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ABSTRACT

Estimating and Testing of Functional Data with Restrictions. (August 2007)

Sang Han Lee, B.S., Seoul National University;

M.S., Seoul National University

Chair of Advisory Committee: Dr. Marina Vannucci

The objective of this dissertation is to develop a suitable statistical methodology

for functional data analysis. Modern advanced technology allows researchers to collect

samples as functional which means the ideal unit of samples is a curve. We consider

each functional observation as the resulting of a digitized recoding or a realization

from a stochastic process. Traditional statistical methodologies often fail to be applied

to this functional data set due to the high dimensionality.

Functional hypothesis testing is the main focus of my dissertation. We sug-

gested a testing procedure to determine the significance of two curves with order

restriction. This work was motivated by a case study involving high-dimensional

and high-frequency tidal volume traces from the New York State Psychiatric Insti-

tute at Columbia University. The overall goal of the study was to create a model

of the clinical panic attack, as it occurs in panic disorder (PD), in normal human

subjects. We proposed a new dimension reduction technique by non-negative basis

matrix factorization (NBMF) and adapted a one-degree of freedom test in the context

of multivariate analysis. This is important because other dimension techniques, such

as principle component analysis (PCA), cannot be applied in this context due to the

order restriction.

Another area that we investigated was the estimation of functions with con-

strained restrictions such as convexification and/or monotonicity, together with the
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development of computationally efficient algorithms to solve the constrained least

square problem. This study, too, has potential for applications in various fields.

For example, in economics the cost function of a perfectly competitive firm must be

increasing and convex, and the utility function of an economic agent must be increas-

ing and concave. We propose an estimation method for a monotone convex function

that consists of two sequential shape modification stages: (i) monotone regression

via solving a constrained least square problem and (ii) convexification of the mono-

tone regression estimate via solving an associated constrained uniform approximation

problem.
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CHAPTER I

INTRODUCTION

1.1 Motivation and problem

This work we present here was motivated by an collaboration with investigators

at the New York Psychiatric Institute, at Columbia University. The overall goal of

the study is to create a model of the clinical panic attack in normal human sub-

jects, as it occurs in individuals affected by panic disorder. Sodium lactate reliably

produces panic attacks in patients with panic disorder (Liebowitz et al., 1985). Nor-

mals rarely have such reactivity. A distinctive feature of lactate induced panic is a

marked increase in tidal volume (Goetz et al., 1993). Klein (1993) suggested that

the spontaneous panic attack may be due to a hypersensitive alarm system for de-

tecting signals of impending suffocation, such as rising levels of CO2 or brain lactate.

The endogenous opioid system is an important central regulator of respiratory drive.

An exogenous opioid, such as morphine, blunts sensitivity to CO2 (Fleetham et al.,

1980). Conversely, naloxone, an opioid receptor antagonist, increases the ventilatory

response to hypercapnic hypoxia in normal human controls (Akiyama et al., 1993).

Naloxone pretreatment may make normal individuals (who putatively have an in-

tact opioid system) vulnerable to the marked anxiogenic and respiratory effects of

lactate. In a pilot study Sinha and Klein (2005) found that lactate after naloxone,

administered to normals, produced a marked increase in tidal volume that exceeded

previous results from infusing only lactate. Surprisingly, lactate, despite producing a

The format and style follow that of Journal of the American Statistical Association.
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metabolic alkalosis, is a tidal volume stimulant, as has been shown in both normal

humans and rats.

1.1.1 Experimental study

A randomized study with normal subjects was designed to test the investigators’

hypothesis. Subjects, healthy normal male and female adult volunteers, not affected

by any psychiatric or significant illness, were randomized to three groups. They

received either naloxone followed by lactate or saline followed by lactate or naloxone

followed by saline. The hypothesis was that subjects receiving the naloxone-lactate

sequence will have greater increases in tidal volume during the lactate phase than

subjects in the other two groups. The naloxone-saline sequence should have lesser

effects than the saline-lactate sequence. The randomization was unequal (3:3:1), with

smallest number of subjects in the saline-lactate group, since prior experience with

this sequence in normal subjects produced relatively minor increments in tidal volume.

Establishing a lack of naloxone-saline effect was considered crucial. Respiratory and

other physiological measurements were taken during the experiment, together with

qualitative information measured via questionnaires and interviews.

The experiment on each individual consisted of four phases:

Phase I (baseline): Approximately 30 minutes. The subject has sensors and intra-

venous lines placed within 5 minutes while supine. This phase provides baseline

measurements for each subject. Patency is maintained by slow saline drip,

slowly increased to normal flow prior phase II. All infusion adjustments are

made without the subject’s knowledge. Personnel and subjects are blind to

infusion contents. All randomized infusion sequences are set up in advance by

the Research Pharmacist who maintains a secret subject listing.

Phase II (first infusion): Approximately 20 minutes. Subjects receive either naloxone



3

over approximately the first 3 to 5 minutes, within the saline flow, or just stay

on saline.

Phase III (second infusion): Approximately 20 minutes. Subjects who received

naloxone at the first infusion are switched to either saline or lactate, and those

that received only saline at the first infusion are switched to lactate. The

infusion of the experimental component in the saline flow lasts approximately

20 minutes.

Phase IV (recovery): Approximately 120 minutes. The subject remains supine,

with minimal saline flow. This period allows clinical observation as well as

exploration of possible prolonged effects.

The measuring and data recording device was the lifeShirt, (Wilhelm et al., 2003),

a garment recently developed with embedded inductive plethysmography sensors for

continuous ambulatory monitoring of respiration and other physiological functions.

1.2 Pre-processing of the data

1.2.1 Baseline adjustment and data thinning

Each subject has a different Vt baseline. We therefore performed baseline adjustment

by calculating the median Vt for each subject during phase I. We then considered

three ways to adjust for baseline effect: (a) subtracting the median from the Vt trace

of each subject; (b) dividing the Vt trace by the median; (c) taking loge of (b). Results

from the statistical analysis we performed did not show any particular sensitivity to

these different procedures for baseline adjustment. Here we report analyses performed

using method (a).

Data are massive (see Figure 1). During the experiment tidal volume measure-

ments were automatically saved 50 times per second. We reduced dimension by
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considering traces obtained taking one every k-th data points. We examined plots of

several reduced traces to make sure we were preserving important features of the data

and decided on k = 25 as a safe choice. This gave us two measurements per second.

In our analysis we considered data spanning over two separate time windows, cover-

ing first and second infusion, respectively. For the first infusion, clinical experience

with naloxone suggests quite a fast onset, however duration of any respiratory effect

is not well known. In order to cover possible prolonged effects we therefore chose a

time window of approximately 8.5 minutes that covered the infusion in spans up to 2

minutes after the end of the infusion. As for the second quick onset of effect during

phase III. We therefore chose a window of approximately 17 minutes before the end

of the infusion.

1.2.2 Noise removal by wavelet

A smoothing procedure was necessary in order to reveal the breathing patterns of in-

terest to the investigators. The method we investigated uses wavelet decompositions

to filter out high-to-medium frequency components of the data that are unrelated to

the breathing frequencies, i.e. they constitute irrelevant information. We give here

a very brief description of the method. Wavelets have been extremely successful as

a tool for the analysis and synthesis of discrete data. Fast algorithms, such as the

discrete wavelet transform (DWT) and its undecimated version (MODWT), allow

the decomposing of a curve into a set of wavelet coefficients that efficiently describe

global and local features of the curve, Mallat (1989) and Percival and Walden (2002).

By applying inverse transformations to coefficients at single scales one can essentially

extract components that characterize the original curve at different scales (or fre-

quency intervals). The sum of all components would give back the original curve. In

a wavelet decomposition with J levels, component j roughly refers to the frequency
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Figure 1: NL-SL-NS: Raw traces (upper) and baseline adjusted (lower). Right and
left panels correspond to first and second infusion, respectively.

interval [ 1
2j+1∆t

, 1
2j∆t

], for j=1,...,J, while the component at the last level of the trans-

form captures the “trend” of the curve, i.e. the frequency interval [0, 1
2J+1∆t

]. In our
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application ∆t = .5sec. Considering that an average breath takes 3-5sec, we decided

to analyze the Vt traces after the subtraction of components at 4sec and less. We

also extracted the trends of the data (see Figure 2).
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Figure 2: NL-SL-NS: Vt curves for 3 subjects during second infusion (upper) and
their reconstructions after DWT with denoising (lower).
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CHAPTER II

FUNCTIONAL ANALYSIS ON PANIC DATA

2.1 Introduction

A simple low power pre-planned interim analysis used t tests to compare each group’s

second infusion’s average tidal volume. It showed the expected significant lesser effect

of naloxone-saline vs both naloxone-lactate and saline-lactate. This indicated a lack of

specific naloxone tidal volume effect, thus making the naloxone-saline group superflu-

ous. However, the expected lesser effect of saline-lactate compared to naloxone-lactate

was not evident in this preliminary analysis. This founding initially seemed due to

an unexpectedly large tidal volume increment in the saline -lactate group. It was

possible that these subjects, if given naloxone-lactate would have an even larger in-

crement. To check this we recall the saline-lactate and naloxone-lactate subjects and

administer the respective contrasting infusion.

This non blind, but objectively recorded, tidal volume crossover was reassuring

since in every case the naloxone-lactate second infusion exceeded the saline-lactate

infusion. This also emphasized the utility of a cross-over design.

To proceed our new, cross-over design was aimed to further resolve the differential

naloxone interaction with lactate issue: each subject receives 2 infusions counter-

balanced between naloxone-lactate and saline-lactate, under randomized double blind

conditions. The subjects were either entirely new or subjects who had previously

received naloxone-saline in the initial between group design.
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2.2 Methods

2.2.1 Functional ANOVA

We looked at a set of hypothesis testing procedures adapted to functional data.

One such procedure was functional ANOVA (FANOVA), the “functionalized”

version of a standard one way ANOVA, Ramsay and Silverman (1997, page 139),

where, given a set of curves, an ANOVA-like test is applied at each time point. We

briefly recall the procedure: For subject i and treatment l at a fixed time point t we

write a fixed effect ANOVA model as

yil(t) = µ(t) + αl(t) + ǫil(t), l = 1, · · · , L; i = 1, · · · , nl;
L∑

l=1

nl = n, (2.1)

where ǫil(t) are independent N(0, σ2) errors. We again slightly abuse notation by

assuming that now yi indicates a reconstructed curve after wavelet denoising. When

testing in model (2.1) we have

H0 : αl(t) = 0, l = 1, · · · , L, (2.2)

versus the general alternative. To ensure identifiability it is standard to impose the

constraint that
∑

l nlαl(t) = 0, ∀t. Following Ramsay and Silverman (1997) we have

that

F (t) =
MSTr(t)

MSE(t)
=

SSTr(t)/(L − 1)

SSE(t)/(n − L)
(2.3)

with SST (t) =
∑

i,l[yil(t) − ȳ··(t)]
2, SSTr(t) =

∑
l nl[ȳ·l(t) − ȳ··(t)]

2 and SSE(t) =
∑

i,l[yil(t) − ȳ·l(t)]
2 is distributed as a non-central FL−1,n−L

(
P

l nlα
2
l
(t)

σ2

)
.

For our analyses we also adapted to functional data a test procedure with order

restriction suggested by Silvapulle and Sen (2005). In the context of a one-way

ANOVA, in order to test H0 : µ1 = µ2 = µ3 against H1 : µ1 ≤ µ2 ≤ µ3 and

{µ1, µ2, µ3} not all equal, a test statistic is obtained by modifying the F -statistic as

F̄ = {RSS(H0) − RSS(H1)}/S
2 (2.4)
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where

RSS(H0) = inf
H0

∑ ∑
(yil − µl)

2 =
∑ ∑

(yil − ȳ·l)
2 ,

RSS(H1) = min
H1

∑ ∑
(yil − µl)

2 =
∑ ∑

(yil − µ̃l)
2,

S2 = υ−1
∑ ∑

(yil − ȳ·l)
2, υ = n1 + ... + nL − L

and (µ̃1, µ̃2, µ̃3) is the point at which the sum of squares
∑ ∑

(yij −µi)
2 is minimized

subject to the constraint in H1. This constrained minimization problem can be solved

using efficient computer algorithms. Silvapulle and Sen report the null distribution

of F̄ for the calculation of the p-value.

2.2.2 Permutation test

Our particular interest in designing this test was whether, over a given time lag, the

difference between the area under two mean curves was positive. In order to do that

we defined

∆ =

∫

t∈T

(µ1(t) − µ2(t)) dt

where T is the time lag under consideration and µ1, µ2 are the mean curves for N+L

and S+L. Our hypothesis was

H0 : ∆ = 0 versus H1 : ∆ > 0

and a possible test statistic is

∆̂ =
∑

i

(µ̂1(ti) − µ̂2(ti)) (2.5)

with µ̂l(ti) = ȳ·l(ti) for l = 1, 2 and ȳ·l(ti) the sample mean of group l at time ti. In

order to calculate the p-value for the test we considered 1,000 permutations of the

data and looked at the number of times that the value of the test statistic was greater

than the observed value.
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2.3 Results

2.3.1 NL-SL-NS

The above testing procedures were applied to the reconstructed curves, after denois-

ing, during first and second infusion.

As a very simple preliminary analysis we looked at t-test comparisons among the

mean tidal volumes during the two infusions for the three intervention groups, “N+S”,

“N+L” and “S+L”. For each patient we computed the difference between the mean

Vt during first and second infusion. We then applied the t-test procedure. Tables 1

and 2 report summary measures, p-values and confidence intervals. Results indicate

that group N+S appears to be significantly different from groups N+L and S+L,

while N+L is not significantly different from S+L. This result suggests a separation

between lactate and non-lactate groups.

Table 1: NL-SL-NS: Data summary: Group means and std’s of average Vt’s during
first and second infusions (columns 3-6) and means and std’s of differences of mean
Vt during first and second infusions (columns 7-8).

Group n mean-1st std-1st mean-2nd std-2nd mean-diff std-diff
N+S 15 34.496 175.544 -33.973 403.282 -68.469 344.148
N+L 14 90.401 251.369 497.954 448.657 407.552 444.376
S+L 5 -63.948 189.591 281.793 181.533 345.741 97.904

Table 2: NL-SL-NS: Results from t-test.
Groups p-value Confidence Interval

N+S vs N+L 0.004 (-781.824, -170.212)
N+L vs S+L 0.632 (-206.766, 330.388)
N+S vs S+L 0.001 (-622.390, -206.030)

As a further investigation we looked into functional ANOVA (FANOVA). With
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respect to the simple t-test analysis above, the FANOVA gives the additional informa-

tion on where the actual differences among the three treatment groups occur in time.

Figure 3 shows the results from the pairwise comparisons. We notice that there is no

significant difference among the three groups during the first infusion. Groups N+S

and N+L differ significantly during the second infusion, with a considerably large

difference occurring near the end of this time period. Group S+L, on the other hand,

is not well separated from the other two during the second infusion: N+L and S+L

are significantly different only for a couple of time points, and only small differences

occur between groups N+S and S+L.

The plot of the treatment means revealed a striking feature of the Vt curves,

that is mean curves for the two lactate groups are fairly flat during the first infusion

while they show a marked increase during the second infusion, unlike the mean curve

of group N+S which is fairly flat over the time lags of both first and second infusion,

see Figure 4. Investigators had an ordered means hypothesis going into the study,

according to which N + S ≤ S + L ≤ N + L. In order to test this hypothesis we

adapted to functional data a testing procedure with alternative hypothesis given by

that order restriction, see Methods. Figure 5 is a graphical display of the result of

the test. The test indicates no difference during the first infusion. During the second

infusion, instead, the p-value falls below .05 after the first few minutes, indicating

that the restricted alternative hypothesis is strongly supported by the data.

To summarize, the test procedure with an order restriction has suggested a clear

ordering among the mean treatments during second infusion. The plot of means and

the FANOVA had previously indicated a significant difference among groups N+S

and N+L. A distinctive feature is a steady increase of the mean Vt for those who

received lactate in the second infusion, N+L or S+L. However, no test procedure has

been able to successfully discriminate between N+L and S+L, although the test with
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Figure 3: NL-SL-NS: FANOVA on the denoised data for first (upper 3 plots) and
second (lower 3) infusion.

order restriction has indicated that the mean Vt for S+L is always smaller than or

equal to the mean Vt for the N+L group.
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Figure 4: NL-SL-NS: Group mean curves for first (upper) and second (lower) infusion.

Looking again at the plot of means in Figure 4 we noticed that the increase

of mean Vt for S+L during the second infusion seems to come to a stop in the
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Figure 5: NL-SL-NS: p-values, test with order restriction for first (upper) and second
(lower) infusion.

last few minutes, while it keeps increasing for the N+L group. In order to test

this possible difference between the two lactate groups, we looked into designing a
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nonparametric test specific for the data at hand, see Methods. Our particular interest

was in testing whether, over a given time lag, the difference between the area under

the two mean lactate curves was positive. We performed the test over several time lags

and found that the null hypothesis was rejected when considering the last minutes of

the second infusion, in particular the calculated p-value was .05 when considering the

last 10 minutes of second infusion and .01 when considering the last 7 minutes. This

provided statistical evidence of a longer lactate induced increment in tidal volume

when preceded by naloxone.

2.3.2 NL versus SL - unpaired data

At the end of the follow-up study we had a total of 37 NL and 28 SL subjects. Ignoring

the within subject correlation should result in a conservative error. We performed a

global t-test, functional tests and the permutation test. For these analyses we focused

on the 17 minutes of second infusion. We considered baseline adjusted and denoised

data. Figure 6 shows the mean Vt traces. Table 3 reports data summary: We took

the average of baseline-adjusted Vt for each subject and calculated the mean and

standard deviation of these average Vt’s. For the global t-test (see table 4) we took

the average of baseline-adjusted Vt for each subject and conducted t-test on these

averages. P-value for null hypothesis of NL = SL against alternative hypothesis of

NL > SL is slightly less than 0.10.

Table 3: NL-SL: Data summary: Group means of average Vt
group n mean std
N+L 37 488.0972 460.6292
S+L 28 347.7279 401.6689

For FANOVA (see figure 7) we conducted pointwise anova procedure (FANOVA)
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Figure 6: NL-SL: Mean curves, baseline adjusted and denoised data

Table 4: NL-SL: Results of t-test
Group p-value C.I.

N+L vs S+L 0.0977 (-73.0929 341.3107)

on baseline-adjusted and denoised Vt. Note that the null hypothesis is NL=SL and

the alternative hypothesis is NL 6= SL. Although the p-value’s are wiggling, overall

p-value’s are decreasing over time. Noticeably p-value’s falls below .05 in the last

few minutes. For the permutation test (see table 5) we used baseline-adjusted and

denoised Vt, H0 : NL = SL vs H1 : NL > SL. Note that p-value is decreasing for

shorter time lags, for example, p-value for last 17 minutes is about 0.1073, but for

last 11 minutes about 0.0597. After this time, p-value’s are less than 0.05.
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Table 5: NL-SL: Permutation test
time-lag 17:00 15:00 13:00 11:00 9:00 7:00 5:00 3:00
p-value 0.1080 0.0773 0.0693 0.0597 0.0473 0.0313 0.0210 0.0170
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Figure 7: NL-SL: FANOVA on baseline-adjusted and denoised data

2.3.3 NL versus SL - paired data

We also looked at the paired data on the 25 cross-over subjects. Here we used differ-

ences of the data (data=NL-SL for each subject). The global t-test: H1 : diff > 0

resulted in a p-value= 0.3657 and was therefore not rejected. A pointwise t-test:

H1 : diff(t) > 0, showed p-values decreasing over time (see figure 9). The mean

curve of the difference increases over time (see figure 8). The permutation test:

H1 : diff(∆t) > 0 was significant over the whole 17 minutes time-lag at level 0.05

(see table 6).
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Table 6: Paired NL-SL: p-value for permutation test on differences
time-lag 17 15 13 11 9 7 5
p-value 0.0400 0.0270 0.0250 0.0190 0.0260 0.0200 0.0117
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Figure 8: Paired NL-SL: Mean curve of differences, horizontal line is 0

2.3.4 Test on smoothed components

The analysis of the paired data may be affected by the lack of “registration” of the

Vt curves. Curve registration (Ramsey and Silverman) is a process according to

which curves are “calibrated” across time, i.e., aligned with respect to some common

feature or characteristic. Since different subjects have very different breathing cycles,

registration of Vt traces is not trivial. As an additional analysis we have looked into

the analysis of features of the data extracted by wavelet decompositions. Essentially,

using the wavelet decomposition we have filtered out high frequency components

(longitudinal variance) that are unrelated to the breathing frequencies, i.e. they
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Figure 9: Paired NL-SL: Pointwise t-test on differences

constitute irrelevant information (see Section Pre-processing of the data in Chapter

I). Considering that an average breath takes 4-6sec, we have analyzed Vt traces

after subtraction of components at 4sec and less. We have also looked at the trend

component. This drastic smoothing of the data should lessen the effect of the lack of

registration.

For the 25 cross-over subjects, Figures 11 and 13 show p-values for the pointwise

t-test: H1 : diff(t) > 0 that decrease over time. Mean curves of differences are

plotted in Figures 10 and 12. Permutation tests: H1 : diff(∆t) > 0 were significant

over the whole 17 minutes time-lag at level 0.05 (see tables 7 and 8). These results

confirm previous findings. In particular, notice how the pointwise test on the trend

of the data indicates that the two lactate groups are significantly different on the last

10-11 minutes of the infusion, which confirms the findings of the NL-SL-NS study.
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Table 7: Paired NL-SL, extracted component: p-value for permutation test on differ-
ences

time-lag 17 15 13 11 9 7 5
p-value 0.0397 0.0283 0.0240 0.0210 0.0253 0.0197 0.0160

Table 8: Paired NL-SL, trend: p-value for permutation test on differences
time-lag 17 15 13 11 9 7 5
p-value 0.0400 0.0357 0.0220 0.0220 0.0187 0.0177 0.0160
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Figure 10: Paired NL-SL, extracted component: Mean curve of differences, horizontal
line is 0
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Figure 11: Paired NL-SL, extracted component: Pointwise t-test on differences
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Figure 12: Paired NL-SL, extracted trend: Mean curve of differences, horizontal line
is 0
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CHAPTER III

ORDER-PRESERVING DIMENSION REDUCTION TEST FOR THE

DOMINANCE OF TWO MEAN CURVES

3.1 Introduction

High-dimensional functional data have become prominent in a number of medical

and biological fields. There the units of observation are curves and the observed data

consist of sets of curves, often sampled on a fine grid. More and more attention among

researchers is now devoted to the development of appropriate statistical methodologies

suitable for the analysis of such data. Our interest here is to test the order in mean

between two sets of curves. To be specific, let f1(t) and f2(t) indicate the mean

curves of the two sets of curves. We are interested in testing whether f1(t) ≥ f2(t)

for every t. Our work is motivated by a study that looks at high-dimensional, high-

frequency measurements of tidal volume, i.e. the volume of gas exchanged during

each ventilated breath, on a number of individuals subject to interventions that may

induce panic attacks.

There are several approaches to deal with the testing problem at hand. A first

naive approach is to compute the average value of each curve and then apply a one-side

t-test. However, this global test completely ignores the point-wise nature of the data.

A second naive approach is a point-wise t-test. With respect to the simple global

t-test, point-wise t-tests give the additional information on where the significance

occurs. This procedure, however, is sub-optimal and leads to large type I errors

due to multiple testing. One can expect that an overall test that combines all these

point-wise comparisons, such as a nonparametric procedure, would perform better.

Fan (?) and other researchers, see Serban and Wasserman (?) and references therein,



24

suggested nonparametric methods for curve testing problems based on representations

of the curves that use basis functions, such as wavelets or Fourier bases. These

methods, however, do not consider any order constraints.

The testing problem we are considering has also been addressed in the context

of multivariate statistics. O’Brien (?) suggested test procedures that take into ac-

count heterogeneity over t. Pocock and Tsiatis (?) considered the extension of the

O’Brein’s test to survival times subject to censoring. Follmann (?) proposed a modi-

fied Hotelling’s T statistic and computed its asymptotic distribution. Tang and Geller

(?) suggested the use of an approximate likelihood ratio test. All these approaches re-

quire a consistent covariance matrix estimate, which is typically not readily available

with high-dimensional functional data.

We propose a new procedure to test the order in mean of two sets of regularly

observed curves. The key idea of the suggested procedure relies on preserving the

order in mean while reducing the dimension of the data. We do this by projecting

the observed data matrix onto a space of low rank matrices which are represented as

a product of a coefficient matrix and a positively constrained basis matrix. Here, the

positively constrained basis matrix preserves the order between two curves, that is, if

one curve is larger than the other one, then the coefficient vectors preserve the same

ordering. Thus, once we find a low dimensional representation of the data matrix, we

can then apply multivariate testing procedures to the coefficient vectors.

The order preserving matrix factorization we adopt, denoted by non-negative ba-

sis matrix factorization (NBMF), minimizes the Frobenius norm between the observed

data matrix and a pre-specified lower rank matrix which imposes positive constraints

to the basis vectors. In this sense, our procedure is comparable to other dimension

reduction procedures such as principal component analysis or the non-negative ma-

trix factorization of Lee and Seung (?). However, Principal component analysis does
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not impose any constraint, while the non-negative matrix factorization assumes pos-

itiveness of both coefficients and basis vectors. NBMF, on the other hand, is not

convex and no algorithm can guarantee the convergence to a global minimum. We

propose an iterative procedure that converges to a local minimum. We also pro-

vide a probabilistic view of the adopted dimension reduction procedure that offers a

good understanding of the distributional properties of the coefficient vectors and the

residuals.

Here we look at data arising from an experiment where measurements of tidal

volume are taken on a number of individuals subject to interventions that may induce

panic attacks. Details of the study and the interventions are given in the Introduction.

Prior to the study investigators had an ordered mean hypothesis of the type f1(t) ≥

f2(t) with groups 1 and 2 defined by two different interventions. Figure 14 presents

the mean curves for the two groups and confirms the intuition of the investigators.

Our task was to design a test to statistically validate this finding. Conclusions from

the results of our analysis have suggested novel findings to the investigators.

The remainder of the chapter is organized as follows. In Section 3.2 we de-

scribe the non-negative basis matrix factorization method, provide an algorithm for

its implementation and apply the procedure to testing the order between two high-

dimensional mean curves. A short review of the multivariate testing procedure we

use is also given. In Section 3.3 we illustrate the suggested procedures on a simu-

lation study and in Section 3.4 we present results from the case-study example that

motivated our work. Section 3.5 concludes the chapter.
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Figure 14: Mean curves for N+L (line) and S+L (dotted line) after pre-processing.
The left panel is for traces after subtraction of components at 4sec and less, the right
panel is for the trends.

3.2 Methods

This Section focuses on the problem of testing the order between two mean curves,

f1 and f2, using sampled curves. To be specific, let

Y(1) =




Y
(1)
1

Y
(1)
2

...

Y
(1)
n1




=




y
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1p
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n11
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, . . . , y
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represent the observed n1 curves for group 1, and Y(2) the similarly defined n2 × p

matrix of curves for group 2. We assume that each curve Y
(i)
j , for j = 1, 2, . . . , ni,

is independent of each other. Let fi = (fi1, fi2, . . . , fip), for i = 1, 2, indicate the

p-dimensional mean curves for groups 1 and 2, respectively. We are interested in

testing f1 ≥ f2, i.e. f1k ≥ f2k for every k = 1, . . . , p.

3.2.1 Order preserving dimension reduction

As pointed out in the introduction, there is no readily available method to test the

order between f1 and f2 for large p. The key idea behind our proposal is to repre-

sent Y(1) and Y(2) via lower dimensional vectors of coefficients, so that the problem

becomes tractable. In particular, in doing dimension reduction we want to preserve

the order between the two mean curves, so that the same hypothesis, f1 ≥ f2, can

be tested in the lower dimensional representation of the data. In the reduced space

we use existing multivariate testing procedures. Specifically, suppose that W(1) (and

W(2)) is a lower dimensional approximation of Y(1) (and Y(2)) and that µ1 (and µ2)

is its mean vector. Thus, we test the order between f1 and f2 by testing the order

between µ1 and µ2.

3.2.2 Problem statement

In this section we state our dimension reduction problem precisely.

Let us consider n curves observed at p time points. Here p is typically much

larger than n. We seek to do dimension reduction by finding a small number of local

features of the curves, each defined as a positive linear combination of the p time

points. More precisely, we find a low rank approximation to a n × p data matrix Y

that consists of a coefficient matrix W, n×r, and non-negative basis matrix H, r×p,
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by solving the following non-linear optimization problem

minimize ‖Y − WH‖2
F

subject to H ≥ 0, ‖Hk‖
2
F = 1 for k = 1, 2, . . . , r,

(3.1)

where Hk is the kth column vector of H, ‖A‖F is the Frobenius norm of A, i.e.,

‖A‖F =
(∑

ij A2
ij

)1/2
, and where the dimension r of W is a parameter to be set by

the user.

This problem is analogous to other dimension reduction procedures such as prin-

cipal component analysis (PCA) or the non-negative matrix factorization (?), in the

sense that it projects the original data matrix onto a space of lower rank matrices by

minimizing the Frobenius norm. PCA, for example, minimizes

minimize ‖Y − WH‖2
F,

subject to ‖Hk‖
2
F = 1, for k = 1, 2, . . . , r,

(3.2)

where the Hk’s are orthogonal to each other. The non-negative matrix factorization,

instead, minimizes (3.2) with the additional constraints W ≥ 0 and H ≥ 0.

3.2.3 An iterative algorithm

The function to be minimized in (3.1) is convex either in W or H, but not in both.

Using this fact we propose the following iterative procedure to solve the least square

problem and find a local minimum:

(i) Given the current estimate of W, solve the constrained least squares problem

minimize ‖Y − WH‖2
F

subject to H ≥ 0, ‖Hk‖
2
F = 1, for k = 1, 2, . . . , r,

(3.3)

(ii) Given the current estimate H, update W as

W = YHT
(
HHT

)−1
(3.4)
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which is the solution to the unconstrained least squares problem

minimize ‖Y − WH‖2
F

(3.5)

Step (i) requires to solve a quadratic program (QP) with linear inequality con-

straints and quadratic equality constraints. We solve this step with a two-stage

procedure: First, we solve the QP with linear inequalities

minimize ‖Y − WH‖2
F

subject to H ≥ 0,

and then we normalize the resulting estimates H as

Hk = Hk

/
‖Hk‖

2
F, for k = 1, 2, . . . , r.

Simple algebra can show the equivalence between the two optimization procedures,

i.e. step (i) and two-stage procedure we use.

The Karush-Kuhn-Tucker (KKT) conditions of a QP with linear equality con-

straints is a set of linear equations which can be solved analytically (?). Two most

common ways to solve a QP, or its KKT, conditions are the interior point method and

the simplex method (Boyd and Vandenberghe, 2004 , and Van de Panne, 1974 ). The

interior point method solves the QP with linear inequality constraints by reducing it

to a sequence of linear equality constrained problems. The simplex method solves the

KKT conditions by reformulating the problem into a linear programming problem.

In this paper we use the MOSEK toolbox (?).

The proposed iterative least square procedure converges to a local minimum since

each step finds a new estimate which improves the Frobenius norm. Let
(
W(k),H(k)

)

indicate the current state and
(
W(k+1),H(k+1)

)
the subsequent estimate from steps
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(i) and (ii). Then,

‖Y − W(k)H(k)‖2
F ≥ min

H

‖Y − W(k)H‖2
F

= ‖Y − W(k)H(k+1)‖2
F

≥ min
W

‖Y − WH(k+1)‖2
F

= ‖Y − W(k+1)H(k+1)‖2
F.

3.2.4 A probabilistic view

In this section we provide a probabilistic view of NBMF that turns out to be helpful

in setting practical guidelines for the choice of the dimension r of the matrix H. We

start by explaining the model we assume for the observation matrix Y. Suppose that

each column vector Yj of the observed matrix Y has a mean vector f which belongs

to the space spanned by the column vectors of the r∗ × p matrix H∗. Suppose that

the Yj’s have covariance matrix Ω for every j = 1, 2, . . . , n and that they can be

represented as

Y =




µ

...

µ




H∗ + E, (3.6)

with µ, a 1 × p vector, and where each column vector of E has mean vector 0 and

covariance matrix Ω.

Let us now consider the choice of r in the case of the NBMF method. Suppose

we mistakenly choose a higher dimension r than the true dimension r∗. Let H be

the basis matrix constructed by adding to H∗ the extra basis vectors Hr∗+1, . . . , Hr,

and H⊥ be the matrix of basis vectors Hr+1, . . . , Hp, orthogonal to those of H. We

re-write (3.6) as

Y = ηH + E1H + E2H
⊥, (3.7)
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where

η =




µ 0

µ 0

...
...

µ 0




The optimization problem (3.1) becomes

∥∥Y − WH‖2
F =

∥∥(
η + E1 − W

)
H + E2H

⊥
∥∥2

F

=
∥∥(

η + E1 − W
)
H

∥∥2

F
+

∥∥E2H
⊥
∥∥2

F
.

because of the orthogonality between H and H⊥.

Thus, the solution to the problem, given H, is

W = η + E1, (3.8)

and we have

min
W

∥∥Y − WH
∥∥2

F
=

∥∥E2H
⊥
∥∥2

F
(3.9)

≈ n
∥∥H⊥T ΩH⊥

∥∥ (3.10)

= n

p∑

k=r+1

∥∥HT
k ΩHk

∥∥ (3.11)

where ‖A‖ =
∑

ij |Aij |.

This follows from the fact that the variance of a column vector of E2H
⊥ is

H⊥T ΩH⊥, because of the orthogonality between H and H⊥ and the relationship

E = E1H + E2H
⊥,

and from the orthogonality among Hr+1, . . . , Hp. Note that the Frobenius norm of
∥∥E2H

⊥
∥∥2

F
is defined as the sum of squares of each component in the matrix. Hence,

it is reasonable to expect it to be close to n
∥∥H⊥T ΩH⊥

∥∥.
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A difficulty arises from the fact that the covariance matrix Ω is unknown. We

assume Ω to be isotropic, in the sense that it is invariant to the orthonormal rotation

of the axes. With this assumption, the following statistics, which we denote by MSE

in the remainder of the chapter,

min
W

∥∥Y − WH
∥∥2

F

/{
(p − r)n

}
=

∥∥E2H
⊥
∥∥2

F

/{
(p − r)n

}
(3.12)

≈

p∑

k=r+1

∥∥HT
k ΩHk

∥∥
/

(p − r)

is expected to be constant for every r ≥ r∗. In the special case Ω = σ2I, we can

expect the MSE to be approximately equal to σ2 for r ≥ r∗. Thus, if the MSE does

not markedly decrease after a certain r, we can choose r as the dimension of the

reduced space.

3.2.5 Testing the order between two mean curves

In order to use the order preserving dimension reduction method in our testing prob-

lem we apply a common basis matrix H to both data matrices, Y(1) and Y(2), and

find lower dimensional approximations. To be specific, we set

Y =




Y(1)

Y(2)


 (3.13)

and find r−rank approximations with positive basis vectors of the type

Y =




Y(1)

Y(2)


 ≈




W(1)

W(2)


H. (3.14)

We can now apply a multivariate statistical testing procedure to the lower di-

mensional approximations of the data. Testing the order between the mean curves

f1 and f2 is equivalent to testing the order between the mean vectors of their lower
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dimensional approximations, µ1 and µ2. From (3.14) it is clear that the following

relation between f1 and f2, and µ1 and µ2 holds:

f1 = µ1H and f2 = µ2H. (3.15)

That is,

f1 ≥ f2 ⇔ µ1H − µ2H ≥ 0

⇔
(
µ1 − µ2

)
H ≥ 0

⇔
(
µ1 − µ2

)
HHT ≥ 0

⇔ µ1 − µ2 ≥ 0

and we are left to test

H0 : µ1 = µ2 against H1 : µ1 ≥ µ2

based on the lower dimensional approximation W(1) and W(2).

3.2.6 Follmann’s multivariate test

We use the Follmann’s multivariate procedure to test the order between µ1 and µ2.

Other procedures, such as the approximate likelihood ratio test by Tang and Geller

(?), may be used here to test the hypothesis. The Follmann’s test has a good power for

the alternative hypothesis of a positive mean vector. The test rejects if a quadratic

form of the sample mean vector exceeds its 2α critical value and the sum of the

elements of the mean vector exceeds zero. This test is shown to have type I error rate

equal to α for both cases of known and unknown covariance matrix. It can also be

shown that (3.16) converges in distribution to a half chi-square distributed random

variable with p degrees of freedom.
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To test a one-sided alternative hypothesis (?) suggested the use of the following

modified Hotellings’ T-statistics

T =
(
W

(1)
− W

(2))T (
n−1

1 S1 + n−1
2 S2

)−1(
W

(1)
− W

(2))

×I
( p∑

k=1

(W
(1)

k − W
(2)

k ) > 0
)
, (3.16)

where

Si =
1

ni − 1

ni∑

j=1

(
W

(i)
j − W

(i))(
W

(i)
j − W

(i))T
,

W
(i)

=
1

ni

ni∑

j=1

W
(i)
j ,

for i = 1, 2, with W
(i)

k the k−th component of W
(i)

and I(·) the indicator function.

3.3 Numerical examples

We consider three numerical examples to show the performance of the NBMF method.

The first example illustrates the property of the MSE defined in Section 3.2.4, while

the second example shows its accuracy in estimating the true lower dimensional rep-

resentation. Finally, we investigate the power and coverage of the NBMF method.

3.3.1 Selection of r

Our first example illustrates how the MSE (3.12) decreases for r ≤ r∗ and is constant

for every r ≥ r∗. Here, r∗ is the true dimension of the lower dimensional representation

of the data, while r is the dimension pre-specified by the user. This example confirms

that the MSE provides a good reference for choosing an appropriate r.

The numerical study is set up as follows. We fix the true column rank r∗ of H

as 5, the dimension p of each curve as 10 and 100, and the number of subjects, n, as

20. We randomly generate a coefficient matrix W of dimensions 20 × 5 and a basis
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matrix H of dimensions 5 × 10 and 5 × 100 using uniform distributions within the

interval [−10, 10] and [0, 10], respectively. We also randomly generate an error matrix

E using independent normal distributions with mean 0 and variance 1 and construct

an observation matrix as

Y = WH + E.

With this setting, we generate 100 observational matrices. We solve the NBMF

problem with each of the generated observational matrices, denoting the solution for

the kth matrix as Ŵ
(k)
r and Ĥ

(k)
r , for r = 1, 2, . . . , 9. Figure 15 shows the box-plots

of the MSE’s computed for each r = 1, 2, . . . , 9. The MSE values clearly decrease as

r increases towards r∗ while they stay constant for r ≥ r∗, as expected.

3.3.2 Accuracy of NBMF

The second simulation study shows the accuracy of the NBMF method in finding

basis vectors in a reduced space. The numerical study is designed as follows. We

fix r∗ = 1 and assume it is correctly chosen; thus, we also fix r = 1. We fix H as a

randomly selected 1× 10 vector with ‖H‖2
F = 1. We generate 100 matrices W and E

as described in Section 3.3.1. We construct 100 observation matrices as Y = WH+E

and solve the NBMF problem for each one of these. Table 9 reports the true H, means

and standard deviations (std) of the estimated basis vectors, followed by the first five

estimates.

3.3.3 The power of NBMF method

Finally, a small simulation study has been conducted to investigate the performance

of NBMF method, i.e., power and test size. Two true mean functions are chosen

based on panic data as the below,

f1(tk) = 224 + 0.26tk + u1(tk), f2(tk) = 200 + 0.3tk − 0.0001t2k + u2(tk) (3.17)
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Figure 15: Box-plots of MSE’s for different values of r, based on 100 generated data
sets. The left panel is the boxplot for p=10 and the right panel is for p=100.

where u1(t) = 20
√

t/210 sin(50π/(t/210+0.05)), u2(t) = 10 sin(πt/24) for k = 1, 2, ..., p.

Doppler function and sine function are added to two main functions, respectively to

resemble panic data (see figure 16). Since a multivariate statistical testing procedure

will be applied to the lower dimensional approximations of the data, we find the lower

dimensional approximations, µ1, µ2, 1× r vectors, of true functions f1, f2 as well as

the lower dimension basis H, r × p matrix, by NBMF described in Section 3.2.1.

To get the sample curves, first, sample coefficients Wij in the lower dimension

space are randomly generated from a multivariate normal distribution with mean µi
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Table 9: The first column is the true basis vector H, the second column is the mean
of 100 estimates, the third column is the standard deviation of 100 estimates, and

the other columns are the first 5 estimates Ĥ.
true H mean std Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5
0.0234 0.0229 0.0038 0.0262 0.0226 0.0267 0.0169 0.0266
0.0459 0.0460 0.0041 0.0505 0.0531 0.0421 0.0397 0.0468
0.0694 0.0694 0.0038 0.0715 0.0726 0.0732 0.0654 0.0689
0.0871 0.0873 0.0042 0.0840 0.0908 0.0897 0.0958 0.0905
0.1337 0.1316 0.0032 0.1328 0.1318 0.1332 0.1356 0.1329
0.1347 0.1363 0.0035 0.1330 0.1370 0.1363 0.1375 0.1382
0.2777 0.2770 0.0041 0.2781 0.2788 0.2850 0.2827 0.2743
0.5361 0.5350 0.0026 0.5357 0.5280 0.5326 0.5359 0.5324
0.5378 0.5388 0.0017 0.5408 0.5365 0.5375 0.5369 0.5391
0.5433 0.5437 0.0026 0.5408 0.5501 0.5421 0.5404 0.5460

and covariance σ∗2
i Ir×r, j = 1, 2, ..., ni for each i = 1, 2 where Ir×r is the identity

matrix with rank r. Then, WH provides n sample curves where n = n1 + n2 and

W = (Wij), n × r matrix. At last, we add to WH noise term E, n × p matrix,

generated from a normal with mean 0 and variance σ2.

One can expect that the power of any multivariate testing procedure would de-

crease as σ∗2 increases. Intuitively, bigger σ∗2 makes two groups harder to be dif-

ferentiated. σ2 would be expected to make same effect on the performance of the

test as σ∗2 does. Most crucial impact on the performance of the test would be the

difference between two mean functions. Therefore, we consider various σ∗2, σ2 and

∆∗ for the performance of NBMF method where ∆∗ = 1
T

∫
t∈T

(f1(t)− f2(t))
2dt, i.e., a

standardized L2 norm, T is the Euclidian measurement of a compact set of T .

Analytic form of the power of NBMF test is not available. Hence, we calculate

the power and test size in the empirical way described below.

1. Generate random sample curves under the null or alternative hypothesis for
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Figure 16: Sample curves in model (1); the left upper is two true population curves
superimposed by W ∗H, the right upper is sample curves of WH, the right lower is
sample curves of WH+E, the left lower is two sample curves of WH+E superimposed
by true mean curves (red)

fixed ∆∗ and SNR.

2. Run the NBMF test on the sample data from (1).

3. Repeat step (1)-(2), m times.

4. Calculate the portion of rejections out of m.

In this example, we have two mean functions and generate 25 sample curves from each



39

one at p = 1024 observed time points, tk ∈ [1, 2, ..., 1024], total sample size n = 50

with m = 1, 000 replications as described above. We find the lower dimensional

approximation at r = 2 for the computational convenience. In fact, r could be

from 1 to 24. Reconstructed curves by W∗H fit the true almost perfectly where

W∗ = (µT
1 , µT

2 )T (see the left upper panel in figure 16). Hence, we are satisfied with

r = 2. σ∗2 = 102 or 104 are selected based on µ1 = (11238, 519), µ2 = (11022,−740).

We tried two σ2’s according to SNR =1 or 1/3 where SNR is the ratio of the standard

deviation of signal to noise.

Under the null hypothesis the test size is 0.0510 at SNR=1 and 0.0630 at

SNR=1/3 both with σ∗2 = 102 while with σ∗2 = 104, the test size of NBMF test

is 0.021 at SNR=1 and 0.0580 at SNR=1/3. This makes sense since it is becoming

harder to detect the difference as σ∗2 or σ2 increase. In other words, test should not

reject the null hypothesis at σ∗2 = 104 more often than σ∗2 = 102. To vary the ∆∗,

we set f1(t) = f2(t) for t ∈ [tk, ..., 1024] or [1, ..., tk]. lag is the length of interval of

f1 6= f2. Tables 10 and 11 report the power over various ∆∗, SNR at σ∗2 = 102 or

104. Notice that at smaller ∆∗ and bigger σ∗2 the power of test is still good. For the

comparison, we run the pointwise one-side t-test on the simulated data also. Figure

17 shows the p-value by pointwise t-test on data of lag=10. Pointwise t-test hardly

says the difference. But, NBMF test clearly declare the overall difference.

Table 10: Power at σ∗2 = 102.
lag (from the right) 10 20 30 40

SNR ∆∗ 70 170 248 305
1 1.0 1.0 1.0 1.0

1/3 0.690 0.9090 0.999 1.0
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Table 11: Power at σ∗2 = 104.
lag (from the left) 50 75 100

SNR ∆∗ 24 40 55
1 0.801 0.998 1.0

1/3 0.468 0.7290 1.0
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Figure 17: Pointwise t-test in lag=10; the upper is the figure at SNR = 1, the lower
at SNR = 1/3

3.4 Application

Here we analyze data from an experiment that looks at high-dimensional, high-

frequency measurements of tidal volume on a number of individuals subject to in-

terventions that may induce panic attacks. Prior to the study investigators had an

ordered mean hypothesis of the type f1(t) ≥ f2(t) with groups 1 and 2 defined by two

different interventions.

3.4.1 Tidal volume (Vt) traces

We applied our testing procedure to the data spanning over a time window cover-

ing the lactate infusion. Based on their previous experience with lactate infusions
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investigators do not expect a quick onset of effect. We therefore chose a window of

approximately 17 minutes before the end of the infusion.

Figure 18 displays some of the data. The first row shows two sample Vt curves

after baseline adjustment. The trace in the left panel is an N+L sample, the one in

the right panel an S+L. The second row shows the same two curves after substraction

of components at 4sec and less and the third row shows the corresponding trends.

Figure 14 displays the mean curves for N+L (line) and S+L (dotted line). The left

panel is for traces after subtraction of components at 4sec and less, the right panel

is for the trends. Working with the trends has the advantage of essentially avoiding

complications with registration issues (?). Curve registration is a process according to

which curves are “calibrated” across time, i.e., aligned with respect to some common

feature or characteristic. Effective registration procedures for respiratory flows and

tidal volume measurements, however, are not trivial. In our study subjects have very

different breathing cycles and basically do not exhibit common features.

3.4.2 Results

The investigators’ claim can be formalized as an hypothesis testing problem with

alternative hypothesis of the type (N + L)(t) ≥ (S + L)(t) for every t. We have a

total of 65 curves with 2048 observed points, 37 curves belong to the N+L group and

28 to the S+L group. We can test the hypothesis on the smoothed curves and also

on the trends. A very small r, i.e., a large reduction, can be used for very smooth

curves such as the trend data. In our analysis, we used r = 4 for the trend data

and r = 25 for the smoothed data after subtraction of components at 4sec and less.

Figure 19 shows original and approximated curves by WH for three N+L and three

S+L subjects.

In order to start our iterative procedure, W was randomly generated by the
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Figure 18: The first row shows two sample VT curves after baseline adjustment. The
trace in the left panel is an N+L sample, the one in the right panel an S+L. The
second row shows the same two curves after substraction of components at 4sec and
less and the third row shows the corresponding trends.

uniform distribution in the interval [-100,100]. Convergence was achieved in only 10

iterations. We fist applied the test to the entire time-lag of the data. The test was

significant, see Table 12, confirming the intuition of the investigators that subjects

receiving the naloxone-lactate sequence have greater increases in tidal volume. Since

investigators were also interested in an indication of the time at which the significance

occurs, we applied the testing procedure to shorter time-lags of the data. Results are

summarized in table 12 and seem to indicate that the dominance of the N+L mean
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Figure 19: Original (line) and approximated (dotted line) traces for 6 randomly
selected subjects. We used r = 25, 4, for smoothed data and trends, respectively.
The left panel is for traces after subtraction of components at 4sec and less, the right
panel is for the trends

curve over the S+L one becomes more and more significant starting at approximately

10 minutes before the end of the infusion.
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Table 12: P-values of test results with smoothed data and trends. The half chisquare
distribution of the Follmann’s test statistics for large sample was used. P-values from
a permutation test using the Follmann’s test statistics are reported in parentheses.

time-lag smoothed trend
first 5 min 0.1435(0.1795) 0.4172(0.4295)
first 10 min 0.0564(0.0405) 0.3641(0.3710)
first 15 min 0.0031(0.0000) 0.0738(0.0815)
last 5 min 0.0180(0.0070) 0.0457(0.0445)
last 10 min 0.0082(0.0010) 0.0481(0.0615)
whole time 0.0030(0.0000) 0.0483(0.0535)
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CHAPTER IV

ESTIMATING MONOTONE CONVEX FUNCTIONS VIA

SEQUENTIAL SHAPE MODIFICATION

This Chapter proposes an estimation method for a monotone convex function that

consists of two sequential shape modification stages: (i) monotone regression via solv-

ing a constrained least square problem and (ii) convexification of the monotone regres-

sion estimate via solving an associated constrained uniform approximation problem.

This method is faster than the conventional constrained least squares (LS) method

by about two orders of magnitude. Moreover, we show that, under an appropriate

smoothness condition, the uniform convergence rate achieved by the proposed method

is nearly comparable to the best achievable rate for a nonparametric estimate which

ignores the shape constraint. Simulation studies show that the uniform error achieved

by the proposed method is comparable to that achieved by the constrained LS method.

4.1 Introduction

Consider the regression model

Yi = f(Xi) + σǫi, (4.1)

where f is a monotone convex function from an interval Ω ⊆ R into R, ǫi are inde-

pendent and identically distributed (i.i.d.) random variables with zero mean and unit

variance, and σ > 0. This paper concerns the problem of estimating of f , using the

samples (x1, y1), . . . , (xn, yn) from this model. Monotone convex (concave) function

estimation problems arise in several disciplines including economics (Äıt Sahalia and

Duarte, 2003; Matzkin, 1994) and medical studies (Lloyd, 2002).
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One can extend the constrained least squares method, which is quite effective

in monotone function estimation or isotonic regression, to (4.1). (See, e.g., Barlow,

Bartholomew, Bremner and Brunk (1972) and Robertson, Wright and Dykstra (1988)

for more on isotonic regression.) The extension requires one to solve an infinite-

dimensional optimization problem of the form

minimize
∑n

i=1

∣∣yi − f̂(xi)
∣∣2

subject to f̂ ∈ Fmc,

where Fmc is the class of all monotone convex functions from Ω into R. Unlike isotonic

regression, this problem does not has an analytic solution, and is difficult to solve even

approximately. Moreover, related theoretical issues such as convergence rate have not

been understood well.

One can apply the shape constrained spline estimation method, described in

Mammen, Marron, Turlach, and Wand (2001), to (4.1). This method assumes that

the function to be estimated is at least twice differentiable. In this paper, we do not

assume such a smoothness constraint on f .

The main purpose of this Chapter is to propose a computationally efficient

method for estimating a monotone convex function. This method is faster than the

conventional constrained LS method by about two orders of magnitude. Moreover,

we show that, under an appropriate smoothness condition, the uniform convergence

rate achieved by the proposed method is nearly comparable to the previously known

best uniform convergence rate of a nonparametric estimate which is not necessar-

ily monotone convex. Simulation studies show that the uniform error achieved by

the proposed sequential method is comparable to that achieved by the constrained

least squares method. In these aspects, the proposed method seems to give a better

compromise between computational efficiency and accuracy than the constrained LS

method.
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4.2 Sequential shape modification

This Section describes a method for estimating the monotone convex function f from

the samples
{
(xi, yi)

}n

i=1
.

• Monotonization. Solve the constrained LS problem

minimize
∑n

i=1

(
yi − f(xi)

)2

subject to f ∈ Fmon,
(4.2)

in which Fmon is the set of all monotone functions from Ω into R.

• Convexification. Solve the constrained uniform approximation problem

minimize supx∈Ω

∣∣f̂(x) − f̃(x)
∣∣

subject to f̃ ∈ Fcon,
(4.3)

in which f̂ is a solution to (4.2) and Fcon is the set of all convex functions from

Ω into R.

Both optimization problems can be solved in O(n log n) operations, as will be

seen soon. The overall computational complexity of the method described above is

therefore O(n log n). The method is therefore faster than the constrained LS method

applied to estimating f in (4.1) which requires O(n3) flops for each Newton iteration.

4.2.1 Monotonization

The first-stage problem is called isotonic or monotone regression, dating back to

1950s (Brunk, 1955; Brunk, 1958). A standard result in isotonic regression is that

the solution to the minimization problem (4.2) is piecewise linear, and is given as the

slope of the greatest convex minorant of the cumulative sum diagram of the points
(
xk,

∑k
i=1 yi

)
, k = 1, 2, . . . , n. The slope is characterized as

f̂(xk) = max
i≤k

min
j≥k

P
(
i, j

)
= min

j≤k
max
i≥k

P
(
i, j

)
= min

j≥k
max
i≤k

P
(
i, j

)
(4.4)
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where

P
(
i, j

)
=

1

j − i + 1

j∑

k=i

yk.

The solution f̂ can be characterized by the pooled adjacent violators algorithm

with O(n) operations; see, e.g., Barlow et al. (1972).

4.2.2 Convexification

To solve the convexification problem (4.3), we start by noticing that the solution f̂

to (4.2) is piecewise linear and continuous with n break points, say x1, . . . , xn. Its

convex envelope f̂env is defined by the unique piecewise linear and continuous function

that satisfies the interpolation condition:

f̂env(ui) = zi, i = 1, . . . , r,

where {(ui, zi) | i = 1, . . . , r} is the set of the vertices of the lower convex hull of the

break points of f̂ . The convex envelope can be found by the convex hull algorithm

in O(n log n) operations; see, e.g., De Berg, Schwarzkopf, Van Kreveld and Overmars

(2000) for more on the convex hull algorithm.

From the convex envelope, we can find a solution to the convexification prob-

lem (4.3), using the following algorithm.

Convexification algorithm

1. Find the lower envelope f̂env of f̂ .

2. Find the points xl and xr that satisfy

f̂env(xl) + ‖f̂ − f̂env‖∞,Ω/2 = f(xl), f̂env(x) + ‖f̂ − f̂env‖∞,Ω/2 > f̂(x), x ≤ xl,

f̂env(xr) + ‖f̂ − f̂env‖∞,Ω/2 = f̂(xr), f̂env(x) + ‖f̂ − f̂env‖∞,Ω/2 > f̂(x), x ≥ xr.

3. Of the break points of f̂env, find the left adjacent point x̃l of xl and the right

adjacent point of x̃r.



49

4. Construct the function f⋆ : Ω → R by

f⋆(x) =






max{sl(x), f̂env(x)} if x ≤ xl,

f̂env(x) + ‖f̂ − f̂env‖∞,Ω/2 if xl ≤ x ≤ xr,

max{sr(x), f̂env(x)} if x ≥ xr,

in which sl is the affine function that passes through the two points

(xl, f̂env(xl) + ‖f̂ − f̂env‖∞,Ω/2), (x̃l, f̂env(x̃l) + ‖f̂ − f̂env‖∞,Ω/2)

and sr is the affine function that passes through the two points

(xr, f̂env(xr) + ‖f̂ − f̂env‖∞,Ω/2), (x̃r, f̂env(x̃r) + ‖f̂ − f̂env‖∞,Ω/2).

The function f⋆ generated by the algorithm above, which is our estimate of the

true function f in (4.1), is piecewise linear and completely characterized in O(n log n)

operations, since we can find the break points of f̂env in O(n log n) operations. The

reader is referred to Kim and Lim (2006) for more on the algorithm described above.

Another important property of f⋆ is given in the following lemma.

Lemma 1. Let f⋆ be the function generated by the boundary correction algorithm

described above. Then,

sup
x∈Ω

|f⋆(x) − f(x)| ≤ sup
x∈Ω

|f̂(x) − f(x)|.

The proof is given in Kim and Lim (2006).

4.3 Uniform convergence rate

To support theoretically the method described above, we analyze the uniform con-

vergence rate achieved by the method described above. The analysis is based on

Lemma 1. This lemma tells us that the uniform approximation error of the second

stage estimate at the second stage is always smaller than or equal to that of the first
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stage estimate. As a result, the monotone convex estimate converges uniformly to

the true function at least as fast as the monotone regression estimate ignoring the

convexity constraint. We therefore focus on establishing the uniform convergence rate

of the first-stage estimate, i.e., the monotone regression estimate.

So far, many researchers have paid attention to convergence rate analysis of

monotone regression estimates. Pointwise consistency of the monotone regression

estimate was proved by Hanson, Pledger, and Wright (1973), Hanson and Pledger

(1976), Mukerjee (1988), and Mammen (1991). The convergence rate at a fixed

point was shown to be n−1/3 by Brunk (1958) and Wright (1981). Durot (2002)

recently proved the L1 convergence of the estimate beyond the pointwise convergence.

However, the uniform convergence rate of the monotone estimate, which is our main

focus, has received little interest in previous literature.

To carry out uniform convergence rate analysis for isotonic regression, we need to

introduce some technical assumptions. We assume without loss of generality that Ω

is [0, 1] and let Ωδ denote the interval [δ, 1 − δ] with δ ∈ (0, 0.5). Suppose that the

first derivative of the true function f is bounded and positive:

0 < a < sup
x∈Ωδ

f ′(x) < b

where a and b are positive numbers. Let Pn =
{
I1,n, I2,n, . . . , Ikn,n

}
be a partition of

the interval Ωδ. Let the length of the interval Ik,n be an order of n−1/3 and let ck be

the center of the kth interval. We further assume that P
(
X ∈ Ik,n

)
≈ n−1/3, i.e., kn

is taken as kn ≈ n1/3.

Theorem 4.3.1. Suppose that the true function f has positive bounded derivative

on Ω; i.e., a < infx∈Ω f ′(x) ≤ supx∈Ω f ′(x) < b for some positive a and b. Let f̂n be

the monotone regression estimate of f and Tn be its uniform error defined by

Tn = sup
x∈Ω

∣∣∣f̂n(x) − f(x)
∣∣∣. (4.5)
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Suppose ǫ in (4.1) satisfy the moment conditions for Bernstein’s inequality: (i) E
(
ǫ
)

=

0, and (ii), for some c > 0, E
∣∣ǫ

∣∣k ≤ vk!ck−2/2 for all k ≥ 2 and a constant v. Then,

(i)
(
n1/3

/
log n

)
Tn converges to 0 almost surely, and

(ii) for any ǫ > 0, P
(
n1/3 Tn > ǫ

)
> 0.

Proof. We start with recalling a sub-additive decomposition of Tn = supx∈Ωδ

∣∣f̂n(x)−

f(x)
∣∣:

Tn ≤
n

max
k=2

{∣∣f̂n(ck) − f(ck)
∣∣,

∣∣f̂n(ck−1) − f(ck−1)
∣∣
}

+
n

max
k=2

∣∣∣f(ck) − f(ck−1)
∣∣∣. (4.6)

Therefore, it suffices to show that

n1/3

log n

n
max
k=1

∣∣f̂n(ck) − f(ck)
∣∣ and

n1/3

log n

n
max
k=2

∣∣f(ck) − f(ck−1)
∣∣

converge to 0 almost surely.

We define, in Section 4.3, ck as the center of the kth interval in a partition of

the sample space Ωδ. Then, for every x ∈ (ck−1, ck],

f̂n(ck−1) ≤ f̂n(x) ≤ f̂n(ck), f(ck−1) ≤ f(x) ≤ f(ck),

and

f̂n(ck−1) − f(ck) ≤ f̂n(x) − f(x) ≤ f̂n(ck) − f(ck−1).

Thus,

f̂n(ck−1) − f(ck−1) − (f(ck) − f(ck−1)) ≤ f̂n(x) − f(x)

≤ f̂n(ck) − f(ck) + (f(ck) − f(ck−1)),

which implies that

∣∣∣f̂n(x) − f(x) ≤ max
{∣∣f̂n(ck) − f(ck)

∣∣,
∣∣f̂n(ck−1) − f(ck−1)

∣∣
}

+
∣∣∣f(ck) − f(ck−1)

∣∣∣,
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for every x ∈ [ck−1, ck). Putting these inequalities together, we have

sup
x∈Ωδ

∣∣∣f̂n(x) − f(x)
∣∣∣

≤
n

max
k=2

{∣∣f̂n(ck) − f(ck)
∣∣,

∣∣f̂n(ck−1) − f(ck−1)
∣∣
}

+
n

max
k=2

∣∣∣f(ck) − f(ck−1)
∣∣∣.

Now we show that both terms in (4.6) converges to 0 almost surely. From the

Borel-Cantelli lemma (Billingsley, 1995), we know that to show the almost sure con-

vergence of the first term
(
n1/3

/
log n

)
maxk

∣∣f̂n(ck)− f(ck)
∣∣ to 0, it suffices to prove

that, for some constant C > 0,

P

(
kn

max
k=1

n1/3
∣∣∣f̂n(ck) − f(ck)

∣∣∣ > C log n, infinitely often
)

= 0. (4.7)

The second term
(
n1/3

/
log n

)
maxk

∣∣f(ck)−f(ck−1)
∣∣ is a deterministic sequence, and

it converges to 0 since f ′(x) is bounded on Ω.

We finish the proof of the claim by showing (4.7). Note that this is equivalent

to showing that both

kn∑

k=1

P

(
n1/3

(
f̂n(ck) − f(ck)

)
> C log n

)
(4.8)

and
kn∑

k=1

P

(
n1/3

(
f̂n(ck) − f(ck)

)
< −C log n

)
(4.9)

have finite sums, since

P
( kn
max
k=1

n1/3
∣∣∣f̂n(ck) − f(ck)

∣∣∣ > C log n
)
≤

kn∑

k=1

P
(

n1/3
∣∣f̂n(ck) − f(ck)

∣∣ > C log n
)
.

(4.10)

In the sequel, we show that (4.8) has a finite sum with respect to n. The proof

of (4.9) is very similar to (4.8) and is omitted.

Let Nn(a, b) be the number of the data points whose x values are in the interval

[a, b]. Let u be a point such that

ck ≤ u ≤ ck+1, Nn(ck, u) ≈
n2/3

log n
, and f(u) − f(ck) ≈

n−1/3

log n
.



53

Note that such u exists since ck+1−ck ≈ n−1/3 and P
(
X ∈ [ck, ck+1]

)
≈ n−1/3. Then,

f̂n(ck) = max
α≤ck

min
ck≤β

1

Nn(α, β)

∑

{i:α≤xi≤β}

yi

≤ max
α≤ck

1

Nn(α, u)

∑

{i:α≤xi≤u}

yi

= f(cj) +
(
f(u) − f(cj)

)
+ max

α≤cj

1

Nn(α, u)

∑

{i:α≤xi≤u}

(
yi − f(xi)

)
,

and

P

(
f(ck) − f̂n(ck) >

C log n

n1/3

)

≤ P


max

α≤ck

∑
{i:α≤xi≤β}

(
yi − f(xi)

)

√
Nn(α, u)

>
C log n

n1/3

√
Nn(α, u)




≤
∑

α≤ck

P




∑
{i:α≤xi≤β}

(
yi − f(xi)

)

√
Nn(α, u)

>
C log n

n1/3

√
Nn(α, u)


 . (4.11)

Here, the last term (4.11) is bounded using the Bernstein’s inequality (p.855 Shorack

and Wellner (1986)) with the moment conditions in the theorem. To be specific, for

some K, we have

∑

α≤ck

P




∑
{i:α≤xi≤β}

(
yi − f(xi)

)

√
Nn(α, u)

>
C log n

n1/3

√
Nn(α, u)




≤ n exp

(
− K

(log n)2

n2/3
Nn(α, u)

)

≤ n exp
(
− K log n

)
. (4.12)

Therefore,

∞∑

n=1

kn∑

j=1

P

(
f̂n(cj) − f(cj) >

C log n

n1/3

)
≤ n2 exp

(
− K log n

)
≤ exp

(
− K ′ log n

)

for sufficiently large C (or equivalently sufficiently large K and K ′).
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Proof of (ii)

Now we show the second part of the theorem that P
(
n1/3 Tn > ǫ

)
> 0. To see this,

first note that

P

(
n1/3 Tn > ǫ

)
≥ P

(
kn

max
k=1

n1/3
{
f̂n(ck) − f(ck)

}
> ǫ

)

≥ P

(
n1/3

(
f̂n(ck) − f(ck)

)
> ǫ

)
. (4.13)

It is shown by Wright (1981) that

n1/3
(
f̂n(ck) − f(ck)

)
converges in distribution to bn

kZ, (4.14)

in which bn
k is a bounded function of σ2 and f(ck), and Z is the slope of the greatest

convex minorant of 1
2

(
W (t) + t2

)
with the two-sided Brownian motion W (t). In

particular, the asymptotic distribution of Z is shown to be

fZ(z) ∼ K|z| exp
(
−

2

3
|z|2 + 2−1/3a1|z|

)
, as |z| → ∞, (4.15)

in which a1 ≈ −2.3381 (see Chernoff (1964) and Groeneboom and Wellner (2002)).

Thus, the right-hand side of the last inequality in (4.13) is bounded away from 0,

that is, the assertion of this theorem holds.

The preceding theorem along with Lemma 1 implies that a lower bound on the

convergence rate of the estimate via the proposed sequential method is Op

(
n−1/3 log n

)
.

This rate is slightly slower than Op

(
n−1/3(log n)1/3

)
, the previously known best con-

vergence rate which a nonparametric estimation method can achieve (Stone, 1982;

p. 244 in Rao, 1983). We should emphasize that the nonparametric estimate is not

necessarily monotone convex. We conclude that when the first derivative of the

true function f is bounded, the uniform convergence rate achieved by the sequen-

tial estimation method is nearly comparable to the previously known best uniform

convergence rate of a nonparametric estimate.
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4.4 Numerical examples

We carry out a simulation study to examine the finite sample performance of the

proposed sequential method and compare it with the constrained LS. In the simulation

study, the design points x1, . . . , xn are taken as xi = i/n and the response data yi

are generated from the model (4.1). We consider three true functions: f(x) = 1

(neither strictly monotone nor strictly convex), f(x) = x (strictly monotone but not

strictly convex), f(x) = x2 (strictly monotone and convex) on Ω = [0, 1]. Two error

distributions with mean 0 and variance σ2 are considered for ǫi: the Gaussian and

the double exponential distribution. The double exponential distribution has the

form f(x) =
(
1
/
2σ

)
exp

(
− |x|

/
σ
)
. For each pair of the true function and the error

distribution, we generate 100 data sets and apply the proposed sequential method

and the constrained LS to these data sets. We solve the constrained LS using the

MOSEK software package (MOSEK ApS, 2002). In each of 100 data sets, we compute

the uniform error, maxn
i=1

∣∣f̂n(xi

)
− f

(
xi

)∣∣, and the integrated mean squared error

(IMSE),
(
1/n

)∑n
i=1

∣∣f̂n(xi) − f
(
xi

)∣∣2.

Tables 1 and 2 summarize the simulation results for n = 20 and 50 for three

noise level σ = 0.1, 0.2 and 0.3. The tables show that, in most cases, the performance

of the proposed method is comparable to that of the constrained LS. Moreover, the

proposed method is much faster than the constrained LS solved that relies on an

efficient quadratic programming solver.
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Table 13: Summary of simulation results for n = 20.
f(x) = 1

sequential estimation constrained LS
σ error distribution uniform error IMSE uniform error IMSE

Gaussian 0.0921 0.0016 0.0653 0.0009
0.1 double exponential 0.1266 0.0031 0.0856 0.0016

Gaussian 0.1964 0.0067 0.1331 0.0031
0.2 double exponential 0.2284 0.0111 0.1438 0.0059

Gaussian 0.2473 0.0126 0.1665 0.0072
0.3 double exponential 0.4113 0.0269 0.2916 0.0130

f(x) = x

sequential estimation constrained LS
σ error distribution uniform error IMSE uniform error IMSE

Gaussian 0.1459 0.0022 0.2403 0.0338
0.1 double exponential 0.1756 0.0040 0.2482 0.0349

Gaussian 0.2667 0.0075 0.2524 0.0341
0.2 double exponential 0.2943 0.0124 0.2604 0.0377

Gaussian 0.3207 0.0145 0.2858 0.0414
0.3 double exponential 0.4939 0.0290 0.3852 0.0489

f(x) = x2

sequential estimation Constrained LS
σ error distribution uniform error IMSE uniform error IMSE

Gaussian 0.1267 0.0032 0.1624 0.0110
0.1 double exponential 0.1538 0.0052 0.1810 0.0117

Gaussian 0.2338 0.0083 0.2267 0.0155
0.2 double exponential 0.2529 0.0134 0.2418 0.0186

Gaussian 0.2893 0.0161 0.2723 0.0209
0.3 double exponential 0.4645 0.0308 0.3903 0.0302
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Table 14: Summary of simulation results for n = 50.
f(x) = 1

sequential estimation constrained LS
σ error distribution uniform error IMSE uniform error IMSE

Gaussian 0.0735 0.0012 0.0446 0.0002
0.1 double exponential 0.1077 0.0027 0.0027 0.0005

Gaussian 0.1870 0.0051 0.1417 0.0014
0.2 double exponential 0.2191 0.0125 0.1418 0.0029

Gaussian 0.2546 0.0130 0.1757 0.0029
0.3 double exponential 0.3097 0.0228 0.2183 0.0064

f(x) = x

sequential estimation constrained LS
σ error distribution uniform error IMSE uniform error IMSE

Gaussian 0.1636 0.0047 0.2406 0.0316
0.1 double exponential 0.2030 0.0076 0.2459 0.0324

Gaussian 0.2881 0.0124 0.2580 0.0327
0.2 double exponential 0.3319 0.0221 0.2610 0.0315

Gaussian 0.3578 0.0240 0.2810 0.034
0.3 double exponential 0.4402 0.0370 0.3239 0.0387

f(x) = x2

sequential estimation constrained LS
σ error distribution uniform error IMSE uniform error IMSE

Gaussian 0.1464 0.0032 0.1542 0.0096
0.1 double exponential 0.1925 0.0054 0.1709 0.0098

Gaussian 0.2685 0.0093 0.2125 0.0113
0.2 double exponential 0.3221 0.0181 0.2352 0.0149

Gaussian 0.3430 0.0192 0.2525 0.0142
0.3 double exponential 0.4254 0.0319 0.3067 0.0197
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CHAPTER V

CONCLUSIONS

We have proposed a dimension reduction procedure to test the significance of whether

a mean curve dominates another one. The key idea of the suggested method relies on

preserving the order in mean while reducing the dimension of the data. We have made

use of a novel dimension reduction procedure that preserves the order between the

two curves. We have then applied a multivariate testing procedure to the coefficient

vectors that represent the data matrix in a lower dimension. In a addition, we have

proposed an iterative algorithm to solve the projection problem.

Our work was motivated by a study that looks at high-dimensional, high-frequency

measurements of tidal volume on a number of individuals subject to interventions that

may induce panic attacks. Our results have confirmed the hypothesis of the inves-

tigators according to which subjects receiving sodium lactate after naloxone have

greater increases in tidal volume than subjects that do not receive the prior infusion

of naloxone.

The initial hypothesis was that impairing normal subjects’ endogenous opioider-

gic system by naloxone (N) should make them vulnerable to the panicogenic effects of

subsequent lactate (L). The ultimate goal is to prove that an opioidergic dysfunction

may be the pathophysiological mechanism underlying panic disorder.

For the initial study on NL, SL and NS, functional ANOVA-type testing pro-

cedures applied to the Vt traces during first and second infusion have led to the

discovery that the lactate group N+L, in particular, is significantly different from

N+S during the time of second infusion. Also, a steady increase of mean tidal vol-

ume was observed during both lactate infusions while it was absent in the N+S group.
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A test with an order restriction showed that the mean N+L curve is always higher

than or equal to the mean S+L curve during lactate. Finally, a permutation test

revealed a significant difference among the two lactate groups during the last minutes

of the second infusion.

The follow-up study on SL and NL confirmed the steady increase of mean tidal

volume during lactate infusion. The permutation test on all 38+27 subjects confirmed

that there is a significant difference among the two lactate groups during the last

minutes of the second infusion. This difference was observed also in a cross-over

study where tests were carried out on the differences of Vt. Our conclusions are that

during the lactate infusion there is a significant effect over time which manifests itself

as a steady increase of the tidal volume. In addition, when preceded by naloxone this

differential increase lasts significantly longer in time. If these findings are replicated

and extended, the next step would be to see if this naloxone-lactate interaction could

be blocked by specific anti-panic agents in a controlled study.

In Chapter IV, we have described a computationally efficient two-stage proce-

dure for estimating monotone convex functions, based on L2 monotonization and

uniform convexification. The monotonization problem at the first stage has an an-

alytic solution that can be characterized in O(n) operations by the pool adjacent

violators algorithm. The convexification problem at the second stage can be solved

in O(n log n) operations by means of the convex hull algorithm. This computational

merit is the main motivation of using the uniform norm instead of the L2-norm in

convexifying the first-stage estimate. The proposed method is much faster than the

constrained LS and performs as well as the constrained LS.

The method is similar in spirit to the two-stage estimation method described

in Kim and Lim (2006), which can handle general shape constraints. The method

consists of nonparametric function estimation without taking into account the shape
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constraint and shape modification of the nonparametric estimate by solving a con-

strained uniform approximation problem. The uniform convergence rate of this gen-

eral method is determined by the first-stage nonparametric one. On the other hand,

that of the method proposed in this paper is nearly comparable to that of the best

first-stage nonparametric estimation method.



61

REFERENCES
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