPS or TNF-α (data not shown). 

To further investigate the effects of proinflammatory agents on the transcriptional 

activity of PXR and to avoid the donor variability in PXR-regulated genes in the human 

primary hepatocytes, we constructed the luciferase reporter gene driven by PXR 

responsive enhancer modules for determining the PXR-regulated gene expression in a  

 
 
*Partially reprinted with permission from “Role of NF-kappaB in regulation of PXR-mediated gene 
expression: a mechanism for the suppression of cytochrome P-450 3A4 by proinflammatory agents.” by 
Gu et al., 2006. J. Biol. Chem., Vol. 281, Issue 26, 17882-17889. Copyright © 2006 by the American 
Society for Biochemistry and Molecular Biology. 
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human hepatoma cell line (HepG2) (Fig. 6A) (Goodwin et al., 1999). HepG2 cells were 

transiently co-transfected with pGL3-3A4-Luc and hPXR expression plasmids pCI-

hPXR. The transfected cells were then co-treated with RIF and LPS or RIF and TNF-α.  

 

 
Fig. 5. The effects of LPS and TNF-α on RIF-induced CYP3A4, and PXR and RXRα mRNA levels in 

primary human hepatocytes. Primary human hepatocytes were treated with either RIF or cotreated with 

LPS (5 μg/ml) or TNF-α (2 ng/ml) for 24 hr. The total RNA was isolated and relative mRNA levels of 

CYP3A4, PXR, and RXRα were quantified by real time RT-PCR. Changes of CYP3A4, PXR and RXRα 

mRNA were normalized with β-actin (housekeeping gene) and presented in (A), (B), and (C), respectively. 

# and *, statistically significant difference (p<0.01 and p<0.05, respectively) compared with RIF treatment. 

The data are given as means ± S.D. of three independent real-time PCR experiments. (D) Nuclear 

translocation of p65 indicated activation of NF-κB as determined by immunocytochemical staining with 

an antibody against p65.  

 

    TNF-α and LPS caused significant suppression of the induced luciferase activity (Fig. 

6B), and this is consistent with results obtained from the primary human hepatocytes 

 



 75

(Fig. 5). These data also confirmed the utility of the HepG2 cell culture model for 

analysis of PXR-regulated transcription. 

 

 
 
Fig. 6. Suppression of PXR-mediated CYP3A4 reporter gene expression by LPS and TNF-α. (A) 

Luciferase reporter gene pGL3-3A4-Luc and human PXR expression plasmids used for analysis of PXR-

regulated gene expression. The pGL3-3A4-Luc contained the distal upstream enhancer module XREM 

and was constructed as previously described (Goodwin et al., 1999). (B) Suppression of PXR-mediated 

pGL3-3A4-Luc luciferase reporter gene activity by TNF-α and LPS. HepG2 cells were transiently co-

transfected with pCI-hPXR and pGL3-3A4-Luc reporter plasmids, and after 6 hr, the transfected cells 

were co-treated with either RIF + TNF-α or RIF + LPS for 24 hr, respectively. The luciferase activity was 

assayed 48 hr after the treatments. # and *, statistically significant differences (p<0.01 and p<0.05, 

respectively) compared with RIF treatment are indicated. All data are given as means ± S.D. of three 

independent experiments. 
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3.1.2 NF-κB plays a critical role in down-regulation of CYP3A4 gene expression by 

inflammatory mediators 

    NF-κB is an immediate early gene, which is activated in response to infection, and 

various stress stimuli. NF-κB plays a pivotal role in mediating the pathological effects of 

TNF-α and LPS. It has been demonstrated that NF-κB regulates several nuclear/steroid 

hormone receptors through physical and function interactions, resulting in 

transrepression of the genes regulated by these receptors (refs). To test the role of NF-κB 

in mediating the suppression of PXR-dependent transcriptional activity, we first 

transiently co-transfected NF-κB p65 with PXR-driven luciferase reporter gene in 

HepG2 cells. Co-expression of NF-κB p65 potently suppressed PXR-driven luciferase 

reporter gene activity, suggesting a role for NF-κB in mediating the suppressive response 

(Fig. 7). To further demonstrate that NF-κB is specifically involved in the suppression of 

CYP3A4 expression, we co-expressed the NF-κB super repressor, SRIκBα, in transient 

transfection assays and analyzed the the effects of TNF-α and LPS on NF-κB-dependent 

inhibitory effects in the treated cells. SRIκBα is a mutant of IκBα with a serine to alanine 

mutation at residues 32 and 36. These mutations render IκBα risitant to phosphorylation 

at serines 32 and 36, and to degradation by the proteosome pathway, thus causing 

constitutive inhibition of NF-κB. In transient transfection assays, HepG2 cells were co-

transfected with plasmids that express PXR, pGL3-3A4-Luc reporter genes and 

increasing amounts of SRIκBα expression plasmid. As expected, activation of NF-κB by 

either TNF-α or LPS caused suppression of the reporter gene activity. However, LPS or 

TNF-α induced suppression of pGL3-3A4-Luc was reversed by coexpression of SRIκBα 

(Fig. 7), indicating that NF-κB activation is directly responsible for the suppression of 

the PXR-regulated gene expression. 
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Fig. 7. NF-κB activation is responsible for the suppression of PXR-regulated gene expression by 

inflammatory agents. HepG2 cells were seeded in 12 well plates, and the cells were transiently co-

transfected with plasmids of pCI-hPXR (μg), pGL3-3A4-Luc (μg). The transcriptional activity of PXR 

was either suppressed by co-expression with p65 or treated with LPS or TNF-α. HepG2 cells were co-

transfected with SRIκBα as indicated. The cells were harvested 48 hr after the TNF-α or LPS treatment for 

determination of luciferase activity. # and*, statistically significant difference (p<0.01 and p<0.05, 

respectively) compared with RIF treatment; **, statistically significant difference (p<0.05) compared with 

corresponding treatment without transfection of SRIκBα . All data are given as means ± S.D. of three 

independent experiments. 

 

3.1.3 NF-κB regulates PXR transcriptional activity by disrupting the association between 

PXR/RXRα complex and DNA regulatory sequences 

    It has been shown that NF-κB regulates the transcriptional activity of steroid hormone 

receptors through direct protein-protein interaction. Na et al. reported that NF-κB 

directly interacted with RXR (Na et al., 1999). The association of NF-κB with nuclear 

receptors may potentially have a functional impact on the transcriptional activity of the 

PXR/RXR complex. One possible effect is that the binding of p65 with RXRα may 
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interfere with the formation of the enhancersome consisting of the PXR/RXR complex 

and consensus promoter DNA sequences. To test this hypothesis, we performed 

electrophoretic mobility shift assay (EMSA). PXR and RXRα proteins were generated 

through in vitro transcription coupled to translation. PXR and RXRα individually did not 

bind the ER6 probe, however, a combination of both proteins bound the radiolabeled 

ER6 probe (Fig. 4, compare lanes 2, 3 with lanes 5 and 6). Addition of the recombinant 

p65 protein, disrupted the PXR/RXRα binding to the consensus ER6 sequence (Fig. 8, 

compare lane 5 with lanes 10 and 11). Interestingly, disruption of DNA binding by p65 

could be reversed upon addition of p50 protein which is a cognate p65 partner and is 

known to negatively regulate p65 activity (Fig. 8, compare lane 10 with lane 12). As 

expected, addition of BSA had no effects (compare lanes 5 with 7) on retarded band 

formation, suggesting the p65 disrupted PXR/RXRα complex binding to DNA in this 

assay.  

 
Fig. 8. The effects of NF-κB proteins on the association of PXR/RXRα complex with the consensus DNA 

sequence determined by EMSA. PXR and RXRα proteins were generated by in vitro transcription coupled 

with translation and 1 μl each (lane 5) or 2 μl each (lane 6) of the translated products was incubated with 

30000 cpm radiolabeled consensus DNA sequence (ER6). The effects of p65 on the PXR/RXRα complex 

were tested by co-incubation of PXR/RXR complex with increasing amount of recombinant p65 (1 and 3 

μl, containing approximately 5 ng/μl) for 30 min (lanes 10 and 11). The disruptive effects of p65 as 

indicated in lane10 could be reversed by co-incubation with 1 μl p50 (Promega CAT # E3770) (lane 12). 

BSA was used as the negative control (lanes 7 and 8). The protein-DNA complexes were separated by 

non-denaturing 4% polyacrylamide gel electrophoresis and results were determined by autoradiography. 
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Fig. 9. NF-κB p65 interacts directly with the RXRα DNA binding domain. A. schematic illustration of the 

domains of RXRα (Bairoch et al., 2005) and deletion mutants used for GST pulldown assays. B. GST pull-

down analysis of the domains of RXRα that interact with p65. In lanes 1-6 the radiolabeled p65 was 

incubated with various recombinant GST-RXRα fusion peptides as indicated in A. Lanes 9 and 10 are the 

input controls with 1/10 of the radiolabeled p65 and luciferase, respectively. Lane 7 was the full length 

GST-RXRα pull-downed luciferase (negative control). After washing the p65 associated with the GST-

RXRα fusion peptides was separated by SDS-PAGE and radioactivity was detected by autoradiography. 

 

    The results of EMSA are consistent with the hypothesis that association between 

RXRα and p65 prevents RXRα binding to DNA sequences. To further analyze the 

interaction between RXRα and p65, we mapped the domains of RXRα responsible for 

association with p65 using a GST-pulldown assay. The known functional modular 

domains were fused with GST in various combinations (Fig. 9A) and p65 was 

radiolabeled by in vitro transcription coupled translation in the presence of [35S]-

methionine. Interestingly, the DNA binding domain (domain C, amino acid 135-200) is 
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critical for mediating RXRα-p65 interactions, since domain C and fusion peptides that 

contain domain C all interacted with the radiolabeled p65, whereas fragments that do not 

contain domain C did not associate with p65. The p65 association with the RXRα DNA 

binding domain may generate steric hindrance, that inhibits RXRα binding to DNA, thus 

resulting in inhibition of gene expression.  

    To further test this hypothesis in vivo, we performed a ChIP assay on HepG2 cells 

transfected with Flag-tagged PXR. LPS and TNF-α treatments as well as transient co-

expression of p65 significantly decreased the association of RXRα with the regulatory 

regions of the CYP3A4 supporting the hypothesis that NF-κB interfered with binding of 

the PXR/RXRα complex to CYP3A4 regulatory sequences, thereby inhibiting the PXR-

dependent gene expression (Fig. 10). 

 
Fig. 10. Effects of NF-κB activation on the associations of PXR and RXRα with the regulatory regions of 

CYP3A4 determined by the chromatin immunoprecipitation (ChIP) assay. HepG2 cells were co-tansfected 

with 3xFlag-tagged hPXR (Fig. 5A) and pGL3-3A4-Luc. NF-κB was activated by either cotransfection 

with p65 (0.5 μg/ml) or treatment of the cells with LPS or TNF-α. The cells were cross-linked with 

formaldehyde and association of Flag-tagged PXR, RXRα with DNA sequences were determined by ChIP 

assay. The regions of PCR amplification were indicated in the lower panel. 

 



 81

3.1.4  Other PXR-regulated genes suppressed by proinflammatory agents 

    We also showed that TNF-α and LPS inhibited expression of on the other PXR-

mediated genes in primary human hepatocytes using a microarray assay and 

confirmation of induced mRNAs was determined by quantitative real-time PCR. TNF-α 

and LPS both suppressed basal and PXR-induced gene expression of MDR1, CYP2B6, 

CYP2C8, CYP2C9 and EPHX1 (Table 11). Results suggested that  

 
Table 11 PXR-induced genes are suppressed by proinflammatory agents (fold induction) 

Genes DMSO RIF 
RIF 

+TNF-α 

RIF 

+LPS TNF-α LPS 

MDR1 1.00 2.70 2.38 1.99 0.94 0.77 

CYP2B6 1.00 6.73 5.81 1.54 0.46 0.40 

CYP2C8 1.00 2.30 1.57 0.13 0.11 0.02 

CYP2C9 1.00 3.22 2.84 0.74 0.42 0.28 

EPHX1 1.00 2.38 1.55 0.49 0.73 0.40 

 

3.1.5  Role of PXR in regulation of NF-κB transcriptional activity 

    Using a p65-activated NF-κB responsive pHIV-Luc reporter gene, HepG2 cells were 

cotransfected with PXR and treated with the PXR ligand rifampicin. We observed that 

PXR suppressed NF-κB p65 transcriptional activity in a ligand-dependent manner ( Fig. 

11).  

 
Fig. 11. PXR regulated NF-κB transcriptional activity 
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    We further detected physical interactions between PXR and p65 using GST pull-down 

assay. Result of this assay showed that C, D and E/F domain interacted with p65 (Fig. 

12).  
 

 
Fig. 12. PXR physically interacts with p65 as determined in a GST pull-down assay. A. schematic 

illustration of the domains of PXR (Bairoch et al., 2005) and deletion mutants used for GST pulldown 

assays. B. GST pull-down analysis of the domains of PXR that interact with p65. In lanes 1-6 the 

radiolabeled p65 was incubated with various recombinant GST-PXR fusion peptides as indicated in A. 

Lanes 9 and 10 are the input controls with 1/10 of the radiolabeled p65 and luciferase, respectively. Lanes 

7 and 8 showed the negative control by using the N-terminal and C-terminal of GST-PXR pull-downed 

luciferase. Lane 12 was the control for GST protein. After washes the p65 association with the GST-PXR 

fusion peptides was determined from separation by SDS-PAGE and by autoradiography to detect the 

radiolabeled peptide. 
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3.2 Cross talk between AhR and PXR pathways at transcriptional level 

3.2.1  Crosstalk between AhR- and PXR-dependent gene expressions in mice 

3.2.1.1 AhR agonists enhanced PCN-induced PXR target gene expression  

    Mice were treated with a combination of PCN, TCDD, β-NF as indicated (Figs. 13-17) 

and the results showed that PCN induced Cyp3a11 gene expression by about 2-fold and 

both TCDD and β-NF suppressed basal Cyp3a11 gene expression. TCDD significantly 

enhanced PCN-induced Cyp3a11 gene expression by 26% (P<0.05), whereas β-NF had 

no significant effect on PCN-induced Cyp3a11 gene expression (Fig. 13).  

 

 
Fig. 13. Effects of PCN, TCDD, β-NF and their combinations on Cyp3a11 gene expression in mice. 

Chemicals at the indicated doses were administered i.p. injection daily for four days (i.e. PCN 

50mg/kg/day) and 24 hr after the last dose, animals were sacrificed, the livers were removed and frozen in 

liquid nitrogen and stored in -80oC. Total RNA was extracted with Trizol. The relative mRNA levels were 

tested by quantitative real-time PCR. *, p<0.05, compared with the group of PCN treatment. 

 

Table 12 Induction of Gsta1 gene expression by ligands. 

Treatment Mean ± SE 

DMSO 1.00 

PCN 11.8 ± 2.2 

TCDD 2.8 ± 0.7 

PCN+TCDD 42.9 ± 11.1* 

β-NF 3.7± 0.9 

PCN+β-NF 16.9 ± 2.1 

* P<0.05, compare with the sum of the fold induction by PCN and TCDD treatment. 
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    PCN, TCDD and β-NF alone induced mouse Gsta1 gene expression, thus PCN is a 

major inducer, and TCDD or β-NF is minor inducer for Gsta1. co-treatment with PCN 

and TCDD cause synergistic induction of Gsta1 ( P<0.05), compared with the sum of the 

induction of Gsta1 by PCN and TCDD alone; co treatment with PCN and β-NF cause 

enhanced induction, compared with the level of the induction of Gsta1 by PCN (Table 

12, Fig. 14A). Compare with the induction of Gsta1 gene expression by the combination 

of PCN, TCDD and β-NF, the pattern of induction and the induction level of Ugt1a1 is 

slight, although co-treatment of PCN and TCDD or β-NF has a raised induction by 

comparison of treatment of single chemical (Fig. 14 B). 

 
Fig. 14.  Effects of combination of PCN, TCDD and β-NF on Gsta1 and Ugt1a1 gene expression in mice. 

Chemicals with indicated dosage were administrated i.p. in four days ( i.e.PCN 50mg/kg/day). Twenty-

four hours after last dose, the livers were collected snap-freezed in liquid nitrogen, stored in -80C. Total 

RNA was extracted with Trizol. The relative mRNA levels were tested by quantitative real-time PCR. *, 

p<0.05 (A), 0.01 (B), compared with the group of PCN treatment. #, p<0.05, compared with the group of 

TCDD or β-NF treatment. 
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Treatment of PCN, TCDD and β-NF alone suppressed transporter Mdr1 and Oatp2 gene 

basal expression. Co-treatment of PCN and TCDD or β-NF raised the induction level, 

compared with single chemical treatment ( Fig. 15). 

 

 
Fig. 15.  Effects of combination of PCN, TCDD and β-NF on Mdr1 and Oatp2 gene expression in mice. 

Chemicals with indicated dosage were administrated i.p. in four days ( i.e.PCN 50mg/kg/day). Twenty-

four hours after last dose, the livers were collected snap-freezed in liquid nitrogen, stored in -80C. Total 

RNA was extracted with Trizol. The relative mRNA levels were tested by quantitative real-time PCR. *, 

**, p<0.05, compared with the group of TCDD treatment. #, ##, p<0.05, compared with the group of β-NF 

treatment.  

 

3.2.1.2  PXR agonists suppressed TCDD- and β-NF-induced AhR target gene expression  

    When treat mice with combination of PCN, TCDD, β-NF as indicated (Figs.13-17), 

we checked the expression levels of AhR target genes Cyp1a1, Cyp1a2 and Cyp1b1. 
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Results showed that TCDD induced the Cyp1a1, Cyp1a2 and Cyp1b1 gene expression, 

co-treatment of PCN suppressed insignificantly TCDD-induced Cyp1a1 gene expression 

by 9%, significantly enhanced TCDD-induced Cyp1a2 gene expression in 1.3 fold 

(P<0.001), and significantly suppressed TCDD-induced Cyp1b1 gene expression by 

about 20% (P<0.05) (Table 13) ( Fig. 16 ).  

 
Fig. 16. Effect of the combination of PCN, TCDD, β-NF on AhR target genes in mice. Chemicals with 

indicated dosage were administrated i.p. in four days (i.e.PCN 50mg/kg/day). Twenty-four hours after last 

dose, the livers were collected snap-freezed in liquid nitrogen, stored in -80oC. Total RNA was extracted 

with Trizol. The relative mRNA levels were tested by quantitative real-time PCR. *, p<0.05, compared 

with the group of TCDD or β-NF treatment. #, p<0.01, compared with the group of TCDD or β-NF 

treatment. 
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    Beta-NF induced the Cyp1a1, Cyp1a2 and Cyp1b1 gene expression, co-treatment of 

PCN suppressed significantly β-NF-induced Cyp1a1 and Cyp1a2 gene expression by 

42% (P<0.05) and 36% (P<0.001), respectively, and suppressed β-NF-induced Cyp1b1 

gene expression by about 26% (Table 13) ( Fig. 16 ).  
 

Table 13 Effect of the combination of PCN, TCDD, β-NF on AhR target genes (Mean±SE, n=6) 

Treatment Cyp1a1 Cyp1a2 Cyp1b1 

DMSO 1.0 1.0 1.0 

PCN 0.7±0 1.4±0.2 1.9±0.5 

TCDD 8817.6±556.8 14.0±0.8 739.6±50.6 

PCN+TCDD 8097.1±383.8 17.5±0.4 603.8±73.8 

β-NF 1120.9±170.1 7.6±0.6 73.2±11.5 

PCN+β-NF 655.1±131.7 4.8±0.2 54.5±14.0 

 

    However, compare with vehicle control, PCN, TCDD and β-NF or the chemical 

combination treatment didn’t significantly change the level of Pxr mRNA level. PCN 

didn’t significantly the mRNA level of Ahr, while TCDD and β-NF increased the level 

of Ahr gene expression. PCN enhanced the induction of Ahr gene expression by TCDD 

( Fig. 17). 
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Fig. 17.  Effects of the combination of PCN, TCDD and β-NF administration on Pxr and Ahr gene 

expression in mice. Chemicals with indicated dosage were administrated i.p. in four days (i.e.PCN 

50mg/kg/day). Twenty-four hours after last dose, the livers were collected snap-freezed in liquid nitrogen, 

stored in -800C. Total RNA was extracted with Trizol. The relative mRNA levels were tested by 

quantitative real-time PCR. *, p<0.01 (A), compared with the group of TCDD treatment. #, p<0.05, 

compared with the group of TCDD or β-NF treatment. * p<0.01 (B), compared with the group of PCN 

treatment. 

 

3.2.2 AhR agonists and PXR agonists mutually regulated their target gene expression in 

human and mouse cell lines  

3.2.2.1 AhR agonists enhanced RIF-induced PXR target gene expression  

    In a pilot study, we treated primary human hepatocyte by the combination of RIF and 

TCDD, the results showed that co-treatment of RIF and TCDD enhanced CYP3A4 and 
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mdr1 gene expression in 1.7- and 1.4- fold respectively ( Fig. 18 A, B), irrelated to the 

expression level of the gene of PXR, RXRα, AhR and ARNT ( Fig. 18C, D, E, F).  

 

 

 
 

Fig. 18. TCDD enhanced the induction of CYP3A4 and mdr gene expression by rifampicin in primary 

human hepatocytes. Primary human hepatocytes was plated in 12-well plates, treated with chemicals 

indicated for 24 hr. Total RNA were extracted with RNAeasy from Qiagen. Relative mRNA levels were 

tested by quantative real-time PCR.  CYP3A4 and MDR1 relative mRNA levels were shown in A and B 

respectively. Relative mRNA levels were shown as in C PXR , D RXRα , E AhR , F ARNT.  
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    In view that AhR agonist TCDD enhanced PCN-induced gene expression in mice and 

RIF-induced gene expression in primary human hepatocytes, we further use PXR-

mediated CYP3A4-Luc gene expression in HepG2 cell line as a model system to 

investigate the mechanism. To facilitate the testing, we constructed a stably-transfected 

HepG2 cell line with PXR and CYP3A4-Luc and named it as S95 cell line. We treated 

S95 cell line with the combination of human PXR agonists RIF, hyperforin, clotrimazole, 

human AhR agonists TCDD, BaP, 3-MC, β-NF and human AhR antagonists resveratrol, 

α-NF as indicated ( Figs. 19-20). 

 

 
Fig. 19. Effect of TCDD on PXR ligands-induced pGL3-3A4-Luc gene expression in S95 cell line. (A) 

Combinations of clotrimazole (CTZ), rifampicin ( RIF) or hyperforin (HYP) and TCDD were added to cell 

cultures, 48 hr later, cells were collected and relative luciferase activity were tested. Fold induction were 

calculated by normalizing to vehicle controls. (B) Combination of TCDD (10 nM) and rifampicin ( RIF, 5 

μM) were added to S95 cell line at certain time points as indicated and cells were collected at the same 

time to test the luciferase activity. (C) Combinations of chemicals indicted were added to S95 cell cultures, 

48 hr later, cells were collected and relative luciferase activity were tested. Media were changed every 24 

hr. Fold induction were calculated by normalizing to vehicle controls. 
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    Results showed that TCDD enhanced human PXR agonists RIF, hyperforin and 

clotrimazole induced CYP3A4-Luc gene expression in S95 cells (Fig19A, B), co-

treatment of ketoconazole, the inhibitor of cytochrome P450, had no significant effect on 

the enhanced RIF-induced CYP3A4-Luc gene expression by TCDD, excluding the 

possibility that the enhancement was caused by the metabolite with more potency 

( Fig19 C). 

 

 
Fig. 20. Effects of AhR agonists TCDD, β-NF, 3-MC, BaP and antagonists α-NF, resveratrol (RESV) on 

RIF-induced pGL3-3A4-Luc gene expression in S95 cells. (A) (B) Combinations of chemicals indicted 

were added to cell cultures, 48 hr later, cells were collected and relative luciferase activity were tested. 

Media were changed every 24 hr. Fold induction were calculated by normalizing to vehicle controls.  
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    As the enhancing effect of TCDD treatment on the RIF-induced CYP3A4-Luc gene 

expression, AhR agonists 3-MC, BaP and β-NF enhanced RIF-induced CYP3A4-Luc 

gene expression. The enhancement was knocked down by AhR antagonists α-NF or 

resveratrol (Fig. 20A). Interestingly, co-treatment of α-NF or resveratrol showed 

relatively low enhancement of the induction of CYP3A4-Luc gene expression by RIF 

( Fig. 20B). 

    In considering that TCDD, β-NF, 3-MC and BaP are AhR agonists, and α-NF and 

resveratrol are AhR antagonists, causing AhR translocation when binding, these data 

suggested that AhR was involved in the regulation of PXR-transcriptional activity.  

3.2.2.2 PXR agonists suppressed TCDD- and β-NF- induced AhR target gene expression  

    In the pilot study using primary human hepatocytes treated with the combination of 

RIF and TCDD, TCDD induced cyp1a1 gene expression by 176 fold, RIF suppressed 

TCDD-induced cyp1a1 gene expression by 10% (Fig. 21A). Using reporter gene assay, 

co-transfecting HepG2 cells with human PXR and pGud-luc6.1 which is the reporter for 

AhR transcriptional activity and treating with the combination of RIF and TCDD, the 

result showed that RIF suppressed basal pGud-luc6.1 gene expression by 80% and 

TCDD induced pGud-luc6.1 gene expression by 15% (P<0.05) ( Fig. 21B).  

    When co-transfecting Hep1c1c7 cells with mouse PXR and pGud-luc6.1 treating with 

the combination of PCN, hyperforin, TCDD and β-NF as indicated in Fig. 21 C, the 

results showed that PCN induced pGud-luc6.1 gene expression in about 2.5 fold 

(P<0.01), but suppressed TCDD- and β-NF- induced pGud-luc6.1 gene expression 15% 

(P<0.01) and 17% (P<0.05) respectively, (Fig. 21), hyperforin suppressed TCDD-

induced pGud-luc6.1 gene expression by 28% (P<0.01). Hyperforin has no significant 

effect on the pGud-luc6.1 gene basal expression or β-NF-induced expression. 
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Fig. 21. Effects of PXR ligand on AhR-mediated gene expression. (A)Primary human hepatocyte was 

treated with the combination of RIF and TCDD as indicated for 24 hr. Total RNA was isolated and 

reverse-transcribed into one-strand cDNA with random primer and tested with quantitative real-time PCR. 

The level of cyp1a1 mRNA was normalized with the level of b-actin level. (B) Co-transfected 0.5 μg 

pGud-luc6.1 into HepG2 cells which stably expressed hPXR. 6 hr later treat with RIF and TCDD for 

additional 36 hr. Collect cells and test the relative luciferase activity. (C) Co-transfected Hep1c1c7 cells 

with 0.1 μg mouse PXR expression plasmid and 0.5 μg pGud-luc6.1. 6 hr later treat with RIF and TCDD 

for additional 24 hr. Collect cells and test the relative luciferase activity. The data shown is the 

representative of three independent experiments except (A) with one donor. 

 

 

3.2.3 AhR was involved in the PXR-mediated CYP3A gene expression 

    To further investigate if AhR was involved in the regulation of PXR-transcriptional 

activity, we co-transfect AhR plasmids in several doses and several small interfering 

RNAs targeting AhR and ARNT. The results showed that overexpression of the AhR 

enhanced PXR-induced CYP3A4-Luc reporter gene expression in a dose dependent 

manner (Fig22A). Interestingly, in this transient transfection system, TCDD induced 
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CYP3A4-Luc reporter gene expression the way different from stably-transfected 

CYP3A4-Luc reporter gene by comparing the results in Fig22A and Fig. 19 and 20. 

    Small interfering RNAs targeting AhR and ARNT knock down the induction of 

CYP3A4-Luc reporter gene expression. These data confirmed that AhR was involved in 

the regulation of PXR transcriptional activity to induce gene expression ( Fig22B). 

 

 
Fig. 22. Effect of AhR expression level on PXR-mediated CYP3A4-Luc gene expression. (A) Co-

transfected different amount of AhR expression plasmid with 0.5 μg pGL3-3A4-Luc into HepG2 cells 

which stably expressed hPXR. 6 hr later treat with RIF and TCDD for additional 48 hr. Collect cells and 

test the relative luciferase activity. (B) Transfect 10nM of siRNAs indicated into HepG2 cells which stably 

expressed hPXR for 6 hr and incubate with regular media for 30 hr. Transfect 0.5 μg pGL3-3A4-Luc for 6 

hr and treat with RIF and TCDD for additional 48 hr. Collect cells and test the relative luciferase activity. 

The data shown is the representative of three independent experiments. 
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3.2.4  PXR was involved in AhR-mediated target gene expression 

    RIF, PCN and hyperforin are PXR agonists, the suppressed TCDD-induced gene 

expression, suggesting PXR was involved in the AhR target gene expression. We used 

reporter gene assay and cotransfected mouse PXR expression plasmid in Hep1c1c7 cell 

lines in which PXR expression was lower that normal mouse liver cells. Results showed 

that overexpression of PXR suppressed TCDD- or β-NF- induced pGud-luc6.1 gene 

expression in a dose-dependent manner ( Fig. 23). Taken together, PXR was involved in 

the AhR-transcriptional activity in a ligand-dependent manner. 

 

 
Fig. 23. Effects of dosage of PXR and its ligands on AhR-mediated gene expression. Co-transfected 

Hep1c1c7 cells with various amount of mouse PXR expression plasmid as indicated and 0.5 μg pGud-

luc6.1. 6 hr later treat with RIF and TCDD for additional 24 hr. Collect cells and test the relative luciferase 

activity. The data shown is the representative of three independent experiments. 

 

3.2.5 AhR and PXR interact in vivo and in vitro 

    To investigate how PXR and AhR are involved in the mutual regulation of their 

transcriptional activity and target gene expression, we checked if AhR and PXR were 

associated in vivo. We performed co-immunoprecipitation in HepG2 cells which stably 

expressed 3xFlag-PXR to detect if AhR is associated with PXR or its partner RXRα in a 

complex in vivo (Fig. 24). Our results showed that AhR was associated with PXR and 
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RXRα. To further confirm the association between AhR and PXR or RXRα, we 

performed GST-pull down assay to detect if AhR interacted directly with PXR or RXRα 

in vitro. The data showed that the basic domain of AhR is required for AhR N-terminus 

to interact with A/B/C domain of PXR, the C-terminal of AhR interact with D/E/F 

domain of PXR. There is no interaction between PXR and ARNT (Fig. 25).  

 

 
Fig. 24. AhR is associated with PXR and RXRα in HepG2 cells. Co-immunoprecipitation assay was 

performed on the 3XFlag-hPXR-enhanced HepG2 cells treated with RIF and TCDD, DMSO as control. 

The data shown is the representative of three independent experiments. 

 

 
Fig. 25. AhR interacts physically with PXR in a domain-preference manner. GST pull-down assay was 

performed as regular procedure using TNT translated different fragments of AhR as indicated which was 

incorporated S-35, GST-PXR (1-107) and GST-PXR (107-434) purified from E. coli. The data shown is 

the representative of three independent experiments. 
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    The basic domain of AhR is required for AhR N-terminus to interact with A/B/C 

domain of RXRα and the C-terminal of AhR interacts with A/B/C domain of RXRα. 

There is no interaction between RXRα and ARNT (Fig. 26). 

 

 
Fig. 26. AhR interacts physically with RXRα in a domain-preference manner. GST pull-down assay was 

performed as regular procedure using TNT translated different fragments of AhR as indicated which was 

incorporated S-35, GST-RXRα (1-200) and GST-RXRα (200-462) purified from E. coli. The data shown 

is the representative of three independent experiments. 

 

    To test the function of the association between PXR and AhR, we constructed AhR 

expression plasmids with deleted domains and co-transfected the HepG2 cells which 

stably expressed PXR with pGL3-3a4-luc gene (Fig. 27). AhR (1-848) and AhR (11-848) 

with Pro domain deletion of AhR enhanced the expression of the reporter gene, while 

AhR (40-848) with Pro and basic region deletion of AhR has no significant effect on the 

expression the reporter gene. The result suggested that basic domain is required for the 
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enhancement of PXR-regulated gene expression by AhR. In contrast to the effect of AhR 

(1-848) and AhR (11-848) respectively, AhR (1-427) and AhR (11-427) with C-terminal 

deletion of AhR repressed the enhanceability of endogenous AhR, the result suggested 

that C-terminal of AhR is also required to enhance the expression of PXR-regulated gene. 

The lack of either basic region or C-terminal resulted in the loss of the enhanceability of 

AhR and the repress of the activity of endogenous AhR, by comparing AhR (40-848), 

AhR (1-427) and AhR (11-427) with AhR (1-848), except for AhR (424-848) which is 

unable to translocate to nuclear and interact with PXR. The lack of both basic region and 

C-terminal resulted in the derepression of the effects of AhR (40-848) and AhR (1-427) 

by comparing with AhR (40-427).  

 
Fig. 27. AhR modulates PXR transcriptional activity in a domain-dependent manner. Cotransfect HepG2 

cells which stably expressed PXR with pGL3-3A4-Luc and AhR of different domain deletions for 6 hr. 

Treat with chemicals as indicated for 48 hr, then test luciferase activity. The data shown is the 

representative of three independent experiments. 
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    The result that both basic region and C-terminal of AhR were required for 

enhancement of induction of PXR-mediated CYP3A4 gene expression by activated AhR 

(Fig. 27) was in accordance with that PXR and AhR interact domain-preferently in GST 

pull-down assay. 

 

3.3 Screening xenobiotics for PXR-mediated CYP3A4 inducers through cell-based assay 

system 

3.3.1 Function of PXR domains on PXR-transcriptional activity in response to 

rifampicin 

    The result of the reporter gene assay using pGL3-3A4-Luc and PXR domains in 

HepG2 cells showed that the full PXR (A/B/C/D/E/F) was activated by ligand rifampicin 

to induce pGL3-3a4-luc gene expression up to 4 fold (Fig. 28). In response to the 

treatment of rifampicin and compared with vehicle control, the pGL3-3a4-luc gene 

expression obviously decreased with the A/B domain, the pGL3-3a4-luc gene expression 

slightly decreased with the A/B/C, A/B/C/D and C domain or domain combinations, the 

pGL3-3a4-luc gene expression didn’t change with the C/D domain combination, the 

pGL3-3a4-luc gene expression slightly increased with the C/D/E/F domain combination, 

the pGL3-3a4-luc gene expression obviously increased with the D, D/E/F and E/F 

domain or domain combinations. The C/D/E/F domain combination, which is lack of the 

A/B domain, had no significant change in response to rifampicin. The result suggests 

that A/B domain in PXR palys an important role in ligand-dependent activation of PXR 

transcription activity. The mechanisms accounting for other changes remain to be further 

illucidated. 

    The basal levels of the pGL3-3a4-luc gene expression with the PXR domains or 

domain combinations in HepG2 cells were divided into three groups. The pGL3-3a4-luc 

gene expression with the A/B, A/B/C and C domain or domain combinations had the 

highest level; The pGL3-3a4-luc gene expression with the A/B/C/D, A/B/C/D/E/F, C/D 

and C/D/E/F domain combinations had the intermediate level; The pGL3-3a4-luc gene 
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expression with the D, D/E/F and E/F domain or domain combinations had the lowest 

level. By comparison with the pGL3-3a4-luc gene expressions among A/B/C, A/B/C/D 

and A/B/C/D/E/F domain combinations, and among C, C/D and C/D/E/F domain 

ordomain combinations, the results showed that D is a transcription-suppressive domain 

in PXR. 

    In response to the treatment of rifampicin, the levels of pGL3-3a4-luc gene expression 

in HepG2 cells differentiated with the PXR domains or domain combinations. The 

results by comparisons between A/B/C/D and A/B/C/D/E/F, and between C/D and 

C/D/E/F showed that E/F domain is required for PXR to be activated in response to the 

ligands. This is consistant with the known findings on the nuclear receptors. The results 

by comparisons between A/B/C and A/B/C/D, and between C and C/D showed that D is 

a suppressive domain for PXR ranscription activity. This is consistent with the basal 

activity of PXR. The underlying mechanisms remain to be illucidated.  

 
 

Fig. 28.  Role of PXR domains in PXR transcriptional activity. HepG2 cells were transiently co-

transfected with reporter gene pGL3-3A4-Luc 0.5 μg/well and PXR domains-containing expression 

plasmid 0.2 μg/well as indicated for 6 hr, and then were treated with rifampicin for 48 hr. Relative 

luciferase activity assay were performed. 
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3.3.2 Green tea polyphenols (GTPs) enhance PXR-induced CYP3A4-Luc gene 

expression in stably-transfected HepG2 cells 

    Green tea polyphenols extract alone didn’t induce PXR-mediated CYP3A4-Luc gene 

expression. They enhanced RIF-induced CYP3A4-Luc gene expression in a dose 

dependent manner (Fig. 29). 

 
Fig. 29. Green tea polyphenols enhanced activated-PXR-induced CYP3A4-Luc gene expression.  Measure 

500 mg GTPs and dissolve to H2O to make stock solutions. Treat cell-based reporter gene assay with 

chemicals as indicated every 24 hr for 48 hr.  

 

3.3.3 Dietary supplements induce PXR-mediated CYP3A4-Luc gene expression in 

stably-transfected HepG2 cells 

 
Fig. 30.  Effects of dietary supplements on PXR-mediated CYP3A4 gene expression. Add 1 ml ethanol to 

500 mg powder of one capsule of dietary supplement. Vortex 5 min and centrifuge at top speed for 5 min. 

Treat HepG2 cells which stably expressed PXR and pGL3-3A4-Luc with 1 μl supernatant in 1 ml medium 

for 48 hr. Test the activity of luciferase. 
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Fig. 31. Effects of the components of Valerian Root on PXR-mediated CYP3A4 gene expression. Valerian 

Root capsules were purchased from GNC store in Post Oak Mall (College Station). Use hexane to extract 

the powder in capsule of Valerian Root. Valerianic acid was purchased through VWR international. Treat 

HepG2 cells which stably expressed PXR and pGL3-3A4-Luc with extracts or chemicals for 48 hr. Test 

the activity of luciferase. Media were changed every 24 hr.  
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    Dietary supplements were purchased from GNC store in Post Oak Mall (College 

Station). Among extracts surveyed, extracts of Ginger Root, Cats Claw, Dong Quai, 

Valerian Root, Olive Leaf and Damiana obviously induced PXR-mediated CYP3A4-Luc 

gene expression. Extracts of Cranberry, Fever Few, Cascara Sagrada and Ginkgo Biloba 

slightly induced PXR-mediated CYP3A4-Luc gene expression. The Valerian Root 

extract had the most potency of the induction (Fig. 30). We further investigated the 

component of Valerian Root responsible for the induction. The valerianic acid has little 

effect on luciferase gene expression by comparing with rifampicin ( Fig. 31B). The 

bottom component of TLC has the most potent induction power (Fig. 31C).  

 

3.3.4  Aflatoxin B1 enhanced activated-PXR-induced CYP3A4-Luc gene expression 

In the treatment with the cell-based assay system with AFB1 alone, the induction of 

luciferase expression was marginal. While the cotreatment of AFB1 enhanced 

rifampicin-induced luciferase activity in a dose-dependent manner (Fig. 32).  

 

 
 

Fig. 32. Aflatoxin B1 enhanced activated-PXR-induced CYP3A4-Luc gene expression.   Treat HepG2 

cells which stably expressed PXR and pGL3-3A4-Luc with aflatoxin B1 with or without RIF as indicated 

for 48 hr. Test the activity of luciferase. Media were changed every 24 hr. 
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3.3.5 Effects of metal ions on PXR-induced CYP3A4 gene expression 

    Co-treatment of metal ions indicated in Fig. 33 with rifampicin resulted differentiated 

effects on the PXR-mediated CYP3A4-Luc gene expression. NaAsO2 suppressed 

rifampicin induced luciferase ecpression. CuSO4 and MnCl2 enhanced rifampicin 

induced luciferase expression ( Fig. 33A, B). The CuSO4 and MnCl2 alone had little 

effects on the PXR-mediated CYP3A4-Luc gene expression ( Fig. 33B). 

 
 

Fig. 33. Effects of metal ions on PXR-induced CYP3A4 gene expression. Treat HepG2 cells which stably 

expressed PXR and pGL3-3A4-Luc with metal ions with or without RIF as indicated for 48 hr. Test the 

activity of luciferase. 
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CHAPTER IV  

DISCUSSION AND SUMMARY 

 

4.1 NF-κB plays a key role in the suppression of PXR-mediated CYP3A4 gene 

expression 

    CYP3A4 is a predominant human liver monooxygenase metabolizing more than half 

of the drugs in use today. Transcriptional and post transcriptional regulations of the 

expression of this enzyme are of great importance in therapeutic application as well as 

development of therapeutics. Recent studies have demonstrated that the ligand-

dependent transcription factor hPXR plays a pivotal role in coordinated regulation of 

CYP3A4, conjugation enzymes as well as transporters at the transcriptional level 

(reviewed in ref (Handschin and Meyer, 2003; Honkakoski et al., 2003), therefore, it is 

important to analyze physiological and pathological conditions that may impact the PXR 

activity. 

    Infections and inflammatory responses have long been observed to suppress hepato -

intestinal cytochromes P450 as well as phase II enzymes, resulting in reduced capacity 

of drug clearance in both human and experimental animals (reviewed in (Morgan et al., 

2002; Renton, 2004)). These clinically important phenomena have been investigated 

extensively. Several mechanisms have been proposed to explain the infection- and 

inflammation-induced suppression of CYP3A4 expression. For example, it has been 

observed that LPS treatment down-regulates the PXR mRNA levels in cells and animals 

(Beigneux et al., 2002), and this may potentially result in suppression of CYP3A4 

expression. However, the levels of the nuclear receptors may not be an accurate gauge in 

evaluating their transcriptional activity. Using real time quantitative PCR and microarray 

profiling with LPS and TNF-α treated primary human hepatocytes, we found a slight 

decrease of PXR mRNA and RXRα mRNA level was essentially unchanged (Fig. 5). 

The marginal decrease in PXR mRNA may not account for the dramatic suppression of 

the CYP3A4 mRNA by LPS and TNF-α (Fig. 5). Using PXR and PPARα deficient mice, 

Richardson and Morgan have shown that endotoxin caused about same levels of 
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suppression of P450 in KO mice as in the wild type, suggesting nuclear receptors PXR 

and PPARα are not required for regulating the LPS-imposed suppression of the 

cytochromes P450 including CYP3As (Richardson and Morgan, 2005), at least in the 

animals whose P450s have not been induced by exogenous agents. However, since there 

have been extensive cross-talks between nuclear receptors, the compensatory roles of 

other nuclear receptors in mediating the LPS-induced suppression remains to be 

investigated. This is especially true in view of the current finding that the NF-κB-

mediated suppression of the nuclear receptors may be through a general mechanism 

where the functions of a common partner (RXR) for nuclear receptors is being 

compromised upon NF-κB activation.  

    Recent studies have shown that the DNA sequences around -5.95 kbp at CYP3A4 

regulatory region contains CCAAT/enhancer sequences in the promoter regions of 

CYP3A4 can be regulated by LIP (Martinez-Jimenez et al., 2005), thereby causing 

suppression. Liver enriched transcription factor has also been shown to mediate the LPS 

suppressive effects of the organic anion transporting peptide 4 (Li and Klaassen, 2004). 

In our current studies, we found that PXR-directed luciferase reporter gene without the 

CCAAT/enhancer sequences were also suppressed by NF-κB activation (Fig. 6), and 

inhibition of NF-κB alleviated the suppression (Fig. 7), suggesting disruption of the 

binding of PXR/RXRα complex to the consensus sequences (Figs 8-10) is an important 

mechanism in addition to the regulation by LIP. It is highly likely that more than one 

mechanism may be responsible for the suppression of CYP3A4 gene expression. 

    A common transcriptional response to the challenges of infection and inflammation is 

the induction of immediate early genes. One of these genes is the pleiotropic 

transcription factor NF-κB, which is activated in response to various proinflammatory 

stimuli. NF-κB has been shown to interact with nuclear/steroid receptor, Ah receptor 

(Tian et al., 1999; Ke et al., 2001) and modulates the transcriptional activity of these 

receptors (reviewed in ref (McKay and Cidlowski, 1999; Tian et al., 2002). In mouse 

LPS-induced CNS inflammation model, it has been shown that Toll-like receptor 

regulates the suppression of the hepatic cytochromes P450 by LPS (Abdulla et al., 2005; 
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Goralski et al., 2005). These studies suggested NF-κB is involved in regulation of the 

hepatic P450. Although it is unknown if NF-κB activation plays a role in the 

transcriptional activity of PXR, it has been found that the common dimerization partner 

RXR for the nuclear receptors interacted with NF-κB (Na et al., 1999). We hypothesized 

that NF-κB may play a direct role in suppression of CYP3A4 expression, and developed 

a PXR-driven luciferase assay using HepG2 cell culture model for the analysis of 

transcriptional regulation of PXR by the proinflammatory agents.  In comparison with 

human primary hepatocyte culture, the magnitudes of PXR activation by rifampicin or 

transrepression of PXR by NF-κB activation were lower, which may be due to the clonal 

nature of the immortalized cell line, as it is well-known that hepatocytes loss certain 

aspects of xenobiotic responses in ex vivo culture conditions. These quantitative 

differences notwithstanding, the HepG2-based culture model has allowed us to analyze 

the transcriptional regulation by PXR and overcome certain drawbacks associated with 

using human primary hepatocyte culture, such as the donor variability and cost.  

    In this study, the important role of NF-κB in suppression of CYP3A4 is demonstrated 

based on the following results: (i) TNF-α and LPS treatments of human primary 

hepatocytes resulted in activation of the NF-κB and coincided with the down-regulation 

of the CYP3A4 and in luciferase reporter gene assay, and activation of NF-κB 

suppressed the PXR-driven luciferase reporter gene activity; (ii) TNF-α and LPS-

imposed repression of CYP3A4 promoter activity could be reversed by the NF-κB super 

repressor (SRIκBα), thus demonstrating the specific involvement of NF-κB.  

    To further elucidate the mechanism underlying the suppression of CYP3A4 by NF-κB, 

we performed EMSA, GST-pulldown as well as ChIP assays to test the interaction 

between NF-κB and PXR/RXRα complexes. Using EMSA assay, we found that binding 

of PXR/RXRα heterodimer to the ER6 consensus sequences was inhibited by p65. The 

inhibitory effects of p65 on the binding of PXR/RXRα to ER6 could be alleviated by 

p50, which is the cognate partner for p65, suggesting that the inhibitory effect of p65 

could be competitively decreased by p50, which is consistent with the hypothesis that 

p65 interferes with the association of PXR/RXRα with DNA sequences (Fig. 8). This 
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notion was further strengthened by the observation that the association between RXR 

and NF-κB p65 was mediated through the RXR DNA binding domain as determined by 

GST-pulldown assay (Fig. 9). We also detected that NF-κB p65 interacted with PXR 

DNA binding, D domain and E/F domain ( Fig. 12). 

    Furthermore, using the ChIP assay, we found that the association of RXRα with the 

regulatory regions of CYP3A4 was disrupted upon activation of NF-κB by either by LPS 

treatment or transient expression of p65, suggesting that the association between 

PXR/RXRα complex with DNA sequences was disrupted by NF-κB in vivo (Fig. 10).  

    Transcriptional activation of gene expression consists of multiple interconnected, yet 

distinct steps involving a constellation of transcriptional factors at different steps. For 

example, in regulation of cyp1a1 gene expression, the regulatory steps that have been 

investigated include histone remodeling and modifications (Ke et al., 2001; Wang and 

Hankinson, 2002), recruitments of co-activator (Beischlag et al., 2002) and mediator 

complexes(Wang et al., 2004), recruitment of the positive transcriptional elongation 

factor (P-TEFb) which leads to phosphorylation of the C-terminal domain of the large 

subunit of RNA Pol II (Tian et al., 2003). It is highly likely that transcriptional 

regulation of CYP3A4 is also subjected to the regulation at these critical steps by various 

signaling mechanisms including NF-κB activation.   

Taken together, these in vitro and in vivo results suggest that activation of NF-κB 

results in disruption of the interaction of the PXR/RXRα complex with the consensus 

DNA sequences in the regulatory regions of CYP3A4, thus providing a mechanistic 

explanation for the observed suppression CYP3A4 by LPS, proinflammatory cytokines 

and other stress signals that are known to induce NF-κB. The mechanism is depicted 

showing that NF-κB activation by physiological and pathological stimuli leads to its 

translocation into the nucleus where it interrupts the binding of PXR/RXRα complex to 

the cognate consensus DNA sequences thereby causing transcriptional suppression (Fig. 

34). Since RXRα binding is interfered with by NF-κB, this mechanism of suppression by 

NF-κB may be extended to other nuclear receptor-regulated systems where RXRα is a 

dimmerization partner. 
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Fig. 34.  Schematic illustration of the suppression of PXR transcription activity by NF-κB. Activation of 

NF-κB in response to LPS, proinflammatory cytokines and other stress signals results in disruption of the 

association of the PXR/RXRα complex with the consensus DNA sequences in the regulatory regions of 

CYP3A4, thus providing a mechanistic explanation for the observed suppression of CYP3A4 by 

proinflammatory agents. 

 

    We also detected that other PXR-regulated gene MDR1, CYP2B6, CYP2C8, CYP2C9, 

EPHX1 had the same expression profiles as that of CYP3A4 gene in primary human 

hepatocytes in response to the proinflammatory agents. The results suggested that 

mechanism of NF-κB regulating PXR transcriptional activity could be extended to other 

PXR-regulated genes. 

    The interaction between NF-κB and PXR, RXRα may reciprocally interfere NF-κB 

p65 transcriptional activity, as seen in Fig. 11. The mechanism of how PXR suppresses 

NF-κB p65 transcriptional activity remains to be illucidated. 

 

4.2 Interactions between AhR and PXR and/or RXRα enhanced PXR transcription 

activity and suppressed AhR transcription activity 

    In nature, we are typically exposed to xenobiotic mixtures, such as mixed 

environmental contaminants as well as co-administered multiple therapeutic drugs, 

which contain both PXR and AhR ligands. Pregnane X Receptor (PXR) and Aryl 

Hydrocarbon Receptor (AhR) are ligand-dependent transcription factors that regulate the 
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gene expressions of phase I, II drug metabolism enzymes and membrane-bound 

transporters. They are known to be regulated by distinct sets of ligands. Rifampicin 

(RIF), hyperforin (HYP) and clotrimazole (CTZ) are well characterized PXR ligands and 

2, 3, 7, 8-Tetrachlorodibenzo-p-Dioxin (TCDD), β-naphthoflavone (b-NF), 3-

methylcholanthrene (3-MC) and Benzo[a]pyrene (BaP) are known ligands for the Ah 

receptor.  

    In the current study, we found that activation of the AhR significantly or 

synergistically enhances the expression of PXR-regulated PXR/CYP3A4-Luciferase 

reporter gene. We also observed the same profiles with the CYP3A4 in primary human 

hepatocytes, Cyp3a11 and mGsta1 in the mouse studies. Activation of PXR represses the 

expression of AhR-activated luciferase reporter gene. We also observed the same 

profiles with cyp1a1 in primary human hepatocytes, mCyp1a1, mCyp1a2 (with the 

exception of AhR activation by TCDD) and mCyp1b1 in the mouse studies. The results 

from the reporter gene assays suggest that the crosstalk between PXR and AhR pathway 

may happen at the transcriptional level. We further detected the increased enhancement 

of PXR-regulated reporter gene expression with the increases of overexpression of AhR, 

and the lowered enhancement of PXR-regulated reporter gene expression with the 

decreases of the level of AhR or ARNT mRNA with the targetted small interfering 

RNAs. The repression of the expression level of AhR-regulated luciferase gene comes 

with the increases of the PXR expression level in a ligand-dependent manner. The 

results suggest the PXR and AhR are directly involved in the crosstalk (Fig. 35). We 

detected that AhR interacted physically with PXR and RXRα in vivo and in vitro in a 

domain-specific manner, which may account for the cross-regulation of AhR and PXR 

target gene expression. How the interaction between AhR and PXR or RXRα 

regulates transcription activity of AhR and PXR bidirectioally is not clear and need 

further studies including looking at the recruitment of interaction partner to the promoter 

of the target genes. 
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Fig. 35. Crosstalk between PXR and AhR pathways (Schematic model). Upon activation, AhR 

translocates to the nucleus and binds to XRE sequences with ARNT to activate the expression of its target 

genes. Upon activation, PXR activated the expression of its target genes. AhR interacts with PXR and/or 

RXRα and/or both to form complex (es), resulting in the enhancement of trancriptional activity of PXR 

and compromise of trancriptional activity of AhR. 

 

    We detected the functional and physical interaction between AhR and PXR. Both 

basic region and C-terminal of AhR are required to enhance the transcriptional activity 

of PXR by AhR (Fig. 27). However, how the basic region and C-terminal of AhR 

contribute to the enhanceability of AhR is unclear. We detected that PXR expression and 

activation repressed the transcription activity of AhR (Fig. 23). How the physical 

interaction between AhR and PXR impacts the transcription activity of AhR remains to 

be investigated.  

    Crosstalk betweem AhR and nuclear receptors may be a ubiquitous phenomena.  

    Crosstalk and the mechanism of the crosstalk between AhR and estrogen receptor 

pathways have been well documented. AhR signaling pathway interferes ER signaling 
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pathway. TCDD-induced degradation of ERα may contribute to the antiestrogenic 

activity of AhR agonists and this pathway may be involved in AhR-mediated disruption 

of other endocrine responses(Wormke et al., 2000). Both AhR and ER α may share 

ligands. Classical AhR ligands PCB and 3-MC directly activate ER α-dependent 

transactivation(Wormke et al., 2003; Abdelrahim et al., 2006). The ligand status of the 

AhR modulates activation of the BRCA-1 promoter by estrogen(Hockings et al., 2006). 

For the CAD gene, ERα/Sp1 and the AhR are constitutively bound to the CAD gene 

promoter, E2 enhances ERα-Sp1 interactions which are decreased by cotreatment with 

TCDD, thus the inhibitory AhR-ERα/Sp1 cross talk might be partly due to enhanced 

association of AhR and ERα, which coordinately dissociates ER and Sp1 and decreases 

ERα/Sp1-mediated transactivation, whereas remaining associated with the CAD 

promoter(Khan et al., 2006). Ligand-activated AhR/Arnt may modulate ER-mediated 

estrogen signaling, resulting in adverse estrogen-related actions of dioxin-type 

environmental contaminants. The modulation is through the direct association between 

agonist-activated AhR/Arnt heterodimer and estrogen receptors ERα or ERβ, and the 

association results in the recruitment of unliganded ER and the co-activator p300 to 

estrogen-responsive gene promoters, leading to activation of transcription and estrogenic 

effects. The function of liganded ER is attenuated. Estrogenic actions of AhR agonists 

were detected in wild-type ovariectomized mouse uteri, but were absent in AhR-/- or 

ERα-/- ovariectomized mice (Ohtake et al., 2003). 

    On the other hand, ER can also regulate AhR signal transduction. ER competites with 

AhR and for the rate-limiting co-regulators ERAP140 and SMRT or for nuclear factor-1 

(NF-1). Competitive binding of NF-1 by estrogen-activated ER resulted in diminished 

TCDD-mediated CYP1A1 transcriptional activation (Reviewed in the reference (Pocar et 

al., 2005)). ERα is recruited to AhR/ARNT and work as a transcriptional co-repressor. 

AhR interacts directly with ERα, however, the reports on the interaction between ARNT 

and ERα are inconsistent(Klinge et al., 2000; Beischlag and Perdew, 2005). ERα also 

was reported to enhance the activity of AhR when being recruited to AhR in HuH7 
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human liver cells. ERa also plays a role in TCDD-dependent CYP1A1 

expression(Matthews et al., 2005).  

    There are cross-talks between AhR and other steroid hormone receptors. Ligand-

activated AhR has anti-androgenic effect in LNCaP prostate cancer cells. Interaction of 

the AhR ligand complex with AP-1 proteins resulted in diminished induction of prostate-

specific-antigen (PSA) by testosterone. However, this was not caused by a decrease in 

intracellular levels of the androgen receptor (AR) or concentrations of intracellular 

dihydrotestosterone (DHT). The presence of AR within the ovary and endometrium 

would suggest the presence of a potential AhR/AR cross-talk to also be effective within 

female reproductive organs (Reviewed in the reference (Pocar et al., 2005)). A 

unidirectional inhibitory progesterone receptor (PR)/AhR cross-talk involves both PR 

isoforms, PR-A and PR-B, and repression of AhR–ARNT transcriptional activity 

requires the active progesterone responsive element (PRE)-binding form of PR-B, but 

not PR-A (Reviewed in the reference (Pocar et al., 2005)). 

    AhR signaling pathway also crosstalks with COUP-TF. AhR interacts directly with 

COUP-TF in a ligand-specific manner in vitro and in transfected CV-1 cells. In contrast, 

the AhR nuclear translocator protein (ARNT) did not interact with COUP-TF. Purified 

COUP-TFI bound the consensus XRE, suggesting a role for COUP-TF as a AhR/ARNT 

competitor for XRE binding. In transiently transfected MCF-7 human breast cancer cells, 

overexpression of COUP-TFI inhibited TCDD-activated reporter gene activity from the 

CYP1A1 promoter and COUP-TFI did not block the antiestrogenic activity of TCDD. 

The specific interaction of COUP-TF with XREs and AhR together with the inhibition of 

TCDD-induced gene expression by COUP-TF suggests that COUP-TF may regulate 

AhR action both by direct DNA binding competition and through protein-protein 

interactions(Klinge et al., 2000). 

    Crosstalk between AhR and PPARα has been documented. The negative cross-talk 

between AhR and PPARα took place on CYP4A and CYP1A. In HepG2 cells, PPARα 

and RXRα protein expression was decreased by AhR ligand Sudan III (S.III) treatment 

in a dose dependent manner. AhR has an inhibitory effect on PPARα function and a new 
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pathway by which AhR ligands could disturb lipid metabolism(Shaban et al., 2004). 

S.III treatment decreased basal and PPARα ligand clofibric acid (CA)-induced CYP2B, 

CYP3A and CYP2C11 protein, activities and mRNA expression in the livers of male 

Wistar rats(Shaban et al., 2005). Coexposure with 3MC and the PPARα ligand WY leads 

to an additive or potentiating effect on CYP1A1 inducibility, depending on the WY 

concentration. Furthermore, at high concentration (200 μM), WY induced AhR 

expression, which could explain the potentiating effect on CYP1A1 inducibility 

observed after addition of an AhR ligand (3MC). This phenomenon should be taken into 

account for risk assessment involving CYP1A1 induction(Fallone et al., 2005) 

    Crosstalk also takes place between SHP (short heterodimer partner) and AhR. SHP is 

an orphan nuclear receptor lacking a DNA binding domain that interacts with nuclear 

receptors (NR) including thyroid receptor (TR), retinoic acid receptors (RAR and RXR), 

and estrogen receptors α and β (ERα and ERβ). SHP acts as a negative regulator of these 

receptors by inhibiting DNA binding and transcriptional activation. In human 

endometrial carcinoma cells RL95-2, SHP inhibited TCDD-stimulated reporter activity 

from the AhR-responsive CYP1A1 and UGT1A6 gene promoters in a concentration-

dependent manner. ARNT interacted directly with SHP in vitro, but AhR did not interact 

with GST-SHP. SHP inhibited AhR/ARNT-DNA binding in vitro. SHP may play a role 

for in the suppression of agonist-activated AhR/ARNT activity(Klinge et al., 2001). 

    Both the AhR and RA pathways regulate transcription of a variety of genes that are 

critical for the physiological effects mediated by these pathways (Murphy et al., 2007). 

However, crosstalk between AhR and Retinoids pathways has also been documented. 

There are several levels of molecular interactions between AhR and RA pathways, 

including ligand switch, direct inhibition of gene expression, alteration of receptor 

availability, and competition for transcriptional cofactors.  

    The interaction between AhR and Retinoids pathways results in some physiological 

effects. RA and RAR/RXR are required for the embryonic development of blood vessel 

and bone. The embryonic organogenesis of medaka fish was specifically inhibited by an 

inhibitor of RA synthesis (diethylaminobenzaldehyde), antagonists of RAR (Ro41-5253) 
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and RXR (Ro71-4595), agonist (β-naphthoflavone) and antagonist (α-naphthoflavone) of 

AhR, and excess RA(Hayashida et al., 2004). Livers from AhR -/- mice fed the vitamin 

A-deficient diet showed a decrease in collagen deposition, consistent with the absence of 

liver fibrosis(Andreola et al., 2004). Disruption of thyroid hormone and retinoid 

homeostasis is mediated entirely via AhR after exposure to 2, 3, 7, 8-tetrachlorodibenzo-

p-dioxin (TCDD). Induction of UGT1A6 is thought to be responsible at least partly for 

reduced serum thyroid hormone levels in TCDD-exposed mice(Nishimura et al., 2005). 

Supplementation of vitamin A might attenuate the liver damage caused by TCDD(Yang 

et al., 2005b).  

    AhR and the AhR signaling pathway may be activated by pharmacological doses of 

some synthetic retinoids, which are activators for the retinoic acid receptor/retinoid X 

receptor pathway(Gambone et al., 2002; Soprano and Soprano, 2003). However, in 

SCC12Y cells TCDD treatment results in a decreased binding of all-trans RA to RARα 

without any change in RARα gene expression(Lorick et al., 1998). The activated AhR 

exerts complex effects on the metabolism of estrogens and retinoids.  

    AhR and RAR/RXR mutually regulate their gene expression and thus alter the 

receptor level. The expression of the AhR is affected by retinoic acid(Wanner et al., 

1995). RA and RAR/RXR are required for expression of AhR mRNA (Wanner et al., 

1996; Hayashida et al., 2004). On the other hand, TCDD and the AhR pathway are 

known to alter the expression of the RARs and RXRs, although the effect of TCDD on 

RAR and RXR gene expression is receptor and cell-type dependent. RARβ expression is 

inhibited by TCDD exposure of embryonic palate mesenchymal cells(Weston et al., 

1995). In normal human keratinocytes, TCDD treatment results in an increase in RARγ 

and RXRα mRNA levels(Murphy et al., 2004). Therefore, one way in which TCDD may 

alter all-trans RA target gene expression in some cell types may be through alterations of 

the receptor availability.  

    The activated AhR and retinoids pathways exert complex effects on the regulation of 

cognate genes. Exposure of TCDD, methylcholanthrene or benzo[a]pyrene inhibits all-

trans RA-induced activation of transglutaminase in SCC-4 keratinocytes(Rubin and Rice, 
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1988). TCDD also demonstrates an inhibitory action toward other all-trans RA target 

genes, including RDH9(Tijet et al., 2006) and CRABPII(Weston et al., 1995). TCDD 

activates expression of retinal oxidase, the enzyme that catalyzes the conversion of 

retinal to RA. However, cotreatment with all-trans RA and TCDD results in the 

downregulation of retinal oxidase expression and activity(Yang et al., 2005a). Although 

the majority of data indicate that TCDD/AhR inhibit RA-mediated gene expression, 

there is growing evidence indicating that the interaction is more complex and may be 

tissue and cell-type specific.  

    Data from AhR knockout mice support the hypothesis that the AhR pathway interferes 

with expression of RA pathway target genes. For example, the expression of CRBPI is 

higher in the livers of AhR null animals than in their wild-type counterparts. In addition, 

all-trans RA levels are elevated in the livers of AhR null mice in comparison to wild-

type mice(Andreola et al., 1997), which is coupled to a downregulation in CYP2C39 

mRNA expression in the AhR null animals(Andreola et al., 2004). These data suggest 

that the AhR pathway, in the absence of exogenous ligand, is inhibitory toward the basal 

expression of genes that encode for proteins critical for retinoid homeostasis. Conversely, 

the RA pathway also has an inhibitory effect on AhR-mediated transcription, and one of 

the most extensively studied is the effect of all-trans RA on expression of CYP1A1. 

RARα−/− null animals display an increase in hepatic CYP1A1 activity after TCDD 

treatment compared to wild-type mice, suggesting that RARα may play an inhibitory 

role in TCDD-mediated CYP1A1 gene regulation (Hoegberg et al., 2005). Vitamin A 

inhibits CYP1A1 activity and mRNA expression of TCDD-induced Cyp1a1 and AhR in 

mice(Yang et al., 2005b).  

    AhR signaling pathway and retinoids signaling pathway interacted at transcriptional 

level. All-trans RA exposure is inhibitory to xenobiotic-induced CYP1A1 expression 

and activity, and that this inhibition is mediated through the RARE in the 

promoter(Wanner et al., 1996). TCDD exposure results in increased MMP-1 (matrix 

metalloproteinase-1, interstitial collagenase) expression in keratinocytes that is further 

enhanced by co-treatment with all-trans retinoic acid. TCDD-induced expression of 
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MMP-1 appears to be mediated through two AP-1 elements in the proximal promoter of 

the MMP-1 gene. However, retinoic acid-mediated induction of keratinocyte MMP-1 is 

a result of both promoter activation and increased mRNA stability. These findings are 

the first to demonstrate TCDD-induced expression of MMP-1 and to demonstrate 

interactions between the TCDD/AhR and retinoic acid pathways on MMP-1 

expression(Murphy et al., 2004). The coactivation of all-trans RA and TCDD was also 

observed for PAI-2, a regulator of matrix remodeling, indicating that all-trans RA/TCDD 

coactivation is not limited to MMPs. TCDD inhibition of transglutaminase in the SCC-4 

cells is mediated primarily at the level of transcription, and does not result from a change 

in mRNA stability(Krig and Rice, 2000). However, the mechanism of TCDD-induced 

interference of all-trans RA-induced transglutaminase expression is still unknown. 

Although it is clear that there are interactions between these pathways at the level of 

transcriptional activation, it is unclear how these interactions are accomplished.  

    The involvement of the corepressor as well as the coactivator proteins may provide a 

molecular pathway for the transcriptional cross talk between the AhR and RA pathways. 

TCDD exerted a dose-dependent effect on a retinoic acid-dependent reporter gene 

expressed in MCF-7 cells. AhR was shown to be involved in a mutual antagonism with 

RARα corepressor SMRT (silencing mediator of retinoid and thyroid receptors). This, 

and the documented physical interaction between AhR and SMRT suggested that SMRT 

sequestration by AhR might activate RARα in the absence of ligand. Concurring with 

this interpretation, an interaction in vitro between AhR and the PML protein (the core 

component of nuclear bodies) was observed. (Widerak et al., 2006). Recent evidence 

indicates that corepressors may be a link between the AhR and RA expression pathways. 

The SMRT corepressor is known to interact with both the AhR and RARs and modulate 

their transactivating function (Nguyen et al., 1999; Rushing and Denison, 2002; Widerak 

et al., 2006) . Further, SMRT may also be involved in TCDD-mediated effects on RAR 

binding and transactivation through the RARE.  

    In the study presented in this dissertation, the physical interaction between AhR and 

RXRα has been documented. The interaction between AhR and RXRα may also 
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contribute to the mutual regulation of transcription activity of AhR and RXRα, and will 

possibly provide an explanation for the dirrect regulation of the transcriptional activity 

of AhR and RXRα. However, the role of the interaction between RXRα and AhR in the 

regulation of PXR transcriptional activity is not clear. 

    Among AhR and PXR target genes presented in this dissertation, the expression of 

mouse Gsta1 and Cyp1a2 gene expression behaves differently from other target genes. 

Mouse Gsta1 gene expression was known to be activated by mouse PXR (Maglich et al., 

2002) and AhR (Ramadoss et al., 2005) alone. We first reported that mGsta1 was 

coactivated synergistically by co-treatment of PXR agonist PCN and AhR agonist 

TCDD. The result suggests that there is an activating or coactivating interaction between 

PXR transcription activity and AhR transcription activity, resulting in the synergistic 

activation of Gsta1 gene expression. However, the mechanism of the interaction between 

PXR and AhR transcriptional activity for the mouse Gsta1 gene expression remains 

unclear. It might be different from the mechanism that accounts for the enhanced 

expression of PXR-regulated reporter gene expression and the repression of AhR-

regulated reporter gene expression by the interaction between AhR and PXR or RXRα. 

For the gene expression profile of other AhR and PXR target genes in mice on the 

exposure to TCDD and PCN, the survey is going on. 

    There is no interaction between PXR and ARNT, or between RXRα and ARNT. 

However, the small interfering RNA targeting ARNT decreased the enhanceability of 

AhR, suggesting that ARNT is also involved into the regulation, might through its 

prototypical partner AhR. This is different from the case of ERα and ARNT. Brunnberg 

et al reported that ARNT (aryl hydrocarbon receptor nuclear translocator) functions as a 

potent coactivator of ERα- and ERβ- dependent transcription. The coactivating effect of 

ARNT depends on physical interaction with the ERs and involves the C-terminal domain 

of ARNT and not the structurally conserved basic helix-loop-helix and PAS (Per-ARNT-

Sim) motifs. ARNT/ER interaction requires the E2-activated ligand binding domain of 

ERα or ERβ. Furthermore ARNT was recruited to a natural ER target gene promoter in a 
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estrogen-dependent manner, supporting a physiological role for ARNT as an ER 

coactivator(Brunnberg et al., 2003). 

    Crosstalk between AhR and nuclear receptors might be a common phenomenon. The 

extensive studies may provide clues to further study on the indivual crosstalk between 

AhR and each nuclear receptor, and uncover the underlying mechanism and the 

association with the physiological effects. In considering RXRα is a partner of many 

nuclear receptors including PXR, PPARs, RAR, VDR, FXR, LXR, RXR and CAR, the 

interaction between AhR and RXR may play important roles in regulation of 

transcription activity of these nuclear receptors and thus impact many important 

physiological functions in response to AhR and nuclear receptor ligands exposure. 

    Both AhR and PXR are regulators of many genes of phase I, II drug metabolism 

enzymes and transporters, understanding more on the crosstalk between AhR and PXR 

will help in drug development, chemotherapy and risk assessment. 

 

4.3. A/B domain of PXR coactivated ligand binding domain of PXR and hinge domain 

corepressed PXR transcriptional activity 

    Nuclear receptors share a common structural organization. The N-terminal region 

(A/B domain) is highly variable, and contains at least one constitutionally active 

transactivation region (AF-1) and several autonomous transactivation domains (AD); A/B 

domains are variable in length, from less than 7 to more than 600 amino acids, and their 

3D structures are not known(Robinson-Rechavi et al., 2003). 

    We have investigated the role of the domain or the combination of the domains of 

PXR in regulation of PXR transcription activity. The result showed that A/B domain of 

PXR activated the transcription of the reporter gene and co-activated the ligand-

dependent activation (Fig. 28). This observation is consistant with that of other nuclear 

receptors.  

    The N-terminal A/B domain (AF-1) of estrogen receptor (ER) α and β is required in 

17 β-estradiol-induced functional synergism between AF-1 and AF-2. The intact serine 

residue at position 118 (S (118)) in ER AF-1 can be phosphorylated by MAP kinase 
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(MAPK)(Tremblay et al., 1999). The physical interaction between COUP-TFI and hER 

α increases the affinity of hER α for ERK2/p42 (MAPK), resulting in an enhanced 

phosphorylation state of the hER α Ser118. hER α thus acquires a strengthened AF-1 

activity due to its hyperphosphorylation(Metivier et al., 2002). Phosphorylation of AF-1 

also leads to the recruitment of steroid receptor coactivator-1 (SRC-1) (Tremblay et al., 

1999). AF-1 and AF-2 cooperatively recruit SRC-1 by both the AF-1 α-helical core and 

AF-2 regions and that it is stabilized by a direct interaction between the B and C-

terminal domains. This interaction of SRC-1 with the AF-1 α-helical core is essential for 

both E2- and OHT-induced ERα activity(Metivier et al., 2001). ERα AF-1 domain 

interacts with a subfamily of RNA-binding DEAD-box proteins (p72/p68) in AF-2 

associated coactivator complexes containing the SRC-1/TIF2 family, CBP/p300 and 

steroid receptor RNA activator (SRA) (Watanabe et al., 2001). However, neither any of 

the SRC-1/TIF2 family coactivators nor TRAP220/DRIP205 is potent, ligand-induced 

functional synergism between AF-1 and AF-2 is mediated through p300 by its direct 

binding to the A/B regions of ERα and ERβ(Kobayashi et al., 2000). ERα AF-1 domain 

is required for coactivation of ER by SRA (Deblois and Giguere, 2003). ERα AF-1 

domain activity can be specifically coactivated by a putative human homologue of the 

yeast DNA repair and transcriptional regulator MMS19 (hMMS19) (Wu et al., 2001). 

Prenylated proteins (at least RhoA, RhoB and/or RhoC) antagonize the ability of ERα 

and ERβ potentially acting through interfering both AF-1 and AF-2 transcriptional 

activities(Cestac et al., 2005). ER AF-1 activity is enhanced through modification of AF-

1-associated coactivator proteins by the Src/JNK pathway(Feng et al., 2001). 

    The transcriptional activity of nuclear retinoic acid receptors (RARs), which act as 

RAR/retinoid X receptor (RXR) heterodimers, depends on two activation functions, AF-

1 and AF-2, which are targets for phosphorylations and synergize for the activation of 

retinoic acid target genes RARs through the cyclin-dependent kinase (cdk)-activating 

kinase (CAK) subcomplex (cdk7/cyclin H/MAT1) of the general transcription factor 

TFIIH (Rochette-Egly et al., 1997; Bour et al., 2005a). The RARα AF-1 and AF-2 

activation functions, but not their phosphorylation sites, are involved in the induction of 
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RA-responsive genes in a differential promoter context-dependent manner(Rochette-

Egly et al., 2000). p160 coactivator TIF2, not SRC-1, is able to bridge the two activation 

domains of the retinoic acid (RA) receptor isotype RARα1, resulting in synergistic 

activation of transcription. Bridging requires the presence of motifs in region A of 

RARα1 and in the activation domain AD1 of TIF2(Bommer et al., 2002). RARγ 

phosphorylation of the AF-1 domain might control RARγ-mediated transcription 

through triggering the dissociation of vinexin β which is a multiple SH3 motif-

containing protein associated with the cytoskeleton and also present in the nucleus. 

(Bour et al., 2005b). 

    The HNF4 AF-1 interacts with multiple transcriptional targets, including the TATA-

binding protein; the TATA-binding protein-associated factors TAFII31 and TAFII80; 

transcription factor IIB; transcription factor IIH-p62; and the coactivators cAMP-

responsive element-binding protein-binding protein, ADA2, and PC4 that regulate 

distinct steps of transcription may provide a mechanism for synergistic activation of 

gene expression by AF-1 (Green et al., 1998). The amino-terminal region of TRβ1 

contains an activation domain (AF-1) that can modulate the function of the receptor and 

may allow for the fine-tuning of receptor activity in various target tissues. N-terminal 

truncated rat TRβ1 was impaired in hormone-dependent activation in both yeast and 

mammalian cells. The truncated receptor displayed enhanced homodimer binding on 

several different TREs(Wilkinson and Towle, 1997). GR AF-1 is capable of recruiting 

both positive and negative regulatory factors that differentially regulate GR 

transcriptional enhancement. DRIP150 and DRIP205 functionally link GR AF-1 and 

AF-2, and represent important mediators of GR transcriptional enhancement(Hittelman 

et al., 1999). MR A/B domain functionally interacts with TIF2 and p300 in the 

cells(Fuse et al., 2000). NOR-1 transactivates gene expression in a cell- and target-

specific manner; moreover, it operates in an activation function AF-1-dependent manner. 

The N-terminal AF-1 domain preferentially recruits the steroid receptor coactivator 

(SRC). Furthermore, SRC-2 modulates the activity of the AF-1 domain but not the C-

terminal ligand binding domain (LBD). In contrast, the N-terminal AF-1 is necessary for 
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cofactor recruitment and can independently conscript coactivators. The purine anti-

metabolite 6-mercaptopurine, a widely used antineoplastic and anti-inflammatory drug, 

activates NOR-1 in an AF-1-dependent manner(Wansa et al., 2003). Nur factors behave 

as endpoint effectors of the PKA signaling pathway acting through dimers and AF-1-

dependent recruitment of coactivators(Maira et al., 2003).  

    The physiological effect of A/B domain of PXR is not known. The evidence on the 

physiological effects of the A/B domain of nuclear receptors remains to be accumulated. 

Analysis of deleted mutants of ERα indicates that the transcriptional activation function 

(AF)-1 is required for ERα-mediated transcription as well as for the inhibition of cell 

migration induced by cell adhesion on extracellular matrix (ECM) proteins. In addition, 

the nuclear localization signal region and some serine residues in the AF-1 of the ERα 

are both required for the regulation of cell invasiveness as observed in HeLa cells(Sisci 

et al., 2004). The physiological role of A/B domain (AF-1) of HNF4α has been first 

investigated in vivo using knock-in mice of HNF4α1 with AF-1 transactivation domain 

and HNF4α7 without AF-1 transactivation domain. Hnf4α gene disruption causes 

embryonic lethality. The 'α7-only' and 'α1-only' mice are viable, indicating functional 

redundancy of the isoforms. However, the former show dyslipidemia and preliminary 

results indicate impaired glucose tolerance for the latter, revealing functional 

specificities of the isoforms(Briancon and Weiss, 2006).  

    Between the DNA-binding and ligand-binding domains is a less conserved region (D 

domain) that behaves as a flexible hinge between the C and E domains, and contains the 

nuclear localization signal (NLS), which may overlap on the C domain. The hinge (D) 

domain which is located between the DNA binding (C) domain and the ligand binding 

(EF) domain, is less conserved among the nuclear receptors. The largest domain is the 

moderately conserved ligand-binding domain (LBD, E domain), whose secondary 

structure of 12 -helixes is better conserved than the primary sequence. The E domain is 

responsible for many functions, mostly ligand induced, notably the AF-2 transactivation 

function, a strong dimerization interface, another NLS, and often a repression function. 

Nuclear receptors may or may not contain a final domain in the C-terminus of the E 
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domain, the F domain, whose sequence is extremely variable and whose structure and 

function are unknown(Robinson-Rechavi et al., 2003). 

    We also detected that D domain of PXR repressed the activation of A/B domain 

and/or ligand-binding domain. In the presence of ligand, the constructs containing D/E/F 

domains were activated. It is not clear whether the activation was due to the removal of 

the suppressive property of the D domain or the suppressive property was overcomed by 

the activation of ligand-binding domain. The physiological role of the D domains of 

PXR is not known. The role of D domain of other nuclear receptors has been reported.  

    The partial agonist activity of antagonist-occupied steroid receptors is controlled by a 

novel hinge domain-binding coactivator L7/SPA and the corepressors N-CoR or 

SMRT(Jackson et al., 1997). TR EF domain lacked T3 binding activity and additional D 

domain was required for its ligand binding. The D domain of TR is required but that of 

RXR is not necessary for the heterodimerization. The D domain was required for 

receptor specific DNA recognition. The D domain of TR cannot substitute for that of 

VDR in context of specific DNA recognition. These data suggest that the D domain is 

important to maintain the integrity of the functional structure of the nuclear receptors 

with regard to ligand binding, protein-protein interaction and DNA recognition. 

(Miyamoto et al., 2001). The TR D-domain has the potential to form functionally 

important extensions of the DBD and LBD or unfold to permit TRs to adapt to different 

DNA response elements. Mutations of the D domain LXXLL-like motif indeed 

selectively inhibit TR interactions with an inverted palindromic response element (F2) in 

vitro and TR activity at this response element in cell-based transfection 

experiments(Nascimento et al., 2006). 

    The AR hinge region exerts its repressor effect on ligand-activated and coactivator-

mediated AF2 activity of the AR LBD(Wang et al., 2001). AR gene mutations identified 

in human prostate cancer and the autochthonous transgenic adenocarcinoma of the 

mouse prostate model that colocate to residues (668)QPIF (671) at the boundary of the 

hinge and ligand-binding domain, resulting in receptors that exhibit 2- to 4-fold 

increased activity compared with wild-type AR in response to dihydrotestosterone, 
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estradiol, progesterone, adrenal androgens, and the AR antagonist, hydroxyflutamide, 

without an apparent effect on receptor levels, ligand binding kinetics, or DNA binding. 

The expression of these or similar variants could explain the emergence of hormone 

refractory disease in a subset of patients. Homology modeling indicates that amino acid 

residues (668) QPIF (671) form a ridge bordering a potential protein-protein interaction 

surface. The naturally occurring AR gene mutations reported in this study result in 

decreased hydrophobicity of this surface, suggesting that altered receptor-protein 

interaction mediates the precocious activity of the AR variants(Buchanan et al., 2001). 

    Sepecific residues in the D domains of LRH-1 are downstream targets of mitogenic 

stimuli which may contribute to proliferative functions of LRH-1(Xu et al., 2003). A 

domain in hinge region imposes a strong repression on the transcriptional activity of 

hB1F, which is important for the function of hB1F on regulating the activity of HBV 

enhancer II/core promoter. Mutations of the core residues in this domain abrogate the 

repression. Moreover, the repression is not affected by the silencing mediator for retinoic 

acid receptor and thyroid hormone receptor (SMRT) and steroid receptor coactivator 1 

(SRC-1)(Xu et al., 2003).  

    We have investigated the co-activational effect of A/B domain and the co-repressive 

effect of D domain of PXR on PXR transcriptional activity. Like in the other nuclear 

receptors, such as ER, These domains may interact with coactivators or corepressors to 

exert their effects. What co-factors are included and how they interact with these 

domains remain to be investigated. 

 

4.4  Green tea polyphenols enhanced PXR-activated CYP3A4-Luc gene expression 

    Tea is a natural and historic beverage, consumed worldwide although at greatly 

varying levels. Tea is now grown in 30 countries, but geologic and botanic evidence 

suggest that the tea plant originated from China. As one of the most ancient and 

commonest beverages, tea has been consumed for thousand years in the orient and plays 

a central part in Chinese culture, with tea-drinking practices specific to different areas. 

Among three types of tea green tea, oolong tea and black tea with different types and 
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concentration of polyphenols, green tea is prepared in such a way as to preclude the 

oxidation of green leaf polyphenols. Green tea, which is the main tea beverage in Japan 

and many parts of China, accounts for 20% of worldwide tea production, whereas <2% 

of tea production is oolong tea, consumed mainly in southern China and Taiwan. 

including the southeastern region of China(Graham, 1992; Phipps, 1999; Zhang et al., 

2006). Tea is one of the most consumed beverages worldwide, and its beneficial effects 

on health have been documented(Liao et al., 2001; Cooper et al., 2005a; Cooper et al., 

2005b; Fujiki, 2005; Shimbo et al., 2005; Pastore and Fratellone, 2006). 

    In China, there is a common sense that no drinking tea while taking medicine mainly 

due to that the tannins in the drinking tea react with components of the medicine. Still, 

there id drug metabolism enzyme system in the body, they may deactivate the medicine 

and cause undesired drug-drug interactions. The effect of green tea polyphenols on the 

activity and regulation of drug metabolism enzymes has been studied and reporterd. 

Decaffeinated green tea (Camellia sinensis) is unlikely to alter the disposition of 

medications primarily dependent on the CYP2D6 or CYP3A4 pathways of 

metabolism(Donovan et al., 2004). Green tea drinking inhibited CYP1A activity by 

green tea polyphenols. Green tea may work to biotransform CYP1A inducing 

carcinogens into non-carcinogenic metabolites by modulation of other microsomal 

enzymes rather than CYP1As(Yang et al., 2003). In LS-180 cells green tea extract 

(GTE), but not epigallocatechin gallate (EGCG), significantly induced CYP1A2 mRNA 

expression, whereas neither CYP1A1 nor CYP3A4 mRNA expression was modulated by 

GTE or EGCG. In Caco-2 cells CYP1A1 as well as CYP1A2 mRNA expression was 

significantly increased in a dose-dependent manner by GTE and EGCG. GTE or EGCG 

significantly inhibited CYP1A2 and CYP3A4 function in a dose-dependent manner. 

Therefore, it appears that green tea moderately modulates the expression of drug-

metabolizing enzymes but non-specifically inhibits the function of human CYPs(Netsch 

et al., 2006). Individual polyphenols as well as polyphenol-rich plant extracts may affect 

phase I and II enzyme expression by distinct mechanisms that must be elucidated(Kluth 

et al., 2007). Catechins do not induce CYP3A4 activity.The induction effect of catechins 
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on UGT1A1 seems to be modest and highly variable. The effect of acute and prolonged 

use of green tea on the pharmacokinetics of irinotecan in patients remains to be 

evaluated(Mirkov et al., 2007). 

    We detected that green tea polyphenols (GTPs) extract alone didn’t induce PXR-

mediated CYP3A4-Luc gene expression. They enhanced RIF-induced CYP3A4-Luc 

gene expression in a dose dependent manner. The result suggests that the components 

polyphenols of the green tea may enhance the expression of CYP3A4 gene expression 

induced by PXR-agonists in the medicine. This mechanism probably adds a new 

explanation into the common sense.  

 

4.5 Pharmacological doses of dietary supplements probably impose little drug-drug 

interaction  

    Among extracts surveyed, extracts of Ginger Root, Cats Claw, Dong Quai, Valerian 

Root, Olive Leaf and Damiana obviously induced PXR-mediated CYP3A4-Luc gene 

expression. Extracts of Cranberry, Fever Few, Cascara Sagrada and Ginkgo Biloba 

slightly induced PXR-mediated CYP3A4-Luc gene expression. The Valerian Root 

extract (5000μg/ml) had the most potency of the induction. The doses of the Valerian 

Root extract at 5000μg/ml and 2000μg/ml which induced higher expression of 

lucuferase than rifampicin are much higher than those possible concentrations the target 

organs can gain. The dose of the Valerian Root extract at 670μg/ml has some 

inducibility which is less that rifampicin, and the dose of 200μg/ml has marginal 

inducibility, compared with DMSO.  

    However, the recommended dose of the Valerian Root extract is one capsule 

containing 500mg extract daily at bed time. The concentration of the plasma can be 

estimated by assuming the distribution volumes (Table 14).  

The highest plasma concentration of 500mg extract is 167μg/ml according to the 

estimation, at which marginal induction of PXR-mediated CYP3A4-Luc gene expression 

was extrapolated. Thus, the recommended dosage for the consumers will not cause the 

unexpected PXR-mediated gene expression. However, there is uncertainty in this 
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estimation which doesn’t include the value of tissue binding. If the components of high 

potency for induction have high affinity to the liver, the concentration of the components 

of high potency will be high to induce the PXR-mediated gene expression. Therefore, 

the data on the pharmacokinetics of the Valerian Root extract is desirable. 

 
Table 14 Estimation of the plasma concentration of 500mg Valerian Root  

extract distributing in 70-kg human body* 

Compartment Volume (L) Concentration (μg/ml) 

Plasma water 3 167 

Total extracellular water 14 36 

Total body water 38 13 

Total body 69 7 

Tissue binding ? ? 

* The reference values come or are derived from (Casarett et al., 2001). 

 

4.6 Aflatoxin B1 enhanced activated-PXR-induced CYP3A4-Luc gene expression 

    Fungal toxin aflatoxin B1 (AFB1) has been found mainly in the dietary and several 

epidemiological studies have established a strong association between dietary aflatoxin 

B1 exposure and the development of primary hepatocellular carcinoma(Van Rensburg et 

al., 1985; Peers et al., 1987; Kolars, 1992; Wogan, 1992) . Although AFB1 is best 

known as a hepatocarcinogen, epidemiological studies have shown a positive association 

between human lung cancer occurrence and inhalation exposure to AFB1(He et al., 

2006). The worldwide human exposure to aflatoxin B1 (AFB1), particularly in 

developing countries, remains to be a serious public health concern. The balance 

between bioactivation to and detoxification of the epoxide determined its effects on 

human hepatic and extrahepatic carcinogenesis, thus the metabolism of AFB1 plays a 

key role in mediating the carcinogenicity of AFB1. The induced expression of drug 

metabolism enzyme genes has quantatively determinant effect on the metabolism 

activity. The effect of AFB1 on the activity and cytochrome P450s has been studied.  

    AFB1 is activated by hepatic cytochrome P450-dependent monooxygenases leading to 

the formation of several forms of AFB1 metabolites (Massey et al., 1995). CYP3A4 

 



 128

appears to have a relatively low affinity for AFB1 epoxidation and is primarily involved 

in AFB1 detoxification through AFQ1 formation in human liver microsomes (Gallagher 

et al., 1994). CYP3A4 and CYP3A7 have essentially similar capacities to activate AFB1 

to produce toxic metabolites(Hashimoto et al., 1995). The CYP3A5 polymorphism is 

associated with increased levels of the mutagenic AFB1-exo-8, 9-epoxide, particularly in 

individuals with low CYP3A4, and this may modulate individual risk of 

HCC(Wojnowski et al., 2004). Cytochrome P450 (CYP)-catalyzed metabolic activation 

is required for AFB1 to exert its carcinogenicity. The hepatic carcinogen aflatoxin B1 

(AFB1) is metabolized in the liver by at least four different P450s, all of which exhibit 

large interindividual differences in the expression levels. These differences could affect 

the individual risk of hepatocellular carcinoma (HCC). P450 3A4 contributed a majority 

of AFBO and AFQ1, and its expression level was the most important determinant of the 

AFB1 disposition toward these primary metabolites. P450 3A5, which exclusively 

produced AFBO, was the second-most important enzyme activating AFB1 to AFBO, 

followed by P450 3A7 and P450 1A2. The relative contribution of AFBO by P450 3A5 

strongly depended on the concomitant expression of P450 3A4, and it was as high as 

15% in a P450 3A5 high expressor with the lowest P450 3A4 expression of all livers. 

The P450 1A2-specific AFB1 detoxification product AFM1 was not detected. P450 3A4 

expression is the most important determinant of AFB1 activation to AFBO. The 

contribution of P450 1A2 to AFB1 metabolism appears to be negligible and may have 

been overestimated. Targeted chemoprevention of AFB1-associated HCC should 

consider P450 3A4 inhibitors and avoidance of P450 3A4 inducers(Kamdem et al., 

2006). CYP2A13-catalyzed metabolic activation in situ may play a critical role in human 

lung carcinogenesis related to inhalation exposure to AFB1(He et al., 2006). 

    In a cell-based system, we detected that Aflatoxin B1 alone has marginal effect on the 

PXR-mediated CYP3A4-Luc gene expression, and enhanced PXR-induced CYP3A4-

Luc gene expression by rifampicin. The data suggests that co-exposure of AFB1 and 

PXR ligand will result in the enhanced CYP3A4 or other PXR-induced gene expression, 

 



 129

and has more complicated effects on the AFB1 metabolism. The carcinogenecity of the 

AFB1 under this circumstance should be reassessed. 

 

4.7 Effects of metal ions on PXR-induced CYP3A4 gene expression 

    We detected that CuSO4 and MnCl2 enhanced rifampicin induced luciferase 

expression (Fig. 34A, B) while CuSO4 and MnCl2 alone had little effects on the PXR-

mediated CYP3A4-Luc gene expression ( Fig. 34B). This is not the first report on the 

regulation of drug metabolism gene expression by metal ions. Metal activation of gene 

expression through several signal transduction pathways, including As (V) induction of 

GST Ya, FOS, XRE, NFκBRE, GADD153, p53RE, and CRE; Pb (II) induction of GST 

Ya, XRE, Cyp1A1, and GADD153; Cd (II) induction of NFκBRE, Cyp1A1, XRE, and 

GST Ya; and Cr (VI) induction of p53RE, XRE, GADD45, HSP70, and CRE promoters 

(Tully et al., 2000). The effect of copper on the levels of MT2A, HSPA1A, CYP1A1 and 

HMOX1 expression(Song and Freedman, 2005). The trace metals could influence the 

carcinogenicity of the PAHs by altering their extent of induction of cytochromes 

P4501A1, 1A2, and 1B1 (CYP). Both transcriptional and post-translational mechanisms 

are involved in the trace metal-mediated down regulation of the CYP1 forms. The latter 

mechanism incorporates induction of heme oxygenase-1 by the metals, with resultant 

heme catabolism. Thus, trace metals could diminish the carcinogenicity of 

PAHs(Kaminsky, 2006). However, the mechanism of how metal ions regulated drug 

metabolism gene expression remains to be investigated. 
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