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ABSTRACT

A Nuclear Magnetic Resonance Probe

of Fe-Al and Al20V2Eu Intermetallics. (August 2007)

Ji Chi, B.S., University of Science and Technology of China;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Joseph H. Ross, Jr.

Al-rich Fe-Al systems (FeAl2, Fe2Al5 and Fe4Al13) and Al20V2Eu have compli-

cated structures with quasicrystal-like features making these materials potentially of

interest for magnetic behavior. However, there is not much work on these materials.

To study the variety of magnetic properties, we use NMR, magnetic susceptibility,

specific heat and other methods in this work.

The microscopic electronic and magnetic properties of the Al-rich Fe-Al system

and Al20V2Eu have been studied via 27Al NMR at temperatures between 4 and 500 K.

The results of spin lattice relaxation rates reveal a pseudogap in Fe4Al13 and Fe2Al5

around the Fermi-level in the density of states. Besides, a square well gap with a width

of 2 meV and center at Fermi energy was detected by specific heat measurements in

Fe2Al5. Both Fe4Al13 and Fe2Al5 are non-magnetic systems with dilute magnetic de-

fects, while FeAl2 is a concentrated local magnetic moment system. In Al20V2Eu, a

crossover was observed in NMR, magnetization and transport measurements. Above

40 K, Eu(2+) local magnetic moments dominate; below 40 K, a transition to a Kondo

regime is observed, where the Kondo effect leads to the reduction of localized mo-

ments due to the formation of a spin-compensated Kondo cloud. With increasing

magnetic field, f electrons participate more and more in excitations near the Fermi

level and a heavy-Fermion state was observed through specific heat measurements at

high magnetic field.
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CHAPTER I

INTRODUCTION

Transition metal (TM) aluminides have a wide variety of atomic structures with

unusual properties. They can form complex atomic structures ranging from solid

solutions, disordered alloys and ordered compounds to quasicrystals. Besides be-

ing theoretically interesting due to their complicated atomic structure, their atypical

electronic properties, reduced density of electronic states (DOS) at the Fermi level,

as well as anomalous transport properties, have attracted more and more attention.

These exceptional properties of Al-rich Al-TM systems — low electrical and thermal

conductivity, unusual optical properties, low surface energy and coefficient of friction,

oxidation resistance, biocompatiblity and high hardness — make them interesting for

practical purposes. Also transition metal aluminides show a variety of magnetic be-

havior, from diamagnetic susceptibility with no localized moment, Curie-like behavior

with some diluted localized moments, to ferromagnetism and spin-glass behavior at

low temperature [1, 2, 3].

There have been many theoretical studies of the electronic structure of Al-rich

Al-TM systems. General features of DOS in these Al(rich)-TM alloys include the fol-

lowing [4, 5]: At low energy, the states are mainly sp states. The d DOS peak of TM is

in the middle of the sp band. The Fermi level(EF ) is found near a well-defined valley

that splits the band between bonding and anti-bonding states. This valley, called a

”pseudogap”, that increases the stability of these structures, is generally attributed

to a combined effect of the Hume-Rothery mechanism and the strong sp − d hy-

bridization. Sometimes instead of a pseudogap, a semiconducting gap is formed. The

The journal model is IEEE Transactions on Automatic Control.
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width of the pseudogap varies from 0.3 to 1 eV. Experimentally the pseudogap has

been observed in many different Al(rich)-TM samples either directly by photoemis-

sion, soft x-ray emission, and tunneling and point contact spectroscopy or indirectly

via transport phenomena such as electrical conductivity and low-temperature specific

heat that are compatible with an anomalously low DOS at EF . The d DOS peak of

the TM is located near EF . The width of the d band varies with the TM element,

mainly due to sp − d hybridization. Moreover there is a significant contribution of

the partial d DOS to the total DOS at EF . Also, spectroscopy measurements [6, 7, 8]

confirm the position of the d peaks, a strong sp − d hybridization, a weak electron

transfer between Al atoms and TM atoms, and the existence of a pseudogap near EF .

However, in quasicrystals and approximants, there exists also an interesting the-

oretical predication that in additional to the global pseudogap at EF , the calculated

DOS displays around the Fermi level an unusual set of peaks and pseudogaps on the

energy scale of 10 meV. Such sharp features is associated with bands of small-energy

dispersion, yielding a low group velocity for the electron wave packets that could have

a profound effect on the transport properties. The existence of fine spiky DOS could

stem from the specific electronic localization at the presence of clusters of transition

metals. Several experiments have tried to unveil this DOS feature, however, even

high resolution photo-emission spectroscopy failed to detect the spiky DOS [9, 10]. It

is possible that photo-emission spectroscopy analyzes the surface of the compounds,

and the spiky structure could disappear at the surface because it should be very sen-

sitive to the composition and the atomic structure. Or, the theoretical calculations

do not take into account disorder and electron-electron interactions. Indeed, there is

no current agreement on the source of this effect.

An effective TM-TM medium-range interaction is also related to the electronic

structure of Al-TM alloys. This interaction is mediated by the Al atoms and its
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medium-range character is due to the strong sp-d hybridization. Therefore, the po-

sitions of TM atoms in the structure is a determining parameter for the density of

states, the magnetism and the stability. In the case of Mn aluminides, the most sta-

ble positions correspond to non-magnetic Mn, these positions correspond to positions

that increase the pseudogap. A small proportion of Mn atoms are magnetic because

they are located on less favorable positions [1].

A. Materials Background

1. Al-rich Al-Fe

The Al-Fe system is one of the transition metal aluminide systems and stable phases

Fe4Al13, Fe2Al5 and FeAl2 have been observed in this system, shown in the phase

diagram, Fig. 1. Fe4Al13 has a monoclinic structure (mC102, space group # 12) with

102 atoms per unit cell [11], shown in Fig. 2. There are 5 atomic sites for Fe, 15 sites

for Al, while only one Al site shows partial occupation (92±2%). The main feature

of the Fe4Al13 structure is one-dimensional ”channels”, built of icosahedra and pen-

tagonal prisms in different ratios [12]. So Fe4Al13 can be considered as a decagonal

approximant. Transport measurements showed anisotropic ρ(T ) behavior with metal-

lic resistivity along the b axis and nonmetallic resistivity, ρ(4.2K)/ρ(300K) ≈ 2.5−5,

along the pseudo-quasi-periodic planes [13]. This special atom arrangement could

lead to the formation of a pseudogap in this complex unit cell. Ab initio studies

showed that complex monoclinic Fe4Al13 is more stable than the simple tetragonal

FeAl3(Al3V structure). Also a broad pseudogap around EF is shown in electronic

structure calculations, and DOS is around 14 states/eV unit cell at EF [14, 15]. A

sizable magnetic moment of 0.4 μB has also been reported [16], Which assumed all

iron atoms possess the same magnetic moment, although the Al-rich quasicrystalline
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Fig. 1. Phase diagram of Fe-Al [18].

phases are more typically nonmagnetic [17].

Fe2Al5 has an orthorhombic structure (Cmcm, space group# 63) with 15.2(0.32)

atoms per unit cell, shown in Fig. 3 [19]. There are 1 Fe site and 3 Al sites in the

unit cell, of which 2 of the Al sites deviate considerably from full occupancy, with the

occupation factors 0.36 and 0.23, and there is the possibility that Fe atoms can occupy

these low-occupied sites. A three-dimensional framework is built up in Fe2Al5 with

channels which have the shape of pentagonal antiprisms connected by side edges.

There are two types of positions on the axes of the channels, both of which are

occupied by the Al atoms. Since these positions are very close to each other, shorter
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Fig. 2. Fe4Al13 structure. Small filled circles: Al(78/unit cell); large open circles: Fe

(24/unit cell). Two cells shown, viewed along the b axis. Inscribed pentagons

indicate the pentagonal and decagonal channels identified by Grin, et al. [12],

the latter composed of stacked pentagonal anti-prisms.
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Fig. 3. Fe2Al5 structure: blue circles: Al(20 positions/unit cell); red circles: Fe(4/unit

cell).

than the the sum of atomic radii, both of them can not be occupied at the same

time and consequently the occupation of these sites is incomplete. According to the

structural features, Fe2Al5 has been considered a quasicrystal approximant similar to

Fe4Al13. Also a sizable magnetic moment, 0.77 μB per Fe, was observed [16].

FeAl2 has a more complicated structure, a triclinic unit cell, shown in Fig. 4, as

solved by Corby and Black [20]. This structure is a distorted close-packed configura-

tion, with 18 atomic sites including 10 Al sites, 5 Fe sites, and 3 sites having mixed Al

and Fe occupation. Despite the high coordination, the preference for Fe-Al bonding

is apparent, with Fe-Al neighbors exhibiting the smallest bond lengths, indicating
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the importance of Fe-Al hybridization, which can lead to a nonmagnetic configura-

tion with a pseudogap to stabilize the structure. However, magnetic measurements

showed that FeAl2 exhibits a large effective local moment of 2.55 μB per Fe, indicat-

ing strong local-moment magnetism in this material. A susceptibility cusp at Tf =

35 K and frequency-dependent susceptibility below Tf were observed, corresponding

to spin-glass behavior, which can be due to both frustration on the complex lattice

structure and disorder from the occupation of the mixed sites [21]. And resistivity

measurements showed a minimum near 35 K, which is attributed to the development

of short-range spin correlations in the spin-glass phase. Furthermore a recent set of

thermoelectric power (TEP) measurements indicated FeAl2 to be a semimetallic with

a pseudogap of about 0.1 - 0.2 eV, according to the slope of the TEP changes sign

for FeAl2 at around 100 K [22].

2. Al20V2R

Al10V is another interesting transitional-metal aluminide. It has a cubic structure

containing 176 atoms, with 1 V site, 3 Al sites (Al1(16d), Al2(48f), Al3(96g))and one

void(8b), which can be partially occupied by Al extending the phase from Al10V to

Al10.5V [23]. The void site is centered in an Al16 Frank-Kasper Friauf polyhedron,

connected by a V-Al Kagomé network [24]. Al1 and Al occupying the void site are not

bonded directly to V atoms and have an unusually large distance to the neighbors, the

most vibrational freedom and weakest bond energy. Due to loose packing of the atoms

in positions which are not in contact with V atoms, Al10V has a large average atomic

volume, 17 Å3 per atom. Low-temperature specific-heat and electrical-resistivity

measurements showed a local soft mode – Einstein model, associated with the loose

Al atom occupying the large hole and rattling around with a low frequency in the

structure [25].



8

(a)

(b)

a

c

(c)

Fig. 4. FeAl2 structure. Filled circles: Fe (5/cell); open circles: Al (10/cell); dot-filled

circles: mixed-occupancy sites (3/cell). (a) (021) plane, with frame showing a

3 × 3 set of triclinic unit cells. (b) View along (101) showing Fe pairs/triads.

This Fe-containing layer alternates with an Al-only layer. (c) Rotated view of

layer pictured in (b).
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Fig. 5. Cubic Al20V2Eu structure: Eu nested in Al16 Frank-Kasper Friauf polyhedra,

connected by a V-Al Kagom network

Recently, it was shown the void inside the structure may be occupied not only

by an Al atom but also by a rare-earth metal. There are 79 of these materials [27],

plus Zn-based analogs which have been of recent interest [26]. Al20V2Eu is one of the

recently discovered Al20T 2R compounds, T=transition metal and R=rare earth [27].

The regularly-spaced R atoms in highly-symmetric cages and the quasicrystal-like

framework makes these materials potentially of interest of their magnetic behavior.
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3. Present Problem and This Study

While there is general agreement of pseudogap in the electronic structure of Al-rich

transition-metal aluminides due to the strong sp-d coupling, most previous work

focused on Al-Mn system. In Al-rich Fe-Al, a microscopic understanding of the

electronics and magnetism of this system is still missing.

For Fe4Al13 although band structure calculations showed there to be a low DOS at

the Fermi level consistent with a pseudogap behavior [1], there is no direct evidence for

the existence of such a pseudogap. Due to the 2 partially occupied Al sites in Fe2Al5,

there is some difficulty in doing the theoretical electronic structure calculations and

no further experimental investigation of this material was found. Also magnetism

in Fe-Al system is worth more study; although susceptibility measurements showed

Curie-Weiss behavior with local moments, a spin-glass at low temperatures in FeAl2

and dilute-Fe in Al magnetism is not complete understood [28]. Also due to the

potential practical applications (structural alloys, low-stick surfaces, etc.), further

investigation will be helpful to gain more insight into the magnetic and electronic

properties.

There has been more and more interest in intermetallic compounds containing

rare-earth and transition metals, in cases of weak magnetic behavior resulting in

variety of characteristics including spin and valence fluctuations, spin and charge

orderings, heavy Fermion behavior and Kondo insulators. Kondo insulators are 3d,

4f and 5f intermetallic compounds. At high temperatures, they behave like metals.

But as temperature is reduced, an energy gap opens in the conduction band at the

Fermi energy and the materials become insulating. The formation of the gap in

Kondo insulators has been proposed to be a consequence of hybridization between

the conduction band and the f -electron levels, giving a spin gap. Thus, metallic
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behavior should be recovered when the gap is closed by external parameters.

Recent experiments on Ce3Bi4Pt3[29], YbB12 [30], and SmB6 [31] in high mag-

netic fields indicate closure of the Kondo-insulating gap, exemplifying a transition

from the Kondo insulator to a correlated metal. This Kondo insulator to metal tran-

sition can also be induced by pressure and alloying, as observed in SmB6 [32] and

FeSi1−xGex [33]. Some theoretical works showed a magnetic-field-induced transition

in a Kondo insulator [34]. Although Eu is known to exhibit mixed-valence behav-

ior, heavy-Fermion Eu compounds are very rare; one example is EuCu2(Ge0.3Si0.7)

showing γ = 191 mJ/K mol. Al20V2Eu is one of the recently discovered Al20T 2R

compounds, however there has been no further experimental study.

To clarify the physical nature of the Al-rich Fe-Al and Al20V2Eu systems, we

applied the nuclear magnetic resonance (NMR) technique which is a local probe pro-

viding valuable information regarding fundamental issues such as Fermi level features,

formation of local moments, magnetic fluctuation and ordering, heavy-Fermion behav-

ior, etc. In this work, we report the results of 27Al NMR study of these aluminides

between 4 and 500 K. Measurements of the spin-lattice relaxation rate, 1/T1, can

provide information about the DOS around Fermi-level to determine the predicted

pseudogap energy. Also the temperature dependence of 1/T1 will allow us to investi-

gate the magnetic moments and the dynamics of the ordering process. Knight shifts

measure the effective field at the nucleus and provide the information about the local

interaction mechanism(contact, core polarization, orbital, etc.) between the nucleus

and the corresponding contribution(sp-band, d-band, orbital, local magnetic electron,

etc.) to the susceptibility χ. In addition to NMR, DC susceptibility, specific heat

and transport measurements were carried on these alloys to study the magnetic and

electronic properties.
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CHAPTER II

NMR IN SOLIDS

NMR has been developed, since its discovery in the mid-1940s, into a highly sensitive

and versatile tool. It covers an extremely broad range of applications reaching from

pure nuclear physics to the newly introduced medical application, NMR imaging,

including atomic physics, condensed-matter physics and chemistry, and biological and

chemical analysis. Here I briefly review the basic concepts of NMR and the features

related to the electronic and magnetic properties in condensed matter [35, 36].

A. Spin Hamiltonian

We consider a nucleus with a magnetic moment �μ and an angular momentum h̄�I, the

two quantities are parallel, and we can write

�μ = γnh̄�I, (2.1)

where γn is the nuclear gyromagnetic ratio. The energy of interaction with the applied

magnetic field �H is -�μ· �H. If the field to be H0 along the z-direction, then

U = −μzH0 = −γnh̄IzH0. (2.2)

The allowed values of Iz are m = -I, -I+1,..., -I, and U = -mγnh̄H0. Therefore the

energy difference between two adjacent levels, called Zeeman energy, is

ΔE = h̄ω0 = γnh̄H0. (2.3)

Here the resonance frequency ω0 is called the Larmor frequency which does not depend

on m. Nuclear magnetic resonance is a branch of spectroscopy to encompass all

studies of the nature of the energy levels of material systems and of the transitions
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induced between neighboring levels with the selection rule Δm = ±1 through an

RF (radio-frequency) field applied to the sample with a frequency close to ω0. Then

the energy difference for the transitions of a nucleus is directly proportional to the

applied magnetic field. However, the proportionality constant is different for different

environments because the electrons in the solid respond differently to the applied

field, causing an additional field, ΔH, at the resonating nucleus. This magnetic field

at the nucleus, ΔH, is often referred to as the ”hyperfine field”.

There are several contributions to the interaction of a nucleus with electrons in a

solid, and this interaction is called the hyperfine interaction. Using NMR technique,

the hyperfine interaction can be extracted by means of Knight shift and spin-lattice

relaxation rate measurements and thus reveal the electronic and magnetic properties

of condensed matter. In metals, the major hyperfine interaction is the coupling

between the magnetic moments of a nucleus and an electron. The Hamiltonian is

H = 2
8π

3
μBγnh̄�I · �Sδ − 2μBγnh̄�I · [

�S

r3
− 3�r(�S · �r)

r5
] − γnh̄

e

mc
[�I · (�r × �p)

r3
], (2.4)

where μB is the Bohr magneton, γn is the magnetogyric ratio, �I and �S are the nuclear

spin and electron spin, respectively, �r is the radius vector of the electron with the

nucleus at the origin, and the other symbols have their usual meaning. The first term

is the Fermi contact interaction term, where s-wave functions describe the major part

of the conduction electrons. The second term represents the spin dipolar interaction

between nuclear and electron spins. The third term represents the interaction of the

nuclear spin with the orbital motion of the electrons.
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B. Knight Shift

At a fixed applied magnetic field, the resonance frequency of the nuclear spin in a

sample is observed at a position with a slight shift compared to that of a paramagnetic

salt. This shift is called a Knight shift. The Knight Shift, K, measures the hyperfine

field at the nucleus produced by those electrons in a metal which respond linearly

to an applied field, Happl, and is available as a tool for the study of electronic and

magnetic properties in materials. The Knight shift is a sum of terms corresponding

to local interaction mechanisms (contact, core polarization, orbital, etc.) between the

nucleus and the corresponding contribution (sp-band, d-band, orbital, etc.) to the

susceptibility χ.

The source of Knight shift first used to interpret shifts in simple metals was

the Fermi contact interaction between the resonating nucleus and the s-electrons.

According to the theory,

K =
8π

3
χP 〈|Ψs(0)|2〉FS =

8π

3
χPPF , (2.5)

where χP is the pauli paramagnetic spin susceptibility per atom, and 〈|ψs(0)|2〉FS,

often denoted as PF , is the square of the s-wave function at the nucleus averaged over

those electrons at the Fermi surface (FS). By definition:

〈A〉 ≡ 8π

3
〈|Ψs(0)|2〉FS =

8π

3
PF , (2.6)

〈A〉 represents the hyperfine field, Heff = μB〈A〉. With this definition, Eq. (2.6)

becomes

K = 〈A〉χP . (2.7)
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This contact Knight shift from the Pauli susceptibility thus is denoted as Ks,

Ks =
Hhf

μB

χP . (2.8)

From the free electron model, the Pauli susceptibility χP is

χP = μ2
Bg(EF ), (2.9)

where g(EF ) is the electronic DOS at the Fermi surface. Thus if the hyperfine field

is known, the Knight shift can be used to determine g(EF ).

The induced Pauli paramagnetism interacts directly with the nucleus through

the contact and spin-dipolar interactions, while the shift from core polarization ef-

fects, termed the core polarization Knight shift (Kcore), is indirect. Due to the Pauli

exclusion principle, valence electrons may polarize the closed shell of an ion core and

the paired electrons in the conduction bands below the Fermi surface, EF , producing

spin densities which will then interact with the nucleus through the contact interac-

tions and only the spin polarization of closed s-shells and of the s-character in the

conduction bands below EF will interact directly with the nucleus. These interactions

arise from differences induced in the spatial behavior of spin up and down pairs of

electrons with zero net spin induced in the electrons. Estimates of the core polar-

ization are negative for d- and f -shells, implying a core spin density at the nucleus

whose orientation is antiparallel to the unpaired spin responsible for the polarization

and leading to a possibly negative Knight shift. In contrast, the core polarization

response to an unpaired s-valence electron is always positive and simply serves to

enhance the contact interaction associated with the valence electron.

Besides these contributions to the Knight shift coming from the Pauli paramag-

netism of the conduction electrons, there is a contribution from the orbital magnetic

moment of the conduction electrons induced by the applied magnetic field. In analogy



16

with Eq. (2.7),

K = 〈b〉χorb, (2.10)

where 〈b〉 is an appropriate orbital hyperfine coupling constant. In contrast to the

Pauli contribution, the orbit contribution is not proportional to g(EF ). The orbital

Knight shift involves the orbital moment induced in occupied conduction electron

states by an applied magnetic field. Application of a magnetic field to the occupied

and unoccupied Bloch states causes an admixture which produces a moment interact-

ing with the nucleus. And there is little or no temperature dependence to this term,

in analogy to Van Vleck temperature-independent paramagnetism in ionic salts. A

rough estimate of the strength of the orbital Knight shift is given by

Korb ≈ ninf〈 1
r3 〉

Δ
, (2.11)

where 〈 1
r3 〉 is the average of 1

r3 , ni and nf are the numbers of occupied and unoccupied

Bloch states respectively and Δ is the conduction electron band width. According

this equation, a small Δ will cause a considerable orbital shift which can be very

important in transition metals because Δ is usually small in d bands.

Besides the Knight shift, there are other sources of magnetism that contribute

to the NMR line shifts. If the material possesses local magnetic electrons, a strong

1/T dependence is likely to be present, resulting from the local electron-conduction

electron (RKKY) interaction which causes an enhancement of the Pauli contact term.

From the discussion above, the observed K can be a sum of these terms as follows:

K = Ks + Korb + Kcore + Kloc(T). (2.12)

The NMR line shift is thus an important tool to probe hyperfine interactions of various

types, and separate the spin susceptibility into different mechanisms.
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C. Line Shape

The NMR line shape depends on several different factors. The NMR line shape has a

certain width owing to the spread of Larmor frequencies in an inhomogeneous mag-

netic field. The electron-nuclear dipole interaction will result in anisotropic Knight

shifts and cause a line broadening. Besides, there is a quadrupole effect in a non-cubic

environment for nuclei with spin > 1/2, which will affect the NMR transitions and

the presence of impurities in diluted crystals will cause the NMR line broadening via

dipolar couplings.

D. Spin-lattice Relaxation Rates

Considering a system of N nuclear spins, the distribution of nuclei among the energy

levels is given by the Boltzmann factor. When this equilibrium is disrupted (e.g., by rf

power), the nuclear spin system returns to equilibrium with the lattice by a relaxation

process characterized by a time T1, called the spin-lattice relaxation time. Thus T1

measurements can reveal the dynamical behavior of the hyperfine interactions.

In a metal, the nuclear relaxation is produced by their coupling to the spin mag-

netic moments of the conduction electrons. The dominant mechanism is the magnetic

part of hyperfine interaction. There are several terms involved in this interaction, in-

cluding contact, orbital and dipolar relaxation rates.

Any nuclear relaxation is accomplished by transition between spin states. Such

transition rate is a sum over all electron states able to participate in the relaxation

process. Considering nuclear spins at high applied magnetic field, we assume that the

electron relaxation is sufficiently short and the temperature is high for the electronic

Zeeman Energy to be much smaller than kBT . Under these assumptions, electrons
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with spins up or down have approximately the same Fermi distribution function

f(E) =
1

1 + exp(E-EF )/kBT
. (2.13)

The probability of an electron making a transition from a state of kinetic energy E

to state of energy E ′ must be weighted by the factor f(E)[1 − f(E ′)], which is the

simultaneous probability for the initial state to be occupied and for the final state

to be empty prior to the transition. According to the nucleus-electron interaction

〈i|Vn−e|f〉 (Eq. (2.4), the spin lattice relaxation rate should be expressed as

1

T1

∝
∫
〈i|Vn−e|f〉2g2(E)f(E)(1 − f(E))dE, (2.14)

which g(E) is the electronic density of states. If the transition involves a simul-

taneous electron-nuclear spin flip, the change in kinetic energy being very small,

f(E)[1 − f(E ′)] may be replaced by kBTδ(E − EF ). Thus 1/T1 will be proportional

to temperature, a phenomenon known as Korringa behavior and the relaxation mea-

surement can probe the electronic properties, such as the DOS structure around the

Fermi level.

In non-metallic solids, the effective nuclear Hamiltonian is

Hn = γnh̄�I · �H0 + �I · [A] · 〈�S〉, (2.15)

where A is the transfer hyperfine energy and 〈�S〉 is the average value of the electronic

spin, averaged due to the shorter electron spin fluctuation time compared with the

nuclear Larmor period. The strength of typical electron-nuclear interactions (A/γnh̄)

varies between 103 and 107 Oe. In a concentrated paramagnetic crystal, exchange

interactions between electron spins may greatly decrease the electronic fluctuation
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time. For nearest neighbor interactions (J), we find an exchange frequency

ωE = [8J2zS(S + 1)/3h̄2]
1
2 , (2.16)

where J is the interaction strength, z denotes the number of nearest neighbors which

are exchange coupled to a given spin. By the calculation of the transition probability

with perturbation theory, we obtain

T−1
1 = (2π)

1
2 (A/h̄)2(3ωE)−1S(S + 1), (2.17)

which is temperature-independent.

In non-metallic solids with some paramagnetic impurities, the electron spin fluc-

tuation time is not sufficiently short, the expression is

T−1
1 = 4πNbD, (2.18)

where N is the concentration of paramagnetic centers in the sample and D is the

diffusion constant for nuclear spin magnetization transfer. D is of the order Wa2,

where a is the neighbor distance and W the probability of a flip-flop between nearest

neighbors. The coefficient b depends on whether the electronic fluctuations are slow

or fast with respect to the nuclear Larmor frequency, ωn. The electron relaxation

time τ is usually in the fast motion limit with respect to ωn, and b is proportional

to τ 1/4. In diluted paramagnets, where interaction between the electronic moments

is negligible, τ normally does not exhibit a pronounced temperature dependence, so

that the paramagnetic relaxation rate of Eq. (2.18) can reasonably be approximated

to be temperature-independent.
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CHAPTER III

BASIC THEORY OF NMR

A. Motion of Free Spins

A basic problem in nuclear magnetism is the description of the behavior of a free spin

in a uniform magnetic field. A free spin is a system with an angular momentum �L

and a magnetic moment �M = γh̄�I. In the static magnetic field, �H will produce a

torque �M × �H, equal to the rate of change h̄(d�I/dt) of its angular momentum. Thus

the equation of motion is

d �M

dt
= γn

�M × �H. (3.1)

Therefore the torque causes �M to precess about the the field at an angular frequency

ω0 = γnH0. Viewed from the laboratory frame, Eq. (3.1) is replaced by the Bloch

equations:

dMx

dt
= γn( �M × �H)x − Mx

T2

, (3.2)

dMy

dt
= γn( �M × �H)y − �MyT2, (3.3)

dMz

dt
= γn( �M × �H)z − Mz − M0

T1

, (3.4)

where M0 is the equilibrium magnetization of a sample in an external field which we

assume to be along the z-axis. T1 and T2 are longitudinal and transverse relaxation

times. As mentioned in Chapter II, the spin-lattice relaxation is responsible for T1,

and the local field from neighboring nuclei at each nuclear site is responsible for T2.

A rotating frame with respect to the laboratory frame with an angular velocity

about the external magnetic field is in the same direction in which nuclear spins

precess. According to the general law of of relative motion, the time derivative in

the laboratory frame, and its partial derivative computed in the rotating frame are
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related through

(
d �M

dt
)lab = (

∂ �M

∂t
)rot + �ω × �M. (3.5)

Combining Eq. (3.1) and Eq. (3.5), the motion of the magnetic moment in the rotating

frame is given by the equation

(
∂ �M

∂t
)rot = γn

�M × ( �H +
�ω

γn

). (3.6)

This has the same form as Eq. (3.1) provided the magnetic field is replaced by an

effective field �Heff = �H + �ω
γn

, seen by the magnetization in the rotating frame. If

the rotating frame has an angular frequency equal to −γn
�H, the effective field �Heff

vanishes, and �M is invariant with time in the rotating frame.

For pulsed NMR, a rotating field �H1 with an angular frequency �ω with respect

to the laboratory frame is also applied perpendicular to the static field �H0. Thus

the effective field in the rotating frame can be written as �Heff = �H0 + �ω
γn

+ �H1. At

resonance the external field cancels ω/γn and leaves only �H1. Since �H1 rotates at the

same frequency as the frame, the angular precession frequency about �H1 is γnH1 and

in a time period t, the angle θ through which M precesses is

θ = γnH1t. (3.7)

B. FID and Spin-Echo

In pulse NMR experiment, a radio frequency (rf) magnetic field perpendicular to the

static field is generated in a coil to excite simultaneously all nuclei whose resonance

frequency is near the pulse frequency. After the rf field �H1 is turned off, the signal

induced in the coil is a free precession signal and, owing to its decay, is called a free

induction decay (FID), which is modulated by the frequency of all nuclei excited by

the pulse. The decay of the magnetization in the x-y plane can be exponential with
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the time constant T �
2 . T �

2 is approximately

1

T �
2

=
1

T2

+ γnΔH0, (3.8)

where T2 is from dipolar processes and ΔH0 is the applied magnetic field inhomo-

geneity, since nuclei in the different parts of the field precess at slightly different

frequencies, hence quickly get out of phase with each other. And the magnetization

decayed in the rotating x-y plane due to the external field inhomogeneity can be

refocussed into an echo by an appropriate pulse. This is called spin echo.

We usually use Hahn echo sequence in the NMR measurements. This is a two-

pulse sequence, the first one 90◦ and the second one, turned on a time τ later, a 180◦

pulse. In the rotating frame, at t = 0, the magnetization is in thermal equilibrium

lying along the z direction. After the first 90◦ pulse on the x-axis, which produces

a rotation of θ = 90◦ according to Eq. (3.7), the magnetization immediately rotates

to be the −y direction. Due to the field inhomogeneity, the total magnetization

vector is the sum of smaller magnetization vectors each arising from a small volume

experiencing a homogeneous field and each of these components of the magnetization

will precess with its own characteristic Larmor frequency. As a result, the different

contributions of the magnetization will get out of phase with each other. At time τ , a

fractional magnetization δM has precessed an extra phase either positive or negative.

Then the 180◦ pulse is applied and the magnetization is flipped to the +y direction.

δM will again advance through the same phase, which will bring the magnetization

refocus along the + y-axis at t = 2τ . Therefore, at time 2τ after the first pulse,

a FID-type signal termed a spin echo will be discovered. The spin echo consists of

two FID’s back-to-back. The echo amplitude may diminish exponentially with a time

constant T2 as τ varies.
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C. Measurement of Spin-Lattice Relaxation

To measure the spin-lattice relaxation rate with the spin-echo technique, a third pulse

is placed at a time τwait before the 90◦ - τ - 180◦ sequence. The third pulse tips M to

the −z direction in the rotating frame. The spin systems return to equilibrium with

the characteristic time T1. The spin-echo amplitude thus depends on the time τwait.

And by repeating such a spin-echo sequence with different τwait, a magnetization

recovery curve can be constructed to reveal the value of T1.

For a nucleus in a high static magnetic field, the magnetization of the central

transition is directly proportional to the population difference between I = 1/2 and

-1/2. For any nucleus with I �= 1/2, according the echo-spin sequence to measure

the spin-lattice relaxation rate, the relaxation will follow a multiexponential recovery

curve with the time constant T1. Taking I = 5/2 for example, the magnetization

recover curve is following[37]

M(t)

M(0)
= 0.0286e

− τwait
T1 + 0.178e

− 6τwait
T1 + 0.793e

− 15τwait
T1 . (3.9)

By fitting to such multiexponential functions, we can find the T1.
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CHAPTER IV

EXPERIMENTAL APPARATUS

The major instruments required in my experiments include the NMR spectrometer,

superconducting quantum interference device (SQUID), and physical property mea-

surement system (PPMS).

A. NMR Spectrometer

The major components of the NMR experimental apparatus are a pulsed spectrom-

eter, a 9 T superconducting magnet, and two temperature controlled probes, one for

4 K to 300 K, another 300 K to 500 K. The pulsed spectrometer built by Prof. Ross

is a combination of the transmitter, responsible for the application of the RF pulse,

and the receiver, the detection of the sample’s response.

The probe is a key component of the spectrometer. It contains the sample within

the magnet and provides the necessary hardware to measure the sample temperature.

Also it couples the sample to the transmitter and the receiver in order to permit the

excitation and detection of an NMR signal. The circuit of the probe is basically a

tunable LC circuit. The sample coil is the inductor, a simple device selecting from

a non-magnetic good conductor and containing no element which possess resonance

frequencies close to the sample signal. Copper was used in my experiment to measure

signal of Al. The capacitors have to be variable and also non-magnetic. Besides, my

NMR experiments require the capacitors to have a wide operation temperature range

and to be moved freely at very low temperatures.

To perform the experiment in a wide temperature range, I used two different

probes with the ability to achieve desired temperature. The probe circuit is placed in

a copper cylindrical shell. Two thermometers are employed to sense the temperature,
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including a thermocouple for temperature above 77 K and a calibrated thin-film chip

resistance thermometer for temperature below 77 K. Both sensors are non-magnetic

and have little error in a high magnetic field. A commercial heater wire made of

Cu-Ni alloy of about 10 Ω was twisted and wound around the copper shell.

To perform measurements between 77 K and 300 K, LN2 is filled in a LN2 reser-

voir which provides the isolation between the magnet and the probe. The samples

are cooled to the surrounds by radiation down to nearly 80 K. The electrical current

provides power to the resistance heater to achieve the desired temperature. Liquid

helium is used for the measurement between 4 K and 77 K. We transfer LHe directly

to the dewer for 4 K measurement, and apply a small current to the heater to the set

temperature.

B. SQUID and PPMS

The SQUID is a system to measure the magnetic properties of a material sample

over a temperature range from 1.8 K to a couple of hundreds degrees above room

temperatures at different magnetic fields. The PPMS also has a variable temperature-

field system, designed to perform a variety of automated measurements, including

transport, specific heat, etc.
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CHAPTER V

EXPERIMENTAL RESULTS AND DISCUSSIONS

This section will describe the methods of sample preparation, the measurement tech-

niques, the data analysis and the discussions. Each sample was synthesized by arc

melting the elemental constituents under argon, followed by further annealing in vac-

uum. The powder sample mixed with KBr of appropriate size was placed in a plastic

vial for 4-300 K NMR measurements, while we put the specimen in a quartz tube

for high temperature measurements. Both sample holders showed no observable 27Al

NMR signals. NMR experiments were performed at fixed field using a 9-T home-

built pulse spectrometer. 27Al NMR spectra were detected at approximately 98 MHz

in constant field. In order to get the strongest signal, we optimized the 90◦ pulse

duration. The Knight shift is determined by

K ≡ υ0 − υR

υR

× 100%. (5.1)

The observed υ0 for 27Al is obtained from the peak position of the spectrum. The

reference, υR, for 27Al Knight shift was the 27Al resonance frequency of an aqueous

AlCl3 solution. Spin-lattice relaxation times (T1’s) were measured using the inversion

recovery method. We recorded the signal strength by integrating the spin echo FFT

of the 27Al lines. For the recovery of the -1/2 ←→ +1/2 central transition, the T1’s

were extracted by fitting to multiexponential curves [37] for I = 5/2 27Al, with T1 as

a parameter.
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A. FeAl2

1. Sample Preparation and Structure Analysis

The FeAl2 sample was a different sample than that used in the previous study in

this laboratory [21], however the spin-glass freezing temperature was found to be

identical. The sample was characterized by powder x-ray diffraction (Bruker D8

Advance) using Cu Kα radiation. Structural refinement was carried out using the

GSAS software package [38, 39].

X-ray diffraction results are shown in Fig. 6. The analysis showed no evidence for

a second phase. Atomic occupation parameters are in reasonable agreement with the

atomic weights reported earlier [20], though the refinement indicated Al occupation

on Fe sites as well as mixed sites (up to 0.29 relative Al occupation of Fe site 1′ [site

labeling convention of Ref. [20]]). No Fe occupation of Al sites was found, and the

mixed sites had Al occupation parameters in the range 0.36-0.53. The fit yielded a =

0.4868 nm, b = 0.6454 nm, c = 0.8796 nm, α = 91.76◦, β = 73.35◦ and γ = 96.90◦,

for the triclinic unit cell, with R values Rwp=0.0599 and Rp=0.0455. The Al/Fe ratio

resulting from the refinement was 2.03.

Using the occupation parameters thus obtained, we calculated mean atomic co-

ordination numbers, including partially occupied sites. This gave 2.5 Fe neighbors

per Fe atom, and 3.5 Fe neighbors per Al atom. For this calculation, neighbors were

assumed to be those at a distance less than 0.3 nm.

2. NMR Measurements

Fig. 7 shows 27Al NMR spectra recorded between 4 K and 468 K, using a standard

π/2 − τ − π spin-echo sequence. From the NMR pulse-length dependence, we find

that the observed spectra correspond to 1/2 to −1/2 transitions for the I = 5/2
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Fig. 6. Powder x-ray results for FeAl2, with results of refinement and difference plot.

Vertical marks are fitted reflections.
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27Al nucleus, implying that the other transitions are suppressed due to quadrupole

broadening. Fig. 8 shows the relative shift obtained from the center of mass of these

peaks. The shifts can be expressed by

K = K1 + K2(T ). (5.2)

A Curie-Weiss-type fit for K2 (T) is shown by the dashed curve in Fig. 8, yielding

K1 = −0.155 %, with the Weiss temperature fixed at θ = −38 K according to the

susceptibility [21]. The 4 K point was excluded from this fit since it is below Tf .

(Allowing θ to vary yielded an optimized value θ = −33 K, with a large error bar of 15

K indicating insensitivity to that parameter.) The results correspond to 27Al directly

coupled to neighboring Fe moments, with a negative transfer hyperfine coupling. Note

that the 27Al shift does not increase relative to the Curie-Weiss curve below Tf as

would be expected in the case of cluster-glass behavior, for which local ferromagnetic

couplings should guarantee spin saturation in the large applied NMR field.

The transfer hyperfine coupling can be obtained from K2(T ) [Eq. (5.2)] and the

Fe moment calculated using peff = 2.55 and θ = −38 K. This is shown in Fig. 9,

where the moment per Al was obtained from K2(T ) using μoHhf = 190 T as the Al

s-spin hyperfine field [40]. From the least-squares slope we obtain a net Al hyperfine

field of 1.2 T per μB on Fe. Dividing by 3.5, the mean Al-Fe coordination number,

yields μoH
tr
hf = 0.35 T per μB per Fe neighbor. A similar value of 0.24 T was found

in Al3V [41], while for dilute Al in Fe, the 27Al shift [42] corresponds to μoH
tr
hf = 0.31

T. (The latter is obtained from the quoted shift [42] by dividing by 2.2 μB and the

coordination number, 8 for BCC Fe.) Thus the FeAl2 couplings are not particularly

large despite the anomalous Fe moment.

The negative K1 = −0.155 % implies an Al spin polarization opposing that

of the Fe d-orbitals, and in aluminides such behavior is observed in systems with
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Fig. 9. FeAl2 paramagnetic moment per Fe obtained from the magnetization curve,

plotted vs. magnitude of effective on-site Al moment obtained from the mean

NMR shift. Dashed curve is a least-squares linear fit.
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open d shells: in nonmagnetic FeAl [43] and for a magnetic decagonal Al-Pd-Mn

quasicrystal [44], values between −0.3 % and −0.6 % have been reported. Since this

term is temperature-independent, it implies a Pauli susceptibility, and a predominant

Fe d contribution to the Fermi surface. This contrasts the semiconducting behavior

calculated for FeAl2 in simpler geometries [45, 46].

The full width at half-maximum of the NMR line is plotted in Fig. 10, along with

a fitted curve proportional to 1/(T−θ), plus a T -independent background term. To see

whether statistical occupation of Fe and mixed sites alone could account for this, we

performed a Monte-Carlo-type calculation assuming Fe having identical paramagnetic

moments, H tr
hf = 0.35 T for all neighbors, and statistical site occupation according

to the x-ray occupation parameters. The electron-nuclear dipole interaction resulting

Curie-Weiss contribution to the linewidth was smaller than observed by a factor 1/3.

Local variations in transfer couplings and/or moments (RKKY, etc.) may account

for this difference, thus the observed widths appear reasonable.

The spin-lattice relaxation rate (T−1
1 ) was measured by inversion recovery, irra-

diating the central portion of the 27Al line, and using the integral of the spin echo.

T1 was extracted by fitting to multiexponential curves for magnetic relaxation of a I

= 5/2 27Al central transition. Fig. 11 shows the results. At low temperatures, several

peaks are observed, while at high temperatures the spin-relaxation rate is nearly con-

stant with a value of 0.3 ms−1 (dashed line). These data resulted from two separate

runs, showing consistent behavior.

The lowest-temperature peak in T−1
1 appears at 35 K, due to the slowing down of

magnetic spins at Tf , as observed in other spin glass systems [47]. The maxima in T−1
1

above Tf do not correspond to observed features in magnetization [21] or specific heat

[22]. These features are reminiscent of the behavior of AlPdMn quasicrystals [44, 48]

for which multiple T−1
1 peaks are also seen. For that case, there is a reduction of Mn
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moment at low T associated with the anomalous T1 behavior. For FeAl2, there is no

large change in moment above Tf , as evidenced by the susceptibility [21]. However,

it is possible that the alignment of adjacent spins, such as the Fe pairs or triads (Fig.

4), to form combined moments, may be responsible for these features. A gradual

reduction in electron density, as shown by the changes in thermopower below 100 K

[22], could contribute to such spin-alignment behavior by changing the indirect spin

coupling.

The temperature independent T−1
1 above 100 K is characteristic of concentrated

local-moment systems in which J-couplings rather than thermal fluctuations con-

trol the spin dynamics. Weak itinerant ferromagnets can exhibit similar behavior

[49], however for the nearly-antiferromagnetic itinerant case, more appropriate in the

present situation, T 1/2 relaxation behavior is expected. Much different behavior is

also observed in Al-Fe-Cu quasicrystals, where the moments are widely separated and

found on a small fraction of the sites [50]. Concentrated local moments produce a

rate given by [51]

1/T1 = (2π)1/2(A/h̄)2(3ωE)−1S(S + 1)z′. (5.3)

Eq. (5.3) differs from reference [51] in that A is a transfer hyperfine coupling, so we

include z′, the number of local moments interacting with each nucleus. In our case z′ =

3.5 and z = 2.5, as described above. A is the nuclear Zeeman energy corresponding to

the hyperfine field μoH
tr
hf = 0.35 T obtained above, which is A = −2.6×10−27 J. Given

the magnitude of peff , we assumed that S = 1. In the mean-field approximation [52],

J is related to the Weiss temperature through Jz = 3kBθ
2S(S+1)

, giving J = 1.6×10−22 J.

This yields T−1
1 = 0.6 ms−1. The observed T−1

1 = 0.3 ms−1 (dashed line in Fig. 11),

is in good agreement with this calculated value. Thus, the T−1
1 behavior provides

compelling evidence that the magnetic fluctuations in this system can be attributed
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to stable local moments localized on Fe atoms.

The local moment in FeAl2 is surprising in light of the expected Al-Fe covalency

and corresponding weakening of the moment [53, 46]. A standard picture for BCC

Fe-Al alloys has been that a Fe-Fe coordination number 4 or greater is required for

Fe to assume its full moment [54], thus the coordination in FeAl2 would appear to

oppose such behavior. The Knight shifts do indicate an apparent d contribution at

the Fermi level, nevertheless from the relaxation behavior we conclude that a stable

local moment, rather than an itinerant mechanism, best characterizes the observed

magnetism.

B. Fe4Al13

1. Sample Preparation and Structure Analysis

Fe4Al13 studied here was annealed in a vacuum-sealed quartz tube at 600◦ C for one

week, yielding a polycrystalline ingot which was used for all measurements. The

sample was characterized by powder x-ray diffraction (Bruker D8 Advance) using

Cu Kα radiation. Structural refinement was carried out using the GSAS software

package [38, 39]. X-ray diffraction results are shown in Fig. 12. The analysis showed

no evidence for a second phase. Atomic parameters are in reasonable agreement with

those reported earlier.

To confirm the sample composition. The method known as energy dispersive

spectroscopy, EDS, was used to identify the elements present in the specimen and

wavelength dispersive spectroscopy, WDS, was carried, counting the number of x-

rays events by wavelength, giving the elemental abundance. The sample prepared for

the microprobe analysis was from the same ingot used for the following NMR and

other measurements. To obtained a precise result, we analyzed the compositions for
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Fig. 12. Powder x-ray results for Fe4Al13, with results of refinement and difference

plot.
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several different sample grains and took the average for each element. The average

composition for this sample is Fe24.9Al75.1.

2. NMR of Fe4Al13

We recorded 27Al NMR spectra between 4 K and 454 K, using standard π/2− τ − π

spin-echo sequences. Fig. 13 displays an example of an 27Al-NMR spectrum recorded

at 144 K. The broad line is a superposition of powder patterns due to the 15 Al sites,

giving an unresolved lineshape. From the pulse-length dependence of the spin echo,

we find that the center of the spectrum represents the central (1/2←→-1/2) nuclear

Zeeman transition of Al, while the shoulders have somewhat longer 90◦ pulse lengths,

characteristic of satellite lines [55]. For alloys, it is quite common for the quadrupole

satellites to be “washed out”, leaving only the central transition. Thus we treated

the center of the line as a superposition of the central transitions of the various Al

sites.

In Fig. 14 we show the temperature dependence of T−1
1 for the Fe4Al13 central line

between 4 and 493 K. We found that the results could be fit by assuming a parabolic

pseudogap, as previously observed in a number of quasicrystals and approximants

[50, 56]. The solid curve in Fig. 14 represents a fit of the form

T−1
1 (T ) = aT + bT 3 + T−1

1P , (5.4)

with a = 1.58 × 10−3 K−1s−1, b = 1.25 × 10−8 K−3s−1 and T−1
1P = 0.15 s−1. The

small temperature-independent term, T−1
1P , can be attributed to relaxation via dilute

paramagnetic centers in combination with spin-diffusion. This term was found to

be 0.17 s−1 in the dilute-moment system Al72.4Pd20.5Mn7.1 [57], very similar to the

value found here. By contrast, the corresponding term in the concentrated-moment

aluminide FeAl2 is three orders of magnitude larger discussed in previous section V
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Fig. 13. 144 K 27Al NMR powder pattern of Fe4Al13
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(A).

T−1
1 due to the Fermi contact interaction between s-electrons and nuclei is given

by [58]

1/T1c = βs

∫
dEg2(E)f(E)[1 − f(E)], (5.5)

according to Eq. (2.14), where βs = (64/9)π3h̄3γ2
eγ

2
n〈|u2

k(0)|〉2EF
, with 〈|u2

k(0)|〉EF
rep-

resenting the squared wave function at the nucleus averaged over the Fermi surface.

Since f(E)[1 − f(E)] = −kBT∂f(E)/∂E vanishes once E deviates from EF by a

few kBT , the temperature dependence of (1/T1c) is determined by the energy depen-

dence of g(E) near EF . Assuming that the DOS in the vicinity of EF has the form

g(E) = g0 + 1
2
g′′
0(E − EF )2, Eq. (5.5) leads to

1

βST1c

= g2
0kBT + g0g

′′
0

π2

3
(kBT )3. (5.6)

This has previously been identified as the form of the Korringa relaxation for some

quasicrystals [50, 56] where the DOS in the vicinity of EF varies parabolically.

In Fe4Al13, the 27Al relaxation behavior can thus be explained by the sum of the

two terms described above – relaxation via conduction electrons with a pseudogap and

via paramagnetic centers. The two first terms dominate the experimental data, with

a = βskBg2
0, b = βsg0g

′′
0(π

2/3)k3
B. From the fitting, we obtained g′′

0/g0=325(eV)−2

and using the Al atomic hyperfine field Hatom
eff,Al = 1.9 MG [40], we found g0 = 0.011

eV−1atom−1 (1.1 states/eV·cell), a factor 18 smaller than that of Al metal. These are

similar to the values found from experiment in Al62Cu25.5Fe12.5 and Al72.4Cu20.5Fe7.1

icosahedral quasicrystals [50].

The average NMR shift, obtained by fitting the central portion of the line shape

with a Lorentzian at each temperature, is plotted in Fig. 15. The gradual increase

at high temperatures agrees well with the parameters extracted from the T1 analysis,
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with no adjustable parameters, helping to confirm that behavior. At lower temper-

atures the shift exhibits a magnitude change at about 75 K which is not completely

understood. We have tentatively associated the drop observed below 200 K with a

Curie-like tail, which is consistent with the Curie-like behavior of the linewidth (inset

of Fig. 15), and also the specific-heat results described later, indicative of param-

agnetic moments due to a dilute set of defects. Hence, the solid curve in Fig. 15

represents a fit of the form

K = K0 + K1(T ) + K2(T ), (5.7)

where K1 = C/T is the Curie tail, and K2(T ) is obtained directly from the pseudogap

parameters of Eq. (5.6). The negative K0 = -0.077 %, obtained from the fitting,

implies an Al spin polarization opposing that of the Fe d orbitals, and in aluminides

such a negative line shift is found in systems with open d shells: for example this is

seen in nonmagnetic FeAl [43], in the concentrated-moment system FeAl2 [59] and

in dilute magnetic decagonal AlPdMn quasicrystals [44]. (Note that K0 may also

contain a contribution due to the second-order quadrupole effect, since we have not

removed that term.)

A negative Curie-type shift is also seen in FeAl2 [59], however here the fitted

Curie term is two orders of magnitude smaller, hence if this downturn in NMR shift

is due to paramagnetic moments, the system of moments cannot be a concentrated

one. This is similar to the result obtained from analysis of the T1. Removing the term

K1(T ) from the fit, we obtain the dashed curve in Fig. 15, which goes through the

lowest-temperature as well as the high-temperature data. However, the specific heat

and magnetization measurements described below indicate a paramagnetic moment

density that remains quite constant over this temperature range, so the source of these

low-temperature changes in NMR shift remain unclear. Note that these changes are
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small compared to the linewidth of the low-temperature line, which is an unresolved

superposition of the different Al sites. It could be that one site is more strongly

affected by the paramagnetic center at low temperatures, thus wiping it out and

hence changing the observed average line center. Another possibility would be a

change of the conduction-electron induced super-exchange field experienced by the

27Al nuclei, due perhaps to Kondo screening [60].

K2(T ) is a Knight shift calculated assuming a narrow parabolic pseudogap as

shown in Fig. 14. In this case the Knight shift can be expressed as [58]

K2(T ) = K0
2(1 +

π2k2
B

6

g′′
0

g0

T 2), (5.8)

where K0
2 = 4

3
πh̄2γe〈u0

k(0)〉E0
F
g0. Using values from the T1 fit, we calculated K0

2(=

0.024%) and the corresponding T 2 term, and fixed these parameters in the fit to

Eq. (5.7). As can be seen, the agreement is good, showing that both the shifts and

T1 provide consistent agreement with the assumption of a parabolic pseudogap.

Existence of a pseudogap at the Fermi level in Fe4Al13 has also been indicated

by theoretical studies [14, 1]. The pseudogap estimated here is somewhat narrower:

defining ΔE as the full width measured at points where g(E) is twice the minimum

value (Fig. 14), we obtain ΔE ≈ 0.15 eV. Similar behavior has been observed in a

number of icosahedral quasicrystals and approximants, and seems to be characteris-

tic of this class of materials [56]. Recently, similar behavior was observed in NMR

studies of a decagonal quasicrystal [61], and here it has been observed in a decagonal

approximant. Tunnel spectroscopy measurements of icosahedral quasicrystals also

consistently show a dip in g(E) centered at EF [62, 63]. However, normally this has a

characteristic square-root singularity shape, including measurements at high fields in

decagonal quasicrystals [64, 65], although thermal excitations could cause rounding

of the shape. Note also that tunneling probes the total DOS only [63], while 27Al
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NMR measures specifically the Al partial DOS, and it is possible that the narrow

pseudogap in the total DOS resides only in the Al states [66].

3. Specific Heat Measurements

The 4 K linewidth of Fe4Al13 (Fig. 15) is 25 times smaller than that of the concentrated-

moment system FeAl2 [59]. This combined with the T1 behavior cited above shows

that Fe4Al13 should be regarded as a non-magnetic system containing dilute mag-

netic defects. To further understand the magnetic properties, the specific heat (C)

was measured in the temperature range 1.8 – 300 K. A C/T vs. T 2 plot below 40 K

is shown in Fig. 16 for magnetic fields 0 and 8 T. We fit the zero-field data between

23 K and 30 K to C(T ) = γT + βT 3, where the first term represents a standard

electronic contribution and the second is due to phonons [67]. We obtained γ = 5.59

mJ/mol K2 and β = 0.408 mJ/mol K4, with the fit shown Fig. 16. The difference

curve indicates excellent agreement over the fitted range.

Defining C = ΔC + γT + βT 3, we obtain the excess low temperature specific

heat plotted in Fig. 17. The results resemble a Schottky anomaly due to magnetic

defects [67] for both 0 and 8 T. We fitted the data to the multilevel Schottky function

[68]:

Cm = NkB[
x2ex

(ex − 1)2
− (2J + 1)2 x2e(2J+1)x

(e(2J+1)x − 1)2
], (5.9)

where N is the number of Schottky centers and x = gμBH/kBT , with g the effective

g factor for the defect. Assuming paramagnetic spin experiencing a field of H = 8

T, the optimum g and J values are 1.61 and 2.21, respectively. Using these values,

the effective moment per defect is p′eff = gμB

√
J(J + 1) = 4.3μB, and the defect

concentration c′ = 0.015 per Fe, yielding p′eff

√
c′ = 0.53. For H = 0, the presence of

a Schottky anomaly (Fig. 17) is presumably due to an internal field acting upon the
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Fig. 17. Temperature dependence of ΔC in fields of 0 T and 8 T below 20 K. Curves:

fits to the Schottky function described in the text

defects. Using g and J from the 8 T fit, a fit to H = 0 yielded an effective internal

field Heff = 6.7 T. This corresponds to a zero-field splitting which is rather typical

for Fe impurities in anisotropic crystalline environments [69], although the assumed

uniform Heff may be a somewhat simplified model for this internal field.

A less model dependent method to estimate the moment density is provided by

the magnetic entropy, plotted in Fig. 18, which is the integral of ΔC/T . The total

magnetic entropy thus obtained is approximately 0.8 J/mol K, including extrapolated

changes below 2 K. The results are equivalent for the zero and 8 T cases, as would

be expected. Using J = 2, the corresponding concentration of moments per Fe is
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c = 0.2 J
molK

/NAkB ln(2J + 1) = 0.015, in good agreement with the Schottky fit. This

gives independent confirmation of the 4.3 μB moment size extracted above.

Returning to the electronic part of the specific heat, our fitted result is, γ = 5.59

mJ/mol K2, and using γ = π
3
g(EF )k2

B, we obtain g(EF ) = 13 states/(eV·unit cell).

This is very close to theoretical estimates of the total g(EF ) for Fe4Al13 [14, 1]. In

addition, g(EF ) is predicted to be heavily dominated by Fe states, as confirmed here,

comparing 1.1 states/eV·cell in Al-s states obtained from the small Korringa 27T−1
1 .

Whether a parabolic pseudogap also occurs in the Fe part of g(EF ) is difficult to

distinguish from the specific heat; such a situation would produce a T 3 term which

would be masked by the phonon term.
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4. Magnetization Measurements

The dc susceptibility, χ(T ), shown in Fig. 19, is of approximate Curie form but with

kinks near 40 K and 200 K. Clearly the high-temperature susceptibility indicates

ferromagnetic correlations. We fit the high-temperature data to a Curie law, χ(T ) =

C/(T − θ) + χd, with

C = NAcp2 μ2
B

3kB

, (5.10)

where NA is Avogadro’s number, c the concentration of magnetic ions per Fe, and

p the effective moment. From this we obtained θ = 88 K and p
√

c = 1.05 μB (with

c measured per Fe, fit range 200-300 K). These moments are slightly larger (per Fe)

than obtained in previous measurements which fitted the curve with an additional

T 3/2 term [16], and there is a clear reduction in paramagnetic moment going from these

results to the moments obtained from specific heat at low temperatures. As shown

below, the difference can be attributed to ferromagnetic clusters or small regions of

second phase, with an ordering temperature near 200 K, which apparently dominate

the high-temperature paramagnetic susceptibility. Similar magnetic clusters have

been evidenced in Fe2VAl and Fe2VGa [21]and in quenched FeAl6 [70].

The M vs. H data shown in Fig. 20 more clearly demonstrate the ferromagnetic

component. In these data M exhibits a ferromagnetic saturation-type behavior at

low fields, and becomes linear at higher fields. We found that the linear behavior at

high fields could be modeled quite accurately according to the 4.3 μB paramagnetic

moments, with density 0.015 per Fe, obtained from low-temperature specific heat as

described above, plus an additive ferromagnetic part, assumed completely saturated

at high fields. The solid curves in Fig. 20 represent such fits, with the only param-

eter being the additive constant at each temperature. The ferromagnetic saturation

magnetization obtained as the fitting parameter is plotted in Fig. 21 vs. T . We also
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included a mean-field saturation curve as a guide to the eye to show that the Tc for

these clusters is somewhat higher than 200 K. This explains the large positive θ and

the prominent kink around 200 K in the inverse susceptibility (Fig. 19), as the ferro-

magnetic clusters freeze below this point, and their contribution to the susceptibility

is reduced.

The extrapolated T = 0 magnetization from Fig. 21 corresponds to approximately

3.3 × 10−4μB per Fe, which is a small fraction of the total paramagnetic moment in

the sample, as can be seen visually from the curves in Fig. 20. Since no large shifts or

other features appear in the NMR data in the region below room temperature, it is

clear that this ferromagnetic component is confined to clusters or small regions, and

is not intrinsic to the main phase. A comparison between field-cooled and zero-field-

cooled magnetization curves, measured in H = 50 Oe (not shown) showed very little

difference over the range 4 K − 300 K, indicating that this phase has a relatively low

coercivity.

Since the M−H curves can be modelled very well according to the paramagnetic

moments obtained from low-temperature specific heat, it is clear that there is little

change in the density of these moments over the temperature range up to 200 K, and

there are two quite distinct moment types in the sample: a minor ferromagnetic phase

plus the dilute population of 4.3 μB paramagnetic moments. The concentration of

paramagnetic moments (0.015 per Fe corresponds to 0.36 per unit cell) is such that

the moments cannot be attributed to a regular crystallographic site, since the five

Fe sites each number 4/cell or 8/cell. Rather, these moments must correspond to

a particular defect in the (nominally nonmagnetic) lattice. These may be formed

in thermodynamic equilibrium during processing or might be associated with the

partially occupied site in this structure [11, 12].
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Fig. 21. Saturation magnetization for ferromagnetic clusters in Fe4Al13 obtained as

described in text. Curve is mean-field saturation curve, intended to guide the

eye.
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C. Fe2Al5

1. Sample Preparation and Structure Analysis

Fe2Al5 was also annealed in a vacuum-sealed quartz tube at 600◦ C for one week,

yielding a polycrystalline ingot which was used for all measurements. The sample was

characterized by powder x-ray diffraction (Bruker D8 Advance) using Cu Kα radiation

and Wavelength Dispersive X-Ray Spectrometry (WDS). Structural refinement was

carried out using the GSAS software package [38, 39].

According to the Fe-Al phase diagram, in the Fe2Al5 phase (Fig. 1), the molar

Fe concentration could vary between 0.25 - 0.28, Fe4Al12 to Fe4Al10.3. In the detailed

structure analysis of one particular Fe2Al5 sample, the formula found is Fe4Al11.2 [19].

We prepared several samples with different starting compositions, including Fe4Al10,

Fe4Al11.2 and Fe4Al11.8. WDS measurements showed 2 phases including FeAl2 and

Fe2Al5 in the samples with Fe4Al10 and Fe4Al11.2 starting compositions. Only in a

sample with starting composition Fe4Al11.8, no second phase was found. From WDS

results, a single phase was observed with the composition Fe29Al71 (Fe4Al9.8) in our

Fe4Al11.8 sample. Henceforth these samples will be reformed to according to the

starting compositions, Fe4Al10, Fe4Al11.2 and Fe4Al11.8. X-ray diffraction results for

Fe4Al11.8 are shown in Fig. 22. Atomic parameters from GSAS are in reasonable

agreement with those reported earlier [19]. In our NMR measurements discussed in

more details below, there is an extra peak from the highly magnetic phase FeAl2 in

our Fe4Al10 and Fe4Al11.2 samples, while a single peak was found in the Fe4Al11.8

sample, confirming the x-ray phase analysis. The following experimental results are

for the single phase Fe4Al11.8 sample, except as noted.
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Fig. 22. Powder x-ray results for Fe2Al5, with results of refinement and difference plot.
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2. NMR of Fe2Al5

In Fig. 23 we show the temperature dependence of T−1
1 for the Fe2Al5 central line

between 4 and 450 K. We found that the results could be fit by assuming a narrow

pseudogap, similar to what we observed in Fe4Al13 [71]. The solid curve in Fig. 23

represents a fit of the form, Eq. (5.4), with a = 3.53 × 10−2 K−1s−1, b = 9.43 × 10−7

K−3s−1 and T−1
1P = 1.42 s−1. The small size of the temperature-independent term,

T−1
1P , confirms that Fe2Al5 is non-magnetic with some dilute magnetic moments, like

the other dilute-moment systems, Fe4Al13 [71] and typical quasicrystals [57].

Thus, in Fe2Al5, the 27Al relaxation behavior can thus be explained by the sum

of the two terms described above – relaxation via conduction electrons with a pseu-

dogap and via paramagnetic centers. The two first terms in Eq. (5.4) dominate the

experimental data, with a = βskBg2
0, b = βsg0g

′′
0(π

2/3)k3
B. From the fitting, we obtain

g′′
0/g0=109(eV)−2 and using the Al atomic hyperfine field Hatom

eff,Al = 1.9 MG [40], we

find g0 ≈ 0.052 eV−1atom−1, a factor 4 smaller than that of Al metal. Compared the

value of Fe4Al13 [71], Fe2Al5 is more metal-like with the larger g(EF ).

3. Magnetization Measurements

The dc susceptibility, χ(T ), shown in Fig. 24 is of approximate Curie form at high

temperatures. We fit the data to a Curie-Weiss law, χ(T ) = C/(T − θ) + χd. From

least-squares fits we obtained θ = -1.59 K and (p
√

c) = 0.54 μB. The average magnetic

moment obtained this way is similar to previous measurements [16]. However, most

of the studies show only a few transition metal atoms are magnetic in the rich-Al TM

aluminides, which is related to the stabilization mechanism [1]. In Fe-Al system, FeAl2

is a concentrated local moment system, while Fe4Al13 is a dilute moment system. And

the NMR results described above show Fe2Al5 is also a dilute moment system.
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Fig. 23. Temperature dependence of relaxation rates for 27Al. Solid curve: fits to the

behavior described in the text. Inset: T1 calculations. The dotted line is the

calculation without the gap, the heavier solid line is the calculation with the

gap, and open squares are experimental data.
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Fig. 24. The dc susceptibility χ(T ) per mol of Fe in an applied field of 1000 G. The

solid curve represents the Curie-Weiss fit described in the text. Inset: χ− χd

vs. temperature.
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4. Specific Heat Measurements

To better understand the electronic structure in Fe2Al5, the specific heat (C) was

measured in the temperature range 1.8 -300 K. A C/T vs. T 2 plot below 30 K is

shown in Fig. 25. We fit the data between 23 K and 30 K to C(T ) = γT + βT 3,

where the first term represents a standard electronic contribution and the second is

due to phonons [67], and obtained γ = 47.86 mJ/mol K2 and β = 0.1469 mJ/mol K4,

with the fit shown Fig. 25. By removing the phonon part, ΔC/T shows a minimum

around 8 K and becomes constant above 20 K, as shown in Fig. 26. This unusual

minimum behavior was also seen in the sample with the starting composition Fe4Al10,

confirming that this is an intrinsic property of Fe2Al5. The observed behavior could

be explained as due to the sum of a Schottky anomaly associated with dilute magnetic

defects and an energy gap of approximately 20 K at the Fermi surface. Assuming

such an energy gap at the Fermi energy, we calculated the electronic contribution by

using the electronic specific heat function [67]:

Ce =
∫ ∞

0
(ε − εF )

∂f

∂T
g(ε)dε, (5.11)

where εF is the Fermi energy, f(ε) is the Fermi-Dirac distribution function, and g(ε)

is the density of states at energy ε. By using various forms of pseudogap including

Lorentzian, triangle, parabolic, and square wells, the latter gave the best-appearing

calculated result as shown in Fig. 26. We found the best fit by using a square well

gap with a width of 2 meV and center at Fermi energy, which fits the data well

above 10 K. This gap shape is plotted in Fig. 27. The DOS at the Fermi level is

less than a few percent of g0 however the value of the well minimum is not sensitively

determined in our calculation. Below 10 K, the specific heat increases with decreasing

temperature. This can be attributed to the very dilute magnetic defects also seen in
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Fig. 25. C/T vs. T 2 for Fe2Al5 between 0 and 30 K. The solid curve is the fitted

function without gap described in the text.

the T1 measurements described above.

An alternative explanation for the low-T behavior might be an Einstein oscilla-

tion term, due to loosely-bound atoms. Indeed, some of the Fe atoms in this structure

are considered in disordered channels of partially-occupied sites, making such an ex-

planation seem reasonable. However, fits to such a model produced a broad peak in

C/T above the low-T down turn [72], which did not agree with the observations. The

narrow electronic gap appears to provide the best explanation for the observed data.

The broad pseudogap width estimated from 27Al relaxation in Fe2Al5 is around

0.27 eV (Fig. 27) using the same definition of width of pseudogap in Fe4Al13. In

Fe2Al5, we also obtained a single sharp feature of full width at half maximum 2
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Fig. 26. ΔC/T vs. T for Fe2Al5 between 0 and 30 K. The solid circles are the experi-

mental data, the open circles are the calculation results described in the text

and the solid squares are the difference.
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Fig. 27. Pseudogap and the single sharp feature of DOS around EF corresponding to

the fits described in the text. Inset: the narrow and deep gap at Fermi level.

meV (Fig. 27) by specific heat measurements. Al70.5Pd21Re8.5 also shows a similar

single sharp feature (14 meV) in NMR spin-lattice relaxation measurements [50]. We

also calculated the T1 with and without the 2 meV gap, but found no big difference

between the results, shown in the inset of Fig. 23. It is due mainly to paramagnetic

relaxation dominating at low temperature that we can not distinguish the difference

between these two results.

Scanning tunneling spectroscopy measurements show a single square-root dip in

some quasicrystals’ one electron-DOS as an intrinsic property. This dip is symmet-

ric, centered at the Fermi level, and the square root energy dependence is followed
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from typically 10 meV to 300 meV [63]. This square-root dip is attributed to the

electron-electron interactions in the presence of quasicrystalline structure that shares

many properties with disordered systems. For disordered systems close to the metal-

insulator (MI) transition, considering localization by disorder and electron-electron

interaction, McMillan obtained a square-root one electron-DOS energy dependence

in the metallic regime [73]. Also electron-electron interaction effects enhanced by

the marginally localized character of electronic states in a quasiperiodic lattice could

smooth out the spiky structured DOS predicted theoretically [74]. Even in the com-

plex ordered structure of the approximants, this is believed to be the case. Therefore,

this may explain the observed behavior in Fe2Al5. This single sharp feature deepens

the pseudogap at EF and represents an additional temperature-dependent reduction

of the DOS that might be crucially related to the low-temperature semiconductor-

like and insulator-like electronic properties of some quasicrystal families, including

the metal-to-insulator transition [75]. The appearance of the sharp feature at EF in

the DOS should thus have a profound effect on the electronic DOS-related physical

properties of quasicrystals and approximants.

Fe4Al13 might have similar behavior, and this could be the reason for the upturn

in NMR shifts at low temperatures (Fig. 15). But due to the presence of a great

number of dilute magnetic defects, the possible presence of this behavior was not

observed in NMR T1 and specific heat measurements. Low-T x-ray and higher field

NMR measurements might be used to further understand this behavior



65

D. Al20V2Eux

1. Sample Preparation and Structure Analysis

Al20V2Eu sample studied here was prepared with starting composition Al22V2Eu1.05

allowing for the evaporation of Al and Eu. The resulting ingot was annealed in

a vacuum-sealed quartz tube at 650◦ C for two weeks, yielding a polycrystalline

ingot which was used for all measurements. X-ray diffraction confirmed the antici-

pated Fd3m (#227) structure, while electron microprobe [wavelength dispersive spec-

troscopy (WDS)] indicated a Al20V2Eu0.7 composition, with a minor Al metal second

phase. Thus the Al16 polyhedra (Fig. 10) are filled only to 70% of the theoretical

maximum in this case.

2. Magnetization Measurements

DC susceptibility results are shown in Fig. 28. High-temperature data were fit to a

Curie law. We obtained p = 5.8 μB per f.u. In the susceptibility results for Al20V2La

measured for comparison (Fig. 28), only diamagnetism was observed. Thus, the

observed moment in Al20V2Eu0.7 can be attributed to Eu. Using c = 0.7 (the com-

position obtained by WDS), 8.3 μB per Eu is obtained using the fit of the DC sus-

ceptibility to the Curie-Weiss law. This is slightly higher than the 7.9 μB Eu(2+)

free-ion moment. The difference of the moment could be due to the error of WDS

composition calibration, although the slightly enhanced moment is similar to results

for other EuT2Al20 materials [27]. The extrapolated Curie temperature, Tc = 3.7 K,

indicates ferromagnetic interactions, and an apparent ferromagnetic transition near 4

K was observed-based on a singularity in the magnetization. Magnetization measure-

ments extending to a lower temperature range measurement will be helpful to better

understand this behavior.
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Fig. 28. The dc susceptibility χ(T ), per mol Al20V2Eu0.7, in an applied field of 100

G. Dashed curve represents the Curie fit described in the text. Open squares

represent the susceptibility results of Al20V2La. Inset: χ−1 vs temperature,

with curve corresponding to the the same fit.
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3. Specific heat Measurements

Specific heat (C) was measured from 1.8 to 300 K in fields between 0 and 8 T. C/T

is plotted vs. T 2 in Fig. 29. Below 10 K, a Schottky anomaly is observed, however

between 22 and 32 K a straight-line C/T = γ + βT 2 fit was obtained, with electron

and phonon contributions γ and β, respectively [67]. γ increases steadily from 45 to

344 mJ/(K mole f.u.) with field up to 8 T (or up to 490 mJ/K mole Eu), shown

in Fig. 30. This is unlikely to result from transition orbitals and thus appears to

signal participation of Eu moments in the conduction band, with a moderately heavy

Fermion state at the highest field available in our apparatus. The magnetic transition

was also observed around 4 K in specific heat measurements with zero magnetic field

(inset of Fig. 29), consistent with the susceptibility results.

4. NMR Measurements

To further understand the properties, 27Al NMR experiments were performed. We

recorded 27Al NMR spectra between 4 K and 415 K, using standard π/2 − τ − π

spin-echo sequences. Fig. 31 displays an example of an 27Al-NMR spectrum recorded

at room temperature. The broad line is a superposition of powder patterns due to the

3 Al sites, giving an unresolved lineshape. From the pulse-length dependence of the

spin echo, we find that the center of the spectrum represents the central (1/2←→-1/2)

nuclear Zeeman transition of Al, while the shoulders have somewhat longer 90◦ pulse

lengths, characteristic of satellite lines [55]. Also the signal from 51V overlapping with

the Al satellite lines (Fig. 31) was observed. The peak of 51V NMR signal moves to

the lower-frequency side of 27Al with decreasing temperature.

In Fig. 32 we show the temperature dependence of T−1
1 for the Al20V2Eu0.7 central

line between 5 and 450 K. Above 40 K metallic-like Korringa behavior (T−1
1 ∝ T )
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Fig. 29. C/T vs. T 2 up to (32 K)2 in fields between 0 T and 8 T. Dashed lines:

γ + βT 2 fits for 0 and 8 T. Inset: Specific heat results at H = 0 T
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Fig. 30. γ vs. field.
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Fig. 31. 295 K 27Al NMR powder pattern of Al20V2Eu0.7
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Fig. 32. Temperature dependence of relaxation rates for 27Al. Solid curve: fits to the

behavior described in the text.

is observed plus a large temperature-independent term due to rapidly fluctuating

local moments. Such behavior is typical of concentrated paramagnetic metals[59].

Near 40 K, T−1
1 (T ) exhibits a clear change, with a larger Korringa slope and little

local moment behavior. The increasing of the Korringa relaxation slope confirms the

hybridization-enhanced density of states at the Fermi level from specific heat results.

The disappearance of the local-moment term is consistent with the enhanced γ, and

similar behavior is seen in dense Kondo systems such as CeNiAl4 [76].

The average NMR shift and linewidth (the full width at half-maximum of the
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Fig. 33. 27Al NMR shifts and FWHM linewidths vs. χ for Al20V2Eu0.7.

NMR line) were measured at each temperature, and plotted against the magnetic

susceptibility in Fig. 33. At high temperature, the NMR shift and linewidth are pro-

portional to the susceptibility, corresponding to 27Al directly coupled to neighboring

Eu moments, with a negative transfer hyperfine coupling. Similar behavior was also

observed in other paramagnetic systems [59]. Below 40 K, a deviation observed in

the NMR shift and linewidth vs. χ reflects a change-over to a new magnetic regime,

which is consistent with the T1 behavior. This breakdown in the dependence on χ

has been observed in various Kondo systems [77].

M − H measurements at high magnetic fields also show a similar moment loss,

as shown in Fig. 34. In this figure, we used Brillioun functions for M(H, T ) based on
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the paramagnetic moment obtained from high-T Curie fits to calculate the theoretical

values. The upturn with decreasing temperature is due to the absence of θ in the

Brillouin function, however a divergence between different curves is seen near 40 K,

the same as the NMR crossover temperature.

Fig. 35 shows the resistivity results at different magnetic fields. Without mag-

netic field, a Kondo-type behavior, in other words a resistivity upturn with decreasing

temperature, is observed. By applying the field, the Kondo behavior is drastically

suppressed consistent with the loss of the magnetic moment in susceptibility and

NMR measurements, and a non-Fermi-liquid-like behavior, ρ ∝ TD (1 < D < 2), is

found below 40 K, characterized by an enhanced electronic density of state at EF .

Non-Fermi-liquid behavior is often observed at a position in the phase diagram near a

magnetically ordered state, indicating that non-Fermi-liquid behavior may be related

to magnetic instability that arises at T = 0. The transition from magnetic order to a

non-Fermi-liquid state is driven by a control parameter other than temperature, e.g.,

external pressure, composition or magnetic field at T = 0. The control parameter

thus tunes a system at T = 0 from an ordered ground state towards a non-ordered

state crossing a quantum critical point [78, 79]. The non-Fermi-liquid-like behavior

between Kondo low field and Fermi-liquid high field regimes in Al20V2Eu could be

a consequence of a field driven crossover from a magnetic to a non-magnetic state.

However, the apparent linear-T 2 resistivity can only be observed over a rather small

temperature range. Ultra-low temperature and higher magnetic field measurements

would be useful to confirm the non-Fermi-liquid-like to Fermi-liquid transition.

Field-induced heavy Fermion behavior has been observed in Ce0.5La0.5B6 [80] and

PrFe4P12 [81], however these cases are associated with antiferroquadrupolar interac-

tions. It may be that the present enhancement is attributable to a field effect on the

narrow electronic density of states features of the Al10V framework [24]. This may
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Fig. 34. Experimental/theoretical magnetization ratios, described in text, for the in-

dicated fields. Inset: DC susceptibility result at high magnetic fields.
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Fig. 35. Resistivity vs. temperature at different magnetic fields.
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be akin to the behavior of SmB6 [32], a Kondo insulator, in which the Kondo gap

can be closed and the electron mass increased by the presence of an applied mag-

netic field. Theoretical studies show that the magnetic field changes the sign of the

magnetization of conduction electrons, thus the Kondo effect dominates by aligning

the spins of conduction and f electrons in opposite directions, and thus Kondo cor-

relations produce the large mass enhancement [34]. Experiments at higher magnetic

fields may help to further elucidate the changes in Al20V2Eu, since apparently the

mass enhancement has not saturated even at 8 T.
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CHAPTER VI

CONCLUSION

In summary, the magnetism in Al-rich Fe-Al systems is quite varied. Both Fe4Al13

and Fe2Al5 are non-magnetic, typical behavior for transition-metal aluminides. NMR

measurements show dilute paramagnetic moment behavior. Specific heat results

demonstrate the presence of 4.3 μB dilute magnetic impurities in Fe4Al13. However,

FeAl2 is characterized as a concentrated local moment system by NMR T1 measure-

ments, and spin-glass transition at low temperature is confirmed.

I have shown measurements of several related transition metal aluminide sys-

tems. Results for Fe4Al13 and Fe2Al5 show pseudogap behavior typical of QCs and

approximants. The NMR data yield a broad energy gap of 0.15 eV and 0.27 eV but

with a residual Fermi-level DOS of about 0.011eV−1atom−1 and 0.052 eV−1atom−1,

in Fe4Al13 and Fe2Al5 respectively. Thus, Fe2Al5 is more metal-like, however the two

are rather similar in the respect.

However, besides the broad pseudogap, a deep, narrow gap of approximate width

2 meV was detected in Fe2Al5 by specific heat measurements. This single sharp feature

might be attributed to electron-electron interactions in the presence of disorder. The

upturn in the NMR shifts at low temperature of Fe4Al13 (Fig. 15) could also be due

to a similar sharp feature at Fermi level, however the result is less clear in that case.

The appearance of the sharp feature at EF in the DOS may thus have a profound

effect on the electronic DOS-related physical properties of QCs and approximants.

Al20V2Eu was studied using different methods. Magnetization results indicate

a nearly 2+ Eu valence state, and a magnetic transition near 4 K. A magnetic-field-

induced heavy-fermion state was detected with a gradual enhancement of the elec-

tronic term γ by specific heat measurements. The appearance of this low-temperature
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magnetic state is built from moments affected by Kondo screening, which is enhanced

by application of a magnetic field. The high-field 27Al NMR T1 exhibits a crossover

from local-moment behavior to Korringa-like behavior near 40 K, showing a typical

dense Kondo system. Susceptibility and resistivity measurement at different magnetic

fields also confirm the loss of the magnetic moment within the magnetic field. Thus

these data provide a consistent picture indicating that Al20V2Eu is a rare example

of a Eu-containing heavy-Fermion material, with a transition into the Fermi-liquid

state induced by an applied magnetic field. Experiments at higher magnetic fields

may help to further elucidate the unusual changes in Al20V2Eu.
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[69] H. Meštrić, R.-A. Eichel, K.-P. Dlinse, A. Ozarowski, J. V. Tol and L. C. Brunel,

“High-frequency electron paramagnetic resonance investigation of the Fe3+ im-

purity center in polycrystalline PbTiO3 in its ferroelectric phase,” J. Appl. Phys.,

vol. 96, pp. 7440 - 7444, 2004.

[70] R. A. Dunlap, D. J. Lloyd, I. A. Christie, G. Stroink and Z. M. Stadnik,

“Physical-properties of rapidly quenched Al-Fe alloys,” J. Phys. F: Met. Phys.,

vol. 18, pp.1329 - 1341, 1988.

[71] J. Chi, Y. Li, W. Gou, V. Goruganti, K. D. D. Rathnayaka and J. H. Ross, Jr.,

“Pseudogap and dilute magnetism in decagonal approximant Fe4Al13,” submitted

to Phys. Rev. B., 2007

[72] M. B. Tang, H. Y. Bai and W. H. Wang, “Tunneling states and localized mode

in binary bulk metallic glass,” Phys. Rev. B., vol. 72, pp. 012202.1 - 4, 2005.

[73] W. L. McMillan, “Scaling theory of the metal-insulator transition in amorphous

materials,” Phys. Rev. B, vol. 24, pp. 2739 - 2743, 1981.

[74] J. Hafner, “Electronic structure of quasicrystals,” Current Opinion in Solid State

& Materials Science, vol. 4, pp. 289 - 294, 1999.

[75] F. S. Pierce, S. J. Poon and Q. Guo, “Electron localization in metallic quasi-

crystals,” Science, vol. 261, pp. 737 - 739, 1993.



88

[76] K. Ghoshray, B. Bandyopadhyay and A. Ghoshray, “NMR study of the elec-

tronic state in the dense Kondo compound CeNiAl4,” Phys. Rev. B, vol. 65,

pp. 174412.1 - 6, 2005.

[77] E. Kim and D. L. Cox, “Knight-shift anomalies in heavy-electron materials,”

Phys. Rev. B, vol. 58, pp. 3313 - 3340, 1998.

[78] T. Vojta, “Quantum phase transitions in electronic systems,” Ann. Phys., vol. 9,

pp. 403 - 440, 2000.

[79] G. R. Stewart, “Non-Fermi-liquid behavior in d- and f-electron metals,” Rev.

Mod. Phys., vol. 73, pp. 797 - 855, 2001.

[80] S. Nakamura, M. Endo, H. Aoki, N. Kimura and T. Nojima, “Field-induced

transition from non-Fermi-liquid state to heavy Fermion state in Ce0.5La0.5B6,”

Phys. Rev. B, vol. 68, pp. 100402.1 - 4, 2003.

[81] Y. Aoki, T. Namiki, T. D. Matsuda, K. Abe, H. Sugawara and H. Sato, “Anoma-

lous heavy-fermion and ordered states in the filled skutterudite PrFe4P12,” Phys.

Rev. B, vol. 65, pp. 064446.1 - 7, 2002.



89

VITA

Ji Chi, 20 Brickyard Dr. Apt. C22, Bloomington, IL.

Ji Chi was born January 9, 1978 in Anhui, China. He received his bachelor’s

degree in physics from the University of Science and Technology of China. He got

his Master’s degree in Condensed matter experimental Physics from Texas A&M

University in 2003. His email address is club hutong@hotmail.com.


