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ABSTRACT

Estimation of Circadian Parameters and Investigation in Cyanobacteria via

Semiparametric Varying Coefficient Periodic Models. (August 2007)

Yingxue Liu, B.S., Peking University, P. R. China;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Naisyin Wang

This dissertation includes three components. Component 1 provides an estima-

tion procedure for circadian parameters in cyanobacteria. Component 2 explores the

relationship between baseline and amplitude by model selection under the framework

of smoothing spline. Component 3 investigates properties of hypothesis testing. The

following three paragraphs briefly summarize these three components, respectively.

Varying coefficient models are frequently used in statistical modeling. We pro-

pose a semiparametric varying coefficient periodic model which is suitable to study

periodic patterns. This model has ample applications in the study of the cyanobac-

teria circadian clock. To achieve the desired flexibility, the model we consider may

not be globally identifiable. We propose to perform local approximations by kernel

based methods and focus on estimating one solution that is biologically meaningful.

Asymptotic properties are developed. Simulations show that the gain by our proce-

dure over the commonly used method is substantial. The methodology is illustrated

by an application to a cyanobacteria dataset.

Smoothing spline can be implemented, but a direct application with the penalty

selected by the generalized cross-validation often leads to non-convergence outcomes.
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We propose an adjusted cross-validation instead, which resolves the difficulties. Biol-

ogists believe that the amplitude function of the periodic component is proportional

to the baseline function. To verify this belief, we propose a full model without any

assumptions regarding such a relationship, and two reduced models with the ratio of

baseline and amplitude to be a constant and a quadratic function of time, respectively.

We use model selection techniques, Akaike information criterion (AIC) and Schwarz

Bayesian information criterion (BIC), to determine the optimal model. Simulations

show that AIC and BIC select the correct model with high probabilities. Application

to cyanobacteria data shows that the full model is the best model.

To investigate the same problem in component 2 by a formal hypothesis testing

procedure, we develop kernel based methods. In order to construct the test statistic,

we derive the global degree of freedom for the residual sum of squares. Simulations

show that the proposed tests perform well. We apply the proposed procedures to

the data and conclude that the baseline and amplitude functions share no linear or

quadratic relationship.
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CHAPTER I

INTRODUCTION

Semiparametric models use different structures to best accommodate the problems

in hand while allow modeling flexibility. A useful class of models is that of vary-

ing coefficient models. Varying coefficient models have applications on many aspects

and disciplines. This dissertation investigates the application of a useful extension

of varying coefficient models, semiparametric varying coefficient periodic models, on

analyzing the circadian patterns of cyanobacteria. It contains three components. In

chapter II, we propose semiparametric varying coefficient periodic models and provide

estimating procedures for the circadian parameters. In chapter III, we investigate fur-

ther properties that are of biological interest using model selection techniques. This

is performed under the framework of smoothing spline. Chapter IV proposes pro-

cedures for hypothesis testing under the framework of local linear regression. The

rest of this chapter provides the biological background behind chapter II, III and IV.

Section 1.1 provides the definition and characteristics of circadian programs. Sec-

tion 1.2 describes the cyanobacterial circadian clock. The overview structure of this

dissertation is provided in Section 1.3.

1.1 What Is a Circadian Program?

Circadian rhythms are endogenous biological programs that time metabolic and/or

behavioral events to occur at optimal phases of the daily cycle. They have three diag-

The format and style follow that of Biometrics.
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nostic characteristics. The first is that in constant conditions, the programs free-run

with a period that is about 24 hours in duration. The second is that, in an appropri-

ate environmental cycle (usually a light-dark and/or temperature cycle), the rhythm

will take on the period of the environmental cycle, that is, circadian rhythms will

entrain to the environmental cycle. The final characteristic is that the period of the

free-running rhythm is nearly the same at different constant ambient temperatures

within the physiological range; that is, circadian rhythms are temperature compen-

sated. It is these three characteristics that define circadian rhythms, not the details of

their biochemical mechanisms. Indeed, questions of considerable interest are whether

circadian mechanisms have evolved more than once and, if so, whether completely

different biochemical processes have been harnessed to the task in different organ-

isms. The fascination of circadian rhythms is how a biochemical mechanism can keep

time so precisely over such a long time constant (about 24 hours) at different ambient

temperatures (Johnson and Golden, 1999).

1.2 The Cyanobacterial Circadian Clock

Like the circadian clocks of plants, animals and fungi, the cyanobacterial clock gener-

ates rhythms of biological processes that exhibit an approximate 24-hour period even

in the absence of an environmental cycle, can be synchronized with the environment

through light or temperature cues, and maintain a nearly constant period over a range

of physiologically relevant temperatures (Golden, 2003).

The revelation that gene expression, as reflected by luciferase reporter fusions,

is under circadian control allowed the automated monitoring of oscillations in biolu-

minescence as a readout from the clock (Figure 1). Cells are incubated in a 12-hour

light: 12-hour dark cycle to synchronize to the clock, then released into continuous

light (time 0), the so called constant condition, for several days. From Figure 1, we
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Figure 1: Plot of bioluminescence vs time, data were recorded every 2.116 hours.
X-axis, time in hours. Y-axis, bioluminescence. Time is divided by dashed lines to
indicate subjective days. The parameters of circadian period and relative phase are
indicated.

observe a clear periodic pattern with period and phase, baseline of the whole curve

and amplitude of the periodic component. Both baseline and amplitude are changing

with time.

The bioluminescence patterns have three stages. In early stage, the lumines-

cence patterns display a clear circadian rhythm that grows in baseline and amplitude

exponentially (exponential stage). After the growth rate of the culture slows, the

luminescence pattern stabilizes into a circadian pattern of consistent baseline and

amplitude (sustained stage). As the culture ages, the rhythm slowly damps (senes-

cent stage). The damping observed in the senescent stage probably results from

nutrient depletion (Johnson and Golden, 1999).

These rhythmic colonies exhibited a range of waveforms and amplitudes, and

they also showed at least two predominant phase relationships. We defined Class-1
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genes as those whose expression peaks at the end of the day (peak at dusk; trough

at dawn) and Class-2 genes as those peaking at the end of the night (peak at dawn;

trough at dusk) (Johnson and Golden, 1999). Data in Figure 1 can be classified as

Class-1 genes.

1.3 Structure Overview

Chapter II proposes a varying coefficient periodic model, and semiparametric esti-

mation procedures. This chapter contains a traditional discrete Fourier transforma-

tion method, our proposed model, semiparametric kernel based methods, asymptotic

properties of the semiparametric methods and numeric results. Chapter III is devoted

to the study of the relationship between the baseline and amplitude functions. We

present this as a problem under the general framework of smoothing spline. This

chapter focuses on the solution of the identifiability problem for smoothing spline

and presents simulations and application to cyanobacteria circadian data to select

the optimal model. Chapter IV explores the relationship between the baseline and

amplitude functions by hypothesis testing. The main accomplishment of this chapter

is the derivation of the global degree of freedom for residual sum of squares. Chapter

V concludes our studies and considers a future research topic of testing if the period

and phase of cyanobacteria data are constants. Proofs of the theorems and lemmas

are detailed in the appendices.
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CHAPTER II

ESTIMATION OF CIRCADIAN PARAMETERS IN CYANOBACTERIA VIA

SEMIPARAMETRIC VARYING COEFFICIENT PERIODIC MODELS

2.1 Introduction

Circadian rhythms are endogenous biological programs that coordinate a living be-

ing’s internal/external functions to match the phase of the daily cycle. Cyanobac-

terium, Synechococcus elongates PCC 7942, is the simplest organism, in terms of

genome size and unicellular structure, that is known to possess an endogenous cir-

cadian clock. The study of circadian patterns in cyanobacteria provides a powerful

tool to assist researchers to better understand the circadian input pathways. For

cyanobacteria, rhythmic gene expressions can be monitored by bioluminescence pro-

duced from luciferase reporter gene(s). The gene expression patterns, measured by

luminescence, tend to reflect the stage of growth cycle of cyanobacterium colonies.

For example, in early stage (“exponential stage”), the luminescence patterns display

an exponential growth in the number of cells in the culture. This growth is reflected

by, e.g., the growing amplitude. When the growth rate slows, the luminescence pat-

tern stabilizes into a so called “sustained stage”. As the culture ages, the pattern

damps into a “senescent stage” which is believed to be a consequence of the stress

from nutrient depletion (Johnson and Golden, 1999). Figure 2 displays biolumines-

cence patterns collected from CikA (circadian input kinase) at four different cultures.

CikA is a key component of the circadian clock input pathway of cyanobacteria. A

cikA null mutant strain could show shorten period, reduced amplitude and lack of

ability in sensing environmental change (Zhang, Dong, and Golden, 2006). The plots

in the top panel illustrate patterns that contain the exponential and sustained phases,
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Figure 2: Four data curves. Plot of bioluminescence vs time, data were recorded every
2.116 hours. The plots in the top panel have two stages of growth cycle (exponential
stage and sustained stage), while the plots in the bottom panel have three stages
(exponential stage, sustained stage and senescent stage). The red dashed lines are
the underlying baseline functions.

while the plots in the bottom panel display all three stages. In the past, researchers

tend to focus on observations collected from the sustained stage only. This practice

has changed though the same method is applied to analyze the data. The use of one

parametric model to capture patterns at different stages and from different cultures

appears to be challenging.

A fast Fourier transformation nonlinear least square (FFT-NLLS) algorithm is by

far the most commonly used approach to analyze circadian rhythm data (e.g. Dodd

et al., 2005; Niinuma et al., 2005). However, the performances of this approach are
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not always satisfactory. We will illustrate some potential drawbacks with examples

in Section 2.2. Our numerical illustrations will also show that our proposed methods

could greatly improve the estimation precision of certain key parameters in Section

2.6.

As researchers realize that parametric models might be inadequate to capture

certain underlying relationships between response variables and the associated co-

variates in some practical situations, there has been upsurge of interests and effort

in the development of nonparametric and semiparametric models and methods; see,

e.g., Hastie and Tibshirani (1990), Green and Silverman (1994), Wand and Jones

(1995) and Fan and Gijlels (1996), among others. The most relevant literature to

this manuscript is that of varying coefficient models. The modeling techniques were

systematically investigated in seminal work of Cleveland, Grosse, and Shyu (1991)

and Hastie and Tibshirani (1993). For this kind of models, Fan and Zhang (1999)

proposed a two-step procedure to accommodate varying degrees of smoothness among

coefficient functions. The varying coefficient partially linear model is a useful exten-

sion of varying coefficient model, and has been investigated by Zhang, Lee, and Song

(2002) and Li et al. (2002). Their estimation and inference procedures are further

systematically studied by Fan and Huang (2005).

In this paper, we extend the varying coefficient partially linear model to a sce-

nario where a periodic component is part of the semiparametric varying coefficient

model. One embedded difficulty is that the most natural model has a global identifia-

bility issue such that a direct application of spline based methods can result multiple

answers. Our strategy is to use kernel based methods, approximate the model locally

and show that one solution, which is close to our initial estimate, is the correct one to

use to addresses the biological questions. More details regarding local identifiability

and the associated conditions will be provided in Section 2.3 and 2.4.4, respectively.
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There are other models and spline-based approaches that have been used to analyze

other circadian rhythm data. For example, Wang and Brown (1996) developed a

flexible shape-invariant model using a periodic spline function as the common basis

curve, and estimate the individual’s mean, phase and amplitude. They assume that

the mean, phase and amplitude are scalar and do not change with time. Equiva-

lently, Luan and Li (2003) adopted a similar modeling structure when they analyzed

microarray time course data. Figure 2 has clearly shown that there may not be a

common basis curve across different cultures. That is, the proposed approaches above

are not applicable for the more general cases.

The rest of this chapter is organized as follows. Section 2.2 briefly describes a

traditional approach of FFT-NLLS. Sections 2.3 and 2.4 provide the model we study

and our proposed parametric and semiparametric methods, respectively. In Section

2.5, we investigate the asymptotic properties of the semiparametric methods. The

numerical studies of their performances and analysis of circadian dataset are provided

in Section 2.6. Section 2.7 contains concluding remarks. All theoretical conditions

and proofs are relegated to Appendix A and B.

2.2 Traditional Approach

Traditionally, the period and phase of circadian rhythm data were estimated using

the Fourier transformation based methods, which we briefly describe in Section 2.2.1.

However, the performances of such approaches are not always satisfactory. For exam-

ple, when the error variation increases and/or when the coefficient functions vary with

time, the variation of the estimates of the rhythm parameters increases. In Section

2.2.2, we illustrate some potential drawbacks with examples.
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2.2.1 Analysis via Periodogram and Fourier Transformation

Let Y and t denote the response and covariate variables, respectively, and let ε be

the error term. A plausible model for periodic data with discrete time points, t =

0, · · · , n − 1, is

yt = β0 + β1 cos{2π(t/τ − φ)} + εt, (2.1)

where τ denotes the period and φ denotes the phase of the periodic component. It is

common to assume that E(εt) = 0, and var(εt) = σ2
ε . Notice by this setup, the range

of φ should be the interval [0, 1); the growth baseline, β0, and the amplitude of the

periodic component, β1, are assumed to be time invariant. We can also assume that

both β0 and β1 non-negative. If β1 > 0, then a rhythm exists, and yt reaches its peak

at t = τφ. This yt repeats itself with a period of τ .

The most commonly implemented approach to estimate τ , φ, β0 and β1 is through

discrete Fourier transformation. We let w denote the frequency of the periodic com-

ponent, that is, w = 2π/τ , and let wj = 2πj/n to be the so called jth Fourier

frequency, where j = −n/2, · · · ,−1, 1, n/2. The discrete Fourier transform (DFT) of

yt is defined to be

J(wj) = (1/n)
n−1∑

t=0

yte
−iwjt;

while the periodogram of yt at frequency wj is I(wj) = (n/2π)|J(wj)|2.

A peak in the periodogram at a provided frequency indicates a strong harmonic

component at that frequency in {yt}. Consequently, one can estimate the frequency

w by the argument that maximizes the realization of the periodogram:

ŵ = {wj : max I(wj)},

τ̂ = 2π/ŵ,

φ̂ = arctan{−ImJ(ŵ)/ReJ(ŵ)}/2π,
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where ReJ(ŵ) and ImJ(ŵ) are the real and imaginary components of J(ŵ), respec-

tively. By minimizing

n−1∑

t=0

[
yt − β0 − β1 cos{2π(t/τ̂ − φ̂)}

]2
,

we obtain

β̂0 =
1

n

n−1∑

t=0

yt = J(0), β̂1 = 2
√

ReJ(ŵ)2 + ImJ(ŵ)2.

This estimation algorithm is referred to as “Fast Fourier Transformation – Nonlinear

Least Square” (FFT-NLLS) approach in the Chronobiology literature. Note that

in model (2.1), t is set to be in {0, · · · , n − 1}, which is not always true in real

applications. A pre-application standardization procedure is often adopted. For more

details on DFT, please see Bloomfield (1976) and Brockwell and Davis (1996).

2.2.2 Potential Drawbacks of the Traditional Method

We list two potential drawbacks that we have encountered of the traditional method.

First, DFT cannot properly estimate intercept and amplitude when they change with

time. If one ignores the fact and apply DFT regardlessly, the outcomes tend to suffer

due to the model mis-specification. For the last dataset in Figure 2, we plot the DFT

estimated curve in Figure 3. From Figure 3 we observe that the traditional estimates

are way off the true values. The estimate of period τ is roughly acceptable, but other

estimates behave very badly.

The second drawback is that DFT is sensitive to large-size noises. The effect of

magnitude of noises can be seen at the following example.

Example 2.1. Let yt = 1 + 3 cos(0.5t − 2) + εt, t = 0, · · · , 99, with εt ∼ N(0, s2).

That is, n = 100, w = 0.5, τ = 4π, φ = 1/π, β0 = 1, β1 = 3 and σ2
ε = s2. To know

how τ̂ , φ̂, β̂0 and β̂1 perform when s gets larger, we plot τ̂ , φ̂, β̂0 and β̂1 versus s

in Figure 4, where the values of s vary from 0 to 8, with each two adjacent points
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Figure 3: The bottom-right curve in Figure 2 and the DFT estimated curve. The
black solid line is the observed curve, and the red dashed line is the DFT estimated
curve.

0.08 apart. Figure 4 suggests that the quality of estimation deteriorates for a large

s. This phenomenon is especially obvious for β̂0 and β̂1. That is, FFT-NLLS is quite

sensitive towards noises. Compared to β̂0 and β̂1, τ̂ and φ̂ are relatively stable until

s becomes fairly large.

2.3 Varying Coefficient Periodic Models

For cyanobacteria circadian rhythm data, we observe that each item possesses an

overall smooth growth trend as well as a periodic pattern; both terms change over

time. Let y and t be the response and covariate variable, respectively. We consider

the following varying coefficient periodic model:

yij = β0i(tij) + β1i(tij) cos{2π(tij/τi − φi)} + εij , i = 1, · · · ,m; j = 1, · · · , ni, (2.2)
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Figure 4: DFT estimates of τ , φ, β0 and β1 vs magnitude of noise s in Example 2.1,
from left to right. The dots are our estimated parameter values through DFT for
different s; the solid lines provide the true parameter values.

where yij is the response of ith individual at the jth time point tij; β0i(t) is the

underlying baseline growth function of the ith individual; β1i(t) > 0 is the amplitude

function of the periodic component of the ith individual; τi denotes the period of

the ith individual; 0 ≤ φi < 1 is the phase of the ith individual; ni is the total

number of observations of subject i; and m is the total number of subjects. We

assume that the error terms εij are independent and identically distributed with

E(εij) = 0, and var(εij) = σ2
ε . One advantage of this model is that it allows the

baseline and amplitude functions to vary with time, which reflect the growth patterns

that biologists believe in. It also contains the period and phase parameters τ and φ,
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so we can conveniently study the property of the periodic component by evaluating

these two estimated parameters. Note that, one can replace cos(·) by another suitable

parametric function, and our methods could still be applicable.

Let θi = (τi, φi)
T . We assume all θi’s are random samples from the same dis-

tribution with mean θ and covariance Σθ. Our ultimate goal is to provide interval

estimation of θ = (τ, φ)T , which are the population means of the period and phase

in the data. The covariance Σθ measures the between-item variation of θi and its

magnitude is also of interest.

Without loss of generality and slightly abusing the notations, we assume that

observations from all items are collected at the same time points and present the

general model as

Yi =

p∑

k=0

βki(t)Xk(t; θi) + εi, i = 1, · · · ,m. (2.3)

where t = (t1, · · · , tn)T , Yi = (yi1, · · · , yin)T , and εi = (ε1, · · · , εn)T . Xk(t; θi) are

equivalently defined as Yi but Xk(t; θi) could contain the unknown parameter θi. In

our special case, X0(t; θi) = (1, · · · , 1)T = 1T , and X1(t; θi) = cos{2π(t/τi − φi)}.

Evaluating model (2.2), we notice an identifiability problem in the model. That

is, one can hardly identify β0(t) and β1(t). One extreme case is that we set β1(t)

equals to 0, and E(Y |t) = β0(t), so the circadian pattern with be captured by β0(t)

alone. Obviously in this case, we can not obtain the desired estimates of the period

τ , the phase φ, the baseline function β0(t) and the amplitude function β1(t). We will

address this issue again after our semiparametric estimation methods are provided in

Section 2.4.

2.4 Parametric and Semiparametric Estimation Methods

In this Section, we provide parametric and semiparametric estimation methods to

estimate the circadian data. We introduce a parametric method in Section 2.4.1 and
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semiparametric methods in Section 2.4.2. Section 2.4.3 contains details, including

bandwidth selection and initial estimates of the parameters, that are relevant to the

semiparametric procedures. Identifiability problem is addressed in Section 2.4.4.

2.4.1 Quadratic Varying Coefficient Method

In the traditional approaches, the estimates of the baseline, β0, and amplitude, β1 can

only be constants. To improve this, we assume, for item i, both β0i(t) and β1i(t) are

quadratic functions of time t in model (2.2). Also, from Example 2.1, the estimates

of τ and φ are relatively stable for noises, so, we use estimates of τ and φ from DFT,

as our initial estimates to update β̂0(t) and β̂1(t). We refer to this approach as the

quadratic varying coefficient method (QVC).

For item i, the estimation steps can be described as below:

1. Estimate τi and φi by DFT, denote them as τ̂
[0]
i and φ̂

[0]
i , and let θ̂

[0]
i = (τ̂

[0]
i , φ̂

[0]
i )T .

2. Assume β0i(t) and β1i(t) are quadratic functions of t, then model (2.3) becomes

Yi = (b00i + b01it + b02it
2) + (b10i + b11it + b12it

2)X1(t; θ
[0]
i ) + εi.

Estimate b00i, b01i, b02i, b10i, b11i, b12i by fitting the above linear model, and obtain

the estimates of β0i(t) and β1i(t) by

β̂0i(t) = b̂00i + b̂01it + b̂02it
2, and β̂1i(t) = b̂10i + b̂11it + b̂12it

2.

3. Find τ̂i and φ̂i by minimizing residual sum of squares RSS =
∑n

j=1(yij − ŷij)
2 in

the neighborhood of τ̂
[0]
i and φ̂

[0]
i , where ŷij = β̂0i(tj)+ β̂1i(tj) cos{2π(t/τ̂i− φ̂i)}.

Each θi can be estimated by θ̂i = (τ̂i, φ̂i)
T . We repeat steps 1-3 for all m items, and

obtain θ̂i, i = 1, · · · ,m. We let the final estimates of θ and Σθ to be the sample mean

and sample variance of θ̂i’s:

θ̂ =
1

m

m∑

i=1

θ̂i, Σ̂θ =
1

m − 1

m∑

i=1

(θ̂i − θ̂)⊗2.
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Figure 5: The bottom-right curve in Figure 2 and the QVC estimated curve. The
black solid line is the observed curve, and the red dashed line is the QVC estimated
curve.

We expect that when β̂0i(t) and β̂1i(t) are better estimates than what we obtain from

DFT, τ̂i and φ̂i will be more accurate than τ̂
[0]
i and φ̂

[0]
i .

For the last data set in Figure 2, the QVC estimated curve is provided in Figure

5. By Figure 5, the estimates of the period τ , phase φ and baseline function β0(t) seem

better than the traditional method, while the estimate of the amplitude function β1(t)

is much worse. This is because the initial estimates of τ and φ comes from DFT is not

accurate, and estimate of β1(t) depends on these initial estimates greatly. Because of

the model set up in (2.2), β̂0(t) is less affected than β̂1(t).
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2.4.2 Semiparametric Local Linear Varying Coefficient Methods

2.4.2.1 Component-wise update estimation

Quadratic varying coefficient method improves over the traditional approach. How-

ever, if β0(t) and β1(t) are not quadratic functions of t, QVC may result in poor

estimates for β0(t) and β1(t), and consequently we obtain poor estimate for θ. When

the parametric forms of β0(t) and β1(t) are unknown, it is natural to estimate them

nonparametricly. We use the local linear approach to estimate the nonparametric

component and use least squares to estimate the parametric component, update the

estimates iteratively and component-wise until residual sum of squares (RSS) achieves

the minimum. We refer to this method as the semiparametric local linear varying

coefficient method with component-wise update estimation (SVCC). The execution

of SVCC is as below:

For subject i, let τ̂
[0]
i and φ̂

[0]
i be the initial estimates of τi and φi, β̂

[0]
0i (t) and

β̂
[0]
1i (t) be the initial estimates of β0i(t) and β1i(t). Let τ̂

[k−1]
i , φ̂

[k−1]
i , β̂

[k−1]
0i (t) and

β̂
[k−1]
1i (t) denote the estimates at step (k − 1). At the kth step,

1. We find τ̂
[k]
i and φ̂

[k]
i by minimizing RSS =

∑n
j=1(yij − ŷij)

2 in the neighborhood

of τ̂
[k−1]
i and φ̂

[k−1]
i , where ŷij = β̂

[k−1]
0i (tj) + β̂

[k−1]
1i (tj) cos{2π(tj/τ̂i − φ̂i)}.

2. Suppose that τi and φi are known and equal to τ̂
[k]
i and φ̂

[k]
i , model (2.3) becomes

Yi = β0i(t) + β1i(t)X1(t; θ̂
[k]
i ) + εi.

Our model is a common varying coefficient model. We use the local linear

approach to update β̂0i(t) and β̂1i(t) separately with bandwidths h0 and h1.

The estimates are

β̂
[k]
0i (t0) = (1, 0)(XT

0 W0X0)
−1XT

0 W0Yi,
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β̂
[k]
1i (t0) = (1, 0)(XT

1 W1X1)
−1XT

1 W1Yi, (2.4)

where

X0 =




1 t1 − t0
...

...

1 tn − t0




, X1 =




X1(t1; θ̂
[k]
i ) X1(t1; θ̂

[k]
i )(t1 − t0)

...
...

X1(tn; θ̂
[k]
i ) X1(tn; θ̂

[k]
i )(tn − t0)




,

W0 = diag(Kh0
(t1 − t0), · · · ,Kh0

(tn − t0)),

and W1 = diag(Kh1
(t1 − t0), · · · ,Kh1

(tn − t0)).

Iterate the algorithm until RSS stops decreasing, we obtain θ̂i = (τ̂i, φ̂i)
T , β̂0i(t), and

β̂1i(t), for i = 1, · · · ,m. And let the final estimates to be

θ̂ =
1

m

m∑

i=1

θ̂i, Σ̂θ =
1

m − 1

m∑

i=1

(θ̂i − θ̂)⊗2. (2.5)

For the last dataset in Figure 2, the SVCC estimated curve is plotted in Figure

6. By Figure 6, we see great improvement of estimating data. The estimated curve

fit the observed data very well, but it is off when t is larger than 400.

2.4.2.2 Simultaneously update estimation

To have more accurate updates, instead of updating β0i(t) and β1i(t) component-wise

as in SVCC, we update them simultaneously to use all the information. We first use

the same bandwidth h for β0(t) and β1(t). In step 2 of the kth step in Section 2.4.2.1,

instead of estimating β0(t) and β1(t) using equation (2.4), We estimate them by

β̂
[k]
0i (t0) = (1, 0, 0, 0)(XTWX)−1XT WYi,

β̂
[k]
1i (t0) = (0, 0, 1, 0)(XTWX)−1XT WYi, (2.6)

where X = (X0,X1), and W = diag(Kh(t1 − t0), · · · ,Kh(tn − t0)). We refer to this

approach as the semiparametric local linear varying coefficient method with simulta-

neously update estimation using a common bandwidth (SVCSc).
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Figure 6: The bottom-right curve in Figure 2 and the SVCC estimated curve. The
black solid line is the observed curve, and the red dashed line is the SVCC estimated
curve.

For the last dataset in Figure 2, the SVCSc estimated curve is provided in Figure

7. We see that taking all the information into account does improve the estimates in

Figure 6 (SVCC), especially when t > 400.

Since β0(t) and β1(t) may have different level of smoothness, we are interested

in knowing whether updating them simultaneously with different bandwidths h0 and

h1 could improve the performance. In step 2 of the kth step in Section 2.4.2.1, The

estimates for β0(t) and β1(t) are

β̂
[k]
0i (t0) = (1, 0, 0, 0)(XTW0X)−1XT W0Yi,

β̂
[k]
1i (t0) = (0, 0, 1, 0)(XTW1X)−1XT W1Yi.

We refer to this approach as semiparametric local linear varying coefficient method

with simultaneously update estimation using different bandwidths (SVCSd).
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Figure 7: The bottom-right curve in Figure 2 and the SVCSc estimated curve. The
black solid line is the original curve, and the red dashed line is the SVCSc estimated
curve.

For the last dataset in Figure 2, the SVCSd estimated curve is provided in Figure

8. The estimated curve in Figure 8 is very similar to that in Figure 7, which suggests

that β0(t) and β1(t) share similar smoothness.

2.4.3 Bandwidth Selection and Initial Estimates

In our semiparametric methods in Section 2.4.2, we need to select the optimal band-

widths, as well as a set of initial estimates. The simplest and most effective bandwidth

selection method could be cross-validation. We perform the cross-validation method

as below:

1. Divide time into c intervals, each has k points, then leave the 1 point out in

each interval, so we will use the remaining n − c points to produce estimates

and make predicts to the left-out c points.
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Figure 8: The bottom-right curve in Figure 2 and the SVCSd estimated curve. The
black solid line is the original curve, and the red dashed line is the SVCSd estimated
curve.

2. Select a h, estimate using these n− c points, obtain ŷh
ck, obtain prediction mean

square error (MSE)

Gck(h) = {yck − ŷh
ck}2.

3. For a provided C, repeat step 1. and 2. for c from 1 to C, and k from 1 to

K = int(n/c), sum the Gck up, we obtain

G(h) =
C∑

c=1

K∑

k=1

Gck(h) =
C∑

c=1

K∑

k=1

{yck − ŷh
ck}2.

The optimal bandwidth should be h = argmin G(h). The idea of choosing two

bandwidths h0 and h1 is similar. Our experience shows that the bandwidth selected

by cross-validation provide decent enough results, as shown in Section 2.6.

To estimate the unknown curves, we need to find a set of initial estimates. Here

is how we obtain the initial estimates in Section 2.4.4.2: For item i,
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1. Select the local minimum and maximum points.

2. Obtain the median of two adjacent minimum and maximum points, consider

the medians as our baseline. Use local linear regression to fit β̂
[0]
0i (t) from these

points.

3. Subtract minimum from adjacent maximum points, consider these as two times

the amplitude. Use local linear regression to fit β̂
[0]
1i (t).

4. The distance from adjacent minimum and maximum points are half the period,

average them to obtain the initial estimate of τ , τ̂
[0]
i . Using the maximum points

as the start point of each cycle, and minimum points as middle point of each

cycle, by averaging them we can obtain φ̂
[0]
i .

2.4.4 Identifiability Problem

As we mentioned in Section 2.3, our varying coefficient periodic model (2.2) is not

global identifiable. To avoid the identifiability problem, we choose the initial estimates

that are biologically meaningful and refine our estimates from there. Also, we use

kernel based methods, semiparametric local linear varying coefficient methods, to

approximate the model locally. In equation (2.6), we need to inverse the matrix

XT WX, which requires the matrix to be non-singular, so we must have a large enough

bandwidth h. Further, if we only use partial data from one cycle, we could just

use observations near the peak or near the trough; both would provide misleading

outcomes. Consequently, we let the lower bound of the bandwidth to be around the

period, 24. A large bandwidth ensure the smoothness of β̂0(t) and β̂1(t), which leads

to the results we desire.
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2.5 Asymptotic Properties

We study the asymptotic properties of the estimates we obtain from our semipara-

metric methods in this Section. We focus on the performance of the estimates θ̂

from the semiparametric local linear varying coefficient method with simultaneously

update estimation using a common bandwidth (SVCSc) throughout this Section.

Theorem 1. Under the regularity conditions provided in Appendix A,

√
m(θ̂ − θ)

d−→ N(0,Σ), (2.7)

where Σ = Σθ + Σε and Σε = 1
n
KT

θ (t)Kθ(t)σ
2
ε .

Theorem 1 tells us that our θ̂ is a good estimate of θ. The variation Σ contains

two components: Σθ and Σε. Σθ is the between-item variation, and remains as a

constant; while Σε is the within-item variation, with the order of 1/n. If n is large

enough, Σε is negligible. To prove Theorem 1, we need the following Lemma.

Lemma 1. Suppose θi is known for item i, under the regularity conditions provided

in Appendix A,

β̂ki(t0) − βki(t0) = {Bk(t0)h
2 +

1√
nh

KT
ki(t0)εi}(1 + op(1)), for k = 0, · · · , p. (2.8)

The proof of Theorem 1 and Lemma 1 are provided in Appendix A. Lemma 1

tells us that the MSE’s of β̂0i(t) and β̂1i(t) are OP{h4 +(nh)−1} when θi’s are known.

Also, we notice that our θ̂ is obtained from averaging the estimates of θi’s as in

(2.5). If we obtain the estimate of θ from EM algorithm, that is, we find θ̂EM that

minimizes ∫ ni∑

j=1

{yij − ŷij}2g(θ)dθi,

where g(θ) is the marginal density of θi. If ni’s are large enough, it is easy to prove

that

θ̂EM − θ = (θ̂ − θ)(1 + op(1)).



23

Thus,
√

m(θ̂EM − θ)
d−→ N(0,Σ) with the same Σ described in Theorem 1 (2.7). So

our θ̂ =
1

m

m∑

i=1

θ̂i performs as good as θ̂EM from EM algorithm if n is large enough.

2.6 Numerical Outcomes

Using the asymptotic property of θ provided in Theorem 1, we introduce some in-

ference procedures for θ in Section 2.6.1. We study the numerical performance of

the proposed approaches by simulation studies in Section 2.6.2. The analysis of the

circadian dataset is provided in Section 2.6.3. Throughout this Section, we use the

Epanechnikov kernel K(t) = 0.75(1 − t2)+.

2.6.1 Inference Procedures for θ

According to Theorem 1 (2.7), the variation of θ̂ can be divided into a between-item

variation Σθ and a within-item variation Σε. We already propose several methods to

estimate Σθ in Section 2.4. To study the relationship of Σθ and Σε and obtain the

estimate of the total variation Σ, we use bootstrap approach to obtain the estimate of

the within-item variation Σε of a given dataset. Then we can compute an approximate

confidence interval for θ.

Given an original dataset with m subjects, the steps of estimating Σε are as

below: For the original dataset, we obtain θ̂i, β̂0i(t), β̂1i(t) and Σ̂θ, i = 1, · · · ,m. The

fitted value of Yi are Ŷi = β̂0i(t) + β̂1i(t) cos{2π(t/τ̂i − φ̂i)}. For item i,

1. Generate B items by

Y ∗
ib = β̂0i(t) + β̂1i(t) cos{2π(t/τ̂i − φ̂i)} + ε

∗
ib, b = 1, · · · , B,

where ε
∗
ib is the bootstrap sample of the estimating error ε̂i = Yi − Ŷi. Notice

that the between-item variation Σθ does not play a role here, because we use

the same τ̂i and φ̂i for all B items.
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2. Obtain θ̂∗ib = (τ̂ ∗
ib, φ̂

∗
ib)

T , b = 1, · · · , B, for the bootstrap data. Our estimate of

Σε for item i is

Σ̂εi =
1

B − 1

B∑

b=1

(θ̂∗ib −
¯̂
θ∗ib)

⊗2,

where
¯̂
θ∗ib =

1

B

B∑

b=1

θ̂∗ib.

Repeat 1 and 2 for every item, we obtain Σ̂εi, i = 1, · · · ,m. Our estimate of the

within-item variation is

Σ̂ε =
1

m

m∑

i=1

Σ̂εi.

By (2.7), the estimate of the total variation Σ is

Σ̂ = Σ̂θ + Σ̂ε.

According to Theorem 1, we can compute the approximate 100(1 − α)% confi-

dence intervals of θ by

θ̂ ± tα/2,m−2

√
Σ̂/m. (2.9)

If n is large enough, Σ̂ε is negligible. We can simplify the equation to

θ̂ ± tα/2,m−2

√
Σ̂θ/m. (2.10)

This will save us a lot of computational time. We recall that equation (2.10) requires

two assumptions, one is that Σε is negligible, the other is that θ̂ achieves normality.

2.6.2 Simulation Study

We study the performances of all methods with one item (m = 1) first, then extend

to the multiple-item cases. We explore the methods both for a small study (m = 6)

and for a large study (m = 18).

First, we conduct a small simulation to evaluate the numerical performances

of the parametric and nonparametric approaches introduced in Section 2.4 as well
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as the traditional approach in Section 2.2. When there is one single item, that is,

m = 1, we generate n = 100 observations, with t ∈ {60, 63, · · · , 357} under model

(2.2). We set θ = (24, 0.5) and the (1,1), (1,2) and (2,2) elements of Σθ 0.1, 0 and

0.05, respectively. We generate θi, i = 1, from the distribution N(θ, Σθ), and set

β0(t) = exp(−0.1 + 0.034t − 0.00007t2), β1(t) = exp(0.8 + 0.024t − 0.00005t2), and

ε ∼ N(0, 12).

We carry out the estimation of model (2.2) by all five methods: (1) the tradi-

tional method (DFT); (2) the quadratic varying coefficient method (QVC); (3) the

semiparametric local linear varying coefficient method with component-wise update

estimation (SVCC); (4) the semiparametric local linear varying coefficient method

with simultaneously update estimation using a common bandwidth (SVCSc); and

(5) the semiparametric local linear varying coefficient method with simultaneously

update estimation using different bandwidths (SVCSd). By the bandwidth selection

method provided in Section 2.4.3, we obtain h0 = 40, h1 = 80 for SVCC; a common

bandwidth h = 40 for SVCSc; and h0 = 40, h1 = 50 for SVCSd. The data generation

and the estimation processes are repeated 500 times. For τ̂ and φ̂, we compute the

Monte Carlo biases, standard errors and mean square errors (MSE’s). For β̂0(t) and

β̂1(t), we compute the Monte Carlo biases, standard errors and MSE’s for every tj ,

j = 1, · · · , 100, then we average them over all tj ’s. All the results are reported in

Table 1.

In Table 1, by comparing the Monte Carlo MSE’s, we notice that DFT resulted

in poor estimates of all parameters. QVC didn’t perform better than DFT for the

estimation of θ, which is not surprising since we use the wrong parametric models

for β0(t) and β1(t), and bad estimates of β0(t) and β1(t) result in bad estimates of

θ. MSE of β̂1(t) for QVC is huge because we allow negative values by assuming

β1(t) a quadratic function of t while β1(t) should always be positive as the amplitude
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Table 1: Monte Carlo biases, SE’s and MSE’s of all estimators by all five methods
when number of curves m = 1.

estimates Method bias SE MSE
τ̂ (24) DFT -0.8804 1.2519 2.3424

QVC -0.9985 1.1999 2.4368
SVCC -0.0364 0.3200 0.1037
SVCSc -0.0348 0.3175 0.1020
SVCSd -0.0346 0.3177 0.1021

φ̂ (0.5) DFT -0.0141 0.3096 0.0961
QVC 0.0125 0.3077 0.0948

SVCC 0.0230 0.2165 0.0474
SVCSc 0.0221 0.2157 0.0470
SVCSd 0.0221 0.2158 0.0471

β̂0(t) DFT 13.9822 0.2506 258.3662
QVC 3.7465 0.6140 19.7979

SVCC 0.5761 0.6731 1.7437
SVCSc 0.5420 0.2565 0.5269
SVCSd 0.5420 0.2566 0.5269

β̂1(t) DFT 9.3368 1.8360 116.8756
QVC 24.2889 14.1053 837.991

SVCC 1.0634 0.9389 4.5503
SVCSc 0.2926 0.3480 0.2664
SVCSd 0.4469 0.3238 0.4277

function. Semiparametric methods produce much smaller MSE’s. SVCC performed

satisfactorily, but the methods SVCSc and SVCSd provided the best results, especially

for estimating β0(t) and β1(t). SVCSd doesn’t outperform SVCSc in this situation,

which is because the true functions of β0(t) and β1(t) share similar smoothness. Also,

for the semiparametric methods, MSE’s of τ̂ are close to 0.1, MSE’s of φ̂ are close

to 0.05, which are the diagonal components in the true Σθ. This is also an indicator

that semiparametric methods perform well.

Second, we evaluate the numerical performances of estimating the population

mean θ and the between-item variation Σθ when there are multiple items (m = 6).

We generate our data with m = 6 items and each item has n = 100 observations
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under model (2.2). t ∈ {60, 63, · · · , 357}, for all i = 1, · · · , 6. We generate θi =

(τi, φi), i = 1, · · · , 6, from N(θ, Σθ), where θ = (24, 0.5) and the (1,1), (1,2), (2,2)

elements in Σθ are 0.1,0 and 0.05, respectively. We used the best quadratic functions

in the analysis of a pilot data set as the basis of constructing β0(t) and β1(t). The

actual functions of β0(t) and β1(t) we use are provided in Appendix B. The errors are

independently generated from N(0, 12).

In Table 1, the performances of DFT and QVC are similar, and the performances

of SVCSc and SVCSd are very close when estimating θ. Therefore, we concentrate

only on DFT, SVCC and SVCSc in this case. Since the data generation is the same,

we use the same bandwidths as we obtained when m = 1, and calculate the estimates

of θ and Σθ for the generated datasets. Also we compute the 95% confidence intervals

of θ for each generated dataset by (2.10). The data generation and the estimation pro-

cesses are repeated 500 times. For θ̂, we computed the Monte Carlo biases, standard

errors and MSE’s. We also calculate the average lengths and coverage probabilities of

the confidence intervals calculated by (2.10). For Σ̂θ, we computed the Monte Carlo

biases, standard errors and MSE’s, and we report (1,1), (1,2) and (2,2) elements of

Σ̂θ separately, which are Σ̂θ11, Σ̂θ12 and Σ̂θ22 respectively. The results are summarized

in Table 2.

Table 2 shows that SVCSc can provide us decent point estimates and intervals

estimates for θ. As in Table 1, SVCC and SVCSc outperform DFT significantly with

small Monte Carlo biases, standard errors and MSE’s. The coverage probabilities

of the confidence intervals are very close to 95% for both τ and φ, and the average

lengths are very small.

In Table 2, we calculate the confidence intervals for θ by (2.10), which assume

that Σε is negligible for one of our simulated data when n = 100. We raise the

question that if this assumption is true. To find out, we perform a sensitivity analysis
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Table 2: Monte Carlo biases, SE’s and MSE’s of all estimators, average lengths and
coverage probabilities for confidence intervals of τ and φ. Methods used are DFT,
SVCC and SVCSc. Number of curves m = 6.

For θ = (τ, φ)T

Confidence Intervals
estimates Method bias SE MSE avg length cov prob

τ̂ (24) DFT -0.8379 0.4997 0.9518 2.6464 0.79
SVCC -0.0216 0.1364 0.0191 0.7279 0.95
SVCSc -0.0120 0.1327 0.0177 0.7059 0.96

φ̂ (0.5) DFT 0.0217 0.1293 0.0172 0.6695 0.94
SVCC 0.0058 0.0840 0.0071 0.4436 0.97
SVCSc 0.0020 0.0843 0.0071 0.4480 0.97

For Σθ

estimates Method bias SE MSE

Σ̂θ11 (0.1) DFT 1.3399 0.6159 2.1747
SVCC 0.0139 0.0730 0.0055
SVCSc 0.0072 0.0678 0.0046

Σ̂θ12 (0) DFT 0.0236 0.1636 0.0273
SVCC -5e-04 0.0309 0.0010
SVCSc -1e-04 0.0314 0.0010

Σ̂θ22 (0.05) DFT 0.0419 0.0378 0.0032
SVCC -0.0083 0.0239 6e-04
SVCSc -0.0074 0.0247 7e-04

for our simulated data. Based on the study of Table 1 and Table 2, we select SVCSc

as our interested method. We use one set of generated datasets with m = 6 and the

same setup as above, then perform bootstrapping method described in Section 2.6.1

to obtain Σ̂εi. We select B = 10 here, and we can easily show that 10 is large enough

for estimating the within-item variation. In Figure 9, we plot Σ̂ε11 versus τ̂ , and Σ̂ε22

versus φ̂, where Σ̂ε11 and Σ̂ε22 are the diagonal elements of Σ̂ε. From Figure 9 we

see that the “percent”, which is the maximum value of Σ̂ε/Σ̂θ, is less than 3%. We

conclude that Σε is negligible. Therefore Σ̂θ can be a good estimator of Σ, and the

confidence intervals calculated by (2.10) is accurate enough.

Third, we evaluate the numerical performances of estimating θ and Σθ when we
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Figure 9: Sensitivity analysis for simulated data (m = 6). Plot of within-curve
variation Σ̂ε versus θ̂ by SVCSc. Left graph is for τ and right graph is for φ. The
solid lines are between-curve variation Σ̂θ, and ’percent’s indicate the maximum values
of Σ̂ε/Σ̂θ.

have a large study (m = 18). The data generation is similar as m = 6 case and we use

β0i(t)’s and β1i(t)’s, i = 1, · · · , 6, from the m = 6 case 3 times. We concentrate only

on DFT, SVCC and SVCSc. Since the data generation process is the same, we use

the same bandwidths as obtained when m = 1, and calculate the estimates of θ and

Σθ for the generated datasets. Also we compute the 95% confidence intervals of θ for

each generated dataset by (2.10). The data generation and the estimation procedures

are repeated 500 times. For θ, we compute the Monte Carlo biases, standard errors,

MSE’s, the average lengths and coverage probabilities of the confidence intervals. For

Σθ, we compute the Monte Carlo biases, standard errors and MSE’s. The results are

summarized in Table 3. Table 3 provides us the same conclusion as Table 2: SVCSc

overperform all other methods in estimating θ and Σθ. Notice that MSE’s are smaller

in Table 3 than in Table 2 because of the larger m.
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Table 3: Monte Carlo biases, SE’s and MSE’s of all estimators, average lengths and
coverage probabilities for confidence intervals of τ and φ. Methods used are DFT,
SVCC and SVCSc. Number of curves m = 18.

For θ = (τ, φ)T

Confidence Intervals
estimates Method bias SE MSE avg length cov prob

τ̂ (24) DFT -0.8636 0.2819 0.8252 1.1950 0.20
SVCC -0.0149 0.0779 0.0063 0.3295 0.97
SVCSc -0.0119 0.0756 0.0059 0.3147 0.94

φ̂ (0.5) DFT 0.0140 0.0731 0.0055 0.3158 0.96
SVCC -3e-04 0.0529 0.0028 0.2062 0.91
SVCSc 2e-04 0.0497 0.0025 0.2120 0.95

For Σθ

estimates Method bias SE MSE

Σ̂θ11 (0.1) DFT 1.3476 0.3159 1.9157
SVCC 0.0120 0.0388 0.0016
SVCSc 0.0018 0.0328 0.0011

Σ̂θ12 (0) DFT 0.0360 0.0898 0.0094
SVCC -3e-04 0.0175 3e-04
SVCSc 0.0024 0.0169 3e-04

Σ̂θ22 (0.05) DFT 0.0508 0.0193 0.003
SVCC -0.0063 0.0135 2e-04
SVCSc -0.0040 0.0136 2e-04

To test if Σε is negligible, we carry on a sensitivity analysis for our simulated data

using SVCSc as our interested method. We use one generated dataset with m = 18

and the same setup as above, then perform bootstrapping method in Section 2.6.1 to

obtain Σ̂εi, i = 1, · · · , 18. Set B = 10. In Figure 10, we plot Σ̂ε11 versus τ̂ , and Σ̂ε22

versus φ̂, where Σ̂ε11 and Σ̂ε22 are the diagonal elements of Σ̂ε. From Figure 10 we

observe that the ’percent’ is stable for different θ’s, and Σ̂ε is less than 5% of Σ̂θ. We

conclude that Σε is negligible. Therefore Σ̂θ can be a good estimator of the overall

variation Σ.
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Figure 10: Sensitivity analysis for simulated data (m = 18). Plot of within-curve Σ̂ε

versus θ̂ by SVCSc. Left graph is for τ and right graph is for φ. The solid lines are
between-curve variation Σ̂θ, and ’percent’s indicate the maximum values of Σ̂ε/Σ̂θ.

2.6.3 Analysis of Circadian Dataset

In this Subsection, we provide estimates of our circadian example using all the meth-

ods first. Then we study the performances of these methods by a bootstrap procedure.

We also check the two assumptions we made for calculating confidence intervals (2.10)

and provide alternative solutions if the assumptions are violated.

For our circadian dataset, m = 13 and ni’s are 214 for 7 items and 172 for the

remaining 6 items. We perform the estimation of these five methods: DFT, QVC,

SVCC, SVCSc and SVCSd. As people traditionally do, we drop the first 60 hours

because the bacteria are adjusting to the enviornment and are relatively unstable.

That is, we use t > 60. Thus, ni’s reduced to 186 for 7 items and 145 for the

remaining 6 items. The optimal bandwidth chosen for SVCC by cross-validation as

in Section 2.4.3 is h0 = 40, h1 = 40. h = 40 for SVCSc, and h0 = 40, h1 = 50 for
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Table 4: Estimates for cyanobacteria circadian datasets by all five methods.
For θ

Method Estimates confidence interval by (2.10) confidence interval (2.9)
τ̂ DFT 25.5388 ( 24.7492 , 26.3285 ) ( 23.5406 , 27.5371 )

QVC 25.4688 ( 24.7482 , 26.1895 ) ( 24.4386 , 26.4991 )
SVCC 25.4015 ( 25.3026 , 25.5004 ) ( 24.9616 , 25.8415 )
SVCSc 25.4369 ( 25.3355 , 25.5383 ) ( 25.3312 , 25.5427 )
SVCSd 25.4369 ( 25.3355 , 25.5383 ) ( 25.3315 , 25.5424 )

φ̂ DFT 0.3930 ( 0.1243 , 0.6616 ) ( 0.0923 , 0.6936 )
QVC 0.6193 ( 0.3583 , 0.8802 ) ( 0.2997 , 0.9388 )

SVCC 0.4887 ( 0.4531 , 0.5243 ) ( 0.4457 , 0.5317 )
SVCSc 0.4738 ( 0.4350 , 0.5127 ) ( 0.4332 , 0.5145 )
SVCSd 0.4738 ( 0.4350 , 0.5127 ) ( 0.4334 , 0.5143 )

For Σθ and Σε

DFT QVC SVCC SVCSc SVCSd

Σ̂θ11 1.6732 1.3937 0.0262 0.0276 0.0276

Σ̂θ12 0.3560 0.3203 -0.0082 -0.0092 -0.0092

Σ̂θ22 0.1937 0.1827 0.0034 0.0040 0.0040

Σ̂ε11 9.0424 1.4548 0.4931 0.0024 0.0023

Σ̂ε12 -0.2258 0.0335 0.0155 -0.0010 -9e-04

Σ̂ε22 0.0489 0.0913 0.0016 4e-04 4e-04

SVCSd. We report the estimates of θ, Σθ and the confidence interval by (2.10) and

(2.9) from the five methods in Table 4.

In Table 4, the estimates of τ and φ in the five methods are all around 25 and

0.5. But the estimates of Σθ and Σε are quite different between the semiparamet-

ric methods (SVCC, SVCSc and SVCSd) and the basic ones (DFT and QVC). We

conclude that the semiparametric methods have much less variations. Consequently,

the lengths of the confidence intervals are shorter for semiparametric methods. The

confidence interval for φ by DFT is around (0.1, 0.7), and the range of φ is (0, 1), so

this confidence interval provides little information about φ. Because of this poor es-

timation accuracy, analysis about phase φ is an under-explored area in microbiology.

While the confidence interval for φ by SVCSc is (0.43, 0.51), which is narrow enough
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for us to conclude that φ is around 0.5. Based on the classification of genes described

in Section 1.2, we know that our data can be classified as Class-1 genes. For SVCSc

and SVCSd, Σ̂ε are significantly smaller than Σ̂θ, indicating smaller estimating errors.

Also, SVCSc and SVCSd have almost the same results, this shows that β0(t) and β1(t)

share similar smoothness.

To study the performances of our estimates, we carry out a bootstrap proce-

dure. From our original circadian dataset, we can obtain β̂0i(t)’s, β̂1i(t)’s and ε̂ij ’s

in addition to θ̂ and Σ̂θ. Based on the simulation study in Section 2.6.2, we select

the estimates of the circadian dataset from SVCSc. We generate one dataset with 13

items under model (2.2), where tij’s are the same as our circadian data. θi = (τi, φi),

i = 1, · · · , 13 are generated from N(θ̂, Σ̂θ), where θ̂ = (25.4369, 0.4738)T and the

(1,1), (1,2) and (2,2) elements of Σ̂θ are 0.0276, -0.0092 and 0.0040, respectively. So

for the generated dataset, θ and Σθ are known. Use β̂0i(t) and β̂1i(t), i = 1, · · · , 13,

from SVCSc as our β(t)’s. For the error term, obtain the empirical cumulative dis-

tribution function (CDF) of the ε̂ij’s, and draw from this CDF. We perform the five

methods on the generated dataset, and obtain θ̂, Σ̂θ and the normal 95% confidence

interval for θ by (2.10). The data generation and estimation precesses are repeated

500 times. As before, we compute the Monte Carlo biases, standard errors and MSE’s

as well as the average lengths and coverage probabilities of the confidence intervals

for θ. And we calculated the Monte Carlo biases, standard errors and MSE’s for Σ̂θ.

The results are summarized in Table 5.

From Table 5, the estimates from the semiparametric methods (SVCC, SVCSc

and SVCSd) have much smaller Monte Carlo MSE’s than the basic methods (DFT and

QVC). The coverage probabilities are closer to 0.95 for the semiparametric methods,

though they have much smaller average lengths. In sum, semiparametric methods

overperform the basic methods when estimating θ and Σθ. Furthermore, SVCSc and
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Table 5: Bootstrap analysis of cyanobacteria circadian data sets. Monte Carlo biases,
SE’s, MSE’s of θ̂ and Σ̂θ by all five methods, and average lengths and coverage
probabilities of confidence intervals for τ and φ by all five methods.

For θ

Confidence Intervals
estimates Method bias SE MSE avg length cov prob
τ̂ (25.43) DFT -0.2691 0.2771 0.1492 1.3318 0.77

QVC -0.3839 0.2726 0.2217 1.1964 0.71
SVCC -0.0399 0.0575 0.0049 0.2536 0.96
SVCSc -0.0136 0.0472 0.0024 0.2042 0.93
SVCSd -0.0136 0.0472 0.0024 0.2041 0.93

φ̂ (0.47) DFT -0.0397 0.1123 0.0142 0.4909 0.92
QVC 0.0343 0.1018 0.0115 0.4800 0.96

SVCC 0.0156 0.0262 9e-04 0.1143 0.95
SVCSc 0.0049 0.0198 4e-04 0.0860 0.95
SVCSd 0.0049 0.0197 4e-04 0.0860 0.95

For Σθ

estimates Method bias SE MSE

Σ̂θ11 (0.0276) DFT 1.2466 0.6380 1.9612
QVC 1.0309 0.6161 1.4424

SVCC 0.0186 0.0286 0.0012
SVCSc 0.0023 0.0208 4e-04
SVCSd 0.0023 0.0206 4e-04

Σ̂θ12 (-0.0092) DFT 0.1176 0.1368 0.0325
QVC 0.0984 0.1130 0.0224

SVCC -4e-04 0.0070 5e-05
SVCSc 0.0077 0.0035 7.1e-05
SVCSd 0.0077 0.0035 7.1e-05

Σ̂θ22 (0.0040) DFT 0.1592 0.0290 0.0262
QVC 0.1513 0.0208 0.0233

SVCC 0.0050 0.0034 4e-05
SVCSc 0.0011 0.0019 5e-06
SVCSd 0.0011 0.0019 5e-06

SVCSd provide better estimates than SVCC, though they are not very different from

each other.

In Table 5, we calculate the confidence intervals by (2.10). This requires two

assumptions. One is that Σε is negligible, the other that is θ̂ achieves normality when
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Figure 11: Sensitivity analysis for cyanobacteria circadian data. Plot of within-curve
variation Σ̂ε versus θ̂ by SVCSc. Left graph is for τ and right graph is for φ. The solid
lines are between-curve variation Σ̂θ, and ’percent’s indicate the maximum values of
Σ̂ε/Σ̂θ.

m = 13, ni = 186 for 7 items ni = 145 for the other 6 items. We check these two

assumptions in the following paragraphs.

We conduct a sensitivity analysis for our circadian data using SVCSc to check

the first assumption. We perform bootstrapping method described in Section 2.6.1

to obtain the estimates of the within-item variation for each item i, Σ̂εi. The number

of bootstrap B is set to be 10. In Figure 11, we plot Σ̂ε11 versus τ̂ , and Σ̂ε22 versus

φ̂, where Σ̂ε11 and Σ̂ε22 are the diagonal elements of Σ̂ε. From Figure 11, some Σ̂εi’s

are almost 20% of Σ̂θ. We conclude that Σε is not negligible comparing to Σθ for

our circadian data. Therefore the assumption of Σε is not correct, Σ̂θ can not be a

good estimate of Σ. The confidence intervals calculated in Table 5 are not accurate

enough.

Since the first assumption is violated, we modify our confidence intervals by cal-
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Table 6: Average lengths and coverage probabilities of confidence intervals for τ and
φ by both (2.10) and (2.9).

Confidence Intervals by (2.10) Confidence Intervals by (2.9)
estimates Method avg length cov prob avg length cov prob

τ̂ SVCSc 0.2111 0.94 0.2365 0.95

φ̂ SVCSc 0.0863 0.94 0.0908 0.95

culating the confidence intervals for θ using (2.9) for the first 100 of the 500 bootstrap

datasets. Report the average lengths and coverage probabilities of the confidence in-

tervals by both (2.10) and (2.9) in Table 6. Notice that we have bigger average lengths

of the confidence intervals by (2.9) than those by (2.10), because we use larger vari-

ations. Consequently, the coverage probabilities obtain a little higher than those in

Table 5 and closer to 0.95. However, by setting B = 10 when calculating the Σ̂ε’s,

we need 10 times more computational time for (2.9) than for (2.10).

To check the second assumption, we drew the histogram of our 500 τ̂ ’s and φ̂’s in

Figure 12. Figure 12 shows that τ̂ and φ̂ are pretty normally distributed for m = 13,

ni = 186 for 7 items ni = 145 for the other 6 items.

If normality is not reached, there is an alternative way to obtain more robust

confidence intervals. Based on our 500 τ̂ ’s and φ̂’s, we can obtain one bootstrap 95%

confidence interval for each of τ and φ. The comparison of the bootstrap confidence

interval and the normal confidence interval (in Table 4) are reported in Table 7. The

lengths are pretty close, which also indicates our estimations of variations are accurate

enough.

2.7 Concluding Remarks

In this chapter we proposed an intuitively appealing semiparametric varying coeffi-

cient model for the analysis of cyanobacteria circadian rhythm data. We proposed
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Figure 12: Histograms of τ̂ and φ̂ in bootstrap analysis of cyanobacteria circadian
data.

Table 7: Comparison of bootstrap confidence interval and normal confidence interval
for τ and φ.

bootstrap CI length1 normal CI by (2.10) length2 length1/length2
τ (25.3298, 25.5114) 0.1816 ( 25.3355 , 25.5383 ) 0.2028 0.8955
φ (0.4411, 0.5171) 0.0760 ( 0.4350 , 0.5127 ) 0.0777 0.9781

semiparametric local linear approaches when multiple sets of data are collected. Al-

though the varying coefficient model is not globally identifiable, our local linear re-

gression solves the problem by selecting good initial estimates and sufficiently large

bandwidths so that the resulting answer provides a useful tool for biologists. One

advantage of semiparametric approach is its good quality under reasonable regularity

conditions. Asymptotic properties are developed. By simulations and the application

to a circadian dataset, we find that significant reduction of the Monte Carlo mean-

squared errors obtained by the traditional FFT-NLLS method can be achieved by

our procedure. This reduction of variation makes accurately estimating phase φ pos-
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sible, which is an under-explored area in microbiology because of the poor estimation

accuracy.
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CHAPTER III

MODEL SELECTION USING SMOOTHING SPLINE IN CYANOBACTERIA

3.1 Introduction

Many hormones and other physiological measurements in living beings vary in a

circadian pattern. For example, it is well-known that body temperature is lowest

during sleep in the early morning and rises after awakening. Circadian rhythms has

been found to exist in humans, plants, animals and lower organisms. The existence of

an endogenous circadian oscillator in cyanobacteria has been recognized for less than

twenty years. The cyanobacterial clock generates rhythms of biological processes that

exhibit an approximate 24-hour period even in the absence of an environment cue,

through light or temperature, and maintain a nearly constant period over a range of

physiologically relevant environmental conditions (Golden, 2003).

Our data were collected at Dr. Susan Golden’s laboratory, Department of Biol-

ogy, Texas A&M University. In Dr. Golden’s lab, cells are incubated in a 12-hour

light-dark cycle to synchronize the clock, then are released into continuous light for

several days . Bioluminescence levels measure the gene expression level around the

clock (Figure 13). From Figure 13 we can see the circadian pattern in the data. This

periodic pattern can be fitted by a function of cosine wave. Also, there is a baseline

in the data changing with time, which is the growth curve of the bacteria. We notice

that the amplitude of the periodic component also change with time. Furthermore,

from Figure 13, we observe that the baseline and amplitude functions seem to be

positively correlated.

In chapter II we estimated circadian parameters using semiparametric local linear

regression. Besides kernel based methods, smoothing spline is another commonly
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Figure 13: Plot of bioluminescence vs time. Data are recorded every 2.116 hours.

used nonparametric technique. This chapter we use smoothing spline to estimate our

data and further investigate interesting properties of the data. Wang and Ke (2002)

developed an R package ASSIST for fitting semiparametric models using smoothing

spline. Because of the identifiability problem we mentioned in chapter II, a default

application in ASSIST often lead to non-convergence outcomes or answers which are

not biologically plausible. We solve the identifiability problem by proposing a new

smoothing parameter selection method: adjusted cross-validation (adjusted CV).

For our cyanobacteria data, the baseline function β0(t) reflects a measurement

of the amount of bacteria, and the amplitude function β1(t) is a measurement of the

corresponding circadian component. It is reasonable to expect that β1(t)/β0(t) is less

than 1. It is also believed that the ratio of the amplitude and baseline functions is

a constant of time. The goal of our study is to investigate the relationship between

the baseline and amplitude functions. To execute this, we use a general model which
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makes no assumptions about the relationship between the baseline and amplitude

functions, and two reduced models which assume specific relationship of baseline and

amplitude. We perform model selection to choose the optimal model.

Our proposed models and the potential identifiability problem are described in

Section 3.2. Section 3.3 provides smoothing spline estimation methods for the models

and a solution to the identifiability problem. Model selection methods we use are in

Section 3.4. Numeric outcomes for both simulated data and cyanobacteria circadian

data are provided in Section 3.5. Section 3.6 contains the concluding remarks.

3.2 Models

For our data, we observe that the curve possesses an overall growth as well as a

periodic pattern as functions of time. The periodic component can be fitted by a

cosine wave and the baseline and amplitude functions can be fitted by nonparametric

functions. Let y be the response variable and t be its associated covariate. We

consider the following varying coefficient periodic model:

yj = β0(tj) + β1(tj) cos{2π(tj/τ − φ)} + εj , j = 1, · · · , n,

where yj is the response at the jth time point tj ; β0(t) (bounded away from 0) is the

underlying baseline growth function; β1(t) (bounded away from 0) is the amplitude

function of the periodic component; τ denotes the period and 0 ≤ φ < 1 is the

phase; n is the total number of observations. We assume that the error terms εj’s are

independent and identically distributed with E(εj) = 0 and var(εj) = σ2
ε .

The general form of the model is

Y = β0(t) + β1(t) cos{2π(t/τ − φ)} + ε, (3.1)

where t = (t1, · · · , tn)T , Y = (y1, · · · , yn)T and ε = (ε1, · · · , εn)T . We refer to model

(3.1) as the general model.
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In model (3.1), we do not make any assumptions about the relationship between

β0(t) and β1(t). Biologists believe that the periodic component β1(t) is proportional

to the growth component β0(t). That is, β1(t) = cβ0(t) with a positive constant c.

To relax this assumption, we replace c by a quadratic function of t. Define γ(t) =

logβ1(t) − logβ0(t), therefore β1(t)/β0(t) = exp{γ(t)}. Consequently, we propose the

following model:

Y = β0(t) [1 + exp{γ(t)} cos{2π(t/τ − φ)}] + ε, (3.2)

where γ(t) = a0 + a1t + a2t
2. Model (3.2) implies that the relationship between

β0(t) and β1(t) can be expressed as a quadratic function. That is, γ(t) is a quadratic

function.

The traditional belief of the ratio between β0(t) and β1(t) being a constant implies

the following model:

Y = β0(t) [1 + exp(γ) cos{2π(t/τ − φ)}] + ε, (3.3)

Model (3.3) is a special case of model (3.2) when γ(t) is a constant.

Evaluating model (3.1), we notice a potential identifiability problem in the model.

That is, one can not identify β0(t) and β1(t) in model (3.1). One extreme case is that

β1(t) = 0, and E(Y |t) = β0(t), so the circadian pattern will be captured by β0(t)

alone. We will address this problem more in Section 3.3.

3.3 Spline Estimations

To estimate the parameters and β(t)’s in models (3.1), (3.2) and (3.3), we use the

software package ASSIST developed by Wang and Ke (2002). ASSIST is a suite of R

functions for fitting various nonparametric or semiparametric nonlinear models using

smoothing spline. We use the function ’snr’ in the package to fit our models.
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Section 3.3.1 provides the initial estimates we use in ASSIST; the results of

a direct application of ASSIST using the generalized cross-validation are given in

Section 3.3.2. Our proposed adjusted cross-validation and its corresponding results

are given in Section 3.3.3.

3.3.1 Initial Estimates

We denote the initial estimates in model (3.1) as τ̂ [0], φ̂[0], β̂
[0]
0 (t) and β̂

[0]
1 (t), respec-

tively. Here is how we obtain the initial estimates:

1. Select local minimum and maximum points.

2. Obtain the median of two adjacent minimum and maximum points, consider

the medians as our baseline. Use least squares method to fit β̂
[0]
0 (t), which is an

exp(quadratic) function.

3. Subtract minimum from adjacent maximum points, consider these as two times

amplitude. Use least squares method to fit β̂
[0]
1 (t), which is an exp(quadratic)

function.

4. The distance from adjacent minimum and maximum points are half the period,

average them to obtain the initial estimate of τ , τ̂ [0]. Equivalently, average

individual phases to obtain φ̂[0].

For model (3.2), the initial estimates of a0, a1 and a2 are calculated by fitting the

exp(quadratic) model β̂1(t)/β̂0(t) = exp(a0 + a1t + a2t
2). While for model (3.3), we

fit β̂1(t)/β̂0(t) = exp(γ) and obtain the initial estimate of γ.

3.3.2 When ASSIST Is Used Directly

We use an example to demonstrate the identifiability problem when using the gener-

alized cross-validation (GCV) to choose the smoothing parameter.
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Example 3.1 In this example, we use the dataset in Figure 13 to generate datasets.

For our circadian dataset, n = 156. We only use t > 60. Thus n reduces to 129, and

t ∈ {60.35, 62.46, · · · , 331.20}. We estimate the curve first to obtain β̂0(t) and β̂1(t),

then use ’approxfun’ in R to obtain the ’true’ β0(t) and β1(t). We then generate

datasets from model (3.1) by setting τ = 24, φ = 0.5, ε ∼ N(0, 12), and β0(t), β1(t)

as above.

We use generalized cross-validation (GCV) to choose the smoothing parameter

(λ). In ASSIST, a new parameter limnla, which equals to log10(nλ), is considered

as the smoothing parameter. We can not obtain a convergence outcome for model

(3.1), and the results under model (3.2) and model (3.3) are plotted in Figure 14. In

Figure 14, although the overall fitted curves are very close to the true curve, β̂0(t)

and β̂1(t) are far away from the true β0(t) and β1(t). However, in chapter II, local

linear regression approach seems successfully avoid the identifiability problem. Using

the bandwidth selected by cross-validation, we obtain the β̂0(t) and β̂1(t) that are

close to the truth. By comparing the results by local linear regression and spline, we

find that local linear regression turns to favor much smoother results than spline. To

solve this problem for spline, we propose an adjusted cross-validation procedure to

find our smoothing parameter in Section 3.3.3.

3.3.3 Smoothing Parameter Selection: Adjusted Cross-Validation

In this Subsection, we provides a method to choose a smoothing parameter in ASSIST

that would lead to the desirable outcome. We first subtract the initial estimate of

β0(t) from y, then perform the cross-validation method as below:

1. Divide time into c intervals, each has k points, then leave the 1 point out in

each interval, so we will use the remaining n − c points to produce estimates

and make predicts to the left-out c points.
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Figure 14: Spline fitted curves for overall, β0(t) and β1(t) in Example 3.1, with
smoothing parameter chosen by GCV. No results for model (3.1), limnla = −0.97 for
model (3.2), and limnla = −0.70 for model (3.3). The bold lines are the true curves,
the green dashed lines are estimated curves under model (3.2) and the blue dot lines
are estimated curves under model (3.3).

2. Select a smoothing parameter λ, and conduct estimation procedures using the

n − c points, obtain ŷ and corresponding prediction MSE

Gck(λ) = {yck − ŷλ
ck}2.

3. For a given C, repeat steps 1 and 2, for c from 1 to C, and k from 1 to
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K = int(n/c), and obtain

G(λ) =
C∑

c=1

K∑

k=1

Gck(λ) =
C∑

c=1

K∑

k=1

{yck − ŷλ
ck}2.

The optimal bandwidth is λ = argmin G(λ). In ASSIST package, there is an option to

set “limnla”, which equals to log10(nλ). We simply use this option to obtain optimal

λ.

Note that for all 3 models, we use a common smoothing parameter. For Example

3.1, we select limnla = 7.6 by adjusted cross-validation. The fitted curves under all

three models are presented in Figure 15. Figure 15 shows satisfactory results for all

three models, which indicates that adjusted CV provides a practical solution to our

problems.

3.4 Model Selection

After we obtain estimated parameters in each of the three models, we can select

the optimal model using Akaike Information Criterion (AIC) and Schwarz Bayesian

Information Criterion (BIC).

The Akaike information criterion (AIC), developed by Hirotsugu Akaike in 1971

and proposed in Akaike (1974), is a measure of the goodness of fit of an estimated

statistical model. It is grounded in the entropy concept. The AIC is an operational

way of trading off the complexity of an estimated model against how well the model

fits the data. In the general case, the AIC is

AIC = −2log(L) + 2p,

where L is the likelihood function, p is the number of parameters used.

Assume that the errors in models (3.1) to (3.3) are independent and normally

distributed. Let n be the number of observations and RSS be the residual sum of
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Figure 15: Spline fitted curves for overall, β0(t) and β1(t) in Example 3.1, with
smoothing parameter chosen by adjusted CV. limnla = log10(nλ) = 7.6 for all three
models. The bold lines are the true curves, the red solid lines are the estimated curves
under model (3.1), the green dashed lines are the estimated curves under model (3.2),
and the blue dot lines are the estimated curves under model (3.3).

squares. Then AIC becomes

AIC = nlog(2πσ̂2
e) + RSS/σ̂2

e + 2p.

Increasing the number of free parameters to be estimated improves the goodness

of fit. This phenomenon is independent of the number of free parameters in the data

generating process. Hence AIC not only measures the level of goodness of fit, but also

includes a penalty term which increases with the number of estimated parameters.
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Table 8: Model selection in Example 3.1

model AIC BIC RSS MSE df
(3.1) 399.3249 441.5515 129.6104 51.5387 114.2345
(3.2) 499.1393 537.0184 290.3463 189.9354 115.7547
(3.3) 674.9702 706.9828 1174.8094 1044.6025 117.8061

This penalty term discourages overfitting. The preferred model is the one with the

lowest AIC value. The AIC methodology intends to find the model that best explains

the data with a minimum number of free parameters.

The Schwarz Bayesian information criterion (BIC) is an alternative statistical

criterion for model selection. It is named after Schwarz (1978) which provides a

Bayesian argument to support its use. The formula for BIC is

BIC = −2log(L) + plog(n).

Under the assumption that the errors are normally distributed, this expression

becomes:

BIC = nlog(2πσ̂2
e) + RSS/σ̂2

e + plog(n).

Given any m models, the model that has the lowest value of BIC is the one to be

preferred. The BIC is a decreasing function of RSS, the measurement of goodness of

fit, and an increasing function of p. The BIC penalizes free parameters more severe

than does the Akaike information criterion.

For Example 3.1, the values of AIC and BIC are reported in Table 8, in which

RSS =
∑

(ŷ − y)2, MSE =
∑

(ŷ − true y)2 and the degree of freedom df = n − p.

In Table 8, model (3.1) minimizes both AIC and BIC, so we select model (3.1) as

our best model. By the data generation algorithms described in Section 3.3.2, model

(3.1) is acturally the true model. That is, AIC and BIC select the correct model.
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Table 9: Inferences for estimators in Example 3.1

estimates model bias SE MSE
τ̂ (24) (3.1) 0.0056 0.0081 1e-04

(3.2) 0.0074 0.0081 1e-04
(3.3) 0.0045 0.0083 1e-04

φ̂ (0.5) (3.1) -0.0025 0.0034 2e-05
(3.2) -0.003 0.0034 2e-05
(3.3) -0.0018 0.0035 2e-05

β̂0(t) (3.1) 0.3012 0.2105 0.2752
(3.2) 0.4658 0.2066 0.5375
(3.3) 0.6676 0.2059 0.9415

β̂1(t) (3.1) 0.217 0.229 0.1445
(3.2) 1.189 0.2186 2.0981
(3.3) 2.9092 0.1269 14.5637

3.5 Numeric Outcomes

This Section provides the numeric results for both simulated and real data. In Section

3.5.1 to 3.5.3, we provide 3 examples for model selection; precisely, data are generated

under three different models. We apply model selection techniques on a cyanobacteria

dataset in Section 3.5.4.

3.5.1 Example 3.1. Data Generated Under Model (3.1)

Example 3.1. As described in Section 3.3.2, data were generated under model (3.1).

We repeat the data generation and estimation procedure 100 times with the

smoothing parameter chosen by adjusted CV (limnla = 7.6). Table 9 reports the

Monte Carlo biases, standard errors and MSE’s. We can see that smoothing spline

provides satisfactory estimates for both models (3.1) and (3.2). We have the smallest

MSE’s under model (3.1). The MSE differs the most for different models when the

goal is to estimate β0(t) and β1(t).

For these 100 datasets, we performed model selection; count the number of se-
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Table 10: Proportions of selection in Example 3.1

method selection model (3.1) model (3.2) model (3.3)
Spline AIC 100% 0% 0%

BIC 100% 0% 0%

Table 11: Model selection in Example 3.2

model AIC BIC RSS MSE df
(3.1) 369.8029 414.0228 101.7302 16.3498 113.5375
(3.2) 367.4249 407.7773 102.9347 13.7781 114.8898
(3.3) 526.4069 560.9916 365.3745 272.4258 116.9067

lections of each model, and report the proportions of the selections in Table 10. For

all datasets, both AIC and BIC select model (3.1) 100%.

3.5.2 Example 3.2. Data Generated Under Model (3.2)

Example 3.2. We generate one dataset under model (3.2). Each item has n = 129

observations, with t the same as in Example 3.1. We set τ = 24 and φ = 0.5, β0(t) =

exp(2 + 0.0165t− 0.00003t2), γ(t) = −0.5 − 0.0065t + 0.00001t2 and ε ∼ N(0, 12).

We conducted the estimations in ASSIST. Using the adjusted cross-validation

described in Section 3.3.3, we selected limnla = 7.4 and plot the estimated curves in

Figure 16. We observe that similar outcomes were obtained when we assume the true

model was either (3.1) or (3.2). The differences between these outcomes and those

obtained assuming model (3.3) were sizable.

The AIC and BIC values are reported in Table 11. Both AIC and BIC select

model (3.2) as the best model, which is the correct selection.

We repeated the data generation and estimation procedures 100 times, and re-

ported the Monte Carlo biases, standard errors and MSE’s in Table 12. We have very

similar outcomes for model (3.1) and model (3.2) in Table 12, and worse outcomes

for model (3.3).
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Figure 16: Spline fitted curves for overall, β0(t) and β1(t) in Example 3.2. limnla =
log10(nλ) = 7.4 for all three models. The bold lines are the true curves, the red
solid lines are the estimated curves under model (3.1), the green dashed lines are the
estimated curves under model (3.2), and the blue dot lines are the estimated curves
under model (3.3).

We ran the model selection procedure for these 100 datasets. In Table 13, AIC

selects model (3.2) 94% of the times and model (3.1) 6% of the times. BIC selects

model (3.2) 99% of the times and model (3.1) 1% of the times. Since model (3.2) is

the correct model, the use of BIC provided a more accurate selection than the use of

AIC.
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Table 12: Inferences for estimators in Example 3.2

estimates model bias SE MSE
τ̂ (24) (3.1) -0.0008 0.0118 1e-04

(3.2) -0.0013 0.0118 1e-04
(3.3) -0.0002 0.0117 1e-04

φ̂ (0.5) (3.1) 1e-05 0.0049 2e-05
(3.2) 0.0002 0.0049 2e-05
(3.3) -0.0001 0.0048 2e-05

β̂0(t) (3.1) 0.0572 0.2234 0.0597
(3.2) 0.0576 0.2218 0.0598
(3.3) 0.248 0.2202 0.145

β̂1(t) (3.1) 0.0599 0.2228 0.0607
(3.2) 0.0375 0.2117 0.0481
(3.3) 1.7846 0.121 4.0367

Table 13: Proportions of selection in Example 3.2

method selection model (3.1) model (3.2) model (3.3)
Spline AIC 6% 94% 0%

BIC 1% 99% 0%

Table 14: Model selection in Example 3.3

model AIC BIC RSS MSE df
(3.1) 377.3668 433.9193 99.017 17.6599 109.2251
(3.2) 369.3669 414.3292 101.3816 14.5043 113.2779
(3.3) 367.6993 406.9426 103.6046 12.1563 115.2777

3.5.3 Example 3.3. Data Generated Under Model (3.3)

Example 3.3. We generate one dataset under model (3.3). Each item has n = 129

observations, with t as in Example 3.1. We set τ = 24 and φ = 0.5, β0(t) = exp(1 +

0.02t − 0.00004t2), γ = −0.5 and ε ∼ N(0, 12).

Again, using adjusted CV in Section 3.3.3, we obtained limnla = 7.1. Estimated

curves are provided in Figure 17, where all three models share similar outcomes.

The values of AIC and BIC were reported in Table 14. According to AIC and

BIC, we select model (3.3) as the best model.
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Figure 17: Spline fitted curves for overall, β0(t) and β1(t) in Example 3.3. limnla =
log10(nλ) = 7.1 for all three models. The bold lines are the true curves, the red
solid lines are the estimated curves under model (3.1), the green dashed lines are the
estimated curves under model (3.2), and the blue dot lines are the estimated curves
under model (3.3).

We repeat the data generation and estimation procedure 100 times, and reported

the Monte Carlo biases, standard errors and MSE’s in Table 15. All three models

provide similar Monte Carlo biases, standard errors and MSE’s. Model (3.3) is even

slightly better than model (3.1) and model (3.2).

We ran the model selection for these 100 datasets, and reported the proportions

of selecting different models in Table 16. AIC selects model (3.3) 89% of the times



54

Table 15: Inferences for estimators in Example 3.3

estimates model bias SE MSE
τ̂ (24) (3.1) -0.0006 0.0053 3e-05

(3.2) 0.0013 0.0197 4e-04
(3.3) -0.0006 0.0053 3e-05

φ̂ (0.5) (3.1) 0.0001 0.0023 1e-05
(3.2) -0.0004 0.0063 4e-05
(3.3) 0.0002 0.0023 1e-05

β̂0(t) (3.1) 0.0457 0.2409 0.0647
(3.2) 0.0397 0.2372 0.0632
(3.3) 0.0416 0.2256 0.0561

β̂1(t) (3.1) 0.0497 0.2776 0.0873
(3.2) 0.0239 0.2425 0.0622
(3.3) 0.0237 0.1692 0.0312

Table 16: Proportions of selection in Example 3.3

method selection model (3.1) model (3.2) model (3.3)
Spline AIC 0% 11% 89%

BIC 0% 0% 100%

and model (3.2) 11% of the times. BIC selects model (3.3) 100% of the times. The

use of BIC provided a more accurate selection than the use of AIC, since model (3.3)

is the correct model.

3.5.4 Application to a Cyanobacteria Circadian Rhythm Dataset

Based on the simulation results, AIC and BIC choose the correct model with high

probabilities. Now we apply AIC and BIC to our real data in Figure 13. We obtained

the estimates of parameters using ASSIST. By adjusted cross-validation in Section

3.3.3, we obtain limnla = 8.2. The estimated curves are provided in Figure 18.

Though the true curve is not known in this case, we can see that the estimations are

pretty close to the observations.

AIC and BIC that we calculate are reported in Table 17. Both AIC and BIC
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Figure 18: Spline fitted curves for overall, β0(t) and β1(t) in cyanobacteria circadian
data. limnla = 8.2 for all three models. The red solid lines are the estimated curves
under model (3.1), the green dashed lines are the estimated curves under model (3.2),
and the blue dot lines are the estimated curves under model (3.3).

Table 17: Model selection in cyanobacteria circadian data

model AIC BIC RSS df
(3.1) 635.8879 669.0265 860.5469 117.4123
(3.2) 652.0414 683.9436 986.3708 117.8447
(3.3) 724.7136 750.7937 1792.2142 119.8805

select model (3.1) as the best model. This suggests that γ(t) is not a constant, nor a

quadratic function of time t.
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3.6 Concluding Remarks

To investigate the relationship between the baseline and amplitude functions in

cyanobacteria circadian data, we propose three models. One is the general model,

while the other two are reduced models with assumption that the ratio of baseline

and amplitude is a quadratic function of time or a constant. We use an R package

ASSIST to estimate the data using smoothing spline. ASSIST is very flexible to use

for semiparametric models, but with the identifiability problem, we can not obtain

the estimates we desire by directly using ASSIST. The adjusted cross-validation we

propose provides a practical solution to the identifiability problem. Using model se-

lection techniques, we conclude that the ratio of the baseline and amplitude functions

is neither a constant nor a quadratic function of time.
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CHAPTER IV

HYPOTHESIS TESTING USING LOCAL LINEAR REGRESSION IN

CYANOBACTERIA

4.1 Introduction

In chapter III, we estimate the cyanobacteria circadian data using smoothing spline

with the R package ASSIST, and we investigate the relationship between the baseline

function and the amplitude function by model selection techniques. In this chapter,

we use testing hypothesis approaches to perform an equivalent investigation. The

emphasis of the two approaches, model selection versus hypothesis testing, is slightly

different. In former, the “best” model is selected while the complexity of the model

is taken into account. In latter, the goal is to check whether a simple, “qualified”

null model is acceptable in the sense that it is not significantly different from a more

complex general model. Because of the heavy computational intensity using ASSIST,

we perform estimation using local linear regression. To perform the hypothesis tests,

we need to derive or approximate the degrees of freedom for residual sum of squares

(RSS) in local linear regression. Fan, Yao, and Cai (2003) proposed an estimator

of the local degree of freedom for the local linear regression procedure. We extend

this approach and the original principle of Hastie and Tibshirani (1990) to derive the

global degree of freedom.

The general model and the two reduced models we propose are given in Section

4.2. Kernel based estimation methods for all models are provided in Section 4.3.

Section 4.4 describes the hypothesis testing procedures, and Section 4.5 contains

three theorems regarding the properties of the degrees of freedom for RSS. Numerical

outcomes are provided in Section 4.6. Section 4.7 contains the concluding remarks.
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Figure 19: Plot of bioluminescence vs time.

4.2 Models

For data in Figure 19, the periodic component can be fitted by a cosine wave and the

baseline and amplitude functions can be fitted by nonparametric procedures. Let y

be the response variable and t be its associated covariate. We consider the following

varying coefficient periodic model:

Y = β0(t) + β1(t) cos{2π(t/τ − φ)} + ε, (4.1)

where t = (t1, · · · , tn)T , Y = (y1, · · · , yn)T and ε = (ε1, · · · , εn)T . And, β0(t)

(bounded away from 0) is the underlying baseline growth function; β1(t) (bounded

away from 0) is the amplitude function of the periodic component; τ denotes the

period and 0 ≤ φ < 1 is the phase; n is the total number of observations. We assume

that εj’s are independent and identically distributed with E(εj) = 0 and var(εj) = σ2
ε ,

j = 1, · · · , n. We refer to model (4.1) as the general model.
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In model (4.1), we do not make any assumptions about the relationship between

β0(t) and β1(t). Biologists believe that the periodic component β1(t) is proportional

to the growth component β0(t). That is, β1(t) = cβ0(t) with a positive constant c.

To relax this assumption, we replace c by a quadratic function of t. Define γ(t) =

logβ1(t) − logβ0(t), therefore β1(t)/β0(t) = exp{γ(t)}. Consequently, we propose the

following model:

Y = β0(t) [1 + exp{γ(t)} cos{2π(t/τ − φ)}] + ε, (4.2)

where γ(t) = a0 + a1t + a2t
2. Model (4.2) implies that the relationship between

β0(t) and β1(t) can be expressed as a quadratic function of time t. That is, γ(t) is a

quadratic function.

The traditional belief of the ratio between β0(t) and β1(t) being a constant implies

the following model:

Y = β0(t) [1 + exp(γ) cos{2π(t/τ − φ)}] + ε, (4.3)

Model (4.3) is a special case of model (4.2) when γ(t) is a constant.

4.3 Kernel Estimation Methods

Since the parametric structures are unknown of the baseline function β0(t) and am-

plitude function β1(t), we will use nonparametric methods to estimate them. Further,

the circadian component is parametric, it is natural to conduct an investigation using

semiparametric techniques.

Section 4.3.1 to 4.3.3 provide the semiparametric methods for model (4.1) to

(4.3), respectively. Bandwidth selection and initial estimations are provided in Section

4.3.4.
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4.3.1 Semiparametric Local Linear Estimation Method for Model (4.1)

For model (4.1), we use the local linear approach to estimate the nonparametric com-

ponent (β0(t) and β1(t)) and use least squares to estimate the parametric component

(τ and φ), update the estimates iteratively and component-wise until residual sum of

squares (RSS) achieves the minimum. The execution is as below:

Let τ̂ [0] and φ̂[0] be the initial estimates of τ and φ, β̂
[0]
0 (t) and β̂

[0]
1 (t) be the

initial estimates of β0(t) and β1(t). Let τ̂ [k−1], φ̂[k−1], β̂
[k−1]
0 (t) and β̂

[k−1]
1 (t) denote

the estimates at step (k − 1). At the kth step,

1. We find τ̂ [k] and φ̂[k] by minimizing RSS =
∑n

j=1(yj − ŷj)
2 in the neighborhood

of τ̂ [k−1] and φ̂[k−1], where ŷj = β̂
[k−1]
0 (tj) + β̂

[k−1]
1 (tj) cos{2π(tj/τ̂ − φ̂)}.

2. Suppose that τ and φ are known and equal to τ̂ [k] and φ̂[k]. Now the model

(4.1) is

Y = β0(t) + β1(t) cos{2π(t/τ̂ [k] − φ̂[k])} + ε.

Our model is a common varying coefficient model. We use the local linear

approach to update β̂0(t) and β̂1(t) simultaneously with the same bandwidth h.

At the time point t0, the estimates are

β̂
[k]
0 (t0) = (1, 0, 0, 0)(XT WX)−1XT WY,

β̂
[k]
1 (t0) = (0, 0, 1, 0)(XT WX)−1XT WY, (4.4)

where

X =




1 t1 − t0 z1 z1(t1 − t0)

...
...

...
...

1 tn − t0 zn zn(tn − t0)




,

zj = cos{2π(tj/τ̂
[k] − φ̂[k])},

and W = diag(Kh(t1 − t0), · · · ,Kh(tn − t0)).
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Iterate the algorithm until the RSS stops decreasing, we obtain τ̂ ,φ̂, β̂0(t) and β̂1(t).

4.3.2 Semiparametric Local Linear Estimation Method for Model (4.2)

For model (4.2), let τ̂ [0] and φ̂[0] be the initial estimates of τ and φ, β̂
[0]
0 (t) be the

initial estimates of β0(t), and γ̂[0](t) be the initial estimate of γ(t). Let τ̂ [k−1], φ̂[k−1],

β̂
[k−1]
0 (t) and γ̂[k−1](t) denote the estimates at step (k − 1). At the kth step,

1. We find the kth step estimates of all parameters (τ̂ [k], φ̂[k], γ̂[k](t) = â
[k]
0 + â

[k]
1 t+

â
[k]
2 t2) by minimizing RSS =

∑n
i=1(yi − ŷi)

2 in the neighborhood of τ̂ [k−1], φ̂[k−1]

and γ̂[k−1](t).

2. Suppose that τ , φ and γ(t) are known and equal to τ̂ [k], φ̂[k] and γ̂[k](t). Now

the model (4.2) is

Y = β0(t)
[
1 + exp(γ̂[k](t)) cos{2π(t/τ̂ [k] − φ̂[k])}

]
+ ε.

Our model is a common varying coefficient model. We use the local linear

approach to update β̂0(t) with bandwidth h. The estimates are

β̂
[k]
0 (t0) = (1, 0)(XT

2 WX2)
−1XT

2 WY, (4.5)

where

X2 =




1 + exp(γ̂
[k]
1 )z1, {1 + exp(γ̂

[k]
1 )z1}(t1 − t0)

...
...

1 + exp(γ̂
[k]
n )zn, {1 + exp(γ̂

[k]
n )zn}(tn − t0)




,

γ̂
[k]
j = γ̂[k](tj).

Iterate the algorithm until the RSS stops decreasing, we will obtain τ̂ , φ̂, β̂0(t) and

γ̂(t).
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4.3.3 Semiparametric Local Linear Estimation Method for Model (4.3)

In model (4.3), the estimation procedure is the same as that for model (4.2), except

that γ(t) = γ. Let τ̂ [0] and φ̂[0] be the initial estimates of τ and φ, β̂
[0]
0 (t) be the initial

estimates of β0(t), and γ̂[0] be the initial estimate of γ. Let τ̂ [k−1], φ̂[k−1], β̂
[k−1]
0 (t) and

γ̂[k−1] denote the estimates at step (k − 1). At the kth step,

1. We find the kth step estimates of all parameters (τ̂ [k], φ̂[k], γ̂[k]) by minimizing

RSS =
∑n

j=1(yj − ŷj)
2 in the neighborhood of τ̂ [k−1], φ̂[k−1] and γ̂[k−1].

2. Suppose that τ , φ and γ are known and equal to τ̂ [k], φ̂[k] and γ̂[k]. Now the

model (4.3) is

Y = β0(t)[1 + exp(γ̂[k]) cos{2π(t/τ̂ [k] − φ̂[k])}] + ε.

Our model is a common varying coefficient model. We use the local linear

approach to update β̂0(t) with bandwidth h. The estimates are

β̂
[k]
0 (t0) = (1, 0)(XT

3 WX3)
−1XT

3 WY, (4.6)

where

X3 =




1 + exp(γ̂[k])z1, {1 + exp(γ̂[k])z1}(t1 − t0)

...
...

1 + exp(γ̂[k])zn, {1 + exp(γ̂[k])zn}(tn − t0)




,

Iterate the algorithm until the RSS stops decreasing, we will obtain τ̂ , φ̂, β̂0(t) and

γ̂.

4.3.4 Bandwidth Selection and Initial Estimates

In Section 4.3.1 to 4.3.3, we need to select an optimal bandwidth h. We use common

bandwidth for all three models. The simplest and most effective bandwidth selection
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method could be cross-validation. For our model, we perform the cross-validation

method as below:

1. Divide time into c intervals, each has k points, then leave the 1 point out in

each interval, so we will use the remaining n − c points to produce estimates

and make predicts to the left-out c points.

2. Select a h, and conduct estimation procedures using the n − c points to obtain

ŷh
ck and corresponding prediction MSE

Gck(h) = {yck − ŷh
ck}2.

3. For a given C, repeat steps 1 and 2, for c from 1 to C, and k from 1 to

K = int(n/c), and obtain

G(h) =
C∑

c=1

K∑

k=1

Gck(h) =
C∑

c=1

K∑

k=1

{yck − ŷh
ck}2.

The optimal bandwidth is h = argmin G(h).

To estimate the unknown curves, we need to find a set of initial estimates. Here

is how we obtain the initial estimates under model (4.1):

1. Select local minimum and maximum points.

2. Obtain the median of two adjacent minimum and maximum points, consider

the medians as our baseline. Use local linear method to obtain β̂
[0]
0 (t) from these

points.

3. Subtract minimum from adjacent maximum points, consider these as two times

the amplitude. Use local linear method to fit β̂
[0]
1 (t).
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4. The distance from adjacent minimum and maximum points are half the period,

average them to obtain the initial estimate of τ , τ̂ [0]. Using the maximum points

as the start point of each cycle, and minimum points as middle point of each

cycle, by averaging them we can obtain φ̂[0].

For model (4.2), we obtain β̂
[0]
0 (t), τ̂ [0] and φ̂[0] the same way as we did under

model (4.1). We fit a exp(quadratic) model on

Y − β̂
[0]
0 (t)

β̂
[0]
0 (t) cos{2π(t/τ̂ [0] − φ̂[0])}

and t to obtain γ̂[0](t). For model (4.3), obtain the mean of

Y − β̂
[0]
0 (t)

β̂
[0]
0 (t) cos{2π(t/τ̂ [0] − φ̂[0])}

and set that to be γ̂[0].

4.4 Testing Hypothesis

We are interested in three tests. One is the goodness of fit test for model (4.2), when

model (4.1) is the full model:

H0: γ(t) is a quadratic function,

H1: γ(t) is general as given in model (4.1).

We refer to this test as Test I.

Another test of interest is the test against the traditional belief:

H0: γ(t) is a constant,

H1: γ(t) is a quadratic function.

We refer to this test as Test II.

The third test of interest is the goodness of fit test for model (4.3), when model

(4.1) is the full model:

H0: γ(t) is a constant,

H1: γ(t) is general as given in model (4.1).
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We refer to this test as Test III.

For the original data, using the “extra sum of squares” principle, we define the

test statistic to be

F =
(RSSH0

− RSSH1
)/(dfH0

− dfH1
)

RSSH1
/dfH1

, (4.7)

where RSSH1
and RSSH0

mean the residual sums of squares under H1 and H0,

dfH1
and dfH0

the degrees of freedom for residual sum of squares under H1 and H0,

respectively. Since the numerator and denominator may not be independent in (4.7),

F may not have a F distribution. We use a bootstrap procedure to calculate the null

distribution of F and obtain the p-value of the test. That is, for b = 1, · · · , B,

1. Generate one dataset under H0, that is, Y ∗
b = ŶH0

+ ε
∗
H0,b, where ε

∗
H0,b is a

bootstrap sample of ε̂H0
= Y − ŶH0

.

2. Fit the curves under both H0 and H1. Calculate F ∗
b by

F ∗
b =

(RSSH0,b − RSSH1,b)/(dfH0,b − dfH1,b)

RSSH1,b/dfH1,b
.

To construct B F ∗
b ’s, compute the percentage of F ∗

b bigger than F , and set that

proportion as p-value.

4.5 Degree of Freedom for RSS

To perform the hypothesis tests described in Section 4.4, we need the degree of free-

dom for residual sum of squares in the semiparametric methods. We derive the degrees

of freedom for RSS’s in all 3 models in this Section.

Theorem 2. For model (4.1), the degree of freedom for RSS =
∑n

j=1(yj − ŷj)
2 is

n − p = n −
n∑

k=1

Hkk − 2.
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where

Hkk = Kh(0)(1, 0, zk, 0){XT (tk)W (tk)X(tk)}−1(1, 0, zk, 0)T ,

X(t0) =




1 t1 − t0 z1 z1(t1 − t0)

...
...

...
...

1 tn − t0 zn zn(tn − t0)




,

and W (t0) = diag(Kh(t1 − t0), · · · ,Kh(tn − t0)).

Theorem 3. For model (4.2), the degree of freedom for RSS =
∑n

j=1(yj − ŷj)
2 is

n − p = n −
n∑

k=1

Hkk − 5,

where

Hkk = Kh(0)(1 + exp(γk)zk, 0){XT
2 (tk)W (tk)X2(tk)}−1(1 + exp(γk)zk, 0)T ,

X2(t0) =




1 + exp(γ1)z1, {1 + exp(γ1)z1}(t1 − t0)

...
...

1 + exp(γn)zn, {1 + exp(γn)zn}(tn − t0)




.

Theorem 4. For model (4.3), the degree of freedom for RSS =
∑n

j=1(yj − ŷj)
2 is

n − p = n −
n∑

k=1

Hkk − 3,

where

Hkk = Kh(0)(1 + exp(γ)zk, 0){XT
3 (tk)W (tk)X3(tk)}−1(1 + exp(γ)zk, 0)T ,

X3(t0) =




1 + exp(γ)z1, [1 + exp(γ)z1](t1 − t0)

...
...

1 + exp(γ)zn, [1 + exp(γ)zn](tn − t0)




.

The proofs of Theorems 2-4 are provided in Appendix C.

After obtaining the degree of freedom for RSS, we can calculate F test statistic

according to procedures given in Section 4.4. Note that in practice, local linear
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regression will have boundary effect, that is, Hkk tend to be much larger on the

boundary. We will demonstrate this in the following example.

Example 4.1. Use the data set in Figure 19. Hkk’s for all three models are plotted

in Figure 20. From Figure 20, we observe a clear boundary effect. So, we use only

interior points (t > min(t) + h/2 and t < max(t) − h/2) to calculate the degrees of

freedom. We do so for all three models. In the Figure 20 the interior points are the

red solid points between two dashed lines.

4.6 Numerical Outcomes

In this Section, we evaluate the performance of the hypothesis tests by simulations,

then we apply the tests to cyanobacteria circadian data. Through out this Section,

we use cross-validation to select bandwidth h = 40. Also, the level of significance for

our tests is α = 0.05 in this Section.

4.6.1 Simulation Studies for Test I

To evaluate the property of Test I, we first generate data under H0 (model (4.2)).

We set n = 129, t ∈ {60.35, 62.46, · · · , 331.20}, τ = 24 and φ = 0.5, β0(t) = exp(2 +

0.0165t − 0.00003t2), γ(t) = −0.5 − 0.0065t + 0.00001t2 and ε ∼ N(0, 12). For

the dataset we generate, we let B in Section 4.4 to be 1000. After performing the

hypothesis test, we obtain

F = 1.5392, p − value = 0.828.

Since p-value is bigger than α = 0.05, we fail to reject H0. Therefore, we conclude

that γ(t) is a quadratic function.

We repeat the data generation and hypothesis testing procedure 100 times, let
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Figure 20: Plot of the diagonal values of the hat matrix H vs t in Example 4.1. The
top plot is for model (4.1), the middle plot is for model (4.2) and the bottom plot is
for model (4.3). Interior points (t > min(t) + h/2 and t < max(t)− h/2) are the red
solid points between two dashed lines.
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B = 100, and record all the p-values. We than estimate the size of Test I by

ŝize =
# of p − values <= 0.05

100
= 0.03.

Then we generate data under H1, that is, model (4.1). we use the dataset in

Figure 19. For our circadian dataset, n = 156. We only use t > 60. Thus n reduces

to 129, and t ∈ {60.35, 62.46, · · · , 331.20}. We estimated the curve first to obtain

β̂0(t) and β̂1(t), then use ’approxfun’ in R to obtain the ’true’ β0(t) and β1(t). We

generated one dataset by model (4.1) using τ = 24, φ = 0.5, ε ∼ N(0, 12), and β0(t),

β1(t) as above. For the dataset we generated, we set B = 1000 and obtained

F = 68.3696, p − value = 0.

Since p-value is less than 0.05, we reject H0. We conclude that γ(t) is general as given

in model (4.1).

We repeat the data generation and hypothesis testing procedure 100 times, let

B = 100 and record all p-values, we estimate the power of our Test I by

p̂ower =
# of p − values <= 0.05

100
= 1.

4.6.2 Simulation Studies for Test II

To evaluate the numerical properties of Test II, we first generate data under H0

(model (4.3)). n = 129 and t ∈ {60.35, 62.46, · · · , 331.20}. We set τ = 24 and

φ = 0.5, β0(t) = exp(1 + 0.02t − 0.00004t2), γ = −0.5 and ε ∼ N(0, 12). For the

dataset we generate, we let B = 1000, our calculated test statistic and p-value are

F = 0.3331, p − value = 0.349.

p-value is bigger than 0.05, we fail to reject H0. Thus our conclusion is γ(t) is a

constant.
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We repeat the data generation and hypothesis testing procedure 100 times with

B = 100, and estimate the size of Test II by

ŝize =
# of p − values <= 0.05

100
= 0.05.

Then we generate data under H1, one dataset under model (4.2). n = 129,

t ∈ {60.35, 62.46, · · · , 331.20}. We set τ = 24 and φ = 0.5, β0(t) = exp(2 + 0.0165t−

0.00003t2), γ(t) = −0.5 − 0.0065t + 0.00001t2 and ε ∼ N(0, 12). For the dataset we

generate, B = 1000, we have

F = 127.3973, p − value = 0.

p-value is less than 0.05, reject H0. We conclude that γ(t) is a quadratic function.

We repeat the data generation and hypothesis testing procedure 100 times with

B = 100, the estimated power of Test II is

p̂ower =
# of p − values <= 0.05

100
= 1.

4.6.3 Simulation Studies for Test III

We first generate data under H0, model (4.3). n = 129 and t ∈ {60.35, 62.46, · · · , 331.20}.

We set τ = 24 and φ = 0.5, β0(t) = exp(1 + 0.02t − 0.00004t2), γ = −0.5 and

ε ∼ N(0, 12). For the dataset we generate, set B = 1000 we obtain

F = 1.7293, p − value = 0.625.

p-value is bigger than 0.05, we fail to reject H0. We conclude that γ(t) is a constant.

Repeat the data generation and hypothesis tests 100 times with B = 100, esti-

mate size by

ŝize =
# of p − values <= 0.05

100
= 0.02.
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Then we generate data under H1, model (4.1). we use the dataset in Figure 19

to generate our n = 129, and t ∈ {60.35, 62.46, · · · , 331.20}. Estimate the curve first

to obtain β̂0(t) and β̂1(t), then use ’approxfun’ in R to obtain the ’true’ β0(t) and

β1(t). Generate one dataset by model (4.1) using τ = 24, φ = 0.5, ε ∼ N(0, 12), and

β0(t), β1(t) as above. For the dataset we generate, B = 1000,

F = 185.2273, p − value = 0.004.

We reject H0 and conclude that γ(t) is general.

Repeat the data generation and hypothesis tests 100 times, estimated power of

Test III is

p̂ower =
# of p − values <= 0.05

100
= 1.

4.6.4 Application to Cyanobacteria Circadian Data

From the simulation studies in Section 4.6.1 to 4.6.3, all three tests perform very well.

We apply the tests to our cyanobacteria circadian data. For the dataset in Figure 19,

we set B = 1000, and perform all three tests, we obtain

Test I: F = 13.8405, p − value = 0.001

Test II: F = 44.5338, p − value = 0.025.

Test III: F = 34.2013, p − value = 0.016.

Since all the p-values are less than 0.05, we reject Test I, II and III. Therefore, we

conclude that γ(t) is general as given in model (4.1).

4.7 Concluding Remarks

To investigate the relationship between the baseline and amplitude functions of cyanobac-

teria circadian data, we proposed three models. One is the general model, while the

other two are reduced models that satisfy assumptions that the ratio of the baseline
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and amplitude functions is a quadratic function of time or a constant. We use semi-

parametric local linear estimation methods to fit the data under all three models, and

we use hypothesis testing procedure to identify plausible reduced models. To perform

these tests, we propose a procedure to calculate the degrees of freedom for RSS in

the semiparametric methods. By applying the tests to our data, we conclude that

the ratio of the baseline and amplitude functions is not a constant or a quadratic

function of time.
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CHAPTER V

CONCLUSION AND FUTURE RESEARCH

The study of patterns in circadian rhythm provides researchers a better understand-

ing of the circadian input pathways. It also enables research on the interactions of

circadian genes and other metabolic or cell signaling pathways to be conducted. In

this dissertation, we focus on the study of circadian patterns of cyanobacteria. In

chapter II, we proposed a varying coefficient periodic model that contains nonpara-

metric baseline and amplitude functions and a parametric periodic component. This

model allows us to easily investigate properties of key circadian parameters such as

period and phase. This investigation is the main focus of chapter II. In the front of

statistical methodology development, we have provided semiparametric kernel based

estimation procedures and investigate their theoretical and numerical properties re-

spectively. In the front of using our proposed methods to enhance research in another

discipline, our approaches allow biologists to obtain a sensible confidence range for

the parameter phase. This is not achievable before simply due to the large variation

induced by the traditional FFT-NLLS procedures. We clearly illustrate this finding

in the data example.

The proposed flexible models also allow us to further address a question that is of

interest to biologists, namely “Does the circadian component remain invariant across

different growth stages?” This question can be addressed via a study of the ratio

of β1(t) over β0(t). It has been commonly believed that this ratio should remain a

constant across time. However, this belief could be contributed to the past empirical

findings when investigations were conducted during the stable sustained stage only.

We investigate this problem using model selection and hypothesis testing procedures
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under the smoothing spline and kernel local linear framework, respectively. Chapter

III reports our developments and findings using smoothing spline. One difficulty

is that when the smoothing parameter is chosen by the traditional general cross-

validation method, the existing software package such as ASSIST tends to lead to

outcomes which either fail to converge or absorb the periodic component into the two

nonparametric functions. We overcome this difficulty by introducing a new method of

smoothing parameter selection, adjusted cross-validation. Based on the outcomes of

model selection techniques, our conclusion is that the log-ratio of the baseline function

and amplitude function is not a constant, nor a quadratic function.

An alternative way of investigating the baseline-amplitude relationship is to con-

duct a hypothesis testing procedure. In chapter IV, we perform three tests under

the platform of kernel local linear models. The same conclusions as those in chapter

III are obtained. Namely, we can not further reduce the complexity of the proposed

semiparametric models without hurting the goodness of fit property. A theoretical

contribution in this chapter is to show how to derive the global model degrees of

freedom for the kernel based semiparametric methods.

In the future study, we intend to investigate other topics that are of interest to

biologists. One of them is whether the parameters period and phase of the circadian

component remain constants across time, or do they change after a certain time period

after the bacteria are under a constant condition. This question addresses the issue

whether the circadian patterns change with the aging process and consequently have

effects on other growth related pathways.
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APPENDIX A

PROOFS OF THEOREM 1 IN CHAPTER II, SECTION 2.5

Definition of Terms and Regularity Conditions in Theorem 1.

The following notations will be used in the proof of Theorem 1. Let

Kh(t − t0) =
1

h
K

(
t − t0

h

)
,

µi =

∫
tiK(t)dt,

and νi =

∫
tiK2(t)dt.

Set rij(t) = E(XiXj|T = t), rij = E{Xi(t)Xj(t)|t0}, for i, j = 0, · · · , p. Put

Ψ = diag(σ2
ε , · · · , σ2

ε),

αk(t) = (r0k(t), · · · , rpk(t))
T ,

αk = αk(t0) for k = 0, · · · , p,

and

Ωk(t) = E{(X1, · · · , Xk)
T (X1, · · · , Xk)|T = t},

Ωk = Ωk(t0), for k = 0, · · · , p.

Let

S = Ωp ⊗




µ0 0

0 µ2


 and A = Ip ⊗




1 0

0 h


 , (A.1)

where ⊗ denotes the Kronecker product.

Denote the marginal density of t by f(t). Let εθ = θi − θ be the error term of

the distribution θi ∼ (θ, Σθ), we have E(εθ) = 0 and var(εθ) = Σθ.

We impose the following regularity conditions:
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s.1 EX2s
k < ∞, for some s > 2, k = 0, · · · , p.

s.2 β′′
ki(·) is continuous in a neighborhood of t, for k = 0, · · · , p. Assume β′′

ki(t) 6= 0,

for k = 0, · · · , p.

s.3 r′′ij(·) is continuous in a neighborhood of t0 and r′′ij(t0) 6= 0, for i, j = 0, · · · , p.

s.4 The marginal density of t has a continuous second derivative in some neighbor-

hood of t0 and f(t0) is bounded away from zero.

s.5 K(t) is a symmetric density function with a compact support.

s.6 h → 0 in such a way that nh → ∞ and
√

mh2 → 0.

Proof of Theorem 1.

First, we calculate the asymptotic bias and variance of θ̂i. For the ith subject θ̂i,

minimizes
n∑

j=1

{yij − β̂0i(tj) − β̂1i(tj)X1(tj; θ̂i)}2.

We tentatively drop the subindex i to simplify the notation. We note that

n∑

j=1

{yj − β̂0(tj) − β̂1(tj)X1(tj; θ̂)}2

=

(
n∑

j=1

{yj − β̂0(tj) − β̂1(tj)X1(tj; θ) − β̂1(tj)
∂

∂θ
X1(tj; θ)(θ̂ − θ)}2

)
(1 + op(θ̂ − θ)2)

=
n∑

j=1

{
εj − [β̂0(tj) − β0(tj)] − [β̂1(tj) − β1(tj)]X1(tj ; θ) − β1(tj)

∂

∂θ
X1(tj; θ)(θ̂ − θ)

}2

(1 + op(1)).

Therefore,

θ̂ − θ = (X̂T X̂)−1X̂T
ε − (X̂T X̂)−1X̂T [β̂0(t) − β0(t)] − (X̂T X̂)−1X̂

T
[β̂1(t) − β1(t)]

= I1 + I2 + I3, (A.2)
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where X̂j = β1(tj)
∂
∂θ

X1(tj ; θ) = β1(tj)




∂
∂τ

X1(tj ; θ)

∂
∂φ

X1(tj ; θ)


, X̂ = (X̂1, · · · , X̂n)T , and

X̂ = (X̂1X1(t1), · · · , X̂nX1(tn))T .

I1 is the influence function when both β0(t) and β1(t) are known, I2 is the part

influence by unknown β0(t), and I3 is the part influenced by unknown β1(t). By

Lemma 1,

I2 = −(X̂T X̂)−1X̂T [β̂0(t) − β0(t)]

= −(X̂T X̂)−1X̂T [B0(t)h
2 +

1√
nh

KT
0 (t)ε](1 + op(1)),

and

I3 = −(X̂T X̂)−1X̂
T
[β̂1(t) − β1(t)]

= −(X̂T X̂)−1X̂
T
[B1(t)h

2 +
1√
nh

KT
1 (t)ε](1 + op(1)).

Put I2 and I3 into (A.2),

θ̂ − θ = {Bθ(t)h
2 +

1√
n
KT

θ (t)ε}(1 + op(1)),

where

Bθ(t) = −(X̂T X̂)−1[X̂TB0(t) + X̂
TB1(t)],

KT
θ (t) =

√
n(X̂T X̂)−1[X̂T − 1√

nh
X̂TKT

0 (t) − 1√
nh

X̂
TKT

1 (t)].

Some calculations show that

var(I1) = (X̂T X̂)−1X̂T ΨX̂(X̂T X̂)−1 = (X̂T X̂)−1X̂T X̂(X̂T X̂)−1σ2
ε

= (X̂T X̂)−1σ2
ε =

(
n∑

j=1

β2
1(tj)

∂

∂θ
X1(tj ; θ)

∂

∂θ
XT

1 (tj; θ)

)−1

σ2
ε .

Consequently, var(I1) is of order OP (1/n). Further,

var(I2) = (X̂T X̂)−1X̂T var(β̂0(t) − β0(t))X̂(X̂T X̂)−1 = O

(
1

nh

)
(X̂T X̂)−1,
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which is of order OP (1/n2h);

var(I3) = (X̂T X̂)−1X̂
T
var(β̂1(t) − β1(t))X̂(X̂T X̂)−1

= O

(
1

nh

)
(X̂T X̂)−1X̂

T
X̂(X̂T X̂)−1,

which is of order OP (1/n2h) as well. Because nh → ∞, var(θ̂−θ) is of order OP (1/n).

Thus, KT
θ (t) is of order 1. Place the subindex i back in, in sum,

θ̂i − θi = {Bθi
(t)h2 +

1√
n
KT

θi
(t)εi}(1 + op(1)). (A.3)

Next, we calculate the asymptotic bias and variance of θ̂. Since θ̂ =
1

m

m∑

i=1

θ̂i, we

have

θ̂ − θ =
1

m

m∑

i=1

θ̂i − θ =
1

m

m∑

i=1

(θ̂i − θi) +
1

m

m∑

i=1

(θi − θ).

By (A.3),

1

m

m∑

i=1

(θ̂i − θi) =
1

m

m∑

i=1

{Bθi
(t)h2 +

1√
n
KT

θi
(t)εi}(1 + op(1))

=

{
1

m

m∑

i=1

Bθi
(t)h2 +

1

m

1√
n

(KT
θ1

(t), · · · ,KT
θm

(t))ε

}
(1 + op(1))

= {Bθ(t)h
2 +

1√
mn

KT
θ (t)ε}(1 + op(1)),

where Bθ(t) =
1

m

m∑

i=1

Bθi
(t), KT

θ (t) =
√

m(KT
θ1

(t), · · · ,KT
θm

(t)).

Since θi ∼ N(θ, Σθ),

θ̂ − θ = {Bθ(t)h
2 +

1√
mn

KT
θ (t)ε +

1√
m

εθ}(1 + op(1)),

where εθ is defined at the beginning of Appendix A.

√
m(θ̂ − θ) = {Bθ(t)

√
mh2 +

1√
n
KT

θ (t)ε + εθ}(1 + op(1)).
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By condition s.6, the bias goes to zero, and the variance is

var
(√

m(θ̂ − θ)
)

= Σθ +
1

n
KT

θ (t)Kθ(t)σ
2
ε .

That is,
√

m(θ̂ − θ) → N(0,Σ).

where Σ = Σθ + Σε, Σε = 1
n
KT

θ (t)Kθ(t)σ
2
ε .

Proof of Lemma 1.

We will tentatively assume θi is known and prove Lemma (2.8). For item i, model

(2.3) is a common varying coefficient model:

Yi =

p∑

k=0

βki(t)Xk(t) + εi.

For simplicity, we tentatively drop the subindex i. One simple approach to estimate

the coefficient functions βk(t) is to use local linear modeling. For each given point t0,

approximate the functions locally as

βk(t) ≈ ak + bk(t − t0), k = 0, · · · , p,

for t in a neighborhood of t0. This leads to the following local least-squares problem

that we minimize

n∑

j=1

[
yj −

p∑

k=0

{ak + bk(tj − t0)}Xk(tj)

]2

Kh(tj − t0)

for a given kernel function K and bandwidth h. We use the same bandwidth for β0(t)

and β1(t) as in Section 2.4.2.2. The solutions to this problem can be easily obtained,

and they can be expressed as

β̂k(t0) = eT
2k+1,2p+2(X

T WX)−1XT WY, (A.4)

where X and W are defined in (2.6).
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By Taylor’s expansion, we have

Y = X(β0(t0), β
′
0(t0), · · · , βp(t0), β

′
p(t0))

T +
1

2

p∑

k=0




β′′
k(ξ1k)(t1 − t0)

2Xk(t1)

...

β′′
k(ξnk)(tn − t0)

2Xk(tn)




+ ε,

(A.5)

where ξjk is between tj and t0 for j = 1, · · · , n, k = 0, · · · , p. Put (A.5) into (A.4),

β̂k(t0) − βk(t0) =
1

2

p∑

k=0

eT
2k+1,2p+2(X

T WX)−1XT W




β′′
k(ξ1k)(t1 − t0)

2Xk(t1)

...

β′′
k(ξnk)(tn − t0)

2Xk(tn)




+eT
2k+1,2p+2(X

T WX)−1XT Wε

= I4 + I5. (A.6)

By calculating the mean and variance, one can easily get

XT WX = nf(t0)







r00 · · · r0p

...
. . .

...

r01 · · · r11




⊗




µ0 0

0 h2µ2







(1 + op(1))

= nf(t0)ASA(1 + op(1)),

where A and S are defined in (A.1). Similarly, we have

XT W




β′′
k(ξ1k)(t1 − t0)

2Xk(t1)

...

β′′
k(ξnk)(tn − t0)

2Xk(tn)




= nf(t0)h
2β′′

k(t0)







r0k

...

rpk




⊗




1

0







µ2

(1 + op(1))

= nf(t0)h
2β′′

k(t0)A[αk ⊗ (1, 0)T ]µ2(1 + op(1)).

Therefore,

I4 =
1

2
h2

p∑

k=0

β′′
k(t0)e

T
2k+1,2p+2S

−1[αk ⊗ (1, 0)T ](1 + op(1)) = Bk(t0)h
2(1 + op(1)),
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where Bk(t0) = 1
2

∑p
k=0 β′′

k(t0)e
T
2k+1,2p+2S

−1[αk ⊗ (1, 0)T ] = O(1).

Also,

I5 = eT
2k+1,2p+2(X

T WX)−1XT Wε

=
1

nf(t0)
eT
2k+1,2p+2S

−1A−1XT Wε(1 + op(1))

=
1√
nh

KT
k (t0)ε(1 + op(1)),

where KT
k (t0) =

√
nh

nf(t0)
eT
2k+1,2p+2S

−1A−1XT W = O(1). Put the values of I4 and I5

back into (A.6),

β̂k(t0) − βk(t0) = {Bk(t0)h
2 +

1√
nh

KT
k (t0)ε}(1 + op(1)).

Since

var(I5) = eT
2k+1,2p+2(X

T WX)−1XT WΨWX(XT WX)−1e2k+1,2p+2,

and

XT WΨWX = nf(t0)σ
2
εh

−1







r00 r01

r01 r11


⊗




ν0 0

0 h2ν2





 (1 + op(1)),

var(I5) is of order 1/nh, consequently KT
k (t0) is of order 1. Adding the subindex i

back in, our conclusion is

β̂ki(t0) − βki(t0) = {Bki(t0)h
2 +

1√
nh

KT
ki(t0)εi}(1 + op(1)).
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APPENDIX B

β0(T )’S AND β1(T )’S USED IN SECTION 2.6.2 WHEN M = 6

When m = 6, we used the best quadratic functions in the analysis of a pilot data set

as the basis of constructing β0(t) and β1(t). Precisely, we set

β01(t) = exp(−0.1 + 0.034t − 0.00007t2),

β02(t) = exp(0.1 + 0.032t − 0.00006t2),

β03(t) = exp(−0.4 + 0.033t − 0.00006t2),

β04(t) = exp(0.3 + 0.028t − 0.00005t2),

β05(t) = exp(0.5 + 0.028t − 0.00005t2),

β06(t) = exp(1 + 0.025t − 0.00005t2);

and

β01(t) = exp(0.8 + 0.024t − 0.00005t2),

β02(t) = exp(1 + 0.022t − 0.00005t2),

β03(t) = exp(0.4 + 0.024t − 0.00004t2),

β04(t) = exp(1.4 + 0.015t − 0.00003t2),

β05(t) = exp(1.4 + 0.016t − 0.00003t2),

β06(t) = exp(1.9 + 0.016t − 0.00004t2).



86

APPENDIX C

DERIVATION OF THEOREM 2 TO 4 IN CHAPTER IV, SECTION 4.5

Proof of Theorem 2:

For model (4.1), first assume τ and φ are given since they have better convergence,

then in the neighborhood of t0,

β̂(t0) = (β̂0(t0), β̂
′
0(t0), β̂1(t0), β̂

′
1(t0))

T = {XT (t0)W (t0)X(t0)}−1XT (t0)W (t0)Y,

where

X(t0) =




1 t1 − t0 z1 z1(t1 − t0)

...
...

...
...

1 tn − t0 zn zn(tn − t0)




,

zj = cos{2π(tj/τ̂ − φ̂)},

W = diag(Kh(t1 − t0), · · · ,Kh(tn − t0)).
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Then

Ŷk = β̂0(tk) + β̂1(tk)zk

= (1, 0, zk, 0)β̂(tk)

= (1, 0, zk, 0){XT (tk)W (tk)X(tk)}−1XT (tk)W (tk)Y

= (1, 0, zk, 0){XT (tk)W (tk)X(tk)}−1




1 · · · 1

t1 − tk · · · tn − tk

z1 · · · zn

z1(t1 − tk) · · · zn(tn − tk)







Kh(t1 − tk)Y1

...

Kh(tn − tk)Yn




= (1, 0, zk, 0){XT (tk)W (tk)X(tk)}−1




∑n
j=1 YjKh(tj − tk)

∑n
j=1 YjKh(tj − tk)(tj − tk)

∑n
j=1 YjKh(tj − tk)zj

∑n
j=1 YjKh(tj − tk)zj(tj − tk)




=

n∑

j=1

YjKh(tj − tk)(1, 0, zk, 0){XT (tk)W (tk)X(tk)}−1




1

tj − tk

zj

zj(tj − tk)




(C.1)

It is easy to see that all those predicted values are linear combinations of Y =

(Y1, · · · , Yn)T with coefficients depending on {zk} only. Namely, we may write

(Ŷ1, · · · , Ŷn)T = HY,

where H is the n × n hat matrix, independent of Y . To calculate tr{H}, we note by

(C.1) that the (k, j) th element of H is

Hkj = Kh(tj − tk)(1, 0, zk, 0){XT (tk)W (tk)X(tk)}−1(1, tj − tk, zj, zj(tj − tk))
T
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and the kth diagonal element of H is

Hkk = Kh(0)(1, 0, zk, 0){XT (tk)W (tk)X(tk)}−1(1, 0, zk, 0)T .

Now, we have that tr{H} =
∑n

k=1 Hkk.

tr{H} can be viewed as the number of parameters used, p = tr{H}.Therefore,

the degree of freedom for the residual sum of squares RSS = (Y − Ŷ )T (Y − Ŷ ) is

n − p = n −
n∑

k=1

Hkk.

Now, if τ and φ are unknown, the number of parameters will be p = tr{H} + 2,

and the degree of freedom for RSS in model (4.1) is

n − p = n −
n∑

k=1

Hkk − 2.

Proof of Theorem 3:

The proof of Theorem 3 is very similar to the proof of Theorem 2. For model (4.2),

assume the parametric components (τ , φ and γ(t)) known,

β̂(t0) = (β̂0(t0), β̂
′
0(t0)) = {X2(t0)

T W (t0)X2(t0)}−1XT
2 (t0)W (t0)Y

where

X2(t0) =




1 + exp(γ1)z1, {1 + exp(γ1)z1}(t1 − t0)

...
...

1 + exp(γn)zn, {1 + exp(γn)zn}(tn − t0)




,

γj = γ(tj) = a0 + a1tj + a2t
2
j .
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So,

Ŷk = β̂0(tk){1 + exp(γk)zk}

= (1 + exp(γk)zk, 0)β̂(tk)

= (1 + exp(γk)zk, 0){X2(tk)
T W (tk)X2(tk)}−1




1 + exp(γ1)z1 · · · 1 + exp(γn)zn

{1 + exp(γ1)z1}(t1 − tk) · · · {1 + exp(γn)zn}(tn − tk)







Kh(t1 − tk)Y1

...

Kh(tn − tk)Yn




= (1 + exp(γk)zk, 0){X2(tk)
T W (tk)X2(tk)}−1



∑n

j=1 YjKh(tj − tk){1 + exp(γj)zj}
∑n

j=1 YjKh(tj − tk){1 + exp(γj)zj}(tj − tk)




=
n∑

j=1

YjKh(tj − tk)(1 + exp(γk)zk, 0){X2(tk)
TW (tk)X2(tk)}−1




1 + exp(γj)zj

{1 + exp(γj)zj}(tj − tk)


 (C.2)

We can write

Ŷ = (Ŷ1, · · · , Ŷn)T = HY,

where H is the hat matrix. By (C.2), the kth diagonal element of H is

Hkk = Kh(0)(1 + exp(γk)zk, 0){X2(tk)
T W (tk)X2(tk)}−1(1 + exp(γk)zk, 0)T .

The trace of the hat matrix is tr{H} =
∑n

k=1 Hkk.

Since τ , φ and γ(t) = a0 + a1t + a2t
2 are unknown, the number of parameters

will be p = tr{H} + 5, and the degree of freedom for RSS under model (4.2) is

n − p = n −
n∑

k=1

Hkk − 5.
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Proof of Theorem 4:

The proof of Theorem 4 is very similar to the proof of Theorem 3.

For model (4.3), assume the parametric components (τ , φ and γ) known,

β̂(t0) = (β̂0(t0), β̂
′
0(t0)) = {X3(t0)

T W (t0)X3(t0)}−1XT
3 (t0)W (t0)Y

where

X3(t0) =




1 + exp(γ)z1, [1 + exp(γ)z1](t1 − t0)

...
...

1 + exp(γ)zn, [1 + exp(γ)zn](tn − t0)




.

Thus,

Ŷk = β̂0(tk){1 + exp(γ)zk}

= (1 + exp(γ)zk, 0)β̂(tk)

= (1 + exp(γ)zk, 0){X2(tk)
T W (tk)X2(tk)}−1




1 + exp(γ1)z1 · · · 1 + exp(γn)zn

{1 + exp(γ1)z1}(t1 − tk) · · · {1 + exp(γn)zn}(tn − tk)







Kh(t1 − tk)Y1

...

Kh(tn − tk)Yn




= (1 + exp(γ)zk, 0){X2(tk)
T W (tk)X2(tk)}−1



∑n

j=1 YjKh(tj − tk){1 + exp(γ)zj}
∑n

j=1 YjKh(tj − tk){1 + exp(γ)zj}(tj − tk)




=
n∑

j=1

YjKh(tj − tk)(1 + exp(γ)zk, 0){X2(tk)
T W (tk)X2(tk)}−1




1 + exp(γ)zj

{1 + exp(γ)zj}(tj − tk)


 (C.3)



91

Write

Ŷ = (Ŷ1, · · · , Ŷn)T = HY,

where H is the hat matrix. By (C.3), the kth diagonal element of H is

Hkk = Kh(0)(1 + exp(γ)zk, 0){X2(tk)
T W (tk)X2(tk)}−1(1 + exp(γ)zk, 0)T .

The trace of the hat matrix is tr{H} =
∑n

k=1 Hkk.

Since τ , φ and γ are unknown, the number of parameters will be p = tr{H}+ 3,

and the degree of freedom for RSS under model (4.3) is

n − p = n −
n∑

k=1

Hkk − 3.
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