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ABSTRACT

Hypergeometric Functions Over Finite Fields and Relations to Modular Forms and

Elliptic Curves. (August 2007)

Jenny G. Fuselier, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Matthew Papanikolas

The theory of hypergeometric functions over finite fields was developed in the mid-

1980s by Greene. Since that time, connections between these functions and elliptic

curves and modular forms have been investigated by mathematicians such as Ahlgren,

Frechette, Koike, Ono, and Papanikolas. In this dissertation, we begin by giving a

survey of these results and introducing hypergeometric functions over finite fields.

We then focus on a particular family of elliptic curves whose j-invariant gives an

automorphism of P1. We present an explicit relationship between the number of

points on this family over Fp and the values of a particular hypergeometric function

over Fp. Then, we use the same family of elliptic curves to construct a formula for

the traces of Hecke operators on cusp forms in level 1, utilizing results of Hijikata and

Schoof. This leads to formulas for Ramanujan’s τ -function in terms of hypergeometric

functions.
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CHAPTER I

INTRODUCTION AND HISTORY

I.1. General Introduction

Number theory is a broad branch of mathematics that encompasses topics from the

study of integers to number fields to solutions of Diophantine equations. In this

dissertation, we focus on relationships between three classes of objects: modular

forms, elliptic curves, and hypergeometric functions over finite fields.

Modular forms are most easily viewed as holomorphic functions on the complex

upper half plane which act in a nice way under various collections of transformations.

The study of such functions and their properties encompasses a rich theory which

includes the work of classical mathematicians such as Poincaré, Hecke, and Ramanu-

jan, and yet remains an active field of research today, in number theory and other

areas of mathematics.

Elliptic curves can be described as curves of genus 1, given by a cubic equation in

two variables, together with a distinguished point, the point at infinity. These curves

enjoy the special property of a group law, and they have relevance both to classical

problems such as the congruent number problem (see [9]) and to current questions in

cryptography, algebraic geometry, and more. Elliptic curves and modular forms have

many known connections, perhaps most famously those brought to light in the proof

of Fermat’s Last Theorem.

Finally, we are interested in studying hypergeometric functions over finite fields.

Classical hypergeometric functions have been studied for centuries and enjoy many

beautiful symmetries and transformation identities (see, e.g. [18]). In the 1980s,

The journal model is International Mathematics Research Notices.
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Greene [6] introduced a finite field analogue of such functions. He showed that these

new functions also satisfy many transformations, in a completely analogous way to

their classical counterparts. This dissertation focuses on connections the values of

these hypergeometric functions have to both modular forms and counting points on

elliptic curves over finite fields.

In the remaining section of this chapter, we give a brief survey of recent results

which connect these objects. In Chapter II, we introduce the necessary preliminaries,

including the definition of hypergeometric functions over Fp in Section II.2. Chapter

III considers connections that hypergeometric functions over Fp have to a particular

family of elliptic curves. Specifically, Theorem III.1.1 gives an explicit relationship

between counting the number of points on a family of elliptic curves over Fp and

the value of a certain hypergeometric function over Fp. Then, relationships between

hypergeometric functions over Fp and modular forms are studied in Chapter IV.

We focus in particular on deriving a formula for the traces of Hecke operators on

spaces of cusp forms in level 1, given in Theorem IV.1.1. This leads to formulas for

Ramanujan’s τ -function in terms of hypergeometric functions. Finally, in Chapter V,

we summarize our work and provide avenues for future study.

I.2. Recent History

Classical hypergeometric series have been studied by mathematicians such as Euler,

Vandermonde, and Kummer. An important example of these series is defined for

a, b, c ∈ C as

2F1[a, b; c; z] :=
∞∑

n=1

(a)n(b)n

(c)nn!
zn,

where (w)n = w(w + 1)(w + 2) · · · (w + n− 1).

In 1836, Kummer showed that the above series satisfies a well known second
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order differential equation. The specialization 2F1[
1
2
, 1

2
; 1; t] has further interesting

properties, as it is closely related to elliptic curves. In fact, it is a constant multiple of

an elliptic integral which represents a period of the lattice associated to the Legendre

family of elliptic curves y2 = x(x− 1)(x− t).

At the start of the twentieth century, investigations into connections between

classical hypergeometric functions and modular forms began. More recently, Stiller,

Beukers, and others discovered new relationships between the two. In [19], Stiller con-

structed an isomorphism between the graded algebra generated by classical Eisenstein

series E4 and E6 and one generated by powers and multiples of hypergeometric series

of the form 2F1[
1
12
, 5

12
; 1

2
; t]. Soon afterwards, Beukers [3] gave identifications between

periods of families of elliptic curves and values of particular hypergeometric series.

For example, he related a period of y2 = x3 − x− t to the values 2F1[
1
12
, 5

12
; 1

2
; 27

4
t2].

Meanwhile, in the mid-1980s, Greene [6] developed the theory of hypergeometric

functions over finite fields. Let p be an odd prime, and let F̂×p denote the group

of multiplicative characters χ on F×p , extended to all of Fp by setting χ(0) = 0. If

A,B ∈ F̂×p and J denotes the Jacobi sum, then define
(

A
B

)
:= B(−1)

p
J(A,B). Greene

defined hypergeometric functions over Fp, for A0, A1, . . . , An, B1, B2, . . . , Bn ∈ F̂×p and

x ∈ Fp by

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣x
)

:=
p

p− 1

∑
χ∈cF×p

(
A0χ

χ

)(
A1χ

B1χ

)
. . .

(
Anχ

Bnχ

)
χ(x),

where n is a positive integer. (See Section II.2 for more details.)

Greene explored the properties of these functions and showed that they satisfy

many transformations analogous to those satisfied by their classical counterparts, such

as an analogue to the classical integral representation of 2F1[a, b; c; z] (see Theorem

II.2.3). The development of Greene’s hypergeometric functions over Fp generated
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interest in finding connections they may have with modular forms and elliptic curves.

In recent years, many results have been proved in this direction.

Let φ and ε denote the unique quadratic and trivial characters, respectively, on

F×p . Further, define two families of elliptic curves over Fp by

2E1(t) : y2 = x(x− 1)(x− t)

3E2(t) : y2 = (x− 1)(x2 + t).

Then, for odd primes p and t ∈ Fp, define the traces of Frobenius on the above families

by

2A1(p, t) = p+ 1−#2E1(t)(Fp), t 6= 0, 1

3A2(p, t) = p+ 1−#3E2(t)(Fp), t 6= 0,−1.

These families of elliptic curves are closely related to particular hypergeometric func-

tions over Fp. For example, 2F1[φ, φ, ε; t] arises in the formula for Fourier coefficients

of a modular form associated to 2E1(t) ([10, 12]). Further, Koike and Ono, respec-

tively, gave the following explicit relationships:

Theorem I.2.1 ((a) Koike [10], (b) Ono [12]). Let p be an odd prime. Then

(a) p 2F1

(
φ, φ

ε

∣∣∣∣t
)

= −φ(−1)2A1(p, t), t 6= 0, 1

(b) p2
3F2

(
φ, φ, φ

ε, ε

∣∣∣∣1 + 1
t

)
= φ(−t)(3A2(p, t)

2 − p), t 6= 0,−1.

Soon after, Ahlgren and Ono [2] and Ahlgren [1] exhibited formulas for the traces

of Hecke operators on spaces of cusp forms in levels 8 and 4. Let Sk(Γ0(N)) denote

the vector space of cusp forms of weight k on the congruence subgroup Γ0(N) of

Γ = SL2(Z). Let Trk(Γ0(N), p) denote the trace of the Hecke operator Tk(p) on

Sk(Γ0(N)). (See Section IV.1 for more details.) Further, define polynomials Gk(s, p)
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by

Gk(s, p) =

k
2
−1∑

j=0

(−1)j

(
k − 2− j

j

)
pjsk−2j−2.

Theorem I.2.2 ((a) Ahlgren and Ono [2], (b) Ahlgren [1]). Let p be an odd

prime and k ≥ 4 be an even integer. Then

(a) Trk(Γ0(8), p) = −4−
p−2∑
t=2

Gk(2A1(p, t
2), p)

(b) Trk(Γ0(4), p) = −3−
p−1∑
t=2

Gk(2A1(p, t), p).

Ahlgren and Ono’s methods involved combining the Eichler-Selberg trace formula

[7] with a theorem given by Schoof [16]. In the proof of Theorem IV.1.1, given in

Section IV.4, we use similar techniques to exhibit a formula in the level 1 setting.

Recently, Frechette, Ono, and Papanikolas expanded the techniques of Ahlgren and

Ono and obtained results in the level 2 case:

Theorem I.2.3 (Frechette, Ono, and Papanikolas [5]). Let p be an odd prime

and k ≥ 4 be even. When p ≡ 1 (mod 4), write p = a2+b2, where a, b are nonnegative

integers, with a odd. Then

Trk(Γ0(2), p) = −2− δk(p)−
p−2∑
t=1

Gk(3A2(p, t), p),

where

δk(p) =


1
2
Gk(2a, p) + 1

2
Gk(2b, p) if p ≡ 1 (mod 4)

(−p)k/2−1 if p ≡ 3 (mod 4).

In addition, Frechette, Ono, and Papanikolas used relationships between counting

points on varieties over Fp and hypergeometric functions over Fp to obtain further

results for the traces of Hecke operators on spaces of newforms in level 8. Most

recently, Papanikolas [13] used the results in [5] as a starting point to obtain a new

formula for Ramanujan’s τ function, as well as a new congruence for τ(p) (mod 11).
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CHAPTER II

PRELIMINARIES

II.1. Preliminaries on Characters

Let p be a prime and let F̂×p denote the group of all multiplicative characters on

F×p . Recall that χ is a multiplicative character on F×p if χ : F×p → C× is a group

homomorphism. We extend χ ∈ F̂×p to all of Fp by setting χ(0) = 0. Throughout, we

let ε denote the trivial character and φ denote the quadratic character (or Legendre

symbol). Also, we denote ζ = e2πi/p.

Definition II.1.1. If A,B ∈ F̂×p , we define their Jacobi sum to be

J(A,B) =
∑
x∈Fp

A(x)B(1− x).

Definition II.1.2. For A ∈ F̂×p , define the Gauss sum by

G(A) =
∑
x∈Fp

A(x)ζx.

Also notice that since F×p is a cyclic group, so is its group of multiplicative

characters, F̂×p . Therefore, we let T denote a fixed generator of this group, i.e. 〈T 〉 =

F̂×p . With this in mind, we often use the notation Gm := G(Tm). Now, we give a few

elementary properties of characters, as well as of Gauss and Jacobi sums. For proofs

of these results, see Chapter 8 of [8]. First, we state the orthogonality relations for

multiplicative characters.

Lemma II.1.3. Let T be a generator for F̂×p . Then

(a)
∑
x∈Fp

T n(x) =


p− 1 if T n = ε

0 if T n 6= ε
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(b)

p−2∑
n=0

T n(x) =


p− 1 if x = 1

0 if x 6= 1.

The next result calculates the values of two particular Gauss sums, G(ε) and

G(φ).

Lemma II.1.4. (a) G(ε) = G0 = −1

(b) G(φ) = G p−1
2

=


√
p if p ≡ 1 (mod 4)

i
√
p if p ≡ 3 (mod 4).

We now define an additive character θ : Fp → C by θ(α) = ζα. Notice that we

can write Gauss sums in terms of θ, as we have G(A) =
∑

x∈Fp
A(x)θ(x). In addition,

we can write θ in terms of Gauss sums:

Lemma II.1.5. For all α ∈ F×p ,

θ(α) =
1

p− 1

p−2∑
m=0

G−mT
m(α).

Proof. We calculate the right-hand side and find that

1

p− 1

p−2∑
m=0

G−mT
m(α) =

1

p− 1

p−2∑
m=0

∑
x∈Fp

T−m(x)θ(x)Tm(α)

=
1

p− 1

∑
x∈Fp

θ(x)

p−2∑
m=0

T−m
(x
α

)
=

1

p− 1

∑
x=α

θ(x) · (p− 1) (Lemma II.1.3 (b))

= θ(α),

as desired.
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II.2. Hypergeometric Functions over Fp

In the mid 1980s, Greene [6] developed a theory of hypergeometric functions over finite

fields. Let p be an odd prime, and as above, let F̂×p denote the group of multiplicative

characters on Fp. If A,B are characters on Fp, then define(
A

B

)
:=

B(−1)

p
J(A,B) =

B(−1)

p

∑
x∈Fp

A(x)B(1− x).

Greene defined hypergeometric functions over Fp in the following way:

Definition II.2.1 ([6] Defn. 3.10). If n is a positive integer, x ∈ Fp, andA0, A1, . . . , An,

B1, B2, . . . , Bn ∈ F̂×p , then define

n+1Fn

(
A0, A1, . . . , An

B1, . . . , Bn

∣∣∣∣x
)

:=
p

p− 1

∑
χ∈cF×p

(
A0χ

χ

)(
A1χ

B1χ

)
. . .

(
Anχ

Bnχ

)
χ(x).

It is important to note that Greene’s definition holds for more general finite

fields Fq where q = pk, but for our purposes we focus on the case q = p. In his 1987

paper [6], Greene gave a comprehensive introduction to these functions and the many

relations they satisfy. Some follow directly from his definitions, while others are far

more subtle. We need a few of his results, which we now give below. First, we give a

lemma which provides a formula for the multiplicative inverse of a Gauss sum.

Lemma II.2.2 ([6] Eqn. 1.12). If k ∈ Z and T k 6= ε, then

GkG−k = pT k(−1).

The following result was given by Greene as the definition of the hypergeometric

function when n = 1. It provides an alternative to Definition II.2.1, and in particular,

it allows us to write the 2F1 hypergeometric function as a character sum.
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Theorem II.2.3 ([6] Defn. 3.5). If A,B,C ∈ F̂×p and x ∈ Fp, then

2F1

(
A, B

C

∣∣∣∣x
)

= ε(x)
BC(−1)

p

p−1∑
y=0

B(y)BC(1− y)A(1− xy).

In [6], Greene presented many transformation identities satisfied by the hyper-

geometric functions he defined. The theorem below allows for the argument x ∈ Fp

to be replaced by 1− x.

Theorem II.2.4 ([6] Theorem 4.4). If A,B,C ∈ F̂×p and x ∈ Fp\{0, 1}, then

2F1

(
A, B

C

∣∣∣∣x
)

= A(−1)2F1

(
A, B

ABC

∣∣∣∣1− x

)
.

Finally, we recall a classical relationship between Gauss and Jacobi sums, but

we write it utilizing Greene’s definition for the binomial coefficient.

Lemma II.2.5. If Tm−n 6= ε, then(
Tm

T n

)
=
GmG−nT

n(−1)

Gm−n · p
.

II.3. The Hasse-Davenport Relation

One relation between characters that is of particular interest to us is the Hasse-

Davenport relation. The most general version of this relation involves an arbitrary

additive character, and can be found in [11]. We require only the case when θ is taken

as the additive character:

Theorem II.3.1 (Hasse-Davenport Relation [11]). Let m be a positive integer

and let p be a prime so that p ≡ 1 (mod m). Let θ be the additive character on Fp

defined by θ(α) = ζα, where ζ = e2πi/p. For multiplicative characters χ, ψ ∈ F̂×p , we

have ∏
χm=1

G(χψ) = −G(ψm)ψ(m−m)
∏

χm=1

G(χ).
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Proof. See [11], page 61.

We now look more closely at two instances of this relation.

Corollary II.3.2. If p ≡ 1 (mod 4) and k ∈ Z,

G−kG− p−1
2
−k =

√
pG−2kT

k(4).

Proof. We take m = 2 in Theorem II.3.1, since it follows that p is odd. Notice

that there are precisely two characters having order dividing 2: ε and φ. Applying

the Hasse-Davenport relation in this context and taking an arbitrary multiplicative

character T−k, we find that

G(T−k)G(φT−k) = −G(T−2k)T−k(2−2)G(ε)G(φ).

Then, since φ = T
p−1
2 = T−

p−1
2 , we have

G−kG− p−1
2
−k =

√
pG−2kT

k(4),

by Lemma II.1.4.

Corollary II.3.3. If k ∈ Z and p is a prime with p ≡ 1 (mod 3) then

GkGk+ p−1
3
G

k+
2(p−1)

3

= p T−k(27)T
p−1
3 (−1)G3k.

Proof. Here, we take m = 3 in Theorem II.3.1. Notice that there are three multi-

plicative characters with order dividing 3, namely ε, T
p−1
3 , and T

2(p−1)
3 . Applying the

Hasse-Davenport relation and taking an arbitrary multiplicative character T k, we get

G
(
T k
)
G
(
T k+ p−1

3

)
G
(
T k+

2(p−1)
3

)
= −G

(
T 3k
)
T k(3−3)G(ε)G

(
T

p−1
3

)
G
(
T

2(p−1)
3

)
.
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Then, after simplifying and applying Lemma II.1.4 we have

GkGk+ p−1
3
G

k+
2(p−1)

3

= T−k(27)G p−1
3
G 2(p−1)

3

G3k.

Because T
p−1
3 has order 3, we see that

(
T

p−1
3

)2

= T
2(p−1)

3 =
(
T

p−1
3

)−1

. Thus, since

T
p−1
3 6= ε, Lemma II.2.2 implies that G p−1

3
G 2(p−1)

3

= p T
p−1
3 (−1). Therefore, we have

the desired result,

GkGk+ p−1
3
G

k+
2(p−1)

3

= p T−k(27)T
p−1
3 (−1)G3k.
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CHAPTER III

HYPERGEOMETRIC FUNCTIONS OVER Fp AND ELLIPTIC CURVES

III.1. Notation and Statement of Theorem

Throughout, we consider a family of elliptic curves having j-invariant 1728
t

. That is,

for t ∈ Fp, t 6= 0, 1 we let

Et : y2 = 4x3 − 27

1− t
x− 27

1− t
. (1)

Further, we let a(t, p) denote the trace of the Frobenius endomorphism on Et.

In particular, for t 6= 0, 1, we have

a(t, p) = p+ 1−#Et(Fp),

where #Et(Fp) counts the number of solutions to y2 ≡ 4x3 − 27
1−t
x − 27

1−t
(mod p),

including the point at infinity.

Henceforth, we let p be a prime number with p ≡ 1 (mod 12). With this in mind,

we let ξ ∈ F̂×p have order 12. Recall also that ε and φ denote the trivial and quadratic

characters, respectively. The main theorem in this chapter explicitly relates the above

trace of Frobenius and the values of a hypergeometric function over Fp.

Theorem III.1.1. Suppose p is a prime, p ≡ 1 (mod 12) and ξ ∈ F̂×p has order 12.

Then, if t ∈ Fp\{0, 1} and notation is as above, we have

p 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

= ψ(t)a(t, p),

where ψ(t) = −φ(2)ξ−3(1− t).

Notice that the hypergeometric function in the above theorem is a finite field

analogue of the classical 2F1 considered by Stiller in [19], as mentioned in Section
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I.2. The proof of Theorem III.1.1 involves two main steps. First, we derive a formula

for a(t, p) in terms of Gauss sums, and then we write the hypergeometric function in

terms of Gauss sums. The final proof follows from comparing the two.

III.2. Proof of Theorem III.1.1

We begin by deriving a formula for the trace of Frobenius in terms of Gauss sums.

Notation. • Let s = p−1
12
.

• Let P (x, y) = y2 − 4x3 + 27
1−t
x+ 27

1−t
.

Recall from the previous chapter that θ is the additive character on Fp given by

θ(α) = ζα, where ζ = e2πi/p. Note that if (x, y) ∈ F2
p, then

∑
z∈Fp

θ(zP (x, y)) =


p ifP (x, y) = 0

0 ifP (x, y) 6= 0.

So we have

p · (#Et(Fp)− 1) =
∑
z∈Fp

∑
x,y∈Fp

θ(zP (x, y))

=
∑

x,y,∈Fp

1 +
∑
z∈F×p

∑
x,y∈Fp

θ(zP (x, y)),

after breaking apart the z = 0 contribution. Then, by separating the sums according

to whether x and y are 0 and applying the additivity of θ, we have

p · (#Et(Fp)− 1) = p2 +
∑
z∈F×p

θ

(
z

27

1− t

)
+
∑
z∈F×p

∑
y∈F×p

θ(zy2)θ

(
z

27

1− t

)

+
∑
z∈F×p

∑
x∈F×p

θ(−4zx3)θ

(
zx

27

1− t

)
θ

(
z

27

1− t

)
+

∑
x,y,z∈F×p

θ(zP (x, y))

:= p2 + A+B + C +D,
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where A, B, C, and D are set to be the four sums appearing in the previous line.

We now compute A, B, C, and D using Lemmas II.1.3, II.1.4 and II.1.5 repeatedly.

First, by Lemma II.1.5, we have

A =
∑
z∈F×p

θ

(
z

27

1− t

)
=

1

p− 1

∑
z∈F×p

p−2∑
m=0

G−mT
m

(
z

27

1− t

)

=
1

p− 1

p−2∑
m=0

G−mT
m

(
27

1− t

)∑
z∈F×p

Tm(z),

after switching the order of summation. Then by Lemma II.1.3,
∑

z∈F×p T
m(z) is only

nonzero when Tm = ε, i.e. when m = 0. Thus, we have

A = G0T
0

(
27

1− t

)
= G0 = −1,

by Lemma II.1.4.

Now we compute B using similar techniques. First, we apply Lemma II.1.5 twice

and follow by switching the order of summation so that all z terms appear in a single

sum. We see that

B =
1

(p− 1)2

∑
z∈F×p

∑
y∈F×p

p−2∑
j,k=0

G−jG−kT
j(zy2)T k

(
z

27

1− t

)

=
1

(p− 1)2

∑
y∈F×p

p−2∑
j,k=0

G−jG−kT
j(y2)T k

(
27

1− t

)∑
z∈F×p

T j+k(z).

By Lemma II.1.3, the final sum is nonzero only when k = −j, and in that case, it

takes the value p − 1. Making this substitution and pulling the y summation to the

right gives

B =
1

p− 1

p−2∑
j=0

G−jGjT
−j

(
27

1− t

) ∑
y∈F×p

T 2j(y)

= G0G0T
0

(
27

1− t

)
+G− p−1

2
G p−1

2
T−

p−1
2

(
27

1− t

)
.
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The second equality follows by Lemma II.1.3, since T 2j = ε precisely when j = 0 or

j = p−1
2

. Thus, simplifying by Lemma II.1.4 and noting that G− p−1
2

= G p−1
2

=
√
p

provides

B = 1 + pφ

(
27

1− t

)
= 1 + pφ

(
3

1− t

)
.

Next we compute C, beginning with three applications of Lemma II.1.5.

C =
1

(p− 1)3

∑
z∈F×p

∑
x∈F×p

p−2∑
j,k,m=0

G−jG−kG−mT
j(−4zx3)T k

(
zx

27

1− t

)
Tm

(
z

27

1− t

)

=
1

(p− 1)3

∑
x∈F×p

p−2∑
j,k,m=0

G−jG−kG−mT
j(−4x3)T k

(
x

27

1− t

)
Tm

(
27

1− t

)∑
z∈F×p

T j+k+m(z),

by collecting all T (z) terms into a single sum. Similar to the computation of B, we

note that the final sum is only nonzero when m = −j−k, according to Lemma II.1.3.

Making this substitution and rearranging terms yet again gives

C =
1

(p− 1)2

p−2∑
j,k=0

G−jG−kGj+kT
j(−4)T k

(
27

1− t

)
T−j−k

(
27

1− t

) ∑
x∈F×p

T 3j+k(x)

=
1

p− 1

p−2∑
j=0

G−jG3jG−2jT
j(−4)T−j

(
27

1− t

)
.

The last equality follows by substituting k = −3j, according to Lemma II.1.3. Finally,

we compute D, which requires four applications of Lemma II.1.5 in the first step. We

find that

D =
1

(p− 1)4

∑
x,y,z∈F×p

p−2∑
j,k,`,m=0

G−jG−kG−`G−mT
j(zy2)T k(−4zx3)

· T `

(
zx

27

1− t

)
Tm

(
z

27

1− t

)
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=
1

(p− 1)4

∑
x,y∈F×p

p−2∑
j,k,`,m=0

G−jG−kG−`G−mT
j(y2)T k(−4x3)T `

(
x

27

1− t

)

· Tm

(
27

1− t

)∑
z∈F×p

T j+k+`+m(z),

after simplifying to collect all T (z) terms. As we have seen, Lemma II.1.3 implies

the final sum is nonzero only when m = −j − k − `. Performing this substitution,

together with collecting all T (x) terms gives

D =
1

(p− 1)3

∑
y∈F×p

p−2∑
j,k,`=0

G−jG−kG−`Gj+k+`T
j(y2)T k(−4)T−j−k

(
27

1− t

) ∑
x∈F×p

T 3k+`(x)

=
1

(p− 1)2

p−2∑
j,k=0

G−jG−kG3kGj−2kT
k(−4)T−j−k

(
27

1− t

) ∑
y∈F×p

T 2j(y),

by applying the substitution ` = −3k, according to Lemma II.1.3, and collecting

all T (y) terms. Finally, we note that, as in the computation of B, T 2j = ε when

j = 0, p−1
2

. Accounting for both of these cases, we arrive at

D =
1

p− 1

p−2∑
k=0

G0G−kG3kG−2kT
k(−4)T−k

(
27

1− t

)

+
1

p− 1

p−2∑
k=0

G− p−1
2
G−kG3kG p−1

2
−2kT

k(−4)T−k− p−1
2

(
27

1− t

)

=
1

p− 1

p−2∑
k=0

G−kG3kT
k(−4)

[
−G−2kT

−k

(
27

1− t

)
+
√
pG6s−2kT

−k−6s

(
27

1− t

)]

=
1

p− 1

p−2∑
k=0

G−kG3kT
k(−4)T−k

(
27

1− t

)[
−G−2k +

√
pG6s−2kφ

(
3

1− t

)]
,

after collecting like terms and simplifying. Therefore, combining our calculations for

A, B, C, and D, we see that

p · (#Et(Fp)− 1) = p2 + A+B + C +D
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= p2 + pφ

(
3

1− t

)
+

√
p

p− 1
φ

(
3

1− t

) p−2∑
k=0

G−kG3kG6s−2kT
k(−4)T−k

(
27

1− t

)
.

Now we compute the trace of Frobenius a(t, p). Since a(t, p) = p + 1−#Et(Fp), we

have proved:

Proposition III.2.1. If p is a prime, p ≡ 1 (mod 12), s = p−1
12

, and Et is as in (1),

then

a(t, p) = −φ
(

3

1− t

)
−

φ
(

3
1−t

)
√
p(p− 1)

p−2∑
k=0

G−kG3kG6s−2kT
k(−4)T−k

(
27

1− t

)
.

Now that we have a formula for the trace of Frobenius on Et in terms of Gauss

sums, we must write our specialization of the 2F1 hypergeometric function in similar

terms. Recall that s = p−1
12

and T generates the character group F̂×p . Thus, we may

take the character ξ of order 12 in the statement of Theorem III.1.1 to be T s.

The next result gives an explicit formula for 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

in terms of Gauss

sums. In its proof, we make use of the specific cases of the Hasse-Davenport relation

that we derived in Chapter II.

Proposition III.2.2. For t ∈ Fp\{0, 1},

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

=
T 3s(4(1− t))
√
p(p− 1)

p−2∑
k=0

G6s−2kG3k
1

Gk

T k(4)T−k

(
27

1− t

)
.

Proof. By Theorem II.2.4,

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

= ξ(−1)2F1

(
ξ, ξ5

ξ6

∣∣∣∣1− t

)

= T s(−1)
p

p− 1

∑
χ

(
ξχ

χ

)(
ξ5χ

ξ6χ

)
χ(1− t) (Definition II.2.1)

= T s(−1)
p

p− 1

p−2∑
k=0

(
T s+k

T k

)(
T 5s+k

T 6s+k

)
T k(1− t),
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as T generates the character group. Now we rewrite the product
(

T s+k

T k

)(
T 5s+k

T 6s+k

)
of

binomial coefficients in terms of Gauss sums, by way of Lemma II.2.5. Since T s = ξ

and T−s = ξ−1 are not trivial, we have

(
T s+k

T k

)(
T 5s+k

T 6s+k

)
=

[
Gs+kG−kT

k(−1)

pGs

]
·
[
G5s+kG−6s−kT

6s+k(−1)

pG−s

]
=

1

p3
Gs+kG−kG5s+kG−6s−kT

5s+2k(−1),

since GsG−s = pT s(−1) by Lemma II.2.2. Thus,

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

=
T s(−1)

p2(p− 1)

p−2∑
k=0

Gs+kG−kG5s+kG−6s−kT
5s+2k(−1)T k(1− t)

=
φ(−1)

p2(p− 1)

p−2∑
k=0

Gs+kG−kG5s+kG−6s−kT
k(1− t),

since T sT 5s = φ and T 2k(−1) = 1 for all k.

Now we apply the Hasse-Davenport relation (Corollary II.3.2) and make a sub-

stitution for G−kG−6s−k. We obtain

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

=
φ(−1)

p
3
2 (p− 1)

p−2∑
k=0

Gs+kG5s+kG−2kT
k(4)T k(1− t).

Next, we let k 7→ k + 3s and find

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

=
φ(−1)

p
3
2 (p− 1)

p−2∑
k=0

G4s+kG8s+kG−2k−6sT
k+3s(4)T k+3s(1− t)

=
φ(−1)T 4s(−1)
√
p(p− 1)

p−2∑
k=0

G6s−2kG3k
1

Gk

T−k(27)T k+3s(4)T k+3s(1− t),

by applying the Hasse-Davenport relation (Corollary II.3.3) to make a substitution

for G4s+kG8s+k, and by noting that G−2k−6s = G−2k+6s. Then, since p ≡ 1 (mod 12)
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implies φ(−1)T 4s(−1) = T 10s(−1) = 1, we simplify to obtain

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

=
T 3s(4(1− t))
√
p(p− 1)

p−2∑
k=0

G6s−2kG3k
1

Gk

T k(4)T−k

(
27

1− t

)
,

as desired.

We now have the necessary tools to complete the proof of Theorem III.1.1.

Proof of Theorem III.1.1. We combine the results of Propositions III.2.1 and III.2.2

with a bit of algebra to complete the proof. We begin by taking the formula for

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

given in Proposition III.2.2, splitting off the k = 0 term in the sum and

applying Lemma II.2.2 to the k ≥ 1 terms, to move all Gauss sums to the numera-

tor. We also simplify by noticing that T−k(−1) = T k(−1) implies T−k(−1)T k(4) =

T k(−4). We see that

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

=
T 3s(4(1− t))
√
p(p− 1)

[
√
p+

1

p

p−2∑
k=1

G6s−2kG3kG−kT
−k(−1)T k(4)T−k

(
27

1− t

)]

=
T 3s(4(1− t))
√
p(p− 1)

[
√
p+

1

p

p−2∑
k=1

G6s−2kG3kG−kT
k(−4)T−k

(
27

1− t

)]
.

Next, we multiply by
φ(3)T 3s(1− t)

φ(3)T 3s(1− t)
and rearrange, while recalling that φ = φ−1. We

obtain

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

= − T 3s(4)

φ(3)T 3s(1− t)

[
− 1

p− 1
φ

(
3

1− t

)

− 1

p
3
2 (p− 1)

φ

(
3

1− t

) p−2∑
k=1

G6s−2kG3kG−kT
k(−4)T−k

(
27

1− t

)]

= −T 3s(4)φ(3)T−3s(1− t)

[
−
φ
(

3
1−t

)
p

−
φ
(

3
1−t

)
p

3
2 (p− 1)

p−2∑
k=0

G6s−2kG3kG−kT
k(−4)T−k

(
27

1− t

)]
.
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The last equality follows by noting that the k = 0 term of the final sum is −φ( 3
1−t)

p(p−1)

and

−
φ
(

3
1−t

)
p− 1

+
φ
(

3
1−t

)
p(p− 1)

= −
φ
(

3
1−t

)
p

.

Recall now that Proposition III.2.1 provides that

−φ
(

3

1− t

)
−

φ
(

3
1−t

)
√
p(p− 1)

p−2∑
k=0

G6s−2kG3kG−kT
k(−4)T−k

(
27

1− t

)
= a(t, p).

Thus, we have

p 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

= −T 3s(4)φ(3)T−3s(1− t)a(t, p),

so the proof is complete if T 3s(4)φ(3)T−3s(1 − t) = φ(2)ξ−3(1 − t). Since T 3s = ξ3

and T−3s = ξ−3, we need only show that

ξ3(4)φ(3) = φ(2). (2)

By multiplicativity, ξ3(4) = ξ6(2) = φ(2). Further, φ(3) =
(

3
p

)
=
(

p
3

)
by quadratic

reciprocity, since p ≡ 1 (mod 4). Also, since p ≡ 1 (mod 3), we have φ(3) =
(

1
3

)
= 1.

This verifies (2), and hence completes the proof.

We have proved two other results similar to Theorem III.1.1, but which apply

to different families of elliptic curves. The particular families of elliptic curves were

considered by Beukers in [3], where he related the periods of these families to values

of classical hypergeometric functions. Our results are analogues involving hypergeo-

metric functions over Fp, and the characters which appear in our 2F1 bear a striking

resemblance to the parameters Beukers used in the classical case. We now state these

results without proof, as they are proved following the same general steps given in

the proof of Theorem III.1.1.
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Proposition III.2.3. Suppose p is a prime with p ≡ 1 (mod 12), and let ξ ∈ F̂×p

have order 12. Let Et : y2 = x3 + tx+ 1, and let a(t, p) = p+ 1−#Et(Fp). Then

p 2F1

(
ξ, ξ7

ξ8

∣∣∣∣− 4

27
t3

)
= χ(t)a(t, p),

where χ(t) = −ξ−1(−4)ξ−4( t3

27
).

Proposition III.2.4. Suppose p is a prime with p ≡ 1 (mod 12), and let ξ ∈ F̂×p

have order 12. Let Et : y2 = x3 − x− t, and let a(t, p) = p+ 1−#Et(Fp). Then

p 2F1

(
ξ, ξ5

φ

∣∣∣∣27

4
t2

)
= −ξ3(−27)a(t, p).

It is interesting to note that in Proposition III.2.3, the values of the char-

acter χ(t), which appears as the coefficient of a(t, p), are simply sixth roots of

unity, and in Proposition III.2.4, the values of ξ3(−27) are simply ±1. A pri-

ori, ξ3(−27) ∈ {±1,±i}, but in fact, we have (ξ3(−27))2 = (ξ3(−1)ξ3(27))2 =

φ(−1)φ(27) = φ(−1)φ(3) = 1. This follows since p ≡ 1 (mod 12) implies φ(−1) = 1

and since φ(3) = 1, as shown in the proof of Theorem III.1.1.
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CHAPTER IV

HYPERGEOMETRIC FUNCTIONS AND MODULAR FORMS

IV.1. Introduction

In the previous chapters we introduced the notion of hypergeometric functions over

a finite field and highlighted some connections these functions have to elliptic curves.

Now we consider relationships between hypergeometric functions and modular forms.

First, we recall some basic facts and notation. We follow the treatment of Koblitz,

given in Chapter 3 of [9].

Let Γ = SL2(Z) be the special linear group, consisting of all invertible 2 × 2

matrices having entries in Z and determinant 1. Let f(z) be a holomorphic function

on the upper half plane H and let k ∈ Z. Suppose that we have

f(γz) = (cz + d)kf(z) for all γ =

(
a b

c d

)
∈ Γ. (3)

Recall that f has a Fourier expansion of the form

f(z) =
∑
n∈Z

anq
n where q = e2πiz, (4)

and suppose that the above expansion satisfies an = 0 for all n < 0 (i.e. f(z) is

holomorphic at infinity). Then we say f(z) is a modular form of weight k for Γ. We

let Mk := Mk(Γ) denote the set of all such functions.

If the Fourier expansion (4) of f(z) has the additional property that a0 = 0, then

we say f(z) is a cusp form of weight k for Γ, and we denote the set of these functions

by Sk := Sk(Γ).

Now, for a positive integer N , let Γ0(N) denote the congruence subgroup of Γ
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defined by

Γ0(N) =

{(
a b

c d

)
∈ Γ

∣∣∣∣∣c ≡ 0 (mod N)

}
.

One may generalize the type of relation given in (3) to define modular forms and cusp

forms on such congruence subgroups of Γ. These modular forms are relevant to the

results in [2], [1], and [5], mentioned in Section I.2. However, our interest lies only in

the level one case, that is when N = 1 and we have Γ0(1) = Γ, so we do not require

such generalizations.

Further, we define the nth Hecke operator on Mk by

Tk(n) : Mk →Mk,

where

(Tk(n)f)(z) = nk−1
∑
ad=n
0≤b<d

d−kf

(
az + b

d

)
.

Recall also that Tk(n) maps Sk to itself. We let Trk(Γ, n) denote the trace of the nth

Hecke operator on the space of cusp forms of weight k for Γ.

In this chapter, for primes p ≡ 1 (mod 12), we derive a formula for Trk(Γ, p) in

terms of the number of points on the family

Et : y2 = 4x3 − 27

1− t
x− 27

1− t
(5)

of elliptic curves from Chapter III. If we let a(t, p) = p + 1−#Et(Fp) as before, we

have the following theorem, whose proof we delay until Section IV.4.

Theorem IV.1.1. Suppose p is a prime with p ≡ 1 (mod 12). Let a, b ∈ Z such that

p = a2 + b2 and a+ bi ≡ 1 (2+2i) in Z[i]. Also, let c, d ∈ Z such that p = c2− cd+d2
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and c+ dω ≡ 2 (3) in Z[ω], where ω = e2πi/3. Then for even k ≥ 4,

Trk(Γ, p) = −1− λ(k, p)−
p−1∑
t=2

Gk(a(t, p), p),

where

λ(k, p) =
1

2
[Gk(2a, p) +Gk(2b, p)] +

1

3
[Gk(c+ d, p) +Gk(2c− d, p) +Gk(c− 2d, p)]

and

Gk(s, p) =

k
2
−1∑

j=0

(−1)j

(
k − 2− j

j

)
pjsk−2j−2.

IV.2. Theorems of Hasse, Schoof, and Hijikata

The proof of Theorem IV.1.1 utilizes three important results: a classical theorem

of Hasse, a theorem of Schoof, and Hijikata’s version of the Eichler-Selberg trace

formula. In this section, we develop the context for these results and state the versions

necessary for our proof.

The first result, proved by Hasse in the 1930s, gives an upper bound for the

number of points on an elliptic curve defined over a finite field.

Theorem IV.2.1 (Hasse). Let E be an elliptic curve defined over Fp, where p is

prime. Then

|#E(Fp)− (p+ 1)| ≤ 2
√
p.

Proof. See, for example, [17] page 131.

The results of Schoof and Hijikata require some more notation. For both, we

follow the treatment given in [5]. If d < 0, d ≡ 0, 1 (mod 4), let O(d) denote

the unique imaginary quadratic order in Q(
√
d) having discriminant d. Let h(d) =

h(O(d)) be the order of the class group of O(d), and let w(d) = w(O(d)) be half the
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cardinality of the unit group of O(d). We then let h∗(d) = h(d)/w(d). Further, if d

is the discriminant of an imaginary quadratic order O, let

H(d) :=
∑

O⊆O′⊆Omax

h(O′), (6)

where the sum is over all orders O′ between O and Omax, the maximal order. A

complete treatment of the theory of orders in imaginary quadratic fields can be found

in section 7 of [4].

Additionally, if K is a field, we define

EllK := {[E]K |E is defined overK},

where [E]K denotes the isomorphism class of E over K and [E1]K = [E2]K if there

exists an isomorphism β : E1 → E2 over K. Now if p is an odd prime, define

I(s, p) := {[E]Fp ∈ EllFp |#E(Fp) = p+ 1± s}. (7)

Schoof proved the following theorem, connecting the quantities in (6) and (7).

Theorem IV.2.2 (Schoof [16], Thm. 4.6). If p is an odd prime and s is an

integer with 0 < s < 2
√
p, then

#I(s, p) = 2H(s2 − 4p).

The final key ingredient to the proof of Theorem IV.1.1 is the Eichler-Selberg

trace formula, which provides a starting point for calculating the trace of the pth

Hecke operator on Sk. We use Hijikata’s version of this formula, which is found in

[7], but we only require the level 1 formulation. Let k ≥ 2 be an even integer, and let

p ≡ 1 (mod 12) be prime.
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Define

Fk(x, y) =
xk−1 − yk−1

x− y
.

Then letting x + y = s and xy = p gives rise to polynomials Gk(s, p) = Fk(x, y).

These polynomials can be written alternatively as

Gk(s, p) =

k
2
−1∑

j=0

(−1)j

(
k − 2− j

j

)
pjsk−2j−2, (8)

as in the statement of Theorem IV.1.1. Note that when writing the polynomials

Gk(s, p), we take the convention s0 = 1, so that the constant term of Gk(s, p) is

(−p) k
2
−1, for all values of s. Using this notation, the formulation given below is a

straightforward reduction of Hijikata’s trace formula in the level one case.

Theorem IV.2.3 (Hijikata [7], Thm. 2.2). Let k ≥ 2 be an even integer, and let

p ≡ 1 (mod 12) be prime. Then

Trk(Γ, p) = −h∗(−4p)(−p)
k
2
−1 − 1−

∑
0<s<2

√
p

Gk(s, p)
∑
f |`

h∗
(
s2 − 4p

f 2

)
+ δ(k),

where

δ(k) =


p+ 1 if k = 2

0 otherwise

and where we classify integers s with s2 − 4p < 0 by some positive integer ` and

square-free integer m via

s2 − 4p =


`2m, 0 > m ≡ 1 (mod 4)

`24m, 0 > m ≡ 2, 3 (mod 4).

We end this section by recalling a result which relates isomorphism classes in
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EllFp
and EllFp . Define a map

η : EllFp → EllFp

[E]Fp 7→ [E]Fp
.

Note that η is well defined since two curves which are isomorphic over Fp are neces-

sarily isomorphic over Fp.

Lemma IV.2.4. Let p ≥ 5 be prime. Suppose [E]Fp
∈ EllFp

and E is defined over

Fp. Then

#η−1([E]Fp
) =


2 if j 6= 0, 1728

4 if j = 1728

6 if j = 0.

Proof. See Section X.5 of [17].

IV.3. Curves with j-invariant 1728 or 0

Among isomorphism classes of elliptic curves over Fp, two are of particular interest

to us: those having j-invariant 1728 and those having j-invariant 0. We devote this

section to investigating certain properties of these curves. First, we must develop

some notation.

Let m be a positive integer, and let ζm = e2πi/m be a primitive mth root of unity.

Let Q(ζm) denote the mth cyclotomic field, and recall its ring of integers is Z[ζm].

(See, for example, pages 265-268 of [14].) For a prime ideal P in Z[ζm], define

N(P ) := |Z[ζm]/P | .

Definition IV.3.1. Let θ be a prime in Z[ζm] with θ - m. Then, for α ∈ Z[ζm],

define the mth-power residue symbol
(

α
θ

)
m

to be 0 if θ|α. Otherwise, define
(

α
θ

)
m

to
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be the unique mth root of unity satisfying

(α
θ

)
m
≡ α

Nθ−1
m (mod θ),

where Nθ denotes the norm of the prime ideal generated by θ.

We specialize this definition for our purposes. In particular, we consider only

m = 2, 3, 4, 6, where for m = 2, we get the usual quadratic character. Further, we

need only consider the case when α ∈ Z. We notice the following properties in these

particular cases:

•
(

α
θ

)
3
∈ {1, ω, ω2}, where ω = e2πi/3.

•
(

α
θ

)
4
∈ {±1,±i}.

•
(

α
θ

)
6
∈ {ζj

6 |j = 0, . . . 5}, where ζ6 = e2πi/6 = eπi/3.

•
(

α
θ

)3
6

is the quadratic character.

•
(

α
θ

)2
6

=
(

α
θ

)
3
.

Now we are ready to analyze our particular classes of curves. Throughout, we let

p be a prime number with p ≡ 1 (mod 12). If E is any elliptic curve defined over Fp,

we let a(E) be given by a(E) = p+1−#E(Fp). We first focus on isomorphism classes

of elliptic curves having j-invariant 1728, and then move to those having j-invariant

0.

Theorem IV.3.2 ([8], Ch. 18). Let p be an odd prime with p ≡ 1 (mod 4), and let

D be a nonzero integer. Suppose p - D and consider the elliptic curve E : y2 = x3−Dx

over Fp. Let p = θθ where θ ∈ Z[i] and θ ≡ 1 (2 + 2i). Then

a(E) =

(
D

θ

)
4

θ +

(
D

θ

)
4

θ.
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We now use the above theorem to compute a formula for the sum of a(E)n over

all curves E over Fp having j-invariant 1728.

Lemma IV.3.3. Let p ≡ 1 (mod 12) and let a, b ∈ Z be such that p = a2 + b2 and

a+ bi ≡ 1 (2 + 2i) in Z[i]. Then for n ≥ 2 even,

∑
[E]Fp∈EllFp

j(E)=1728

a(E)n = 2n+1(an + bn).

Proof. By Lemma IV.2.4, there are precisely four classes of elliptic curves to be in-

cluded in the above sum. If D ∈ F×p is not a square, we may take

E0 : y2 = x3 − x E2 : y2 = x3 −D2x

E1 : y2 = x3 −Dx E3 : y2 = x3 −D3x.

Notice that these curves are not isomorphic to one another over Fp. Since p ≡ 1

(mod 4), we may apply Theorem IV.3.2 and we take θ = a+ bi. We use the theorem

to compute a(Ej)
n for each j. For E0, we have

(
1
θ

)
4

= 1, and so

a(E0)
n = (θ + θ)n

= ((a+ bi) + (a− bi))n

= (2a)n.

Now we apply Theorem IV.3.2 to the curve E1 and have

a(E1)
n =

((
D

θ

)
4

θ +

(
D

θ

)
4

θ

)n

=

((
D

θ

)
4

(a+ bi) +

(
D

θ

)
4

(a− bi)

)n

.
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Since D is not a square in F×p , we have
(

D
θ

)
4

= ±i, and so

a(E1)
n = ( (∓i)(a+ bi) + (±i)(a− bi) )n

= ( (±b∓ ai) + (±b± ai) )n

= (±2b)n

= (2b)n,

since n is even. Next, for E2 we have

a(E2)
n =

((
D2

θ

)
4

θ +

(
D2

θ

)
4

θ

)n

=

((
D2

θ

)
4

(a+ bi) +

(
D2

θ

)
4

(a− bi)

)n

.

Notice that

(
D2

θ

)
4

=

(
D

θ

)2

4

= ±1, since

(
D

θ

)
4

= ±i. Then we have

a(E2)
n = ((±1)(a+ bi) + (±1)(a− bi))n

= ((±a± bi) + (±a∓ bi))n

= (±2a)n

= (2a)n,

since n is even. Finally, for E3 we have

a(E3)
n =

((
D3

θ

)
4

θ +

(
D3

θ

)
4

θ

)n

= (2b)n,

since

(
D3

θ

)
4

=

(
D

θ

)
4

(
D2

θ

)
4

= ±i implies this is identical to the a(E1)
n computa-
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tion. Therefore, adding these together, we have shown

∑
[E]Fp∈EllFp

j(E)=1728

a(E)n = (2a)n + (2b)n + (2a)n + (2b)n = 2n+1(an + bn),

as desired.

Now we look more closely at elliptic curves defined over Fp having j-invariant 0.

Theorem IV.3.4 ([8], Ch. 18). Let p be an odd prime with p ≡ 1 (mod 3) and let

D be a nonzero integer. Suppose p - D and consider the elliptic curve E : y2 = x3 +D

over Fp. Let p = θθ where θ ∈ Z[ω] and ω = e2πi/3 and suppose θ ≡ 2 (3) in Z[ω].

Then

a(E) = −
(

4D

θ

)
6

θ −
(

4D

θ

)
6

θ.

We use the above theorem to compute a formula for the sum of a(E)n over all

curves E over Fp having j-invariant 0.

Lemma IV.3.5. Let p ≡ 1 (mod 12) and let c, d ∈ Z such that p = c2 − cd+ d2 and

c+ dω ≡ 2 (3) in Z[ω], where ω = e2πi/3. Then for n ≥ 2 even,

∑
[E]Fp∈EllFp

j(E)=0

a(E)n = 2[(c+ d)n + (2c− d)n + (c− 2d)n].

Proof. By Lemma IV.2.4, there are exactly six classes of elliptic curves to be included

in the above sum. Suppose D ∈ F×p is not a square or a cube. Then we may take

E ′
0 : y2 = x3 + 1 E ′

3 : y2 = x3 +D3

E ′
1 : y2 = x3 +D E ′

4 : y2 = x3 +D4

E ′
2 : y2 = x3 +D2 E ′

5 : y2 = x3 +D5.

Notice that these curves are not isomorphic to one another over Fp. Since p ≡ 1
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(mod 3), we may apply Theorem IV.3.4 and we take θ = c+dω. Before we begin our

computations, we make some observations.

•
(

D
θ

)
6

= e±πi/3, since D is not a square or a cube.

•
(

4
θ

)
6

=
(

2
θ

)
3

= 1, ω, orω2.

•
(

D
θ

)
3
6= 1 since

(
D
θ

)
3

=
(

D
θ

)2
6
. Thus,

(
D
θ

)
3

= ω orω2.

•
(

D
θ

)
2
6= 1 since otherwise we have x2−D

c+dω
= 1

p
(x2 − D)(c + dω2) ∈ Z[ω] which

implies p|(c+ dω2) since D /∈ F2
p. Thus,

(
D
θ

)
2

= −1.

• ω + ω2 = −1.

We now use Theorem IV.3.4 to compute a(E ′
j) for j = 0, . . . , 5. In each compu-

tation, cases arise reflecting the value of
(

D
θ

)
6
,
(

2
θ

)
3
, and

(
D
θ

)
3
, and we often make

use of the observations made in the list above and the list following Definition IV.3.1.

For each of E ′
0, . . . , E

′
5, we show the explicit computation in one case. The other cases

follow in a similar straightforward manner. We begin with E ′
0 and find that

a(E ′
0) = −

(
4

θ

)
6

θ −
(

4

θ

)
6

θ

= −
(

2

θ

)
3

(c+ dω)−
(

2

θ

)
3

(c+ dω2).

If
(

2
θ

)
3

= 1, we have

a(E ′
0) = −(c+ dω)− (c+ dω2)

= −2c− d(ω + ω2)

= −2c+ d.



33

The other two cases follow similarly, and we have

a(E ′
0) =


−2c+ d if

(
2
θ

)
3

= 1

c− 2d if
(

2
θ

)
3

= ω

c+ d if
(

2
θ

)
3

= ω2.

(9)

Now we look at the curve E ′
1. Applying Theorem IV.3.4 gives

a(E ′
1) = −

(
4D

θ

)
6

θ −
(

4D

θ

)
6

θ

= −
(

2

θ

)
3

(
D

θ

)
6

(c+ dω)−
(

2

θ

)
3

(
D

θ

)
6

(c+ dω2),

by the relation between the cubic and 6th power residue symbols. Here, there are 6

cases to consider, according to the values of
(

2
θ

)
3

and
(

D
θ

)
6
. For example, if

(
2
θ

)
3

= 1

and
(

D
θ

)
6

= eπi/3, then

a(E ′
1) = −e−πi/3(c+ dω)− eπi/3(c+ dω2)

= −c(e−πi/3 + eπi/3)− d(ωe−πi/3 + ω2eπi/3)

= −c− d,

since e−πi/3 + eπi/3 = 1. The other 5 cases follow in a similar manner, and we obtain

a(E ′
1) =



−c− d if
(

2
θ

)
3

= 1 and
(

D
θ

)
6

= eπi/3

or if
(

2
θ

)
3

= ω and
(

D
θ

)
6

= e−πi/3

−c+ 2d if
(

2
θ

)
3

= 1 and
(

D
θ

)
6

= e−πi/3

or if
(

2
θ

)
3

= ω2 and
(

D
θ

)
6

= eπi/3

2c− d if
(

2
θ

)
3

= ω and
(

D
θ

)
6

= eπi/3

or if
(

2
θ

)
3

= ω2 and
(

D
θ

)
6

= e−πi/3.

(10)
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Next, we look at E ′
2. The theorem and our observations imply

a(E ′
2) = −

(
4D2

θ

)
6

θ −
(

4D2

θ

)
6

θ

= −
(

2

θ

)
3

(
D

θ

)
3

(c+ dω)−
(

2

θ

)
3

(
D

θ

)
3

(c+ dω2).

We again have 6 cases to consider here, depending on the values of
(

2
θ

)
3

and
(

D
θ

)
3
.

For example, if
(

2
θ

)
3

= ω2 =
(

D
θ

)
3
, we have

a(E ′
2) = −ωω(c+ dω)− ω2ω2(c+ dω2)

= −c(ω2 + ω)− d(1 + 1)

= c− 2d.

Computing the remaining cases gives

a(E ′
2) =



c− 2d if
(

2
θ

)
3

= 1 and
(

D
θ

)
3

= ω

or if
(

2
θ

)
3

=
(

D
θ

)
3

= ω2

c+ d if
(

2
θ

)
3

= 1 and
(

D
θ

)
3

= ω2

or if
(

2
θ

)
3

=
(

D
θ

)
3

= ω

−2c+ d if
(

2
θ

)
3

= ω and
(

D
θ

)
3

= ω2

or if
(

2
θ

)
3

= ω2 and
(

D
θ

)
3

= ω.

(11)

Next, consider E ′
3. Theorem IV.3.4 implies

a(E ′
3) = −

(
4D3

θ

)
6

θ −
(

4D3

θ

)
6

θ

= −
(

2

θ

)
3

(
D

θ

)
2

(c+ dω)−
(

2

θ

)
3

(
D

θ

)
2

(c+ dω2)

=

(
2

θ

)
3

(c+ dω) +

(
2

θ

)
3

(c+ dω2),
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since
(

D
θ

)
2

= −1 by the next to last observation we made at the start of the proof.

Thus, here we have only three cases, representing the value of
(

2
θ

)
3
. If

(
2
θ

)
3

= ω, for

instance, we have

a(E ′
3) = ω2(c+ dω) + ω(c+ dω2)

= c(ω2 + ω) + d(1 + 1)

= −c+ 2d.

Filling in the other two cases gives

a(E ′
3) =


2c− d if

(
2
θ

)
3

= 1

−c+ 2d if
(

2
θ

)
3

= ω

−c− d if
(

2
θ

)
3

= ω2.

(12)

Now, we move on to E ′
4 where the theorem and our observations imply

a(E ′
4) = −

(
4D4

θ

)
6

θ −
(

4D4

θ

)
6

θ

= −
(

2

θ

)
3

(
D

θ

)2

3

(c+ dω)−
(

2

θ

)
3

(
D

θ

)2

3

(c+ dω2).

Again we have 6 cases, according to the values of
(

2
θ

)
3

and
(

D
θ

)
3
. If, for instance,(

2
θ

)
3

= ω and
(

D
θ

)
3

= ω2, we have

a(E ′
4) = −ω2ω2(c+ dω)− ωω(c+ dω)

= −c(ω + ω2)− d(ω2 + ω)

= c+ d.

The other 5 calculations follow similarly, and we have
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a(E ′
4) =



c+ d if
(

2
θ

)
3

= 1 and
(

D
θ

)
3

= ω

or if
(

2
θ

)
3

= ω and
(

D
θ

)
3

= ω2

c− 2d if
(

2
θ

)
3

= 1 and
(

D
θ

)
3

= ω2

or if
(

2
θ

)
3

= ω2 and
(

D
θ

)
3

= ω

−2c+ d if
(

2
θ

)
3

=
(

D
θ

)
3

= ω

or if
(

2
θ

)
3

=
(

D
θ

)
3

= ω2.

(13)

Lastly, we compute a(E ′
5). Theorem IV.3.2 provides

a(E ′
5) = −

(
4D5

θ

)
6

θ −
(

4D5

θ

)
6

θ

= −
(

4D2

θ

)
6

(
D3

θ

)
6

θ −
(

4D2

θ

)
6

(
D3

θ

)
6

θ

= −
(

2D

θ

)
3

(
D

θ

)
2

θ −
(

2D

θ

)
3

(
D

θ

)
2

θ,

by multiplicativity and by the last two observations made after Definition IV.3.1.

Then, since
(

D
θ

)
2

= −1, as observed at the start of the proof, we have

a(E ′
5) =

(
2

θ

)
3

(
D

θ

)
3

(c+ dω) +

(
2

θ

)
3

(
D

θ

)
3

(c+ dω2),

and we see that again, 6 cases arise. For example, if
(

2
θ

)
3

= 1 and
(

D
θ

)
3

= ω2, we

obtain

a(E ′
5) = ω(c+ dω) + ω2(c+ dω2)

= c(ω + ω2) + d(ω2 + ω)

= −c− d.
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Computing the remaining 5 cases in a similar way, we find that

a(E ′
5) =



−c+ 2d if
(

2
θ

)
3

= 1 and
(

D
θ

)
3

= ω

or if
(

2
θ

)
3

=
(

D
θ

)
3

= ω2

−c− d if
(

2
θ

)
3

= 1 and
(

D
θ

)
3

= ω2

or if
(

2
θ

)
3

=
(

D
θ

)
3

= ω

2c− d if
(

2
θ

)
3

= ω and
(

D
θ

)
3

= ω2

or if
(

2
θ

)
3

= ω2 and
(

D
θ

)
3

= ω.

(14)

Now we are finally ready to compute the quantity

∑
[E]Fp∈EllFp

j(E)=0

a(E)n,

as the statement of our lemma requires. We must calculate this sum in 6 different

cases, corresponding to the possibilities
(

2
θ

)
3
∈ {1, ω, ω2},

(
D
θ

)
3
∈ {ω, ω2}, and

(
D
π

)
6
∈

{e±πi/3}. We now work out the calculation in the case
(

2
θ

)
3

= 1,
(

D
θ

)
3

= ω, and(
D
θ

)
6

= eπi/3. By consulting (9),. . . ,(14) to find the appropriate value of a(E ′
j) for

each j in this case, we see that, for n ≥ 2, even, we have

∑
[E]Fp∈EllFp

j(E)=0

a(E)n =
5∑

j=0

a(E ′
j)

n

= (−2c+ d)n + (−c− d)n + (c− 2d)n + (2c− d)n + (c+ d)n + (−c+ 2d)n

= 2(2c− d)n + 2(c+ d)n + 2(c− 2d)n,

since n is even. The calculation is equally straightforward in the remaining 5 cases,
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and one sees that in each case, we arrive at

∑
[E]Fp∈EllFp

j(E)=0

a(E)n = (−2c+ d)n + (−c− d)n + (c− 2d)n + (2c− d)n + (c+ d)n + (c− 2d)n

= 2[(c+ d)n + (2c− d)n + (c− 2d)n],

as desired.

IV.4. Proof of Theorem IV.1.1

Let p ≡ 1 (mod 12) be prime. As in (5), we define a family of elliptic curves over Fp

by

Et : y2 = 4x3 − 27

1− t
x− 27

1− t
.

Further, for t ∈ Fp, t 6= 0, 1, recall that

a(t, p) = p+ 1−#Et(Fp).

As in Lemmas IV.3.3 and IV.3.5, we let integers a, b, c, and d be defined by p =

a2 + b2 = c2 − cd + d2, where a + bi ≡ 1 (2 + 2i) in Z[i] and c + dω ≡ 2 (3) in Z[ω],

where ω = e2πi/3. Finally, we let h, h∗, w, and H be defined as in Section IV.2. We

use this notation throughout the remainder of the chapter.

Lemma IV.4.1. If p ≡ 1 (mod 12) is prime and notation is as above, then for n ≥ 2

even,

∑
0<s<2

√
p

sn
∑
f |`

h

(
s2 − 4p

f 2

)
=

∑
0<s<2

√
p

sn
∑
f |`

h∗
(
s2 − 4p

f 2

)
+

1

4

∑
[E]Fp∈EllFp

j(E)=1728

a(E)n +
1

3

∑
[E]Fp∈EllFp

j(E)=0

a(E)n,

where we classify integers s with s2−4p < 0 by some positive integer ` and square-free



39

integer m via

s2 − 4p =


`2m, 0 > m ≡ 1 (mod 4)

`24m, 0 > m ≡ 2, 3 (mod 4).

Proof. First, notice that h and h∗ agree unless the argument s2−4p
f2 = −3 or −4, since

in all other cases w(d) = 1. Thus, we have

∑
0<s<2

√
p

sn
∑
f |`

h

(
s2 − 4p

f 2

)
=

∑
0<s<2

√
p

sn
∑
f |`

s2−4p

f2 6=−3,−4

h∗
(
s2 − 4p

f 2

)

+
∑

0<s<2
√

p

sn
∑
f |`

s2−4p

f2 =−4

h(−4) +
∑

0<s<2
√

p

sn
∑
f |`

s2−4p

f2 =−3

h(−3).

When s2−4p
f2 = −4, we have the maximal order Z[i] and h∗(−4) = h(−4)

w(−4)
= 1

2
, so

h(−4) = h∗(−4)+ 1
2
. On the other hand, when s2−4p

f2 = −3, we have the maximal order

Z[ω] and h∗(−3) = h(−3)
w(−3)

= 1
3
, so h(−3) = h∗(−3) + 2

3
. Making these substitutions,

we see that

∑
0<s<2

√
p

sn
∑
f |`

h

(
s2 − 4p

f 2

)
=

∑
0<s<2

√
p

sn
∑
f |`

h∗
(
s2 − 4p

f 2

)
+

1

2

∑
0<s<2

√
p

sn
∑
f |`

s2−4p

f2 =−4

1 +
2

3

∑
0<s<2

√
p

sn
∑
f |`

s2−4p

f2 =−3

1. (15)

To complete the proof, we must verify that

∑
0<s<2

√
p

sn
∑
f |`

s2−4p

f2 =−4

1 =
1

2

∑
[E]Fp∈EllFp

j(E)=1728

a(E)n (16)
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and ∑
0<s<2

√
p

sn
∑
f |`

s2−4p

f2 =−3

1 =
1

2

∑
[E]Fp∈EllFp

j(E)=0

a(E)n. (17)

First, we consider (16). Recall from the proof of Lemma IV.3.3 that a(E) =

±2a,±2b for all relevant E with j-invariant 1728. Also, it is easy to verify that

s = |2a|, |2b| satisfy s2−4p
`2

= −4 (with ` = |b|, |a|, respectively). Now, suppose

0 < s < 2
√
p satisfies s2−4p

`2
= −4. Then s2 − 4p = −4`2 implies s is even, so we have(

s
2

)2
+ `2 = p. Thus, it must be that s

2
= |a|, |b|, since Z[i] is a UFD and p = a2 + b2.

Since n is even, (2a)n = (−2a)n and (2b)n = (−2b)n, so (16) follows.

Now, we prove (17) in a similar manner. Recall from the proof of Lemma IV.3.5

that a(E) = ±(c+d),±(2c−d),±(c− 2d) for all relevant E with j-invariant 0. Also,

s = |c + d|, |2c − d|, and |c − 2d| satisfy s2−4p
`2

= −3 (by taking ` = |c − d|, |d|, and

|c|, respectively). Now, suppose s2−4p
`2

= −3. Then in Z[
√
−3], we have

4p = (s+
√
−3 `)(s−

√
−3 `).

Since −3 ≡ 5 (mod 8), 2 is inert in Z[
√
−3], so we must have 2|(s ±

√
−3 `). This

implies

p =

(
s

2
+
√
−3

`

2

)(
s

2
−
√
−3

`

2

)
(18)

in Z[
√
−3]. Recall that we have p = c2 − cd+ d2. In Z[ω], we can write this as

p = c2 − cd+ d2

= (c+ dω)(c+ dω2) (19)

= (d+ cω)(d+ cω2) (20)

= (cω + dω2)(cω2 + dω). (21)

Since ω = e2πi/3 = −1
2
+

√
−3
2

, we can consider each of these factorizations in Z[
√
−3],
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and each must be the same as (18), since Z[
√
−3] is a UFD. Making the substitution

for ω into (19), (20), and (21) and comparing to (18) implies that s = |2c − d|,

|2d − c|, and |c + d|, respectively. So in fact, s = |2c − d|, |2d − c|, |c + d| are

the only contributing s values to the sum on the left hand side of (17). Then since

a(E) = ±(c+ d),±(2c− d),±(c− 2d) and n is even, we have proved (17).

The lemma is finally proved by making the substitutions from (16) and (17) into

(15).

Proposition IV.4.2. Let p ≡ 1 (mod 12) be prime and notation as above. Then for

n ≥ 2 even,

p−1∑
t=2

a(t, p)n =
∑

0<s<2
√

p

sn
∑
f |`

h∗
(
s2 − 4p

f 2

)
− 2n−1(an + bn)− 1

3
[(c+ d)n + (2c− d)n + (c− 2d)n],

where we classify integers s with s2−4p < 0 by some positive integer ` and square-free

integer m via

s2 − 4p =


`2m, 0 > m ≡ 1 (mod 4)

`24m, 0 > m ≡ 2, 3 (mod 4).

Proof. Notice that for the given family of elliptic curves, j(Et) = 1728
t

. Thus, as t

ranges from 2 to p − 1, each Et represents a distinct isomorphism class of elliptic

curves in EllFp
. Moreover, since j(Et) gives an automorphism of P1, every j-invariant

other than 0 and 1728 is represented precisely once. Thus, for even n ≥ 2, we have

p−1∑
t=2

a(t, p)n =
∑

[E]Fp
∈EllFp

E/Fp

j(E) 6=0,1728

a(E)n.

For elliptic curves with j-invariant other than 0 and 1728, each class [E] ∈ EllFp
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gives rise to two distinct classes in EllFp (see Lemma IV.2.4), represented by E and

its quadratic twist Etw. For such curves, a(E) and a(Etw) differ only by a sign, and

so a(E)n = a(Etw)n, since n is even. Therefore, we have

p−1∑
t=2

a(t, p)n =
∑

[E]Fp
∈EllFp

E/Fp

j(E) 6=0,1728

a(E)n =
1

2

∑
[E]Fp∈EllFp

j(E) 6=0,1728

a(E)n.

Then, if we add and subtract the contributions from the classes [E]Fp ∈ EllFp with

j(E) = 0, 1728, we have

p−1∑
t=2

a(t, p)n =
1

2

 ∑
[E]Fp∈EllFp

a(E)n −
∑

[E]Fp∈EllFp

j(E)=1728

a(E)n −
∑

[E]Fp∈EllFp

j(E)=0

a(E)n

 . (22)

Now we look more closely at the sum
∑

[E]Fp∈EllFp

a(E)n. By Theorem IV.2.1, EllFp

is the the disjoint union

EllFp =
⋃

0≤s<2
√

p

I(s, p),

where I(s, p) is defined as in (7). Then since n ≥ 2 is even, we may write

∑
[E]Fp∈EllFp

a(E)n =
∑

0≤s<2
√

p

∑
[E]Fp∈I(s,p)

sn

=
∑

0<s<2
√

p

#I(s, p)sn,

since s = 0 makes no contribution. Substituting this into (22) gives

p−1∑
t=2

a(t, p)n =
1

2

∑
0<s<2

√
p

#I(s, p)sn − 1

2

∑
[E]Fp∈EllFp

j(E)=1728

a(E)n − 1

2

∑
[E]Fp∈EllFp

j(E)=0

a(E)n.
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Now we may apply Theorem IV.2.2 to obtain

p−1∑
t=2

a(t, p)n =
∑

0<s<2
√

p

H(s2 − 4p)sn − 1

2

∑
[E]Fp∈EllFp

j(E)=1728

a(E)n − 1

2

∑
[E]Fp∈EllFp

j(E)=0

a(E)n.

Recall from (6) that if d is the discriminant of an imaginary quadratic order O,

H(d) :=
∑

O⊆O′⊆Omax

h(O′),

where the sum is over all orders between O and the maximal order. Then taking ` as

defined as in the statement of the Proposition, we have

H(s2 − 4p) =
∑
f |`

h

(
s2 − 4p

f 2

)
,

which gives

p−1∑
t=2

a(t, p)n =
∑

0<s<2
√

p

sn
∑
f |`

h

(
s2 − 4p

f 2

)
− 1

2

∑
[E]Fp∈EllFp

j(E)=1728

a(E)n − 1

2

∑
[E]Fp∈EllFp

j(E)=0

a(E)n.

(23)

To complete the proof, we apply Lemma IV.4.1 to the right side of (23), to replace h

by h∗. Then, collecting terms gives

p−1∑
t=2

a(t, p)n =
∑

0<s<2
√

p

sn
∑
f |`

h∗
(
s2 − 4p

f 2

)
− 1

4

∑
[E]Fp∈EllFp

j(E)=1728

a(E)n − 1

6

∑
[E]Fp∈EllFp

j(E)=0

a(E)n

=
∑

0<s<2
√

p

sn
∑
f |`

h∗
(
s2 − 4p

f 2

)
− 2n−1(an + bn)

− 1

3
[(c+ d)n + (2c− d)n + (c− 2d)n],

by Lemmas IV.3.3 and IV.3.5. This is the desired result.

Proposition IV.4.2 and Theorem IV.2.3 give us the tools necessary to complete

the proof of the main theorem in this chapter:
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Proof of Theorem IV.1.1. By Theorem IV.2.3, we have for k ≥ 4 even,

Trk(Γ, p) = −1− 1

2
h∗(−4p)(−p)

k
2
−1 −

∑
0<s<2

√
p

Gk(s, p)
∑

f

h∗
(
s2 − 4p

f 2

)

= −1− 1

2
h∗(−4p)(−p)

k
2
−1 −

∑
0<s<2

√
p

[
(−p)

k
2
−1

+

k
2
−2∑

j=0

(−1)j

(
k − 2− j

j

)
pjsk−2j−2

]∑
f

h∗
(
s2 − 4p

f 2

)
= −1− 1

2
h∗(−4p)(−p)

k
2
−1 − (−p)

k
2
−1

∑
0<s<2

√
p

1
∑

f

h∗
(
s2 − 4p

f 2

)

−
k
2
−2∑

j=0

(−1)j

(
k − 2− j

j

)
pj

∑
0<s<2

√
p

sk−2j−2
∑

f

h∗
(
s2 − 4p

f 2

)
,

after substituting in the definition of Gk(s, p) and distributing. Now, note that taking

k = 2 in Theorem IV.2.3 provides

0 = p− 1

2
h∗(−4p)−

∑
0<s<2

√
p

1
∑

f

h∗
(
s2 − 4p

f 2

)
.

We apply this, together with Proposition IV.4.2 and obtain

Trk(Γ, p) = −1− 1

2
h∗(−4p)(−p)

k
2
−1 + (−p)

k
2
−1

(
1

2
h∗(−4p)− p

)

−
k
2
−2∑

j=0

(−1)j

(
k − 2− j

j

)
pj

[
p−1∑
t=2

a(t, p)k−2j−2 +
1

2

[
2k−2j−2(ak−2j−2 + bk−2j−2)

]
+

1

3

[
(c+ d)k−2j−2 + (2c− d)k−2j−2 + (c− 2d)k−2j−2

]]

= −1 + (−p)
k
2
−1 · (−p)−

k
2
−2∑

j=0

(−1)j

(
k − 2− j

j

)
pj

p−1∑
t=2

a(t, p)k−2j−2

− 1

2

k
2
−2∑

j=0

(−1)j

(
k − 2− j

j

)
pj
[
(2a)k−2j−2 + (2b)k−2j−2

]
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− 1

3

k
2
−2∑

j=0

(−1)j

(
k − 2− j

j

)
pj
[
(c+ d)k−2j−2 + (2c− d)k−2j−2

+(c− 2d)k−2j−2
]
,

after distributing once again. Now, we notice the simple fact that

(−p)
k
2
−1 · (−p) = −(−p)

k
2
−1(p− 2)− 2

(
1

2
(−p)

k
2
−1

)
− 3

(
1

3
(−p)

k
2
−1

)
.

Splitting up the factors of (−p) k
2
−1 in this way gives that

Trk(Γ, p) = −1− 1

2
[Gk(2a, p) +Gk(2b, p)]

− 1

3
[Gk(c+ d, p) +Gk(2c− d, p) +Gk(c− 2d, p)]

− (p− 2)(−p)
k
2
−1 −

k
2
−2∑

j=0

(−1)j

(
k − 2− j

j

)
pj

p−1∑
t=2

a(t, p)k−2j−2

= −1− λ(k, p)−
p−1∑
t=2

(−p)
k
2
−1 −

p−1∑
t=2

k
2
−2∑

j=0

(−1)j

(
k − 2− j

j

)
pja(t, p)k−2j−2

= −1− λ(k, p)−
p−1∑
t=2

Gk(a(t, p), p),

according to the definitions of Gk and λ(k, p) given in the statement of the theorem.

This completes the proof of Theorem IV.1.1.

Remark IV.4.3. According to Theorem III.1.1, we may rewrite a(t, p) in terms of the

hypergeometric function 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

. Thus, Theorem IV.1.1 can be reformulated

to give Trk in terms of λ(k, p) and Gk

(
ψ−1(t)p 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)
, p

)
, where ψ(t) =

−φ(2)ξ−3(1− t).

Specializing to various values of k in Theorem IV.1.1, we arrive at more explicit

formulas. In particular, taking k = 12, we obtain a formula for Ramanujan’s τ -
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function. Recall that we define τ(n) by

(2π)−12∆(z) = q
∞∏

n=1

(1− qn)24 =
∞∑

n=1

τ(n)qn.

Also, recall that ∆(z) generates the one dimensional space S12, and thus Tr12(Γ, p) =

τ(p) for primes p. Then, taking k = 12 in the Theorem IV.1.1 gives the following:

Corollary IV.4.4. Let a, b, c, and d be defined as above, and set x = a2b2 and y = cd.

If p is a prime, p ≡ 1(12), then

τ(p) = −1− 8p5 + 80p3x− 256px2 + 27y2p3 − 27y3p2 −
p−1∑
t=2

G12(a(t, p), p),

where

G12(s, p) = s10 − 9ps8 + 28p2s6 − 35p3s4 + 15p4s2 − p5.

Proof. First, one calculates easily from (8) in Section IV.2 that

G12(s, p) = s10 − 9ps8 + 28p2s6 − 35p3s4 + 15p4s2 − p5.

To prove the corollary, we must show that

λ(12, p) = 8p5 − 80p3x+ 256px2 − 27y2p3 + 27y3p2, (24)

where

λ(12, p) =
1

2
[G12(2a, p)+G12(2b, p)]+

1

3
[G12(c+d, p)+G12(2c−d, p)+G12(c−2d, p)].

A tedious calculation by hand or an easy one with Maple, recalling that p = a2 +b2 =

c2 − cd+ d2, verifies this and hence completes the proof.

As noted in IV.4.3, Corollary IV.4.4 can be reformulated in terms of the hyperge-

ometric function 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

considered in Chapter III. In fact, we can inductively
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arrive at a formula for τ(p) in terms only of 10th powers of this hypergeometric func-

tion.

Corollary IV.4.5. Let p ≡ 1 (mod 12) be prime and let a, b, c, and d be defined as

above. Let ξ be an element of order 12 in F̂×p . Then

τ(p) = 42p6 − 90p4 − 75p3 − 35p2 − 9p− 1− 29(a10 + b10)

− 1

3

(
(c+ d)10 + (2c− d)10 + (c− 2d)10

)
−

p−1∑
t=2

p10φ(1− t)2F1

(
ξ, ξ5

ε

∣∣∣∣t
)10

.

Proof. Recall from the statement of Theorem IV.1.1 that we have

λ(k, p) =
1

2
[Gk(2a, p) +Gk(2b, p)] +

1

3
[Gk(c+ d, p) +Gk(2c− d, p) +Gk(c− 2d, p)],

where

Gk(s, p) =

k
2
−1∑

j=0

(−1)j

(
k − 2− j

j

)
pjsk−2j−2.

Then, one can check by hand or with Maple that we have the following, recalling the

relations p = a2 + b2 = c2 − cd+ d2:

λ(4, p) = 2p

λ(6, p) = −4p2 + 23(a4 + b4)

λ(8, p) = −8p3 + 25(a6 + b6)− 40p(a4 + b4) +
1

3
((c+ d)6 + (2c− d)6 + (c− 2d)6)

λ(10, p) = 52p4 + 27(a8 + b8)− 224p(a6 + b6) + 120p2(a4 + b4)

+
1

3
((c+ d)8 + (2c− d)8 + (c− 2d)8)− 7

3
p((c+ d)6 + (2c− d)6 + (c− 2d)6)

λ(12, p) = −152p5 + 29(a10 + b10)− 1152p(a8 + b8) + 896p2(a6 + b6)− 280p3(a4 + b4)

+
1

3
((c+ d)10 + (2c− d)10 + (c− 2d)10)

− 3p((c+ d)8 + (2c− d)8 + (c− 2d)8)

+
28

3
p2((c+ d)6 + (2c− d)6 + (c− 2d)6).
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By using each successive formula for Gk(a(t, p), p), together with Theorem IV.1.1

and the formulas for λ(k, p) given above, we can compute
∑p−1

t=2 a(t, p)
k−2, for k =

4, . . . , 12. Now, we exhibit the computations in the cases k = 4 and k = 6, to give the

idea of the technique. First, notice that G4(s, p) = s2 − p and recall Tr4(Γ, p) = 0, as

there are no cusp forms of weight 4 for Γ. Thus, Theorem IV.1.1 implies

0 = Tr4(Γ, p) = −1− λ(4, p)−
p−1∑
t=2

G4(a(t, p), p)

= −1− 2p−
p−1∑
t=2

(a(t, p)2 − p)

= −1− 2p+ p(p− 2)−
p−1∑
t=2

a(t, p)2.

Thus, after simplifying, we see that

0 = p2 − 4p− 1−
p−1∑
t=2

a(t, p)2. (25)

Now, we utilize this computation to derive a formula for the sum of 4th powers of

a(t, p). For k = 6, we have G6(s, p) = s4 − 3ps2 + p2 and once again Tr6(Γ, p) = 0.

Then, by Theorem IV.1.1 and the formula for λ(6, p) given at the start of the proof,

we see that

0 = Tr6(Γ, p) = −1− λ(6, p)−
p−1∑
t=2

G6(a(t, p), p)

= −1 + 4p2 − 23(a4 + b4)−
p−1∑
t=2

(a(t, p)4 − 3pa(t, p)2 + p2).

We distribute the summation across the polynomial G6(a(t, p), p) and then make a

substitution for
∑p−1

t=2 a(t, p)
2, according to (25). This gives

0 = Tr6(Γ, p) = 4p2 − 1− 23(a4 + b4)−
p−1∑
t=2

a(t, p)4 + 3p

p−1∑
t=2

a(t, p)2 − p2(p− 2)
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= 4p2 − 1− 23(a4 + b4)−
p−1∑
t=2

a(t, p)4

+ 3p(−2p− 1 + p(p− 2))− p2(p− 2).

After simplifying, we arrive at

0 = 2p3 − 6p2 − 3p− 1−
p−1∑
t=2

a(t, p)4. (26)

We continue this process, using successive formulas for Gk(s, p) and λ(k, p) and back-

substituting previous results such as (25) and (26). We omit the tedious details of

the next couple of cases, which result in the following:

Tr8(Γ, p) = 0 = 5p4 − 9p2 − 5p− 1− 25(a6 + b6)

− 1

3
((c+ d)6 + (2c− d)6 + (c− 2d)6)−

p−1∑
t=2

a(t, p)6 (27)

Tr10(Γ, p) = 0 = 14p5 − 28p3 − 20p2 − 7p− 1− 27(a8 + b8)

− 1

3
((c+ d)8 + (2c− d)8 + (c− 2d)8)−

p−1∑
t=2

a(t, p)8 (28)

Now, we use (25),. . . ,(28) together with the formula for λ(12, p) from the be-

ginning of the proof to compute a formula for τ(p). Since G12(s, p) = s10 − 9ps8 +

28p2s6 − 35p3s4 + 15p4s2 − p5 and Tr12(Γ, p) = τ(p), Theorem IV.1.1 gives

τ(p) = −1− λ(12, p)−
p−1∑
t=2

G12(a(t, p), p)

= −1− λ(12, p)−
p−1∑
t=2

a(t, p)10 + 9p

p−1∑
t=2

a(t, p)8 − 28p2

p−1∑
t=2

a(t, p)6

+ 35p3

p−1∑
t=2

a(t, p)4 − 15p4

p−1∑
t=2

a(t, p)2 + p5(p− 2)
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= −1− λ(12, p)−
p−1∑
t=2

a(t, p)10

+ 9p
(
14p5 − 28p3 − 20p2 − 7p− 1− 27(a8 + b8)

−1

3
((c+ d)8 + (2c− d)8 + (c− 2d)8)

)
− 28p2

(
5p4 − 9p2 − 5p− 1− 25(a6 + b6)− 1

3
((c+ d)6 + (2c− d)6 + (c− 2d)6)

)
+ 35p3(2p3 − 6p2 − 3p− 1)− 15p4(p2 − 4p− 1) + p5(p− 2),

by (25), . . . ,(28). The substitution

λ(12, p) = −152p5 + 29(a10 + b10)− 1152p(a8 + b8) + 896p2(a6 + b6)− 280p3(a4 + b4)

+
1

3
((c+ d)10 + (2c− d)10 + (c− 2d)10)

− 3p((c+ d)8 + (2c− d)8 + (c− 2d)8)

+
28

3
p2((c+ d)6 + (2c− d)6 + (c− 2d)6).

gives rise to many cancellations, and after simplifying, we find that

τ(p) = 42p6 − 90p4 − 75p3 − 35p2 − 9p− 1− 29(a10 + b10)

− 1

3
((c+ d)10 + (2c− d)10 + (c− 2d)10)−

p−1∑
t=2

a(t, p)10. (29)

Finally, to complete the proof, we recall that Theorem III.1.1 implies

p 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

= −φ(2)ξ−3(1− t)a(t, p)

for t ∈ Fp\{0, 1}. Thus,

a(t, p)10 =

(
−pφ(2)ξ3(1− t)2F1

(
ξ, ξ5

ε

∣∣∣∣t
))10

= p10φ(1− t)2F1

(
ξ, ξ5

ε

∣∣∣∣t
)10

,

since φ10 = ε and ξ30 = ξ6 = φ. This, together with (29), confirms the corollary.



51

The technique used in the proof of Corollary IV.4.5 can be extended one step

further to arrive at yet another formula for τ(p):

Corollary IV.4.6. Let p ≡ 1 (mod 12) be prime and let a, b, c, and d be defined as

above. Let ξ be an element of order 12 in F̂×p . Then

τ(p) = 12p6 − 27p4 − 25p3 − 14p2 − 54

11
p− 1− 1

11p
− 211

11p
(a12 + b12)

− 1

33p
((c+ d)12 + (2c− d)12 + (c− 2d)12)− 1

11

p−1∑
t=2

p11
2F1

(
ξ, ξ5

ε

∣∣∣∣t
)12

.

Proof. We continue the process used in the proof of Corollary IV.4.5 to consider the

case k = 14. Using the notation from the statement of Theorem IV.1.1, one calculates

that

G14(s, p) = s12 − 11ps10 + 45p2s8 − 84p3s6 + 70p4s4 − 21p5s2 + p6.

Now, since there are no cusp forms of level 14 for Γ, we have Tr14(Γ, p) = 0. Thus,

Theorem IV.1.1 implies

0 = −1− λ(14, p)−
p−1∑
t=2

G14(a(t, p), p)

= −1− λ(14, p)−
p−1∑
t=2

a(t, p)12 + 11p

p−1∑
t=2

a(t, p)10 − 45p2

p−1∑
t=2

a(t, p)8

+ 84p3

p−1∑
t=2

a(t, p)6 − 70p4

p−1∑
t=2

a(t, p)4 + 21p5

p−1∑
t=2

a(t, p)2 − p6(p− 2).

Next, we make a substitution for each

p−1∑
t=2

a(t, p)n for n = 2, . . . , 10, according to

(25),. . . ,(29). Then we have

0 = −1− λ(14, p)−
p−1∑
t=2

a(t, p)12 + 11p
(
−τ(p) + 42p6 − 90p4 − 75p3 − 35p2 − 9p− 1

−29(a10 + b10)− 1

3
((c+ d)10 + (2c− d)10 + (c− 2d)10)

)
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− 45p2
(
14p5 − 28p3 − 20p2 − 7p− 1− 27(a8 + b8)

− 1

3
((c+ d)8 + (2c− d)8 + (c− 2d)8)

)
+ 84p3

(
5p4 − 9p2 − 5p− 1− 25(a6 + b6)− 1

3
((c+ d)6 + (2c− d)6 + (c− 2d)6)

)
− 70p4(2p3 − 6p2 − 3p− 1) + 21p5(p2 − 4p− 1)− p6(p− 2).

One may calculate, by hand or with the aide of Maple, that we have

λ(14, p) = 338p6 + 211(a12 + b12)− 11 · 29p(a10 + b10) + 45 · 27p2(a8 + b8)

− 84 · 25p3(a6 + b6) + 70 · 23p4(a4 + b4)

+
1

3
((c+ d)12 + (2c− d)12 + (c− 2d)12)

− 11

3
p((c+ d)10 + (2c− d)10 + (c− 2d)10)

+ 15p2((c+ d)8 + (2c− d)8 + (c− 2d)8)

− 28p3((c+ d)6 + (2c− d)6 + (c− 2d)6).

Making this substitution allows many cancellations, and after simplifying, we find

that

0 = 132p7 − 297p5 − 275p4 − 154p3 − 54p2 − 1− 11p− 11pτ(p)− 211(a12 + b12)

− 1

3
((c+ d)12 + (2c− d)12 + (c− 2d)12)−

p−1∑
t=2

a(t, p)12. (30)

We now recall that Theorem III.1.1 implies

p 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

= −φ(2)ξ−3(1− t)a(t, p)

for t ∈ Fp\{0, 1}. Therefore,

a(t, p)12 =

(
−pφ(2)ξ3(1− t)2F1

(
ξ, ξ5

ε

∣∣∣∣t
))12

= p12
2F1

(
ξ, ξ5

ε

∣∣∣∣t
)12

,
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since φ has order 2 and ξ has order 12. Making this substitution into (30) and then

solving for τ(p) gives the desired result.
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CHAPTER V

CONCLUSIONS AND FUTURE RESEARCH

Throughout this dissertation, we focused on hypergeometric functions over Fp and

connections they have to both elliptic curves and modular forms. We directed our

attention to a particular family

Et : y2 = 4x3 − 27

1− t
x− 27

1− t

of elliptic curves over Fp, where p ≡ 1 (mod 12). Theorem III.1.1 exhibited a formula

for the number of points on Et over Fp in terms of the hypergeometric function

2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

, where ξ is an element of order 12 in F̂×p . The proof of this theorem

made use of repeated character sum manipulations, together with identities given by

Greene [6]. We also applied two special cases of the Hasse-Davenport relation [11] to

achieve the desired relationships between products of Gauss sums.

We then shifted our focus to modular forms. In particular, in Theorem IV.1.1 we

gave a formula for the traces Trk of Hecke operators on Sk in terms of #Et(Fp). The

main tools used in the proof of this theorem were Hijikata’s version of the Eichler-

Selberg trace formula [7] and a theorem of Schoof which relates counting isomorphism

classes of elliptic curves to class numbers of imaginary quadratic fields [16].

Combining Theorems III.1.1 and IV.1.1 gave a way to write the traces Trk(Γ, p)

in terms of 2F1

(
ξ, ξ5

ε

∣∣∣∣t
)

, for primes p ≡ 1 (mod 12). In particular, taking k = 12 in

Theorem IV.1.1 gave rise to various formulas for Ramanujan’s τ -function, as described

in Corollaries IV.4.4, IV.4.5, and IV.4.6.

We plan to continue the work of the previous chapters to future research. Various

avenues for future study are listed below:
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• Produce a recursive formula for Trk in terms of Tr2j, 2j ≤ k−2, using combina-

torial inverse pairs found in [15]. This will generalize the results in Corollaries

IV.4.5 and IV.4.6.

• Investigate the questions considered in Chapters III and IV in the case that

p ≡ 1 (mod 12) fails.

• Examine implications of Corollaries IV.4.4, IV.4.5, and IV.4.6 to various con-

gruences of τ(p).

• Consider some generalizations of classical hypergeometric functions to higher

dimensions and investigate appropriate extensions of these to the finite field

setting.
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