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ABSTRACT

Graph Searching and a Generalized Parking Function. (August 2007)

Dimitrije Nenad Kostić, B.A., Lawrence University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Catherine H. Yan

Parking functions have been a focus of mathematical research since the mid-1970s.

Various generalizations have been introduced since the mid-1990s and deep relation-

ships between these and other areas of mathematics have been discovered. Here, we

introduced a new generalization, the G-multiparking function, where G is a simple

graph on a totally ordered vertex set {1, 2, . . . , n}. We give an algorithm that con-

verts a G-multiparking function into a rooted spanning forest of G by using a graph

searching technique to build a sequence F1, F2, . . . , Fn, where each Fi is a subforest of

G and Fn is a spanning forest of G. We also give another algorithm that converts a

rooted spanning forest of G to a G-multiparking function and prove that the resulting

functions (between the sets of G-multiparking functions and rooted spanning forests

of G) are bijections and inverses of each other. Each of these two algorithms relies

on a choice function ζ , which is a function from the set of pairs (F,W ) (where F is

a subforest of G and W is a set of some of the leaves of F ) into W . There are many

possible choice functions for a given graph, each giving formality to the concept of

choosing how a graph searching algorithm should procede at each step (i.e. if the al-

gorithm has reached Fi, then Fi+1 is some forest on the vertex set V (Fi)∪{ζ(Fi,W )}

for some W ).

We also define F -redundant edges, which are edges whose removal from G does

not affect the execution of either algorithm mentioned above. This concept leads to a
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categorization of the edges of G, which in turn provides a new formula for the Tutte

polynomial of G and other enumerative results.
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CHAPTER I

BACKGROUND AND INTRODUCTION

The purpose of this chapter is to introduce classical parking functions, their

generalizations, and survey major results in this field. We will generally eschew

proofs, except where they are short and provide some intuition.

A. Notation

The following notation will be employed throughout this dissertation. We let N
denote the non-negative integers and P the positive integers. We use [n] to denote

{1, 2, . . . , n}. The symmetric group on n letters will be denoted Sn.

B. Classical Parking Functions

A parking function of length n is a sequence (a1, a2, . . . , an) of non-negative integers

for which there exists a permutation π ∈ Sn such that 0 ≤ aπ(i) ≤ i−1 for all indexes

i. In other words, if we choose a permutation π such that aπ(1) ≤ aπ(2) ≤ . . . ≤ aπ(n)

then we have (aπ(1), aπ(2), . . . , aπ(n)) ≤ (0, 1, . . . , n−1). This increasing rearrangement

is sometimes called the order statistic of the sequence. (Some authors prefer to let

the ai be positive; that is, to define 1 ≤ aπ(i) ≤ i. This is an unimportant distinction,

and everything that will be said below can easily be modified to fit this terminology.)

It is immediate from the definition that any rearrangement of the entries of a parking

function is also a parking function. The fact that these entries are not necessarily

unique makes counting the number of parking functions of a given length more difficult

The journal model is Advances in Computational Mathematics.
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than counting the size of the symmetric group Sn, but we will soon see that this is

still not very difficult.

A more engaging way to think of parking functions (and one which justifies the

nomenclature) is as follows. Consider a one-way street with n empty parking spaces.

Suppose n cars enter the street, single file, and each driver independently chooses

a spot in which she would like to park. (The ith driver’s preferred parking spot is

designated ai.) The first driver to enter the street may simply park wherever she

chooses. Every subsequent driver will drive up the street to the desired spot, and

park there if it is unoccupied. Otherwise, she must drive further up the street and

park in the first vacant spot she comes across. If no such spot is available, then

she will have to leave. Then, (a1, a2, . . . , an) is a parking function if every driver can

find a parking spot. Computer scientists might view this as a linear probe with no

“wrap-around”.

This concept was first defined in 1966 by Konheim and Weiss in [15].

Example 1. If n = 2, then there are three parking functions: (0, 0), (1, 0), and (0, 1).

If n = 3, then there are sixteen parking functions: (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0),

(0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0),

(2, 0, 1), and (2, 1, 0).

The attentive combinatorialist will guess (correctly) that the number of parking

functions of length n is given by the Cayley number (n + 1)n−1. There are several

ways to prove this fact, and it happens to be a special case of theorem 12 in section II.

There is a simple way to prove this fact. Imagine that the one-way street is circular,

and that there is an n+1st parking spot between the 1st and nth spots. We allow our

n cars to prefer any one of these n+ 1 spots. Since now the cars can “wrap around”,

all n cars will always be able to park, and there will be exactly one empty spot. This
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empty spot can be any one of the n+1 spots, and if it is the n+1st spot we inserted,

then our preference sequence is a parking function. Equivalently, if (a1, a2, . . . , an) is

the preference sequence, then there exists a unique i between 1 and n + 1 such that

(a1+ i, a2+ i, . . . , an + i) is a parking function. As we have (n+1)n possible preference

sequences, and they are grouped into equivalence classes each of size n + 1, we have

exactly (n+1)n

n+1
= (n+ 1)n−1 parking functions.

The Cayley numbers are more famous for enumerating another sequence of sets.

Let V = V (G) be a set and let E = E(G) be a set of subsets of V , each of size

2. The set V is called the set of vertices and E the set of edges. The ordered

pair (V (G), E(G)) is called the graph G. When V is visualized as a set of dots in the

plane and E as lines connecting these dots, a number of other graph-theoretic notions

become easy to understand. A path between two vertices is a sequence of edges from

one to the other. A graph is connected if between every pair of vertices there is a

path. A cycle in G is a path that begins and ends at the same vertex. A tree is

a connected graph with no cycles. In fact, the following classical theorem provides

multiple ways to think of a tree.

Theorem 1. Any two of the following conditions implies the third, and trees are

exactly the graphs exhibiting them.

(1) G is connected.

(2) G has no cycles.

(3) |V (G)| − 1 = |E(G)|.

Below in Figure 1 we illustrate all the trees on three and four vertices. The

vertices are labelled, but we have suppressed the labels.

It is a classical result that the Cayley numbers enumerate the set of trees on

n + 1 vertices. In the mid-1970’s several papers, such as [10], exploited this fact to
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Fig. 1. All labelled trees on three and four vertices.

create bijections between the set of parking functions of length n and trees on n + 1

vertices.

A fascinating connection exists between classical parking functions and the theory

of noncrossing partitions. If S = {1, 2, . . . , n}, a partition of S is a set of subsets

P = {A1, A2, . . . , Ak} of S which are pairwise disjoint and whose union is S. A

partition is noncrossing if whenever a, c ∈ Ai and b, d ∈ Aj have the property that

a < b < c < d, we have Ai = Aj . The noncrossing partitions of a set S have a

canonical poset order (often called the order given by refinement): if P1 and P2 are

noncrossing partitions of S, then P1 ≤NC P2 if for every A ∈ P1 there exists B ∈ P2

such that A ⊆ B.

If S = {1, 2, 3, 4} then there is only one crossing partition: 13|24. Below we

illustrate the lattice of noncrossing partitions of S under the order ≤NC .

For any S = [n], NC(n) always has a maximal element 1̂ (given by the partition

P = 123 . . . n) and a minimal element 0̂ (given by the partition P = 1|2| . . . |n). In

Figure 2, one can easily see that there are 16 paths (more commonly called maximal

chains) between 0̂ and 1̂.

In fact, in [27] Stanley discovered a bijective labelling of the maximal chains of

NC(n + 1) using the parking functions of length n. Noncrossing partitions play an
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13|2|4 1|24|3 1|2|34 14|2|31|23|4 12|3|4

134|2 1|234 12|34 14|23124|3123|4

1234

1|2|3|4

Fig. 2. The lattice NC(4).

important role in free probability theory, which studies a certain analog of indepen-

dence for noncommutative random variables. The free cumulant functional can be

defined as

µ(X1, X2, . . . , Xn) :=
∑

P

∏

B∈P

κ(Xi|i ∈ B)

where the product ranges over all noncrossing partitions P of [n].

C. Generalizations

At least as a branch of combinatorics, the theory of parking functions lay mostly

dormant between the mid-1970’s and the early 1990’s. Interest in the theory was re-

vitalized with the introduction of a number of generalizations, each with its own set

of distinct and interesting results, some with implications reaching far beyond com-

binatorics. Several of these generalizations will resurface in subsequent chapters, and

this section will also outline some of the main results from the theory of generalized

parking functions.
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1. x-Parking Functions

Let x = (x1, x2, . . . , xn) ∈ Nn . An x-parking function is a sequence (a1, a2, . . . , an)

whose order statistic satisfies 1 ≤ aπ(i) ≤ x1+ . . .+xi. It is clear that if 1 = x1 = x2 =

. . . = xn, then the x-parking functions are exactly the parking functions of length n,

and that there are no x-parking functions if x1 = 0. This definition was first given

by Pitman and Stanley in [23]. They proved that if Pn(x) denotes the number of x-

parking functions and park(n) denotes the set of ordinary parking functions of length

n, then

Pn(x) =
∑

(a1,...,an)∈park(n)

xa1xa2 . . . xan
= n!Vn(x)

where Vn(x) is the volume of a certain polytope called the associahedron. An impor-

tant special case of this identity is

Pn(1, q, q2, . . . , qn−1) =
∑

(a1,...,an)∈park(n)

qa1+a2+...+an−n

The inversion enumerator of the complete graph on the vertex set {1, 2, . . . , n} is

defined as

In(q) :=
∑

T

qinv(T )

where the sum ranges over all spanning trees T of Kn and where inv(T ) is the number

of edges {i, j} ∈ E(T ) such that i > j and i is closer to the vertex 1 along the unique

path in T from 1 to i to j. A result of Kreweras in [16] implies that

n!Vn(1, q, q2, . . . , qn−1) = q(
n
2)In(1/q)

We pause here to note some of the classical results on the inversion enumerator

which can be generalized (see section 2).
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Theorem 2.

1. ([14], [16], [22]) In(1 + q) =
∑

G

q|E(G)|−n

where G ranges over all connected simple graphs on n+ 1 labelled vertices.

2. ([12])
∑

n≥0

In(q)(q − 1)nx
n

n!
=

∑
n≥0 q

(n+1
2 ) xn

n!∑
n≥0 q

(n
2) xn

n!

3. ([16]) q(
n

2)In(1/q) =
∑

(a1,...,an)

qa1+...+an

where (a1, . . . , an) ranges over all parking functions of length n.

4. ([16]) Given I1(q) := 1, the inversion enumerator satisfies the recurrence

In(q) =

n∑

i=0

(
n

i

)( i∑

j=0

qj

)
Ii(q)In−i(q)

Another interesting formula Stanley and Pitman were able to prove was that if

l, k ≥ 1 and x = (l, k, k, . . . , k) is a vector of length n then Pn(x) = l(l + nk)n−1.

In [31], Yan found an interesting interpretation of this formula. A rooted k-forest on

the vertex set {1, 2, . . . , n} is a rooted forest whose edges are each colored in one of k

colors. Then, there is a bijection between the x-parking functions and the sequences

(T1, T2, . . . , Tk) where each Ti is a rooted k-forest, Ti and Tj are disjoint if and only if

i 6= j, and the union of the vertex sets of the Ti is {1, 2, . . . , n}.

2. k-Parking Functions

This particular generalization will not play a large role in the subsequent chapters of

this dissertation, but we include discussion here because their relationship to hyper-

plane arrangements is an interesting and important one.

Let k ∈ N . A k-parking function of length n is a sequence (a1, a2, . . . , an) whose

order statistic satisfies 1 ≤ aπ(i) ≤ ki. Thus, the 1-parking functions of length n are

exactly the usual parking functions of length n.
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In [28], Stanley showed that k-parking functions are closely related to a certain

hyperplane arrangement. If n, k ≥ 1 the extended Shi arrangement Sk
n is the collection

of hyperplanes given by the equations

xi − xj = −k + 1,−k + 2, . . . , k where 1 ≤ i < j ≤ n

Example 2. The Shi arrangement S2
3 , viewed from different perspectives. Note that

each hyperplane depicted extends infinitely.

Fig. 3. Some views of S2
3 .

We define the regions of a hyperplane arrangements to be the path-connected

components of the complement (in the ambient space Rn). (One can easily see these

regions in the leftmost image in Example 2.) It turns out that there is a natural way

to label the regions cut out by these hyperplanes with the k-parking functions. We

choose one of these chambers, the one whose points satisfy the inequalities x1 > x2 >

. . . > xn > x1 − 1, to be the “base” region and we label it R0. There is then a notion

of distance between a region R and R0: given a straight line connecting a point in

R and a point in R0, let d(R) be the number of hyperplanes the line intersects. It

is not difficult to see that d(R) is well-defined and since Sk
n has only finitely many

regions, d(R) < ∞. We now define labels λ for each region R of Sk
n. First set

λ(R0) := (0, 0, . . . , 0). If R′ is a labelled region separated from an unlabelled region
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R by the hyperplane xi − xj = m, then

λ(R) :=





λ(R′) + ei if m > 0

λ(R′) + ej if m ≤ 0

It turns out that the λ(R) are exactly the k-parking functions of length n, giving a

bijection.

This correspondence, while interesting, reveals little about k-parking functions

as combinatorial objects. Recall that in section 1 above, we noted that

In(q) =
∑

(a1,...,an)

qa1+...+an−n

where In(q) is the inversion enumerator of Kn. We now introduce a generalization of

the inversion enumerator. If F is a rooted b-forest, as defined in section 1, set

l(F ) := inv(F ) +
∑

(v,e)

κ(e)

where inv(F ) is the total number of inversions (disregarding the color of the edges)

on the trees of F , where the sum ranges over all pairs (v, e) where e is an edge on the

unique path between the vertex v and the root of the tree of F on which it sits, and

where κ(e) is the color of the edge e. We then define the k-inversion enumerator

Ik
n(q) :=

∑

F

ql(F )

where the sum ranges over all rooted k-forests F whose vertex set is [n].

Theorem 3. The following hold for any k ≥ 1.

1. ([28]) Ik
n(1 + q) =

∑

G

qe(G)+r(G)−n where G ranges over multirooted b-graphs on

[n]
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2. ([28])
∑

n≥0

Ik
n(q)(q − 1)nx

n

n!
=

∑
n≥0 q

k(n

2)+n xn

n!∑
n≥0 q

k(n
2) xn

n!

3. ([28]) qk(n

2)In(1/q) =
∑

(a1,...,an)

qa1+...+an where (a1, . . . , an) ranges over all k-parking

functions.

4. ([30]) Given Ik
1 (q) := 1, the k-inversion enumerator satisfies the recurrence

Ik
n+1(q) =

∑

a0+a1+...+ak=n

(
n

a0, a1, . . . , ak

)
qa1+2a2+...+(k−1)ak−1

( n−ak∑

i=0

qi

) b∏

i=0

Ik
ai

(q)

where a0, a1, . . . , ak are non-negative integers.

These identites generalize the classical results for In(q) (see the corresponding

results in theorem 2 above).

Let NCk
n+1 be set of noncrossing partitions where k divides the size of every

block. This set also has a poset structure, again under the refinement order (note

that it is not a lattice if k > 1, since it has no 0̂ element). In [27], Stanley proved that

k-parking functions enumerate the maximal chains in NCk
n+1, by a labelling scheme

similar to that for ordinary parking functions.

3. (p, q)-Parking Functions

In [7], Cori and Poulalhon proposed a new generalized parking function apparently

intended to modify the parking analogy introduced above. Given positive integers p

and q, a (p, q)-sequence is a sequence (u, v) = (u1, . . . , up, v1, . . . , vq) such that for all

i ≤ p and j ≤ q, 0 ≤ ui ≤ q and 0 ≤ vi ≤ p. Clearly, there exists a partial order ≤(p,q)

on (p, q)-sequences in which (u1, v1) ≤p,q (u2, v2) if u1 ≤ u2 and v1 ≤ v2 in the usual

lexicographic order. Given any permutation σ = σ1σ2 . . . σp, σp+1, . . . , σp+q ∈ Sp+q,

we can define a (p, q)-sequence (uσ, vσ) = (uσ
1 , . . . , u

σ
p , v

σ
p+1, . . . , v

σ
p+q) where

uσ
i := |{σp+j | 1 ≤ j ≤ q, σp+j < σi}| if 1 ≤ i ≤ p

vσ
i := |{σj | 1 ≤ j ≤ p, σj < σi}| if p+ 1 ≤ i ≤ p+ q



11

A (p,q)-parking function is a (p, q)-sequence (u, v) such that there exists σ ∈ Sp+q

with (u, v) ≤p,q (uσ, vσ). The permutation σ giving (uσ, vσ) is called a certificate for

(u, v). An example will help demystify these definitions.

Example 3. Let p = 4 and q = 3. To see that (u, v) = (0001341) is a (4, 3)-parking

function, we need to find a σ ∈ S4+3 = S7 such that (u, v) ≤4,3 (uσ, vσ). Consider

σ = 1524763 ∈ S7. Using the above formulae, we can see that (uσ, vσ) = (0101442),

and since (0001341) ≤4,3 (0101442), we have found a (p, q)-parking function.

The permutation σ in the above example is not unique; we could also have

chosen 1524367, 1245736, or many other permutations. In fact, an entire family of

certificates for (u, v) can be obtained from the usual action of Sp × Sq on 1524763.

It is not difficult to see that the set of (p, q)-parking functions is invariant under the

action of Sp × Sq.

Cori and Poulalhon also introduced an interesting parking analogy. Consider

p+ q cars, p of them blue and q of them red, all in line to park on a one-way street.

The (p, q)-sequence (u, v) = (u1, . . . , up, vp+1, . . . , vp+q) is a (p, q)-parking function if

there exists a way for these cars to park so that the ith blue car has exactly ui red

cars parked behind him, and the jth red car has exactly vp+j blue cars parked behind

him.

Despite the apparently contrived definitions given, (p, q)-parking functions are

closely related to the classical parking functions via the following two propositions,

both proven in [7].

Proposition 4. A (p, q)-sequence (u, v) is a (p, q)-parking function if and only if the

concatenation of u and v is a parking function of length p+ q.

Proposition 5. A sequence u of length n is a parking function if and only if (u, u)

is an (n, n)-parking function.
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Cori and Poulalhon also prove that there are (p+q+1)(p+1)q−1(q+1)p−1 (p, q)-

parking functions and 1
p+q+1

(
p+q+1

p

)(
p+q+1

q

)
(p, q)-parking functions whose values are

strictly increasing. (In algebraic terms, the action of Sp×Sq on the set of (p, q)-parking

functions induces exactly 1
p+q+1

(
p+q+1

p

)(
p+q+1

q

)
equivalence classes.)

4. G-Parking Functions

This generalization is perhaps the most abstract of the four, and also the one that will

be of most interest in the upcoming chapters, so we will devote more space to it here.

Postnikov and Shapiro introduced in [24] the following generalization. A directed

graph G = (V (G), E(G)) is a graph in which each element of E(G) is a length-2

vector (i, j). (Edges are thus thought of as being arrows from i to j.) We define the

outdegree of a vertex i in a subset U ⊆ V (G) to be OU (i) := #{j /∈ U |(i, j) ∈ E(G)}.

Let V (G) = {0, 1, 2, . . . , n}. A function f : V (G) → N into the non-negative integers

is called a G-parking function if for every U ⊆ {1, 2, . . . , n} there exists an i ∈ U

such that f(i) < OU (i). (Later, in chapter II, we will define G-parking functions for

undirected graphs.) If i ∈ U exhibits f(i) < OU (i), we say i is well-behaved in U .

The vertex 0 will often be called the root of the function f .

Example 4. The illustration below depicts a G-parking function f for the illustrated

digraph. The vertices are labelled f(i), iii where i is the vertex label. The vertex 0 is

simply labelled as such.

The main enumerative result on G-parking functions is that they are in bijection

to the (labelled) spanning trees of G. Postnikov and Shapiro proved this indirectly,

by putting G-parking functions in bijection to another set of objects known as critical

configurations (and also by other names), which will be explained in more detail in

chapter III, section B. Work of Gabrielov in [11] proved that critical configurations
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0

0, 2 1, 3

0, 1

Fig. 4. An example of a G-parking function.

are in bijection to spanning trees. Chebikin and Pylyavvskyy gave an algorithm in

[5] which, subject to a certain parameter called a proper set of tree orders, outputs

an explicit bijection between the set of G-parking functions and the set of spanning

trees of G. Changing the proper set of tree orders will in general induce a different

bijection.

For parking functions generalized to graphs, such as the G-parking (and, as we

will later see, the G-multiparking function and the (X,Y)–parking function), there

is a burning algorithm to determine, in O(#V (G)) number of operations, whether a

vertex function is a generalized parking function. The algorithm was originally stated

in [9] and later adapted to this scenario in [5]. A burning algorithm can be thought

of as any procedure which establishes an ascending chain A1 ( A2 ( . . . ( A#V (G) =

V (G) of vertex subsets, each containing a well-behaved (in the appropriate sense)

vertex. In order for the existence of such a chain to prove that every vertex subset

has a well-behaved vertex, an analog of the following lemma must hold true.

Lemma 6. If v ∈W ⊆ U and v is well-behaved in U , then v is also well-behaved in

W .

Proof. Note that OU (v) ≤ OW (v) and therefore xOU (v) ≤ xOW (v) and yOU (v) ≤ yOW (v).

The conclusion follows.
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One begins the algorithm by finding a well-behaved vertex i1 in V (G) − {0}. If

it does not exist, the function is not a G-parking function. If it does, then find a

well-behaved vertex i2 in V (G) − {0, i1}. If it does not exist, the function is not a

G-parking function. If it does, then find a well-behaved vertex i3 in V (G)−{0, i1, i2},

and so forth until we have “removed” all vertices from consideration. Our function

is a G-parking function if and only if at the end of this process we have removed all

vertices from consideration. More formally,

Proposition 7. A vertex function is a G-parking function if and only if there exists

an ordering π(1), π(2), . . . , π(n) of the vertices of a graph G such that for every j,

π(j) is well-behaved in Uj := {π(j), . . . , π(n)}. (The permutation π will be called a

certificate for f . )

Proof. It is clear from the definition that for any G-parking function some order π

exists. Suppose, conversely, that π exists for some vertex function. If U ⊆ V (G)−{0},

let k be the maximal index such that U ⊆ Uk := {π(k), . . . , π(n)}. This implies that

π(k) ∈ U and lemma 6 implies that π(k) is well-behaved in U . Since U was arbitrary,

the function is a G-parking function.

Let R := K [x1 , x2, . . . , xn] be a polynomial ring. Define the monomial ideal IG :=

〈mI |∅ ( I ⊆ [n]〉, where mI :=
∏

i∈I x
OU (i)
i . We can also define another monomial

ideal JG := 〈pI |∅ ( I ⊆ [n]〉, where pI := (
∑

i∈I xi)
DI and DI :=

∑
i∈I OU (i). One of

Postnikov and Shapiro’s main results is that the algebras R/IG and R/JG are finite

dimensional as linear spaces over K and their dimensions both equal the number τ(G)

of spanning trees of G.
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CHAPTER II

G-MULTIPARKING FUNCTIONS AND SPANNING FORESTS

A. G-Multiparking Functions

In the previous section, we defined G-parking functions where G was a directed graph.

Here, for various technical reasons, we will consider G to be an undirected graph unless

otherwise noted. For any subset U ⊆ V (G), and vertex v ∈ U , we define OU (v) to

be the cardinality of the set {{v, w} ∈ E(G)|w /∈ U}. Here E(G) is the set of edges

of G.

Definition 1. Let G be a simple graph with V (G) = [n]. A G-multiparking function

is a function f : V (G) = [n] → N ∪ {∞}, such that for every U ⊆ V (G) either (A) i

is the vertex of smallest index in U , (written as i = min(U)), and f(i) = ∞, or (B)

there exists a vertex i ∈ U such that 0 ≤ f(vi) < OU (i).

The vertices which satisfy f(i) = ∞ in (A)(A)(A) will be called roots of f and those

that satisfy (B)(B)(B) (in U) are said to be well-behaved in U , and (A)(A)(A) and (B)(B)(B) will be used

to refer, respectively, to these conditions hereafter. Note that vertex 1 is always a

root. The G-multiparking functions with only one root (which is necessarily vertex 1)

are in obvious bijection (in fact, the differences are only notational) to the G-parking

functions, as defined by Postnikov and Shapiro.

B. Algorithms

In this section, we construct bijections between the set MPG of G-multiparking

functions and the set FG of spanning forests of G. For simplicity, here we assume G
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is a simple graph with V (G) = [n]. A sub-forest F of G is a subgraph of G without

cycles. A leaf of F is a vertex v ∈ V (F ) with degree 1 in F . Denote the set of

leaves of F by Leaf(F ). Let
∏

be the set of all ordered pairs (F,W ) such that F is

a sub-forest of G, and ∅ 6= W ⊆ Leaf(F ). A choice function γ is a function from
∏

to V (G) such that γ(F,W ) ∈W . Examples of various choice functions will be given

in section C.

Fix a choice function γ. Given a G-multiparking function f ∈ MPG, we define

an algorithm to find a spanning forest F ∈ FG. Explicitly, we define quadruples

(vali, Pi, Qi, Fi) recursively for i = 0, 1, . . . , n, where vali : V (G) → Z is the value

function, Pi is the set of processed vertices, Qi is the set of vertices to be processed,

and Fi is a subforest of G with V (Fi) = Pi ∪ Qi, Qi ⊆ Leaf(Fi) or Qi consists of an

isolated vertex of Fi.

Algorithm A.

• Step 1: initial condition. Let val0 = f , P0 be empty, and F0 = Q0 = {1}.

• Step 2: choose a new vertex v. At time i ≥ 1, let v = γ(Fi−1, Qi−1), where

γ is the choice function.

• Step 3: process vertex v. For every vertex w adjacent to v and w /∈ Pi−1,

set vali(w) = vali−1(w) − 1. For any other vertex u, set vali(u) = vali−1(u).

Let N = {w|vali(w) = −1, vali−1(w) 6= −1}. Update Pi, Qi and Fi by letting

Pi = Pi−1 ∪{v}, Qi = Qi−1 ∪N \ {v} if Qi−1 ∪N \ {v} 6= ∅, otherwise Qi = {u}

where u is the vertex of the lowest-index in [n]−Pi. Let Fi be a graph on Pi∪Qi

whose edges are obtained from those of Fi−1 by joining edges {w, v} for each

w ∈ N . We say that the vertex v is processed at time i.

Iterate steps 2-3 until i = n. We must have Pn = [n] and Qn = ∅. Define

Φ = Φγ,G : MPG → FG by letting Φ(f) = Fn.
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If an edge {v, w} is added to the forest Fi as described in Step 3, we say that w is

found by v, and v is the parent of w, if v ∈ Pi−1. (In this paper, the parent of vertex

v will be frequently denoted vp.) By Step 3, a vertex w is in Qi because either it is

found by some v that has been processed, and {v, w} is the only edge of Fi that has

w as an endpoint, or w is the lowest-index vertex in [n]−Pi and is an isolated vertex

of Fi. Also, it is clear that each Fi is a forest, since every edge {u, w} in Fi \Fi−1 has

one endpoint in V (Fi) \ V (Fi−1). Hence γ(Fi, Qi) is well-defined and thus we have a

well-defined map Φ from MPG to FG. The following proposition describes the role

played by the roots of a G-multiparking function f .

Proposition 8. Let f be a G-multiparking function. Each tree component T of Φ(f)

has exactly one vertex v with f(v) = ∞. In particular, v is the least vertex of T .

Proof. In the algorithm A the value for a root of f never changes, as ∞ − 1 = ∞.

Each nonroot vertex w of T is found by some other vertex v, and {v, w} is an edge

of T . As any tree has one more vertex than its number of edges, it has exactly one

vertex without a parent. By the definition of Algorithm A, this must be a root of f .

To show that the root is the least vertex in each component, let r1 < r2 < · · · < rk

be the roots of f and suppose T1, T2, . . . , Tk are the trees of F = Φ(f), where ri ∈ Ti.

Let Tj be the tree of smallest index j such that there is a v ∈ Tj with v < rj . Then

j > 1 since the vertex 1 is always a root. Define U := V (Tj∪Tj+1∪ . . .∪Tk). U is thus

a proper subset of V (G) = [n]. By assumption, the vertex of least index in U is not a

root. Therefore, U must contain a well-behaved vertex; that is, a vertex v such that

0 ≤ f(v) < OU (v). Note that all the edges counted by OU (v) lead to vertices in the

trees T1, T2, . . . , Tj−1. By the structure of algorithm A, all the vertices in the first j−1

trees are processed before the parent of v is processed. But this means that by the

time A processes all the vertices in the first j−1 trees, vali(v) = f(v)−OU (v) ≤ −1,
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so v should be adjacent to some vertex in one of the first j − 1 trees. This is a

contradiction.

From the above proof we also see that the forest F = Φ(f) is built tree by tree

by the algorithm A. That is, if Ti and Tj are tree components of F with roots ri, rj

and ri < rj , then every vertex of tree Ti is processed before any vertex of Tj .

To show that Φ is a bijection, we define a new algorithm to find a G-multiparking

function for any given spanning forest, and prove that it gives the inverse map of Φ.

Let G be a graph on [n] with a spanning forest F . Let T1, . . . , Tk be the trees of

F with respective minimal vertices r1 = 1 < r2 < · · · < rk.

Algorithm B.

• Step 1. Determine the process order π. Define a permutation π =

(π(1), π(2), . . . , π(n)) = (v1v2 . . . vn) on the vertices of G as follows. First,

v1 = 1. Assuming v1, v2, . . . , vi are determined,

– Case (1) If there is no edge of F connecting vertices in Vi = {v1, v2, . . . , vi}

to vertices outside Vi, let vi+1 be the vertex of smallest index not already

in Vi;

– Case (2) Otherwise, letW = {v /∈ Vi : v is adjacent to some vertices in Vi},

and F ′ be the forest obtained by restricting F to Vi ∪ W . Let vi+1 =

γ(F ′,W ).

(Hereafter, when discussing process orders, we will write vi as π(i).)

• Step 2. Define a G-multiparking function f = fF . Set f(r1) = f(r2) =

· · · = f(rk) = ∞. For any other vertex v, let rv be the minimal vertex in the

tree containing v, and v, vp, u1, . . . , ut, rv be the unique path from v to rv. Set

f(v) to be the cardinality of the set {vj|(v, vj) ∈ E(G), π−1(vj) < π−1(vp)}.
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To verify that a function f = fF defined in this way is a G-multiparking function,

we need the following lemma.

Lemma 9. Let f : V (G) → N ∪{∞} be a function. If v ∈ U ⊆ V (G) obeys property

(A) or property (B) and W is a subset of U containing v, then v obeys the same

property in W .

Proof. If f(v) = ∞ and v is the smallest vertex in U , then clearly it will still be

the smallest vertex in W . If v is well-behaved in U , then 0 ≤ f(v) < OU (v) and as

W ⊆ U , we have OU (v) ≤ OW (v). Thus v is well-behaved in W .

The burning algorithm was developed by Dhar in [9] to determine if a function on

the vertex set of a graph had a property called recurrence. An equivalent description

for G-parking functions is given in [5]: We mark vertices of G starting with the root

1. At each iteration of the algorithm, we mark all vertices v that have more marked

neighbors than the value of the function at v. The function is a G-parking function

if and only if all vertices are marked when this process terminates. Here we extend

the burning algorithm to G-multiparking functions, and write it in a linear form.

Proposition 10. A vertex function is a G-multiparking function if and only if there

exists an ordering π(1), π(2), . . . , π(n) of the vertices of a graph G such that for every

j, π(j) satisfies either condition (A) or condition (B) in Uj := {π(j), . . . , π(n)}.

Proof. We say that the vertices can be “thrown out” in the order π(1), π(2), . . . , π(n)

if they satisfy the condition described in the proposition. By the definition of G-

multiparking function, it is clear that for a G-multiparking function, vertices can be

thrown out in some order.

Conversely, suppose that for a vertex function f : V (G) → N ∪ {∞} the vertices

of G can be thrown out in a particular order π(1), π(2), . . . , π(n). For any subset U of
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V (G), let k be the maximal index such that U ⊆ Uk = {π(k), . . . , π(n)}. This implies

π(k) ∈ U . But π(k) satisfies either condition (A)(A)(A) or condition (B)(B)(B) in Uk. By Lemma

9, π(k) satisfies either condition (A)(A)(A) or condition (B) in U . Since U is arbitrary, f is

a G-multiparking function.

Proposition 11. The Algorithm B, when applied to a spanning forest of G, yields a

G-multiparking function f = fF .

Proof. Let π be the permutation defined in Step 1 of Algorithm B. We show that the

vertices can be thrown out in the order π(1), π(2), . . . , π(n). As π(1) = 1, the vertex

π(1) clearly can be thrown out. Suppose π(1), . . . , π(k − 1) can be thrown out, and

consider π(k).

If f(π(k)) = ∞, by Case (1) of step 1, π(k) is the smallest vertex not in

{π(1), . . . , π(k − 1)}. Thus it can be thrown out.

If f(π(k)) 6= ∞, there is an edge of the forest F connecting π(k) to a vertex w

in {π(1), . . . , π(k − 1)}. Suppose w = π(t) where t < k. By definition of f , there

are exactly f(π(k)) edges connecting π(k) to the set {π(1), . . . , π(t − 1)}. Hence

f(π(k)) < O {π(k),...,π(n)}(π(k)). Thus π(k) can be thrown out as well. By induction

the vertices of G can be thrown out in the order π(1), π(2), . . . , π(n).

Define Ψγ,G : FG → MPG by letting Ψγ,G(f) = fF . Now we show that Φ = Φγ,G

and Ψ = Ψγ,G are inverses of each other.

Theorem 12. Ψ(Φ(f)) = f for any f ∈ MPG and Φ(Ψ(F )) = F for any F ∈ FG.

Proof. First, if f ∈ MPG and F = Φ(f), then by Prop. 8 the roots of f are exactly

the minimal vertices in each tree component of F . Those in turn are roots for Ψ(F ).

In applying algorithm B to F , we note that the order π = v1v2 . . . vn is exactly the

order in which vertices of G will be processed when running algorithm A on f . That
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is, Pi = {v1, . . . , vi}, and vi+1 is not a root of f , then Qi is the set of vertices which are

adjacent (via edges in F ) to those in Pi. By the construction of algorithm A, a vertex

w is found by v if and only if there are f(w) many edges connecting w to vertices that

are processed before v, or equivalently, to vertices u with π−1(u) < π−1(v). Since in

Φ(f), v = wp, we have Ψ(Φ(f)) = f .

Conversely, we prove that Φ(Ψ(F )) = F by showing that Φ(Ψ(F )) and F have

the same set of edges. First note that the minimal vertices of the tree components of

F are exactly the roots of f = Ψ(F ), which then are the minimal elements of trees

in Φ(f). Edges of F are of the form {v, vp}, where v is not a minimal vertex in its

tree component. We now show that when applying algorithm A to Ψ(F ), vertex v

is found by vp. Note that f(v) = |{vj|(v, vj) ∈ E(G), π−1(vj) < π−1(vp)}|. In the

implementation of algorithm A, the valuation on v drops by 1 for each adjacent vertex

that is processed before v. When it is vp’s turn to be processed, vali(v) drops from 0

to −1. Thus vp finds v, and {v, vp} is an edge of Φ(Ψ(F )).

Since the roots of the G-multiparking function correspond exactly to the minimal

vertices in the tree components of the corresponding forest, in the following we will

refer to those vertices as roots of the forest.

C. Examples of the Bijections

The bijections Φγ,G and Ψγ,G, as defined above via algorithms A and B, allow a good

deal of freedom in implementation. In algorithm A, as long as γ is well-defined at

every iteration of Step 2, one can obtain vali+1, Pi+1, Qi+1 and Fi+1 and proceed.

Recall that γ is a function from
∏

, the set of ordered pairs (F,W ), to V (G) such

that γ(F,W ) ∈W , where F is any sub-forest of G (not necessarily spanning) and W

is a non-empty subset of Leaf(F ) or consists of an isolated point of F .
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When restricting to G-parking functions, (i.e., G-multiparking functions with

only one root), the descriptions of the bijections Φ and Ψ are basically the same

as the ones given by Chebikin and Pylyavskyy [5], where the corresponding sub-

structures in G are spanning trees. However our family of bijections, each defined on

a choice function γ, is more general than the ones in [5], which rely on a proper set of

tree orders. A proper set of tree orders is a set Π(G) = {π(T ) : T is a subtree of G}

of linear orders on the vertices of T , such that for any v ∈ T , v <π(T ) v
p, and if T ′ is a

subtree of T containing the least vertex, π(T ′) is a suborder of π(T ). Our algorithms

do not require there to be a linear order on the vertices of each subtree. In fact, for

a spanning tree T of a connected graph G, the proper tree order π(T ), if it exists,

must be the same as the one defined in Step 1 of algorithm B. But in general, for

two spanning trees T and T ′ with a common subtree t, the restrictions of π(T ) and

π(T ′) to vertices of t may not agree. Hence in general the choice function cannot be

described in terms of proper sets of tree orders. In addition, our description of the

map Φ, in terms of a dynamic process, provides a much clearer way to understand

the bijection, and leads to a natural classification of the edges of G which plays an

important role in connection with the Tutte polynomial (c.f.§4).

Different choice functions γ will induce different bijections between MPG and

FG. In this section we give several examples of choice functions that have combinato-

rial significance. In Example 1 we explain how to translate a proper set of tree orders

into a choice function. Hence the family of bijections defined in [5] can be viewed

as a subfamily of our bijections restricted to G-parking functions. The next three

examples have appeared in [5]. We list them here for their combinatorial significance.

Example 5 is the combination of breadth-first search with the Q-sets equipped with

certain data structures. It is the one used to establish connections with Tutte poly-

nomial in §4. The last example illustrates a case where γ cannot be expressed as a
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proper set of tree orders. We illustrate the corresponding map Φγ,G for examples 2–6

on the graph G in Figure 5. A G-multiparking function f is indicated by “i/f(i)” on

vertices, where i is the vertex label.

5/2

3/01/∞

4/22/0

6/1

7/0

Fig. 5. A graph and a multiparking function.

In each example, we will show the resulting spanning forest by darkened edges

in G. Again each vertex will be labeled by a pair i/j, where i is the vertex labels,

and j = valn(i), where n = 7. Beneath that, a table will record the sets Qt and Pt

for each time t. In each Qt, the vertex listed first is the next to be processed.

Example 1. γ with a proper set of tree orders.

We define the choice function that corresponds to a proper set of tree orders. Here we

should generalize to the proper set of forest orders, i.e., a set of orders π(F ), defined

on the set of vertices for each subforest F of G, such that for any v ∈ F , v <π(F ) v
p,

and if F ′ is a subforest of F with the same minimal vertex in each tree component,

π(F ′) is a suborder of π(F ). In this case, define γ(F,W ) = v where v is the minimal

element in W under the order π(F ). Examples 2–4 are special cases of this kind.

Example 2. γ with a given vertex ranking.

Given a vertex ranking σ ∈ Sn define γσ(F,W ) := v, where v is the vertex in W

with minimal ranking. In particular, if σ is the identity permutation, then the vertex
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processing order is the vertex-adding order of [5]. In this case, in Step 2 of algorithm

A, we choose v to be the least vertex in Qi−1 and process it at time i. The output of

algorithm A is given below in Figure 6.

5/−1

3/−21/∞

4/−12/−1

7/−2

6/−4

t 0 1 2 3 4 5 6 7
Qt {1} {2,3} {3,6} {4,6} {5,6} {6,7} {7} ∅
Pt ∅ {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5} {1,2,3,4,5,6} {1,2,3,4,5,6,7}

Fig. 6. The spanning forest determined by the given vertex ranking.

Example 3. γ with depth-first search order. The depth-first search order is the

order in which vertices of a forest are visited when performing the depth-first search,

which is also known as the preorder traversal. Given a forest F with tree components

T1, T2, . . . , Tk, where 1 = r1 < r2 < · · · < rk are the corresponding roots, the order

<df is defined as follows. (1) For any v ∈ Ti, w ∈ Tj and i < j, v <df w. (2)

For any v 6= ri, v
p <df v. (3) If vp = wp and v < w, v <df w. (4) For any v,

let F [v] be the subtree of F rooted at v. If v ∈ F [v′], w ∈ F [w′] and v′ <df w′,

then v <df w. For example, the depth-first search order on the tree in Figure 7 is

1 <df 2 <df 3 <df 6 <df 4 <df 5.
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1

2 4

563

Fig. 7. A tree with 6 vertices.

The choice function γdf with depth-first search order is then defined as γdf(F,W ) =

v where v is the minimal element of W under the depth-first search order <df of F .

The output of algorithm A is given below in Figure 8.

5/−1

3/−51/∞

4/−1

7/−2

2/−1

6/−1

t 0 1 2 3 4 5 6 7
Qt {1} {2,3} {6,3} {4,3,7} {5,3,7} {7,3} {3} ∅
Pt ∅ {1} {1,2} {1,2,6} {1,2,4,6} {1,2,4,5,6} {1,2,4,5,6,7} {1,2,3,4,5,6,7}

Fig. 8. The spanning forest determined by the depth-first search order.

Example 4. γ with breadth-first search order. Breadth-first search is another com-

monly used tree traversal in computer science. Given a forest F , whose tree compo-

nents are Ti with roots ri, (1 ≤ i ≤ k), and 1 = r1 < r2 < · · · < rk, the order <bf is

defined as follows. (1) For any v ∈ Ti, w ∈ Tj and i < j, v <bf w. (2) Within tree

Ti, for each v ∈ Ti, let height hTi
(v) of v be the number of edges in the unique path

from v to the root ri. We set v <bf w if hTi
(v) < hTi

(w), or else if hTi
(v) = hTi

(w)

and v < w. For example, the the breadth-first search order for the tree in Figure 7 is
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1 <bf 2 <bf 4 <bf 3 <bf 5 <bf 6.

The choice function γbf with breadth-first search order is defined as γbf(F,W ) = v

where v is the minimal element of W under the breadth-first search order <bf of F .

The output of algorithm A is given below in Figure 9.

5/−2

3/−21/∞

4/−12/−1

6/−3

7/−2

t 0 1 2 3 4 5 6 7
Qt {1} {2,3} {3,6} {4,6} {6,5} {5,7} {7} ∅
Pt ∅ {1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,6} {1,2,3,4,5,6} {1,2,3,4,5,6,7}

Fig. 9. The spanning forest determined by the breadth-first search order.

Example 5. Breadth-first search with a data structure on Qi. In this case, new

vertices enter the set Qi in a certain order, and some intrinsic data structure on Qi

decides which vertex of Qi is to be processed in the next step. A typical example is

that of breadth-first search with a queue, in which case each Qi is an ordered set,

(i.e., the stage of a queue at time i). New vertices enter Qi in numerical order, and

γ chooses the vertex that entered the queue earliest.

This example can also be defined by a modified breadth-first search order, which

we call breadth-first order with a queue, and denote by <bf,q. Given a forest F , whose

tree components are Ti with root ri, (1 ≤ i ≤ k), and 1 = r1 < r2 < · · · < rk, the

order <bf,q is defined as follows. (1) For any v ∈ Ti, w ∈ Tj and i < j, v <bf,q w. (2)

Within tree Ti, the root ri is minimal under <bf,q. (3) v <bf,q w if vp <bf,q w
p. (4)
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If vp = wp and v < w, v <bf,q w. For example, the breadth-first search order with a

queue for the tree in Figure 7 is 1 <bf,q 2 <bf,q 4 <bf,q 3 <bf,q 6 <bf,q 5.

The choice function γ associated with this order is denoted by γbf,q, and is used

in §4. The following is the output of algorithm A with γbf,q on the graph in Figure 5.

5/−2

3/−21/∞

4/−22/−1

6/−2

7/−2

t 0 1 2 3 4 5 6 7
Qt (1) (2,3) (3,6) (6,4) (4,5,7) (5,7) (7) ∅
Pt ∅ {1} {1,2} {1,2,3} {1,2,3,6} {1,2,3,4,6} {1,2,3,4,5,6} {1,2,3,4,5,6,7}

Fig. 10. The spanning forest determined by the breadth-first search with queue order.

Another typical structure is to let Qi be the stage of a stack at time i, that is, it

pops out the vertex that last entered. We can also combine the other vertex orders

with a queue or stack for the Q-sets.

Example 6. A choice function γ that cannot be defined by a proper set of tree

orders.

Let

γ(F,W ) =





x if W = {x},

the second minimal vertex of W, if |W | ≥ 2.

Then in Figure 11, the order on the left tree is 156342, and the one on the right

tree is 153462, which do not agree on the subtree consisting of vertices 1356. Hence

it can not be defined via a proper set of tree orders.
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1 1

3 5 6 3 5 6

2 4 2 4

Fig. 11. A tree that cannot be defined by a proper set of tree orders.

D. External Activity and the Tutte Polynomial

1. F -redundant Edges

A forest F on [n] may appear as a subgraph of different graphs, and a vertex function f

may be a G-multiparking function for different graphs. In this section we characterize

the set of graphs which share the same pair (F, f). Again let G be a simple graph on

[n], and fix a choice function γ. For a spanning forest F of G, let f = Ψγ,G(F ). We

say an edge e of G − F is F -redundant if Ψγ,G−{e}(F ) = f . Note that we only need

to use the value of γ on (F ′,W ) where F ′ is a sub-forest of F . Hence Ψγ,G−{e}(F ) is

well-defined.

Let π be the order defined in Step 1 of Algorithm B. Note that π only depends

on F , not the underlying graph G. Recall that vp denotes the parent vertex of vertex

v in some spanning forest. We have the following proposition.

Proposition 13. An edge e = {v, w} of G is F -redundant if and only if e is one of

the following types:

1. Both v and w are roots of F .

2. v is a root and w is a non-root of F , and π−1(w) < π−1(v).

3. v and w are non-roots and π−1(vp) < π−1(w) < π−1(v). In this case v and w
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must lie in the same tree of F .

Proof. We first show that each edge of the above three types are F -redundant. Since

for any root r of the forest F , f(r) = ∞, the edges of the first two types play no

role in defining the function f . And clearly those edges are not in F . Hence they are

F -redundant.

For edge (v, w) of type 3, clearly it cannot be an edge of F . Since f(v) =

#{vj |(v, vj) ∈ E(G), π−1(vj) < π−1(vp)}, and π−1(w) > π−1(vp), removing the edge

{v, w} would not change the value of f(v). This edges has no contribution in defining

f(u) for any other vertex u. Hence it is F -redundant.

For the converse, suppose that e = {v, w} is not one of the three type. Assume

w is processed before v in π. Then v is not a root, and w appears before vp. Then

removing the edge e will change the value of f(v). Hence it is not F -redundant.

Let R1(G;F ), R2(G;F ), and R3(G;F ) denote the sets of F -redundant edges of

types 1, 2, and 3, respectively. Among them, R3(G;F ) is the most interesting one,

as R1(G;F ) and R2(G;F ) are a consequence of the requirement that f(r) = ∞ for

any root r. Let R(G;F ) be the union of these three sets. Clearly the F -redundant

edges are mutually independent, and can be removed one by one without changing

the corresponding G-multiparking function. Hence

Theorem 14. Let H be a subgraph of G with V (H) = V (G). Then Ψγ,G(F ) =

Ψγ,H(F ) if and only if G−R(G;F ) ⊆ H ⊆ G.

2. A Classification of the Edges of G

The notion of F -redundancy allows us to classify the edges of a graph in terms of the

algorithm A. Roughly speaking, the edges of any graph can be thought of as either
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lowering val(v) for some v to 0, being in the forest, or being F -redundant. Explicitly,

we have

Proposition 15. Let f be a G-multiparking function and let F = Φ(f). Then

|E(G)| =

( ∑

v:f(v)6=∞

f(v)

)
+ |E(F )| + |R(G;F )|.

Proof. For each non-root vertex v, the number of different values that vali(v) takes

on during the execution of algorithm A is f(v)+1+nv, where nv = −valn(v). At the

beginning, val0(v) = f(v). The value vali(v) then is lowered by one whenever there is

a vertex w which is adjacent to v and processed before vp. When vp is being processed,

vali(v) = −1, and the edge {vp, v} contributes to the forest F . Afterward, the value

of vali(v) decreases by 1 for each F -redundant edge {u, v} with π−1(u) < π−1(v).

Summing over all non-root vertices gives

∑

v:f(v)6=∞

deg<π
(v) =

∑

v:f(v)6=∞

f(v) + |E(F )| +
∑

v:f(v)6=∞

nv,

where deg<π
(v) = |{{w, v} ∈ E(G)|π−1(w) < π−1(v)}|.

The edges that lower val(v) below −1 are exactly the F -redundant edges of type

(3) in Prop. 13, hence
∑

v:f(v)6=∞ nv = |R3(G;F )|. On the other hand,
∑

v:f(v)6=∞

deg<π
(v) is exactly |E(G)|− |R1(G;F )|− |R2(G;F )|. The claim follows from the fact

that the sets R1(G;F ), R2(G;F ), and R3(G;F ) are mutually exclusive.

One notes that for roots of f and F = Φ(f), |R1(G;F )| + |R2(G;F )| is exactly

∑
root v deg<π

(v), where π is the processing order in algorithm A. But it is not neces-

sary to run the full algorithm A to compute |R1(G;F )|+ |R2(G;F )|. Instead, we can

apply the burning algorithm in a greedy way to find an ordering π′ = v′1v
′
2 · · · v

′
n on

V (G): Let v′1 = 1. After determining v′1, . . . , v
′
i−1, if Vi = V (G)−{v1, . . . , v

′
i−1} has a

well-behaved vertex, let v′i be one of them; otherwise, let v′i be the minimal vertex of
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Vi, (which has to be a root.)

π′ may not be the same as π, but they have the following properties:

1. Let r1 < r2 < · · · < rk be the roots of f . Then r1, r2, . . . , rk appear in the same

positions in both π and π′.

2. The set of vertices lying between ri and ri+1 are the same in π and π′. In fact,

they are the vertices of the tree Ti with root ri in F = Φ(f).

It follows that for any root vertex v, deg<π
(v) = deg<π′ (v). The value of deg<π

(v)

(v root) can be characterized by a global description: Let Uv be the collection of

subsets U of V (G) such that v = min(U), and U does not have a well-behaved

vertex. Uv is nonempty for a root v since U = {v} is such a set. Then

deg<π
(v) = min

U∈ Uv

OU (v).

We call deg<π
(v) the record of the root v, and denote it by rec(v). Then

|R1(G;F )| + |R2(G;F )| =
∑

root v

deg<π′ (v) =
∑

root v

rec(v)

is the total root records. Let Rec(f) = |R1(G;F )| + |R2(G;F )|. It is the number of

F -redundant edges adjacent to a root. By the above greedy burning algorithm, the

total root records Rec(f) can be computed in linear time.

3. A New Expression for the Tutte Polynomial

In this subsection we relateG-multiparking functions to the Tutte polynomial TG(x, y)

of G. We follow the presentation of [13] for the definition of Tutte polynomial and

its basic properties. Although the theory works for general graphs with multiedges,

we assume G is a simple connected graph to simplify the discussion. There is no
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loss of generality by assuming connectedness, since for a disconnected graph, TG(x, y)

is just the product of the Tutte polynomials of the components of G. We restrict

ourselves to connected graphs to avoid any possible confusion when we consider their

spanning forests. The modification when G has multiple edges is explained at the

end of (CITE).

Suppose we are given G and a total ordering of its edges. Consider a spanning

tree T of G. An edge e ∈ G − T is externally active if it is the largest edge in the

unique cycle contained in T ∪ e. We let

EA(T ) = set of externally active edges in T

and ea(T ) = |EA(T )|. An edge e ∈ T is internally active if it is the largest edge in

the unique cocycle contained in (G− T ) ∪ e. We let

IA(T ) = set of internally active edges in T

and ia(T ) = |IA(T )|. Tutte [29] then defined his polynomial as

TG(x, y) =
∑

T⊂G

xia(T )yea(T ), (2.1)

where the sum is over all spanning trees T of G. Tutte showed that TG is well-

defined, i.e., independent of the total ordering of the edges of G. Henceforth, we will

not assume that the edges of G are ordered.

Let H be a (spanning) subgraph ofG. Denote by c(H) the number of components

of H . Define two invariants associated with H as

σ(H) = c(H) − 1, σ∗(H) = |E(H)| − |V (G)| + c(H). (2.2)

The following identity is well-known, for example, see [1].
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Theorem 16.

TG(1 + x, 1 + y) =
∑

H⊆G

xσ(H)yσ∗(H), (2.3)

where the sum is over all spanning subgraphs H of G.

Recall that the breadth-first search (BFS) is an algorithm that gives a spanning

forest in the graph H . Assume V (G) = [n]. We will use our favorite description

to express the BFS as a queue Q that starts at the least vertex 1. This description

was first introduced in [26] to develop an exact formula for the number of labeled

connected graphs on [n] with a fixed number of edges, and was used by the second

author in [31] to reveal the connection between the classical parking functions (resp.

k-parking functions) and the complete graph (resp. multicolored graphs).

Given a subgraph H of G with V (H) = V (G) = [n], we construct a queue Q. At

time 0, Q contains only the vertex 1. At each stage we take the vertex x at the head

of the queue, remove x from the queue, and add all unvisited neighbors u1, . . . , utx

of x to the queue, in numerical order. We will call this operation “processing x”. If

the queue becomes empty, add the least unvisited vertex to Q. The output F is the

forest whose edge set consists of all edges of the form {x, ui} for i = 1, . . . tx. We will

denote this output as F = BFS(H). Figure 12 shows the spanning forest found by

BFS for a graph G.
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t 0 1 2 3 4 5 6 7 8 9 10 11
Q (1) (3,4) (4,8) (8,7) (7) (6,9) (9) (2) (5,10) (10,11) (11) ∅

Fig. 12. Spanning forest found by BFS.

For a spanning forest F of G, let us say that an edge e ∈ G−F is BFS-externally

active if BFS(F ∪ e) = F . A crucial observation is made by Spencer [26]: An edge

{v, w} can be added to F without changing the spanning forest under the BFS if and

only if the two vertices v and w have been present in the queue at the same time. In

our example of Figure 12, edges {3, 4}, {4, 8}, {7, 8}, {6, 9}, {5, 10} and {10, 11} could

be added back to F . We write E(F ) for the set of BFS-externally active edges.

Proposition 17 (Spencer). If H is any subgraph and F is any spanning forest of

G then BFS(H) = F if and only if F ⊆ H ⊆ F ∪ E(F ).

Now consider the Tutte polynomial. Note that if BFS(H) = F , then c(H) =

c(F ). So σ(H) = c(F ) − 1 and σ∗(H) = |E(H)| − |E(F )| = |E(F ) ∩H|. Hence if we

fix a forest F and sum over the corresponding interval [F, F ∪ E(F )], we have

∑

H:BFS(H)=F

xσ(H)yσ∗(H) = xc(F )−1
∑

A⊆E(F )

y|A| = xc(F )−1(1 + y)|E(F )|.

Summing over all forests F , we get

TG(1 + x, 1 + y) =
∑

H⊆G

xσ(H)yσ∗(H) =
∑

F⊆G

xc(F )−1(1 + y)|E(F )|.



35

Or, equivalently,

TG(1 + x, y) =
∑

F⊆G

xc(F )−1y|E(F )|. (2.4)

To evaluate E(F ), note that when applying BFS to a graph H , the queue Q

only depends on the spanning forest F = BFS(H). Given a forest F , the processing

order in Q is a total order <Q=<Q (F ) on the vertices of F satisfying the following

condition: Let T1, T2, . . . , Tk be the tree components of F with minimal elements

r1 = 1 < r2 < · · · < rk. Then (1) If v is a vertex in tree Ti, w is a vertex in tree

Tj and i < j, then v <Q w. (2) Among vertices of each tree Ti, ri is minimal in the

order <Q. (3) For two non-root vertices v, w in the same tree, v <Q w if vp <Q wp.

In the case vp = wp, v <Q w whenever v < w.

Comparing with the examples in section (CITE), we note that <Q is exactly the

order <bf,q described in Example 5 of (CITE), as breadth-first order with a queue. Fix

the choice function γ = γbf,q, the one associated to <bf,q and consider the maps Φγ,G

and Ψγ,G. Given F , the condition that two vertices v, w have been present at the

queue Q at the same time when applying BFS to F is equivalent to vp <bf,q w <bf,q v

or wp <bf,q v <bf,q w. That is, an edge is BFS-externally active if and only if it is an

F -redundant edge of type 3, as defined in §4.1. It follows that E(F ) = R3(G;F ).

Therefore by Prop. 15,

|E(F )| = |R3(G;F )| = |E(G)| − |E(F )| −

( ∑

v:f(v)=−1

f(v)

)
− Rec(f),

where f = Ψγ,G(F ) is the correspondingG-multiparking function. Note that |E(F )| =

n− c(F ), and c(F ) = r(f), where r(f) is the number of roots of f . Therefore
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Theorem 18.

TG(1 + x, y) = y|E(G)|−n
∑

f

xr(f)−1yr(f)−Rec(f)−(
P

v:f(v) 6=∞ f(v)),

where the sum is over all G-multiparking functions.

For a G-multiparking function f , where G is a graph on n vertices, we call the

statistics |E(G)| − n+ r(f)−Rec(f)−
∑

v:f(v)6=∞ f(v) the reversed sum of f , denote

by rsum(f). The name comes from the corresponding notation for classical parking

functions, see, for example, [19]. Theorem 18 expresses Tutte polynomial in terms of

generating functions of r(f) and rsum(f). In [13] Gessel and Sagan gave a similar

expression, in terms of EDFS(F ), the set of greatest-neighbor externally active edges of

F , which is defined by applying the greatest-neighbor depth-first search on subgraphs

of G. Combining the result of [13] (Formula 5), we have

xTG(1 + x, y) =
∑

F⊆G

xc(F )y|EDF S(F )| =
∑

F⊆G

xc(F )y|E(F )| =
∑

f∈MPG

xr(f)yrsum(f). (2.5)

That is, the three pairs of statistics, (c(F ), |EDFS(F )|) and (c(F ), |E(F )|) for

spanning forests, and (r(f), rsum(f)) for G-multiparking functions, are equally dis-

tributed.

Remark. Alternatively, one can prove Theorem 18 by conducting neighbors-

first search (NFS), a tree traversal defined in [13, §6], and using γ = γdf , the choice

function associated with the depth-first search order, (c.f. Example 3, §3). Here the

NFS is another algorithm that builds a spanning forest F given an input graph H .

The following description is taken from [13].

NFS1 Let F = ∅.

NFS2 Let v be the least unmarked vertex in V and mark v.
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NFS3 Search v by marking all neighbors of v that have not been marked and adding

to F all edges from v to these vertices.

NFS4 Recursively search all the vertices marked in NFS3 in increasing order, stopping

when every vertex that has been marked has also been searched.

NFS5 If there are unmarked vertices, then return to NFS2. Otherwise, stop.

The NFS searches vertices of H in a depth-first manner but marks children in a

locally breadth-first manner. Figure 13 shows the result of NFS, when applies to the

graph on the left of Figure 12.
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Fig. 13. Spanning forest found by NFS.

Similarly, one defines ENFS(F ), the set of edges externally active with respect to

NFS, to be those edges e ∈ G− F such that NFS(F ∪ e) = F . Then Prop. 17 and

Eq. (2.4) hold again when we replace BFS with NFS, and E(F ) with ENFS(F ).

Now let γ = γdf and use the bijections φγdf ,G and Ψγdf ,G, one notices again that

an edge is externally active with respect to NFS if and only if it is F -redundant of

type 3. And hence we get another proof of Theorem 18.

An interesting specialization of Theorem 18 is to consider TG(1, y), the restriction

to spanning trees of G and G-parking functions. For a G-parking function f , or
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equivalently a G-multiparking function with exactly one root (which is vertex 1),

r(f) = 1 and Rec(f) = 0. Hence rsum(f) = |E(G)| − n + 1 −
∑

v 6=∞ f(v). Thus we

obtain

TG(1, y) =
∑

f : G-parking functions

yrsum(f).

An equivalent form of this result, in the language of sand-pile models, was first

proved by López [21] using a recursive characterization of Tutte polynomial. A bi-

jective proof was given by Cori and Le Borgne in [6] by constructing a one-to-one

correspondence between trees with external activity i (in Tutte’s sense) to recurrent

configurations of level i, which is equivalent to G-parking functions with reversed sum

i. Our treatment here provides a new bijective proof.

In [13] it is shown that, restricted to simple graphs, the greatest-neighbor ex-

ternally active edges of F are in one-to-one correspondence with certain inversions

of F . For a simple graph G, view each tree T of F as rooted at its smallest vertex.

An edge {u, v} is greatest-neighbor externally active if and only if v is a descendant

of u, and w > v where w is the child of u on the unique u − v path in F , (that is,

u = wp). Call such a pair {w, v} a G-inversion. And denoted by Ginv(F ) the number

of G-inversions of the forest F . Then we have the following corollary.

Corollary 19. Let Fk(G) be the set of spanning forests of G with exactly k tree

components. And MPk(G) be the set of G-multiparking functions with k roots.

Then
∑

F∈Fk(G)

yGinv(F ) =
∑

f∈MPk(G)

yrsum(f).

In particular, when G is the complete graph Kn+1 and k = 1, we have the

well-known result on the equal-distribution of inversions over labeled trees, and the
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reversed sum over all classical parking functions of length n, (for example, see [16, 28])

∑

T on [n+1]

yinv(T ) =
∑

α∈Pn

y(
n

2)−
Pn

i=1 αi ,

where Pn is the set of all (classical) parking functions of length n.
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CHAPTER III

MULTIPARKING FUNCTIONS WITHOUT MINIMALITY

A. Definitions

In this section, we will use a slightly different definition of a G-multiparking func-

tionin order to establish a connection to a generalized chip firing game and, later, a

generalization of a descending traversal.

Throughout this chapter, we let a G-multiparking function be a function f :

V (G) → N ∪ {∞} such that for any U ⊆ V (G) there exists i ∈ U with either (A)

f(i) = ∞, or (B) 0 ≤ f(i) < OU (i). As before, we will refer to those vertices i

with f(i) = ∞ as roots and those with 0 ≤ f(i) < OU (i) as being well-behaved in

U . Let MP = MPR,G denote the set of G-multiparking functions with root set R.

The important difference between this definition and the one in Chapter II is that

the minimal vertex in each component of G is required to be a root; here there is

no such restriction. Note, however, that R cannot be empty; V (G) cannot have a

well-behaved vertex, so it must have a root. Proposition 10 still holds, however, and

thus we retain much of the theory and intuition about G-multiparking functions that

we had in the previous section.

B. Dirichlet Configurations

Now we introduce a generalization of a structure that appears in the literature in a

variety of contexts and, with minor variations, is known as a critical configuration,

a sandpile model, and a chip-firing game. Let R be a set of vertices containing at
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least one vertex from each component of G. A configuration µ on G (with root set

R) is an integer-valued function on the vertex set for which µ(i) = −∞ if i ∈ R and

0 ≤ µ(i) < ∞ otherwise. A vertex i is said to be ready (in µ) if µ(i) ≥ deg(i). µ

is stable if 0 ≤ µ(i) < deg(i) for every i /∈ R. An avalanche is a finite sequence

α = (µ1, µ2, . . . µt) of configurations on G, where for each 1 ≤ s < t there exists a

vertex is ∈ V (G) which is ready in µs and

µs+1(i) =





µs(i) − deg(i) if i = is

µs(i) + e(i, is) if i 6= is

where e(i, is) is the number of edges between i and is. If we think of µs as keeping

track of how many “chips” are stored at each vertex on the graph, then we transform

µs into µs+1 by sending a chip down each edge adjacent to is. This process is often

called firing a vertex (hence the “chip-firing” terminology), and so one usually thinks

of an avalanche as a sequence of vertex firings. Note that only vertices that are ready

can be fired, and that the same vertex may be fired several times in succession if it

has a large enough number of chips. We say that α begins at µ1, ends at µt, and

connects these two configurations. We use the convention that if, in any avalanche,

µ1 is stable then every vertex in R is fired in some arbitrary but fixed order and that

this is the only situation in which roots are fired. Note that if a chip is sent to a root it

disappears from the system; it follows from the connectedness of each component of G

that, given any configuration, there is an avalanche leading to a stable configuration.

µ is recurrent if there is an avalanche that begins and ends at µ. µ is Dirichlet if it is

both stable and recurrent. Let DC = DCR,G denote the set of Dirichlet configurations

on G with root set R.

Dirichlet configurations are usually called critical configurations when G is con-

nected, and this case has been studied extensively (see, for example, [2]). Aspects of
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Dirichlet configurations were first examined in [4], such as bounds on the number of

vertex firings necessary to reach a stable configuration.

Example 5. The following example illustrates a critical configuration for Γ. Every

vertex is labelled “vi/n”, where vi is the vertex label and n is the number of chips at

that vertex at that configuration. The vertex about to be fired in each configuration

is circled.

v4/0v3/2

v2/2v1/−∞

v4/0v3/3

v2/3v1/−∞

v4/1v3/0

v2/4v1/−∞

v4/0v3/2

v2/2v1/−∞

v4/2v3/1

v2/1v1/−∞

Fig. 14. A sequence of firings proving recurrency.

Note that in the second configuration in the above avalanche, we could have

fired either v2 or v3. If we had fired v2 instead of v3, we would still have ended the

avalanche on the configuration we started with.

It is not difficult to see that Dirichlet configurations exist on every graph (for

instance, the configuration with R = V (G)) and that for every configuration there

is an avalanche ending on a stable configuration. This is essentially because every

component contains a root and therefore the total number of chips on the graph is

nonincreasing after the root firings (if the first configuration is stable) in an avalanche.

See Lemma 1 of [4] for a detailed proof.

The following is a characterization of recurrent configurations. Let χ be the

configuration

χ(i) =





0 if i ∈ R
∑

r∈R e(i, r) if i /∈ R
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Proposition 20. The configuration µ is Dirichlet ⇐⇒ it is stable and there is an

avalanche connecting (µ+ χ) to µ, where (µ+ χ)(v) = µ(v) + χ(v).

Proof. (⇐=) The trivial avalanche (consisting of firing all the roots only) connects

µ to (µ + χ), and thus concatenating this avalanche with the avalanche connecting

(µ+ χ) to µ shows that µ is recurrent. Since it is stable, µ is Dirichlet.

(=⇒) Given a Dirichlet µ, it is stable and recurrent. Thus there is an avalanche

(µ, ω1, ω2, . . . , ωl, µ). But since µ is stable, the roots are the only vertices that

can be fired first. Thus, ωk = (µ + χ) where k is the number of roots. Thus,

(ωk, ωk+1, . . . , ωl, µ) is the necessary avalanche.

Cori and Rossin [8] have a similar proof for the case when the graph is connected.

The set of critical configurations of G is closely related to the set of G-parking func-

tions; the most famous connection is that both sets are in bijection to the spanning

trees of G. Here, however, we provide a bijection between G-multiparking functions

and Dirichlet configurations on G that does not go through the set of spanning trees.

To simplify the presentation, we will assume G has no multiple edges.

C. A Bijection Between Dirichlet Configurations and G-Multiparking Functions

Theorem 21. Fix a root set R and let MP = MPR,G and DC = DCR,G. Define

Ω : MP → DC by Ω(f) = Ωf where

Ωf (i) =





−∞ if i ∈ R.

deg(i) − 1 − f(i) if i /∈ R.

Then Ω is a bijection, whose inverse Ω−1 : DC → MP, is given by Ω−1(µ) = Ω−1
µ

where
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Ω−1
µ (i) =





∞ if i ∈ R.

deg(i) − 1 − µ(i) if i /∈ R.

Proof. Let f be any G-multiparking function. First we show that Ωf is a Dirichlet

configuration. This is trivial if R = V (G), so assume R ⊂ V (G). As Ωf (i) < deg(i)

for every vertex i, Ωf is stable. By proposition 20, finding an avalanche connecting

(Ωf + χ) to Ωf is enough to show that Ωf is recurrent.

Note that (Ωf + χ)(i) = deg(i) − 1 − f(i) + χ(i) for every nonroot vertex i.

Therefore, a vertex i in the configuration (Ωf +χ) is ready if and only if χ(i) > f(i).

Since f is a G-multiparking function, the set of all non-root vertices must have a

well-behaved vertex, say j, and this implies χ(j) > f(j). Hence, (Ωf + χ) is not

stable.

Let i1, i2, . . . , in be a burning sequence for f (in the sense of Lemma 10), with

i1, i2, . . . , ik as the roots of f . We have just shown that there is a vertex that can

be labelled ik+1. It is enough to show that if the vertices ik+1, . . . , il−1 can be fired,

then il can be fired. Notice that for any U ⊆ V (G), deg(il) = OU (il) + IU(il). So if

U = {il, il+1, . . . , in}, then firing ik+1 through il−1 sends exactly OU (il)−χ(il) chips to

il. So, il will have at least deg(il)−1−f(il)+OU (il) chips. Since f is a G-multiparking

function, f(il) < OU (il), so deg(il)−1−f(il)+OU (il) = deg(il)−1−(f(il)−OU (il)) ≥

deg(il), and thus il will be ready. Hence, every non-root vertex in an avalanche

beginning with (Ωf +χ) must be fired, and the throwing-out sequence specified is also

a sequence in which the vertices can be fired. (Note that although there may be several

throwing-out sequences for f , they all yield the same final configuration.) Note that

µ is a Dirichlet configuration if and only if a firing sequence exists, and this argument

can be reversed to obtain a burning sequence, proving that this correspondence is

surjective.
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Finally, we must show that this sequence of firings beginning at (Ωf + χ) ends

at Ωf . If i is any vertex, it loses deg(i) chips when fired. As its neighbors are fired,

i recovers exactly deg(i) − χ(i) chips, since the roots are not fired. Thus, at the end

of this avalanche, i has exactly deg(i) − 1 − f(i) + χ(i) − deg(i) + (deg(i) − χ(i)) =

deg(i) − 1 − f(i) chips, meaning that we end on the configuration Ωf .

Finally, it is obvious that Ω−1 is the inverse of Ω.

This result strengthens earlier work by Biggs (see Lemma 3(ii) in [3]). This

simple bijection also provides information on the natural poset orders on the sets of

G-multiparking functions and Dirichlet configurations with a given root set. If f is a

G-multiparking function, it is immediate from the definition that any vertex function

which is less than or equal to f on each vertex is also a G-multiparking function. This

determines a simple poset order on the G-multiparking functions. Analogously, if µ

is a Dirichlet configuration then any other configuration which is stable and greater

than or equal to µ on every vertex is also Dirichlet. Hence there is also a simple poset

order on the Dirichlet configurations and the Hasse diagrams of these two posets are

identical, except that one is upside-down.

Corollary 22. If f and g are G-multiparking functions, then f ≤ g (in the G-

multiparking function poset order described above) if and only if Ωf ≥ Ωg (in the

Dirichlet configuration poset order described above).

Theorem 21 also suggests a burning-type algorithm for verifying that a configu-

ration is Dirichlet for a given graph.

Corollary 23. A configuration µ on G is Dirichlet ⇐⇒ there exists a permutation

π ∈ Sn such that for every vertex i, either π(i) is a root or deg(π(i)) > µ(π(i)) ≥IUi
(π(i)), where Ui := V (G) − {π(1), . . . , π(i− 1)}.
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Proof. By theorem 21, µ is critical if and only if f := Ω−1(µ) is a G-multiparking

function, and this is true if and only if there is a permutation π ∈ Sn such that

0 ≤ f(π(i)) < OUi
(π(i)) for every nonroot vertex i. But this is true if and only if

0 ≤ deg(π(i)) − 1 − µ(π(i)) < OUi
(π(i))

⇐⇒ deg(π(i)) − 1 ≥ µ(π(i)) > deg(π(i)) − 1 − OUi
(π(i))

⇐⇒ deg(π(i)) > µ(π(i)) ≥ IUi
(π(i))

This ends the proof.

We will hereafter refer to the permutations in proposition 23 as Dirichlet cer-

tificates for µ. This proposition also helps us identify the avalanches connecting a

Dirichlet configuration to itself.

Proposition 24. Let µ be a Dirichlet configuration and let π ∈ Sn. π is a Dirichlet

certificate for µ ⇐⇒ the avalanche determined by the firing sequence π(1), π(2), . . . ,

π(n) connects µ to itself.

Proof. (⇐=) Let α = (µ = µ1, µ2, . . . , µn, µ1) be the avalanche determined by π and

suppose π(i) is a nonroot. We must show that deg(π(i)) > µ1(π(i)) ≥ IUi
(π(i)) for

every such i ≤ n. By assumption, µ is a Dirichlet configuration, so µ is stable, and

thus deg(π(i)) > µi(π(i)) for every i.

The structure of α is that the vertices π(1), . . . , π(i−1) are fired, and after these

firings we arrive at µi. Then µi(π(i)) − µ1(π(i)) = OUi
(π(i)), since Ui = V (G) −

{π(1), . . . , π(i − 1)}. Also, π(i) is ready in µi and therefore µi(π(i)) ≥ deg(π(i)).
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Thus OUi
(π(i)) = µi(π(i)) − µ1(π(i))

≥ deg(π(i)) − µ1(π(i))

= OUi
(π(i)) + IUi

(π(i)) − µ1(π(i))

Thus we have µ1(π(i)) ≥ IUi
(π(i)), proving that π is a Dirichlet certificate for µ1.

(=⇒) If π is a Dirichlet certificate, then deg(π(i)) > µ1(π(i)) ≥ IUi
(π(i)) for

every nonroot π(i). Since µ = µ1 is Dirichlet, it is stable, and thus only the roots can

be fired. Suppose π(1), . . . π(i − 1) have been fired in that order. Assuming π(i) is

not a root, µi(π(i)) = µ1(π(i)) + OUi
(π(i)) ≥ IUi

(π(i)) + OUi
(π(i)) = deg(π(i)), and

so π(i) is ready in µi. Thus, π(1), . . . , π(n) defines an avalanche.

It is clear that this avalanche connects µ1 to itself, since we begin at that config-

uration and every vertex is fired exactly once, meaning that the net change in chips

at each vertex i is
∑

j 6=i e(i, j) − deg(i) = 0.

D. Descending Traversals

Let G be as above, but connected and with a total ordering <E on the edge set

E(G) and V (G) = [n]. Let m = n + #E(G). Let Σ = Σ(G) = (σ1, σ2, . . . , σm) be a

sequence of the edges and vertices of G in which each edge and vertex appears exactly

once. Let Σ≤i := (σ1, σ2, . . . , σi) and Σ≥i := (σi, σi+1, . . . , σm). (Similarly, Σ<i :=

(σ1, σ2, . . . , σi−1) and Σ>i := (σi+1, σi+2, . . . , σm).) We define Σ to be a descending

traversal on G if it satisfies three conditions:

1. σ1 is a vertex,

2. σi (i 6= 1) a vertex ⇒ σi−1 is an edge adjacent to σi,
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3. σi an edge ⇒ it is adjacent to a vertex σk with k < i and σi is maximal with

respect to <E among all edges in Σ≥i that are adjacent to some vertex in Σ<i.

This definition is due to Cori and LeBorgne [6]. They provided explicit bijec-

tions from the descending traversals to the spanning trees and from the descending

traversals to the critical configurations, and hence a bijection between these other

two objects.

Now assume G is the same as above, except not necessarily connected, and R ⊆

V (G). Let Σ∗ be a list of some vertices and edges of G (Σ∗ contains no repetitions).

Let E (Σ∗) be the set of edges not in Σ∗ which are adjacent to a vertex in Σ∗. We

let Πi be the set of ordered pairs (Σ∗,W ) where W ⊆ E (Σ∗) and where not both of

W = ∅ and R ⊆ Σ∗ is true.

We will now re-define another concept from Chapter II. A choice function on G

is any function ζ from Πi to E(G) ∪ R such that

ζ(Σ∗,W )





∈W if W 6= ∅

∈ R − Σ∗ if W = ∅ and R * Σ∗

Fix a choice function ζ and let Σ = (σi)
m
i=1 be a sequence containing each edge

and vertex of G exactly once. We call Σ a descending R-traversal on G, where

R = {σs1, σs2 , . . . , σsk
}, such that each subsequence Si = (σsi

, σsi+1, . . . , σsi+1−1) of Σ

satisfies:

1. σsi
= ζ(Σ<si, ∅), where σsi

is a root,

2. σj ∈ Si, j > si, a vertex ⇒ σj−1 is an edge adjacent to σj ,

3. σj ∈ Si an edge ⇒ σj is adjacent to a vertex σk with k < j and σj =

ζ(Σ≤j−1, E (Σ≤j−1)).
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Let DT = DT R,G,ζ denote the set of descending R-traversals on G. Note that

the first condition and the requirement that Σ can be partitioned into subsequences

Si is not very restrictive. To check that a subsequence is a descending R-traversal it

is generally only necessary to confirm that the last two conditions hold.

If one defines R := {v1} and ζ to be the function that picks the largest-index

edge available, then the descending R-traversals of G are, in fact, just the descending

traversals of G.

Example 6. We illustrate some descending R-traversals of Γ, for different R. In

all these examples, let ζ(Σ∗,W ) be the largest-index edge in W if W 6= ∅ and the

smallest vertex in R otherwise.

Γ :=

v3

v1

e2

e4

e5
v4

v2

e1
e3

Fig. 15. A graph with total orders on the edges and vertices.

1. Let R = {v1}. Then, (v1, e4, v2, e3, e2, v4, e5, v3, e1) and

(v1, e4, e1, v3, e5, e3, v2, e2, v4) are descending R-traversals of Γ.

2. Let R = {v2, v3}. Then, (v2, e4, e3, e2, v3, e5, e1, v1, v4) and

(v2, e4, e3, e2, v4, e5, v3, e1, v1) are descending R-traversals of Γ.

3. Let R = {v1, v2, v4}. Then, (v1, e4, e1, v2, e3, v3, e5, e2, v4) is a descending R-

traversal of Γ.

Now suppose Σ is a descending R-traversal, R = {σs1, σs2 , . . . , σsk
}, and ζ is the

choice function. With this as input, we define a function fΣ on V (G) in the following

way:
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Algorithm A

1. If v = σsi
for some i, then set fΣ(v) = ∞.

2. Otherwise, set fΣ(v) = j− 1, where j is the number of edges adjacent to v that

precede v in Σ.

Note that if v /∈ R, then by condition (2) of the definition of a descending R-

traversal, it is preceded by an edge adjacent to it. Thus, fΣ(v) = j − 1 ≥ 0 and so

fΣ : V (G) → N ∪ {∞}.

Proposition 25. fΣ ∈ MP for any Σ ∈ DT .

Proof. Let f = fΣ and let σv1 , σv2 , . . . , σvn
be the vertex subsequence of Σ. We

will show that this is a burning sequence for f , proving by Lemma 10 that f is a

G-multiparking function. (It is clear that f has k roots.)

First, note that f(σv1) = ∞. Let Ui be the set of vertices in Σ≤i. Now suppose

σv1 , σv2 , . . . , σvi−1
are all either roots or well-behaved in U1, U2, . . . Ui−1, respectively.

Suppose σvi
is not a root. If f(σvi

) = j−1, then there are exactly j edges adjacent to

σvi
and preceding it in Σ. Each of these edges is preceded in Σ by a vertex adjacent

to it (note part 3 of the definition of a descending R-traversal). These vertices are

among {σv1 , σv2 , . . . , σvi−1
} = Ui, and thus 0 ≤ f(σvi

) = j−1 < j = OUi
(σvi

). Lemma

10 implies that f ∈ MP.

Example 7. Let ζ(Σ∗,W ) be the largest-index edge if W 6= ∅ and the lowest-

index vertex in R − Σ∗ otherwise. Let R = {v1, v4}. Figure 16 is a table listing

some descending R-traversals of Γ on the left-hand side and the corresponding (under

algorithm A) Γ-multiparking functions on the right-hand side. (The list of descending

R-traversals is not exhaustive.)
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(v1, e4, e1, v4, e5, v3, e3, v2, e2) → (∞, 1, 1,∞)
(v1, e4, e1, v4, e5, v3, e3, e2, v2) → (∞, 2, 1,∞)
(v1, e4, e1, v4, e5, e2, v2, e3, v3) → (∞, 1, 2,∞)
(v1, e4, v2, e3, e2, v4, e5, e1, v3) } (∞, 0, 2,∞)
(v1, e4, v2, e3, e2, e1, v4, e5, v3)
(v1, e4, e1, v3, e5, v4, e3, v2, e2) } (∞, 1, 0,∞)
(v1, e4, e1, v3, e5, e3, v2, e2, v4)
(v1, e4, e1, v3, e5, v4, e3, e2, v2) } (∞, 2, 0,∞)
(v1, e4, e1, v3, e5, e3, v4, e2, v2)
(v1, e4, v2, e3, e2, v4, e5, v3, e1) } (∞, 0, 1,∞)
(v1, e4, v2, e3, e2, e1, v3, e5, v4)
(v1, e4, v2, e3, v3, e5, e2, e1, v4) } (∞, 0, 0,∞)
(v1, e4, v2, e3, v3, e5, e2, v4, e1)

Fig. 16. Some examples of algorithm A.

Lemma 1 of [6] states that if (σi)
m
i=1 and (τi)

m
i=1 are descending traversals and k

is the minimal index at which they differ, then one of σk and τk is an edge and the

other is a vertex. The example above shows that this is not necessarily true for de-

scending R-traversals; (v1, e4, e1, v4, e5, e2, v2, e3, v3) and (v1, e4, e1, v3, e5, v4, e3, e2, v2)

do not observe this property.

Let Ψ = ΨR,G,ζ : DT → MP be defined by Ψ(Σ) = fΣ. The above example also

illustrates that Ψ, as defined, is not generally injective. We will now define, for each

graph G, root set R, and choice function ζ , a partition of DT over which Ψ will turn

out to be injective.

Let f be any function from V (G) to N ∪ {∞} such that f(i) = ∞ if and only if

i ∈ R. We can consider Ψ−1(f), the (possibly empty) set of all descending R-traversals

that are mapped to f . It is then clear that R = RR,G,ζ := {Ψ−1(f) | Ψ−1(f) 6= ∅} is

a partition of the set of descending R-traversals, where Ψ−1(f) = {Σ ∈ DT | Ψ(Σ) =

f}. It is also clear that Ψ is constant over each Ψ−1(f) in R, and that Ψ is injective

when viewed as a function with R as its domain. Throughout the rest of this paper,

we will view Ψ as a function from R to MP.
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Now we define an algorithm that will convert a a multiparking function to a

descending R-traversal.

Algorithm B

• Step 1: initial condition. If i = 1 then Σ≤i := (ζ(∅, ∅)).

• Step 2: insert the next entry. Suppose i > 1. If there exists a vertex

v /∈ Σ≤i−1 such that Σ≤i−1 contains exactly f(v) + 1 edges adjacent to v, then

Σ≤i :=< Σ≤i−1, v >. If no such vertex exists, then Σ≤i :=

< Σ≤i−1, ζ(Σ≤i−1, E (Σ≤i−1)) >. Repeat this step until i = m.

Example 8. Recall the conditions in Example 7. Figure 17 is a table listing all

the Γ-multiparking functions on the right-hand side and the corresponding (under

algorithm B) descending R-traversals of Γ on the right-hand side.

(∞, 1, 1,∞) → (v1, e4, e1, v4, e5, v3, e3, v2, e2)
(∞, 2, 1,∞) → (v1, e4, e1, v4, e5, v3, e3, e2, v2)
(∞, 1, 2,∞) → (v1, e4, e1, v4, e5, e2, v2, e3, v3)
(∞, 0, 2,∞) → (v1, e4, v2, e3, e2, e1, v4, e5, v3)
(∞, 1, 0,∞) → (v1, e4, e1, v3, e5, e3, v2, e2, v4)
(∞, 2, 0,∞) → (v1, e4, e1, v3, e5, e3, v4, e2, v2)
(∞, 0, 1,∞) → (v1, e4, v2, e3, e2, e1, v3, e5, v4)
(∞, 0, 0,∞) → (v1, e4, v2, e3, v3, e5, e2, e1, v4)

Fig. 17. Some examples of algorithm B.

Proposition 26. Σ≤m ∈ DT for any f ∈ MP.

Proof. We must first show that algorithm B can, in fact, always reach Σ≤m if it acts

on some f ∈ MP. Clearly Σ≤1 can be reached, so suppose Σ≤i = (σj)
i
j=1 can be

reached for some 1 ≤ i < m. There are two cases in which Algorithm B might fail to

reach Σ≤m.
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First, suppose that there are two vertices v and w, neither in Σ≤i, such that there

are exactly f(v)+1 and f(w)+1 edges in Σ≤i that are adjacent to them respectively.

(We may also assume, without loss of generality, that i is the minimum index at

which there is more than one vertex ready to be appended to Σ≤i.) Note that the

edge {v, w}, if it exists, is not in Σ≤i; no such edge could be in E (Σ≤j ) for any j ≤ i

since neither v nor w is in Σ≤j . Therefore, in the sequence Σ≤i−1,Σ≤i−2, . . . ,Σ≤1

there must be a Σ≤j which contains exactly f(v) + 1 edges adjacent to v but fewer

than f(w) + 1 edges adjacent to w. Thus, v should have been added earlier and i

does not exist.

We must also show that there is no index i for which R ⊆ Σ≤i and E (Σ≤i) = ∅.

Let i be an index for which there is no vertex v /∈ Σ≤i adjacent to exactly f(v) + 1

edges in Σ≤i. Assume R ⊆ Σ≤i. Clearly, if Σ≤i contains V (G), then E (Σ≤i) cannot

be empty unless i = m. So let U be the set of vertices not in Σ≤i. Since f ∈ MP

and there is no root in U , this set must have a well-behaved vertex. That is, there is

a vertex v ∈ U such that 0 ≤ f(v) < OU (v). In particular, 0 < OU (v) ≤ #E (Σ≤i).

It is clear, from the construction of Algorithm B, that Σ≤m satisfies the last two

conditions in the definition of a descending R-traversal.

Let Φ = ΦR,G,ζ : MP → DT be defined by Φ(f) = Σ≤m.

Proposition 27. Φ is injective.

Proof. Let f and g be different functions in MP, and Φ(f) = Σf and Φ(g) = Σg.

Since f and g are different, there is a vertex v at which f(v) < g(v) (v is not a root,

since f and g have the same root set). There is an index i at which v appears in Σf .

This means Σ≤i
f =< Σ≤i−1

f , v >, but then either Σ≤i−1
f 6= Σ≤i−1

g or Σ≤i
g 6=< Σ≤i−1

g , v >

and so Φ(f) 6= Φ(g).

Proposition 28. Ψ(Φ(f)) = f for any f ∈ MP.
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Proof. It is enough to show that Φ(f) ∈ Ψ−1(f) for any f ∈ MP. Suppose Φ(f) =

(σi)
m
i=1. Note that σi ∈ R if and only if σi = ζ(Σ≤i−1, ∅) (where Σ≤i−1 = ∅ if i = 1) and

this is true if and only if f(σi) = ∞. Therefore Ψ(Φ(f))|σi
= ∞ = f(σi). If f(σi) = a

for some vertex σi then Σ≤i−1 contains exactly a+ 1 edges adjacent to σi. Therefore,

Ψ(Φ(f))|σi
= a = f(σi). So, Ψ maps Φ(f) to f and thus Φ(f) ∈ Ψ−1(f).



55

CHAPTER IV

A DOUBLE-PARKING FUNCTION

A. Introduction

Here, we will consider a new generalization. Throughout this paper, let X =

(x0, x1, . . . , xq) ∈ Nq+1 and Y = (y0, y1, . . . , yp) ∈ Np+1 , where 0 ≤ xi ≤ xi+1 ≤ xq = x

and 0 ≤ yj ≤ yj+1 ≤ yp = y. Let G be the complete bipartite graph Kp,q, where

the bipartite vertex sets are P = {v1, v2, . . . , vp} and Q = {vp+1, vp+2, . . . , vp+q}. This

situation is illustrated in Figure 18 below. . .

P

......

...

v1

v2

v3

vp

vp+1

vp+q

vp+2 QKp,q }{
Fig. 18. The basic setting.

If v ∈ U recall that OU (v) denotes the outdegree of vertex v in U ; that is,OU (v) := #{w /∈ U |{w, v} ∈ E(G)}. An (X,Y)–parking function is a function

τ : V (G) → N , such that for every proper subset U ( V (G), there exists a v ∈ U

satisfying

0 ≤ τ(v) <





xOU (v) if v ∈ Q

yOU (v) if v ∈ P

or

A vertex v that satisfies one of these two properties is said to be well-behaved (in U).

Let PFp,q(X,Y) be the total number of (X,Y)–parking functions. We will often use

the notation τ = (τ1, τ2, . . . , τp, τp+1, . . . , τp+q), where τi = τ(vi). (Our notation for
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sequences will vary somewhat; if u is a sequence, we will sometimes denote its ith

term by ui and sometimes by u(i).)

The indexing scheme defining the (X,Y)–parking function will seem awkward

at first sight. However, it becomes more natural when one compares it to that for a

G-parking function as defined in chapter II. Recall that if G is an undirected graph

with vertex set V (G) = {v0, v1, . . . , vn}, one can define a G-parking function to be a

function f : V (G) → N ∪∞ if (1) f(v) = ∞ ⇔ v = v0 and (2) for every vertex subset

U ⊆ V (G)− {v0}, there exists a v ∈ U such that 0 ≤ f(v) < OU (v). (This definition

is equivalent to the one given in chapter I. In the setting of G-parking functions, the

outdegree is itself a local bound on the value of f at a given vertex; in the setting of

(X,Y)–parking functions, the outdegree only provides the index for a vector, which

determines the bound.

There is also a similarity between (X,Y)–parking functions and x-parking func-

tions. Recall that if x = (x1, x2, . . . , xn) ∈ Nn is a vector, then (p1, p2, . . . , pn) is an

x-parking function if, for every index i, pi ≤ x1 + . . . + xi. We stress, however, that

the (X,Y)–parking function is not a generalization of either of these two general-

ized parking functions. This is clear for G-parking functions, since (X,Y)–parking

functions are never ∞-valued.

In section B, we will show how the (X,Y)–parking function is related to the

(p, q)–parking function and exhibits some properties similar to other generalized park-

ing functions. In section C, we will show how the operator-theoretic machinery from

a series of papers by Kung and Yan (see [18], [19], and [20]) provides important

facts about the number of (X,Y)–parking functions. In section D, we will show how

(X,Y)–parking functions and (p, q)–parking functions are related to lattice paths.
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B. The Decompositional Formula

For parking functions generalized to graphs, such as theG-parking andG-multiparking

functions, there is a burning algorithm to determine, in O(#V (G)) number of oper-

ations, whether a vertex function is a generalized parking function. A burning al-

gorithm can be thought of as any procedure which establishes an ascending chain

A1 ( A2 ( . . . ( A#V (G) = V (G) of vertex subsets, each of which contains a well-

behaved (in the appropriate sense) vertex. In order for the existence of such a chain

to prove that every vertex subset has a well-behaved vertex, an analog of the following

lemma must hold true.

There is a burning algorithm (see chapter I, section 4) in this situation. It is

easy to see that lemma 6 holds here, and there is an analogous version of proposition

10.

Proposition 29. A vertex function τ is an (X,Y)–parking function if and only if

there exists a permutation π ∈ Sp+q so that vπ(i) is a root or well-behaved in

Wi := {vπ(i), vπ(i+1), . . . , vπ(p+q)}, for each 1 ≤ i ≤ p+ q.

Proof. If τ is an (X,Y)–parking function, then it is clear that the latter condition

holds. Conversely, first note that every proper vertex subset U ( V (G) is a subset of

at least one of the sets V (G) − {v1}, V (G) − {v2}, . . . , V (G) − {vp+q}. If the latter

condition in the proposition holds, then there is some minimal i for which U ⊆ Wi.

Lemma 6 now implies U has a well-behaved vertex and thus τ is an (X,Y)–parking

function.

Definition 2. A permutation π of the sort described in Proposition 29 is called a

certificate for τ .

It is important to note that there may exist multiple certificates for an (X,Y)–
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parking function. This fact is easily observed if either P or Q contains two vertices

with the same τ -value. There is a concrete example of this behavior below.

Example 1. We will refer to the below example throughout what follows. The graph

illustrated in Figure 19

v2

v3

v4

v5

P

v1

Q

Fig. 19. An example of an (XXX,YYY )-parking function.

with the function τ = (2, 4, 0, 2, 2) is an (X,Y)–parking function for X =

(1, 3, 4, 4) and Y = (1, 4, 5). One can see this by applying Proposition 29 with

the certificate (24153). (Note that this certificate is not unique; (25143) is also a

certificate.)

The given definition of an (X,Y)–parking function is difficult to work with, and

is more naturally thought of as a function whose various statistics are other kinds of

parking functions (see Lemma 31 below). With the below notation, we can think of

(X,Y)–parking functions as “(q, p)-sequences” for |P | = p and |Q| = q.

Definition 3. An (x, y)–sequence is a sequence (a1, . . . , ap, ap+1, . . . , ap+q) such that

0 ≤ ai ≤ x if i ≤ p, and 0 ≤ ai ≤ y if i > p.

Definition 4. Let π be a permutation in Sp+q. We define its associated (p, q)-

sequence as π̂ = (π̂1, . . . , π̂p+q), where

π̂i =





|{k|πk < πi, k > p}| if i ≤ p;

|{k|πk < πi, k ≤ p}| if i > p.
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A (p, q)–parking function is a (p, q)-sequence σ = (σ1, σ2, . . . , σp+q) for which there

exists a permutation π ∈ Sp+q such that σi ≤ π̂i for all i. We will denote this by

σ ≤ π̂.

Example 2. Let p = 3 and q = 2. Consider the (3, 2)-sequence (0, 1, 0, 0, 1). If

π = (13425), then π̂ = (01113) and (0, 1, 0, 0, 1) ≤ (0, 1, 1, 1, 3) and thus (0, 1, 0, 0, 1)

is a (3, 2)-parking function. (Note that other permutations can verify that this is a

(3, 2)-parking function; π = (25314) also works.)

Definition 4 is due to Cori and Poulalhon [7]. They proved that there are (p +

q + 1)(p + 1)q−1(q + 1)p−1 (p, q)-parking functions, and that a (p, q)-sequence (u, v)

is an (x, y)-parking function if and only if the concatenation of u and v is a parking

function. This latter fact has an analogous result here, given in the next lemma.

Lemma 30. An (x, y)–sequence (a1, . . . , ap+q) is an (X,Y)–parking function if and

only if there exists a permution π with associated sequence π̂, such that ai < xbπi
if

i ≤ p, and ai < ybπi
if i > p.

Proof. Suppose (a1, . . . , ap+q) is an (X,Y)–parking function and let π be a certificate

for it. Let

Ui :=





{vj |πj < πi, j > p} if i ≤ p

{vj |πj < πi, j ≤ p} if i > p

Then it is clear that π̂i = |Ui| = OUi
(vi) and therefore ai < xOUi

(vi) = xbπi
(or ybπi

).

Conversely, one can construct the Ui’s and therefore a certificate π for (a1, . . . , ap+q)

proving that it is an (X,Y)–parking function.

The remainder of this section will establish a recursive formula for the number

of (X,Y)–parking functions. To do this, we first show how (X,Y)–parking functions

can be described as various statistics of other parking functions. Then, we will prove
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that there is a decomposition of each half of an (x, y)–sequence into two sub-sequences,

one of which “looks like” an (X,Y)–parking function and the other is just a bounded

sequence. This decomposition is the key to proving the recursive formula.

Definition 5. Given a sequence µ = (u1, . . . , un), let ρµ(i) be the location of ui

in the order statistics of µ. If ν = (ν1, ν2) is an (x, y)–sequence, then we define

the order sequence ord(ν) to be (ord(ν1), ord(ν2)), where ord(µ) = (µ1 + ρµ(1), µ2 +

ρµ(2), . . . , µl + ρµ(l)).

Definition 6. The rank sequence of an (X,Y)–parking function τ is the sequence

τ̃ = (τ̃1, . . . , τ̃p+q) with xeτi−1 ≤ τi < xeτi
if i ≤ p, and yeτi−1 ≤ τi < yeτi

if i > p, with the

additional convention that x−1 = y−1 = 0.

Example 3. Consider the (X,Y)–parking function τ from Example 1. The order

sequence for τ (when viewed as a (3, 2)-sequence) is ord(τ) = (1, 3, 7, 3, 4). The rank

sequence for τ is τ̃ = (1, 2, 0, 1, 1).

Lemma 31. The following are equivalent . . .

1. τ is an (X,Y)–parking function.

2. There exists a permutation π such that τ̃i ≤ π̂i for all i.

3. τ̃ is a (p, q)–parking function.

4. ord(τ̃) is a regular parking function.

Proof. Suppose a permutation π as described in (2) exists. τ̃i is the smallest integer

such that τi < xeτi
. By (2) we have τi < xeτi

≤ xbπi
. If

Ui :=






V (G) − {vj|πj < πi, j > p} if i ≤ p

V (G) − {vj|πj < πi, j ≤ p} if i > p
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then π̂i = OUi
(vi) (since G is a complete bipartite graph). So τi < xeτi

≤ xbπi
= xOUi

(vi)

and thus τ is an (X,Y)–parking function. Thus (2) implies (1). Now suppose τ is an

(X,Y)–parking function and let π be a certificate for τ . Note that π̂i = |V (G)−Ui|,

where Ui are the sets defined above. By the burning algorithm, τi < xbπi
. Since τ̃i

is the least index j for which τi < xj , we have xeτi
≤ xbπi

. As X is a nondecreasing

sequence, we have τ̃i ≤ π̂i. Thus (1) implies (2).

Finally, (2) ⇔ (3) is a restatement of the definition of a (p, q)–parking function

and (3) ⇔ (4) is proven in [7], Proposition 3.

We are primarily interested in ord(τ̃), and hereafter we will replace this cumber-

some notation with −→τ .

Example 4. Let τ be the same as in Example 1. It is easy to see that τ̃ is a (p, q)-

parking function, since (1, 2, 0, 1, 1) is a parking function of length 5. (This is another

way of verifying that a function τ is an (X,Y)–parking function; we do not need to

use Proposition 29.)

The following lemma gives us a decomposition of an (X,Y)–parking function

into Here, we adopt the notation that if S = (a1, . . . , an) is a sequence, then the

subsequence of (a1, . . . , ai) will be denoted S|≤i.

Lemma 32. For any (x, y)–sequence τ = (τ1, . . . , τp, τp+1, . . . , τp+q) be an (x, y)–

sequence, there exist integers i and j, such that (τ1, . . . , τp) can be decomposed into

two parts (τr1 , . . . , τri
) and (τri+1

, . . . , τrp
), while (τp+1, . . . , τp+q) into (τrp+1, . . . , τrp+j

)

and (τrp+j+1
, . . . , τrp+q

). Additionally, (τr1 , . . . , τri
, τrp+1, . . . , τrp+j

) is an (X|≤j, Y|≤i)–

parking function, while (τri+1
, . . . , τrp

) is in the discrete interval [xj , xq), and

(τrp+j+1
, . . . , τrp+q

) in [yi, yp). Furthermore, this decomposition provides a bijection

between all (x, y)–sequences and sequence quartets of the type above.
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Proof. For any (x, y)–sequence τ = (u, v), with u and v of lengths p and q respectively,

consider its rank sequence τ̃ = (ũ, ṽ), and correspondingly the order sequence −→τ =

(−→u ,−→v ). Let σ be the order statistic of the latter sequence. Let k be the first

occurance in σ such that σk > k. Notice those first k − 1 numbers in the sequence

form a parking function of length k−1. Assume there are i numbers in (σ1, . . . , σk−1)

that orginate from u, and j numbers from v. Then those i + j numbers form an

(X|≤j, Y|≤i)–parking function by Lemma 31.

Supposely σk ≤ −→u l, since i+j = k−1 < σk−1 = −→u l−1 = ũl +ρeu(l)−1 = ũl + i,

so ũl > j, thus ul ≥ xj . Similarly, if σk ≤ −→v l, vl ≥ yi. Hence all the remaining

numbers in τ , which are not in those forming the (X|≤j, Y|≤i)–parking function above,

must be greater than either xj or yi respectively. This proves the existence of the

decomposition.

Conversely, any sequence quartet of this type can be assembled into an (x, y)–

sequence, which gives the inverse mapping of the decomposition. Therefore, both

mappings are bijections.

This lemma implies the following decomposition for enumerating (x, y)–sequences.

xpyq =

p∑

i=0

q∑

j=0

(
p

i

)
(x− xj)

p−i

(
q

j

)
(y − yi)

q−jPFj,i(x0, . . . , xj ; y0, . . . , yi).

In the next section, we will show how this identity yields other combinatorial identi-

ties.

C. A Theory of Bivariate Goncarov Polynomials

In the previous section, we observed enumerative properties of (X,Y)–parking func-

tions related to other kinds of parking functions. In this section, we will show how a

modified version of the operator-theoretic approach of Kung and Yan (see [18], [19],
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[20]) also yields enumerative properties of (X,Y)–parking functions, but this time

related to generalized “Goncarov polynomials.” 1

Definition 7. Let K [x, y] be a bivariate polynomial ring, where K is any field of

characteristic 0. For p(x, y) ∈ K [x, y], define Dxp(x, y) and Dyp(x, y) to be differenti-

ation of p with respect to x and y, respectively. For each pair of non-negative integers

r and s we define an infinite-dimensional array of integers (br,si,j )
∞
i,j=0 and define the

operators

Φr,s :=

∞∑

i,j=0

br,si,jD
r+i
x Ds+j

y .

A (bivariate) Goncarov polynomial is a polynomial gm,n(x, y) =
∑m

i=0

∑n
j=0 ai,jx

iyj ∈K [x, y], where for all r and s,

Φr,s (gm,n(x, y))|
x,y=0 = m!n!δrmδsn. (4.1)

For each r and s, Figure 20 shows the system of equations resulting from this

definition.

b
0,0
0,0a0,0 + b

0,0
0,1a0,1 + b

0,0
1,0a1,0 + 2!b0,0

2,0a2,0 + 2!b0,0
0,2a0,2) + b

0,0
1,1a1,1 + . . . + m!n!b0,0

m,nam,n = 0

b
1,0
0,0a1,0 + b

1,0
0,1a1,1 + 2!b1,0

1,0a2,0 + 3!b1,0
2,0a3,0 + 2!b1,0

0,2a1,2 + 2!b1,0
1,1a2,1 + . . . + m!n!b1,0

m−1,nam,n = 0

b
0,1
0,0a0,1 + 2!b0,1

0,1a0,2 + b
0,1
1,0a1,1 + 3!b1,0

2,0a3,0 + 2!b0,1
1,1a1,2 + 3!b0,1

0,2a0,3 + . . . + m!n!b0,1
m,n−1am,n = 0

...

m!n!bm,n
0,0 am,n = m!n!

Fig. 20. The system of (r + 1)(s+ 1) equations that condition 4.1 induces.

1The correct, untransliterated spelling is “Gončarov”, but we will suppress the
accent here.
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1. Goncarov Polynomials and Matrices

Throughout this section, we will consider the special case when

Φrs :=
∞∑

i=0

∞∑

j=0

ai
sb

j
r

i!j!
Dr+i

x Ds+j
y (4.2)

It is important to note that this sum is not generally a product of two sums, because

of the exponents of as and br.

This system of equations can be restated in terms of matrices. Let 000 be the

(n+1)× (n+1) matrix. For each 0 ≤ i ≤ j ≤ m, define the (n+1)× (n+1) matrices

B[i, j], Bp[0], and B[i, j; p] by

(l, k)th entry of B[i, j] :=






(i+ j)!(l + k − 2)!bi,l−1
j,k−l if 0 ≤ k − l

0 otherwise

(l, k)th entry of Bp[i, j] :=






(i+ j)!(l + k − 2)!bi,l−1
j,k−l if 0 ≤ k − l and l 6= n + 1

xpyk−1

p!(k−1)!
if l = n + 1

0 otherwise

(l, k)th entry of Bp[0] :=





xpyk−1

p!(k−1)!
if l = n+ 1

0 otherwise

Figure 21 below illustrates more explicitly what these matrices look like.
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B[i, j] := (i+ j)!




b
i,0
j,0 1!b

i,0
j,1 . . . . . . n!b

i,0
j,n

0 1!b
i,1
j,0 2!b

i,1
j,1 . . . n!b

i,1
j,n−1

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

0
.
.
.

.
.
. (n − 1)!b

i,n−1
j,0 n!b

i,n−1
j,1

0 0 . . . 0 n!b
i,n
j,0




Bp[i, j] :=




(i + j)!b
i,0
j,0 (i + j)!1!b

i,0
j,1 . . . . . . (i + j)!n!b

i,0
j,n

0 (i + j)!b
i,1
j,0 (i + j)!1!b

i,1
j,1 . . . (i + j)!n!b

i,1
j,n−1

.

.

.
.
.
.

.
.
.

.
.
.

.

.

.

0 0 . . . (i + j)!(n − 1)!b
i,n−1
j,0 (i + j)!n!b

i,n−1
j,1

xp

p!
xpy

p!1!
. . .

xpyn−1

p!(n−1)!
xpyn

p!n!




Bp[0] :=




0 0 . . . . . . 0
0 0 . . . . . . 0

.

.

.

.

.

. . . . . . .

.

.

.
0 0 . . . . . . 0

xp

p!
xpy
p!1!

. . .
xpyn−1

p!(n−1)!
xpyn

p!n!




Fig. 21. The matrix representations of the defining goncarov equations.

Then Definition 7 is equavalent to BA = M , where B, A, and M are the matrices

depicted in Figure 22.

B :=




B[0, 0] B[0, 1] B[0, 2] . . . . . . B[0, m]

000 B[1, 0] B[1, 1] . . . . . . B[1, m − 1]

000 000 B[2, 0] . . . . . . B[2, m − 2]

000 000 000
. .

. . . . B[3, m − 3]

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.

.

.

.

000 000 000 . . . 000 B[m, 0]


 ; A :=




a0,0
a0,1

.

.

.
a0,n

a1,0
a1,1

.

.

.
am,n




; M :=




0
0

.

.

.
0
0
0

.

.

.
m!n!




Fig. 22. The matrix equation for the defining goncarov equations.

Using Cramer’s rule and Laplace’s expansion to solve and regroup the results,

we arrive at a determinental formula, as depicted in Figure 23.

2. Recursions and Relations

Theorem 33. The following recursive identities hold.

1. For any polynomial p(x, y) of order (m,n),

p(x, y) =

m∑

i=0

n∑

j=0

Φi,j(p(x, y))|x,y=0

i!j!
gi,j(x, y), (4.3)
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gm,n(x, y) =
m!n!

∏m

i=0

∏n

j=0 b
ij
00

∣∣∣∣∣∣∣∣∣∣

B[0, 0] B[0, 1] B[0, 2] . . . . . . B[0, m]

000 B[1, 0] B[1, 1] . . . . . . B[1, m − 1]

000 000 B[2, 0] . . . . . . B[2, m − 2]

000 000 000
.
.
. . . . B[3, m − 3]

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.

.

.

.

000 000 000 . . . B[m − 1, 0] B[m − 1, 1]
B0[0] B1[0] B2[0] . . . Bm−1[0] Bm[m, 0]

∣∣∣∣∣∣∣∣∣∣

Fig. 23. The determinental formula.

2. The linear recursion becomes

xmyn =

m∑

i=0

n∑

j=0

m!n!

i!j!
bi,jm−i,n−jgi,j(x, y). (4.4)

3. the Appell relation is

e(x+y)t =

∞∑

i=0

∞∑

j=0

pi,j(t)gi,j(x, y)

i!j!
, (4.5)

where pi,j(t) = ti+j
∑∞

m,n=0 b
i,j
m,nt

m+n.

Now we can consider the special case when

φr,s =
∞∑

i,j=0

ai
sb

j
r

i!j!
Dr+i

x Ds+j
y .

The determental formula now becomes

gm,n(x, y) = m!n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0
0b00

0!0!

a0
0b10

0!1!
· · ·

a0
0bn

0

0!n!

a1
0b00

1!0!
· · ·

am
0 bn

0

m!n!

0
a0
1b00

0!0!
· · ·

a0
1bn−1

0

0!(n−1)!
0 · · ·

am
1 bn−1

0

m!(n−1)!

...
...

. . .
...

...
. . .

...

0 0 · · ·
a0

nb00
0!0!

0 · · ·
am

n b00
m!0!

0 0 · · · 0
a0
0b01

0!0!
· · ·

am−1
0 bn

1

(m−1)!n!

...
...

. . .
...

...
. . .

...

1 y · · · yn

n!
x · · · xmyn

m!n!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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3. The Shift Formulas

Goncarov polynomials exhibit periodic behavior that is both computationally conve-

nient and reveals a close relationship between them and the number of (X,Y)–parking

functions, functions we defined in section A above. If a ∈ K and p(x, y) ∈ K [x, y], de-

fine the shift operators Ex(a)p(x, y) := p(x+a, y) and Ey(a)p(x, y) := p(x, y+a). The

shift operators can be represented as differential operators, as the next proposition

shows.

Proposition 34. For any a ∈ K , Ex(a) =
∑∞

l=0
al

l!
Dl

x and Ey(a) =
∑∞

l=0
al

l!
Dl

y.

Proof. Observe how the operator al

l!
Dl

x acts on a monomial cijx
iyj of p(x, y):

al

l!
Dl

x[cijx
iyj] =





0 if i < l

cij
al

l!
i!

(i−l)!
xi−lyj if i ≥ l

=





0 if i < l

cij
(

i

l

)
alxi−lyj if i ≥ l

In p(x+ a, y), this monomial becomes cij(x+ a)iyj =

∑i
l=0 cij

(
i

l

)
alxi−lyj =

∑i
l=0

al

l!
Dl

x[cijx
iyj]. So, p(x + a, y) =

∑
i

∑
j cij(x + a)iyj =

∑
i

∑
j

∑
l D

l
x[cijx

iyj] =
∑

lD
l
x

∑
i

∑
j cijx

iyj =
∑

l D
l
xp(x, y). A similar argument

holds for the y variable.

With Proposition 34 and the definition of φr,s, the following is easily observed.

Corollary 35. φr,sp(x, y) = Dr
xD

s
yEx(as)Ey(br)p(x, y) = Dr

xD
s
yp(x+ as, y + br).

We pause here to note that gm,n(x, y) can be expressed as

gm,n(x; a0, . . . , an; y; b0, . . . , bm), where the ai and the bi are coefficients given in the

Φr,s operator in Definition 4.2. We will adopt this representation for the rest of this

chapter. Note that gm,n(x; a0, . . . , an; y; b0, . . . , bm) has the initial conditions

gm,n(a0; a0, . . . , an; b0; b0, . . . , bm) = δ0nδ0m (4.6)
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The first two equations can be obtained by checking the uniqueness of the Goncarov

polynomials, whilest the last by setting r = s = 0 and p(x, y) = gm,n(x, y) in Corollary

35 and applying the definition of Goncarov polynomials 4.1.

Proposition 36. The polynomial gm,n(x; a0, . . . , an; y; b0, . . . , bm) exhibits the follow-

ing properties . . .

1. gm,0(x; a0; y; b0, . . . , bm) = (x− a0)
m and g0,n(x; a0, . . . , an; y; b0) = (y − b0)

n

2. Dxgm,n(x; a0, . . . , an; y; b0, . . . , bm) = mgm−1,n(x; a0, . . . , an; y; b1, . . . , bm) and

Dygm,n(x; a0, . . . , an; y; b0, . . . , bm) = ngm,n−1(x; a1, . . . , an; y; b0, . . . , bm) with ini-

tial conditions gm,n(a0; a0, . . . , an; b0; b0, . . . , bm) = δ0nδ0m

3. For any real ζ and ν, gm,n(ζx; ζa0, . . . , ζan; νy; νb0, . . . , νbm) =

ζmνngm,n(x; a0, . . . , an; y; b0, . . . , bm)

4. For any real ζ and ν, gm,n(x+ ζ ; a0 + ζ, . . . , an + ζ ; y+ ν; b0 + ν, . . . , bm + ν) =

gm,n(x; a0, . . . , an; y; b0, . . . , bm)

5. gm,n(x; a0, . . . , an; y; b0, . . . , bm) = m
∫ x

a0
gm−1,n(x; a1, . . . , an; y; b0, . . . , bm) +

n
∫ y

b0
gm,n−1(x; a0, . . . , an; y; b1, . . . , bm) −

mn
∫ y

b0

∫ x

a0
gm−1,n−1(x; a1, . . . , an; y; b1, . . . , bm)

Proofs of these facts are straightforward: formulae 3 and 4 can be proven by

induction.
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Example 5.

g0,0(x; a0; y; b0) = 1

g1,0(x; a0; y; b0, b1) = x− a0

g0,1(x; a0, a1; y; b0) = y − b0

g1,1(x; a0, a1; y; b0, b1) = b0a1 + a0b1 − a0b0 − b1x− a1y + xy

g2,1(x; a0, a1; y; b0, b1, b2) = 2a2
0b1 − b0a

2
1 − 2a0b1a1 − a2

0b2 + 2a0b0a1 − a2
0b0 + 2xb1a1

+2xa0b2 − 2xa0b1 − b2x
2 + a2

1y − 2a1xy + x2y

In particular, the linear recursion becomes

xmyn =
m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)
am−i

j bn−j
i gi,j(x; a0, . . . , aj; y; b0, . . . , bi). (4.7)

and the Appell relation

e(x+y)t =
∞∑

i=0

∞∑

j=0

ti+je(aj+bi)t

i!j!
gi,j(x; a0, . . . , aj; y; b0, . . . , bi). (4.8)

Example 6.

gm,n(x; s, s+ c, . . . , s+ nc; y; t, t+ d, . . . , t+md)

= (x− s− nc)m−1(y − t−md)n−1((x− s− nc)(y − t−md) −mdnc)

Immediately from this, we have

gm,n(x; s, s, . . . , s; y; t, t, . . . , t) = (x− s)m(y − t)n

gm,n(x; 0, c, . . . , nc; y; 0, d, . . . ,md) = (x− nc)m−1(y −md)n−1(xy −mdx− ncy)

Furthermore, by comparing equation 4.7 with equation 4.1, we can find the

relationship between the two, which is,
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Theorem 37. PFn,m(x; x0, . . . , xn; y; y0, . . . , ym) = gm,n(x; x − x0, . . . , x − xn; y; y −

y0, . . . , y − ym) = gm,n(0;−x0, . . . ,−xn; 0;−y0, . . . ,−ym) =

(−1)m+ngm,n(0; x0, . . . , xn; 0; y0, . . . , ym)

In particular, when X and Y are linear progressions, we get, by eqn 4.9,

Corollary 38. PFn,m(s, s+ c, . . . , s+nc; t, t+d, . . . , t+md) = (−1)m+ngm,n(0; s, s+

c, . . . , s + nc; 0; t, t + d, . . . , t + md) = (−1)m+n+1(−s − nc)m−1(−t −md)n−1(−st −

msd− nct) = (s+ nc)m−1(t+md)n−1(st+msd+ nct)

Furthermore, equation 4.1 demonstrates that (s + nc)t+md(t + md)s+nc is equal

to
m∑

i=0

n∑

j=0

(
m

i

)
(nc− jc)m−i

(
n

j

)
.

In particular, when s = c = t = d = 1, we have xi = yi = i, and we are enumerating

the regular (p, q)–parking functions, which gives, by eqn 4.9,

PFp,q(1, . . . , q + 1; 1, . . . , p+ 1) = (p+ q + 1)(p+ 1)q−1(q + 1)p−1,

which agrees with the result in [7]. And eqn 4.1 becomes

(q + 1)p(p+ 1)q =

p∑

i=0

q∑

j=0

(
p

i

)
(q − j)p−i

(
q

j

)
(p− i)q−j(i+ j + 1)(i+ 1)j−1(j + 1)i−1

Since now the number of (X,Y)–parking function is related to the Goncarov

polynomials, any formula that is satisfied by the latter is also true to the former, i.e.,

Corollary 39. PFn,m(su1, . . . , sun; tv1, . . . , tvm) = sntmPFn,m(u1, . . . , un; v1, . . . , vm)

Corollary 40. Let D be the (m+ 1)(n+ 1)× (m+ 1)(n+ 1) matrix, whose (i1(n+

1) + j1, i2(n+ 1) + j2)–th entry, with 0 ≤ i1, i2 ≤ m and 0 ≤ j1, j2 ≤ n, is:






a
i2−i1
j1

b
j2−j1
i1

(i2−i1)!(j2−j1)!
if i2 ≥ i1 and j2 ≥ j1,

0 otherwise.
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Then PFn,m(a0, . . . , an; b0, . . . , bm) = m!n!|D|.

Example 7. gm,0(x; a0; y; b0, . . . , bm) = (x−a0)
m indicates that PF0,m(a0; b0, . . . , bm) =

am
0 , which says that, in the (X,Y)–parking functions, there is no choice for the entry

in the position of x, while the m entries in the position of y can vary from 1 to a.

PF1,1(0; a0, a1; 0; b0, b1) = g1,1(0; a0, a1; 0; b0, b1) = b0a1 + a0b1 − a0b0 shows that the

(X,Y)–parking functions are the pairs (a, b), where a ≤ a1 and b ≤ b1 except those

cases when both a > a0 and b > b0.

In both cases, the number derived from the Goncarov polynomials agree with

the ones from the definition.

D. A New Perspective of (p, q)-Parking Functions

In this section we present two new interpretations of (p, q)–parking functions. Let

P⊤ := (a0, . . . , aq−1) be a lattice path from (0, 0) to (p, q) such that the right-most

point on the ith horizontal line is (ai, i), i < q; let Q⊥ := (b0, . . . , bp−1) be a lattice

path from (0, 0) to (p, q) such that the top-most point on the jth vertical line is

(j, bj), j < p.

Lemma 41. The associated increasing (p, q)–sequence (σ, τ) of each π ∈ Sp+q defines

two paths from (0, 0) to (p, q), and σ⊤ and τ⊥ are identical. Conversely, any path

from (0, 0) to (p, q) can be written as σ⊤ and τ⊥ (for some sequences σ and τ) and

(σ, τ) is an associated increasing (p, q)–sequence of some permutation in Sp+q.

Proof. Let π ∈ Sp+q, and (σ, τ) be its associated increasing (p, q)–sequence. We can

assume, without the lost of generality, that π = (φ0, . . . , φp−1, ψ0, . . . , ψq−1), where

φ and ψ are increasing sequences, and (σ, τ) still is its associated increasing (p, q)–

sequence.
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By the definition of σ, (i, j) is on σ⊤ iff σj−1 ≤ i ≤ σj . This assures us that there

are at least i entries in ψ that are less than φj, and at most i entries that are less than

φj−1. Since the sequences start with index 0, this means ψi−1 < φj and ψi > φj−1,

i.e., τi−1 ≤ j ≤ τi. Using the definition of τ , we know (i, j) is on τ⊥ too. Since both

paths have p+ q points, they are identical.

On the other hand, for every pair of sequences (σ, τ), if σ⊤ = τ⊥, we can use the

algorithm that follows to construct a permutation:

1. Let an integer n be 1; φ, ψ be two empty sequences; and we walk the path

starting from (0, 0);

2. At the current lattice point, if the line segment after it in the path is moving

up, attach n to the end of φ, otherwise, attach it to the end of ψ;

3. Increase the value of n by 1, and move to the next point on the path;

4. Return to step 2, until we reach the point (p, q);

5. (φ, ψ) is the desired permutation.

In the algorithm, when each lattice point is visited and a number inserted, the

number of vertical (horizontal) segments is the number of integers showed up in φ

(ψ), and thus the values of τ and σ.

The permutation found in the proof above is unique when both φ and ψ are

increasing. It is clear from the algorithm that φi = σi + i+ 1 and ψj = τj + j + 1.

Corollary 42. The number of increasing (p, q)–parking function is the number of

pairs of non-crossing paths from (0, 0) to (p, q).

Proof. Let (σ, τ) be an increasing (p, q)–parking function, π be one of its certificates,

and P be the unique path defined in the proof above. By the definition of (p, q)–

parking function, we can see that σ⊤ is above P while τ⊥ is below.
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On the other hand, if we have a pair of non-crossing paths P1, P2 from (0, 0) to

(p, q), where P1 is above P2, let σ, τ be two sequences such that σ⊤ = P1 and τ⊥ = P2,

and let π be permutation defined in the algorithm above based on P2. It is then clear

that (σ, τ) is an increasing (p, q)–parking function with certificate π.

Example 8. Applying the algorithm in Lemma 41 to the lattice path illustrated

below in Figure 24 gives the permutation (2, 5, 1, 3, 4).

(0, 0)

(3, 2)

Fig. 24. A lattice path from (0, 0) to (3, 2).

Similarly, an (X,Y)–parking function can be viewed as pairs of paths too. We

can draw dotted lines within an x− 1 by y − 1 rectangle through the lattice points.

Redraw the vertical lines with x–coordinates {x0 − 1, . . . , xn − 1 = x − 1}, and the

horizontal lines with y–coordinates {y0−1, . . . , ym−1 = y−1} as solid lines. There is

a one-to-one mapping that maps an (X,Y)–parking function to a pair of non-crossing

lattice paths within the rectangle such that there is a path along the solid lines that

seperates the two, which we call the firewall. The exact proof is omitted.

In the case when Xi = Yi = i + 1, all those lines are solid, and thus we get the

regular (p, q)–parking functions. If X0 = Y0 = 0, we cannot build a firewall at all, and

therefore the total number of such (X,Y)–parking function is 0, which agree with

the initial condition eq. 4.6 and Theorem 37.

We can also derive an interesting identity for the Narayama numbers N(j, k) =

1
j+k+1

(
j+k+1

j

)(
j+k+1

k

)
.
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Proposition 43. For nonnegative integers p and q we have

(
p+ q

p

)2

=

p∑

j=0

q∑

k=0

(
p− j + q − k

p− j − 1

)(
p− j + q − k

q − k − 1

)
N(j, k)

Proof. Let L((0, 0), (p, q)) denote the rectangular lattice whose diagonally opposite

corners are (0, 0) and (p, q). Let P be the set of all pairs of paths in L((0, 0), (p, q))

beginning at (0, 0) and ending at (p, q) which move either in northward (from (i, j) to

(i, j+1)) or eastward (from (i, j) to (i+1, j)) steps. It is elementary that |P | =
(

p+q

p

)2
.

We can also enumerate |P | in the following way. Given any pair of paths in L, let (j, k)

be the point nearest the origin at which the two paths cross (i.e. one path follows

(j, k − 1) to (j, k) to (j, k + 1) and the other follows (j − 1, k) to (j, k) to (j + 1, k)).

The two paths are then noncrossing in L((0, 0), (j, k)) and are cross and intersect

arbitrarily in L((j, k), (p, q)). The possibilities in L((0, 0), (j, k)) are enumerated by

N(j, k). The possibilities in L((j, k), (p, q)) are enumerated by
(

p−j+q−k

p−j−1

)(
p−j+q−k

q−k−1

)

(the p− j − 1 and q − k − 1 are because one step of both paths in L((j, k), (p, q)) is

already determined).
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CHAPTER V

CONCLUSION

Chapter I was an overview of the current state of the theory of generalized parking

functions. Chapter II has served to strengthen the relationship between generalized

parking functions and various matroid structures, most particularly spanning forests.

Chapter III placed the new generalization in the context of chip-firing games. Fi-

nally, Chapter IV emphasizes the importance of (p, q)-parking functions in even more

generalized settings.

Much work remains to be done to more fully understand choice functions. It

is clear that if ζ is a choice function, then algorithm A of Chapter II is a “ζ-first”

search. However basic questions about these functions, such as how many exist for a

given graph, seem difficult. Answering such questions would likely provide important

insights into the connectivity of a graph.

Another interesting question unaddressed in this dissertation is a whether a group

structure exists on the set of multiparking functions of a given graph. Biggs [2] has

demonstrated that there is an elegant group structure on the critical configurations

of a graph. Since G-parking functions are in bijection to critical configurations, this

group structure exists on them as well. However, it is not so easy to describe the

critical group in terms of G-parking functions. Whether this group structure can

be extended to multiparking functions (of either the kind described in Chapter II or

Chapter III) remains to be investigated.
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