
GRAPH THEORETIC GENERALIZATIONS OF CLIQUE:

OPTIMIZATION AND EXTENSIONS

A Dissertation

by

BALABHASKAR BALASUNDARAM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2007

Major Subject: Industrial Engineering

c© 2007

BALABHASKAR BALASUNDARAM

ALL RIGHTS RESERVED

GRAPH THEORETIC GENERALIZATIONS OF CLIQUE:

OPTIMIZATION AND EXTENSIONS

A Dissertation

by

BALABHASKAR BALASUNDARAM

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Sergiy I. Butenko
Committee Members, Illya V. Hicks

Wilbert E. Wilhelm
Catherine H. Yan

Head of Department, Brett A. Peters

August 2007

Major Subject: Industrial Engineering

iii

ABSTRACT

Graph Theoretic Generalizations of Clique:

Optimization and Extensions. (August 2007)

Balabhaskar Balasundaram, B.Tech., Indian Institute of Technology – Madras

Chair of Advisory Committee: Dr. Sergiy Butenko

This dissertation considers graph theoretic generalizations of the maximum

clique problem. Models that were originally proposed in social network analysis lit-

erature, are investigated from a mathematical programming perspective for the first

time. A social network is usually represented by a graph, and cliques were the first

models of “tightly knit groups” in social networks, referred to as cohesive subgroups.

Cliques are idealized models and their overly restrictive nature motivated the devel-

opment of clique relaxations that relax different aspects of a clique. Identifying large

cohesive subgroups in social networks has traditionally been used in criminal network

analysis to study organized crimes such as terrorism, narcotics and money laundering.

More recent applications are in clustering and data mining wireless networks, biolog-

ical networks as well as graph models of databases and the internet. This research

has the potential to impact homeland security, bioinformatics, internet research and

telecommunication industry among others.

The focus of this dissertation is a degree-based relaxation called k-plex. A

distance-based relaxation called k-clique and a diameter-based relaxation called k-

club are also investigated in this dissertation. We present the first systematic study

of the complexity aspects of these problems and application of mathematical pro-

gramming techniques in solving them. Graph theoretic properties of the models are

identified and used in the development of theory and algorithms.

Optimization problems associated with the three models are formulated as bi-

iv

nary integer programs and the properties of the associated polytopes are investi-

gated. Facets and valid inequalities are identified based on combinatorial arguments.

A branch-and-cut framework is designed and implemented to solve the optimization

problems exactly. Specialized preprocessing techniques are developed that, in con-

junction with the branch-and-cut algorithm, optimally solve the problems on real-life

power law graphs, which is a general class of graphs that include social and biological

networks. Computational experiments are performed to study the effectiveness of the

proposed solution procedures on benchmark instances and real-life instances.

The relationship of these models to the classical maximum clique problem is

studied, leading to several interesting observations including a new compact integer

programming formulation. We also prove new continuous non-linear formulations for

the classical maximum independent set problem which maximize continuous functions

over the unit hypercube, and characterize its local and global maxima. Finally, clus-

tering and network design extensions of the clique relaxation models are explored.

v

Dedicated to my parents

vi

ACKNOWLEDGMENTS

I consider myself truly lucky to have worked with Dr. Sergiy Butenko for my

doctoral research. Sergiy has been a resourceful, insightful and patient advisor, a

valuable guide in my professional development and most importantly, a true friend

and colleague. I am grateful to Sergiy for making my doctoral experience a rich and

memorable one, and my admiration and respect go to him.

I would like to express my sincere thanks to Dr. Illya Hicks, my committee

member and collaborator, for taking a keen interest in my research and professional

development. His expertise in polyhedral combinatorics was a tremendous support for

me and guided several research directions taken in this dissertation. My thanks are

also due to my wonderful committee members Dr. Wilbert Wilhelm and Dr. Catherine

Yan, for their patience and constant support.

I am ever grateful to Dr. G. Srinivasan, my undergraduate mentor, for introducing

me to the fascinating field of operations research, and for encouraging me to pursue

a doctorate.

The ISE department at Texas A&M provided me with a wonderful learning

atmosphere and opportunities to develop the skills I need in academia. I would

especially like to thank Drs. Brett Peters, Guy Curry and Richard Feldman, for

providing me with several opportunities to teach, and for their guidance and support.

I am also indebted to Drs. Amarnath Banerjee, Gautam Natarajan, Yu Ding,

Lewis Ntaimo, Gary Gaukler, Eylem Tekin, Andrew Johnson and Eric Bickel, for

guiding me and supporting me through my search for a faculty position.

Without the support from the efficient and friendly administrative and technical

staff at ISE, my doctoral program would have been a lot more difficult. In particular,

my special thanks are due to Judy Meeks, Michele Bork, Claudia Samford, Katherine

vii

Edwards, Mark Henry, Mark Hopcus and Dennis Allen. I would also like to thank

the ISE department for financially supporting my graduate studies.

I would like to thank Deepak Warrier, Sharat Bulusu, Brijesh Vasudeva Rao,

Svyatoslav Trukhanov, Oleksii Ursulenko, Reza Seyedshohadaie, Sera Kahruman,

Sandeep Sachdeva, Homarjun Agrahari, Abhishek Shrivastava, Elif Kolotoglu and

Jung Jin Cho, for being wonderful colleagues, and friends.

I would also like to thank Sujan Dan, Gabriel Krishnamoorthy, Smriti Jayara-

man, Vijay Ramakrishnan, Taraka Donti and Karambir Kalsi, for their lasting friend-

ships which made my life in College Station, a memorable one.

There are numerous others who have helped me personally and professionally,

and it would be impossible for me to name all of them. But my sincere thanks are

due to them all.

Words cannot express the love and pride I have for my parents for making me

who I am. It is their ambition, encouragement and support that has always kept me

on the right track. I am ever grateful and indebted to my parents for always giving

me more than I wanted, more than I deserved and more than they could.

viii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II BACKGROUND . 10

II.1. Social Network Analysis 10

II.2. Graph Theory . 17

II.3. Complexity Theory . 20

II.4. Polyhedral Theory and Combinatorial Optimization . . 23

II.5. Branch-and-cut . 28

II.6. Cliques and Independent Sets 30

II.6.1. Polyhedral Results 32

II.6.2. Continuous Approaches 35

III CLIQUE RELAXATIONS . 39

III.1. Distance-Based and Diameter-Based Relaxations 39

III.2. Degree-Based Relaxation 43

III.3. Comparison of the Models 44

III.4. Existing Approaches 48

IV COMPUTATIONAL COMPLEXITY 52

IV.1. Complexity of k -Clique and k -Club 53

IV.2. Complexity of k -Plex 57

IV.3. Some Special Cases . 60

V THE MAXIMUM k -CLIQUE AND k -CLUB PROBLEMS . . . 64

V.1. The Maximum k -Clique Problem 64

V.2. The Maximum k -Club Problem 66

V.3. The Maximum 2 -Club Problem 68

V.4. Solving the Maximum 2 -Club Problem on Power

Law Graphs . 71

VI THE MAXIMUM k -PLEX PROBLEM 75

VI.1. The Maximum k -Plex Problem 75

VI.2. Facets and Valid Inequalities 77

ix

CHAPTER Page

VI.3. Solving the Maximum k -Plex Problem 84

VI.4. On the Maximum Clique Problem 89

VII COMPUTATIONAL EXPERIMENTS 92

VII.1. General Implementation Details 92

VII.2. Description of the Test-bed 94

VII.3. Numerical Results: Maximum k-Plex Problem 98

VII.3.1. BC Algorithms on Group I Instances 99

VII.3.2. IPBC Algorithm on Group II Instances 103

VII.4. Maximum Clique Problem: Formulation Study 113

VII.5. Numerical Results: Maximum 2-Club Problem 115

VIII CONTINUOUS GLOBAL OPTIMIZATION FORMULATIONS

FOR INDEPENDENCE NUMBER OF A GRAPH 119

VIII.1.Continuous Formulation for Independence Number . . . 120

VIII.2.Local Maxima . 124

VIII.3.Modified Formulation 130

VIII.4.Numerical Experiments 136

VIII.4.1. Global Optimization 136

VIII.4.2. Local Optimization 139

IX NETWORK CLUSTERING AND DESIGN EXTENSIONS . . . 143

IX.1. Network Clustering . 143

IX.2. The Clustering Problem 145

IX.3. Clique-based Clustering 146

IX.3.1. Clique Partitioning and Covering 146

IX.3.2. Min-Max d-Clustering 147

IX.4. Clique Relaxations in Clustering 149

IX.4.1. k -Clique and k -Club Clustering 149

IX.4.2. k -Plex Clustering 152

IX.5. Network Design Problem 153

X CONCLUSION AND FUTURE WORK 158

REFERENCES . 166

APPENDIX A . 178

VITA . 192

x

LIST OF TABLES

TABLE Page

1 Dimacs benchmarks . 95

2 Parameter settings . 98

3 Summary of results on Sanchis-log instances 101

4 Summary of results on Sanchis-linear instances 101

5 BC-MIS Vs. BC-C2PLX . 103

6 Results of BC for k = 1 on Dimacs instances 104

7 Results of BC-MIS for k = 2 on Dimacs instances 105

8 Results of BC-C2PLX for k = 2 on Dimacs instances 106

9 Erdös networks: The number of vertices, edges, edge density, and

k-plex numbers for k = 1, 2, 3 . 109

10 Results for Erdös networks using IPBC algorithm 109

11 BC call statistics of IPBC algorithm on ERDOS-98-2.NET for k = 1 110

12 Members of a maximum 3-plex in ERDOS-99-1.NET 110

13 Protein interaction networks: The number of vertices, edges, edge

density, and k-plex numbers for k = 1, 2, 3 111

14 Computational geometers collaboration networks: The number of

vertices, edges, edge density, and k-plex numbers for k = 1, 2, 3 . . . 112

15 Results for computational geometers collaboration networks using

IPBC algorithm . 112

16 Reuters terror news networks: The number of vertices, edges, edge

density, and k-plex numbers for k = 1, 2, 3 113

xi

TABLE Page

17 Results for the Reuters terror news networks using IPBC algorithm . 113

18 Words belonging to a maximum k-plex identified in DAYS-5.PAJ

for k = 1, 2, 3 . 114

19 Edge formulation Vs. 1-plex formulation on Dimacs instances . . . 116

20 Results of ITBC algorithm on Group II instances 117

21 Results of experiments using Matlabr implementation of MCS . . . 138

22 Results for local search . 141

23 Results for Matlabr fmincon . 142

24 Clique numbers of Sanchis-log instances 179

25 Running time (secs) of BC, k = 1, Sanchis-log instances 179

26 1-plex numbers found by BC on Sanchis-log instances 179

27 Number of nodes enumerated by BC, k = 1, Sanchis-log instances . . 180

28 Number of cuts generated by BC, k = 1, Sanchis-log instances 180

29 Running time (secs) of BC, k = 1, Sanchis-linear instances 180

30 1-plex numbers found by BC on Sanchis-linear instances 181

31 Number of nodes enumerated by BC, k = 1, Sanchis-linear instances 181

32 Number of cuts generated by BC, k = 1, Sanchis-linear instances . . 182

33 Running time (secs) of BC-MIS, k = 2, Sanchis-log instances 182

34 2-plex numbers found by BC-MIS on Sanchis-log instances 182

35 Number of nodes enumerated by BC-MIS, k = 2, Sanchis-log instances 183

36 Number of cuts generated by BC-MIS, k = 2, Sanchis-log instances . 183

37 Running time (secs) of BC-MIS, k = 2, Sanchis-linear instances . . . 183

xii

TABLE Page

38 2-plex numbers found by BC-MIS on Sanchis-linear instances 184

39 Number of nodes enumerated by BC-MIS, k = 2, Sanchis-linear

instances . 184

40 Number of cuts generated by BC-MIS, k = 2, Sanchis-linear instances 185

41 Running time (secs) of BC-C2PLX, k = 2, Sanchis-log instances . . . 185

42 2-plex numbers found by BC-C2PLX on Sanchis-log instances 185

43 Number of nodes enumerated by BC-C2PLX, k = 2, Sanchis-log

instances . 185

44 Number of cuts generated by BC-C2PLX, k = 2, Sanchis-log instances 186

45 Running time (secs) of BC-C2PLX, k = 2, Sanchis-linear instances . 186

46 2-plex numbers found by BC-C2PLX on Sanchis-linear instances . . . 186

47 Number of nodes enumerated by BC-C2PLX, k = 2, Sanchis-

linear instances . 186

48 Number of cuts generated by BC-C2PLX, k = 2, Sanchis-linear

instances . 187

49 Authors belonging to a maximum k-plex identified for k = 1, 2, 3

in ERDOS-97-1.NET and ERDOS-97-2.NET 187

50 Authors belonging to a maximum k-plex identified for k = 1, 2, 3

in ERDOS-98-1.NET and ERDOS-98-2.NET 188

51 Authors belonging to a maximum k-plex identified for k = 1, 2, 3

in ERDOS-99-1.NET and ERDOS-99-2.NET 189

52 Authors belonging to a maximum k-plex identified for k = 1, 2, 3

in COMP-GEOM-0.PAJ . 189

53 Authors belonging to a maximum k-plex identified for k = 1, 2, 3

in COMP-GEOM-t.PAJ . 190

xiii

TABLE Page

54 Words belonging to a maximum k-plex identified for k = 1, 2, 3

and t = 3, 4 in DAYS-t.PAJ . 191

55 Words belonging to a maximum k-plex identified for k = 1, 2, 3

and in DAYS-5.PAJ . 191

xiv

LIST OF FIGURES

FIGURE Page

1 The Petersen graph . 1

2 Protein-protein interaction map of H. Pylori 4

3 2-clique Vs. 2-club . 40

4 A graph with no 2-clans . 41

5 Illustration of k-plexes for k = 1, 2, 3 44

6 An illustration to the proof of Theorem 8 for k = 5 55

7 An illustration to the proof of Theorem 9 for k = 4 55

8 Illustration of the k-Plex instance G′ 59

9 Graphs demonstrating the sharp bounds in Lemmas 1 and 2 79

10 A maximum 2-plex in H. Pylori . 111

11 A maximum 3-plex in H. Pylori . 111

12 A maximum 2-plex in S. cerevisiae 111

13 A maximum 3-plex in S. cerevisiae 111

14 An example graph illustrating Remark 15 123

15 Graphs illustrating Remarks 17 and 18 127

16 A star graph . 162

1

CHAPTER I

INTRODUCTION

Network is a popular term that immediately reminds the reader of points in space that

are connected by lines, representing a physical network or used as a visualization tool

representing interconnected information. A graph G is the mathematical abstraction

of our visual fix, defined by a pair (V, E) where V is the vertex set and E is the edge

set. Fig. 1 illustrates the Petersen graph. Graphs are simple and effective tools that

can be used to model many real-life situations. Typically the vertex set represents

entities and the edges indicate the presence or absence of pairwise relationships.

Fig. 1 The Petersen graph (consult [116] for more information about this graph, its

unique position and historical significance in graph theory)

Modeling information as a graph presents several advantages. Firstly, it can

globally capture massive amounts of information starting with local pairwise inter-

connections. Secondly, it places the problems of interest in the intersection of Graph

Theory, Combinatorial Optimization, Algorithms and Complexity Theory thereby

The journal model is Mathematical Programming.

2

providing rigorous ways to characterize the tractability or intractability of the prob-

lems, and to effectively cope with them. Lastly, the information and results can be

presented in an intuitive and user-friendly setting using good visualization tools.

Real-life graphs are usually “complex” and are based on various novel models to

represent the underlying information graphically. However, several real-life graphs of

interest to us, despite arising in diverse application domains share some interesting

properties. In the following paragraphs, we discuss the underlying modeling ideas

and the structural commonalities that have been observed in real-life graphs.

Complex Graphs and Power Laws. In internet research, typically two models are

employed. An internet graph has vertices representing IP addresses while a web graph

or WWW graph has vertices representing websites. Edges in such graphs are deter-

mined based on information from routing protocols or using traceroute probes [48]. In

call graphs, vertices represent telephone numbers and an edge represents a call placed

from one vertex to another in a specified time interval [5]. Stock-market graphs have

vertices representing stocks and two stocks are connected by an edge if they are pos-

itively correlated over some threshold value based on calculations over a period of

time in history [38]. Biological networks such as protein interaction networks and

gene co-expression networks are used to model biological information. A protein in-

teraction network is represented by a graph with the proteins as vertices, and an edge

exists between two vertices if the proteins are known to interact based on two-hybrid

analyses and other biological experiments [120]. In gene co-expression networks, ver-

tices represent genes and an edge exists between two vertices if the corresponding

genes are co-expressed with correlation higher than a specified threshold in microar-

ray experiments [163]. Social networks are graph models representing sociological

information such as acquaintance among people. Vertices usually represent people

and an edge indicates a “tie” between two people. A tie could mean that they know

3

each other, they visited the same place or any other sociological connection. Scien-

tific collaboration networks with vertices representing authors (in a particular field

or with publications in a particular journal) and edges indicating co-authorship fall

under this category [105].

One should however not be deceived by the “innocent picture” of the Petersen

graph since all of the real-life graphs that we referred to above are massive. One

such massive call graph representing telecommunications traffic data over one 20-day

period studied in [5] had 290 million vertices and 4 billion edges. Although we do

not handle graphs this massive, we do investigate the protein interaction network of

gastric pathogen H. Pylori which has 1570 vertices and 1403 edges that are almost all

inside one giant component with 706 vertices (see Fig. 2). Apart from the fact that

graphs are used to conveniently model large amounts of data from real applications,

such real networks also exhibit another interesting property introduced next.

Power laws have a long history, that dates as far back as the late 1800s (see

Section 1.4 in [68]). However recently, power law degree distributions have been

observed among networks that arise from diverse real world situations [31]. If X(t)

denotes the number of vertices in the network with degree t, it was observed in

empirical studies that X(t) ∝ t−γ where γ ≥ 1 is a constant. Power law has been

observed in natural and man-made networks, such as internet and web graphs [32],

biological networks [10], stock-market graphs [38] and social networks [101] among

others. Such power law graphs are also known in the literature as scale-free graphs.

In such graphs, a large number of vertices have very few neighbors while a small

number of vertices have an extremely large number of neighbors. An immediate

consequence of this property in these real-life graphs is that they are massive in terms

of number of vertices, but extremely sparse in number of edges. It is believed that a

principle of preferential attachment operates in the evolution of such networks where

4

Fig. 2 Protein-protein interaction map of H. Pylori

the “rich get richer”, i.e., vertices that already have a large number of neighbors,

attract more new neighbors compared to vertices with fewer neighbors. For this

reason, they are different from the graphs studied in the classical random graph

theory of Erdös and Rényi [87, 88]. Here, the G(n, p) model describes the probability

space containing all labeled graphs on n vertices and p ∈ [0, 1] is the probability that

an edge exists between any two vertices and it is independent of other edges. In the

evolution of such random graphs, a “giant component” emerges when np > 1 [11].

5

This behavior is also observed in power law graphs, and the conditions are studied

in [68] using a generalized model that includes G(n, p) and power law models.

Another popular concept is the small world phenomenon identified by social

psychologist Stanley Milgram in 1967 [145] in his famous experiments where the

subjects were given a letter each, all of them supposed to reach the same destination,

but the letters can only be personally handed over by each person to a friend who they

think would successfully pass it on to the destination. He observed that the average

number of links in successfully completed letter chains were about 6, giving rise to the

phrase six degrees of separation. Although his initial study was heavily debated for its

experimental set-up and interpretation of results, it is widely accepted as the earliest

attempt at observing the small world phenomenon. In the late 1990s, small world

phenomenon was shown to exist in various networks, not just social networks by Watts

and Strogatz [186]. However, these observations are empirical in nature. Discussions

on theoretical and empirical studies on the small world phenomenon can be found

in the recent book [68], that provides a comprehensive mathematical treatment of

the subject extending classical random graph theory and its techniques to specifically

address large, sparse graphs such as power law graphs. In this dissertation, real-

life graphs of interest to us exhibit power law degree distribution, and hence the

aforementioned properties are exploited in algorithm development.

Cliques and Social Network Analysis. The study of social networks referred to

as Social Network Analysis (SNA) has several critical applications that rely on iden-

tifying “tightly knit” subgraphs called cohesive subgroups. Mathematical modeling

of cohesive subgroups has long been a subject of interest in SNA with the earliest

models being cliques. A clique in an acquaintance or friendship network is a group

of people in which everyone knows everyone. Mathematically, a clique in a graph

is a subset of pairwise adjacent vertices. Cliques, thought to be perfect models for

6

cohesive subgroups were later found to be too idealized and restrictive in practice,

leading to graph models that generalized the definition of cliques.

This dissertation research deals with such graph theoretic clique relaxation mod-

els introduced in SNA called k-cliques, k-clubs and k-plexes. These parameterized

models represent cliques when parameter k = 1 and provide a relaxation for k > 1.

These models have several critical applications that impact homeland security, biolog-

ical emergency response, telecommunication, internet research, genomics, proteomics

and drug-discovery. Despite their importance, these clique relaxations have hardly

been studied by mathematicians, computer scientists or operations researchers. This

fact is surprising for two reasons. Firstly, the problem of finding large cliques which is

a classical problem in all the above mentioned fields of study was originally motivated

by applications in social networks– however its relaxations were scarcely noticed. Sec-

ondly, the need existed for models that relax cliques for a long time and was addressed

by methods that were often not systematic and with other drawbacks. The important

characteristics of a clique when viewed as a cohesive subgroup are complete famil-

iarity within the group, quickest reachability enabling fast communication within the

group and a structural robustness that cannot be destroyed by removing members of

the group. These observations essentially mean the same when viewed from a mathe-

matical perspective, the outcome of having all possible edges. However, when viewed

from a social perspective, they help motivate different relaxations. In this light, it

is easy to see why the operations research and the computer science community was

drawn towards models that relaxed the notion of “all possible edges” to look for

“dense enough” subgraphs. It is important to note that, it is by looking at cliques

through a social perspective, that we can motivate the relaxations. This explains why

such interesting relaxations were first developed in SNA and not in other areas.

Optimization problems addressed in this dissertation are to find a largest k-

7

clique, k-club or k-plex in a graph. We focus more on the k-plex model due its

advantage over the other models and its systematic nature. Broadly, this dissertation

makes the following contributions. Firstly, we have shown that these problems are

NP-hard, making our efforts to solve these problems difficult, but worthwhile. The

rest of our results utilize classical techniques from mathematical programming in de-

veloping theory and algorithms for solving the problems. The optimization problems

are formulated as integer programs and the properties of the associated polytopes are

investigated. We have produced several families of combinatorial valid inequalities

and facets for the problems. Selected inequalities are incorporated in branch-and-cut

procedures to solve the problems to optimality. Furthermore, we develop special-

ized preprocessing techniques that work extremely well for large and sparse graphs

enabling us to solve these problems to optimality on real-life power law graphs.

The relationship of these models to the classical maximum clique problem is

studied, leading to several interesting observations including a new compact integer

programming formulation. We also prove new continuous non-linear formulations for

the classical maximum independent set problem which maximize continuous functions

over the unit hypercube and characterize their local and global maxima. Finally,

clustering and network design extensions of the clique relaxation models are explored.

Organization. The remainder of this dissertation is organized as follows. Chap-

ter II presents an extensive background on SNA and its applications; required no-

tations and definitions from graph theory, basics of complexity theory, polyhedral

theory and branch-and-cut approaches; and a review of relevant literature on cliques,

independent sets and successful applications of branch-and-cut from literature. In

Chapter III we formally define the models and the associated optimization prob-

lems. Comparison of the models with respect to the social characteristics of cliques

suggested before is carried out revealing the k-plex model to be most attractive.

8

Chapter IV presents the complexity results for our problems. Meaningful tractabil-

ity questions are identified and answered in this chapter. Integer programming formu-

lations, polyhedral results, facets and valid inequalities are developed in Chapters V

and VI. Algorithms that combine pre-processing techniques and branch-and-cut ap-

proaches for the problems are also presented in these chapters. The k-clique and

k-club models are studied in Chapter V while the k-plex model is studied extensively

in Chapter VI. Summary of computational experiments performed using the algo-

rithms developed in Chapter VI is given in Chapter VII and the details are included

in Appendix A.

In Chapter VIII, we switch gears from combinatorial optimization to continuous

optimization. But we still address a classical combinatorial optimization problem

that is tied to our theme: The maximum independent set problem which is equivalent

to finding a largest clique. In the past, some of the most important breakthroughs in

operations research and optimization that have gone on to impact a wide variety of

applications, have resulted from continuous approaches to combinatorial optimization

problems. New formulations for the maximum independent set problem and results

characterizing their local and global maxima are identified, in our contribution to this

emerging research field.

As suggested by the title of this dissertation, we not only study the natural op-

timization problems that arise from the models we borrowed from SNA, but we also

propose several new extensions that utilize the basic idea to develop other optimiza-

tion problems with different, but related applications. These models and algorithms

are proposed in Chapter IX.

This dissertation studies problems that are rich and deep for both theory and

practice. Naturally, we only lay the foundations for a systematic study of these im-

portant problems. In the course of our research, we have identified several important

9

open problems and research directions that need to be addressed in the future. We

conclude this dissertation with Chapter X where some of these issues are discussed.

Publications. Some results in Chapters IV and V have appeared in [30] and

some from Chapters IV and VI have been submitted for publication [29]. Results

from Chapter VIII have appeared in [24, 26]. During the course of this dissertation

research, two survey articles of graph optimization problems in telecommunication

were written [25, 28] and an expository article on network clustering [27] was also

completed. These efforts brought to our attention and motivated some of the modeling

extensions introduced in Chapter IX.

All the figures in this dissertation, except Fig. 6 and Fig. 7 were generated using

Graphvizr [104].

10

CHAPTER II

BACKGROUND

This chapter reviews the background material required by this dissertation. In Sec-

tion II.1 we review concepts from social network analysis and various applications

of the area. Notations and definitions from graph theory are presented in Sec-

tion II.2. A brief background on complexity theory and polyhedral theory are pro-

vided in Section II.3 and Section II.4 respectively. Review of results from literature

related to branch-and-cut approaches, cliques and independent set is presented in

Sections II.5, II.6.

II.1. Social Network Analysis

A social network is usually represented by a graph, in which the set of vertices repre-

sent the actors in a social network and the edges represent ties between them [171].

Typically, actors are people, and examples of a tie between two actors include ac-

quaintance, friendship, or other type of association between them, such as visiting

the same social event or place at the same time. Alternately, actors can be companies,

with ties representing business transactions between them.

Cliques and their graph theoretic generalizations were proposed in SNA to model

cohesive subgroups in social networks. Social cohesion is often used to explain and

develop sociological theories. Members of a cohesive subgroup tend to share infor-

mation, have homogeneity of thought, identity, beliefs, behavior, even food habits

and illnesses [185]. Social cohesion is also believed to influence emergence of consen-

sus among group members. Examples of cohesive subgroups include religious cults,

terrorist cells, criminal gangs, military platoons and sports teams among others.

11

Modeling a cohesive subgroup mathematically has long been a subject of inter-

est in SNA. One of the earliest graph models used for studying cohesive subgroups

was cliques [141]. A clique is a subset of vertices in which every pair has an edge

between them. Cliques are ideal structures for modeling cohesive subgroups. They

have three important structural properties that are expected of a cohesive subgroup,

namely, familiarity (all neighbors and no strangers in the group), reachability (direct

communication inside the group) and robustness (difficult to destroy the group by

removing members). However, the clique approach has been criticized for its overly

restrictive nature [8, 185] and modeling disadvantages [173, 93].

A clique requires all possible edges to exist between vertices for them to be con-

sidered a cohesive subgroup. This is a very restrictive definition for two basic reasons.

Firstly, in reality a cohesive subgroup that has high familiarity, reachability and ro-

bustness, need not have all possible edges i.e., it could include some “strangers”. Such

strangers would be excluded if cliques were used to model cohesive subgroups. Sec-

ondly, real-life networks are often constructed based on data that could be erroneous

or incomplete. Even if the cohesive subgroup was indeed a clique, but some edges

were missed due to experimental errors, the restrictive definition of cliques would

again exclude members that should belong in the cohesive subgroup. Hence cliques

are ideal, but not practical models of cohesive subgroups. Using cliques makes the

cohesive subgroup extremely robust to “false-positives” (edges included in error) in

the data since if a node belongs to a clique, it is unlikely that all (or many) of its

neighbors are results of experimental errors. On the other hand, clique is overly sen-

sitive to “false-negatives” (edges excluded in error) since a node could be excluded

from a clique for missing a single edge to one of the clique members which could be

due to an error in the data. This motivated the development of clique relaxations

that relax different aspects of a cohesive subgroup and try to overcome the inherent

12

difficulties in the clique model.

Luce [140] introduced a distance-based model called k-clique and Alba [8] intro-

duced a diameter-based model called k-club. These models were also studied along

with a variant called k-clan by Mokken [148]. However their definitions required

some modifications from the original definition to be mathematically more meaning-

ful. These drawbacks are pointed out and the models are appropriately redefined in

Chapter III. Seidman and Foster [173] introduced a degree-based model called k-plex,

which is the third model we study along with the k-clique and k-club models. This

model is the main focus of this dissertation and is also formally defined in Chapter III.

The parameter k in all three parameterized models controls the “extent of re-

laxation”. They represent cliques when k = 1 and represent relaxations for k > 1.

While the distance-based and diameter-based models emphasize the need for high

reachability (small k) inside a cohesive subgroup, they may not be suitable models

of cohesiveness with respect to familiarity and robustness. The degree-based model

relaxes familiarity within a cohesive subgroup and implicitly achieves reachability and

robustness. This model is a more systematic relaxation of cliques. These issues are

described in greater detail in Section III.3.

In the wake of the information revolution, the interest in studying the network

structure of organizations, especially criminal in nature, has increased manifold. So-

cial network concepts, despite their versatility, have come to the forefront especially

for these applications. We will now cite some direct application areas of social net-

works, as well as several emerging areas where we believe our research will have

significant impact.

Terrorist Recruitment Models. The recent world events have sparked interest

in studying recruitment within terrorist groups. The tools of SNA have been used

extensively in this respect [167, 36]. Based on the understanding that recruitment

13

is significantly due to the influence of actors in a social group, cliques have been

used in the development of simulation toolkits for studying recruitment models [36].

However, clique models of cohesive subgroups will underestimate the influence on a

particular actor X by the actor’s social group as it may exclude some neighbors of X

that are not fully connected to the group. This could lead to inaccurate simulation

results. Our research on clique relaxations aims to contribute to the improvement of

such models.

Criminal Network Analysis. Study of terrorist networks is essentially a special

case of criminal network analysis that is intended to study organized crimes such as

terrorism, narcotics and money laundering [143, 80]. Concepts of SNA provide suit-

able data mining tools for this purpose [61, 60]. Given that these massive amounts

of intelligence and law enforcement data are plagued by errors, repetitions, incom-

plete information etc. [178], a restrictive model like clique is not practical. Clique

relaxations, especially k-plexes will be of great practical value since they will uncover

groups in which some links are absent, either due to incomplete information or errors

in the data. Similarly, link analysis is also an important tool used in wire trans-

fer screening to detect money laundering [183]. Link analysis essentially constructs

the graph with the information from a wire transfer database. Database networks

in general are often constructed by first designating a field as matching field. Then

vertices representing records in the database are connected by an edge if the two

matching fields are “close”. But these records are known to be incomplete, faulty

and fragmented [183]. Finding clique relaxations on such wire transfer graphs can

yield different types of information depending on the choice of the matching field.

Choice for matching fields could include address, beneficiary/originator of the wire

transfer, origin/destination routing numbers, etc. and will yield different insights into

the activities. Telephone toll analysis on call graphs introduced in Chapter I has also

14

been suggested as an useful tool to monitor criminal organizations [178]. Approaches

for finding clique relaxations are better suited for such purposes and would greatly

aid crime prevention and prosecution by their better representation of cohesive sub-

groups.

Epidemic Control, Internet Research and Marketing. Target applications from

these seemingly diverse areas are tied together by a single concept called viral mar-

keting. This marketing jargon describes any strategy that encourages individuals to

pass on messages to others, leading to rapid growth in the message’s exposure and

influence [127]. Whether it is a marketing virus or a malicious computer virus spread-

ing through the internet or a biological virus spreading through a social network of

people, the phenomena naturally share the same network dynamics [9, 32]. Identify-

ing clique relaxations can provide important information about the structure that can

be used to contain the computer/biological virus by identifying the largest cohesive

subgroup containing the infected websites/known virus carriers. On the other hand,

it can be used to maximize the influence of a marketing virus by finding large cohesive

subgroups or by clustering using the clique relaxations as cluster models to identify

which actors need to be chosen to start the viral marketing campaign. In a related

application, Terveen et al. [181] utilize 2-clubs to represent collections of densely con-

nected web sites (referred to as clans in [181]). Topically related web sites are thus

identified and organized to facilitate faster search and retrieval of information from

the web. Clique relaxations such as a k-plex present a realistic approach for modeling

and studying such phenomena.

Network Clustering and Data Mining. Clustering can be loosely defined as the

process of grouping objects into subsets. Each subset is a cluster modeled by struc-

tures such as cliques or clique relaxations. The model used as a cluster represents

the cohesiveness required of the cluster. Clique and other low diameter models have

15

been popular in the area of wireless communication [62, 132]. Clustering the con-

nectivity graph of a wireless network introduces a hierarchy which facilitates routing

of information through the network resulting in efficient resource management and

better throughput performance. A similar principle is also used in organizational

management where SNA is used to study organizational structure to suggest better

work practices and improve communication and work flow [81]. Graph based data

mining [71] has been used in studying structural properties of social networks [151],

unraveling molecular structures to facilitate drug discovery and compound synthe-

sis [91] and for identifying frequently occurring patterns in data sets (modeled as

graphs) [184]. Clustering using cohesive units such as k-plexes in these graphs pro-

vides a valuable tool to organize data as well as indicate interesting structures in the

graph that are of practical importance.

Biological Systems. In this post-genomic era, classical biology is undergoing a

transformation into systems biology in order to study organisms as biological systems.

Biologists aiming at a systems-level understanding are approaching biology from a

top-down perspective with the objective of understanding and predicting the behav-

ior of biological systems [126]. This is often accomplished by taking a “snapshot” of

all the elements and their interactions at various levels– genes, transcripts, proteins,

metabolites. This has been made possible by technological advances such as mi-

croarrays that facilitate parallel high-throughput experiments resulting in enormous

amounts of experimental data, such as genomic and proteomic data. This has led

to a phenomenon that is very imaginatively termed the “data avalanche”. As stated

in the introductory chapter, graphs present a simple and effective tool for modeling

such massive amounts of data. Several biological interactions are well captured by

networks such as protein-protein interaction networks and gene co-expression net-

works introduced in Chapter I.

16

Identifying large clusters or functional modules in biological networks can aid dif-

ferent objectives depending on the nature of these networks. Clique models have been

most popular in this area. Cliques have been used to cluster gene co-expression net-

works [163, 124], while cliques and high-density subgraphs have been used to cluster

protein interaction networks [180, 95]. For instance, finding cliques in a protein in-

teraction network is used to identify protein complexes and functional modules [180].

Protein complexes are groups of proteins that act as a multi-molecular machine by

interacting at the same time, and in the same place in the cell. Functional modules on

the other hand is a group of proteins that participate in a cellular process while inter-

acting with each other at a different time and place. Protein complexes and modules

have been shown to be responsible for several important cell functions (see [180]).

Graph theoretic clique relaxations can provide interesting insights into these net-

works and provide more information than what is revealed by cliques. The voluminous

data generated by microarray experiments and other procedures are bound to contain

significant percentage of errors. There could also be missing edges if interactions be-

tween elements are not yet known. Relaxing the restrictions imposed by clique models

could reveal new protein interactions. In particular, structures where interactions of

proteins occur through a central protein, which are likely to be found in similar bi-

ological processes can be identified [17]. Several important applications of cliques

in computational biochemistry and genomics such as integration of genome mapping

data, non-overlapping local alignments and matching three-dimensional molecular

structures are also well known [53].

This brief survey of SNA and its wide applicability is sufficient to motivate our

study of the aforementioned clique relaxations. For a detailed introduction to the area,

see the texts by Wasserman and Faust [185] and Scott [171]. Since the introduction

of these models, there has been almost no literature that deals with these important

17

application oriented problems in the areas of mathematics, operations research or

computer science. This dissertation will lay the foundations for a systematic study of

these problems from the perspectives of mathematical programming and theoretical

computer science.

II.2. Graph Theory

For an introduction to graph theory readers are referred to texts by West [188] or

Diestel [83]. We only provide the notations and basic definitions for the sake of clarity.

In this dissertation, we always consider finite, simple, undirected graphs denoted

by G = (V,E), where V = {1, . . . , n} and (i, j) ∈ E when vertices i and j are

adjacent (assume i < j) with |E| = m. By order we mean the number of vertices n

and by size, the number of edges m. We also use the notation V (G) and E(G) to

denote the vertex set and edge set, respectively, of a given graph G. Whenever the

graph under consideration is obvious, we sometimes use n instead of |V | to denote

its order. The complement graph is denoted by Ḡ = (V, Ē). Given X ⊆ V , induced

subgraph G[X] is obtained by deleting from G, all vertices (and incident edges) in

V \X. The graph obtained by the deletion of a vertex i or a set of vertices I from G

is denoted respectively by G− i and G− I. By G1 ∪G2 we denote the union graph

G = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). G is called a null graph if V = E = ∅ and a

trivial graph if E = ∅. The adjacency matrix AG is a symmetric 0,1-matrix of order

n× n with ai,j = 1 ⇔ (i, j) ∈ E. The complete graph on n vertices is denoted by Kn

and the complete bipartite graph with bipartitions of sizes p, q is denoted by Kp,q. In

particular, the graph K1,n is called a star. Cycle and path on n vertices are denoted

by Cn and Pn respectively.

For a vertex i ∈ V, N(i) denotes the set of vertices adjacent to i in G, called

18

the neighborhood of i and N [i] = {i} ∪ N(i) denotes the closed neighborhood of i.

The set of non-neighbors of i is given by V \ N [i]. Denote by degG(i), the degree

of vertex i in G given by |N(i)|. Degree of a vertex i ∈ X ⊆ V in G[X] is denoted

by degG[X](i) where degG[X](i) = |N(i) ∩ X|. The neighborhood of a vertex i in a

subgraph G̃ ⊆ G is denoted by NG̃(i). The maximum and minimum degrees in a

graph are denoted respectively by ∆(G) and δ(G). For two vertices i, j ∈ V , dG(i, j)

denotes the length of the shortest path between i and j in G. The distance in the

induced subgraph, for i, j ∈ X ⊆ V is denoted by dG[X](i, j). By convention, when

no path exists between two vertices, the shortest distance between them is infinity. If

the graph G under consideration is obvious, we sometimes drop the subscript in the

neighborhood, degree and distance notations.

For a graph G = (V,E) and positive integer k, the kth power of G is defined as

Gk = (V, Ek), where Ek = {(i, j) : i, j ∈ V, i < j, dG(i, j) ≤ k}. Gk is constructed

from the original graph by adding edges corresponding to all pairs of vertices with

distance no more than k between them in G.

Definition 1. The diameter of a graph is defined as diam(G) = max
i,j∈V

dG(i, j).

Definition 2. The vertex connectivity κ(G) of a graph is the minimum number of

vertices whose removal results in a disconnected or trivial graph.

Definition 3. A clique is a subset of vertices that are pairwise adjacent in the graph.

Definition 4. An independent set (stable set, vertex packing) is a subset of vertices

that are pairwise non-adjacent in the graph.

The maximum clique problem is to find a clique of maximum cardinality. The

clique number ω(G) is the cardinality of a maximum clique in G. The maximum

cardinality of an independent set of G is called the independence number of the graph

19

G and is denoted by α(G). The associated problem of finding a largest independent

set is the maximum independent set problem. Note that I is an independent set in G

if and only if I is a clique and Ḡ and consequently α(G) = ω(Ḡ).

Always, maximality and minimality of sets are defined based on inclusion and

exclusion respectively. A maximal independent set is one that is not a proper subset

of another independent set. A maximal clique is one that is not contained in a larger

clique. For simplicity, we write MIS in place of maximal independent set(s) in this

dissertation.

Definition 5. A proper coloring of a graph is one in which every vertex is colored

such that no two vertices of the same color are adjacent.

A graph is said to be k-colorable if it admits a proper coloring with k colors. Ver-

tices of the same color are referred to as a color class and they induce an independent

set. The chromatic number of the graph, denoted by χ(G) is the minimum number

of colors required to properly color G. Note that for any graph G, ω(G) ≤ χ(G), as

different colors are required to color the vertices of a clique.

Definition 6. A dominating set is a subset of vertices such that every vertex in the

graph is either in this set or has a neighbor in this set.

The minimum cardinality of a dominating set is called the domination number,

denoted by γ(G). Note that every MIS is also a minimal dominating set.

Definition 7. A graph is perfect if the chromatic number is equal to the clique

number for every vertex-induced subgraph.

Definition 8. A hole is an induced chordless cycle of length at least four and an

antihole is the complement of a hole.

20

II.3. Complexity Theory

Theory of NP-completeness plays a very important role in optimization. It provides

a framework for comparing the hardness of different problems and broadly classify

them as easy and hard. In this section, we give a brief review of the topic. Interested

readers are referred to [98, 159] for a comprehensive treatment of the subject.

The framework of NP-completeness is designed to address the tractability of

decision problems. These are problems such that every instance can be answered by

either a “yes” or a “no”. Instances that can be answered with a “yes” are referred to

as yes-instances for the problem and instances answered by a “no” are no-instances

for the problem. Consider for example, the maximum clique problem. This can be

phrased as a decision problem as follows.

Clique : Given a graph G = (V,E) and a positive integer c, does there exist a

clique of size ≥ c in G?

Each instance of Clique problem is defined by (G, c) and we can solve the

maximum clique problem on G by varying c from 1 to n and identifying the largest

c for which (G, c) is a yes-instance.

Definition 9. A decision problem Q is said to be in class P if an algorithm exists

that can answer it correctly in a running time that is polynomially bounded by its

input size.

Polynomial-time algorithms are considered “efficient” and hence problems in class

P and their optimization variants are considered to be “easy”. However, most opti-

mization problems do not belong to this class. They belong to a larger class and are

some of the hardest problems in that class.

Definition 10. A decision problem Q is in class NP if there exists a polynomial-time

algorithm A such that:

21

1. Given a yes-instance x and a binary string y polynomially bounded in length

representing a solution, A returns “yes” as the answer for some y that solves x;

2. Given a no-instance x′, for any string y, A returns “no” as the answer.

In other words, decision problem Q is placed in class NP if there exists a

polynomial-time algorithm A that responds with a yes for a yes-instance x when

solution y that correctly solves x is given as a hint and for a no-instance x′, A cannot

be fooled by any string y representing a solution and it always responds with a no.

Note that A does not know how to construct a correct y for a given yes-instance x

and can only test it for its correctness. This non-deterministic nature of “guess” y

can be included in the description of A and class NP can be redefined as follows.

Definition 11. A decision problem Q is said to be in class NP if there exists a non-

deterministic polynomial-time algorithm A that can correctly guess a proof y for a

yes-instance x and accept it; while on a no-instance x′ for any guess y returns no.

Clearly, P ⊆ NP since any decision problem that can be solved in polynomial

time by an algorithm A is also included in class NP by treating A as the non-

deterministic algorithm that does not have to guess, but can construct a proof y if it

exists. Before we define the concept of NP-completeness, we introduce the notion of

reducibility among decision problems.

Definition 12. Let Q1, Q2 be two decision problems. We say Q1 is polynomial-time

reducible to Q2 (written as Q1 ∝ Q2) if there exists a polynomial-time algorithm A
that, given an instance x of Q1 constructs an instance A(x) of Q2 such that: x is a

yes-instance of Q1 if and only if A(x) is a yes-instance of Q2.

The reduction is also qualified as a many-one reduction as many instances x can

give rise to the same instance A(x). Note that this relationship sets computational

22

bounds on the problems relative to each other. Up to polynomial time computations,

Q1 is not harder than Q2 (equivalently Q2 is not easier than Q1). Consequently if Q2

is in class P, then so is Q1. On the other hand, if Q1 is intractable, then so is Q2. A

meaningful definition of intractability was made possible by the following result that

is considered the cornerstone of NP-completeness theory.

Theorem 1 (Cook’s Theorem). Every decision problem in the class NP is polynomial-

time many-one reducible to the Satisfiability problem.

A proof of this theorem and the definition of the Satisfiability problem can

be found in [98]. However, for our purposes it suffices to note that no problem in

NP is harder than a particular problem. Hence there exists a problem that can be

considered as the hardest problem in this class. In fact, many such problems exist

and it is formalized by the following definitions.

Definition 13. A decision problem Q is NP-hard if every problem in class NP is

polynomial-time many-one reducible to Q. An NP-hard problem Q is said to be

NP-complete if Q is also in class NP.

Note than in optimization literature when the decision version of a problem is NP-

complete, the corresponding optimization problem is NP-hard. Clearly, NP-complete

problems are the hardest problems in class NP. If any such problem can be solved

by a polynomial-time algorithm, then by polynomial-time reducibility, every problem

in this class can be solved in polynomial time. However, no such efficient algorithm

has been found for an NP-complete problem after decades of research by the most

brilliant minds of our time. The working conjecture in NP-completeness theory is that

P 6= NP and there exist problems in NP for which there are no efficient algorithms.

Note that it is still an open problem and no proof establishing that P ⊂ NP or that

23

P = NP is known. It is widely believed by computer scientists that the former is

true.

Whenever a new optimization problem is encountered, the first meaningful step

is to establish its complexity. That is to either develop a polynomial-time algorithm

for it, or show that its decision version is NP-complete. To prove NP-completeness

of a problem Q, it suffices to show that,

1. Q ∈ NP ;

2. Some known NP-complete problem is polynomially reducible to Q.

A compendium of known NP-complete problems can be found in [98]. For the clique

relaxations studied in this dissertation, such results are unknown and we utilize the

aforementioned Clique problem as the known NP-complete problem in our complex-

ity results presented in Chapter IV.

II.4. Polyhedral Theory and Combinatorial Optimization

A combinatorial optimization (CO) problem can be simply stated as follows. Given

a finite set of objects, select an object that maximizes or minimizes some objective.

Clearly, a large number of problems fall into this category. CO problems appear in

every field of science and engineering and a wide array of techniques exist to “cope

with them”. This is because not all CO problems can be solved easily. A majority

of them are actually NP-hard which is an indication that they may not be efficiently

solvable. Exact combinatorial algorithms, heuristic methods, approximation algo-

rithms, randomized algorithms even continuous global optimization techniques are

available for approaching CO problems. In this section, we briefly review the use of

polyhedral techniques in CO. Numerous books have been written on CO that em-

phasize different aspects of the study. A classical and comprehensive reference for

24

integer programming and its role in CO is [154]. See [169] for a background on linear

and integer programming with an emphasis on polyhedral aspects. A good intro-

duction to basic and advanced techniques in CO can be found in [72]. Algorithmic

and complexity aspects of CO have been discussed in several excellent texts over the

years [136, 160, 130], each adding newer material given the active research in this area.

Possibly the most comprehensive study of polyhedral combinatorics is presented in

three volumes in [170].

Polyhedral theory enables us to utilize linear programming (LP) techniques to

solve CO problems. The LP problem can be stated in its general form as:

max{cT x : Ax ≤ b}

where column vectors c ∈ Rn, b ∈ Rm and matrix A ∈ Rm×n are given and we are

interested in finding x that optimizes the above problem. The feasible region defined

by the solution set of a finite system of linear inequalities is called a polyhedron.

Definition 14. A set P ⊆ Rn is called a polyhedron if for some matrix A ∈ Rm×n

and a column vector b ∈ Rm,

P = {x ∈ Rn : Ax ≤ b}.

If A, b are rational, then P is said to be a rational polyhedron. P is said to be integral

if its extreme points are integral vectors. If P is bounded, then it is a polytope.

Most CO problems can be formulated as integer programs whose feasible solu-

tions are in bijection with the combinatorial objects of interest to us. We will now

define a term that we will use often in this dissertation.

Definition 15. Given a graph G = (V,E), an incidence vector of a subset of vertices

C is a binary vector x ∈ {0, 1}|V | such that xi = 1 if and only if i ∈ C.

25

An integer programming (IP) problem has a general form:

max{cT x : Ax ≤ b, x ∈ Zn}

where c, b and A are as before. Let the set of feasible solutions to the above IP be

denoted by Q = {x ∈ Zn : Ax ≤ b} and let PI = conv(Q) denote its convex hull. A

useful theorem in this regard is the following.

Theorem 2 (see [72]). A set P is a polytope if and only if there exists a finite set

Q such that P is the convex hull of Q.

Assuming that we have finite set of feasible solutions to the integer program,

PI is a polytope (similar results also hold for polyhedra, see [169]). If we had the

complete linear description of PI , the CO problem can be solved by using LP ap-

proaches. However, finding the complete linear description is not an easy task and

such descriptions are known only for a small number of problems. On the other hand,

consider the LP relaxation polyhedron PL of the above integer program. Clearly,

PL = {x ∈ Rn : Ax ≤ b} ⊇ PI = {x ∈ Zn : Ax ≤ b}. Maximizing over PL gives an

upper-bound on the maximum over PI which is what we seek. Thus, strengthening

the LP relaxation with additional constraints that do not cut off of any feasible in-

teger solutions can help us get closer to our goal. Different algorithmic frameworks

have exploited this idea in different ways with remarkable success especially given

the computational intractability of such problems. This leads us to the following

definition.

Definition 16. Inequality αT x ≤ β is valid for a polyhedron P if P ⊆ {x : αT x ≤ β}.

Definition 17. A valid inequality αT x ≤ β is said to dominate a valid inequality

γT x ≤ θ if {x : αT x ≤ β} ⊆ {x : γT x ≤ θ}. If the containment is proper, it is said to

strongly dominate.

26

A valid inequality when restricted to be an equation (αT x = β, α 6= 0) represents

a hyperplane. From an algorithmic perspective, these are also called cutting planes

or simply, cuts.

Definition 18. A valid inequality αT x ≤ β for polyhedron P is said to be supporting

if P ∩ {x : αT x ≤ β} 6= ∅. The intersection is called a face of the polyhedron.

By convention, the empty set and P itself are also considered faces of P . Hence,

a face that is neither P nor ∅ is called a proper face. Another characterization of faces

of a polyhedron is given by the following theorem, which shows that the number of

faces of P is finite.

Theorem 3 (see [72]). A nonempty set F ⊆ P = {x ∈ Rn : Ax ≤ b} is a face of P if

and only if for some subsystem Aox ≤ bo of Ax ≤ b we have F = {x ∈ P : Aox = bo}.

Definition 19. A maximal proper face of P is called a facet of P . An inequality

αT x ≤ β is said to induce a facet F of P if F = {x ∈ P : αT x = β}.

Definition 20. A system of inequalities and equations defining P is minimal if no

inequality can be turned into an equation without reducing the size of P and no

inequality or equation can be omitted without enlarging P .

Facets are important because they correspond to inequalities that are necessary in

a minimal definition of a polyhedron P . This is formalized by the following theorem.

Theorem 4 (see [72]). Let P = {x ∈ Rn : A′x = b′, A′′x ≤ b′′} be a nonempty

polyhedron. Then the defining system is minimal if and only if the rows of A′ are

linearly independent and for each row i of A′′ the inequality (a′′i)
T x ≤ b′′i induces a

distinct facet of P .

But it should be noted that, even if the complete minimal defining system can

be obtained, it could be much larger (say exponentially larger) than the size of the

27

original CO problem. Hence, for a polynomial-time solvable problem, taking a cut-

ting plane approach may not be meaningful. This significant theoretical hurdle was

overcome by the application of ellipsoid method [128] to CO resulting in the concepts

of separation and optimization. This is a deep and powerful result with vast impli-

cations, especially regarding complexity and polyhedra [106]. We present the basic

ideas here before concluding this section.

Instead of looking for a complete polyhedral description of the CO problem,

viewing it from a cutting plane perspective leads us to pose the following separation

problem that goes along with an optimization problem.

Definition 21. Separation problem: Given a rational polytope P ⊆ Rn and a rational

vector v ∈ Rn, either conclude that v belongs to P or, if not, find an inequality

αT x ≤ β satisfied by all x ∈ P but violated by v, αT v > β.

Definition 22. Optimization problem: Given a rational polytope P ⊆ Rn and a

rational vector c ∈ Rn, either find x∗ ∈ P that maximizes cT x over all x ∈ P , or

conclude that P = ∅.

The basic result that guides the search for efficient algorithms using cutting

plane approaches is the following theorem. We present here a simpler version of

this equivalence result from [72], for more details see [169, 170, 106]. The following

result indicates that the “difficulty” in optimization is equivalent to the “difficulty”

in separation, not the number of facets of the convex hull of interest. If a polynomial-

time algorithm exists for a CO problem, cutting-plane approaches can be used to find

one.

Theorem 5 (see [72]). For any proper class of polyhedra, the optimization problem

is polynomially solvable if and only if the separation problem is polynomially solvable.

28

To reiterate, valid inequalities for PI that are not valid for PL help us strengthen

the LP relaxation, and the tighter bounds obtained could be utilized in an algorithmic

framework to solve the CO problem. Facets of PI are more important (and often

harder to identify) since we know that they need to be present in any minimal defining

system of PI . These two ideas are put to use in an algorithm such as a branch-and-

cut which is expected to be worst-case exponential if the CO problem is known to be

NP-hard. However, this approach has been found to be practically effective in solving

a wide variety of problems in literature. We discuss this approach in the next section.

II.5. Branch-and-cut

Many developments have appeared in the areas of IP and CO, especially encour-

aged by the development of robust software programs capable of tackling large IP

problems. Originating from classical cutting plane algorithms for integer programs,

polyhedral studies have led to the development of exact branch-and-cut algorithms

that facilitated resolution of large instances of several CO problems formulated as

binary, pure integer and mixed integer programs. We will give a brief description of

branch-and-cut approaches and their successful application in exactly solving prob-

lems from literature.

Branch-and-cut (BC) methods are popular and effective in optimally solving a

wide variety of CO and general IP problems. These methods incorporate cutting

planes in solving the LP relaxation at the nodes of a branch-and-bound tree to get

tighter bounds. Note that this is different from the popular variant called cut-and-

branch that adds cutting planes only at the root-node of the branch-and-bound tree

and then proceeds with enumeration starting with a stronger root-node LP relax-

ation. However, this approach has been found to be lacking, especially on hard CO

29

problems [74].

Algorithm 1 presents a general framework for BC algorithms. Consider the fol-

lowing general mixed integer program (MIP).

z∗ = max{cT x : Ax ≤ b, x ≥ 0, xi ∈ Z ∀i ∈ Θ}

Here A, b, c are defined as before and Θ is the index set of variables restricted to

be integers. Note that this general form encompasses pure integer and binary for-

mulations as well. The active node list of the search tree is denoted by L and the

incumbent objective is denoted by z which is also the best known lower-bound on z∗.

Upper-bound for each node is denoted by z̄t which is from the LP relaxation of the

original problem with branching constraints and cutting planes added to strengthen

the relaxation. An upper-bound on z∗ in case of early termination of the algorithm

can be calculated as max
MIP t∈L

z̄t. It can be easily seen that the only difference in Algo-

rithm 1 from a classical LP relaxation based branch-and-bound for MIP is the fact

that when desired, cuts are added and the subproblems are re-solved in the nodes of

the branch-and-bound tree. In addition to the quality of cuts added, the frequency

of adding cuts and number of cuts added are two important parameters that greatly

influence the performance of a BC implementation. The cuts generated at a node

are valid for the subtree rooted at that node, referred to as local cuts. Cuts added

at any node that are valid for the entire search tree are referred to as global cuts.

Local cuts are sometimes lifted to be made global [154]. It is easy to see that the cuts

added increase the size of the system and hence can result in memory problems if

left uncontrolled. It is for this reason, the decisions regarding when (at what nodes)

to add cuts and how many cuts to add, should be experimentally studied and tuned.

Care must also be taken to manage the cut pool– decisions regarding keeping versus

dropping cuts from the pool of generated cuts, which cuts from among the pool should

30

be added if the decision to add is made and which cuts should be lifted. Next we

briefly survey some classical and successful applications of BC algorithms to a variety

of problems from literature.

BC methods for the traveling salesman problem (TSP) are studied in [158, 15].

Polyhedral techniques for the maximum clique problem that uses cutting planes for

tightening the LP relaxation are presented in [21]. General cutting planes in a lift-and-

project [18] framework for mixed 0,1-programs are studied in [19]. Gomory cutting

planes are used within a BC framework for mixed 0,1-programs in [20] and lifting

techniques are developed to ensure that cuts generated at some node in a BC tree are

valid globally. BC methods for integer programs with general integer variables are

studied where lifting procedures are developed for knapsack inequalities and Gomory’s

mixed integer cuts in [58]. Several other successful applications of these techniques

also exist in literature. For more information on BC methods and for other useful

references, see [147]. An introduction to theory and computations in CO using poly-

hedral techniques is presented in [1, 2]. Although BC methods have been successfully

applied to solve several hard CO problems, tailoring a BC algorithm to effectively

solve a specific problem is a delicate task that requires attention in itself in terms of

extensive experimentation and tuning.

II.6. Cliques and Independent Sets

The maximum clique problem is a classical CO problem for several important reasons.

Although the early algorithms for finding cliques in graphs were original motivated

by social network applications [110], it has been found to be applicable in a variety

of fields. We already discussed some of these applications in the context of clique

relaxations in Section II.1. Other application areas include coding theory, fault di-

31

Algorithm 1 General Branch-and-Cut Framework For MIP Problems

1: procedure Branch-and-cut(MIP 1) . original MIP instance

2: L ← {MIP 1}, z̄1 = ∞, z = −∞ . initialization

3: if L = ∅ then . termination

4: if z > −∞ return (x∗, z) else return infeasible

5: end if

6: select MIP t ∈ L and delete from L . best-bound/depth/breadth first order

7: solve LP relaxation of MIP t

8: if optimum exists then

9: denote optimum by (xt, z̄t)

10: else

11: z̄t ← −∞, go to Step 16 . LP relaxation is infeasible

12: end if

13: if node chosen to add cuts then

14: identify violated cuts, if they exist add cuts to MIP t, go to Step 7

15: end if

16: if z̄t ≤ z then

17: go to Step 3 . node is fathomed by bound or infeasibility

18: end if

19: if z̄t > z and xt is integer feasible then

20: z ← z̄t, x∗ ← xt

21: delete every MIP j ∈ L such that z̄j ≤ z . fathoming by bound

22: go to Step 3 . current node fathomed by feasibility

23: end if

24: create and add MIP |L|+1, . . . , MIP |L|+r to L based on the branching rule

25: set z̄|L|+1 = · · · = z̄|L|+r ← z̄t, go to Step 3

26: end procedure

32

agnosis models, computer vision and pattern recognition [42]. It has also become a

well-known problem due to rich and deep results surrounding the problem in a variety

of research areas.

Maximum clique problem is NP-hard [98] and it is hard to approximate within

n1−ε for any ε > 0 as established by H̊astad [113]. The best known polynomial-time

approximation algorithm was developed by Bopanna and Halldórsson in [43]. Exact

algorithms for the problem include the implicit enumeration algorithm developed by

Carraghan and Pardalos [57], the branch-and-bound developed by Balas and Yu [23]

and approaches developed in [161, 21, 22, 189, 156]. Several algorithms and heuristics

for the maximum clique problem were put to test in the Second Dimacs Implementa-

tion Challenge and their performance on benchmark instances documented in [125].

Several detailed surveys on the problem already exist [42, 162] that cover differ-

ent formulations, complexity and inapproximability results as well as algorithms and

heuristics for the problem on arbitrary and restricted graph classes. Before conclud-

ing this chapter we review classical polyhedral results and continuous approaches to

the problem. Given the close connection between maximum clique and independent

set problems, we review their results together and as presented in the literature.

II.6.1. Polyhedral Results

The clique polytope C(G) is the convex hull of incidence vectors of cliques in G. Al-

ternately, C(G) = conv{x ∈ {0, 1}|V | : xi +xj ≤ 1 ∀ (i, j) /∈ E}. The maximum clique

problem can then be written as ω(G) = max{∑
i∈V

xi : x ∈ C(G)}. The closely related

independent set polytope is IS(G) = conv{x ∈ {0, 1}|V | : xi + xj ≤ 1 ∀ (i, j) ∈ E}.
In literature, polyhedral properties of IS(G) (and hence C(G)) and its LP relaxation

have been extensively studied since the 1970s.

Facets and Valid Inequalities. Padberg [157] derived facets of IS(G) from maxi-

33

mal cliques. Padberg [157] also showed that facets can be derived for IS(H) from an

odd hole H and presented lifting procedures to obtain facets of IS(G) from the facets

of IS(H) when H is a vertex-induced subgraph of G. Nemhauser and Trotter [152]

present systematic lifting procedures for obtaining facets of IS(G) from arbitrary

vertex-induced subgraphs of G generalizing the results of Padberg [157]. They also

show that similar to odd holes, odd antiholes can be used to generate facets of IS(G).

These results are summarized next.

Maximal Clique Facets: Let C denote a maximal clique in G.
∑
i∈C

xi ≤ 1 induces

a facet of IS(G).

Odd Hole Inequalities: Let H denote an odd hole in G.
∑
i∈H

xi ≤ |H|−1
2

is valid

for IS(G) and facet defining for IS(G[H]).

Odd Antihole Inequalities: Let A denote an odd antihole in G.
∑
i∈A

xi ≤ 2 is valid

for IS(G) and facet defining for IS(G[A]).

Web inequalities were identified by Trotter [182] to produce facets of IS(G) for

graphs called webs that generalize clique, odd hole and odd antihole inequalities. A

web W (p, q) is defined on vertex set V = {1, . . . , p} and edge set E = {(i, j) : j = i+q(

mod p), . . . , i+p−q(mod p),∀i ∈ V }. Trotter [182] showed that the web inequality,
∑
i∈V

xi ≤ q is valid for IS(W (p, q)) and it is facet inducing if and only if p and

q are relatively prime, and q > 1. W (2q + 1, q) is an odd hole and W (2p + 1, 2)

is an odd antihole there by generalizing the previous results of Padberg [157] and

Nemhauser and Trotter [152]. A clique can also be considered as a degenerate web

W (p, 1). Trotter [182] also established that the antiwebs W (p, q) (complement of

webs) produce valid inequalities of the form
∑
i∈V

xi ≤ bp
q
c for IS(W (p, q)).

Wheel inequalities for the independent set polytope are presented in [63] while

antiweb-wheel inequalities are studied in [64, 65]. In [54], a new class of facet defining

graphs called fans are introduced and new methods to obtain facets are identified.

34

An independence system (S, I) consists of a finite set of elements S and a non-

empty collection I of subsets of S satisfying the property I ∈ I ⇒ I ′ ∈ I,∀I ′ ⊆ I.

Numerous CO problems including cliques and independent sets fall into this general

category. For independence systems, the notion of cliques, odd holes and odd antiholes

are generalized and facets and valid inequalities are identified in [89]. Antiwebs are

generalized and studied in the context of independence systems in [135]. Apart from

valid inequalities and facets, other interesting properties of IS(G) are also known.

Extreme Points and Adjacency. Nemhauser and Trotter [152] show that the

extreme points of the LP relaxation polytope of IS(G) have only {0, 1
2
, 1} components.

Nemhauser and Trotter [153] also show that from an optimal solution x∗ to the LP

relaxation of the maximum independent set problem, if I = {i ∈ V : x∗i = 1}, then I

is contained in some maximum independent set of G.

Chvátal [69] characterized adjacent extreme points of IS(G) as follows. The

incidence vectors of two independent sets R,S in G are adjacent extreme points of

IS(G) if and only if G[S4R] is connected, where S4R = (R \ S) ∪ (S \R).

Perfect Graphs and Stable Set Polytope. The perfect graph theorem conjectured

by Berge [34] and proved by Lovàsz [138] states that a graph is perfect if and only if

its complement is perfect. Clearly, odd holes and antiholes are not perfect. In 1960,

Berge conjectured (along with his “weak perfect graph conjecture” of the perfect

graph theorem) what came to be known as the strong perfect graph conjecture: A

graph is perfect if and only if it contains no odd hole and no odd antihole (see [35]

for its history). Graphs containing no odd holes or antiholes are now called Berge

graphs in honor of Claude Berge. The strong perfect graph theorem proved recently,

four decades after the conjecture itself by Chudnovsky et al. [67] states that a graph

is perfect if and only if it is Berge.

Study of the independent set polytope also led to an interesting polyhedral char-

35

acterization of graph perfection. Combining the results of Lovàsz [138, 137], Fulker-

son [94] and Chvátal [69], for a graph G the following are equivalent [78]:

1. G is perfect;

2. The polytope P (G) = {x ∈ R|V |+ :
∑
i∈K

xi ≤ 1 ∀ maximal cliques K} is integral;

3. Ḡ is perfect.

Perfect graphs are precisely those graphs for which the independent set polytope is

completely described by non-negativity and maximal clique inequalities. These results

establish the close connection between polyhedral combinatorics and the theory of

perfect graphs.

II.6.2. Continuous Approaches

The maximum clique and independent set problems have also been addressed using

continuous approaches. We will now present some classical results from this active

area of research. Let AG be the adjacency matrix of G and let 1 be the n-dimensional

vector with all components equal to 1. For a non-empty subset C of vertices, let its

characteristic vector xC be defined by xC
i = 1/|C| if i ∈ C, xC

i = 0, otherwise, for

i = 1, . . . , n. The following is a classical result due to Motzkin and Straus [150].

Theorem 6 (Motzkin-Straus [150]).

1− 1

ω(G)
= max{xT AGx : 1T x = 1, x ≥ 0}

Moreover, a subset of vertices C ⊆ V is a maximum clique of G if and only if

the characteristic vector xC of C is a global maximizer of the above problem. In its

original form, the Motzkin-Straus formulation has local maximizers which are not in

36

the form of characteristic vectors. Bomze [41] introduced a regularization of Motzkin-

Straus formulation by replacing the objective function in Theorem 6 with the function

g(x) = xT
(
AG + 1

2
In

)
x where In is the n × n identity matrix. In the regularized

formulation, x∗ is a local maximum if and only if it is the characteristic vector of

a maximal clique in the graph. First-order and second-order optimality conditions

for the Motzkin-Straus formulation and its extension to weighted maximum clique

problem are presented in Gibbons et al. [100]. Characterization of maximal cliques

in terms of local solutions is also provided in [100].

Recall the description of IS(G) from the previous section. The binary and edge

constraints can be easily rephrased using non-linear equivalents. Consider the follow-

ing quadratically constrained global optimization formulation for maximum indepen-

dent set problem.

α(G) = max{1T x : xixj = 0, ∀ (i, j) ∈ E, xi(xi − 1) = 0 ∀ i ∈ V } (2.1)

Shor [176] applied dual quadratic estimates and reported good computational results

using a weighted version of (2.1). Other global optimization formulations for the

independence number α(G) are as follows.

α(G) = max
06=x∈[0,1]n

(
∑
i∈V

xi)
2

∑
i∈V

x2
i + 2

∑
(i,j)∈E

xixj

(2.2)

α(G) = max
x∈[0,1]n

∑
i∈V

xi

∏

j∈N(i)

(1− xj) (2.3)

α(G) = max
x∈[0,1]n





∑
i∈V


xi +

(1− xi)
∏

j∈N(i)

(1− xj)

1 +
∑

j∈N(i)

∏
l∈N(j)\N [i]

(1− xl)


−

∑

(i,j)∈E

xixj





(2.4)

37

α(G) = max
x∈[0,1]n





∑
i∈V

xi −
∑

(i,j)∈E

xixj



 (2.5)

α(G) = max
x∈[0,1]n

∑
i∈V


 xi

1 +
∑

j∈N(i)

xj

+

(1− xi)
∏

j∈N(i)

(1− xj)

1 +
∑

j∈N(i)

∏
l∈N(j)\N [i]

(1− xl)


 (2.6)

α(G) = max
x∈[0,1]n

h(x), where (2.7)

h(x) =
∑
i∈V


xi +

1− xi

1 +
∑

j∈N(i)

∏
l∈N(j)\N [i]

(1− xl)




∏

j∈N(i)

(1− xj)

+
∑

i∈V ′

xi(1−
∏

j∈N(i)

(1− xj))
2

1− ∏
j∈N(i)

(1− xj) +
∑

j∈N(i)

xj

and V ′ = {i ∈ V :
∑

j∈N(i)

xj > 0}.

Formulation (2.2) can be obtained from the Motzkin-Straus theorem (see [108]).

Statements (2.3) and (2.4) were proved using probabilistic methods in [109] and [108]

respectively. Formulation (2.5) is clearly implied by (2.4), but this weaker version was

algorithmically realizable and used in the development of heuristic for the indepen-

dence number in [108]. Formulations (2.3) and (2.5) were also proved deterministically

in [4] and heuristics were developed based on them. Formulation (2.6) was also es-

tablished in [108] using a probabilistic approach. In this dissertation we develop a

deterministic proof of a weaker version of (2.6) and characterize its local maxima in

Chapter VIII. Statement (2.7) is provably stronger than formulations (2.6) and (2.4).

However, it is complicated and difficult to realize as the set V ′ is also variable.

Apart from providing an interesting alternate approach to classical CO problems,

the standard quadratic programming formulation due to Motzkin and Straus [150],

38

continuous formulation due to Gibbons et al. [99] and formulations due to Harant [107,

108, 109] have led to the development of effective heuristics for maximum clique and

maximum independent set problems [41, 4, 50, 49, 13].

39

CHAPTER III

CLIQUE RELAXATIONS

In this chapter, we introduce the distance-based, diameter-based and degree-based re-

laxations of a clique and define appropriate optimization problems associated with the

models. It should be noted that these models were originally introduced in SNA lit-

erature. However, certain drawbacks existed in the original definition of the distance-

based and diameter-based models. We address these difficulties and redefine the

problems to be mathematically more meaningful.

This chapter is organized as follows. In Section III.1, the distance-based and

diameter-based models are introduced. Their original definitions from the literature

and the new definitions are presented. Section III.2 defines the k-plex model which

is the focus of this dissertation. In Section III.3, the models are compared based

on structural properties they guarantee, which serves to motivate our emphasis on

the k-plex model. In the following sections defining the parameterized models, the

parameter k is assumed to be a positive integer.

III.1. Distance-Based and Diameter-Based Relaxations

Luce [140] defines a k-clique of G as a subset of vertices C ⊆ V such that for all

u, v ∈ C, dG(u, v) ≤ k and this subset is maximal by inclusion. In other words, a k-

clique C is a set of vertices in which any two vertices are a distance of at most k from

each other in G, and there is no vertex outside C that is distance k or less from every

vertex in C. Thus, if two vertices u, v ∈ V belong to a k-clique C, then dG(u, v) ≤ k,

however this does not imply that dG[C](u, v) ≤ k. For example, Fig. 3 shows a graph in

which the subset of vertices C1 = {1, 2, 3, 4, 5} forms a 2-clique, however the distance

40

between vertices 1 and 5 in the subgraph induced by C1 is 3. Hence, the concept of k-

clique lacks the requirement of “cohesion” in the subgroup consisting of vertices in the

k-clique, while such a requirement is essential to applications in social networks. This

observation motivated Alba [8] to introduce the concept of a “sociometric clique”,

which was later renamed to “k-clan” by Mokken [148]. A k-clique C is called a k-clan

if the diameter of the induced subgraph G[C] is no more than k. Finally, Mokken [148]

defines a k-club to be an inclusionwise maximal subset of vertices, D ⊆ V such that

the diameter of the induced subgraph G[D] is at most k. To highlight the differences

between the three structures, we turn to the graph in Fig. 3. In this graph, the

2-cliques are given by C1 = {1, 2, 3, 4, 5} and C2 = {1, 2, 4, 5, 6}. It is easy to see

that C1 is not a 2-clan or 2-club, since the diameter of induced subgraph G[C1] is 3.

Since any k-clan is a k-clique, the only 2-clan in this graph is given by C2. Lastly, the

2-clubs of this graph are D1 = {1, 2, 3, 4}, D2 = {2, 3, 4, 5} and D3 = C2. A study of

relations between cliques, clans and clubs in a graph can be found in [148].

1

2

6

3

4

5

Fig. 3 2-clique Vs. 2-club

Even though the concepts just defined are used quite extensively in social net-

works analysis and are even covered in standard textbooks (see for instance [185]),

their definitions have some deficiencies from a mathematical viewpoint. One consid-

41

erable drawback of the k-clan definition is that for some graphs a k-clan may not

exist. This point is illustrated in Fig. 4, which shows a graph with two 2-cliques

{1, 2, 3, 4, 5, 6, 7} and {1, 2, 3, 5, 6, 7, 8}, neither of which is a 2-clan.

1

2

5

8

3

6

4

7

Fig. 4 A graph with no 2-clans

Some other difficulties arise from the requirement of maximality in all three

definitions. In particular, this requirement makes checking whether a given subset

of vertices is a k-club, a nontrivial matter. Indeed, to check that a set C is a k-

clique, we need to check if the pairwise distance between vertices in C is at most

k and it is maximal. For verifying maximality, it suffices to show that there is no

vertex outside C that could be added to C without violating the pairwise distances

condition. A similar criterion would not work for k-clubs. Although it is easy to

verify whether the subgraph induced by the given subset D has diameter at most k,

verifying its maximality is not straightforward. In this case, maximality by inclusion

is not equivalent to nonexistence of one vertex that could increase the size of the

k-club. As an example, consider the graph in Fig. 3. For the subset of vertices

D = {1, 5, 6} of this graph, the subgraph induced by D has diameter 2. Adding any

one of the vertices 2, 3 or 4 to D would increase the diameter of the induced subgraph,

however if both 2 and 4 are added, the diameter of the resulting induced subgraph is

42

still 2.

Taking into account that the above definitions of 1-clique, 1-clan and 1-club all

correspond to the standard definition of a maximal clique, we propose to modify the

definitions of k-clique and k-club as follows.

Definition 23. A k-clique is a subset of vertices C such that for every i, j ∈ C,

dG(i, j) ≤ k.

Definition 24. A k-club is a subset of vertices D such that diam(G[D]) ≤ k.

A similar definition of k-clan becomes redundant. The example in Fig. 4 suggests

the impracticality of such a concept, so we do not consider k-clans any further. By a

maximal k-clique (k-club) we will mean a k-clique (k-club) that is not a subset of a

larger k-clique (k-club). Finally, a maximum k-clique (k-club) is a k-clique (k-club)

of the largest size in the graph.

These definitions retain the basic notions of relaxing pairwise distances in the

original graph (k-clique) and in the induced subgraph (k-club), exclude maximality

from the basic definition which is consistent with common practice and separates the

complications involved in testing maximality from testing if the basic definition is

satisfied, especially for k-clubs.

From the definitions and the above example (set C1 in Fig. 3) it follows that any

k-club in G is also a k-clique, but the converse is not true. Note that a shortest path

between two vertices in a k-clique C may include vertices outside C. So there can

exist two vertices u, v ∈ C such that dG(u, v) ≤ k, but dG[C](u, v) > k and hence C

need not be a k-club. Observe that both these models reduce to a clique when k = 1

and are relaxations for k > 1. The k-clique model allows for the pairwise distance to

be more than one while the k-club model allows the same, with the restriction that

some path of length at most k exist, that only uses vertices in the k-club.

43

Given a graph G = (V, E) and a positive integer k, the maximum k-clique

problem is to find a largest k-clique in G. We denote the k-clique number of graph

G, which is the cardinality of a maximum k-clique of G, by ω̃k(G). The maximum

k-club problem is defined likewise, with ω̄k(G) denoting the k-club number of G.

III.2. Degree-Based Relaxation

The degree-based relaxation called k-plex was introduced by Seidman and Foster [173].

We present here the original definition, paraphrased to be stylistically consistent.

Definition 25. A subset of vertices S is said to be a k-plex if the minimum degree

in the induced subgraph δ(G[S]) ≥ |S| − k.

In other words, for all v ∈ S, degG[S](v) = |N(v) ∩ S| ≥ |S| − k if S is a k-plex.

Note that the lower-bound on the induced degree varies with S. A maximal k-plex

is one that is not contained in a larger k-plex.

This model also reduces to the clique when k = 1 and is a relaxation of the

clique requirement for all k > 1, allowing for at most k − 1 non-neighbors inside

the set. Fig. 5 illustrates this concept: The set {1, 2, 3, 4} is a 1-plex (clique), sets

{1, 2, 3, 4, 5} and {1, 2, 3, 4, 6} are 2-plexes (maximal and maximum) and the entire

graph is a 3-plex. We propose the following definition of a complementary structure

for k-plex.

Definition 26. A subset of vertices S is a co-k-plex if the maximum degree in the

induced subgraph ∆(G[S]) ≤ k − 1.

In other words, for a co-k-plex S, |N(i) ∩ S| ≤ k − 1 for all i ∈ S. A maximal

co-k-plex is one that is not a proper subset of any co-k-plex in G.

Remark 1. Note that S is a co-k-plex in G if and only if S is a k-plex in the complement

graph Ḡ.

44

1

2 3

4

5

6

Fig. 5 Illustration of k-plexes for k = 1, 2, 3

Given a graph G = (V,E) and a positive integer k, the maximum k-plex

problem is defined as the problem of finding a largest k-plex in G. The k-plex

number of G is the cardinality of a maximum k-plex of G denoted by ωk(G).

III.3. Comparison of the Models

In Chapter II, we briefly referred to three properties that we require in a cohesive

subgroup model: familiarity, reachability and robustness. These translate to degree,

distance/diameter and connectivity in terms of graph properties and are reasonable

measures of cohesiveness of a subgroup. We will now evaluate the clique relaxation

models based on these properties.

By definition, k-cliques permit members on the shortest path between two ver-

tices to be outside the set itself. The 2-clique {1, 2, 3, 4, 5} in Fig. 3 is an example of

this. In a social network, it may be unreasonable to expect a cohesive subgroup to

require outside members.

The concept of k-club overcomes the weakness common to k-cliques by bounding

the diameter of the induced subgraph. However, k-clubs have certain drawbacks that

we illustrate using a simple example involving 2-clubs. It is possible that there exists

45

one vertex in a 2-club that is adjacent to all other vertices, making it a 2-club, but

these neighbors are poorly connected among themselves. This is demonstrated by

a star graph K1,n−1 which has diameter two as the central vertex is adjacent to all

other vertices, but the neighbors of the central vertex have no edges between them.

Although k-clique and k-club models ensure reachability, they may lack cohesiveness

in terms of degree and connectivity. In particular, removal of just one central vertex

in a star graph completely disconnects the graph.

Clearly, every k-clique (k-club) is also a k + 1-clique (k + 1-club). Every subset

of a k-clique is a k-clique. However, the k-club property is not hereditary in the sense

that every subset of a k-club need not be a k-club. A star graph is a 2-club but

subsets obtained by excluding the central vertex have diameter infinity. In Fig. 3, the

set {1, 2, 4, 5, 6} is a 2-club but {1, 2, 4, 5} is not. We pointed out in Section III.1 that

verifying maximality of k-clubs is nontrivial. This is also an outcome of the absence

of hereditary nature in k-clubs.

Since all three models relax cliques, it is natural to look for a complementary

model that relaxes independent sets. For the distance-based models k-clique and

k-club, a meaningful complementary definition is unlikely for k ≥ 2. By edge com-

plementing, we lose control over distances in the graph. Even if G is known to be

connected or disconnected, we cannot guarantee that about Ḡ. We provide simple ex-

amples to explain this fact. A star graph is a 2-club (and a 2-clique). Its complement

however is the union of an isolated vertex and a clique. While the clique component

is highly connected, the graph itself has diameter infinity. On the other hand, cycle

C5 is a 2-club whose complement is also isomorphic to C5 and hence has the same

properties. Fortunately, the k-plex relaxation is more systematic in the sense that it

permits such a complementary definition.

In fact, the following theorem summarizing the results from the introductory

46

paper by Seidman and Foster [173] establish that, for low values of k the k-plex

model is better than the k-clique and k-club models based on the characteristics that

are required of a cohesive subgroup– familiarity, reachability and robustness. For the

sake of completeness, we also present a sketch of the original proofs from [173].

Theorem 7 ([173]). Let G = (V, E) be a k-plex on n vertices.

1. Every induced subgraph of G is a k-plex.

2. Any k vertices in V forms a dominating set of G.

3. If k < n+2
2

, then diam(G) ≤ 2.

4. κ(G) ≥ n− 2k + 2.

Proof. 1. Every induced subgraph of G can be obtained by deleting vertices, one

at a time. If G is a k-plex, δ(G) ≥ n − k. In G′ obtained by deleting some

vertex from G, the degree of all the vertices and hence the minimum degree,

can drop by at most 1. Hence, the new graph continues to be a k-plex as

δ(G′) ≥ (n− 1)− k.

2. Suppose there exist k vertices that do not form a dominating set, then there

must be some vertex v distinct from these k vertices that is not adjacent to

any of these k vertices. This is not possible when G is a k-plex. Furthermore,

Seidman and Foster [173] also prove the converse by showing that if every k

vertices form a dominating set in an arbitrary graph G, then G is a k-plex.

3. For any vertex v in the k-plex G, the number of vertices in the closed neigh-

borhood |N [v]| ≥ n − k + 1. Thus for two arbitrary vertices u, v we have

|N [u]|+ |N [v]| ≥ 2n− 2k + 2 > n by the given condition. Hence N [u] and N [v]

are not disjoint. Thus for all u, v, dG(u, v) ≤ 2 ⇒ diam(G) ≤ 2.

47

4. Suppose we delete t vertices from G. The resulting graph G′ is still a k-plex

and the above argument still holds. If k < n−t+2
2

then diam(G′) ≤ 2. Thus, G′

is still connected if t < n− 2k + 2 ⇒ κ(G) ≥ n− 2k + 2.

Remark 2. Note that the condition for a diameter-two bound is sharp. Consider the

graph Kk−1∪Kk−1 which is a k-plex for every k. Thus a k-plex could be disconnected

even for k = n+2
2

. However, no isolated vertex could be present in a k-plex of size

k + 1 or more.

Remark 3. It is also useful to note that in an arbitrary graph G, any k-element subset

of vertices is a k-plex and any k-plex is also a k + 1-plex.

By definition, members of a k-plex S can have at most k−1 non-neighbors inside

S. Thus, k-plexes with low k values (k = 2, 3) provide good relaxations of clique that

closely resemble the cohesive subgroups that can be found in real-life networks that

are often erroneous and incomplete. Recall the discussion in Section II.1 regarding

the sensitivity of cliques to false-negatives in the data. Note that k-plexes for low k

values provide a good balance by protecting against false-positives in the data, and at

the same time not become overly sensitive to false-negatives in the data. In addition,

the above results indicate that a k-plex also retains the properties of a clique such as

low diameter and high connectivity, for low values of k.

The k-plex model overcomes the disadvantages of k-cliques and k-clubs by di-

rectly limiting the number of non-neighbors inside the cohesive subgroup. This struc-

ture imposes a degree bound that varies with the size of the group and hence ensures

a cohesive subgroup even as the size of the group varies. Implicitly, it also achieves

reachability and robustness. By allowing some strangers in a social group, k-plex

provides a more realistic alternative to model cohesive subgroups in a social network.

Furthermore, k-plex is closely related to its complementary model co-k-plex. In par-

48

ticular, 1-plex is a clique and a co-1-plex is an independent set. Thus, k-plexes and

co-k-plexes provide a systematic way to generalize two important graph models. For

these reasons, we will pay more attention to the k-plex model in this dissertation.

III.4. Existing Approaches

Before concluding this chapter, we point out some of the approaches from literature

that generalize cliques. The discussion in the previous section comparing the clique

relaxations from SNA has already brought to our attention the structural properties

that need to be studied while evaluating a clique relaxation. It must now be apparent

to the reader that any model relaxing a clique, while relaxing a particular aspect must

also guarantee several important properties. We will review some of the existing

approaches in this context.

Consider a simple, undirected, edge-weighted graph G = (V, E) with a weight

function w : E → R+. Define the weight of a subset of edges E ′ as w(E ′) =
∑

e∈E′
w(e).

Given a positive integer k < n, the heaviest k-subgraph problem (HkS) is to find a

subgraph G′ = (V ′, E ′) such that |V ′| = k and w(E ′) is a maximum. When the

edge weights are unity, it is referred to as the heaviest unweighted k-subgraph problem

(HUkS). In literature, HkS is also known as densest k-subgraph problem while HUkS

is called the maximum edge subgraph problem. A different but closely related problem

is the densest subgraph problem (DS) which is to choose a subgraph G′ = (V ′, E ′) such

that density, defined as w(E′)
|V ′| is maximized. This problem can be solved in polynomial

time using maximum flow algorithms [96]. On the contrary, HkS and HUkS are clearly

NP-complete by reduction from Clique [77]. Hence, approximation algorithms for

the problems have been developed [131, 16, 90]. But for our purposes of relaxing a

clique, the HUkS and DS models have obvious drawbacks. In the DS model, there

49

is no guarantee on the size of resulting V ′ as our objective is to maximize density

as defined above. In the HkS/HUkS models, the resulting G′ can be disconnected as

well as include vertices of low degree. Furthermore, the size of the resulting set is

fixed at k. However, these models have been used effectively in facility location [166].

The concept of a quasi-clique is used in defining a clique relaxation used in data-

mining massive call graphs [5, 7] (see Section II.1 for definitions). A graph G = (V, E)

is said to be γ-dense if |E| ≥ γ
(|V |

2

)
. A γ-clique (quasi-clique) S is a subset of vertices

S such that G[S] is connected and γ-dense. A γ-clique represents a clique when γ = 1

and is a relaxation when 0 ≤ γ < 1. The maximum γ-clique problem can then be

defined as the problem of finding a largest γ-clique. In this case, although we find

a largest connected subgraph with density no smaller than a fixed number γ, we are

still not guaranteed connectivity or degree. This is because unless γ is sufficiently

high, a large clique sharing one vertex with a path could also meet the constraints,

but it can be disconnected easily and the vertices on the path have very low degree.

However high γ values could result in smaller γ-cliques. Furthermore as γ is reduced,

a sudden jump in the size of the γ-clique in power law graphs would be observed

when the giant component becomes “dense enough”. While using this approach, it is

recommended that an appropriate choice of γ be made by proper tuning.

Remark 4. Note that this “jump” would also be observed while using k-cliques and k-

clubs due to the small world phenomenon observed in power law graphs. The increase

in k-plex number with k is more controlled in power law graphs until the condition

for diameter-2 is violated by the maximum k-plex found. In this context the following

relationship should be taken into account,

ω(G) ≤ ωk(G) ≤ ω̄k(G) ≤ ω̃k(G)

whenever ωk(G) > 2k − 2. This is true since each is equal to ω(G) when k = 1 and

50

ω̄k(G) ≤ ω̃k(G) holds always by definition. Whenever ωk(G) > 2k− 2, the maximum

k-plex is also a 2-club as stated in Theorem 7.

More recently, a related model was proposed for relaxing independent sets in [175]

where an upper-bound is placed on the number edges in the induced subgraph. A

generalized vertex packing GVP-k is a subset of vertices I such that there are at most

k edges in the induced subgraph G[I]. When k = 0, it represents an independent set

and is a relaxation for k ≥ 1. This approach, used to model problems in air-traffic

control and national airspace planning is studied using polyhedral methods in [175].

This model is close to the co-k-plex model proposed in III.2 for relaxing independent

sets. Note that every GVP-k is a co-k+1-plex but not vice versa.

Clustering problem on gene co-expression networks is studied in [66]. The authors

here, also point out some of the issues that were raised in Section II.1 regarding the

restrictive and impractical nature of cliques when studying erroneous data. A model

robust enough to deal with this situation is necessary and k-plex is ideal for such

purposes. In fact, the authors of [66] propose the use of paracliques that are close to

the 2-plex model. Starting with a set P initialized to some maximum clique C, the

authors find new vertices that have at least g neighbors in P . These new vertices are

then added to P and the process is repeated until P can no longer be enlarged. The

authors report successful results with g = |C| − 1 where g is called the glom factor.

However, the final P that results need not be a 2-plex since each vertex is allowed

at most one non-neighbor in a 2-plex. For the paraclique P in every iteration, it is

only ensured that new vertices have at least |C| − 1 neighbors in the current set and

hence could have more than one non-neighbor in the final P that is produced by the

algorithm. However, the notion of allowing one non-neighbor is clearly in the same

spirit as a 2-plex approach.

The P that is produced by the algorithm is actually a “g-core”, an induced

51

subgraph with minimum degree g. Although the approach of finding a maximum

g-core is only of limited use (as we will see in Chapter IX), the approach here is

effective because g is chosen to be ω(G)−1 and we start building around a maximum

clique. Maximum k-plex for k = 2, 3 as well clustering using 2 or 3-plexes can provide

an interesting alternative to paracliques.

It should be noted that our discussion pointing out drawbacks in the existing

models for relaxing cliques including k-cliques and k-clubs is not meant to undermine

their usefulness. In fact, all these approaches have been applied successfully on real-

life data. In applications where reachability is the only consideration, k-cliques and

k-clubs models are obviously the most appropriate. In this section, we have only

tried to emphasize the fact that not all clique relaxations are “created equal” and

one must carefully evaluate the guarantees provided in the context of the application

under consideration. The best model for cohesive subgroups is that model which

mines the most useful information out of the given data. Often evaluating what is

“most useful information” depends on the application and there is usually never a

common consensus even among area experts on this issue. Our recommendation is

that whenever sound structural guarantees as provided by the clique definition are

necessary, k-plex model should be considered as a meaningful alternative.

52

CHAPTER IV

COMPUTATIONAL COMPLEXITY∗

In Chapter II, we introduced the concepts of computational complexity and their

usefulness in studying the tractability of CO problems. The optimization problems

defined in Chapter III lead to several interesting questions regarding their tractability.

Clearly for arbitrary k, the problems are at least as hard as the maximum clique

problem since any algorithm that can solve the optimization problems for arbitrary

k can solve the maximum clique problem. But allowing k to be arbitrary does not

convey anything specific about the complexity of these problems. In other words:

What is the complexity of solving maximum 2-clique, 2-club and 2-plex problems?

This is not answered by our observation that the problems are hard to solve when k

is “arbitrary”. Furthermore, when k = n or n−1 all three optimization problems are

solved easily. For example, when k = n or n− 1 , the maximum k-clique and k-club

problems reduce to finding the largest connected component in the given graph, which

is solvable in polynomial time. On the other hand the maximum k-plex problem

is trivially solved when k = n since the graph is itself a k-plex. Similarly when

k = n − 1, the trivial answer to the maximum k-plex problem is the graph itself,

minus an isolated vertex if it exists. There seems to be a trend in the tractability of

the problem as k goes from 1 to n, becoming easier towards the end.

We need to focus on two aspects with regards to complexity, in order to obtain

meaningful results. Firstly, the tractability of the problems when k is a fixed positive

integer and secondly, how the transition in complexity occurs when k is neither arbi-

∗Parts of this chapter are reprinted with permission from Balasundaram, B.,
Butenko, S., Trukhanov, S.: Novel approaches for analyzing biological networks.
Journal of Combinatorial Optimization 10(1), 23–39 (2005) c© Springer.

53

trary nor fixed, but viewed in relation to a meaningful graph parameter. In the case

of k-cliques and k-clubs, we consider k in relation to the diameter of the instance and

in the case of k-plex, we consider k in relation to minimum degree in the graph.

This chapter establishes NP-completeness results that show the problems are

hard for every fixed positive integer k. Furthermore, transition results on restricted

graph classes are also established. Recall that in order to prove NP-completeness of

a problem P , we need to provide a polynomial-time reduction from a known NP-

complete problem to P and show that P is in NP. The reductions for our problems

are from the decision version of the maximum clique problem stated as follows.

Clique : Given a graph G = (V,E) and a positive integer c, does there exist a

clique of size ≥ c in G?

IV.1. Complexity of k-Clique and k-Club

Before stating the complexity results, we introduce the decision version of each prob-

lem. For a fixed positive integer k, the k-Clique (k-Club) problem is defined as

follows: Given a graph G = (V, E) and a positive integer c, does there exist a k-clique

(k-club) of size ≥ c in G?

Theorem 8. The k-Clique and k-Club problems are NP-complete for any fixed

positive integer k.

Proof. Note that for k = 1 both problems coincide with Clique problem, which is a

well-known NP-complete problem. So, we consider k > 1. Given a “yes” instance of

k-Clique (k-Club), any k-clique (k-club) of size ≥ c can be used as a certificate to

verify that this is indeed a “yes” instance in polynomial time. Thus, k-Clique and

k-Club are in NP. To complete the proof, we reduce Clique, which is a well known

NP-complete problem [98], to k-Clique (k-Club). Let G = (V,E) be an instance of

54

Clique which we assume does not contain isolated vertices, as no isolated vertex can

be included in any clique of size two or more. We construct a corresponding instance

of k-Clique (k-Club) which is a (bk/2c+ 2)-partite graph G′ = (V ′, E ′). We define

the vertex set as a union of bk/2c copies of V , a copy of E and one more auxiliary

vertex 0:

V ′ =
bk/2c⋃
i=1

V (i) ∪ E ∪ {0},

where V (i) = {1(i), 2(i), . . . , |V |(i)} is the i-th copy of V , i = 1, . . . , bk/2c. For any

v ∈ V , by v(i) ∈ V (i) we denote the i-th copy of v. The edge set connects copies of

the same vertex in V (i) and V (i+1), i = 1, . . . , bk/2c − 1. A vertex vbk/2c in V bk/2c is

connected to a vertex e ∈ E if v is an endpoint of e in G. Finally, all vertices from E

in G′ are connected to 0. To summarize,

E ′ =
bk/2c−1⋃

i=1

{(v(i), v(i+1)) : v ∈ V }
⋃{(v(bk/2c), e) : v ∈ V, v is an endpoint of e in G}
⋃{(e, 0) : e ∈ E}.

Fig. 6 shows graph G′ corresponding to graph G from Fig. 3 for k = 5. Graph

G′ contains bk/2c|V | + |E| + 1 vertices and can obviously be constructed in time

polynomial with respect to the size of G.

Our reduction is based on the observation that G has a clique of size c if and

only if G′ has an k-clique (k-club) of size c + (bk/2c − 1)|V |+ |E|+ 1. Note that G′

is connected and diam(G′) ≤ 2(bk/2c) + 2. Indeed, in G′, all vertices of V ′ \ V (1) can

be included in any k-clique (k-club). Two vertices u(1), v(1) ∈ V (1) belong to the same

k-clique (k-club) in G′ if and only if (u, v) ∈ E in G. Thus, k-Clique and k-Club

are NP-complete problems for any fixed positive integer k.

Recall from Chapter I, the small world phenomenon that is observed in power

55

1,2

1,6

2,3

5,6

4,5

3,4

2,4

 1(2)

 2(2)

 3(2)

 4(2)

 5(2)

 6(2)

 1(1)

 2(1)

 3(1)

 4(1)

 5(1)

 6(1)

V
(1)
 V

(2)
 E

0

Fig. 6 An illustration to the proof of Theorem 8 for k = 5

1,2

1,6

2,3

5,6

4,5

3,4

2,4

 1(2)

 2(2)

 3(2)

 4(2)

 5(2)

 6(2)

 1(1)

 2(1)

 3(1)

 4(1)

 5(1)

 6(1)

V
(1)
 V

(2)
 E

Fig. 7 An illustration to the proof of Theorem 9 for k = 4

law graphs. Therefore, the clustering problems on graphs of small diameter are of

particular interest. This motivates us to consider the k-Clique and k-Club problems

on graphs of fixed diameter. Note that if diam(G) ≤ k then both the maximum k-

clique problem and the maximum k-club problem are trivial as G is the maximum

k-clique (k-club), therefore we are only interested in the case where diam(G) > k.

For fixed positive integers k, d and d > k, we define the k-Clique(d) (k-Club(d))

problem as follows: Given a graph G of diameter d and a positive integer c, does

there exist a k-clique (k-club) of size ≥ c in G?

56

Theorem 9. For any fixed positive integer k, d and d > k, the k-Clique(d) and

k-Club(d) problems are NP-complete.

Proof. Obviously both considered problems are in NP. To complete the proof we

reduce Clique to k-Clique(d) and k-Club(d). We first prove the statement for

k = 1. Given G = (V, E) with no isolated vertices and d > 1, we construct a graph

Ĝ = (V̂ , Ê) of diameter d as follows.

V̂ = V ∪ {ui : i = 1, . . . , d};

Ê = E ∪ {(v, u1) : v ∈ V } ∪ {(ui, ui+1) : i = 1, . . . , d− 1}.

Then G has a clique of size c if and only if Ĝ has a clique of size c + 1 and the proof

is complete for k = 1.

If k > 1, we consider two cases, for odd and even k. If k is odd, then we use

the same construction of graph G′ as in the proof of Theorem 8 to reduce Clique

to k-Clique(d) and k-Club(d). This is true since diam(G′) ≤ k + 1 ≤ d when k

is odd and G has a clique of size c if and only if G′ has an k-clique (k-club) of size

c+(k−1
2
− 1)|V |+ |E|+1. If k is even, a similar construction can be used (see Fig. 7)

to prove the reduction. As before, we use k/2 copies of V and a copy of E for the

vertex set of the constructed graph G′′ = (V ′′, E ′′).

V ′′ =
k/2⋃
i=1

V (i) ∪ E.

The edge set E ′′ is also similar to E ′ in the previous construction, but instead of

connecting vertices from the copy of E to an auxiliary vertex, we make the subset of

57

vertices corresponding to E, a clique.

E ′′ =
k/2−1⋃
i=1

{(v(i), v(i+1)) : v ∈ V }
⋃{(v(k/2), e) : v ∈ V, v is an endpoint of e in G}
⋃{(e1, e2) : e1, e2 ∈ E, e1 6= e2}.

Once again, diam(G′′) ≤ k + 1 ≤ d and G has a clique of size c if and only if G′′

has an k-clique (k-club) of size c + (k/2 − 1)|V | + |E|. This completes the proof of

NP-completeness on fixed diameter graphs.

These complexity results illustrate two important facts. Firstly, these gener-

alizations are hard to solve not only because they generalize cliques, but because

they are hard in their own respect (NP-complete for every fixed positive integer k).

Secondly, the transition in complexity is also sudden, while the problems are eas-

ily solved under trivial circumstances when diameter is at most k, but immediately

become NP-complete on graphs of diameter of the graph is strictly larger than k.

IV.2. Complexity of k-Plex

This section presents computational complexity results for the maximum k-plex prob-

lem. The results are similar in nature to the ones obtained for the k-Clique and

k-Club problems. For a fixed positive integer k, the decision version k-Plex can be

stated as follows: Given a graph G = (V,E) and a positive integer c, does there exist

a k-plex of size c in G?

Theorem 10. k-Plex is NP-complete for any fixed positive integer k.

Proof. We again prove this by reducing Clique to k-Plex. The problem is clearly

in NP as a given k-plex of size c or more can be verified in polynomial-time. Given an

instance G = (V, E) of Clique, we construct an instance G′ = (V ′, E ′) in polynomial

58

time such that G has a clique of size c if and only if G′ has a k-plex of size c′. To

construct G′, we expand G by adding k − 1 copies of the complete graph of order

n = |V |. Denote the vertex set of the rth such copy by Vr, r = 1, . . . , k − 1, where

Vr = {1r, . . . , nr}, and let R =
k−1⋃
r=1

Vr. Put V ′ = V ∪R and E ′ = E ∪ Ê ∪ Ẽ, where

Ê = {(i, jr) : i ∈ V, jr ∈ Vr, i 6= j, r = 1, . . . , k − 1}

and

Ẽ = {(ip, jr) : ip ∈ Vp, jr ∈ Vr, i 6= j, p, r = 1, . . . , k − 1}.

The set Ê represents the edges between V and R, where every vertex u ∈ V is

connected to every vertex in every complete graph except its copies, i.e. u is adjacent

to every vertex in R \ {u1, . . . , uk−1}. The set Ẽ includes the cross edges between

distinct Vp and Vr, as well as all possible edges between vertices in Vp, p = 1, . . . , k−1.

In other words, every vertex up ∈ Vp, p = 1, . . . , k − 1 is adjacent to all the vertices

in Vr \ {ur}, r = 1, . . . , k − 1. Setting c′ = c + (k − 1)n completes the reduction.

Note that the instance G′ = (V ′, E ′) can be constructed in polynomial time. Fig. 8

illustrates this transformation for k = 3 when G is a path on three vertices. Original

graph G = ({a, b, c}, {(a, b), (a, c)}) is shown in box-vertices and bold edges. Ê is

denoted by regular solid edges while Ẽ is denoted by dashed edges.

We now show that if there exists a clique of size c in G then G′ has a k-plex

of size c′. Let C ⊆ V induce a clique of size c = |C| in G. We claim that the

set S = C ∪ R, where |S| = c + n(k − 1) = c′, is a k-plex. For any u ∈ C,

there exist c − 1 neighbors inside C, and (n − 1)(k − 1) neighbors in R. Thus, for

u ∈ C, degG[S](u) = c − 1 + (n − 1)(k − 1) = c′ − k. For any vr ∈ R, there exist

(n− 1)(k − 1) neighbors in R and c neighbors in C if v /∈ C, and c− 1 neighbors in

C if v ∈ C. Again, for vr ∈ R, degG[S](vr) ≥ c− 1 + (n− 1)(k − 1) = c′ − k. Hence,

59

a

b

c

b1

c1

b2

c2

a1

a2

Fig. 8 Illustration of the k-Plex instance G′

S induces a k-plex of size c′.

We now establish the other direction that if there exists a k-plex of size c′ in G′

then G has a clique of size c. Let S be a k-plex of size c′ = c+n(k−1). Let P = R\S

denote the set of vertices from R not included in the k-plex and let |P | = p. Then,

the c′ vertices in S consist of n(k−1)−p vertices in S∩R and c+p vertices in S∩V .

Without loss of generality, suppose that S ∩ V = {1, . . . , c + p} and further assume

that for each i ∈ S ∩ V there exist qi copies of i in P that are left out of the k-plex.

Since every i ∈ S ∩ V has p− qi neighbors in P , we know that

|N(i) ∩ (S ∩R)| = (n− 1)(k − 1)− (p− qi).

Since S is a k-plex, ∀ i ∈ S ∩ V :

degG[S](i) = |N(i) ∩ (S ∩R)|+ |N(i) ∩ (S ∩ V)| ≥ c + n(k − 1)− k,

⇒ |N(i) ∩ (S ∩ V)| ≥ c + p− 1− qi. (4.1)

Recall that each qi is a non-negative integer counting copies of vertex i ∈ S ∩ V in

P and note that P can contain vertices that are not copies of any vertex in S ∩ V .

60

Thus, we have
c+p∑
i=1

qi ≤ p . Hence, there can exist at most p terms, qi, in that sum that

are strictly greater than 0, meaning that there exist at least c terms in that equation,

that are equal to 0. Without loss of generality, suppose that qi = 0, i ∈ {1, . . . , c}.
Now, let C = {1, . . . , c}. We already know from (4.1) that for all i ∈ C ⊆ S ∩ V =

{1, . . . , c + p} :

|N(i) ∩ (S ∩ V)| ≥ c + p− 1− qi = c + p− 1.

But |S ∩ V | = c + p, so for all i ∈ C,

|N(i) ∩ (S ∩ V)| = c + p− 1.

Thus, every vertex in C ⊆ S ∩ V is adjacent to every vertex in S ∩ V . Hence, every

vertex in C is adjacent to every other vertex in C. Therefore C induces a clique of

size c in G. This completes the proof.

This complexity result again demonstrates that the maximum k-plex problem is

hard not only because it is a generalization of the maximum clique problem, but it is

a hard problem in its own respect, as Theorem 10 states that the decision version of

the problem is NP-complete for every fixed positive integer k.

Remark 5. Note that maximum k-plex problem is trivial when δ(G) ≥ n−k as V (G)

is itself a k-plex. In the above reduction, whenever G is not complete, δ(G′) < |V ′|−k.

Remark 6. Furthermore, as a consequence of Theorem 10 we know that the problem

of finding a maximum co-k-plex in a graph is also NP-hard.

IV.3. Some Special Cases

In Sections IV.1 and IV.2, we established that k-Clique, k-Club and k-Plex are

NP-complete for every fixed k. The problems are also trivially NP-hard for arbitrary

61

k as they all generalize cliques. However, as shown in the beginning of this chapter the

problems are easy to solve when k = n, n− 1. In fact, the problems are polynomial-

time solvable whenever k = n − t for a fixed integer t ≥ 0. Note that this does not

conflict any of the previous NP-completeness results since all of them consider a fixed

positive integer k or an arbitrary k, while k here is a particular function of n.

First we observe that any k = n− t vertices in the graph G on n vertices forms

a k-plex. Thus ωk(G) ≥ k = n − t. Hence we try deleting every subset Sj ⊆ V of

size j = 0, 1, . . . , t until we find that G[V \ Sj] is a k-plex. This will happen for j = t

guaranteeing termination and since we consider every possible subset, optimality is

guaranteed. We only need to show that the algorithm runs in polynomial time. We

have also implicitly assumed that t � n, this will be removed in the algorithm.

For solving the maximum k-clique and k-club problems, we initially assume that

the given graph is connected and t � n + 1. These assumptions are subsequently

relaxed. In any connected graph G on n vertices, there exists a connected induced

subgraph G′ on n − t + 1 vertices. G′ can be formed by deleting t − 1 vertices, by

recursively deleting the leaves of a breadth-first search tree of G. Then diam(G′) ≤
k = n − t since the longest path in G′ can be length at most n − t. Thus we have

ω̃k(G) ≥ ω̄k(G) ≥ n − t + 1. Again, we use an algorithm that is similar to previous

case. Find the first G[V \ Sj] which is a k-clique (k-club) for every possible Sj such

that |Sj| = j for j = 0, 1, . . . , t − 1. Algorithm will terminate when j = t − 1 at

optimality if not earlier. This algorithm can also be used on disconnected graphs by

applying it to every component of G with at least n − t + 1 vertices and returning

the largest k-clique or k-club found among all components. If every component of G

has fewer than n− t + 1 vertices, then the largest connected component is optimum.

We present a generic polynomial-time algorithm that solves maximum k-clique,

k-club and k-plex for k = n− t on a graph of order n when t is a fixed non-negative

62

integer. Let Π denote the model of interest and parameter M = t if Π is the k-plex

model and M = t − 1 if Π is k-clique or k-club models. Algorithm 2 presents a

pseudocode of a generic algorithm that combines the approaches mentioned above as

they only differ in the value of parameter M across the problems. Step 2 removes the

assumption made in the previous arguments that t < n in the case of k-plex and and

t < n+1 in the case of k-clique and k-club. When this assumption does not hold, no k-

plex, k-clique or k-club exists in G for k = n−t. The rest of the algorithm implements

the ideas discussed earlier. We try to remove the fewest possible number of vertices

(j = 0, . . . , M) to obtain a maximum Π. But since we do not know which j vertices

to delete, we try every possible set thus guaranteeing optimality. Furthermore, as

a Π is guaranteed to exist when j = M , the algorithm will terminate. Now it only

remains to show that this algorithm runs in polynomial time. Step 2 runs in constant

time. Step 4 runs at most M times and Step 5 runs
(

n
j

)
times for each j. Step 6 can

be done in polynomial time, say nc where c is a fixed constant since the problems

are in NP. The running time of this algorithm can then be bounded by a function

f(n,M) defined as, f(n,M) =
M∑

j=0

nc
(

n
j

) ≤
M∑

j=0

ncnj ≤ Mnc+M . Thus the algorithm

runs in O(tnc+t) which is polynomial for fixed t.

Summary of Results. This chapter presented NP-completeness results for the

k-Clique, k-Club and k-Plex problems for fixed k on arbitrary graphs. For fixed

integer k, NP-completeness on graphs of diameter d with k < d is established for

k-Clique and k-Club. Special polynomially solvable cases are also identified.

Having established the intractability of maximum k-clique, k-club and k-plex

problems, we identify approaches that would help us solve these problems, although

via worst case exponential algorithms. The approach taken in this dissertation is that

of a polyhedral study leading to branch-and-cut algorithms.

63

Algorithm 2 Generic Polynomial-Time Bounded Enumeration Algorithm

1: procedure Maximum Π problem(G, k = n− t,M)

2: if M ≥ n then No Π exists in G; go to Step 11

3: end if

4: for j = 0 to M do

5: for each Sj ⊆ V : |Sj| = j do

6: if G[V \ Sj] is a Π then

7: return V \ Sj; go to Step 11

8: end if

9: end for

10: end for

11: end procedure

64

CHAPTER V

THE MAXIMUM k-CLIQUE AND k-CLUB PROBLEMS∗

We have already discussed in Chapter II, the successful application of IP techniques

and polyhedral combinatorics to the classical maximum clique and maximum inde-

pendent set problems. In this chapter, we develop some preliminary approaches for

the maximum k-clique and k-club problems. In particular, the close correspondence

between the maximum clique and k-clique problems is established in an algorithmic,

as well as polyhedral sense. The maximum k-club problem is also formulated as a

binary integer program and the polyhedral studies are carried out for the special case

when k = 2. The facets identified for the maximum 2-club problem will be used in

developing a BC implementation in Chapter VII.

V.1. The Maximum k-Clique Problem

The maximum k-clique problem is to find a k-clique of largest cardinality in the given

graph. Recall that the cardinality of a maximum k-clique is called the k-clique number

of G and denoted by ω̃k(G). The following binary integer program finds a maximum

k-clique given G = (V, E) and pairwise distances dG(i, j) ∀i, j ∈ V .

∗Parts of this chapter are reprinted with permission from Balasundaram, B., Butenko,
S., Trukhanov, S.: Novel approaches for analyzing biological networks. Journal of Combi-
natorial Optimization 10(1), 23–39 (2005) c© Springer.

65

ω̃k(G) = max
∑
i∈V

xi (5.1)

subject to:

xi + xj ≤ 1 ∀ i, j ∈ V : i < j and dG(i, j) > k (5.2)

xi ∈ {0, 1} ∀ i ∈ V (5.3)

Constraint (5.2) ensures that at most one of i, j is included if dG(i, j) > k thereby

ensuring that the feasible solutions are incidence vectors of k-cliques in G. The

associated k-clique polytope Ck(G) is the convex hull of binary vectors feasible to the

above formulation.

Recall the definition of power graphs from Chapter II. Note that, the pairs of

i, j over which constraint (5.2) is defined, is exactly the set Ek, the edge set of the

complement of kth power of G. The formulation can then be seen as the maximum

clique formulation on Gk. This is in fact true due to the following fact that can be

easily verified from the definitions. A subset of vertices C is a k-clique in G if and

only if they form a clique in Gk. This observation tells us that we can utilize the

vast research that already exists for the maximum clique problem to deal with this

problem since the power graph can be obtained in polynomial time from the original

graph. Furthermore, the k-clique polytope Ck(G) is exactly the clique polytope of the

power graph, C(Gk). Hence results regarding properties of the clique polytope are

also thus applicable. Thus, for this dissertation, we will not consider the maximum

k-clique problem henceforth.

66

V.2. The Maximum k-Club Problem

The maximum k-club problem is to find a largest k-club in a given graph. Recall

that we denote the size of a maximum k-club by ω̄k(G) and refer to it as the k-club

number of G. The following integer program finds the k-club number.

ω̄k(G) = max
∑
i∈V

xi (5.4)

subject to:

xi + xj ≤ 1 +
∑

l:P l
ij∈Pij

yl
ij ∀ (i, j) /∈ E (5.5)

xp ≥ yl
ij ∀ p ∈ V (P l

ij), P l
ij ∈ Pij, (i, j) /∈ E (5.6)

xi ∈ {0, 1} ∀ i ∈ V (5.7)

yl
ij ∈ {0, 1} ∀ P l

ij ∈ Pij, (i, j) /∈ E (5.8)

where Pij is an indexed collection of all paths of length at most k between vertices

i, j in G and P l
ij is the path with index l between vertices i, j. The formulation

essentially ensures that if two vertices are in a k-club, then all the vertices in at least

one path between them with length less than or equal to k are also included in the

k-club. Note that the size of Pij could be very large making this formulation difficult

to handle. Identifying conditions or restricted graph classes that guarantee a more

compact formulation would be of interest.

The k-club polytope Wk(G) is the convex hull of incidence vectors of k-clubs in G.

Recall that a subset of a k-club need not be a k-club. This property makes it especially

difficult to generate combinatorial valid inequalities for the problem. However, valid

inequalities can be generated based on necessary conditions for vertices to belong in

a k-club. We need the following definition.

67

Definition 27. Subset I ⊆ V is k-independent if for every distinct pair i, j ∈ I,

dG(i, j) ≥ k + 1.

Clearly, when k = 1, this is the classical independent set definition. For k ≥ 2,

the k-independent sets in G are exactly independent sets of the power graph Gk. So

maximal k-independent sets can be found using simple greedy algorithms. However,

for k ≥ 2, finding maximum k-independent sets is known to be NP-hard even when the

graphs are restricted to be bipartite [59]. It is also important to note that, k-cliques

and k-independent sets are not complementary to each other for k ≥ 2. Furthermore,

as k increases, k-independent sets do not relax independent sets, but rather become

restrictive in their definition.

k-Independent Set Inequalities. Let I ⊆ V be a maximal k-independent set.

Note that any k-club can contain at most one vertex from this set. Then we have the

following family of valid inequalities.

∑
i∈I

xi ≤ 1 for every k-independent set I (5.9)

Heuristics for the maximum k-club problem were available in literature [44] even

before its tractability was known. NP-completeness of the problem was subsequently

established in [45] (independent of our result in Theorem 8) with the implicit assump-

tion of a fixed positive integer k, using a slightly different reduction. However, our

results with regards to transition in complexity identified by our NP-completeness re-

sults on bounded diameter graphs were previously unknown. An exact combinatorial

branch-and-bound algorithm for the problem was also developed in [45].

In the next section, we look at the special case when k = 2, which lends itself for

better analysis in terms of theory and algorithm development. It is also practically

important as diameter-two structures are often used in design and analysis of networks

68

(see applications described in Section II.1).

V.3. The Maximum 2 -Club Problem

The maximum 2-club problem can be formulated more compactly than the maximum

k-club formulation in the previous section for general k. The 2-club number ω̄2(G) of

a graph G = (V,E) admits the following IP formulation:

ω̄2(G) = max
∑
i∈V

xi (5.10)

subject to:

xi + xj −
∑

k∈N∩(i,j)

xk ≤ 1 ∀ (i, j) /∈ E (5.11)

xi ∈ {0, 1} ∀i ∈ V (5.12)

where N∩(i, j) denotes the common neighborhood of vertices i, j in G, i.e. N∩(i, j) =

N(i)∩N(j). The formulation ensures that if two vertices are in a 2-club and they do

not have an edge between them, then they have at least one common neighbor inside

the 2-club. The 2-club polytope is the convex hull of feasible solutions to the above

formulation. Some interesting properties of this polytope have been identified. For

the following results, we assume G has at least two vertices.

Theorem 11. Let W2(G) denote the 2-Club polytope of a given graph G = (V, E).

1. dim(W2(G)) = |V |.

2. xi ≥ 0 induces a facet of W2(G) for every i ∈ V .

3. For i ∈ V , xi ≤ 1 induces a facet of W2(G) if and only if dG(i, j) ≤ 2 ∀ j ∈ V .

Proof. We will use following notations in the proof. Let ei be the unit vector with ith

component 1 and the rest 0; eij = ei + ej and eijk = ei + ej + ek.

69

1. This is trivial and can shown by demonstrating |V |+1 feasible affinely independent

points in W2(G). The points 0, e1, e2, . . . , e|V | are clearly |V |+ 1 affinely independent

points in W2(G) ⊂ R|V |. Hence dim(W2(G)) = |V |.

2. Let F 0
i = {x ∈ W2(G) : xi = 0}. Then 0, ek for all k ∈ V \ {i} form |V | affinely

independent points in F 0
i indicating that dim(F 0

i) = |V | − 1 and it is a facet.

3. For a fixed i ∈ V , suppose that dG(i, j) ≤ 2 ∀ j ∈ V . We wish to show that

F 1
i = {x ∈ W2(G) : xi = 1} is a facet. Then let Sp = {j ∈ V : dG(i, j) = p}.

Note that S0, S1, S2, partition V and S0 = {i}, S1 = N(i). We now establish the

maximality of F 1
i thereby making it a facet. Suppose there exists a valid inequality

αT x ≤ β such that, F = {x ∈ W2(G) : αT x = β} ⊇ F 1
i . Note that ei, eij ∀ j ∈ S1

are also contained in F 1
i . Also for every k ∈ S2, there exists a j ∈ S1 such that

j ∈ N∩(i, k). Hence eijk ∀ k ∈ S2 for some j ∈ S1 are also in F 1
i . These |V | points

are also contained in F . ei ∈ F ⇒ αi = β (by substituting for x in αT x = β).

Similarly we get αi + αj = β ∀j ∈ S1 ⇒ αj = 0 ∀j ∈ S1. From the remaining points

we obtain αi+αj+αk = β ∀ k ∈ S2 and for some j ∈ S1. Since αi = β, αj = 0 ∀j ∈ S1,

we get αk = 0 ∀k ∈ S2. This shows that F 1
i = F is a maximal face, i.e. a facet.

Alternately, we could argue that the |V | points used are affinely independent.

To establish the other direction, we establish the contrapositive by showing that

if there exists a j ∈ V such that dG(i, j) > 2 then F 1
i = {x ∈ W2(G) : xi = 1} is not

a facet. When such a j exists, we know that (i, j) /∈ E and N∩(i, j) = ∅. Then for

this j, the constraint in the system xi + xj −
∑

k∈N∩(i,j)

xk ≤ 1 reduces to xi + xj ≤ 1

which dominates xi ≤ 1. Hence F 1
i cannot be a facet.

The next result shows that the valid inequality we generated for the k-club

problem is actually facet defining when k = 2.

70

Theorem 12. Let W2(G) denote the 2-club polytope of G = (V,E) and I ⊆ V . The

inequality
∑
i∈I

xi ≤ 1 (5.13)

induces a facet of W2(G) if and only if I is a maximal 2-independent set in G.

Proof. Suppose I is a maximal 2-independent set. Clearly (5.13) is valid for W2(G).

We now establish the maximality of the face FI = {x ∈ W2(G) :
∑
i∈I

xi = 1}, thereby

showing it is a facet. Suppose there exists a valid inequality αT x ≤ β such that,

F = {x ∈ W2(G) : αT x = β} ⊇ FI . Since ei ∈ FI ⊆ F ∀ i ∈ I, we have αi = β ∀ i ∈ I.

Now for every j ∈ V \ I, there exists a vertex i ∈ I such that at least one of the

following two conditions are satisfied:

1. (i, j) ∈ E and so eij ∈ FI ⊆ F ;

2. N∩(i, j) 6= ∅, i.e. they have a common neighbor k ∈ V \ I in which case eikj, eik ∈
FI ⊆ F .

Now for every j ∈ V \ I, in the first case we obtain, αi + αj = β ⇒ αj = 0 and in

the second case we obtain αi + αk + αj = β and αi + αk = β ⇒ αj = αk = 0. Thus,

FI = F is a facet.

Suppose (5.13) induces a facet of W2(G). If I is not a 2-independent set then

there exist i, j ∈ I such that either (i, j) ∈ E or if I is independent there exists

k ∈ N∩(i, j). In the first case eij which is a feasible point violates (5.13) and in the

second case eijk which is feasible violates (5.13) contradicting the validity of (5.13).

Hence I must be a 2-independent set. If I is not maximal there exists I ∪ {u} which

is 2-independent and xu +
∑

i∈I xi ≤ 1 is valid and dominates (5.13) contradicting its

facetness. Hence I is maximal.

Remark 7. Note that these results are analogous to those obtained for the stable set

polytope with maximal cliques by Padberg [157]. Part 3 of Theorem 11 can now be

71

viewed as a special case of Theorem 12.

This result encourages the use of maximal 2-independent set facets in a BC

algorithm to solve the maximum 2-club problem. In the next section, we present an

algorithm which also incorporates pre-processing techniques with the BC that we will

demonstrate to be computationally effective for power law graphs in Chapter VII.

V.4. Solving the Maximum 2 -Club Problem on Power Law Graphs

We use a pre-processing technique called trimming followed by a BC algorithm embed-

ded in an iterative scheme that involves fixing variables in each iteration to be included

in the maximum 2-club. Algorithm 4 presents the pseudo-code for the Iterative Trim-

and-Branch-and-Cut (ITBC) Algorithm. Algorithm 3 presents the pseudo-code for

the pre-processing procedure Trim. The BC algorithm referred to in the pseudo-code

incorporates maximal 2-independent set cuts to tighten the LP relaxation bounds in

the nodes of a branch-and-bound search tree. A general BC framework was described

in Algorithm 1, specific implementation details and parameter settings will be dis-

cussed in Chapter VII before presenting the sample numerical experiments. Note

that in the pseudo-codes the 2-neighborhood of a vertex v in G, defined as the set

{i ∈ V (G) : dG(v, i) ≤ 2} is denoted by N2[v].

Trimming. The pre-processing procedure Trim works with a graph G and a

lower-bound on the size of the maximum 2-club. For any vertex v ∈ V (G), the size

of any maximum 2-club containing v is bounded from above by |N2[v]|, as no vertex

at distance 3 or more from v in G can be included. Hence, any vertex with a small

2-neighborhood (relative to |D|) can be deleted and this procedure can be recursively

applied as many times as possible.

ITBC Algorithm. The ITBC Algorithm performs n iterations and in each iter-

72

Algorithm 3 Trimming Procedure

1: procedure Trim(G,D) . graph to be pre-processed, known 2-club

2: X ← {v ∈ V (G) : |N2[v]| < |D|}
3: if X 6= ∅ then

4: G ← G[V \X]; go to step 2 . this will cause V (G) to change

5: end if

6: return G

7: end procedure

ation, fixes a vertex v to be included in the maximum 2-club. In other words, the

maximum 2-club containing v is found for each v in every iteration. In step 4 of the

algorithm, the vertices could also be selected in non-increasing order of their degrees

in V (G). Having fixed v, the only vertices that need to be considered are vertices

in N2[v]. Hence, the trimming procedure is called on the graph induced by N2[v]

along with the lower-bound initialized for the very first time with ∆(G) + 1. The

lower-bound is updated as larger 2-clubs are identified during the iterations. Follow-

ing pre-processing, BC is used to find the maximum 2-club containing v, which is

enforced by adding the additional constraint xv = 1 to the system. The best known

2-club size is used in subsequent calls to the Trim procedure. Furthermore, at the

end of every iteration, vertex v can be removed from the graph as from that point we

are interested in maximum 2-clubs not containing v.

ITBC is an exact algorithm and expected to be worst case exponential given

the intractability of the maximum 2-club problem. However, the pre-processing tech-

niques are devised with the hope of speeding up computations and to facilitate optimal

resolution of larger instances. The frequent checks comparing the size of the incum-

bent 2-club to the order of G[N2[v]] before trimming and to the order of G̃ before

73

Algorithm 4 Iterative Trim-and-Branch-and-Cut (ITBC) Algorithm

1: procedure ITBC(G) . the 2-club instance

2: v ← argmax{deg(i) : i ∈ V }, D ← N [v] . D is a feasible 2-club

3: G ← Trim(G,D)

4: for each v ∈ V (G) do . a maximum 2-club containing v will be found

5: if |N2[v]| > |D| then

6: G̃ ← Trim(G[N2[v]], D) . only i ∈ N2[v] can be included

7: if |V (G̃)| > |D| then

8: D̃ ← Branch-and-cut(G̃, xv = 1) . v must be included

9: D ← argmax{|D|, |D̃|} . update if necessary

10: end if

11: end if

12: G ← G− v . delete v from G, this changes V (G)

13: end for

14: return D

15: end procedure

74

invoking BC play an important role in reducing the number of times BC algorithm

is called in very large, sparse graphs. It should be noted that this approach is mean-

ingful for power law graphs and not in general. For general graphs, it is better to use

the BC algorithm without the iterative scheme, possibly with trimming procedure

invoked for fixing variables at the BC nodes. We will substantiate the claims made

with regards to computational experience on power law graphs in Chapter VII.

Summary of Results. In this chapter, we established preliminary results for the

maximum k-clique and k-club problems. Emphasis was on the maximum 2-club

problem for which polyhedral properties were studied and a family of facet-defining

inequalities developed. A specialized algorithm incorporating pre-processing and BC

approach in a systematic way has been developed that is effective for power law

graphs. We have laid the foundations for several important directions that need to

be taken in the future, especially for k-clubs with general k. These will be discussed

in greater detail in Chapter X. In the next chapter, we study the focus problem of

this dissertation: The maximum k-plex problem.

75

CHAPTER VI

THE MAXIMUM k-PLEX PROBLEM

In this chapter, we formulate the maximum k-plex problem as a binary integer pro-

gram and study the associated polytope, for which several combinatorial valid inequal-

ities are identified. Facet results are established for one family of valid inequalities

when k = 2. Some interesting aspects of this relaxation, and the complementary

definition of co-k-plex that we proposed in Chapter III will be identified in this chap-

ter. In the process, a novel formulation for the classical maximum clique problem is

identified and studied. A specialized algorithm incorporating preprocessing with a

BC framework is presented that is designed to be effective on power law graphs.

VI.1. The Maximum k-Plex Problem

The maximum k-plex problem is to find a largest k-plex in a given graph, the size

of which is called the k-plex number denoted by ωk(G). Let degḠ(i) = |V \ N [i]|
denote the degree of vertex i in the complement graph Ḡ = (V, Ē). The following 0-1

program finds the largest k-plex in G.

ωk(G) = max
∑
i∈V

xi (6.1)

subject to:

∑

j∈V \N [i]

xj ≤ (k − 1)xi + degḠ(i)(1− xi) ∀ i ∈ V (6.2)

xi ∈ {0, 1} ∀ i ∈ V (6.3)

In this formulation, xi = 1 if and only if i ∈ V is in a k-plex. Constraint (6.2)

76

ensures that if a vertex i is in the k-plex then it has at most k − 1 non-neighbors

inside the k-plex. The constraint is made redundant if vertex i is not in the k-plex.

Hence every feasible solution is an incidence vector of some k-plex in G. The k-plex

polytope Pk(G), is the convex hull of feasible points of the above formulation. The

following theorem establishes some fundamental properties of the k-plex polytope.

We assume that k ≥ 2 for the subsequent results since k = 1 corresponds to the well

researched maximum clique problem. However, in Section VI.4, we focus on the case

when k = 1 in greater detail.

Theorem 13. Let Pk(G) denote the k-plex polytope of a given graph G = (V,E),

where k ≥ 2. Then,

1. dim(Pk(G)) = |V |.

2. xi ≥ 0 induces a facet of Pk(G) for every i ∈ V .

3. xi ≤ 1 induces a facet of Pk(G) for every i ∈ V .

Proof. We will use following notations as before in the proof. Let ei be the unit vector

with ith component 1 and the rest 0; eij = ei + ej.

1. This is shown by demonstrating |V | + 1 affinely independent points in Pk(G).

The points 0, e1, e2, . . . , e|V | are clearly |V | + 1 affinely independent points in

Pk(G) ⊂ R|V |. Hence, dim(Pk(G)) = |V |.

2. Let F = {x ∈ Pk(G) : xi = 0}. Since an empty set or any vertex by itself is a

k-plex, we have 0, ej for all j ∈ V \ {i} forming |V | affinely independent points

in F . This shows that dim(F) = |V | − 1 and it is a facet.

3. Let F ′ = {x ∈ Pk(G) : xi = 1}. We first observe that every vertex and any

pair of vertices form a k-plex for any k such that 1 < k < |V |. Then ei and eij

77

for all j ∈ V \ {i} form |V | affinely independent points in F ′, indicating that

dim(F ′) = |V | − 1 and it is a facet.

VI.2. Facets and Valid Inequalities

Valid inequalities in this section are combinatorial in nature. They are derived by

identifying induced subgraphs that are not k-plexes and hence cannot be present in

any k-plex. Note that the property that every induced subgraph of a k-plex is also

a k-plex permits us to make the previous argument. Recall that this was not the

case for k-clubs and the only family of valid inequalities identified used a necessary

condition. The following lemmas are needed.

Lemma 1. Let k be even. Then, there does not exist a co-k-plex that contains a

k-plex of size 2k − 1.

Proof. Let G be a co-k-plex on n vertices. Assume that n ≥ 2k − 1 as the result is

trivial otherwise. Now suppose that S is a k-plex of size 2k − 1 in G. Then we have

|N(i) ∩ S| ≥ 2k − 1− k = k − 1 ∀i ∈ S.

Since G is co-k-plex we have,

|N(i) ∩ S| ≤ |N(i)| ≤ k − 1 ∀i ∈ S.

The two conditions then imply that the induced graph G[S] is regular with all degrees

equal to k − 1 and is of order 2k − 1. But k − 1 is odd and we cannot have an odd

number of vertices of odd degree. The contradiction implies that S does not exist.

Remark 8. Note that this bound is sharp since the graph family Gk = Kk∪Kk−1, the

union of complete graphs, for each k forms a co-k-plex of size 2k− 1, which contains

78

Kk−1 ∪Kk−1, a k-plex of size 2k − 2. Fig. 9 illustrates this when k = 4. The circled

vertices form the said 4-plex.

Lemma 2. Let k be odd. Then, there does not exist a co-k-plex that contains a k-plex

of size 2k.

Proof. As before, let G be a co-k-plex on n vertices (n ≥ 2k). Suppose that S is a

k-plex of size 2k in G. Then we have

|N(i) ∩ S| ≥ 2k − k = k ∀i ∈ S.

Since G is co-k-plex we have,

|N(i) ∩ S| ≤ |N(i)| ≤ k − 1 ∀i ∈ S.

This contradiction establishes that S does not exist.

Remark 9. This bound is also sharp since the following family of graphs have 2k

vertices forming a co-k-plex containing a k-plex of size 2k − 1. Construct the graph

Gk = (V, E), where

V = V ′ ∪ {2k}, V ′ = {1, . . . , 2k − 1},

and

E = {(i, j) : i ∈ V ′ and j = i + 1, . . . ,

(
i +

k − 1

2

)
mod (2k − 1)}.

Maximum degree in Gk is k − 1 and hence it is a co-k-plex of order 2k. The induced

subgraph Gk[V
′] is a (k− 1)-regular k-plex of order 2k− 1 in which every vertex has

exactly k − 1 neighbors and non-neighbors each. It is also known as an antiweb and

its complement is known as a web (see Section II.6.1 for details). Fig. 9 illustrates

this when k = 5. The circled vertices form the said 5-plex.

79

4

1

2

3

1’

2’

3’

k=4

10

1

2
3

4

5

6

7
8

9

k=5

Fig. 9 Graphs demonstrating the sharp bounds in Lemmas 1 and 2

We next present three types of valid inequalities for the k-plex polytope: Inde-

pendent set inequalities, hole inequalities, and co-k-plex inequalities.

Independent Set Inequalities. Let I ⊆ V be an independent set. Note that no

k-plex can contain an independent set of more than k vertices as k + 1 or more

independent vertices do not form a k-plex. Let Ik+1 represent the collection of all

MIS of size k+1 or more in G. Then we have the following family of valid inequalities.

∑
i∈I

xi ≤ k ∀ I ∈ Ik+1 (6.4)

Remark 10. Note that inequality (6.4) is facet-inducing for the k-plex polytope of

the trivial graph G∅ with V = {1, . . . , n} and E = ∅ with 1 < k < n. When n and

k are relatively prime, the incidence vectors of {i + 1(mod n), . . . , i + k(mod n)}
for i ∈ V form n affinely independent vectors [182]. If n is a multiple of k, the above

observation holds for the trivial graph G∅ − u for some u. The facet of Pk(G∅ − u)

induced by inequality (6.4), when lifted to Pk(G∅), will yield a coefficient of one for

xu establishing our claim.

Hole Inequalities. Let H ⊆ V be a hole. If |H| ≤ k + 2, then H is a k-plex. Now

suppose |H| > k + 2, then H is not a k-plex and for every proper subset S ⊂ H, we

have δ(G[S]) ≤ 1. Hence, if |S| − k ≥ 2, S is not a k-plex. Thus, any k-plex can

80

contain at most k + 1 vertices from the hole and this bound is met when S induces

a path of k + 1 vertices in H. Let Hk+3 represent the collection of all holes of size

k + 3 or more in G. Then we have the following family of valid inequalities.

∑
i∈H

xi ≤ k + 1 ∀ H ∈ Hk+3 (6.5)

Co-k-plex Inequalities. Lemmas 1 and 2, when combined, imply that the size of

a maximum k-plex in any co-k-plex is less than or equal to ρk = 2k−1− 1+(−1)k

2
. Let

Jρk+1 represent the collection of all maximal co-k-plexes of size more than ρk in G.

We have the following family of valid inequalities.

∑
i∈J

xi ≤ ρk ∀ J ∈ Jρk+1 (6.6)

Remark 11. Note that for k = 1, the independent set inequalities and co-1-plex

inequalities are identical. For k = 2, the co-2-plex inequalities (weakly) dominate the

independent set inequalities, although this is not necessarily the case for k = 3.

Remark 12. Note that if J is a maximal co-k-plex, there does not exist another co-

k-plex of which J is a proper subset. Then, for every v ∈ V \ J , at least one of the

following conditions must hold.

1. ∃ j ∈ J ∩N(v) such that |N(j)∩J | = k−1 and including v would cause degree

of j in the induced subgraph to be k.

2. |N(v) ∩ J | ≥ k and hence upon inclusion v would have degree k or more in the

induced subgraph.

Note that both conditions coincide when k = 1. The next theorem uses this obser-

vation to show that for k = 2 the co-2-plex inequalities actually form facets for the

2-plex polytope, P2(G).

81

Theorem 14. Let P2(G) denote the 2-plex polytope. Then, the co-2-plex inequality

given by,
∑
i∈J

xi ≤ 2, (6.7)

where J is a maximal co-2-plex with |J | ≥ 3, induces a facet of P2(G).

Proof. First, recall that any 2 vertices from J form a 2-plex. Second, for every

v ∈ V \ J , the above two conditions for a maximal co-2-plex imply the existence

of two vertices u,w ∈ J such that {v, u, w} is a 2-plex. Indeed, if the first case

holds, let u ∈ J ∩ N(v), then N(u) ∩ J = {w} and {v, u, w} is a 2-plex. If the

second case holds, {u,w} ⊆ J ∩ N(v) and again {v, u, w} is a 2-plex. We use these

observations to construct n affinely independent vectors that lie on the face defined

by F = {x ∈ P2(G) :
∑
i∈J

xi = 2}, so F is (n− 1)-dimensional and hence it is a facet.

Without loss of generality, assume that J = {1, . . . , r} and V \ J = {r + 1, . . . , n},
where r ≥ 3. As before, let ei ∈ Rn denote the unit vector with ith component one

and all others zero. The said affinely independent vectors x1, . . . , xn are constructed

as follows.

xv = ev + er, ∀ v = 1, . . . , r − 1;

xr = e1 + e2 (note that xr is distinct from x1, . . . , xr−1 as r ≥ 3);

xv = ev + eu + ew, ∀ v = r + 1, . . . , n, where for each v ∈ V \ J , u,w ∈ J are

the particular vertices described before. Clearly, xv ∈ F and we claim that these

vectors are affinely independent. Thus, the co-2-plex inequalities produce facets for

the 2-plex polytope, provided the claim holds. Next we establish the claim.

Claim : Vectors x1, . . . , xn are affinely independent.

We need to show that the only solution to
i=n∑
i=1

λix
i = 0 and

i=n∑
i=1

λi = 0 is λi = 0 ∀ i =

82

1, . . . , n. This can be rewritten as

Aλ = 0, where A =




x1 . . . xr xr+1 . . . xn

1 . . . 1 1 . . . 1


 and λ =




λ1

...

λn




By construction (of xi), A has the following structure.

A =




Br×r Cr×n−r

0n−r×r In−r×n−r

11×r 11×n−r




Now it is easy to see that the identity matrix in the second set of equations forces

λi = 0, i = r + 1, . . . , n. The system now reduces to,




Br×r

11×r







λ1

...

λr




= 0

expanding Br×r we get




1 0 0 0 1

0 1 0 0 1

0 0 1 0 . . . 0 0

...
...

...
...

...
...

...

1 1
...

... 1 1 0

1 1 1
... 1 1 1







λ1

...

λr




= 0

Now it is easy to see that λi = 0, i = 1, . . . , r is the only solution to this system.

The maximal co-k-plex inequalities when k = 1 are precisely the MIS inequalities

for the clique polytope. Due to the classical results of Padberg [157] that we discussed

83

in Chapter II, it is well known that they also form facets of the clique polytope. The

co-k-plex inequalities hence generalize independent set inequalities and Theorem 14

establishes that they form facets of Pk(G) when k = 2. The next natural question is

whether co-k-plex inequalities form facets of Pk(G) for k ≥ 3.

Although co-k-plex inequalities form facets of Pk(G) for k = 1, 2, they do not for

k ≥ 3. Consider a graph G = (V, ∅) with at least k vertices. Note that G is a co-k-

plex and the corresponding inequality
∑
i∈V

xi ≤ ρk is not supporting since ωk(G) = k

and there is no x ∈ Pk(G) that satisfies it at equality (Note that k < ρk for k ≥ 3).

Hence, these inequalities do not form facets of Pk(G) for all G. This is in contrast to

the results known for k = 1, 2. The reason is ρk = k for k = 1, 2 and every graph G

with at least k vertices has a k-plex of size ρk (= k). The next natural question, if

they form facets when G is a co-k-plex with ωk(G) = ρk, k ≥ 3 is also settled in the

negative by the following counterexamples.

Assume that k is even. Construct graphs G of arbitrary order n ≥ ρk as the

union of n − ρk clique components of size one and two clique components of size

k− 1 = ρk/2. Then G is a co-k-plex with the two “large” clique components forming

a k-plex of size ρk. Suppose F = {x ∈ Pk(G) :
∑
i∈V

xi = ρk} is a facet of Pk(G). Since

Pk(G) is an integral polytope, the extreme points of F are also integral and F is a

convex hull of those integral vectors. Consider one such binary vector xo ∈ F . If

xo
i = 1 for some i that is a one-vertex clique component of G, for xo to be feasible

we have
∑

j∈V \N [i]

xo
j ≤ k − 1. But since V \N [i] = V \ {i}, we have

∑
i∈V

xo
i ≤ k, which

contradicts the fact that xo ∈ F as ρk > k. Hence, the components of extreme points

of F corresponding to one vertex components of G are all zeros. Hence, there exists

exactly one extreme point in Pk(G) that satisfies
∑
i∈V

xi ≤ ρk at equality which is the

incidence vector of vertices in Kk−1∪Kk−1. Thus, F is 0-dimensional and not a facet.

For odd k, we can have arbitrarily large graphs by adding single vertex compo-

84

nents to the antiweb Gk[V
′] constructed before. By similar arguments, we can again

show that there exists only one point in the k-plex polytope that satisfies the co-k-

plex inequality at equality. From these observations we can conclude that ωk(G) = ρk

is only a necessary condition for co-k-plex inequality to induce a facet of Pk(G).

Remark 13. Identifying graph classes for which the co-k-plex inequalities form facets

of the k-plex polytope is an important problem for future study. It is also a well-

known fact that a graph is perfect if and only if its clique polytope is completely

characterized by all the MIS inequalities and non-negativity constraints [78] (see

Section II.6.1). Similarly, we could explore k-plex perfection of graphs whose k-plex

polytope can be completely described by the co-k-plex inequalities and the trivial

bound constraints. This is also an interesting topic for future research.

VI.3. Solving the Maximum k-Plex Problem

Algorithms described in this section for the maximum k-plex problem are similar

to the ones presented for the maximum 2-club problem in the previous chapter, in

terms of goals and motivation. First is a BC algorithm which also forms a part of the

second, a specialized algorithm for power law graphs. Note that the two BC based

algorithms discussed here are for any k and they make use of the structural properties

of a k-plex to perform tasks similar to algorithms in Section V.4.

Cutting Planes and Non-dominated Variable Fixing. The BC implementation de-

veloped incorporates MIS cuts and co-k-plex cuts generated using greedy algorithms.

The implementation details and parameter settings will be discussed in Chapter VII,

a general BC framework was already presented in Algorithm 1. Furthermore, variable

fixing procedures are incorporated in the BC tree as follows. Recall from Theorem 7

that any k vertices in a k-plex dominate the graph induced by the k-plex. Thus,

85

when k variables are fixed to one for the first time in node N of the BC tree, every

non-dominated vertex (i.e., vertex not adjacent to any of the k vertices) can be fixed

to zero in the subtree rooted at node N.

The BC algorithm with MIS or co-k-plex cutting planes and non-dominated vari-

able fixing is used to solve the maximum k-plex problems on general graphs. This

BC algorithm is also a part of a specialized algorithm designed to solve maximum k-

plex problem optimally on power law graphs. The Iterative Peel-and-Branch-and-Cut

(IPBC) Algorithm (Algorithm 7) applies peeling followed by a BC algorithm, both

embedded in an iterative scheme that involves fixing variables in each iteration to be

included in the maximum k-plex. The pre-processing procedure Peel (Algorithm 6)

follows an approach similar to the one proposed in [5] for the maximum clique prob-

lem. The peeling procedure requires a feasible k-plex, initially provided by greedily

finding a maximal clique (Algorithm 5) which is a k-plex for any k.

Algorithm 5 Greedy Maximal Clique Algorithm

1: procedure GreedyMaximalClique(v, G) . v is the starting vertex

2: initialize C ← ∅
3: while V (G) 6= ∅ do

4: C ← C ∪ {v}, G ← G[N(v)] , v ← argmax{degG(i) : i ∈ V (G)}
5: end while

6: return C

7: end procedure

Peeling. The peeling procedure removes vertices of low degree-based on the size

of a known k-plex. Suppose we know that there exists a k-plex S in the graph, then

vertices with degree smaller than |S| − k in the graph cannot belong to any optimal

k-plex and can be removed. Vertices are recursively identified and removed based on

86

the condition that every vertex in an optimal k-plex has degree at least |S| − k.

Algorithm 6 Peeling Procedure

1: procedure Peel(G,S) . graph to be pre-processed, known k-plex

2: X ← {v ∈ V (G) : degG(v) ≤ |S| − k}
3: if X 6= ∅ then

4: G ← G[V \X]; go to step 2 . this will cause V (G) to change

5: end if

6: return G

7: end procedure

IPBC Algorithm. The IPBC Algorithm is more involved than the iterative ana-

logue ITBC Algorithm 4 introduced for the maximum 2-club problem. The basic idea

of fixing a vertex v ∈ V in each iteration to find an optimal solution containing v is

used again. The difference here is that we assume the k-plex number of the graph to

be large enough, i.e., ωk(G) > 2k − 2. If the assumption holds and the fixed vertex

v is in S∗ where S∗ is some maximum k-plex in G, we are guaranteed by Theorem 7

that S∗ ⊆ N2[v] as diameter of G[S∗] is at most two. Recall that the definition of

2-neighborhood of a vertex v in G is given by N2[v] = {i ∈ V (G) : dG(v, i) ≤ 2}.
As we iterate over v ∈ V we only need to consider vertices in N2[v], assuming that

there is a large k-plex containing v. Under this assumption, for each v ∈ V peeling

procedure is called on the graph induced by N2[v] along with the lower-bound ini-

tialized with a maximal clique (size) and then updated during the iterations. BC is

used after peeling to find a maximum k-plex containing v by adding the additional

constraint xv = 1 to the system. The resulting solution is used to update the current

best k-plex S if necessary. At the end of every iteration, vertex v can be removed

from the graph as from that point we are not interested in k-plexes containing v.

87

Algorithm 7 Iterative Peel-and-Branch-and-Cut (IPBC) Algorithm

1: procedure IPBC(G) . the k-plex instance

2: Go ← G . needed if assumption fails

3: for each v ∈ V , Sv ← GreedyMaximalClique(v,G) end for

4: S ← argmax{|Sv| : v ∈ V } . S is a feasible k-plex

5: for v ∈ V (G) : degG(v) = ∆(G) do . find a maximum k-plex containing v

6: if |N2[v]| > |S| then

7: G̃ ← Peel(G[N2[v]], S) . only i ∈ N2[v] can be included

8: if |V (G̃)| > |S| then

9: S̃ ← branch-and-cut(G̃, xv = 1) . v must be included

10: S ← argmax{|S|, |S̃|} . update if necessary

11: end if

12: end if

13: G ← G− v . delete v from G

14: end for

15: if |S| > 2k − 2 then

16: return S

17: else . assumption failed, re-solve

18: S ← Branch-and-cut(Go,
∑
v∈V

xv ≤ 2k − 2)

19: return S

20: end if

21: end procedure

88

Once the iterations are complete, if the best known k-plex was larger than 2k − 2,

our assumption was right and it can be returned as the optimal solution. If our as-

sumption was incorrect, the solutions from the iterative procedure are not applicable

and we re-solve maximum k-plex problem on the original graph with the additional

constraint that
∑
v∈V

xv ≤ 2k − 2. This is not especially disadvantageous since even a

complete enumeration of all k-plexes of size k to 2k − 2 to find the optimum is still

polynomial for fixed k. In this situation, the BC algorithm can easily find the opti-

mum. Moreover, a k-plex of size smaller than 2k − 2 might not be of much practical

use since for most applications meaningful ωk(G) should be large compared to k. If

not, one must reconsider the choice of k used or investigate the data closely.

IPBC Algorithm is exact, but worst-case exponential. As was the case with the

ITBC Algorithm, the approach taken in IPBC algorithm is to solve n NP-hard prob-

lems of smaller size instead of one large NP-hard problem. Note that the diameter-

two assumption is essential to facilitate the iterative scheme, and to focus on smaller

graphs induced by the two-neighborhood in each iteration. Without the assumption,

even after fixing a vertex we would be forced to consider all the other vertices– both

neighbors and non-neighbors. The simple checks on sizes in combination with peeling

and the assumption of a large k-plex are designed to enable us handle large sparse

instances by decomposing the graph. Avoiding a memory consuming large integer

program and making use of the properties established in Theorem 7 will enable us to

reduce the number of BC calls and permit us to solve maximum k-plex problem to

optimality on very large but very sparse graphs like power law graphs. Our claims

will become evident from the detailed computational study of the BC implementation

and the IPBC algorithm presented in Chapter VII.

89

VI.4. On the Maximum Clique Problem

Consider the following 0,1-formulation of the maximum clique problem on G = (V, E).

Let degḠ(i) = |V \N [i]| as before.

ω(G) = max
∑
i∈V

xi (6.8)

subject to:

∑

j∈V \N [i]

xj ≤ degḠ(i)(1− xi) ∀ i ∈ V (6.9)

xi ∈ {0, 1} ∀ i ∈ V (6.10)

This formulation is a special case of the maximum-k-plex formulation (6.1) - (6.3)

presented before when k = 1 as ω1(G) = ω(G). Constraint (6.9) ensures that no

non-neighbor of a vertex is included in the clique for every vertex in the clique and

becomes redundant for others. We will refer to the formulation (6.8) - (6.10) of the

maximum clique problem as the 1-plex formulation.

This case was excluded in the previous polyhedral study for the following reason.

Unlike the maximum-k-plex problem for 1 < k < n, xi ≤ 1 is not always a facet for

the maximum clique problem. It induces a facet if and only if V = N [i]. Since when

the condition is satisfied, there exist n affinely independent vectors ei and ei + ej for

all j ∈ N(i) = V \ {i}, that lie on the face defined by xi ≤ 1, and when the condition

is not satisfied, there exists a j ∈ V \N [i] such that xi + xj ≤ 1 is valid for the clique

polytope. In other words xi ≤ 1 is a facet if and only if {i} is a MIS. This is just a

special case of a classical result due to Padberg [157].

Another interesting observation is that, to the best of our knowledge, this is the

most compact integer programming formulation of the maximum clique problem with

exactly n variables and n constraints. The classical (complement) edge formulation

(6.11) - (6.13), has n variables and |Ē| constraints which could be O(n2) in the worst

90

case. This implies that while solving the maximum clique problem using the 1-plex

formulation, the LP solved at the nodes of a BC tree is smaller in size compared to

the edge formulation if the same number of cuts are added.

ω(G) = max
∑
i∈V

xi (6.11)

subject to:

xi + xj ≤ 1 ∀ (i, j) ∈ Ē (6.12)

xi ∈ {0, 1} ∀ i ∈ V (6.13)

The other well known MIS formulation where constraint (6.12) is replaced by (6.14)

has n variables and O(3n) constraints in the worst case [149].

∑
i∈I

xi ≤ 1 for each MIS, I in G (6.14)

However the compactness of the 1-plex formulation comes at a price which we

will make clear now. The edge formulation is closely related to the 1-plex formulation

in the following sense. Note that constraint (6.12) can be rewritten as

xi + xj ≤ 1 ∀ i ∈ V, j ∈ V \N [i], (6.15)

which amounts to repeating constraints in the edge formulation. Now it is easy to

see that constraint (6.9) in the 1-plex formulation can be obtained by summing con-

straint (6.15) over all j ∈ V \N [i], for each i ∈ V , which results in n constraints. Let

C(G) denote the clique polytope of G, LPedge(G) denote the LP relaxation polytope

of the edge formulation and let LP1plex(G) denote the LP relaxation polytope of the

1-plex formulation. Then we have, C(G) ⊆ LPedge(G) ⊆ LP1plex(G) since LP1plex(G)

is defined by a surrogate system [102] of LPedge(G). Thus, we solve a poorer relaxation

in the nodes of a BC tree when we use the 1-plex formulation to find ω(G).

91

This trade-off between the compactness of our new 1-plex formulation versus the

tight LP relaxation offered by the classical edge formulation, for the maximum clique

problem, will be investigated experimentally in Chapter VII.

Summary of Results. In this chapter, we established some important fundamental

results for the maximum k-plex problem. The k-plex polytope is defined and its basic

properties are established. Three families of combinatorial inequalities, valid for the

polytope are identified. Further, the co-k-plex inequality is shown to be facet-inducing

for the k-plex polytope when k = 2. The potential for generalizing the facet result

for k ≥ 3 is discussed in great detail.

Variable fixing procedures that can be incorporated in a BC algorithm are de-

veloped based on the domination property of a k-plex. An iterative version of the

BC algorithm is also developed with embedded preprocessing techniques that exploit

the structural properties of a k-plex, such as low diameter and high degree for low

k. This specialized algorithm is designed to work well on very large, but very sparse,

power law graphs such as many real-life social and biological networks.

A surprising new and compact IP formulation for the classical maximum clique

problem was identified. This new formulation is studied and its connection to the

well-known edge formulation for the problem is established. In the next chapter,

extensive computational experiments are conducted to test the effectiveness of the

approaches proposed in this chapter. Some preliminary experiments are also con-

ducted to investigate the algorithms developed in Chapter V.

92

CHAPTER VII

COMPUTATIONAL EXPERIMENTS

This chapter presents our computational experience with the algorithms developed

in Chapter VI. Extensive investigation of BC and IPBC algorithms proposed for

the maximum k-plex problem is carried out on a large test-bed of instances. In

Section VII.1, we describe all the relevant BC parameters and in Section VII.2 we

describe the instances used in testing. Section VII.3 presents our parameter settings,

cut generation heuristics, numerical results and observations. In Section VII.4, we

present a computational study of the 1-plex formulation and edge formulation of the

maximum clique problem discussed in Section VI.4.

Implementations of the BC algorithms for finding a maximum 2-club and for the

maximum k-clique problem by finding a maximum clique on the power graph, have

been developed as part of this dissertation work. However, our experimental results

are limited to finding a maximum 2-club on social and biological networks using the

ITBC algorithm. It was observed that most established benchmarks have diameter

two and hence meaningful experiments could not be conducted. Development of

appropriate benchmark instances is an important practical issue for testing algorithms

for these problems. Our preliminary results of ITBC algorithm on real-life instances

is presented in Section VII.5.

VII.1. General Implementation Details

Details that are common to all our experiments are the following. All numerical

experiments were conducted on Dell Optiplex GX620r computers with Intel

Pentium Dr 3.20GHz, 3.19Ghz processor and 2GB RAM. The core of all our algo-

93

rithms is a BC approach, implemented using Ilog Cplex 9.0r [119]. The biggest

advantage of using the framework provided by Cplexr is the effective default set-

tings that take care of the branching process, node selection, variable selection, primal

heuristics, pre-solving among others, while the bounding is done by solving the LP

relaxation with the user-specified cuts.

Cuts are generated at every node of the BC tree, and are called local cuts as

they are valid at the node in which they are generated and for all its child nodes,

not necessarily the entire BC tree. Local cuts are implemented using the Cplexr

goals feature. For generating local cuts, the vertices corresponding to variables fixed

at zero in that node are deleted from the graph before cuts are found, and only

variables with high fractional value (≥ HiFracVal, external constant) are used as

starting vertices for finding cuts. This approach enables us to find cuts that are

likely to be violated since the starting vertex, which is a part of the cut generated

is already at a high value. Distinct round of cuts generated are tested for violation

by the LP optimum at the node where they are generated. Most violated cuts,

MaxLocalCutsPerNode (external constant) in number, are added to the system.

Cplexr re-solves the problem at that node and handles the cut management from

that point onwards. By limiting the number of cuts added at each node we ensure

that the size of the LP solved at any node is never too big, always bounded by

MaxLocalCutsPerNode×n.

It should be noted that Cplexr generates its own classes of cuts to solve any

given MIP. All such cuts were turned off and only user defined cuts were used in

the BC implementations. A description of relevant Cplexr parameters that were

changed from their default values are as follows. Apart from regular termination of an

MIP (optimal or infeasible), Cplexr can be forced to terminate gracefully returning

the best integer feasible solution and objective (if found), as well as a bound on the

94

optimum, when an upper time limit is reached by setting the Cplexr parameter

TiLim to the desired value. If non-optimal termination by reaching the set time limit

was observed for a particular order and density, runs were not conducted for higher

orders with the same density. Furthermore, in order to control memory usage, we

can set an upper limit on RAM usage by setting Cplexr parameter WorkMem to a

desired value and once that limit is reached the BC tree is written to the hard disk.

By setting Cplexr parameter NodeFileInd to an appropriate value, Cplexr can be

forced to write the BC tree as files on hard disk in different ways. When NodeFileInd

is 0, files are not written to hard disk, when NodeFileInd is 1 files are not written

to hard disk but the BC tree is stored in RAM in a compressed fashion (this is the

default), when NodeFileInd is 2 files are written to hard disk without compression

and when NodeFileInd is 3 files are written to hard disk after compression.

VII.2. Description of the Test-bed

The test-bed of instances used in our experiments consists of two broad groups.

The first group consists of graphs of various order and size generated using San-

chis generators [168] and benchmark clique instances from the Second Dimacs chal-

lenge [84, 125]. The second group of instances are a set of Erdös collaboration net-

works [105]; protein interaction networks of the yeast Saccharomyces cerevisiae [123]

and the gastric pathogen Helicobacter Pylori [165, 47]; a collaboration network of

authors in computational geometry available from [33]; and a text-mining network

based on Reuters news reporting following the tragic events of September 11 available

from [33]. The second group instances are all large, sparse graphs and the effectiveness

of the IPBC algorithm will become evident on this group.

Group I. Since the maximum k-plex problem had not been previously studied,

95

Table 1 Dimacs benchmarks

Graphs n m d ω(G)
c-fat200-1.clq 200 1534 0.077 12
c-fat200-2.clq 200 3235 0.163 24
c-fat200-5.clq 200 8473 0.426 58
c-fat500-1.clq 500 4459 0.036 14
c-fat500-2.clq 500 9139 0.073 26
c-fat500-5.clq 500 23191 0.186 64
c-fat500-10.clq 500 46627 0.374 126
hamming6-2.clq 64 1824 0.905 32
hamming6-4.clq 64 704 0.349 4
hamming8-2.clq 256 31616 0.969 128
hamming8-4.clq 256 20864 0.639 16
hamming10-2.clq 1024 518656 0.990 512
hamming10-4.clq 1024 434176 0.829 40
johnson8-2-4.clq 28 210 0.556 4
johnson8-4-4.clq 70 1855 0.768 14
johnson16-2-4.clq 120 5460 0.765 8
johnson32-2-4.clq 496 107880 0.879 16
keller4.clq 171 9435 0.649 11
keller5.clq 776 225990 0.751 27
MANN a9.clq 45 918 0.927 16
MANN a27.clq 378 70551 0.990 126
MANN a45.clq 1035 533115 0.996 345
MANN a81.clq 3321 5506380 0.999 ≥1100
brock200 1.clq 200 14834 0.745 21

the most meaningful choice for benchmark instances was those developed for the

maximum clique problem. Table 1 presents information regarding the 24 Dimacs

benchmark instances used in our experiments. Note that some of the Dimacs in-

stances are also graphs arising in various applications. Johnson and Hamming graph

families arise in coding theory and c-fat graphs arise in fault diagnosis. Description

of these and other Dimacs instances can be found in [112, 42, 84].

The Sanchis generator available at [84] produces hard test instances for the max-

imum clique problem with specified maximum clique size, number of vertices, edges

and a construction parameter, r. The number of vertices in the generated Sanchis

96

graphs was varied from 100 to 1000 in steps of 100 and the edge density (d) was var-

ied from 0.4 to 0.9 in steps of 0.1. The number of edges was calculated as bdn(n−1)
2

c,
where bac is the largest integer less than or equal to a. In one set of Sanchis in-

stances the maximum clique size was fixed at d2 log1/d ne (where dae is the smallest

integer greater than or equal to a) and in the second set the maximum clique size

was fixed at dn
5
e. Sanchis generators typically generate hard instances [168] when the

specified clique size is the expected clique size in a uniform random graph given by

ω(G(n, p)) ∼ 2 log1/p n [40, 11]. The construction parameter r, which has to be an

integer from interval [0, n
ω(G)

− 1], also controls the difficulty level of the instances.

In general smaller r values are recommended for dense graphs and larger r values

are recommended if the clique number is small [168]. In our experiments r was set

at b0.75(n
ω(G)

− 1)c. Henceforth, Sanchis instances with clique number d2 log1/d ne
would be referred to as “Sanchis-log” instances and Sanchis instances with dn

5
e clique

number as “Sanchis-linear” instances for simplicity. Group I consists of 24 Dimacs

instances, 60 Sanchis instances for each maximum clique size type (log and linear)

resulting in a total of 144 instances.

Group II. The collaboration network of authors in computational geometry has

vertices representing authors from this area and for every two authors the number

of joint works is available. This permits us to use a threshold for the edge to be

included in the graph. Two authors are connected by an edge if they have (strictly)

more than threshold joint works. We consider these graphs for threshold t = 0, 1, 2 re-

sulting in three instances named COMP-GEOM-t.PAJ. Erdös collaboration networks

are also similar, where vertices represent mathematicians and an edge indicates that

the mathematicians represented by the endpoints have published together. But these

collaboration networks are centered around Paul Erdös and Erdös number of a math-

ematician is his or her shortest distance to Erdös in this network. We used the

97

following Erdös collaboration networks available from [33, 105] in our experiments:

ERDOS−x− y.NET, where x represents the last two digits of the year for which the

network was constructed, and y represents the largest Erdös number of a mathemati-

cian in that graph. We considered six such networks for years 1997-1999 and y = 1

and 2. We will refer to ERDOS−x− y.NET graph as the y-neighborhood Erdös net-

work for year x. Note that in the instances we used the vertex corresponding to Erdös

himself is excluded. Apart from the aforementioned social networks the following two

biological networks, protein interaction networks of H. Pylori and S. cerevisiae were

also used in testing. Recall the definitions from Chapter I where we also presented a

picture of the H. Pylori network. The text-mining network (DAYS.NET) from [33] is

based on all stories released during 66 consecutive days beginning at 9:00 AM EST

9/11/01 by the news agency Reuters concerning the September 11 attack. The net-

work is based on information compiled by Steve Corman, Kevin Dooley and Robert

McPhee at the LOCKS labs in Arizona State University [75, 76]. The vertices of the

network are selected words that appeared in the news and there is an edge between

two words if they appear in the same text unit (sentence) and the edges are weighted

with the number of co-appearances of its end-points. We use a threshold model as

before and DAYS-t.PAJ refers to this network with only edges of edge weight at least

t + 1 included. Graphs were constructed for t = 3, 4, 5.

Apart from the fact that Group II graphs are constructed from real-life data,

another commonality among all these graphs is that they are extremely large and

extremely sparse graphs that obey a power-law degree distribution.

98

VII.3. Numerical Results: Maximum k-Plex Problem

Our BC implementations incorporate non-dominated variable fixing introduced in

Section VI.3 and MIS/co-k-plex cuts for the maximum k-plex problem introduced

in Section VI.2 into the general BC framework described in Algorithm 1. Settings

for the parameters introduced in Section VII.1 were arrived at after careful tuning

in preliminary experiments. These values are detailed in Table 2. We set WorkMem

to 0MB to force Cplexr to write the BC tree to the disk immediately and avoid

using any RAM. We set the NodeFileInd parameter to 2 enabling Cplexr to write

the BC tree to the hard disk without any compression. These measures are taken to

avoid any memory shortage as the BC tree grows exponentially in size, without any

significant increase in runtime [119].

Table 2 Parameter settings

Parameter Value
HiFracVal 0.75
MaxLocalCutsPerNode 6
TiLim 3 hours
WorkMem 0MB
NodeFileInd 2

Two versions of the BC algorithm for the maximum k-plex problem were imple-

mented and studied on instances from Group I for k = 1, 2. Both versions employ

the same parameter settings in Table 2 and non-dominated variable fixing, they differ

in the cuts used. One version incorporates MIS cuts while the other incorporates

co-k-plex cuts. Recall our earlier remarks that for k = 1, the MIS inequalities and

co-1-plex inequalities are identical. For k = 2, the co-2-plex inequalities are facet

defining and (weakly) dominate the MIS inequalities.

To find a local cut at some node of the BC tree we delete from the graph, vertices

99

fixed to 0 at that BC node to form the residual graph and we identify variables with

high fractional value in the node’s LP optimum. We then call the greedy algorithm

for MIS (Algorithm 8) on the residual graph with each highly fractional variable as

starting vertex to generate the cut. For the second BC version, we call the greedy

algorithm for finding maximal co-k-plexes (Algorithm 9) instead of MIS. Distinct cuts

from the generated cuts are identified and from them, MaxLocalCutsPerNode

many most violated cuts are added to the system if available, or all the violated

cuts are added if fewer than MaxLocalCutsPerNode violated cuts are found.

The first version of the BC algorithm using MIS cuts is used in the IPBC algorithm

presented before (Algortihm 7 in Section VI.3). Henceforth, by “BC-MIS” we refer

to the first version of the BC algorithm and by “BC-CkPLX” the second version, and

clearly they are different only for k = 2 case.

Algorithm 8 Greedy MIS Algorithm

1: procedure GreedyMIS(v, G) . v is the starting vertex

2: initialize I ← ∅
3: while V (G) 6= ∅ do

4: I ← I ∪ {v}, G ← G−N [v] , v ← argmin{degG(i) : i ∈ V (G)}
5: end while

6: return I

7: end procedure

VII.3.1. BC Algorithms on Group I Instances

In this section we only provide a summary of our experimental results on BC for

k = 1, BC-MIS and BC-C2PLX for k = 2 on Sanchis instances. Complete details

of the experiments with Sanchis instances are provided in Appendix A. Complete

100

Algorithm 9 Greedy Co-k-plex Algorithm

1: procedure GreedyCo-k-Plex(v,G) . v is the starting vertex

2: initialize I ← GreedyMIS(v,G)

3: G ← G− I

4: while V (G) 6= ∅ do

5: u ← argmin{degG(i) : i ∈ V (G)}
6: if I ∪ u is a co-k-plex then . see Remark 12 in Section VI.2

7: I ← I ∪ u

8: end if

9: G ← G− u

10: end while

11: return I

12: end procedure

results for Dimacs instances are provided here for the aforementioned algorithms.

The largest order up to which optimal resolution was possible on Sanchis in-

stances within the 3 hour time limit using specified algorithm for each density is

presented in Table 3 and Table 4. Exponential growth in the number of BC nodes

and hence in running time were observed, which is not surprising given the intractabil-

ity of the problem. As noted before, Sanchis generators are known to produce hard

instances when specified maximum clique size is around the expected clique number

of a uniform random graph. This is observed in our case also as we perform con-

sistently better on Sanchis-linear instances compared to Sanchis-log instances for all

algorithms. Generally speaking, our ability to solve larger Sanchis-linear instances

decreases with increase in edge density. This trend is also observed in Sanchis-log

instances with the exception that 90% dense instances appear to be relatively easier.

101

We also observe that for all algorithms, on all Sanchis instances we perform better

when k = 1 compared to k = 2. This could be explained by noting that the number

of feasible solutions, as well as possibility of alternate optima is higher when k = 2

compared to k = 1. Finally, between the two versions for k = 2, BC-MIS is consis-

tently better compared to BC-C2PLX despite the fact that co-2-plex inequalities are

theoretically the better choice. This observation clearly demands further investigation

and clarification which follows.

Table 3 Summary of results on Sanchis-log instances

Algorithm d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
BC, k = 1 700 500 400 400 300 300
BC-MIS, k = 2 300 200 200 100 100 200
BC-C2PLX, k = 2 100 100 100 100 100 200

Table 4 Summary of results on Sanchis-linear instances

Algorithm d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
BC, k = 1 1000 1000 1000 800 500 100
BC-MIS, k = 2 900 500 400 200 < 100 100
BC-C2PLX, k = 2 300 200 100 100 < 100 < 100

The greedy algorithm for finding maximal co-2-plexes is more time consuming

compared to finding MIS. When a vertex is added to an independent set, we can

delete all its neighbors and proceed until we find a MIS. On the other hand, only

vertices that can be deleted while finding a maximal co-2-plex are the vertices that

have already been added and the ones outside that cannot be added to the current set.

Both neighbors and non-neighbors that do not belong to either of those cases must

be considered until all the vertices have been classified into one of the two groups.

Due to this simple fact, even though we take a fast and greedy approach, the cut

102

generation heuristic is relatively expensive. As a consequence, more time is spent at

each node and fewer nodes are enumerated within the specified time limit by the BC-

C2PLX algorithm. The performance of BC-MIS is better only due to the fact that

more BC nodes can be enumerated within the specified time limit, either leading to

optimal resolution or identification of better feasible solution and upper-bound (see

Appendix A for details).

As a sample illustration, consider the results in Table 5. The superscript † indi-

cates non-optimal termination when time limit set by parameter TiLim was reached

and “-” indicates instances not attempted. The running time of BC-MIS is much

smaller than BC-C2PLX, which is due to smaller running times at each BC node.

However the trend predicted by theory that is illustrated by the experiments is the

fact that the number of BC nodes enumerated is significantly smaller for BC-C2PLX

as maximal co-2-plex inequalities are facet-inducing and weakly dominate MIS in-

equalities, providing stronger cuts and hence, better bounds at each BC node. Note

that this observation is made from the instances terminating optimally, and it is not

meaningful to compare the number of BC nodes enumerated in non-optimal cases

as the enumeration would have been cut short by the time limit. This observation

is critical for the following reasons. Firstly, our choice of the algorithm depends on

our need i.e., BC-MIS is recommended whenever the run must be conducted within a

short time limit. Whenever long or no time limit is set, BC-C2PLX is preferable. Sec-

ondly, given the intractability of the problem it is obviously more important to reduce

the size of the tree by stronger bounding as offered by the BC-2PLX algorithm for

large instances. An important topic for future research is to develop faster heuristics

to generate co-k-plex cuts, which would greatly alleviate the present problem.

Our computational experience with the Dimacs benchmarks using BC (for k =

1), BC-MIS (for k = 2) and BC-C2PLX (for k = 2) are documented in Table 6, Table 7

103

Table 5 BC-MIS Vs. BC-C2PLX

Performance Measure d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
BC-MIS Sanchis-log instances n = 100

Running times (secs) 11.922 29.126 29.235 19.36 1.672 0.015
No. of BC Nodes 4687 17291 16482 11356 978 0
No. of Cuts 1740 4903 6462 6575 544 0

BC-C2PLX Sanchis-log instances n = 100
Running times (secs) 124.925 307.086 478.996 505.872 56.47 0.016
No. of BC Nodes 2490 7839 6536 4340 304 0
No. of Cuts 1559 4842 5862 5448 362 0

BC-MIS Sanchis-linear instances n = 100
Running times (secs) 2.016 6.312 21.907 325.18 10800.3† 291.586
No. of BC Nodes 407 2139 12609 224245 1223136† 178159
No. of Cuts 414 1320 5089 53805 318711† 66803

BC-C2PLX Sanchis-linear instances n = 100
Running times (secs) 18.204 107.096 426.464 4109.14 10800.3† 10800.6†

No. of BC Nodes 273 876 5437 101207 126558† 56697†

No. of Cuts 456 1194 5225 81143 109238† 37941†

BC-MIS Sanchis-linear instances n = 200
Running times (secs) 16.751 92.909 179.192 2025.52 10800.5† 10800.5†

No. of BC Nodes 678 4574 21258 404025 1225284† 958143†

No. of Cuts 877 5115 16249 260290 1037180† 666585†

BC-C2PLX Sanchis-linear instances n = 200
Running times (secs) 667.423 5418.7 10802.1† 10800.8† - -
No. of BC Nodes 724 2200 2760† 4315† - -
No. of Cuts 1091 4142 3724† 5096† - -

and Table 8 respectively. In the tables, [l, u] represent lower and upper bounds on

ωk(G) in case of non-optimal termination and ∗ indicates that the maximum k-plex

was found even though termination was not optimal (applicable only for k = 1). This

is in addition to † and “-” as described before.

VII.3.2. IPBC Algorithm on Group II Instances

The first difficulty in solving instances from Group II using only the existing BC

implementations was not the worst-case exponential growth that is expected in the

104

Table 6 Results of BC for k = 1 on Dimacs instances

Graph n d Time (secs) BC Nodes Cuts ω1(G)
c-fat200-1.clq 200 0.0770854 9.126 257 238 12
c-fat200-2.clq 200 0.162563 8.72 408 433 24
c-fat200-5.clq 200 0.425779 6.079 551 809 58
c-fat500-1.clq 500 0.0357435 151.03 608 278 14
c-fat500-2.clq 500 0.0732585 176.044 591 387 26
c-fat500-5.clq 500 0.1859 367.928 3587 7296 64
c-fat500-10.clq 500 0.373764 223.003 3753 7337 126
hamming6-2.clq 64 0.904762 0.016 0 0 32
hamming6-4.clq 64 0.349206 0.219 118 75 4
hamming8-2.clq 256 0.968627 0.016 0 0 128
hamming8-4.clq 256 0.639216 44.379 4639 7203 16
hamming10-2.clq 1024 0.990225 0.031 0 0 512
hamming10-4.clq 1024 0.828934 10800.4† 130904† 71067† [34, 385]
johnson8-2-4.clq 28 0.555556 0.031 32 4 4
johnson8-4-4.clq 70 0.768116 0.594 530 547 14
johnson16-2-4.clq 120 0.764706 2130.31 888801 144445 8
johnson32-2-4.clq 496 0.878788 10800.7† 548602† 62204† [16, 104]∗

keller4.clq 171 0.649123 82.817 37102 28985 11
keller5.clq 776 0.751546 10800.4† 140638† 86221† [27, 100]∗

MANN a9.clq 45 0.927273 0.296 59 51 16
MANN a27.clq 378 0.990148 10800.4† 541716† 20429† [125, 148]
MANN a45.clq 1035 0.9963 10800.6† 498897† 6129† [339, 422]
MANN a81.clq 3321 0.998825 10800.4† 202799† 1822† [1096, 1387]
brock200 1.clq 200 0.745427 4499.57 1143351 1590922 21

105

Table 7 Results of BC-MIS for k = 2 on Dimacs instances

Graph n d Time (secs) BC Nodes Cuts ω2(G)
c-fat200-1.clq 200 0.0770854 25.891 1507 267 12
c-fat200-2.clq 200 0.162563 24.235 799 50 24
c-fat200-5.clq 200 0.425779 90.564 4104 12 58
c-fat500-1.clq 500 0.0357435 1263.81 20702 1605 14
c-fat500-2.clq 500 0.0732585 2985.04 27166 2150 26
c-fat500-5.clq 500 0.1859 10142.8 24446 922 64
c-fat500-10.clq 500 0.373764 10800.5† 17865† 258† [126, 150]
hamming6-2.clq 64 0.904762 0.421 199 0 32
hamming6-4.clq 64 0.349206 4.609 2894 849 6
hamming8-2.clq 256 0.968627 10800.3† 828372† 0† [128, 130]
hamming8-4.clq 256 0.639216 10800.2† 707965† 468601† [16, 33]
hamming10-2.clq 1024 0.990225 10800.3† 127934† 0† [512, 533]
hamming10-4.clq 1024 0.828934 10800.4† 84322† 47755† [43, 459]
johnson8-2-4.clq 28 0.555556 1.952 1983 332 5
johnson8-4-4.clq 70 0.768116 1951.87 883011 194214 14
johnson16-2-4.clq 120 0.764706 10800.2† 631945† 146745† [10, 32]
johnson32-2-4.clq 496 0.878788 10800.3† 521882† 40228† [21, 214]
keller4.clq 171 0.649123 10800.2† 1304605† 827419† [15, 21]
keller5.clq 776 0.751546 10800.4† 79412† 49483† [31, 320]
MANN a9.clq 45 0.927273 0.262 19 11 26
MANN a27.clq 378 0.990148 10800.3† 677877† 40865† [236, 238]
MANN a45.clq 1035 0.9963 10800.6† 421833† 138879† [662, 671]
MANN a81.clq 3321 0.998825 10800.2† 57013† 23655† [2162, 2184]
brock200 1.clq 200 0.745427 10800.5† 1111998† 1059670† [25, 49]

106

Table 8 Results of BC-C2PLX for k = 2 on Dimacs instances

Graph n d Time (secs) BC Nodes Cuts ω2(G)
c-fat200-1.clq 200 0.0770854 212.239 2091 1576 12
c-fat200-2.clq 200 0.162563 7636.49 6943 6525 24
c-fat200-5.clq 200 0.425779 5006.05 1778 1526 58
c-fat500-1.clq 500 0.0357435 9587.21 6149 4085 14
c-fat500-2.clq 500 0.0732585 10800.4† 5839† 6663† [26, 108]
c-fat500-5.clq 500 0.1859 10821.4† 865† 964† [64, 167]
c-fat500-10.clq 500 0.373764 10810† 465† 253† [126, 199]
hamming6-2.clq 64 0.904762 1.686 59 127 32
hamming6-4.clq 64 0.349206 6.767 1747 883 6
hamming8-2.clq 256 0.968627 10803.4† 775† 2079† [128, 134]
hamming8-4.clq 256 0.639216 10800.3† 11082† 6514† [16, 96]
hamming10-2.clq 1024 0.990225 11201.9† 82† 60† [512, 537]
hamming10-4.clq 1024 0.828934 10802.2† 395† 32† [43, 465]
johnson8-2-4.clq 28 0.555556 1.171 1567 638 5
johnson8-4-4.clq 70 0.768116 3283.15 540326 296875 14
johnson16-2-4.clq 120 0.764706 10800.3† 570165† 219650† [10, 19]
johnson32-2-4.clq 496 0.878788 10801.1† 6832† 744† [21, 228]
keller4.clq 171 0.649123 10800.5† 27887† 26647† [15, 61]
keller5.clq 776 0.751546 11170.8† 146† 126† [30, 364]
MANN a9.clq 45 0.927273 0.289 21 15 26
MANN a27.clq 378 0.990148 10851.3† 79† 159† [236, 242]
MANN a45.clq 1035 0.9963 31343† 1† 6† [661, 742]
MANN a81.clq 3321 0.998825 10800.2† 0† 0† [2161, 2430]
brock200 1.clq 200 0.745427 10802.1† 8830† 8278† [24, 81]

107

BC tree. It was Cplexr running out of memory required to build a massive integer

program resulting in a crash. Group II instances are power law graphs that are very

sparse, and recall that our formulation in such a case results in an extremely dense

constraint matrix even though it is of size n×n. Note that our memory management

in the BC implementation using Cplexr parameters WorkMem and NodeFileInd is

applicable when the BC tree is being created but the crash occurred while building

the IP at the root node even before any solution procedure was attempted. Memory

management and data handling are important when dealing with massive amounts

of data. In our case we have only utilized real-life power law graphs of moderate size

(relatively) that have 1000 to 7000 vertices with very low edge density. Much larger

networks have been handled in literature using more advanced techniques [6, 7, 37].

But we observed that even these moderately large instances could not be attempted

using a straightforward BC algorithm as Cplexr crashed due to memory shortage.

This hurdle motivated us to develop specialized techniques that exploit the properties

of the problem and sufficiently general properties of the data in developing effective

exact approaches.

In such situations, the IPBC algorithm (see Algorithm 7 in Section VI.3 for

details) is an effective alternative as it invokes BC procedure only on a smaller graph

(assuming the original network is very sparse) and only if it is necessary after several

preprocessing procedures have been applied. This enables us to keep the memory

usage under control and hence solve the instance optimally however long it takes.

In our implementation, the only time limit imposed was via Cplexr parameter

TiLim which was set to 3 hours as before, but this is for each BC call. Hence the

implementation in the worst-case could take 3n hours to run. However, this was never

observed in practice.

It is also important to note that attempting to solve dense instances (relative to

108

Group II graphs, Sanchis graphs with d = 0.4 are also dense) using IPBC could take

prohibitively long time. Since in each iteration, a graph of almost the same size as

the original, which does not vary much from iteration to iteration, could be presented

to the BC procedure. This is much worse than providing the entire graph at once to

the BC procedure. The IPBC algorithm is hence suited only for very large and very

sparse graphs such as the instances considered in Group II.

Erdös Collaboration Networks. All Erdös graphs were optimally resolved using

the IPBC algorithm. In Table 9, we present the graph properties including the k-plex

numbers found by the IPBC algorithm. In Table 10, we present the runtime results

from this experiment. The column “IPBC Time” is the total time taken by the IPBC

algorithm excluding read-write times. The number of calls made to Cplexr is given

under column “#BC calls” column and “BC Time” gives the cumulative time taken

by Cplexr in those calls. Note that by spending significant amount of time on

preprocessing we have drastically cut short the time required by the BC procedure

as the instances solved were significantly small. To illustrate this fact we provide

the following sample results. Detailed BC call statistics are provided in Table 11 for

the k = 1 case on ERDOS-98-2.NET which corresponds to the maximum number

of BC calls and author names (reproduced verbatim from data file) of members in a

maximum 3-plex identified in ERDOS-99-1.NET is provided in Table 12. Complete

list of authors in identified k-plexes is provided in Appendix A.

Remark 14. The shifting of computational burden from BC to preprocessing which

is extremely effective for power law graphs is the key contribution of this approach,

and it will be observed henceforth on all instances from Group II.

Protein Interaction Networks. Protein interaction networks of H. Pylori and

S. cerevisiae were also optimally resolved using IPBC algorithm. The properties of

109

Table 9 Erdös networks: The number of vertices, edges, edge density, and k-plex

numbers for k = 1, 2, 3

Graph n m d ω1(G) ω2(G) ω3(G)
ERDOS-97-1.NET 472 1314 0.0118212 7 8 9
ERDOS-98-1.NET 485 1381 0.0117662 7 8 9
ERDOS-99-1.NET 492 1417 0.0117315 7 8 9
ERDOS-97-2.NET 5488 8972 0.0005959 7 8 9
ERDOS-98-2.NET 5822 9505 0.0005609 7 8 9
ERDOS-99-2.NET 6100 9939 0.0005343 8 8 9

Table 10 Results for Erdös networks using IPBC algorithm

k Graph IPBC Time BC Time #BC Calls

1

ERDOS-97-1.NET 3.438 0.547 10
ERDOS-98-1.NET 3.281 0.5 9
ERDOS-99-1.NET 3.25 0.392 9
ERDOS-97-2.NET 675.828 2.201 16
ERDOS-98-2.NET 908.969 1.047 16
ERDOS-99-2.NET 1058.89 1.123 14

2

ERDOS-97-1.NET 4.031 1.859 6
ERDOS-98-1.NET 7.734 5.344 6
ERDOS-99-1.NET 8.547 6.032 6
ERDOS-97-2.NET 754.266 88.217 7
ERDOS-98-2.NET 981.704 102.141 7
ERDOS-99-2.NET 1151.31 101.702 9

3

ERDOS-97-1.NET 6.391 4.141 6
ERDOS-98-1.NET 7.547 5.124 6
ERDOS-99-1.NET 8.203 5.639 6
ERDOS-97-2.NET 1007.7 342.936 7
ERDOS-98-2.NET 1543.52 653.875 7
ERDOS-99-2.NET 1891.3 837.015 9

110

Table 11 BC call statistics of IPBC algorithm on ERDOS-98-2.NET for k = 1 (n′,
m′ and d′ denote number of vertices, edges and density of the reduced instance solved
in that BC call)

Call No. n′ m′ d′ Fixed vertex BC time
1 452 2094 0.0205443 182 0.719
2 141 859 0.0870314 10 0.063
3 46 256 0.247343 399 0.016
4 140 829 0.0852004 160 0.047
5 46 236 0.228019 84 0.015
6 92 532 0.12709 244 0.015
7 36 184 0.292064 320 0.016
8 83 476 0.139877 454 0.031
9 60 327 0.184746 277 0.015
10 78 411 0.136863 360 0.031
11 58 298 0.180278 76 0.016
12 34 169 0.301248 67 0.016
13 23 99 0.391304 472 0
14 29 123 0.302956 21 0.015
15 22 90 0.38961 325 0.016
16 10 39 0.866667 221 0.016

Table 12 Members of a maximum 3-plex in ERDOS-99-1.NET

10: Noga Alon
78: Fan Rong K. Chung
137: Peter Frankl
145: Zoltan Furedi
162: Ronald L. Graham
280: Laszlo Lovasz
364: Vojtech Rodl
422: Joel H. Spencer
456: William T. Trotter

10

78
137

145

162

280

364
422

456

111

these graphs including the k-plex numbers for k = 1, 2, 3 are provided in Table 13. The

runtime information is not reported since both H. Pylori and S. cerevisiae instances

were resolved in under a total of 30 and 70 seconds respectively for all k values.

Fig. 10, Fig. 11, Fig. 12 and Fig. 13 illustrate the maximum k-plex identified in each

case. Note that vertex pairs that are non-adjacent correspond to protein pairs that

could be experimentally investigated for interactions that were previously unknown.

Table 13 Protein interaction networks: The number of vertices, edges, edge density,

and k-plex numbers for k = 1, 2, 3

Graph n m d ω1(G) ω2(G) ω3(G)
H. Pylori 1570 1399 0.00113586 3 5 6

S. cerevisiae 2112 2203 0.00098824 6 6 7

Fig. 10 A maximum 2-plex in

H. Pylori

Fig. 11 A maximum 3-plex in

H. Pylori

Fig. 12 A maximum 2-plex in

S. cerevisiae

Fig. 13 A maximum 3-plex in

S. cerevisiae

Computational Geometers Collaboration Network. COMP-GEOM-t.PAJ repre-

sents the collaboration network of authors in computational geometry such that every

112

edge indicates that the authors represented by the end points have at least t+1 joint

works. We considered three such networks with t = 0, 1, 2 and solved maximum

k-plex problem optimally using IPBC algorithm for k = 1, 2, 3. The properties of

these networks including k-plex numbers found are presented in Table 14. Table 15

presents the runtime results from this experiment. The column labels are as described

before. Note that on these instances very few BC calls were necessary to optimally

solve the problem and hence detailed BC call statistics are not reported. Complete

list of authors in identified k-plexes is provided in Appendix A.

Table 14 Computational geometers collaboration networks: The number of vertices,

edges, edge density, and k-plex numbers for k = 1, 2, 3

Graph n m d ω1(G) ω2(G) ω3(G)
COMP-GEOM-0.PAJ 7343 11898 0.000441383 22 22 22
COMP-GEOM-1.PAJ 7343 3939 0.000146126 10 10 11
COMP-GEOM-2.PAJ 7343 1976 7.33E-05 8 8 10

Table 15 Results for computational geometers collaboration networks using IPBC

algorithm

k Graph IPBC Time BC Time #BC Calls

1
COMP-GEOM-0.PAJ 7381.83 1.235 1
COMP-GEOM-1.PAJ 1360.36 0.375 3
COMP-GEOM-2.PAJ 927.078 0.203 2

2
COMP-GEOM-0.PAJ 7888.33 498.656 1
COMP-GEOM-1.PAJ 1409.63 58.5 2
COMP-GEOM-2.PAJ 930.172 6.765 3

3
COMP-GEOM-0.PAJ 7829.72 360.312 1
COMP-GEOM-1.PAJ 1407.47 54.297 2
COMP-GEOM-2.PAJ 927.875 8.453 1

Reuters Terror News Networks. Recall that DAYS-t.PAJ represents the text

network where vertices represent words and every edge indicates that the words rep-

resented by the end points appear in at least t + 1 sentences together. We consider

113

three such networks with t = 3, 4, 5 and solve maximum k-plex problem using IPBC

algorithm on these networks for k = 1, 2, 3. The properties of these networks includ-

ing k-plex numbers found are presented in Table 16. Table 17 presents the runtime

results from this experiment. The columns are labeled as before. These graphs were

among the hardest Group II instances. Table 18 lists the words included in maximum

k-plexes identified for k = 1, 2, 3 on one of the instances. Words belonging to maxi-

mum k-plexes identified for k = 1, 2, 3 on all instances are detailed in Appendix A.

Table 16 Reuters terror news networks: The number of vertices, edges, edge density,

and k-plex numbers for k = 1, 2, 3

Graph n m d ω1(G) ω2(G) ω3(G)
DAYS-3.PAJ 13332 9000 0.000101278 8 10 11
DAYS-4.PAJ 13332 5159 5.81E-05 7 8 9
DAYS-5.PAJ 13332 3404 3.83E-05 6 7 8

Table 17 Results for the Reuters terror news networks using IPBC algorithm

k Graph IPBC Time BC Time #BC Calls

1
DAYS-3.PAJ 7600.34 66.516 33
DAYS-4.PAJ 5634.09 13.609 23
DAYS-5.PAJ 5068.78 0.921 17

2
DAYS-3.PAJ 8421.91 1002.91 28
DAYS-4.PAJ 5842.64 210.423 21
DAYS-5.PAJ 5046.03 60.375 17

3
DAYS-3.PAJ 9628.45 2605.95 25
DAYS-4.PAJ 6036.13 505.735 20
DAYS-5.PAJ 5069.31 68.375 17

VII.4. Maximum Clique Problem: Formulation Study

In this section we study the effect of using 1-plex formulation (OPF) and edge formu-

lation (EF) for the maximum clique problem (see Section VI.4 for details) in a BC

algorithm. The OPF has the advantage that it is compact, but it is a theoretically

114

Table 18 Words belonging to a maximum k-plex identified in DAYS-5.PAJ for k =

1, 2, 3

k = 1 k = 2 k = 3
attack attack attack
new york new york new york
pentagon pentagon pentagon
plane plane plane
world trade ctr world trade ctr world trade ctr
tuesday tuesday tuesday

tower tower
twin

weaker relaxation and hence is expected to produce loose bounds in the BC tree. The

EF can have a large number of constraints and hence a larger system being solved at

the nodes of BC tree but possibly producing tighter bounds. We utilize BC imple-

mentations that are identical in every respect except for the formulation used. The

implementation has non-neighbor fixing (the special case of non-dominated variable

fixing introduced in Section VI.3 when k = 1), MIS cutting planes found using Algo-

rithm 8 as described in Section VII.3, and parameter settings from Table 2 with the

only exception of HiFracVal set to 0. This is because the extreme points of the LP

relaxation polytope of EF have {0, 1
2
, 1} components (see Section II.6.1). We solved

the maximum clique problem on Dimacs benchmarks using both formulations. Out

of the 24 Dimacs instances, we are not reporting the results for instances which were

optimally resolved with both formulations under 1 second. Results for the remaining

16 instances is presented in Table 19. For non-optimal cases indicated by †, we report

[l, u] where l is the size of best clique found and u is an upper-bound on ω(G).

Out of the 16 instances considered, 11 were optimally resolved using both for-

mulations. In 8 out of 11 cases OPF ran faster than EF while in 9 out of 11 cases

EF enumerated fewer BC nodes compared to OPF. Out of the 16 instances, 4 were

115

non-optimally terminated for both formulations, with EF and OPF finding the same

lower-bound in 2, EF finds a better lower-bound in one and OPF in the other. How-

ever, the upper-bound returned by EF was strictly better in 3 cases and was the same

as OPF upper-bound in 1 case. One instance that was not optimally solved using EF

was solved optimally using OPF. Even on this small set of benchmarks, OPF seems

to be better in speed and lower-bounds while EF seems to be better in terms of tight

upper-bounds. An efficient way to “mix” the two formulations could be a problem

for future study.

VII.5. Numerical Results: Maximum 2-Club Problem

As mentioned before, extensive testing of algorithms for the maximum 2-club problem

as conducted for the maximum k-plex problem was not possible since most instances

from Group I have diameter two. It is imperative that tough instances from practice

are benchmarked for this problem as well as procedures identified that generate diffi-

cult instances for the problem with a known optimum. Preliminary results we present

here are for the Group II graphs on which we solve the maximum 2-club problem using

the ITBC algorithm. See Algorithm 4 in Section V.4 for details. The settings used

in the ITBC implementation are as follows: the BC parameter settings are as listed

in Table 2, maximal 2-independent set facets (see Section V.3) are used as cutting

planes in the BC procedure are generated at every BC node by finding a MIS con-

taining a highly fractional starting vertex using the greedy approach (Algorithm 8)

on the square graph. As per the parameter settings, local cuts are generated from

vertices that have a high fractional value in that node’s LP relaxation and MaxLo-

calCutsPerNode many most violated cuts are added to re-solve the problem at

each BC node.

116

T
a
b
le

1
9

E
d
ge

fo
rm

u
la

ti
on

V
s.

1-
p
le

x
fo

rm
u
la

ti
on

on
D

im
a
c
s

in
st

an
ce

s

O
P

F
E

F
G

ra
ph

T
im

e(
se

cs
)

ω
(G

)
B

C
no

de
s

T
im

e(
se

cs
)

ω
(G

)
B

C
no

de
s

c-
fa

t2
00

-1
.c

lq
85

.8
67

12
33

3
16

4.
06

7
12

37
6

c-
fa

t2
00

-2
.c

lq
47

.9
89

24
42

2
88

.3
63

24
32

3
c-

fa
t2

00
-5

.c
lq

16
.2

98
58

55
7

18
.1

72
58

15
1

c-
fa

t5
00

-1
.c

lq
61

55
.9

3
14

77
2

10
80

0.
4†

[1
4,

16
5]

74
2

c-
fa

t5
00

-2
.c

lq
68

69
.4

1
26

16
59

82
93

.4
1

26
98

8
c-

fa
t5

00
-5

.c
lq

30
59

.8
7

64
25

91
38

89
.5

5
64

72
7

c-
fa

t5
00

-1
0.

cl
q

13
05

.4
6

12
6

75
22

14
11

.9
7

12
6

47
6

ha
m

m
in

g8
-4

.c
lq

18
3.

97
4

16
14

35
40

1.
17

16
26

36
ha

m
m

in
g1

0-
4.

cl
q

10
80

1.
1†

[4
0,

25
0]

37
25

10
80

0.
7†

[3
8,

15
3]

16
96

jo
hn

so
n3

2-
2-

4.
cl

q
7.

70
3

16
10

0.
06

3
16

0
ke

lle
r4

.c
lq

13
8.

21
6

11
95

92
84

.3
32

11
36

41
ke

lle
r5

.c
lq

10
80

0.
6†

[2
4,

57
]

73
35

10
80

1.
1†

[2
6,

32
]

27
22

M
A

N
N

a2
7.

cl
q

22
43

.0
3

12
6

34
64

97
31

.7
98

12
6

62
57

M
A

N
N

a4
5.

cl
q

10
80

0.
2†

[3
45

,3
47

]
20

43
43

10
80

0.
4†

[3
45

,3
47

]
30

69
48

M
A

N
N

a8
1.

cl
q

10
80

0.
5†

[1
09

8,
11

32
]

19
74

6
10

80
0.

6†
[1

09
8,

11
20

]
22

20
1

br
oc

k2
00

1.
cl

q
28

80
.4

3
21

37
07

17
34

57
.6

4
21

17
66

83

117

Table 20 Results of ITBC algorithm on Group II instances

Graph ITBC Time (secs) BC Time (secs) #BC Calls ω̄2(G)
ERDOS971.NET 3.313 0.813 3 42
ERDOS981.NET 3.5 0.656 3 43
ERDOS991.NET 3.875 0.876 3 43
ERDOS972.NET 605.313 0 0 258
ERDOS982.NET 774.625 0 0 274
ERDOS992.NET 908.704 0 0 277
H. Pylori 15.859 0 0 56
S. cerevisiae 56.703 0 0 57
COMP-GEOM-0.PAJ 7172.17 0 0 103
COMP-GEOM-1.PAJ 1254.5 0 0 71
COMP-GEOM-2.PAJ 889.141 0 0 50
DAYS-3.PAJ 5818.19 0 0 683
DAYS-4.PAJ 4849.47 0 0 434
DAYS-5.PAJ 4630.09 0 0 308

All instances were solved to optimality and the results are presented in Table 20.

Column “ITBC Time” lists the total time taken by the ITBC algorithm excluding

read/write times, the number of calls to Cplexr is in “#BC calls” column and

“BC Time” is the cumulative time taken by Cplexr for those calls. Note that for

most instances BC was unnecessary. This is because the closed neighborhood of the

maximum degree vertex used as the starting 2-club was optimal given the power law

nature of Group II instances and preprocessing procedures were sufficient to establish

optimality. In the cases where BC calls were made (3 calls for 1-neighborhood Erdös

network for each year), the cumulative BC time of all three calls was under a second.

Also note that the 2-club number is significantly larger than the 2-plex number for

each instance. Depending on our needs, an optimum as large as these could be an

advantage or a disadvantage.

Summary of Results. This chapter presented our computational experience with

the maximum k-plex problem. Reasonable parameter settings were identified after

118

preliminary experimentation with the BC implementation. These settings were used

to implement two versions of BC and the IPBC algorithm developed in Chapter VI.

Performance of the two versions of the BC algorithm is studied closely on different

types of instances and recommendations are made to aid proper selection.

IPBC algorithm was found to be extremely effective for handling and solving to

optimality, the maximum k-plex problem on very large and very sparse graphs such

as real-life power law graphs. This chapter also presents a computational study of the

novel IP formulation for the maximum clique problem proposed in this dissertation.

Preliminary results on the ITBC algorithm for solving maximum 2-club problem on

large, sparse graphs are also presented.

119

CHAPTER VIII

CONTINUOUS GLOBAL OPTIMIZATION FORMULATIONS FOR

INDEPENDENCE NUMBER OF A GRAPH∗

Cliques and independent sets are two of the most researched combinatorial objects

with deep and diverse results surrounding them, especially motivated by their vast

array of applications. Several of these results and applications were discussed in

Chapter II. Our contribution to the literature on cliques thus far is the novel integer

program presented in Chapter VI that was studied computationally in Chapter VII.

In this chapter we take a continuous optimization approach to the discrete optimiza-

tion problem of finding maximum independent sets. We present a box-constrained

continuous fractional formulation of the maximum independent set problem and char-

acterize its local and global maxima. These results contribute to the recent progress

made by studying CO problems using continuous approaches. Some of those results

from literature including the classical Motzkin-Straus formulation [150] of maximum

clique problem were already discussed in Chapter II.

∗Parts of this chapter are reprinted with permission from Balasundaram, B., Butenko, S.:
Constructing test functions for global optimization using continuous formulations of graph
problems. Journal of Optimization Methods and Software 20(4-5), 439–452 (2005) c© Tay-
lor&Francis and from Balasundaram, B., Butenko, S.: On a polynomial fractional formula-
tion for independence number of a graph. Journal of Global Optimization 35(3), 405–421
(2006) c© Springer.

120

VIII.1. Continuous Formulation for Independence Number

Theorem 15. The independence number α(G) satisfies the following global optimiza-

tion formulation:

α(G) = max
x∈[0,1]n

∑

i∈V (G)

xi

1 +
∑

j∈N(i)

xj

(8.1)

Proof. Formulation (8.1) can be deduced from a stronger result in [108] (see formula-

tion (2.6) in Section II.6.2) that utilizes an elegant probabilistic proof. We provide an

alternative deterministic proof, that permits us to study its local maxima properties

subsequently. Denote by f(x) the objective function in (8.1), i.e.,

f(x) =
∑
i∈V

xi

1 +
∑

j∈N(i)

xj

.

and let f(G) = max0≤xi≤1,i=1,...,n f(x). We need to show that f(G) = α(G). Note that

f(x) is a continuous function and [0, 1]n = {(x1, x2, . . . , xn) : 0 ≤ xi ≤ 1, i = 1, . . . , n}
is a compact set. Hence, there always exists x∗ ∈ [0, 1]n such that f(G) = f(x∗).

Next we show that every local maximum of (8.1) is binary and hence there

exists an optimal 0-1 solution to the problem. Partition V into three disjoint sets as:

V = {v}∪N(v)∪S, for some fixed v ∈ V , where S = V \ (v ∪N(v)). We can rewrite

f(x) in the form

f(x) = xvAv(x) + Bv(x) + Cv(x)

where,

Av(x) =
1

1 +
∑

j∈N(v)

xj

Bv(x) =
∑

i∈N(v)

xi

xv + 1 +
∑

j∈N(i)\{v}
xj

Cv(x) =
∑
i∈S

xi

1 +
∑

j∈N(i)

xj

121

We now show that f(x) is a convex function with respect to each variable (xv). For

any x ∈ [0, 1]n, we fix xi for all i 6= v, and treat f(x) as a function of single variable

xv ∈ [0, 1]. Observe that xvAv(x) + Cv(x) is linear with respect to xv as Av(x), Cv(x)

are independent of xv and hence is convex. Bv(x) is a sum of functions of the form

gi(xv) =
ai

xv + bi

,

where 0 ≤ ai ≤ 1, bi = 1 +
∑

j∈N(i)\{v}
xj, and ai, bi do not depend on xv. The above

function is convex in the region xv > −bi, so

xi

xv + 1 +
∑

j∈N(i)\{v}
xj

is convex as a function of xv for xv > −1 − ∑
j∈N(i)\{v}

xj, and hence it is convex

for xv ∈ [0, 1]. Thus Bv(x) is also convex as a function of xv. Therefore, f(x) =

xvAv(x) + Bv(x) + Cv(x) is a convex function with respect to xv. In fact, f(x) is

strictly convex with respect to xv, unless xi = 0 for all i ∈ N(v). A strictly convex

function over a closed interval can have a local maximum only at an endpoint of

the interval (in our case 0 or 1). On the other hand, if xi = 0 for all i ∈ N(v)

then f(x) = xv + Cv(x) is linear with respect to xv and its only local maximum as

a function of xv ∈ [0, 1] is attained at xv = 1. Thus, any local maximum of f(x)

as a function of xv would be attained at xv = 0 or 1, the boundary points. This is

true for every v ∈ V and hence any local maximizer x∗ of (8.1) is a 0-1 vector, i.e.

x∗ ∈ {0, 1}n. We have shown that ∃ x∗ ∈ {0, 1}n such that f(G) = f(x∗). To prove

that f(G) = α(G), we establish the inequality in both directions.

1. f(G) ≥ α(G).

Let I∗ be a maximum independent set of G. Construct a feasible solution x0 of

122

(8.1) as follows,

x0
i =





1, if i ∈ I∗

0, otherwise

Then we have f(x0) = α(G) and hence f(G) ≥ f(x0) = α(G).

2. f(G) ≤ α(G).

Let x∗ be an optimal 0-1 solution to (8.1). Let f(G) = f(x∗). Without loss of

generality we can assume that the optimal solution is x∗1 = x∗2 = . . . = x∗r =

1; x∗r+1 = x∗r+2 = . . . = x∗n = 0, for some r. Let V ∗ = {1, . . . , r}. Then we have:

f(G) = f(x∗) =
∑
i∈V ∗

x∗i
1 +

∑
j∈N(i)

x∗j
=

∑
i∈V ∗

1

1 + |N(i) ∩ V ∗| (8.2)

since
∑

j∈N(i)

x∗j = |N(i) ∩ V ∗|.
The following lower-bound on the independence number α(G) of an arbitrary

graph G is known in the literature as Wei’s lower-bound [56, 187], and also as

Turan’s theorem [11]:

α(G) ≥
∑

i∈V (G)

1

1 + di

(8.3)

Using (8.3) for G̃ = G[V ∗], the subgraph induced by V ∗ we obtain

α(G̃) ≥
∑
i∈V ∗

1

1 + |NG̃(i)| = f(G). (8.4)

Here we used (8.2) and the observation that ∀i ∈ V ∗, |N(i)∩V ∗| = |NG̃(i)|. But

α(G) ≥ α(G̃) ≥ f(G) thereby establishing the result in (8.1).

Remark 15. Note that an optimal solution to the problem does not necessarily corre-

spond to a maximum independent set. Although there does exist at least one that does

correspond to a maximum independent set, it is possible for alternate optima to exist.

For instance, when G = Kn, the complete n-vertex graph, then x∗i = 1, i = 1, . . . , n

123

is optimal. This may be the case even for graphs that are not complete. Consider

the example in Fig. 14. It can be easily verified that α(G) = 3 and corresponds to

{1,5,7}, {2,5,7}, {3,5,7}, {2,4,6}. But the objective function attains optimum for

{1,2,3,5,7}, {1,2,5,7}, {2,3,5,7}, {1,3,5,7} also, although these are not independent.

1

2 3

4

5

7

6

Fig. 14 An example graph illustrating Remark 15

Remark 16. We will say that a 0-1 vector x “corresponds to” a set of vertices I ⊆ V ,

which is constructed as I = {i ∈ V : xi = 1}. We call the induced subgraph G[I]

the “support graph” of x and denote it by G(x). Recall that for I ⊆ V , the binary

vector x ∈ {0, 1}n such that xi = 1 if and only if i ∈ I is called the incidence vector

of I. We denote by x ≡ I, the equivalence of a binary vector to a subset of vertices.

Corollary 1. The support graph of every global maximum of (8.1) is a union of α(G)

components, each of which is a complete graph.

Proof. Recall from the proof of Theorem 15 that G̃ is the support graph of a global

maximum of (8.1). From the proof we also know that α(G) = f(G) and α(G) ≥
α(G̃) ≥ f(G). Hence we have,

α(G) = α(G̃) = f(G) =
∑
i∈V ∗

1

1 + |NG̃(i)| (8.5)

124

Since lower-bound (8.3) is sharp on G̃, it is a disjoint union of components each of

which is a complete graph [174, 11]. Now it is easy to see that sum of the fractional

terms for vertices in each clique component equals one and hence there are α(G)

components in G̃.

Henceforth in this chapter, we call a graph such as G̃, an independent union of

cliques (IUC), since the cliques are disjoint and there is no edge between two vertices

in different cliques (each clique is a maximal connected component in the graph).

VIII.2. Local Maxima

We now identify some properties of local maxima of the above formulation. Note

that since any local maximum of (8.1) is a 0-1 vector, it corresponds to a subset of

vertices of the graph. We now set up the Karush-Kuhn-Tucker (KKT) conditions for

this formulation and a lemma that will be used subsequently.

Denote by f(x) the objective function of (8.1):

f(x) =
∑
i∈V

xi

1 +
∑

j∈N(i)

xj

. (8.6)

We apply the first order necessary conditions (FONC) to problem (8.1) written as,

max f(x)

subject to:

xi − 1 ≤ 0 ∀ i ∈ V : λi;

−xi ≤ 0 ∀ i ∈ V : µi.

Recall that all local maximizers of (8.1) are binary vectors. And it is easy to

check that the Jacobian of all active constraints has full rank at any binary vector,

125

therefore all feasible binary vectors are regular points for problem (8.1). Thus, any

local maximizer xo of (8.1) satisfies the KKT conditions. This implies that there exist

λo, µo such that the following conditions are satisfied,

∀ v ∈ V :
∂f

∂xv

∣∣∣∣
x=xo

= λo
v − µo

v;

λo
v(x

o
v − 1) = 0;

µo
v(−xo

v) = 0;

λo
v ≥ 0; µo

v ≥ 0;

where,

∂f

∂xv

∣∣∣∣
x=xo

=
1

1 +
∑

j∈N(v)

xo
j

−
∑

i∈N(v)

xo
i

(xo
v + 1 +

∑
j∈N(i)\{v}

xo
j)

2
.

Consider Io ⊆ V , where xo ≡ Io. Then ∀ v ∈ Io, xo
v = 1 and from the KKT conditions

above we have,

µo
v = 0;

λo
v =

1

1 +
∑

j∈N(v)

xo
j

−
∑

i∈N(v)

xo
i

(xo
v + 1 +

∑
j∈N(i)\{v}

xo
j)

2

=
1

1 + |N(v) ∩ Io| −
∑

i∈N(v)∩Io

1

(1 + |N(i) ∩ Io|)2
.

On the other hand, if v ∈ V \ Io then xo
v = 0 and the KKT conditions yield,

λo
v = 0;

µo
v =

∑

i∈N(v)

xo
i

(xo
v + 1 +

∑
j∈N(i)\{v}

xo
j)

2
− 1

1 +
∑

j∈N(v)

xo
j

=
∑

i∈N(v)∩Io

1

(1 + |N(i) ∩ Io|)2
− 1

1 + |N(v) ∩ Io| .

Next we prove a lemma that will be used in further discussion.

126

Lemma 3. Consider the problem

max{f(x) : Ax ≤ b, x ∈ Rn}

where f : Rn → R is a continuously differentiable function, A ∈ Rm×n,m > n.

Assume that a regular point x∗ satisfies the FONC so that n constraints are active in

x∗ and strict complementarity holds, i.e. there exists µ ≥ 0 such that

∇f(x∗) = AT µ

and the components of µ corresponding to active constraints in x∗ are positive. Then

x∗ is a local maximizer of the considered problem.

Proof. Denote by Ā ∈ Rn×n the submatrix of A consisting of rows corresponding

to the constraints that are active in x∗ and by µ̄ ∈ Rn the corresponding Lagrange

multipliers µ̄ > 0. Then

∇f(x∗) = ĀT µ̄. (8.7)

Consider any feasible direction d in x∗. Then Ā(x∗ + d) ≤ b̄, where b̄ ∈ Rn is the

vector of components of b corresponding to the active constraints. Since Āx∗ = b̄,

we have Ād ≤ 0. Moreover, since x∗ is regular, Āx = b̄ has a unique solution (given

by x∗), thus if d 6= 0 then at least one of the components of Ād has to be negative.

Thus, using (8.7) we have ∇f(x∗)T d = µT Ād < 0. So, d is a descent direction. Since

d is an arbitrary feasible direction, x∗ is a local maximizer.

Theorem 16. If xo is a point of local maximum of (8.1) and xo ≡ Io, then Io is a

dominating set.

Proof. Suppose that Io is not a dominating set, then there exists xo
i = 0 such that

127

N(i) ∩ Io = ∅. Construct x′, such that

x′j =





ε > 0, if j = i;

xo
j , if j ∈ V \ {i}.

Then we have, f(x′) = f(xo)+ε, which contradicts the fact that xo is a local maximum.

Hence, Io must be a dominating set.

Corollary 2. If xo is a local maximizer of (8.1) with xo ≡ Io and Io is an independent

set, then it is maximal and there exist unique λo, µo such that (xo, λo, µo) solves KKT-

FONC given by

λo
v =





1, if v ∈ Io;

0, if v ∈ V \ Io;

µo
v =





0, if v ∈ Io;

|N(v) ∩ Io| − 1
1+|N(v)∩Io| , if v ∈ V \ Io.

Remark 17. The conclusion that a local maximum corresponds to a dominating set

is only a necessary condition and the converse is obviously not true. For example,

consider the graph G1 in Fig. 15 with α(G1) = 2. The set of vertices I = {1, 2, 3}

1

2

3

4

G1

1

2

3

4

G2

Fig. 15 Graphs illustrating Remarks 17 and 18

is a dominating set. However, x = [1, 1, 1, 0]T ≡ I is not a local maximum. Let

x′ = [1, 1, 1, ε]T , where ε > 0. Then f(x′) = 1 + ε(1+ε)
3(3+ε)

> f(x) = 1 for any ε > 0.

128

Further, since we know that a global maximum corresponds to an IUC with maximum

number of clique components, we can also consider maximal by inclusion IUC (i.e.,

such that it is not a subset of IUC with larger number of components) to be candidates

for local maxima. Note that I is a maximal clique and there does not exist a strict

superset which induces an IUC with 2 or more components making this a maximal

IUC. So, even a maximal IUC may not correspond to a local maximizer.

Remark 18. Next example shows that even though a global maximizer always corre-

sponds to an IUC, a local maximizer may not have the same property. Consider the

graph G2 with α(G2) = 2. The sets {1, 4} and {2, 3} are maximal, as well as maxi-

mum independent sets. But it can be verified that the point x = [1, 1, 1, 1]T ≡ V (G2)

is also a local maximum with multipliers λk = 1
9

and µk = 0 for all k ∈ V (G2). So,

a local maximizer may correspond to a set that is not an independent set or even an

IUC. The following theorem establishes the converse for a special case.

Theorem 17. If Io is a MIS and xo ≡ Io then xo is a local maximizer of (8.1).

Proof. As before xo is a regular point. FONC are satisfied in xo as the KKT system

has the following unique solution

λo
v =





1, if v ∈ Io;

0, if v ∈ V \ Io;

µo
v =





0, if v ∈ Io;

|N(v) ∩ Io| − 1
1+|N(v)∩Io| , if v ∈ V \ Io;

and µo
v > 0 as |N(v) ∩ Io| ≥ 1 for all v ∈ V \ Io since Io is a MIS.

Problem (8.1) and x∗ = xo satisfy all conditions of Lemma 3, where m = 2n and

exactly n constraints are active in xo. Hence, xo is a local maximizer of (8.1).

We now look at local maximum properties of (8.1) in the binary neighborhood.

129

For a given vector x ∈ {0, 1}n, its binary neighborhood consists of all the binary

vectors that are at Hamming distance one from x. That is, the set of all binary

vectors that can be obtained from x by changing the value of one of its components

to the opposite. The results are similar to the continuous case.

Theorem 18. If xo is a point of local maximum of (8.1) in the binary neighborhood

and xo ≡ Io, then Io is a dominating set.

Proof. Consider xo, a local maximizer in the binary neighborhood with xo ≡ Io. Let

v ∈ V \ Io, then xo
v = 0. Construct a neighbor of xo as follows,

x′′i =





1, if i = v;

xo
i , if i ∈ V \ {v}.

Since xo is a local maximizer, f(x′′) ≤ f(xo), where

f(xo) =
∑
i∈Io

1

1 + |N(i) ∩ Io| .

If N(v) ∩ Io = ∅, then

f(x′′) =
∑

i∈Io∪{v}

1

1 + |N(i) ∩ (Io ∪ {v})| = f(xo) + 1 > f(xo),

which is a contradiction. Hence, ∀v /∈ Io, N(v)∩Io 6= ∅, so Io is a dominating set.

Theorem 19. If Io is a MIS and xo ≡ Io, then xo is a local maximizer of (8.1) in

the binary neighborhood.

Proof. Since Io is an independent set, f(xo) = |Io|. Any vector in the binary neigh-

borhood of xo can be obtained by either changing xo
v from 1 to 0 for some v ∈ Io or

changing xo
v from 0 to 1 for some v /∈ Io. We analyze these two cases separately.

First, let v ∈ Io, then xo
v = 1. Construct x′ in the binary neighborhood of xo as

130

follows,

x′i =





0, if i = v;

xo
i , if i ∈ V \ {v}.

Then, f(x′) = |Io| − 1 < f(xo).

Now let v ∈ V \ Io, then xo
v = 0. Construct x′′ as follows,

x′′i =





1, if i = v;

xo
i , if i ∈ V \ {v}.

Then,

f(x′′) =
x′′v

1 +
∑

j∈N(v)

x′′j
+

∑

i∈Io∩N(v)

x′′i
1 +

∑
j∈N(i)

x′′j
+

∑

i∈Io\N(v)

x′′i
1 +

∑
j∈N(i)

x′′j

=
1

1 + |N(v) ∩ Io| +
|N(v) ∩ Io|

2
+ |Io| − |N(v) ∩ Io|

= |Io| −
(

p2 + p− 2

2(1 + p)

)
,

where p = |N(v) ∩ Io| ≥ 1 is integer and hence p2+p−2
2(1+p)

≥ 0. Thus, f(x′′) ≤ f(xo) and

for any x in the binary neighborhood of xo, f(x) ≤ f(xo).

Remark 19. Note that xo does not have to be a strict local maximum. For instance

when p = 1, there is a vertex outside the set that has exactly one neighbor inside and

hence including that induces an IUC with the same number of components as in Io

(i.e., |Io| − 1 cliques of size 1 and a clique of size 2). So, the objective function value

does not change and the local maximizer is not strict.

VIII.3. Modified Formulation

We now modify the formulation (8.1) to obtain one with more desirable properties. In

particular, we are interested in one-to-one correspondence between local maximizers

131

of the formulation and MIS of the graph.

Given graph G = (V,E) with the adjacency matrix AG, consider the following

function:

g(x) =
∑
i∈V

xi

1 +
∑

j∈N(i)

xj

− 1

2
xT AGx

=
∑
i∈V

xi


 1

1 +
∑

j∈N(i)

xj

− 1

2

∑

j∈N(i)

xj


 .

Then, ∀ x ∈ [0, 1]n, g(x) ≤ f(x) ≤ maxx∈[0,1]n f(x) = α(G), and for x∗ corresponding

to a maximum independent set, g(x∗) = α(G). Hence we have

α(G) = max
x∈[0,1]n





∑
i∈V

xi


 1

1 +
∑

j∈N(i)

xj

− 1

2

∑

j∈N(i)

xj








. (8.8)

As in Section VIII.2, for a given v, we can rewrite g(x) as

g(x) = xvAv(x) + Bv(x) + Cv(x),

where

Av(x) =
1

1 +
∑

j∈N(v)

xj

−
∑

j∈N(v)

xj,

Bv(x) =
∑

i∈N(v)

xi

xv + 1 +
∑

j∈N(i)\{v}
xj

,

Cv(x) =
∑
i∈S

xi


 1

1 +
∑

j∈N(i)

xj

− 1

2

∑

j∈N(i)

xj


 .

Here S = V \ ({v} ∪N(v)). Using this representation and arguments similar to ones

used in Section VIII.2, it is easy to show that g(x) is convex with respect to each

variable and every local (and global) maximizer is a binary vector. We now look at

132

the local maxima of (8.8). Note that every local maximum is a binary vector and is

a regular point.

Theorem 20. xo is a point of local maximum of (8.8) if and only if Io is a MIS,

where xo ≡ Io.

Proof. Let xo be a local maximum of (8.8). Then the KKT conditions imply the

existence of λo, µo such that

∀ v ∈ V :
∂g

∂xv

∣∣∣∣
x=xo

= λo
v − µo

v;

λo
v(x

o
v − 1) = 0;

µo
v(−xo

v) = 0;

λo
v ≥ 0; µo

v ≥ 0;

where,

∂g

∂xv

∣∣∣∣
x=xo

=
1

1 +
∑

j∈N(v)

xo
j

−
∑

j∈N(v)

xj −
∑

i∈N(v)

xo
i

(xo
v + 1 +

∑
j∈N(i)\{v}

xo
j)

2
.

Let xo ≡ Io, then ∀ v ∈ Io, xo
v = 1 and from KKT-FONC we have,

µo
v = 0;

λo
v =

1

1 + |N(v) ∩ Io| − |N(v) ∩ Io| −
∑

i∈N(v)∩Io

1

(1 + |N(i) ∩ Io|)2
≥ 0.

Since v is an arbitrary vertex from Io, in order to show that Io is an independent

set it suffices to prove that N(v) ∩ Io = ∅. Assume that this is not the case, i.e.,

|N(v) ∩ Io| ≥ 1. Then λo
v ≤ 1/2 − 1 < 0, which contradicts the nonnegativity of λo

v.

Hence, |N(v) ∩ Io| = 0 for any v ∈ Io and Io is an independent set. Now suppose

this independent set is not maximal. Then there exists xo
v = 0, v ∈ V \ Io such that

133

N(v) ∩ Io = ∅. Construct x′, such that

x′j =





ε > 0, if j = v;

xo
j , if j ∈ V \ {v}.

Then we have, f(x′) = f(xo)+ε, which contradicts the fact that xo is a local maximum.

Hence, Io must be a maximal independent set.

To prove the other direction, suppose Io is a MIS and xo ≡ Io. In order to

show that xo is a local maximum, we show that it satisfies the KKT-FONC and use

Lemma 3. The unique solution to the KKT system is

λo
v =





1, if v ∈ Io;

0, if v ∈ V \ Io;

µo
v =





0, if v ∈ Io;

2|N(v) ∩ Io| − 1
1+|N(v)∩Io| , if v ∈ V \ Io.

Note that µo
v > 0 as |N(v) ∩ Io| ≥ 1 for any v ∈ V \ Io since Io is a MIS.

Here again, all conditions of Lemma 3 are satisfied for problem (8.8) with x∗ = xo,

so xo is a local maximizer of (8.8).

Corollary 3. x∗ is a global maximum of (8.8) if and only if V ∗ is a maximum

independent set of G, where x∗ ≡ V ∗.

We now proceed to show that similar properties hold in case of the binary neigh-

borhood for formulation (8.8).

Theorem 21. xo is a local maximum of (8.8) in the binary neighborhood if and only

if Io is a MIS, where xo ≡ Io.

Proof. Let Io be a MIS with xo ≡ Io, then g(xo) = |Io|. Let x′ be a binary neighbor

134

obtained from xo by changing a component that was 1 to 0. Then g(x′) = |Io| − 1 <

g(xo) as x′ would still correspond to an independent set.

Now, let x′′ denote a binary neighbor obtained by changing the component, say

v, in xo from 0 to 1. Let I ′′ be the corresponding set of vertices. Then,

g(x′′) =
∑

i∈I′′

1

1 + |N(i) ∩ I ′′| − |N(v) ∩ Io|

=
1

1 + |N(v) ∩ I ′′| +
∑

i∈Io\N(v)

1

1 + |N(i) ∩ I ′′|

+
∑

i∈Io∩N(v)

1

1 + |N(i) ∩ I ′′| − |N(v) ∩ Io|

=
1

1 + |N(v) ∩ Io| +
∑

i∈Io\N(v)

1

1 + |N(i) ∩ Io|

+
∑

i∈Io∩N(v)

1

2 + |N(i) ∩ Io| − |N(v) ∩ Io|

=
1

1 + |N(v) ∩ Io| + |Io \N(v)|+ 1

2
|N(v) ∩ Io| − |N(v) ∩ Io|

=
1

1 + |N(v) ∩ Io| + |Io| − |N(v) ∩ Io| − 1

2
|N(v) ∩ Io|

= |Io| − 3

2
|N(v) ∩ Io|+ 1

1 + |N(v) ∩ Io|
= |Io| − 3p2 + 3p− 2

2(1 + p)
,

where p = |N(v) ∩ Io| ≥ 1 as Io is maximal. Note that 3p2+3p−2
2(1+p)

> 0 if p ≥ 1 and

integer, so we have g(x′′) < g(xo), which establishes one direction.

To show the other direction, suppose that xo is a local maximum in the binary

neighborhood and xo ≡ Io.

g(xo) =
∑
i∈Io

1

1 + |N(i) ∩ Io| − |E ∩ (Io × Io)|.

Suppose that Io is not an independent set. Then ∃ u, v ∈ Io such that (u, v) ∈ E.

135

Construct x′ in the binary neighborhood of xo as follows,

x′i =





xo
i , if i 6= u;

0, if i = u;
i ∈ V.

Let I ′ be the corresponding vertex set, I ′ = Io \ {u}. Then we have,

g(x′) =
∑

i∈I′

1

1 + |N(i) ∩ I ′| − |E ∩ (I ′ × I ′)|.

Note that |E ∩ (I ′ × I ′)| = |E ∩ (Io × Io)| − |N(u) ∩ Io| and,

∑

i∈I′

1

1 + |N(i) ∩ I ′|

=
∑

i∈I′\N(u)

1

1 + |N(i) ∩ I ′| +
∑

i∈I′∩N(u)

1

1 + |N(i) ∩ I ′|

=
∑

i∈I′\N(u)

1

1 + |N(i) ∩ Io| +
∑

i∈I′∩N(u)

1

1 + |N(i) ∩ Io| − 1
.

So

g(xo)− g(x′) =
1

1 + |N(u) ∩ Io| +
∑

i∈I′∩N(u)

(
1

1 + |N(i) ∩ Io|

− 1

|N(i) ∩ Io|
)
− |N(u) ∩ Io| < 0,

since,

1

1 + |N(u) ∩ Io| − |N(u) ∩ Io| < 0

as v ∈ N(u) ∩ Io. But xo was assumed to be a local maximum and hence by contra-

diction Io is an independent set.

Now suppose that Io is not maximal. Then there exists at least one vertex a

136

that can be added to Io. That is, I ′′ = Io ∪ {a} is an independent set with the

corresponding binary vector x′′ given by

x′′i =





xo
i , if i 6= a;

1, if i = a;

and g(x′′) = |I ′′| = |Io| + 1 > |Io| = g(xo). This contradiction with the local maxi-

mality of xo in the binary neighborhood establishes that Io is a MIS and hence the

required result.

VIII.4. Numerical Experiments

This section presents our preliminary numerical experiments with the continuous

formulations. In Section VIII.4.1, we present our results from applying a global

optimization algorithm on our formulation along with three other formulations pre-

sented in Section II.6.2. In Section VIII.4.2, numerical experiments are carried out

to compare the formulations (8.1) and (8.8) in terms of their usefulness with local

optimization algorithms.

VIII.4.1. Global Optimization

For sample numerical experiments with box-constrained problems we used the Matlabr

implementation of Multilevel Coordinate Search (MCS) [118] which is available online

from [155]. MCS uses function values only and combines global and local search in

an attempt to find a global minimum of a given function over a box. Experimentally,

MCS is known to have performed better than other global optimization algorithms

on many standard test problems and was particularly effective with low-dimensional

problems [118, 155]. The numerical results are given in the tables below. We used

MCS with default settings in all the experiments. We considered 20 maximum inde-

137

pendent set problem instances. The number of vertices in the graphs i.e., the number

of variables in the corresponding formulations ranged from 15 to 64. In addition to our

formulation (8.1), we experimented with the following formulations for independence

number from literature (see Section II.6.2 for details).

α(G) = max
06=x∈[0,1]n

(
∑

i∈V (G)

xi)
2

∑
i∈V (G)

x2
i + 2

∑
(i,j)∈E(G)

xixj

(2.2)

α(G) = max
x∈[0,1]n

∑

i∈V (G)

xi

∏

j∈N(i)

(1− xj) (2.3)

α(G) = max
x∈[0,1]n

∑

i∈V (G)

xi−
∑

(i,j)∈E(G)

xixj (2.5)

Table 21 contains the results of executing MCS on the maximum independent set

problem instances using formulations (2.2)-(2.5) and (8.1). The columns in each row

of this table contain the graph name (“Graph”) followed by the number of vertices

(“|V |”), the number of edges (“|E|”), and the independence number of the graph

(“α(G)”). The remaining four columns contain the objective value of the solutions

output by MCS for the four different functions corresponding to the different formu-

lations. The extension “.c” in the name of a graph graphname.c indicates that this

graph is the complement of graphname. The graphs 1dc64 and 1et64 are available

online from [177] and they arise in coding theory (see also [52]).

As can be seen from the tables, the performance of MCS on the all the formula-

tions was encouraging. In summary, global optima were found in 30 of the 80 cases

and the objective was close to optimal in most cases that were not solved to opti-

138

Table 21 Results of experiments using Matlabr implementation of MCS

Formulation
Graph |V | |E| α(G) (2.2) (2.3) (2.5) (8.1)
johnson6-2-4.c 15 60 3 3.0000 3.0000 3.0000 2.3333
johnson6-3-5.c 20 180 2 1.2000 2.0000 2.0000 1.0769
johnson7-5-3.c 21 105 3 2.3333 3.0000 3.0000 2.3333
johnson8-2-4.c 28 168 4 2.4000 4.0000 4.0000 2.6667
johnson7-3-5.c 35 525 2 1.5000 2.0000 2.0000 1.3214
MANN a9 45 918 3 3.0000 3.0000 3.0000 1.2778
MANN a9.c 45 72 16 12.0000 16.0000 16.0000 16.0000
hamming6-2.c 64 102 32 32.0000 32.0000 32.0000 32.0000
hamming6-4.c 64 1312 4 2.0000 4.0000 4.0000 2.0220
1dc64 64 543 10 9.0000 9.0000 8.0000 10.0000
1et64 64 264 18 18.0000 18.0000 18.0000 15.6667
san15-1.c 15 70 4 2.0000 4.0000 4.0000 3.0000
san15-2.c 15 20 8 7.0000 7.0000 7.0000 8.0000
san20-1.c 20 60 8 7.0000 6.0000 6.0000 7.0000
san20-2.c 20 70 7 6.0000 6.0000 6.0000 6.0000
san30-1.c 30 43 15 13.0000 13.0000 13.0000 13.0000
san40-1.c 40 78 20 16.0000 16.0000 18.0000 17.0000
san40-2.c 40 73 21 17.2811 17.0000 18.0000 17.0000
san50-1.c 50 125 20 18.0000 18.0000 19.0000 19.0000
san50-2.c 50 65 24 22.0000 22.0000 21.0000 23.0000

139

mality. Out of 20 instances the highest objective was produced 16 times by (2.5), 13

times by (2.3), 9 times by (8.1) and 7 times by (2.2). We believe that the performance

can be improved with a specialized commercial solver such as Gamsr [97].

VIII.4.2. Local Optimization

Numerical experiments were conducted to compare the performance of the original

formulation (8.1) and the modified formulation (8.8) as objective functions for a

simple local search algorithm and a constrained local optimization procedure available

in the Matlabr Optimization Toolbox. Complements of selected Dimacs clique

benchmark graphs [84] were used as instances for testing.

The local search algorithm starts at a random binary vector and reaches a local

maximum in the binary neighborhood by successively moving to the first improving

neighbor found. Table 22 presents the results that were obtained, where average

and the maximum objective function value obtained starting from ten random binary

vectors are shown for formulations (8.1) and (8.8).

Matlabr function fmincon uses a sequential quadratic programming approach

for solving medium-scale constrained optimization problems. Details and relevant

references can be found at [92]. The results tabulated in Table 23 show the average

and best objective function value attained in ten runs starting from random initial

feasible points inside [0, 1]n with formulations (8.1) and (8.8) as objective functions.

A total of 24 Dimacs clique benchmark graphs with up to 378 vertices were

complemented and used in testing. Note that the values could be rounded up to get

lower-bounds on α(G). In terms of the average objective function value achieved in

10 runs of the local search algorithm, formulation (8.1) produced better results than

formulation (8.8) with 17 instances whereas formulation (8.8) was better in 7 cases.

In terms of the best solution obtained in 10 runs, formulation (8.1) beats formulation

140

(8.8) 14 to 2, with the rest being equal. Similarly with fmincon, in terms of average

performance, the ratio was 15 to 8 in favor of formulation (8.1) with one instance

producing identical results with both. In terms of best solution obtained, the ratio

was 11 to 5 again in favor of formulation (8.1), with the rest being equal.

Note that given a graph G = (V, E), every MIS in G corresponds to a local max-

imum for both formulations. The original formulation can have additional “spurious”

local maxima besides these. However, with both algorithms, test results indicate that

formulation (8.1) produces better quality solutions more often than formulation (8.8).

The main advantage we gain by using the modified formulation is that the locally

optimal solution will correspond to a MIS as the spurious local maxima that exist

in the other formulation are eliminated here. Note that in the original formulation,

although the objective attained is a lower-bound on the independence number, the

solution may not even correspond to an independent set.

Summary of Results. In this chapter we propose a new box-constrained continu-

ous fractional formulation for the independence number of a graph. We characterize

the local maxima of this continuous formulation in terms of structures in the graph.

This formulation is then modified to introduce one-to-one correspondence between

local maxima and MIS by eliminating the spurious local maxima in the original for-

mulation. Classical Karush-Kuhn-Tucker conditions and simple combinatorial argu-

ments are found sufficient to deduce several interesting properties of the local and

global maxima. These properties can be utilized in developing new approaches to the

maximum independent set problem.

Even though we restricted our attention to only the maximum independent set

problem and only linearly-constrained formulations, there are many other opportuni-

ties for approaching CO problems using continuous global optimization. Since many

of CO problems can be expressed in terms of binary integer programs, the constraint

141

Table 22 Results for local search

Original Modified
Formulation Formulation

Graph Vertices Edges α(G) Avg Best Avg Best
c-fat200-1 200 18366 12 9.86 12.00 12.00 12.00
c-fat200-2 200 16665 24 18.12 24.00 23.60 24.00
c-fat200-5 200 11427 58 57.40 58.00 57.90 58.00
johnson16-2-4 120 1680 8 7.68 8.00 8.00 8.00
johnson8-2-4 28 210 4 3.62 4.00 4.00 4.00
johnson8-4-4 70 560 14 14.00 14.00 11.20 14.00
keller4 171 5100 11 10.00 11.00 8.20 10.00
hamming6-2 64 192 32 30.70 32.00 24.30 32.00
hamming6-4 64 1312 4 3.04 4.00 2.80 4.00
hamming8-2 256 1024 128 125.90 128.00 74.60 82.00
hamming8-4 256 11776 16 16.00 16.00 10.20 13.00
san200 0.7 2 200 5970 18 12.30 13.00 12.70 14.00
san200 0.9 1 200 1990 70 46.70 48.00 37.70 47.00
san200 0.9 2 200 1990 60 37.30 40.00 29.10 32.00
san200 0.9 3 200 1990 44 32.60 35.00 27.60 29.00
brock200 1 200 5066 21 17.30 19.00 14.00 16.00
brock200 2 200 10024 12 9.10 11.00 7.90 9.00
brock200 3 200 7852 15 12.00 13.00 10.20 12.00
brock200 4 200 6811 17 12.70 15.00 10.80 12.00
p hat300-1 300 33917 8 7.20 8.00 5.60 6.00
p hat300-2 300 22922 25 23.80 25.00 17.60 19.00
p hat300-3 300 11460 36 30.70 32.00 23.90 28.00
mann a27 378 702 126 117.20 118.00 117.80 119.00
mann a9 45 72 16 15.10 16.00 14.30 15.00

x ∈ {0, 1}n can be replaced with the equivalent quadratic constraints xi(1 − xi) =

0, i = 1, . . . , n [117], thus yielding a continuous, constrained global optimization for-

mulation. For example, Shor [176] used a similar idea to obtain a quadratically

constrained global optimization formulation of the maximum weight independent

set problem and demonstrated encouraging computational results. Other interesting

problems for which continuous approaches exist include graph coloring [51], quadratic

assignment and maximum matching problems (see [55] for a convex quadratic ap-

142

Table 23 Results for Matlabr fmincon

Original Modified
Formulation Formulation

Graph Vertices Edges α(G) Avg Best Avg Best
c-fat200-1 200 18366 12 9.86 12.00 11.88 12.00
c-fat200-2 200 16665 24 21.78 24.00 22.40 24.00
c-fat200-5 200 11427 58 54.79 58.00 57.30 58.00
johnson16-2-4 120 1680 8 4.37 4.44 8.00 8.00
johnson8-2-4 28 210 4 2.54 3.00 4.00 4.00
johnson8-4-4 70 560 14 13.30 14.00 11.50 14.00
keller4 171 5100 11 7.29 9.00 7.00 7.00
hamming6-2 64 192 32 30.30 32.00 22.30 32.00
hamming6-4 64 1312 4 2.54 3.33 4.00 4.00
hamming8-2 256 1024 128 104.14 128.00 78.00 90.00
hamming8-4 256 11776 16 14.93 16.00 10.50 16.00
san200 0.7 2 200 5970 18 12.00 12.00 12.00 12.00
san200 0.9 1 200 1990 70 45.39 47.00 45.20 46.00
san200 0.9 2 200 1990 60 35.78 38.00 36.95 40.00
san200 0.9 3 200 1990 44 31.38 34.00 30.90 33.00
brock200 1 200 5066 21 17.20 19.00 16.50 18.00
brock200 2 200 10024 12 8.59 10.00 8.00 9.00
brock200 3 200 7852 15 11.40 13.00 10.20 12.00
brock200 4 200 6811 17 13.40 15.00 12.20 14.00
p hat300-1 300 33917 8 7.20 8.00 6.30 7.00
p hat300-2 300 22922 25 22.80 25.00 21.00 24.00
p hat300-3 300 11460 36 32.02 33.00 29.90 32.00
mann a27 378 702 126 116.99 117.00 117.10 118.00
mann a9 45 72 16 15.10 16.00 15.00 16.00

proach to the maximum matching problem). Development of efficient approaches for

solving these types of global optimization problems would lead to new algorithms for

the mentioned CO problems.

143

CHAPTER IX

NETWORK CLUSTERING AND DESIGN EXTENSIONS

Cliques have been applied not only in the context of finding a maximum clique or

generating all maximal cliques, they have also been the most popular models for

representing clusters in network clustering problems. In Section II.1 we described

several applications of clustering problems including wireless and biological networks.

Naturally, the drawbacks of cliques as practical models of cohesiveness, also follow

them into clustering problems. In this chapter, we will explore clustering models and

algorithms that utilize clique relaxations instead of cliques as cluster models.

In this chapter, we also propose a novel model for designing a robust network

that is based on an extremal version of the k-plex model. First, we will provide a

brief introduction to network clustering problems and mention existing approaches

using cliques relevant to our discussion.

IX.1. Network Clustering

Clustering can be loosely defined as the process of grouping objects into sets called

clusters, so that each cluster consists of elements that are similar in some way. The

similarity criterion can be defined in several different ways, depending on applications

of interest and the objectives that the clustering aims to achieve. For example, in

distance-based clustering two or more elements belong to the same cluster if they

are close with respect to a given distance metric. On the other hand, in conceptual

clustering, which can be traced back to Aristotle and his work on classifying plants

and animals, the similarity of elements is based on descriptive concepts.

144

Network clustering deals with clustering the data represented as a graph. Data

points are represented by vertices and an edge exists if two data points are similar

or related in a certain way. It is important to note that the similarity criterion used

to construct the network model of a data set is based on pairwise relations, while

the similarity criterion used to define a cluster refers to all elements in the cluster

and needs to be satisfied by the cluster as a whole and not just pairs of its elements.

In order to avoid confusion, from now on we will use the term “cohesiveness” when

referring to the cluster similarity. Clearly, the definition of similarity (or dissimilarity)

used to construct the network is determined by the nature of the data and based on

the cohesiveness we expect in the clusters that result.

In general, network clustering approaches can be used to perform both distance-

based and conceptual clustering. In distance-based clustering, the vertices of the

graph correspond to the data points, and edges are added if the points are close

enough based on some cut-off value. Alternately, the distances could just be used to

weight the edges of a complete graph representing the data set. We have already seen

the examples of database networks, protein interaction networks and call graphs that

illustrate the use of networks in conceptual clustering.

Clustering concepts have been fundamental to data analysis, data reduction and

classification. Efficient data organization and retrieval that results from clustering has

impacted every field of science and engineering that requires management of massive

amounts of data. Cluster analysis techniques and algorithms in the areas of statistics

and information sciences are well documented in several textbooks [12, 111, 179, 122,

121]. We will discuss in this chapter the classical problem of network clustering using

cliques and propose some novel approaches using clique relaxations.

145

IX.2. The Clustering Problem

Given a graph G0 = (V 0, E0), the clustering problem is to find subsets (not neces-

sarily disjoint) {V 0
1 , . . . , V 0

r } of V 0 such that V 0 =
⋃r

i=1 V 0
i . Each subset is a cluster

modeled by structures such as cliques or other cohesive units. Clustering models

can be classified by the constraints on relations between clusters (clusters may be

disjoint or overlapping) and the objective function used to achieve the goal of cluster-

ing (minimizing the number of clusters or maximizing the cohesiveness). When the

clusters are required to be disjoint, {V 0
1 , . . . , V 0

r } is a cluster-partition and when they

are allowed to overlap, it is a cluster-cover. For a given G0, assuming that there is a

measure of cohesiveness of the cluster that can be varied, we can define two types of

optimization problems:

Type I: Minimize the number of clusters while ensuring that every cluster formed

has cohesiveness over a prescribed threshold;

Type II: Maximize the cohesiveness of each cluster formed, while ensuring that

the number of clusters that result is under a prescribed number d (this may be

relaxed by setting d = ∞).

Hierarchical clustering. After performing clustering, we can abstract the graph

G0 to a graph G1 = (V 1, E1) as follows: there exists a vertex v1
i ∈ V 1 for every

subset V 0
i and there exists an edge between v1

i , v
1
j if and only if there exist x0 ∈ V 0

i

and y0 ∈ V 0
j such that (x0, y0) ∈ E0. We can recursively cluster the abstracted

graph G1 in a similar fashion to obtain a multi-level hierarchy. This process is called

hierarchical clustering.

146

IX.3. Clique-based Clustering

Clique is a natural choice for high cohesiveness in a cluster. Cliques have minimum

possible diameter, maximum possible connectivity and robustness one can expect in

a cluster. Given an arbitrary graph G, Type I approach tries to partition G into (or

cover G using) minimum number of cliques. Type II approaches usually work with

a weighted complete graph and hence every partition of the vertex set is a clique

partition. The objective here is to maximize cohesiveness within the clusters.

IX.3.1. Clique Partitioning and Covering

Type I clique partitioning and clique covering problems are both NP-hard [98]. Con-

sequently, exact approaches to solve these problems that exist in literature are com-

putationally ineffective for large graphs. Heuristic approaches are preferred for large

graphs for this reason. Note that the minimum number of clusters produced in clique

covering and partitioning are the same. Denote the covering optimum by c and the

partition optimum by p. Since every clique partition is also a cover, p ≥ c. Let

{V 0
1 , . . . , V 0

c } be an optimal clique cover. Any vertex v present in multiple clusters

causing overlaps can be removed from all but one of the clusters to which it belongs,

leaving the resulting cover with same number of clusters and one less overlap. Re-

peating this as many times as necessary would result in a clique partition with the

same number of clusters, c. Thus, we can conclude that p = c. However, from a

practical point of view, clique covering can be more beneficial in some applications

compared to partitioning since data points shared between clusters require special

attention in biological and social networks.

The minimum clique partitioning problem is also equivalent to the minimum

graph coloring problem. A proper coloring of Ḡ using p colors gives rise to p color

147

classes which correspond to clique partitioning of G with p clusters. Every clique

partitioning in G with p clusters implies that Ḡ can be colored properly with p

colors, one color for each cluster. This bijection shows that the minimum number of

cliques into which G can be partitioned is exactly χ(Ḡ). The graph coloring problem

is also NP-hard [98] and has been studied extensively. Several exact algorithms and

heuristics exist to solve this problem [129, 46, 133, 144, 134, 125].

The motivation behind clique covering and partitioning are the ideal properties

of cliques. However, they are impractical models of cohesiveness in real-life networks

that are known to be based on erroneous data. This is an important issue since several

edges could be missing due to experimental errors and clique based clustering often

produces a large number of clusters even when solved optimally, defeating the purpose

of clustering. Clique relaxations can be more meaningful in this setting, and we will

discuss these approaches in Section IX.4. Before presenting these new approaches,

we briefly survey some popular Type II approaches that utilize cliques. Note that,

a clique is already the most ideal cohesive unit, hence Type II approaches usually

work with a complete graph whose edges are weighted by measures of similarity or

dissimilarity.

IX.3.2. Min-Max d-Clustering

The min-max d-clustering problem is a Type II clique partitioning problem with a

min-max objective. Consider a weighted complete graph G = (V, E) with weights

we1 ≤ we2 ≤ · · · ≤ wem where m = n(n−1)
2

. The problem is to partition the graph

into no more than d cliques such that the largest distance between two vertices in a

clique is minimized. In other words, the problem is to find min{ max
i=1,...,p

w(Vi)} where

V1, . . . , Vp partition V with p ≤ d and w(Vi) = max
u,v∈Vi:u<v

wuv. This problem is NP-

hard and it is NP-hard to approximate within a factor less than two, even if the

148

edge weights obey triangle inequality [115, 103]. The best possible approximation

algorithms (factor of two) for this problem (with the triangle inequality satisfied) are

available in [115, 103]. Algorithm 10 presents the pseudocode of a bottleneck approach

for the problem based on [115].

Definition 28. The bottleneck graph of a weighted graph G = (V,E) is defined for a

given number c as follows: G(c) = (V,Ec) where Ec = {e ∈ E : we ≤ c}.

In Algorithm 10, the procedure bottleneck(wei
) returns the bottleneck graph

G(wei
), and MIS() is an arbitrary procedure for finding a MIS in the given graph.

Without loss of generality, let It = {1, . . . , p} be the output of the above algorithm

terminating in iteration t. Form V1, . . . , Vp as follows: V1 = {j ∈ V \ It : w1j ≤
wet} ∪ {1} and Vl = {j ∈ V \ It : wlj ≤ wet and j /∈ V1 ∪ . . . ∪ Vl−1} ∪ {l} for

l = 2, . . . , p. In other words, V1, . . . , Vp are the closed neighborhoods of 1, . . . , p

in the last bottleneck graph G(wet), but vertices included in V1, . . . , Vl−1 are not

included in Vl for l = 2, . . . , p to guarantee a partition (if they are not excluded, it

will result in a cover). G[V1], . . . , G[Vp] is a partition of G into p cliques and any edge

in any clique G[Vl] has weight at most 2wet if the edge weights satisfy the triangle

inequality. The algorithm runs in polynomial time if the MIS() procedure does and

max
i=1,...,p

w(Vi) ≤ 2OPT where OPT represents the minimum objective [115].

The approach of using bottleneck graphs is a powerful technique that can be

applied to many other related problems such as k-center, weighted k-center and k-

supplier problems. More information about this approach and its applicability can be

found in [115, 114].

149

Algorithm 10 Bottleneck Min-Max d-Clustering Algorithm

1: procedure Min-max d-cluster(G = (V, E), sorted edges, d)

2: initialize i ← 0, stop ← false

3: while stop = false do

4: i ← i + 1

5: Gi
b ← bottleneck(wei

)

6: Ii ← MIS(Gi
b)

7: if |Ii| ≤ d then

8: stop ← true

9: end if

10: end while

11: return Ii

12: end procedure

IX.4. Clique Relaxations in Clustering

In this section, we define new Type I and Type II clustering problems based on the

clique relaxations. The preliminary results comprise of model and problem definition

along with approaches for addressing some of them.

IX.4.1. k-Clique and k-Club Clustering

Type I k-clique clustering problem can be defined along the same lines as clique

partitioning and covering. Given an arbitrary graph G and a fixed positive integer

k, partition G into (or cover G using) the minimum possible number of k-cliques.

As before, this problem can be reduced to clique partitioning and covering on the

power graph Gk. Hence approaches developed in the literature for clique partitioning,

covering and graph coloring are applicable here. On the other hand, we can define

150

a novel Type II approach based on k-cliques that does not require edge weights or

a complete graph, since the parameter k is itself a measure of cohesiveness of the

k-clique.

The Type II min-max k-clique d-clustering problem can be defined as follows.

Given an arbitrary graph G = (V, E), partition V into subsets V1, . . . , Vp, p ≤ d such

that Vi is a ki-clique for i = 1, . . . , p and max
i=1,...,p

ki is a minimum. In other words,

we wish to partition the graph into no more than d subsets such that each is a k-

clique with the smallest possible k. The covering version can also be defined similarly.

Note that we do not have formal proof of complexity for these problems although we

suspect they are NP-hard.

A Factor Two Approximation. We propose the following bottleneck approach

to approximately solve min-max k-clique d-clustering problem. Construct a complete

graph GC = (V, EC) from G = (V, E) where the edges are weighted using the shortest

path distance between the end points in G, ∀i, j ∈ V : i < j, wij = dG(i, j). Define as

before, w(Vi) = max
u,v∈Vi:u<v

wuv for any Vi ⊆ V and we have Vi to be a w(Vi)-clique in G.

Thus a clique partition V1, . . . , Vp of GC is a ki-clique partition of G with ki = w(Vi)

for i = 1, . . . , p and vice versa. Based on this observation, we solve the min-max

d-clustering problem on GC using the bottleneck Algorithm 10.

Let It = {1, . . . , p} be the output of Algorithm 10 terminating in iteration t.

Partition V into V1, . . . , Vp as follows: V1 = {j ∈ V \ It : w1j ≤ wet} ∪ {1} and

Vl = {j ∈ V \ It : wlj ≤ wet and j /∈ V1 ∪ . . . ∪ Vl−1} ∪ {l} for l = 2, . . . , p. As before

V1, . . . , Vp are the closed neighborhoods of 1, . . . , p in the bottleneck graph GC(wet)

excluding vertices in V1, . . . , Vl−1 from Vl for l = 2, . . . , p. Note that a cover can be

obtained if they are not excluded. Next we argue that the partition constructed has

an objective that is at most twice the optimum following the proof in [115].

Denote the optimum objective by k∗. Since the algorithm did not terminate in

151

iteration t− 1, we know that there exists an independent set It−1 such that |It−1| > d

in GC(wet−1). We claim that there is no clique partition in GC with at most d cliques

and an objective value of wet−1 or less. Suppose the claim was false. Let G′
C denote

the union of clique components of such a partition, and every edge weight in G′
C is

at most wet−1 . Since G′
C is a union of at most d cliques we have α(G′

C) ≤ d. But G′
C

and the bottleneck graph GC(wet−1) have the same vertex set and E(G′
C) is contained

in the edges of GC(wet−1). Hence we have α(G′
C) ≥ α(GC(wet−1)) ≥ |It−1| > d.

This contradiction establishes our claim. Since k∗ has to be an edge weight, we have

k∗ ≥ wet . Now GC [V1], . . . , GC [Vp] is a partition of GC into p cliques and any edge in

any clique GC [Vl] has weight at most 2wet . This is because any edge in the bottleneck

graph GC(wet) has weight at most wet and the weights obey triangle inequality since

the shortest path distances in G satisfy triangle inequality. Thus we have the objective

value of the solution produced by the bottleneck approach is at most 2wet ≤ 2k∗. It is

easy to see that, the algorithm would be optimal if a maximum (instead of maximal)

independent set is found. But the approximation algorithm runs in polynomial time

if we find MIS.

Type I and Type II k-club clustering problems (covering/partitioning) can be

defined similar to the k-clique problems. However, the standard approaches are not

easily extended to these problems because of the special properties of k-clubs. The

fact that a subset of a k-club need not necessarily be a k-club and the difficulty

of finding maximal k-clubs have a lot of impact on the theoretical and algorithmic

aspects of these problems as they did in the case of the maximum k-club problem.

However, the Type I problem of partitioning an arbitrary graph into the minimum

number of k-clubs is studied in [82] (here the problem is called minimum k-clustering).

The authors of [82] show that the minimum k-club partitioning problem is NP-hard

for every fixed k and it is NP-hard to approximate within a factor of nε. Furthermore,

152

in [3] minimum k-club partitioning is shown to be NP-hard on bipartite graphs for

every fixed positive integer k > 1 and for k = 2 on chordal graphs (graphs with no

chordless cycles). Note the contrast with k = 1 case, both these graph classes are

perfect and minimum clique partitioning (graph coloring) is polynomial-time solvable

on perfect graphs. A shortest path in G of length diam(G) whose vertices form a

dominating set is called a dominating diametral path. Polynomial-time approximation

algorithms for the problem on the class of graphs containing a dominating diametral

path is provided in [82].

IX.4.2. k-Plex Clustering

Minimum k-plex partitioning/covering problem is to partition/cover an arbitrary

graph G using minimum number of k-plexes and it is a Type I clustering prob-

lem. A Type II min-max k-plex d-clustering problem can also be defined analogous to

k-cliques, partition (cover) an arbitrary graph G using no more than d subsets such

that each subset is a k-plex with the minimum possible k. In this section we will

discuss some concepts related to the Type I minimum k-plex partitioning problem.

First, we present the notion of co-k-plex coloring generalizing the standard graph

coloring problem. Thereby generalizing the equivalence between clique partitioning

and coloring into k-plex partitioning and co-k-plex coloring.

Definition 29. A proper co-k-plex coloring of a graph is one in which every vertex

is colored such that at most k − 1 of its neighbors have the same color.

A graph is said to be t-colorable if it admits a proper co-k-plex coloring with t

colors. Vertices of the same color are referred to as a color class and they induce a

co-k-plex. The k-chromatic number of the graph, denoted by χk(G) is the minimum

number of colors that admit a proper co-k-plex coloring in G.

153

Recall that for any graph G, ωk(G) is the size of a maximum k-plex, say S∗.

Clearly, χk(G) ≥ χk(G[S∗]). Any proper co-k-plex coloring of G also partitions the

maximum k-plex S∗ in to co-k-plexes. The number of such co-k-plexes inside S∗ and

hence the number of colors required will be a minimum when the size of each co-k-

plex is a maximum. Based on Lemmas 1 and 2 and the complementary relationship,

the size of the maximum co-k-plex inside any k-plex is at most ρk = 2k− 1− 1+(−1)k

2
.

Thus we have the following inequality.

ωk(G) ≤ ρkχk(G) (9.1)

Note that this inequality holds at equality on graphs Gk that illustrate the sharpness

of Lemmas 1 and 2 in Section VI.2. In order to solve the minimum k-plex partitioning

problem on G, we can solve the minimum co-k-plex coloring problem on Ḡ where the

color classes form the required cluster partition.

Co-k-plex coloring problem has been well studied in literature as defective color-

ing especially in topological graph theory (see [79] and references therein). Co-k-plex

coloring using c colors has been shown to be NP-complete for any c ≥ 3 and any fixed

k ≥ 1 in [79]. Further, for a fixed k there exists an ε > 0 such that unless P=NP

there does not exist a polynomial time algorithm that can approximate χk(G) within

a factor of nε [79]. It is also shown that χk(G) ≤ d∆(G)+1
k

e [79] which generalizes the

well known result that χ(G) ≤ ∆(G)+1 which follows from a simple greedy heuristic

for coloring [188] and it can be easily extended to co-k-plex coloring.

IX.5. Network Design Problem

The properties of k-plex such as relaxed familiarity, robustness and reachability make

it an attractive structure that can be used in designing a network. A natural question

154

to ask is the following: Given a complete graph GC = (V, K), and a cost ce ∀e ∈ K,

select a subset E of all possible edges K to construct G = (V, E) such that the sum

of the edge costs of edges in E is a minimum and G is a k-plex for a given k.

Note that we are constructing a k-plex G on n vertices with the objective that

sum of edge costs of edges included in the k-plex is a minimum. Recall from Theorem 7

that if k < n+2
2

then diam(G) ≤ 2 and κ(G) ≥ n− 2k + 2. By definition every vertex

in G can have at most k − 1 non-neighbors. Clearly, if z∗k denotes the optimum of

the above problem z∗k+1 ≤ z∗k as every k-plex on n vertices is also a k + 1-plex on

n vertices. Thus one must choose the largest k < n+2
2

based on required familiarity

and robustness. Before studying this problem in detail, we should note the following

definition from social network literature. Seidman [172] introduced the concept of a

k-core, which is a graph with minimum degree at least k.

Definition 30. Given G = (V, E), a set S ⊆ V is a k-core if |N(v)∩S| ≥ k ∀ v ∈ S.

The k-core model in SNA was also introduced in the study of social cohesion.

However, k-cores were noted to only indicate dense regions of the graph and not

necessarily identify a cohesive subgroup [172, 185]. As suggested by Seidman, this

approach was only to produce global measures that captured the cohesive subgroups

as well as regions surrounding them. We will now describe a simple greedy algorithm

that finds the largest k-core in a graph in polynomial time. Pick a vertex v of minimum

degree δ(G), if δ(G) ≥ k then we have a k-core. If δ(G) < k, then that vertex cannot

be in a k-core. Hence, delete the corresponding vertex and continue recursively until

a maximum k-core or the empty set is found. Note that even though these structures

are easy to find, they only point out dense regions of the graph where interesting

subgroups may be found.

The connection to our network design model is as follows. For a given n and k,

155

from among all graphs on n vertices we wish to find a graph G of minimum degree n−k

that minimizes a certain objective. Stated in this format, the network design problem

resembles extremal graph theoretic problems [39] rather than the graph optimization

problems we studied so far, wherein we look for optimal structures/subsets in a given

graph G. Henceforth we refer to our design problem as the k-core network design

problem to emphasize that the degree lower-bound is fixed.

The following is a binary IP formulation of the k-core network design problem.

Assume that k = n − k′ where k′ < n+2
2

is appropriately chosen based on required

familiarity and robustness. The binary variable xe is one if and only if edge e is

included in E. Recall that K is the set of all possible edges and let Kv denote all

possible edges incident at v for each v ∈ V .

z∗k = min
∑
e∈K

cexe (9.2)

subject to:

∑
e∈Kv

xe ≥ k ∀ v ∈ V (9.3)

xe ∈ {0, 1} ∀ e ∈ K (9.4)

It turns out that the k-core network design problem can be shown to be polynomial-

time solvable by reduction to the maximum weighted b-matching problem. Given a

graph G = (V,E) (not necessarily complete) and a vector b ∈ Z|V |+ , a b-matching is

a subset of edges M such that every vertex v ∈ V is incident with at most bv edges

in M . The maximum weight b-matching problem defined on G with edge weights

ce ∀e ∈ E is to find a b-matching M such that sum of the edge weights of edges

in M is a maximum. When every component of b equals one, we have the classical

definition of a matching. When every component of c equals one, the problems are

simply called the maximum matching problem or the maximum b-matching problem.

156

The classical paper of Edmonds [86] established the polynomial-time solvabil-

ity of this problem by a “blossom” algorithm. This concept was used by Edmonds

in obtaining the complete linear description of the associated matching polytope in

the paper [85] considered a cornerstone of polyhedral combinatorics. The minimal

defining system for the convex hull of b-matchings was identified in [73]. A pseudo-

polynomial algorithm for solving the maximum weighted b-matching was provided by

Edmonds and Pulleyblank [164, 85]. A strongly polynomial-time algorithm was pro-

vided by Anstee [14]. The readers are referred to [139, 170] for results on matchings,

b-matchings and extensions.

The reduction of k-core network design to maximum b-matching problem follows

from the observation that by solving the latter on GC = (V, K) for a particular choice

of b identifies those edges that must be excluded in the k-core network design problem.

To illustrate, we first formulate the latter into the following integer program. Let

GC = (V, K), Kv be defined as before and let y be the incidence vector of b-matchings

in GC .

z∗b = max
∑
e∈K

ceye (9.5)

subject to:

∑
e∈Kv

ye ≤ bv ∀ v ∈ V (9.6)

ye ∈ {0, 1} ∀ e ∈ K (9.7)

The reduction is clear when we make the observation that k-core network design on

GC can be reduced to this problem with the substitution that xe = 1− ye. Then we

have,

z∗k = min

{
C −

∑
e∈K

ceye : n− 1−
∑
e∈Kv

ye ≥ k ∀ v ∈ V, ye binary ∀e ∈ K

}
,

157

z∗k = C −max

{∑
e∈K

ceye :
∑
e∈Kv

ye ≤ n− 1− k ∀ v ∈ V, ye binary ∀e ∈ K

}
,

where C =
∑
e∈K

ce and k ≤ n − 1. Thus minimum k-core network design problem

can be solved in polynomial time by reducing to maximum weighted b-matching on

GC = (V, K) where each component of b equals n− 1− k. Clearly, the general max-

imum weighted b-matching algorithm can be drastically improved given our special

conditions. This is however a topic for future research.

Summary. This chapter was exploratory in nature where we introduced the

readers to classical network clustering approaches that utilize cliques. Sensitivity of

cliques to missing edges arising from experimental errors given the nature of the real-

life networks was the motivation for employing clique relaxations in clustering. Type

I and II approaches for clustering using clique relaxations are described. The concept

of graph coloring was also generalized. A network design extension was introduced

and its polynomial-time solvability was established in this chapter. The next chapter

concludes this dissertation by summarizing our contributions and by restating open

problems identified in the previous chapters. We also outline directions for future

research with the optimization problems dealt with in this chapter.

158

CHAPTER X

CONCLUSION AND FUTURE WORK

This dissertation considered graph theoretic generalizations of the classical maximum

clique problem. Models that were originally proposed in SNA literature, are investi-

gated from a mathematical programming perspective for the first time. The k-clique,

k-club and k-plex models are compared based on structural properties expected of

a cohesive subgroup that are guaranteed by their definitions, and the associated op-

timization problems are formally defined. Emphasis was on the maximum k-plex

problem in this dissertation. Our bias is justified by the structural guarantees of a

k-plex that make it a systematic and realistic relaxation of cliques. We will now sum-

marize our specific contributions and outline possible directions for future research.

Complexity. Computational complexity of k-clique, k-club and k-plex models

are the first significant contributions of this work. Although, the problems (decision

versions) are trivially NP-complete for arbitrary k, their complexity when k was a

fixed integer was unknown. We establish that all three problems are NP-complete

for every fixed positive integer k on arbitrary graphs. Further, the k-clique and k-

club problems were shown to be NP-complete for fixed k on graphs of diameter d

for all d > k. As a special case, all three optimization problems are shown to be

polynomial-time solvable when k = n− t, for every fixed positive integer t.

Complexity issues that need to be addressed in the future are as follows. Analo-

gous to our complexity results on bounded diameter graphs for k-cliques and k-clubs,

it would be interesting to establish the complexity of finding a maximum k-plex in

a graph that is a (k + 1)-plex. Some special situations can be immediately resolved.

Finding, a maximum clique in a 2-plex is equivalent to finding a maximum indepen-

159

dent set in a co-2-plex. Since every co-2-plex is also claw-free (does not contain K1,3

as an induced subgraph), this problem can be solved in polynomial time [146]. By

the same argument maximum clique in a 3-plex can also be found in polynomial time.

However, polynomial solvability may not last for long since the maximum independent

set is NP-hard to solve on planar cubic graphs [98].

Complexity of maximum k-plex, k-club and k-clique problems on restricted graph

classes such as planar and perfect graphs is important, even more so on graph classes

that have practical applicability such as unit disk graphs. Disk graphs are intersection

graphs of circles on a plane and are used to model connectivity information in wireless

communication. An interesting fact is that on unit disk graphs, the maximum clique

problem is polynomial-time solvable while the maximum independent set problem is

NP-hard [70].

Another important problem that needs to be addressed in the future is with

regards to finding inclusion-wise maximal k-clubs. The lack of hierarchical property

makes this problem non-trivial, however its complexity is still open. Resolving this

problem will have a great impact on algorithmic approaches, exact and heuristic for

solving the maximum k-club problem.

Polyhedra. The k-plex polytope and the maximum k-plex problem received the

most attention in this dissertation. The notion of a co-k-plex is introduced in this

dissertation that complements a k-plex and generalizes an independent set in a graph.

Sharp bounds are established for the size of a k-plex inside a co-k-plex, inside a hole

and inside an independent set. Based on these results, valid inequalities for the k-

plex polytope are developed. The co-k-plex inequalities are especially interesting since

they generalize MIS inequalities that play an important role in describing the clique

polytope as well as their role in polyhedral characterization of graph perfection. We

find that co-2-plex inequalities induce facets of the 2-plex polytope while the result

160

is not true in general for k ≥ 3.

In the future, it would be interesting to identify graph classes for which co-k-

plex inequalities are facet inducing. This could be facilitated by redefining them as

rank inequalities [69] instead of using the general upper-bound ρk for the size of a

maximum k-plex inside a co-k-plex, i.e.,

∑
i∈J

xi ≤ ωk(G[J])

where J is a maximal co-k-plex. Note that ωk(G[J]) ≤ ρk. It would also be possible

to generalize antiweb inequalities introduced by Trotter [182] for the clique poly-

tope to the k-plex polytope. Identifying other subgraphs for generating facets and

valid inequalities, as well as lifting techniques to make them globally valid is also

an important problem for future research. In fact, one of the earliest applications

of this approach was in lifting odd hole inequalities that are facet defining for the

independent set polytope of a hole H, to the graph containing H [158].

The binary IP formulation for the maximum k-plex problem when k = 1 led

to a novel formulation for the maximum clique problem which is possibly the most

compact IP formulation for the problem. This formulation is shown theoretically

to have a weaker LP relaxation compared to the popular edge formulation for the

problem, but appears to be more effective experimentally. It would be interesting to

devise a method to “mix” the two formulations to yield one that is computationally

more effective in a BC setting.

The foundation for polyhedral study of the k-clique and k-club models were also

laid in this dissertation. Since the k-clique polytope is exactly the clique polytope

of the power graph, the polyhedral results known for the clique polytope can be ex-

tended. The maximum k-club problem is formulated as a binary integer program.

However, it is especially difficult to address using traditional polyhedral methods since

161

it is not hierarchical in nature. Despite this difficulty, a family of valid inequalities

called the maximal k-independent set inequalities are identified. A compact formula-

tion is possible for the problem when restricted to the special case k = 2. Interesting

properties of the 2-club polytope are also revealed in this dissertation and maximal

2-independent set inequalities are found to be facet-inducing for the 2-club polytope.

The absence of hierarchical property in 2-clubs also manifests itself in the follow-

ing way. Traditional polyhedral approaches would entail finding combinatorial valid

inequalities for the 2-club polytope W2(G) by first finding a specific induced subgraph

G′ and facets of W2(G
′). Facets of W2(G

′) are not necessarily facet-defining for the

higher-dimensional polytope W2(G), but are usually expected to be valid for W2(G).

This however is not true in general for 2-clubs. For instance, let G denote the star

graph in Fig. 16, and let G′ denote the edgeless graph obtained by deleting vertex 6.

Now the inequality x1 +x2 +x3 +x4 +x5 ≤ 1 is facet defining for W2(G
′) but it is not

even valid for W2(G) as it cuts off a feasible integer point [1, 1, 1, 1, 1, 1] in W2(G).

But lifting x6 would yield −4x6 +x1 +x2 +x3 +x4 +x5 ≤ 1 which is a facet of W2(G).

Note that lifting here was necessary to generate a valid inequality of W2(G) from one

that was invalid. Focussing on this issue for the 2-club polytope is important as it

addresses some fundamental issues for the case of general k as well as contribute to

the theory of combinatorial optimization for such non-hierarchical problems.

Algorithms. Given the intractability of all the optimization problems, worst case

exponential algorithms are inevitable unless P = NP . BC techniques facilitated by

the polyhedral study of the problems is the approach taken by this dissertation. Vari-

able fixing procedures are identified for the maximum k-plex problem based on its

domination property. A peeling procedure is also developed to remove vertices from

the graph based on the size of a known k-plex. These procedures are incorporated

in a BC framework for the problem. The algorithms developed are implemented and

162

5

4 1

3 2

6

Fig. 16 A star graph

computationally tested using MIS cuts and co-k-plex cuts. Computational experi-

ments indicate that the preprocessing approaches enable optimal resolution of large

sparse graphs, such as real-life graphs based on social and biological data. Similar

approaches are also developed for the maximum 2-club problem and a BC is imple-

mented using maximal 2-independent set facets.

Although the current implementations are working extremely well given the hard-

ness of the problems, there are still aspects of the implementation that can be im-

proved. For instance, we have observed from our computational experiments that

faster separation heuristics are needed to make co-k-plex cuts effective in practice.

An experimental study to determine a good combination of cuts would be beneficial.

It appears in the current setting that few cuts added at each node is reasonably ef-

fective. However, the number and frequency of cuts can be made dynamic. Frequent

addition of larger number of cuts when the cuts are found to be “effective” at some

nodes, and vice versa could also improve the implementation. Effectiveness of cuts

could also be measured as the depth of the cut (Euclidean distance of the cut from

LP optimum cut off) instead of constraint violation as in the current implementation.

Ordering the cuts in the cut pool based on other quality measures (such as depth)

and selecting the top few could also be considered. This approach needs to be traded

163

off against the addition of “similar” cuts. Cuts that are close and almost parallel

could all have high measure of effectiveness and we might choose not to add all such

parallel cuts in order to keep the size of the linear system small. In general, other

aspects of managing the cut pool such as number of cuts generated and applied, purg-

ing cuts when they cease to be effective and size of the cut pool itself are important

considerations. The decision to lift local cuts brings an additional dimension to the

implementation issue. However, dynamic cut generation, addition and cut pool man-

agement are extremely difficult to address by using the commercial software currently

available. But one can expect this situation to change rapidly.

Finally, it is necessary to develop meta-heuristic approaches for both maximum

k-plex and k-club problems given their intractability and the massive size of real-

life data. It should be noted however, that traditional approaches for neighborhood

definition and local search may be ineffective in the case of the maximum k-club

problem due to its non-hierarchical nature. Heuristics for maximum k-plex and k-

club problems could also benefit greatly by adopting the preprocessing techniques

developed in this dissertation.

Continuous Formulations. We presented in this dissertation a new continuous

fractional formulation for the classical maximum independent set problem. A de-

terministic proof of correctness of the formulation which maximizes a continuous

function over the unit hypercube is presented. Its local maxima are proven to be

binary vectors and characterized in terms of structures they represent in the graph.

The formulation is suitably modified to induce one-to-one correspondence between

MIS and local maxima of the continuous formulation.

A problem for study in the immediate future is to use the continuous fractional

program for independence number, Formulation (8.1) in a global optimization algo-

rithm. This is encouraged by the fact that maximizing sum of affine ratios fractional

164

programs subject to linear constraints can be reformulated such that the Lagrangean

dual is a linear program [142].

Our work is an attempt to strengthen the link between discrete combinatorial op-

timization and continuous global optimization that many researchers have forged over

the past decades with the hope that any breakthrough in one field would also benefit

the other. Continuous approaches to combinatorial optimization problems have led to

several effective heuristics and exact algorithms for the problems. Commercial pack-

ages are also available that are capable of handling large instances of several types of

global optimization formulations. Furthermore, continuous approaches present inter-

esting and distinct perspectives on the combinatorial problems. Developing effective

continuous approaches to the clique relaxations would be extremely beneficial for

these reasons.

Modeling Extensions. In this dissertation, we have presented exploratory work

on clustering using clique relaxations. After surveying some existing approaches that

use clique-based clustering, we have argued that clique relaxations are more practical

when clustering data from real life. To this end, two types of clustering optimization

problems are defined for each model, based on the objective function used. Further,

each type of clustering problem on each model could be defined as a covering or parti-

tioning version. We briefly review existing literature related to minimum clique parti-

tioning and covering that is applicable to minimum k-clique partitioning and covering

problems. We then present a polynomial-time factor-two approximation algorithm for

the min-max k-clique d-clustering problem based on a bottleneck approach. Existing

results for k-club partitioning are also surveyed. We introduce the notion of co-k-plex

coloring which is equivalent to k-plex partitioning in the complement graph.

A novel model is proposed to design low-diameter networks with desired mini-

mum degree and connectivity. This model, called the k-core network design problem

165

is shown to be polynomial-time solvable using algorithms for the b-matching problem.

Exact and heuristic approaches to solve these problems and a detailed com-

putational study on real data is extremely important and of great practical value.

In particular, developing column generation approaches for the minimum co-k-plex

coloring problem along similar lines as those for the classical coloring problem pro-

posed in [144] would be useful. It would also be beneficial to develop other practical

modeling extensions of the clique relaxations that exploit their desirable properties.

Innovative modeling of real-life problems is as important as creativity in theory and

solution, and these clique relaxations have tremendous potential in this regard.

166

REFERENCES

1. Aardal, K., van Hoesel, S.: Polyhedral techniques in combinatorial optimization
I: Theory. Statistica Neerlandica 50(3), 3–26 (1996)

2. Aardal, K.I., van Hoesel, C.P.M.: Polyhedral techniques in combinatorial opti-
mization II: Computations and applications. Statistica Neerlandica 53, 129–178
(1999)

3. Abbas, N., Stewart, L.: Clustering bipartite and chordal graphs: Complexity,
sequential and parallel algorithm. Discrete Applied Mathematics 91(1-3), 1–23
(1999)

4. Abello, J., Butenko, S., Pardalos, P., Resende, M.: Finding independent sets
in a graph using continuous multivariable polynomial formulations. Journal of
Global Optimization 21, 111–137 (2001)

5. Abello, J., Pardalos, P., Resende, M.: On maximum clique problems in very
large graphs. In: J. Abello, J. Vitter (eds.) External Memory Algorithms and
Visualization, pp. 119–130. American Mathematical Society, Boston (1999)

6. Abello, J., Pardalos, P., Resende, M. (eds.): Handbook of Massive Data Sets.
Kluwer Academic Publishers, Dordrecht, The Netherlands (2002)

7. Abello, J., Resende, M., Sudarsky, S.: Massive quasi-clique detection. In:
S. Rajsbaum (ed.) LATIN 2002: Theoretical Informatics, pp. 598–612. Springer-
Verlag, London (2002)

8. Alba, R.: A graph-theoretic definition of a sociometric clique. Journal of Math-
ematical Sociology 3, 113–126 (1973)

9. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex
networks. Nature 406, 378–382 (2000)

10. Almaas, E., Barabási, A.L.: Power laws in biological networks. In: E. Koonin,
Y.I. Wolf, G.P. Karev (eds.) Power Laws, Scale-Free Networks and Genome
Biology, pp. 1–11. Springer Science + Business Media, New York (2006)

11. Alon, N., Spencer, J.H., Erdös, P.: The Probabilistic Method. Wiley, New York
(1991)

12. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press, New
York (1973)

13. de Angelis, P.L., Bomze, I.M., Toraldo, G.: Ellipsoidal approach to box-
constrained quadratic problems. Journal of Global Optimization 28, 1–15
(2004)

14. Anstee, R.P.: A polynomial algorithm for b-matchings: An alternative ap-
proach. Information Processing Letters 24(3), 153–157 (1987)

15. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: On the solution of traveling
salesman problems. Documenta Mathematica ICM III, 645–656 (1998)

167

16. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding dense
subgraphs. Journal of Algorithms 34, 203–221 (2000)

17. Bader, J.S., Chaudhuri, A., Rothberg, J.M., Chant, J.: Gaining confidence
in high-throughput protein interaction networks. Nature Biotechnology 22(1),
78–85 (2004)

18. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm
for mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)

19. Balas, E., Ceria, S., Cornuéjols, G.: Mixed 0-1 programming by lift-and-project
in a branch-and-cut framework. Management Science 42, 1229–1246 (1996)

20. Balas, E., Ceria, S., Cornuéjols, G., Natraj, N.: Gomory cuts revisited. Oper-
ations Research Letters 19, 1–9 (1996)

21. Balas, E., Ceria, S., Cornuejols, G., Pataki, G.: Polyhedral methods for the
maximum clique problem. In: D.S. Johnson, M.A. Trick (eds.) Cliques, Color-
ing, and Satisfiability: Second Dimacs Implementation Challenge, pp. 11–28.
American Mathematical Society, Providence, RI (1996)

22. Balas, E., Xue, J.: Weighted and unweighted maximum clique algorithms with
upper bounds from factional coloring. Algorithmica 15, 397–412 (1996)

23. Balas, E., Yu, C.: Finding a maximum clique in an arbitrary graph. SIAM
Journal of Computing 15, 1054–1068 (1986)

24. Balasundaram, B., Butenko, S.: Constructing test functions for global optimiza-
tion using continuous formulations of graph problems. Journal of Optimization
Methods and Software 20(4-5), 439–452 (2005)

25. Balasundaram, B., Butenko, S.: Graph domination, coloring and cliques in
telecommunications. In: M.G.C. Resende, P.M. Pardalos (eds.) Handbook of
Optimization in Telecommunications, pp. 865–890. Springer Science + Business
Media, New York (2006)

26. Balasundaram, B., Butenko, S.: On a polynomial fractional formulation for
independence number of a graph. Journal of Global Optimization 35(3), 405–
421 (2006)

27. Balasundaram, B., Butenko, S.: Network clustering. In: B.H. Junker,
F. Schreiber (eds.) Analysis of Biological Networks. Wiley, New York (2007).
To Appear.

28. Balasundaram, B., Butenko, S.: Optimization problems in unit-disk graphs.
In: C.A. Floudas, P.M. Pardalos (eds.) Encyclopedia of Optimization. Springer
Science + Business Media, New York (2008). To Appear.

29. Balasundaram, B., Butenko, S., Hicks, I.V., Sachdeva, S.: Clique relaxations in
social network analysis: The maximum k-plex problem (2007). Submitted.

30. Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing
biological networks. Journal of Combinatorial Optimization 10(1), 23–39 (2005)

168

31. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286, 509–512 (1999)

32. Barabási, A.L., Albert, R., Jeong, H.: Scale-free characteristics of random net-
works: The topology of the World Wide Web. Physica A 281, 69–77 (2000)

33. Batagelj, V., Mrvar, A.: Pajek datasets (2006). Online:
http://vlado.fmf.uni−lj.si/pub/networks/data/. Accessed June 2006

34. Berge, C.: Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise
starr sind (zusammenfassung). Wissenschaftliche Zeitschrift, Martin Luther
Universität Halle-Wittenberg, Mathematisch-Naturwissenschaftliche 10, 114–
115 (1961)

35. Berge, C., Ramı́rez-Alfonśın, J.L.: Origins and genesis. In: J.L. Ramı́rez-
Alfonśın, B.A. Reed (eds.) Perfect Graphs, pp. 1–12. Wiley, New York (2001)

36. Berry, N., Ko, T., Moy, T., Smrcka, J., Turnley, J., Wu, B.: Emergent clique
formation in terrorist recruitment. The AAAI-04 Workshop on Agent Organi-
zations: Theory and Practice, July 25, 2004, San Jose, California (2004).
Online: http://www.cs.uu.nl/ virginia/aotp/papers.htm

37. Boginski, V., Butenko, S., Pardalos, P.M.: Modeling and optimization in mas-
sive graphs. In: P.M. Pardalos, H. Wolkowicz (eds.) Novel Approaches to Hard
Discrete Optimization, pp. 17–39. American Mathematical Society, Providence,
RI (2003)

38. Boginski, V., Butenko, S., Pardalos, P.M.: On structural properties of the
market graph. In: A. Nagurney (ed.) Innovation in Financial and Economic
Networks. Edward Elgar Publishers, London (2003)

39. Bollobás, B.: Extremal Graph Theory. Academic Press, New York (1978)

40. Bollobás, B., Erdös, P.: Cliques in random graphs. Math. Proc. Camb. Phil.
Soc. 80, 419–427 (1976)

41. Bomze, I.M.: Evolution towards the maximum clique. Journal of Global Opti-
mization 10, 143–164 (1997)

42. Bomze, I.M., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique
problem. In: D.Z. Du, P.M. Pardalos (eds.) Handbook of Combinatorial Opti-
mization, pp. 1–74. Kluwer Academic Publishers, Dordrecht, The Netherlands
(1999)

43. Boppana, R., Halldórsson, M.M.: Approximating maximum independent sets
by excluding subgraphs. BIT 32(2), 180–196 (1992)

44. Bourjolly, J.M., Laporte, G., Pesant, G.: Heuristics for finding k-clubs in an
undirected graph. Computers & Operations Research 27, 559–569 (2000)

45. Bourjolly, J.M., Laporte, G., Pesant, G.: An exact algorithm for the maximum
k-club problem in an undirected graph. European Journal Of Operational Re-
search 138, 21–28 (2002)

169

46. Brélaz, D.: New methods to color the vertices of a graph. Communications of
the ACM 22(4), 251–256 (1979)

47. Biomolecular relations in information transmission and expression. Generalized
protein interactions (2005). Online:
http://www.genome.jp/brite/generalized interactions.html. Accessed March
2005

48. Broido, A., Claffy, K.C.: Internet topology: connectivity of IP graphs. In:
S. Fahmy, K. Park (eds.) Scalability and Traffic Control in IP Networks, pp.
172–187. SPIE Publications, Bellingham, WA (2001)

49. Burer, S., Monteiro, R.D.C., Zhang, Y.: Maximum stable set formulations and
heuristics based on continuous optimization. Mathematical Programming 94,
137–166 (2002)

50. Busygin, S., Butenko, S., Pardalos, P.M.: A heuristic for the maximum indepen-
dent set problem based on optimization of a quadratic over a sphere. Journal
of Combinatorial Optimization 6, 287–297 (2002)

51. Butenko, S., Festa, P., Pardalos, P.M.: On the chromatic number of graphs. J.
Optim. Theory Appl. 109, 51–67 (2001)

52. Butenko, S., Pardalos, P.M., Sergienko, I.V., Shylo, V., Stetsyuk, P.: Finding
maximum independent sets in graphs arising from coding theory. In: Proceed-
ings of the Seventeenth ACM Symposium on Applied Computing, pp. 542–546.
ACM Press, New York (2002)

53. Butenko, S., Wilhelm, W.: Clique-detection models in computational biochem-
istry and genomics. European Journal of Operational Research 173, 1–17
(2006)

54. Cánovas, L., Landete, M., Maŕın, A.: Facet obtaining procedures for set packing
problems. SIAM Journal of Discrete Mathematics 16(1), 127155 (2003)

55. Cardoso, D.M.: Convex quadratic programming approach to the maximum
matching problem. Journal of Global Optimization 21, 91–106 (2001)

56. Caro, Y., Tuza, Z.: Improved lower bounds on k-independence. J. Graph The-
ory 15, 99–107 (1991)

57. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique prob-
lem. Operations Research Letters 9, 375–382 (1990)

58. Ceria, S., Cordier, C., Marchand, H., Wolsey, L.A.: Cutting plane algorithms
for integer programs with general integer variables. Mathematical Programming
81, 201–214 (1998)

59. Chang, G.J., Nemhauser, G.L.: The k-domination and k-stability problems on
sun-free chordal graphs. SIAM Journal on Algebraic and Discrete Methods 5,
332–345 (1984)

170

60. Chen, H., Chung, W., Xu, J.J., Wang, G., Qin, Y., Chau, M.: Crime data
mining: A general framework and some examples. Computer 37(4), 50–56
(2004)

61. Chen, H., Zeng, D., Atabakhsh, H., Wyzga, W., Schroeder, J.: COPLINK:
Managing law enforcement data and knowledge. Communications of the ACM
46(1), 28–34 (2003)

62. Chen, Y.P., Liestman, A.L., Liu, J.: Clustering algorithms for ad hoc wireless
networks. In: Y. Pan, Y. Xiao (eds.) Ad Hoc and Sensor Networks, Wireless
Networks and Mobile Computing, pp. 145–164. Nova Science Publishers, New
York (2005)

63. Cheng, E., Cunningham, W.H.: Wheel inequalities for stable set polytopes.
Mathematical Programming 77, 389421 (1997)

64. Cheng, E., de Vries, S.: Antiweb-wheel inequalities and their separation prob-
lems over the stable set polytopes. Mathematical Programming 92, 153175
(2002)

65. Cheng, E., de Vries, S.: On the facet-inducing antiweb-wheel inequalities for
stable set polytopes. SIAM Journal of Discrete Mathematics 15(4), 470–487
(2002)

66. Chesler, E.J., Langston, M.A.: Combinatorial genetic regulatory network anal-
ysis tools for high throughput transcriptomic data. Tech. Rep. ut-cs-06-575, CS
Technical Reports, University of Tennessee, Knoxville (2006)

67. Chudnovsky, M., Robertson, N., Seymour, P.D., Thomas, R.: The strong per-
fect graph theorem (manuscript) (2002). Online:
http://www.math.gatech.edu/∼thomas/spgc.html. Accessed February 2006

68. Chung, F., Lu, L.: Complex Graphs and Networks. CBMS Lecture Series.
American Mathematical Soceity, Providence, RI (2006)

69. Chvátal, V.: On certain polytopes associated with graphs. Journal of Combi-
natorial Theory (B) 18, 138–154 (1975)

70. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math-
ematics 86, 165–177 (1990)

71. Cook, D.J., Holder, L.B.: Graph-based data mining. IEEE Intelligent Systems
15(2), 32–41 (2000)

72. Cook, W., Cunningham, W., Pulleyblank, W., Schrijver, A.: Combinatorial
Optimization. John Wiley and Sons, New York (1998)

73. Cook, W., Pulleyblank, W.R.: Linear systems for constrained matching prob-
lems. Mathematics of Operations Research 12(1), 97–120 (1987)

74. Cordier, C., Marchand, H., Laundy, R., Wolsey, L.A.: bc-opt: A branch-and-cut
code for mixed integer programs. Mathematical Programming 86(2), 335–354
(1999)

171

75. Corman, S., Dooley, K., McPhee, R.: LOCKS: Analysis of media coverage of the
terrorist attacks (2006). Online: http://locks.asu.edu/terror/. Accessed June
2006

76. Corman, S., Kuhn, T., McPhee, R., Dooley, K.: Studying complex discursive
systems: Centering resonance analysis of organizational communication. Hu-
man Communication Research 28(2), 157–206 (2002)

77. Corneil, D., Perl, Y.: Clustering and domination in perfect graphs. Discrete
Applied Mathematics 9, 27–39 (1984)

78. Cornuéjols, G.: Combinatorial Optimization: Packing and Covering. CBMS-
NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia
(2001)

79. Cowen, L., Goddard, W., Jesurum, C.E.: Defective coloring revisited. Journal
of Graph Theory 24(3), 205–219 (1997)

80. Davis, R.H.: Social network analysis: An aid in conspiracy investigations. FBI
Law Enforcement Bulletin 50(12), 11–19 (1981)

81. Dekker, A.H.: Social network analysis in military headquarters using CAVA-
LIER. pp. 24–26. Canberra, Australia (2000)

82. Deogun, J., Kratsch, D., Steiner, G.: An approximation algorithm for clustering
graphs with dominating diametral path. Information Processing Letters 61,
121–127 (1997)

83. Diestel, R.: Graph Theory. Springer-Verlag, Berlin (1997)

84. Dimacs: Cliques, Coloring, and Satisfiability: Second Dimacs Implementation
Challenge (1995). Online: http://dimacs.rutgers.edu/Challenges/. Accessed
March 2007

85. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. Journal
of Research of the National Bureau of Standards - B 69B, 125–130 (1965)

86. Edmonds, J.: Paths, trees, and flowers. Canadian Journal of Mathematics 17,
449–467 (1965)

87. Erdös, P., Rényi, A.: On random graphs. Publicationes Mathematicae 6, 290–
297 (1959)

88. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst.
Hungar. Acad. Sci. 5, 17–61 (1960)

89. Euler, R., Jünger, M., Reinelt, G.: Generalizations of cliques, odd cycles and
anticycles and their relation to independence system polyhedra. Mathematics
of Operations Research 12, 451–462 (1987)

90. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorith-
mica 29, 410–421 (2001)

172

91. Fischer, I., Meinl, T.: Graph based molecular data mining - an overview. In:
Proceedings of the 2004 IEEE International Conference on Systems, Man and
Cybernetics, pp. 4578–4582. IEEE, Piscataway, NJ (2004)

92. The MathWorks matlabr Optimization Toolbox - fmincon. Online:
http://www.mathworks.com/access/helpdesk/help/toolbox/optim/fmincon.html.
Accessed August 2004

93. Freeman, L.C.: The sociological concept of “group”: An empirical test of two
models. American Journal of Sociology 98, 152–166 (1992)

94. Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Mathematical
Programming 1, 168–194 (1971)

95. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition
of protein-protein interaction networks. Genome Biology 5(8), R57.1–R57.12
(2004)

96. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow
algorithm and applications. SIAM Journal on Computing 18(1), 30–55 (1989)

97. Gams. Online: http://www.gams.com/. Accessed March 2007

98. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-completeness. W.H. Freeman and Company, New York (1979)

99. Gibbons, L.E., Hearn, D.W., Pardalos, P.M.: A continuous based heuristic for
the maximum clique problem. In: D.S. Johnson, M.A. Trick (eds.) Cliques,
Coloring, and Satisfiability: Second Dimacs Implementation Challenge, pp.
103–124. American Mathematical Society, Providence, RI (1996)

100. Gibbons, L.E., Hearn, D.W., Pardalos, P.M., Ramana, M.V.: Continuous char-
acterizations of the maximum clique problem. Mathematics of Operations Re-
search 22, 754–768 (1997)

101. Girvan, M., Newman, M.E.J.: Community structure in social and biological
networks. Proceedings of the National Academy of Sciences 99(12), 7821–7826
(2002)

102. Glover, F.: Tutorial on surrogate constraint approaches for optimization in
graphs. Journal of Heuristics 9, 175–227 (2003)

103. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science 38(2-3), 293–306 (1985)

104. Graphviz: Graph visualization software. Online:
http://www.graphviz.org/About.php. Accessed March 2007

105. Grossman, J., Ion, P., Castro, R.D.: The Erdös Number Project (1995). Online:
http://www.oakland.edu/enp/. Accessed March 2007

106. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combina-
torial Optimization, 2nd edn. Springer-Verlag, Berlin (1993)

173

107. Harant, J.: A lower bound on the independence number of a graph. Discrete
Mathematics 188, 239–243 (1998)

108. Harant, J.: Some news about the independence number of a graph. Discussiones
Mathematicae Graph Theory 20, 71–79 (2000)

109. Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent
sets of graphs. Combinatorics, Probability and Computing 8, 547–553 (1999)

110. Harary, F., Ross, I.C.: A procedure for clique detection using the group matrix.
Sociometry 20, 205–215 (1957)

111. Hartigan, J.A.: Clustering Algorithms. John Wiley and Sons, New York (1975)

112. Hasselberg, J., Pardalos, P.M., Vairaktarakis, G.: Test case generators and
computational results for the maximum clique problem. Journal of Global Op-
timization 3, 463–482 (1993)

113. H̊astad, J.: Clique is hard to approximate within n1−ε. Acta Mathematica 182,
105–142 (1999)

114. Hochbaum, D.S.: Approximation Algorithms for NP-hard Problems. PWS
Publishing Company, Boston (1997)

115. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algo-
rithms for bottleneck problems. Journal of the ACM 33(3), 533–550 (1986)

116. Holton, D.A., Sheehan, J.: The Petersen Graph. Cambridge University Press,
Cambridge, England (1993)

117. Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization,
2nd edn. Kluwer Academic Publishers, Dordrecht, The Netherlands (2000)

118. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search.
Journal of Global Optimization 14, 331–355 (1999)

119. Ilog Cplex. Online: http://www.ilog.com/products/cplex/. Accessed March
2007

120. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A com-
prehensive two-hybrid analysis to explore the yeast protein interactome. Pro-
ceedings of the National Academy of Sciences of the USA 98(8), 4569–4574
(2001)

121. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice-Hall, Upper
Saddle River, NJ (1988)

122. Jambu, M., Lebeaux, M.O.: Cluster Analysis and Data Analysis. North-
Holland, New York (1983)

123. Jeong, H., Mason, S.P., Barabási, A.L., Oltvai, Z.N.: Centrality and lethality
of protein networks. Nature 411, 41–42 (2001). Online:
http://www.nd.edu/˜networks/database/index.html. Accessed March 2005

174

124. Jiang, D., Tang, C., Zhang, A.: Cluster analysis for gene expression data: A
survey. IEEE Transactions on Knowledge and Data Engineering 16(11), 1370–
1386 (2004)

125. Johnson, D., Trick, M. (eds.): Cliques, Coloring, and Satisfiablility: Second Di-
macs Implementation Challenge. American Mathematical Society, Providence,
RI (1996)

126. Junker, B.H.: Biological networks. In: B.H. Junker, F. Schreiber (eds.) Analysis
of Biological Networks. Wiley, New York (2007)

127. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence
through a social network. In: Proceedings of the Ninth International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM Press,
New York (2003)

128. Khachian, L.G.: A polynomial algorithm in linear programming. Soviet Math-
ematics Doklady 20, 1093–1096 (1979)

129. Korman, S.M.: The graph-colouring problem. In: N. Christofides, A. Mingozzi,
P. Toth, C. Sandi (eds.) Combinatorial Optimization, pp. 211–235. Wiley, New
York (1979)

130. Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 2
edn. Springer-Verlag, Berlin (2002)

131. Kortsarz, G., Peleg., D.: On choosing a dense subgraph. In: Proceedings of
the 34th Annual IEEE Symposium on Foundations of Computer Science, pp.
692–701. IEEE, Piscataway, NJ (1993)

132. Krishna, P., Vaidya, N.H., Chatterjee, M., Pradhan, D.K.: A cluster-based
approach for routing in dynamic networks. ACM SIGCOMM Computer Com-
munication Review 27(2), 49–64 (1997)

133. Kubale, M., Jackowski, B.: A generalized implicit enumeration algorithm for
graph coloring. Communications of the ACM 28(4), 412–418 (1985)

134. Laguna, M., Mart́ı, R.: A GRASP for coloring sparse graphs. Computational
Optimization and Applications 19(2), 165–178 (2001)

135. Laurent, M.: A generalization of antiwebs to independence systems and their
canonical facets. Mathematical Programming 45, 97108 (1989)

136. Lawler, E.: Combinatorial Optimization: Networks and Matroids. Holt, Rine-
hart, and Winston, New York (1976)

137. Lovàsz, L.: A characterization of perfect graphs. Journal of Combinatorial
Theory 13, 95–98 (1972)

138. Lovàsz, L.: Normal hypergraphs and the perfect graph conjecture. Discrete
Mathematics 2, 253–267 (1972)

139. Lovàsz, L., Plummer, M.: Matching Theory. Elsevier, New York (1986)

175

140. Luce, R.: Connectivity and generalized cliques in sociometric group structure.
Psychometrika 15, 169–190 (1950)

141. Luce, R., Perry, A.: A method of matrix analysis of group structure. Psy-
chometrika 14, 95–116 (1949)

142. M. Dür, R.H., Thoai, N.: Solving sum-of-ratios fractional programs using effi-
cient points. Optimization 49, 447466 (2001)

143. McAndrew, D.: The structural analysis of criminal networks. In: D. Canter,
L. Alison (eds.) The Social Psychology of Crime: Groups, Teams, and Networks,
Offender Profiling Series, III. Dartmouth, Aldershot, UK (1999)

144. Mehrotra, A., Trick, M.A.: A column generation approach for graph coloring.
INFORMS Journal on Computing 8(4), 344–354 (1996)

145. Milgram, S.: The small world problem. Psychology Today 1, 61–67 (1967)

146. Minty, G.: On maximal independent sets of vertices in claw-free graphs. Journal
of Combinatorial Theory, Series B 28, 284–304 (1980)

147. Mitchell, J.: Branch-and-cut algorithms for combinatorial optimization prob-
lems. In: P.M. Pardalos, M.G.C. Resende (eds.) Handbook of Applied Opti-
mization, pp. 65–77. Oxford University Press, New York (2002)

148. Mokken, R.: Cliques, clubs and clans. Quality and Quantity 13, 161–173 (1979)

149. Moon, J.W., Moser, L.: On cliques in graphs. Israel Journal of Mathematics 3,
23–28 (1965)

150. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem
of Turán. Canad. J. Math. 17, 533–540 (1965)

151. Mukherjee, M., Holder, L.B.: Graph-based data mining on social networks.
In: Workshop on Link Analysis and Group Detection. ACM Press, New York
(2004)

152. Nemhauser, G.L., Trotter, L.E.: Properties of vertex packings and indepen-
dence system. Mathematical Programming 6, 48–61 (1974)

153. Nemhauser, G.L., Trotter, L.E.: Vertex packing: structural properties and
algorithms. Mathematical Programming 8, 232–248 (1975)

154. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wi-
ley, New York (1999)

155. Neumaier, A.: Global optimization website. Online:
http://www.mat.univie.ac.at/∼neum/glopt.html. Accessed November 2004

156. Österg̊ard, P.R.J.: A fast algorithm for the maximum clique problem. Discrete
Applied Mathematics 120, 197–207 (2002)

157. Padberg, M.W.: On the facial structure of set packing polyhedra. Mathematical
Programming 5, 199–215 (1973)

176

158. Padberg, M.W., Rinaldi, G.: A branch-and-cut algorithm for the resolution of
large-scale symmetric travelling salesman problems. SIAM Review 33, 60–100
(1991)

159. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading,
MA (1994)

160. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms
and Complexity. Dover Publications, Inc., Mineola, NY (1988)

161. Pardalos, P.M., Rodgers, G.P.: A branch and bound algorithm for the maximum
clique problem. Computers and Operations Research 19, 363–375 (1992)

162. Pardalos, P.M., Xue, J.: The maximum clique problem. Journal of Global
Optimization 4, 301–328 (1994)

163. Peng, X., Langston, M.A., Saxton, A.M., Baldwin, N.E., Snoddy, J.R.: Detect-
ing network motifs in gene co-expression networks through integration of protein
domain information. In: P. McConnell, S.M. Lin, P. Hurban (eds.) Methods of
Microarray Data Analysis V, pp. 89–102. Springer, New York (2007)

164. Pulleyblank, W.R.: Faces of matching polyhedra. Ph.D. thesis, University of
Waterloo, Canada (1973)

165. Rain, J.C., Selig, L., Reuse, H.D., Battaglia, V., Reverdy, C., Simon, S., Lenzen,
G., Petel, F., Wojcik, J., Schachter, V., Chemama, Y., Labigne, A., Legrain, P.:
The protein-protein interaction map of helicobacter pylori. Nature 409(6817),
211–215 (2004). Erratum in: Nature 409(6820):553 and 409(6821):743, 2001.

166. Ravi, S.S., Rosenkrantz, D., Tayi, G.K.: Heuristics and special case algorithms
for dispersion problems. Operations Research 42, 299–310 (1994)

167. Sageman, M.: Understanding Terrorist Networks. University of Pennsylvania
Press, Phladelphia, PA (2004)

168. Sanchis, L.A., Jagota, A.: Some experimental and theoretical results on test
case generators for the maximum clique problem. INFORMS Journal on Com-
puting 8(2), 103–117 (1996)

169. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York
(1986)

170. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer,
New York (2003)

171. Scott, J.: Social Network Analysis: A Handbook, 2 edn. Sage Publications,
London (2000)

172. Seidman, S.B.: Network structure and minimum degree. Social Networks 5,
269–287 (1983)

173. Seidman, S.B., Foster, B.L.: A graph theoretic generalization of the clique
concept. Journal of Mathematical Sociology 6, 139–154 (1978)

177

174. Selkow, S.M.: A probabilistic lower bound on the independence number of
graphs. Discrete Mathematics 132, 363–365 (1994)

175. Sherali, H.D., Smith, J.C.: A polyhedral study of the generalized vertex packing
problem. Mathematical Programming 107(3), 367 – 390 (2006)

176. Shor, N.Z.: Dual quadratic estimates in polynomial and Boolean programming.
Annals of Operations Research 25, 163–168 (1990)

177. Sloane, N.: Challenge problems: Independent sets in graphs (2000). Online:
http://www.research.att.com/˜njas/doc/graphs.html. Accessed July 2003

178. Sparrow, M.K.: The application of network analysis to criminal intelligence:
An assessment of the prospects. Social Networks 13, 251–274 (1991)

179. Spath, H.: Cluster Analysis Algorithms. Ellis Horwood, Chichester, West Sus-
sex (1980)

180. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular
networks. Proceedings of the National Academy of Sciences 100(21), 12,123–
12,128 (2003)

181. Terveen, L., Hill, W., Amento, B.: Constructing, organizing, and visualizing
collections of topically related web resources. ACM Transactions on Computer-
Human Interaction 6, 67–94 (1999)

182. Trotter Jr., L.: Solution characteristics and algorithms for the vertex packing
problem. Tech. Rep. 168, Dept. of Operations Research, Cornell University,
Ithaca, NY (1973)

183. U.S. Congress, O.o.T.A.: Technologies for detecting money launder-
ing. In: Information Technologies for the Control of Money Launder-
ing, pp. 51–74. Washington DC: U.S. Government Printing Office (1995).
Online: http://www.wws.princeton.edu/ota/disk1/1995/9529/9529.PDF. Ac-
cessed May 2006

184. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD
Explor. Newsl. 5(1), 59–68 (2003)

185. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University
Press, New York (1994)

186. Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature
393, 440–442 (1998)

187. Wei, V.K.: A lower bound on the stability number of a simple graph. Tech.
Rep. TM 81-11217-9, Bell Laboratories, Murray Hill, NJ (1981)

188. West, D.: Introduction to Graph Theory. Prentice-Hall, Upper Saddle River,
NJ (2001)

189. Wood, D.R.: An algorithm for finding a maximum clique in a graph. Operations
Research Letters 21(5), 211–217 (1997)

178

APPENDIX A

RESULTS OF BC ALGORITHMS ON SANCHIS INSTANCES AND

IPBC ALGORITHM ON GROUP II INSTANCES

For Sanchis-log and Sanchis-linear instances, running time, best integer solution

found, best upper-bound found, number of BC nodes enumerated and number of

cuts generated are provided for BC implementation (k = 1), BC-MIS implementation

(k = 2) and BC-C2PLX implementation (k = 2). In all the tables reporting numerical

results on Sanchis instances, the superscript † indicates non-optimal termination when

time limit set by parameter TiLim was reached; [l, u] represent lower and upper

bounds on ωk(G) in case of non-optimal termination; “-” indicates instances not

attempted; ∗ indicates that the maximum k-plex was found even though termination

was not optimal. The clique numbers of Sanchis-log instances is provided in Table 24

for the sake of clarity. Running time reported is the duration Cplexr was engaged

in solution process which includes formulation, presolving, BC and primal heuristics

and it does not include time to read data or write output.

For Group II instances, the following details are provided. Tables 49, 50 and 51

list the authors belonging to a maximum k-plex identified for k = 1, 2, 3 in Erdös

Collaboration Networks. Tables 52 and 53 list the author names (verbatim) included

in a maximum k-plex identified for k = 1, 2, 3 on computational geometers collabo-

ration networks for threshold t = 0, 1, 2. Words included in the maximum k-plexes

identified from the text mining network DAYS-t.PAJ for k = 1, 2, 3 and t = 3, 4, 5 are

listed in Tables 54 and 55.

179

Table 24 Clique numbers of Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 11 14 19 26 42 88
200 12 16 21 30 48 101
300 13 17 23 32 52 109
400 14 18 24 34 54 114
500 14 18 25 35 56 118
600 14 19 26 36 58 122
700 15 19 26 37 59 125
800 15 20 27 38 60 127
900 15 20 27 39 61 130
1000 16 20 28 39 62 132

Table 25 Running time (secs) of BC, k = 1, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 0.703 0.797 0.578 0.75 0.125 0.015
200 7.891 6.86 15.469 25.455 22.033 0.063
300 97.6 127.007 317.924 877.426 1027.51 45.456
400 410.055 780.826 1591.47 6041.69 10799.6† 10800.2†

500 1593.31 4458.98 10801† 10800.5† - -
600 3378.54 10800.4† - - - -
700 5613.22 10800.4† - - - -
800 10800.5† - - - - -

Table 26 1-plex numbers found by BC on Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 11 14 19 26 42 88
200 12 16 21 30 48 101
300 13 17 23 32 52 109
400 14 18 24 34 [51, 71] [114, 140]∗

500 14 18 [19, 29] [24, 43] - -
600 14 [14, 20] - - - -
700 15 [14, 25] - - - -
800 [11, 19] - - - - -

180

Table 27 Number of nodes enumerated by BC, k = 1, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 77 239 151 285 0 0
200 759 672 2713 4557 5131 0
300 6734 15119 46134 128503 119899 6847
400 19889 67740 149180 500128 732940† 1121575†

500 107722 308110 637257† 605248† - -
600 155407 546396† - - - -
700 106706 256836† - - - -
800 129248† - - - - -

Table 28 Number of cuts generated by BC, k = 1, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 122 345 279 370 0 0
200 1230 611 3127 9585 13552 0
300 7255 18996 66994 175884 265001 5584
400 17446 58532 165833 812310 1227376† 1928377†

500 93265 195996 403970† 335075† - -
600 92287 246706† - - - -
700 44977 83787† - - - -
800 43786† - - - - -

Table 29 Running time (secs) of BC, k = 1, Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 0.391 0.485 0.609 1.36 15.658 4.36
200 7.376 5.625 5.001 14.205 64.458 10800.6†

300 43.611 85.977 28.774 82.007 448.903 10800.5†

400 300.747 129.476 236.213 337.202 1954.35 10800.6†

500 435.315 325.688 252.136 652.093 5792.38 -
600 812.927 650.591 578.729 1998.4 10800.4† -
700 1781.46 1216.49 1153.37 8806.92 10800.4† -
800 2854.67 1931.55 2183.15 10431.8 10800.3† -
900 4501.52 3541.75 10800.4† 10800.4† - -
1000 7620.85 5534.83 6695.89 10801† - -

181

Table 30 1-plex numbers found by BC on Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 20 20 20 20 20 20
200 40 40 40 40 40 [38, 55]
300 60 60 60 60 60 [56, 101]
400 80 80 80 80 80 [77, 146]
500 100 100 100 100 100 -
600 120 120 120 120 [120, 200]∗ -
700 140 140 140 140 [140, 261]∗ -
800 160 160 160 160 [160, 306]∗ -
900 180 180 [90, 383] [180, 314]∗ - -
1000 200 200 200 [200, 356]∗ - -

Table 31 Number of nodes enumerated by BC, k = 1, Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 24 69 147 776 12583 3882
200 300 206 296 2291 16092 1274754†

300 572 5909 793 5699 47742 1118366†

400 10440 1065 8049 11694 94501 1000516†

500 858 1731 1790 8352 141947 -
600 878 1669 2576 16948 163915† -
700 1308 1841 3383 82505 103549† -
800 1320 1595 4877 35896 87403† -
900 1643 2805 51665† 33976† - -
1000 1774 2576 8200 24270† - -

182

Table 32 Number of cuts generated by BC, k = 1, Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 22 104 338 1264 15063 1264
200 209 407 709 4304 39726 1439053†

300 737 6539 2380 10427 147825 1227792†

400 12414 3221 11478 23862 303508 1187218 †

500 1673 4467 6752 33034 567800 -
600 1677 5074 11128 62069 657015† -
700 2667 5561 15236 164728 378961† -
800 2773 5459 17438 154844 250647† -
900 3900 9571 59648† 102024† - -
1000 4207 8580 29295 74542† - -

Table 33 Running time (secs) of BC-MIS, k = 2, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 11.922 29.126 29.235 19.36 1.672 0.015
200 684.529 2467.22 7920.65 10800.2† 10800.2† 1.091
300 9050.57 10800.4† 10800.3† - - 10800.7†

400 10800.4† - - - - 10800.2†

500 10800.3† - - - - -

Table 34 2-plex numbers found by BC-MIS on Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 12 14 20 26 42 88
200 13 17 23 [31, 39] [48, 55] 101
300 15 [19, 33] [25, 45] - - [109, 125]
400 [15, 28] - - - - [115, 178]
500 [15, 28] - - - - -

183

Table 35 Number of nodes enumerated by BC-MIS, k = 2, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 4687 17291 16482 11356 978 0
200 139080 562367 1432228 1389938† 1691054† 0
300 829225 583982† 612239† - - 915382†

400 348089† - - - - 736123†

500 112203† - - - - -

Table 36 Number of cuts generated by BC-MIS, k = 2, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 1740 4903 6462 6575 544 0
200 38297 181394 536488 859530† 1265270† 0
300 181916 139325† 199689† - - 631101†

400 348089† - - - - 736123†

500 112203† - - - - -

Table 37 Running time (secs) of BC-MIS, k = 2, Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 2.016 6.312 21.907 325.18 10800.3† 291.586
200 16.751 92.909 179.192 2025.52 10800.5† 10800.5†

300 84.266 539.763 1115.4 10800.3† - -
400 298.601 2106.16 4392.91 10800.4† - -
500 855.319 5675.32 10800.5† - - -
600 1761.98 10800.3† 10800.4† - - -
700 3495.51 10801.2† 10801† - - -
800 6491.4 - - - - -
900 10627 - - - - -
1000 10800.6† - - - - -

184

Table 38 2-plex numbers found by BC-MIS on Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 20 20 20 20 [24, 27] 38
200 40 40 40 40 [40, 57] [49, 80]
300 60 60 60 [60, 62] - -
400 80 80 80 [80, 140] - -
500 100 100 [100, 132] - - -
600 120 [120, 180] [120, 210] - - -
700 140 [140, 231] [140258] - - -
800 160 - - - - -
900 180 - - - - -
1000 [200, 282] - - - - -

Table 39 Number of nodes enumerated by BC-MIS, k = 2, Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 407 2139 12609 224245 1223136† 178159
200 678 4574 21258 404025 1225284† 958143†

300 1169 8478 41907 729325† - -
400 2875 13952 74848 196993† - -
500 3160 18131 69593† - - -
600 5433 13957† 28097† - - -
700 8288 7483† 16323† - - -
800 7627 - - - - -
900 9383 - - - - -
1000 6919† - - - - -

185

Table 40 Number of cuts generated by BC-MIS, k = 2, Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 414 1320 5089 53805 318711† 66803
200 877 5115 16249 260290 1037180† 666585†

300 1320 10853 32841 552828† - -
400 2040 18363 52769 226690† - -
500 2549 26500 67133† - - -
600 3445 27701† 30599† - - -
700 4512 15112† 18884† - - -
800 4888 - - - - -
900 5745 - - - - -
1000 4445† - - - - -

Table 41 Running time (secs) of BC-C2PLX, k = 2, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 124.925 307.086 478.996 505.872 56.47 0.016
200 10800.4† 10801.2† 10802.4† 10800.8† 10800.8† 1.077
300 - 10813.5† - - - 10814.5†

Table 42 2-plex numbers found by BC-C2PLX on Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 12 14 20 26 42 88
200 [13, 22] [16, 62] [22, 71] [30, 80] [48, 88] 101
300 - [18, 101] - - - [109, 150]

Table 43 Number of nodes enumerated by BC-C2PLX, k = 2, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 2490 7839 6536 4340 304 0
200 25612† 8110† 5480† 5213† 4853† 0
300 - 2243† - - - 708†

186

Table 44 Number of cuts generated by BC-C2PLX, k = 2, Sanchis-log instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 1559 4842 5862 5448 362 0
200 13666 4432 3994 4365 4508 0
300 - 812 - - - 637

Table 45 Running time (secs) of BC-C2PLX, k = 2, Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 18.204 107.096 426.464 4109.14 10800.3† 10800.6†

200 667.423 5418.7 10802.1† 10800.8† - -
300 7453.67 10821† - - - -
400 10852.4† 10849.5† - - - -

Table 46 2-plex numbers found by BC-C2PLX on Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 20 20 20 20 [24, 29] [37, 39]
200 40 40 [40, 72] [40, 80] - -
300 60 [60, 100] - - - -
400 [80, 115] [80, 136] - - - -

Table 47 Number of nodes enumerated by BC-C2PLX, k = 2, Sanchis-linear in-

stances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 273 876 5437 101207 126558† 56697†

200 724 2200 2760† 4315† - -
300 1483 625† - - - -
400 433† 487† - - - -

187

Table 48 Number of cuts generated by BC-C2PLX, k = 2, Sanchis-linear instances

n d = 0.4 d = 0.5 d = 0.6 d = 0.7 d = 0.8 d = 0.9
100 456 1194 5225 81143 109238† 37941†

200 1091 4142 3724† 5096† - -
300 2227 1403† - - - -
400 643† 626† - - - -

Table 49 Authors belonging to a maximum k-plex identified for k = 1, 2, 3 in

ERDOS-97-1.NET and ERDOS-97-2.NET

k ERDOS-97-1.NET ERDOS-97-2.NET

1

Stefan Andrus Burr Stefan Andrus Burr
Ralph J. Faudree Ralph J. Faudree
Ronald J. Gould Ronald J. Gould
Andras Gyarfas Andras Gyarfas
Michael S. Jacobson Michael S. Jacobson
Cecil Clyde Rousseau Cecil Clyde Rousseau
Richard H. Schelp Richard H. Schelp

2

Noga Alon Gary Chartrand
Fan Rong K. Chung Frank Harary
Zoltan Furedi Michael S. Jacobson
Andras Gyarfas Ewa Marie Kubicka
Vojtech Rodl Grzegorz Kubicki
Endre Szemeredi Jeno Lehel
William T. Trotter Ortrud R. Oellermann
Zsolt Tuza Farrokh Saba

3

Stefan Andrus Burr Gary Chartrand
Ralph J. Faudree Ronald J. Gould
Frank Harary Frank Harary
Michael S. Jacobson Michael S. Jacobson
Jeno Lehel Ewa Marie Kubicka
Jaroslav Nesetril Grzegorz Kubicki
Vojtech Rodl Jeno Lehel
Richard H. Schelp Ortrud R. Oellermann
Zsolt Tuza Farrokh Saba

188

Table 50 Authors belonging to a maximum k-plex identified for k = 1, 2, 3 in

ERDOS-98-1.NET and ERDOS-98-2.NET

k ERDOS-98-1.NET ERDOS-98-2.NET

1

Stefan Andrus Burr Guantao Chen
Ralph J. Faudree Ralph J. Faudree
Ronald J. Gould Ronald J. Gould
Andras Gyarfas Andras Gyarfas
Michael S. Jacobson Michael S. Jacobson
Cecil Clyde Rousseau Richard H. Schelp
Richard H. Schelp Linda M. Lesniak

2

Noga Alon Gary Chartrand
Fan Rong K. Chung Frank Harary
Zoltan Furedi Michael S. Jacobson
Andras Gyarfas Ewa Marie Kubicka
Vojtech Rodl Grzegorz Kubicki
Endre Szemeredi Jeno Lehel
William T. Trotter Ortrud R. Oellermann
Zsolt Tuza Farrokh Saba

3

Noga Alon Noga Alon
Fan Rong K. Chung Vaclav Chvatal
Peter Frankl Ronald L. Graham
Zoltan Furedi Frank Harary
Ronald L. Graham Jaroslav Nesetril
Laszlo Lovasz Vojtech Rodl
Vojtech Rodl Endre Szemeredi
Joel H. Spencer William T. Trotter
William T. Trotter Zsolt Tuza

189

Table 51 Authors belonging to a maximum k-plex identified for k = 1, 2, 3 in

ERDOS-99-1.NET and ERDOS-99-2.NET

k ERDOS-99-1.NET ERDOS-99-2.NET

1

Guantao Chen Guantao Chen
Ralph J. Faudree Ralph J. Faudree
Ronald J. Gould Ronald J. Gould
Andras Gyarfas Andras Gyarfas
Michael S. Jacobson Michael S. Jacobson
Cecil Clyde Rousseau Richard H. Schelp
Richard H. Schelp Linda M. Lesniak

2

Noga Alon Gary Chartrand
Fan Rong K. Chung Frank Harary
Zoltan Furedi Michael S. Jacobson
Andras Gyarfas Ewa Marie Kubicka
Vojtech Rodl Grzegorz Kubicki
Endre Szemeredi Jeno Lehel
William T. Trotter Ortrud R. Oellermann
Zsolt Tuza Farrokh Saba

3

Noga Alon Stefan Andrus Burr
Fan Rong K. Chung Ralph J. Faudree
Peter Frankl Andras Gyarfas
Zoltan Furedi Frank Harary
Ronald L. Graham Michael S. Jacobson
Laszlo Lovasz Jaroslav Nesetril
Vojtech Rodl Vojtech Rodl
Joel H. Spencer Richard H. Schelp
William T. Trotter Zsolt Tuza

Table 52 Authors belonging to a maximum k-plex identified for k = 1, 2, 3 in COMP-

GEOM-0.PAJ (same 22 authors listed for all k)

A. Hicks J. Weeks Joel Hass
Leonidas J. Guibas Marshall W. Bern David Letscher
L. Paul Chew Pankaj K. Agarwal G. Lerman
Jack Scott Snoeyink Herbert Edelsbrunner Tamal K. Dey
David P. Dobkin Paul Plassmann Nina Amenta
Chee-Keng Yap C. Grimm C. K. Johnson
J. Harer D. Zorin E. Sedgwick
David Eppstein

190

Table 53 Authors belonging to a maximum k-plex identified for k = 1, 2, 3 in COMP-

GEOM-t.PAJ

t = 1

k = 1 k = 2 k = 3
Mark H. Overmars Leonidas J. Guibas Leonidas J. Guibas
Sue H. Whitesides Micha Sharir Micha Sharir
Erik D. Demaine Bernard Chazelle Bernard Chazelle
Therese C. Biedl Jack Scott Snoeyink Jack Scott Snoeyink
Godfried T. Toussaint John E. Hershberger John E. Hershberger
Anna Lubiw Richard Pollack Chee-Keng Yap
Martin L. Demaine Herbert Edelsbrunner Richard Pollack
Steve M. Robbins Emo Welzl Herbert Edelsbrunner
Ileana Streinu Janos Pach Emo Welzl
Joseph O’Rourke Raimund Seidel Janos Pach

Raimund Seidel

t = 2

k = 1 k = 2 k = 3
Mark H. Overmars Leonidas J. Guibas Leonidas J. Guibas
Sue H. Whitesides Micha Sharir Micha Sharir
Erik D. Demaine Bernard Chazelle Bernard Chazelle
Therese C. Biedl Jack Scott Snoeyink John E. Hershberger
Anna Lubiw John E. Hershberger Richard Pollack
Martin L. Demaine Richard Pollack Pankaj K. Agarwal
Steve M. Robbins Herbert Edelsbrunner Herbert Edelsbrunner
Joseph O’Rourke Raimund Seidel Emo Welzl

Janos Pach
Raimund Seidel

191

Table 54 Words belonging to a maximum k-plex identified for k = 1, 2, 3 and t = 3, 4

in DAYS-t.PAJ

t = 3

k = 1 k = 2 k = 3
attack attack attack
official new york city
pentagon official new york
people pentagon official
pres bush people pentagon
tuesday plane people
united states pres bush pres bush
washington tuesday thousand

united states tuesday
washington united states

washington

t = 4

k = 1 k = 2 k = 3
landmark attack attack
new york pentagon city
plane people new york
tower plane pentagon
tuesday tower people
twin tuesday plane
world trade ctr united states tuesday

world trade ctr united states
washington

Table 55 Words belonging to a maximum k-plex identified for k = 1, 2, 3 and in

DAYS-5.PAJ

t = 5

k = 1 k = 2 k = 3
attack attack attack
new york new york new york
pentagon pentagon pentagon
plane plane plane
tuesday tower tower
world trade ctr tuesday tuesday

world trade ctr twin
world trade ctr

192

VITA

Balabhaskar “Baski” Balasundaram received his Bachelor of Technology degree

in Mechanical Engineering from the Indian Institute of Technology – Madras, In-

dia in 2002. He joined the Industrial Engineering doctoral program at Texas A&M

University in September 2002 and received his Doctor of Philosophy degree in Au-

gust 2007. His research interests are in combinatorial optimization, with clustering

and data-mining applications in social, biological and wireless networks. He will join

the faculty of School of Industrial Engineering and Management at Oklahoma State

University, Stillwater in August 2007.

Mr. Balasundaram may be reached at his work address:

School of Industrial Engineering and Management

322 Engineering North

Oklahoma State University

Stillwater, OK 74078

This document was typeset in LATEX by the author.

