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ABSTRACT

Scheduling Screening Inspections

for Replaceable and Non-Replaceable Systems. (August 2007)

Bahadır Aral, B.S., Bog̃aziçi University, Turkey;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Georgia-Ann Klutke

This dissertation focuses on developing inspection schedules to detect non-self-

announcing events which can only detected by inspections. Failures of protective sys-

tems ,such as electronic equipments, alarms and stand-by systems, incipient failures

and the emergence of certain medical diseases are examples of such events. Inspec-

tions are performed at pre-determined times to detect whether or not the event has

occurred, and necessary actions are taken upon the detection. In this research, my

interest is in developing effective inspection schedules to detect non-self-announcing

events that balance system downtime and inspection effort.

To evaluate the quality of an inspection schedule, I use the availability (for re-

placeable) and the detection delay (for non-replaceable systems) as performance mea-

sures. When the monetary cost of inspection and the cost of delay are difficult to

determine, non-monetary performance measures become more meaningful. In this

research, the focus is on maximizing availability or minimizing detection delay given

a limited number of inspections or a limited inspection rate. I show that for replace-

able and non-replaceable systems, it is possible to construct inspection schedules that

perform better than periodic inspection with respect to our performance measures.

The occurrence of the event I would like to detect may be influenced by certain

individual characteristics. For instance, the risk of developing a certain type of dis-

ease might be different for different subgroups within the population. In this case,
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because of the non-homogeneity in the population, benefits of performing screening

tests may not be fully achieved for each sub-group by using an inspection strategy

developed for the entire population. Thus, it may be of value for an individual to

learn more information about his/her likehood to have the disease. To address this

issue, I analyze the change in the expected delay if schedules are based on the whole

population information or the individual information and provide numerical results.
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CHAPTER I

INTRODUCTION

Developing inspection schedules for detecting a particular event has been of the in-

terest to the reliability community for many years. For instance, in industrial studies

concerned with maintaining machines or equipment exposed to a hazardous environ-

ment, a particular event of interest is the failure time of the equipment. For such

studies, the objective is to design effective inspection strategies in order to detect

failures as soon as possible so as to minimize disruptions caused by down times.

Similarly, in health care studies, timing medical tests to detect the appearance of

certain pre-clinical conditions is crucial to the well-being of the population at risk.

In this case, the event we would like to detect is the occurrence of such conditions

and the objective could be to reduce the detection delay or to increase the chance

of detecting the disease before it reaches a clinical level. In both cases, there is a

non-self-announcing event (hereafter we will refer to it as a failure to be consistent

with the literature), which can only be detected by an inspection, and the goal of in-

spections is to identify this event as soon as possible. In this research, we investigate

issues regarding effective inspection schedules for systems with non-self-announcing

failures.

For industrial equipment, any kind of unplanned disruptions in production can

cause serious financial problems. For instance, the estimated cost of an unplanned

shutdown of BP’s Alaska refinery in August, 2006 has been blamed for a 2% drop in

BP’s stock value (See (Isidore, 2006)). Besides the monetary cost of lost production,

excessive downtime can affect competitiveness and the market share. Since many

This dissertation follows the style of IIE Transactions.
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plants and facilities are composed of complex devices, which are also inter-connected

among themselves, it is important to carefully identify the likehood of failures or mal-

functions of devices in order to design effective inspections strategies. For industrial

studies, in this dissertation, we will consider replaceable systems, where the failed

part or equipment will be replaced as soon as a failure is detected.

For replaceable systems, it is important to know that how our system performs

in ideal conditions (i.e, the laboratory or nominal life) and how the operating envi-

ronment affects its performance. There are two approaches to describe this situation.

The first approach is to describe the operating environment and the nominal life

separately. This approach provides a general framework but generally increases the

complexity of the problem. On the other hand, a simpler approach is to assume

that the lifetime distribution under the operating conditions is known. The specific

properties of the lifetime distribution can then be used to build the maintenance

policy. In the first category, the system has a known nominal life distribution under

ideal conditions (i.e, Li in Figure 1 is known) and it deteriorates as a response to

its environment. The deterioration caused by its operating environment is modeled

as a stochastic process and called as damage process. By using the nominal life dis-

tribution and the properties of the damage process, the lifetime (L∗
i in Figure 1) is

characterized (if possible) or they are together used to calculate desired performance

measures for specific inspection policies.

Both monetary and non-monetary measures can be used to evaluate maintenance

strategies. Monetary measures can be meaningful if it is possible to quantify the mon-

etary cost of downtime and inspection. However, it may not be possible to quantify

the monetary trade-off between the downtime and inspection costs. Additionally, in

some cases, the maintenance budget may be fixed, so that only certain number of

inspections are allowed. In such situations, the goal is to maximize availability given
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a fixed number of inspections. In Chapter III, we address how to design inspections

for maximizing availability using a constant inspection rate. Although non-monetary

performance measures are used in Chapter III, when the costs of inspections and

downtimes are known, with slight modifications, they can be incorporated into our

model.

Fig. 1. Sample path for replaceable systems

Some medical diseases do not become apparent as soon as they start. So, screen-

ing is an important way to detect these kinds of diseases at early stages. The ben-

efit of screening is that if a disease is identified at an early stage, the treatment is

usually more successful and the chance of survival may be increased. There are dif-

ferent screening tests and schedules for different types of diseases. For instance, the

American Cancer Society recommends three tests to detect signs of breast cancer:

mammography, clinical breast exam and breast self-examination. Additionally, the

American Medical Womens Association recommends annual mammography and clin-

ical breast exam for normal-risk women 40 years of age and older. For colorectal
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cancer, it is suggested that people over 50 should be screened using a combination

of fecal occult blood testing, sigmoidoscopy and colonoscopy. The American Cancer

Society suggest different guides for colorectal cancer such as

• a fecal occult blood test (FOBT) or fecal immunochemical test (FIT) every year

OR

• flexible sigmoidoscopy every 5 years, OR

• an FOBT or FIT every year plus flexible sigmoidoscopy every 5 years, OR

• colonoscopy every 10 years.

The recommended frequency of tests differs for different types of cancers as well as for

different types of test. This can be explained by having different risks at certain ages

and the quality of a particular test for a certain cancer. For instance, mammography’s

ability to detect a breast cancer when it is already started is estimated to 77.6% in

(Houssami, Ciatto, Irwig, Simpson and Macaskill, 2002). Therefore, when designing

screening inspection schedules, the fallibility of tests should also taken into account.

Most current recommended screening schedules are periodic. Clinical studies

have, however, suggested that the incidence rate of having a certain disease changes

over an individual’s lifetime. These facts motivate us to consider unequally spaced

inspections that may be able to outperform periodic inspections. In Chapter IV,

we consider a general non-replaceable system. In this system, as soon as the failure

is detected, inspections are halted and treatment begins. We propose inspection

schedules which will have lower detection delays than periodic inspections does, using

the same number of inspections as periodic inspections. Our approach can be used

to evaluate how detection delay is affected by performing different types of tests and

by following different schedules since we also take the fallibility of tests into account.
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Another issue while designing screening schedules is how valuable it is to design

customized schedules if more information about the failure intensity for a particu-

lar person or system is available. For instance, advances in genomic medicine have

allowed for the identification of certain genetic markers that are believed to be as-

sociated with increased risk of disease. For example, mutations in the BRCA1 and

BRCA2 genes have associated with increased risk of developing breast cancer. If a

person has these genes, it might be a beneficial for her to follow a different screening

schedule that other patients. In other words, the possibility of having extra infor-

mation leads us to the question of how to quantify the value of information if the

population at risk is formed by mixtures of sub-populations with different suscepti-

bilities to a certain disease. In Chapter V, we look at how much improvement can be

gained by using customized schedules and how valuable customized schedules are to

the whole population.

This dissertation is organized as follows. In Chapter II, we review the literature

for maintenance strategies for general replaceable systems and non-replaceable sys-

tems. In Chapter III, we analyze a simple failure prone system which fails due to

shocks, whose appearance are modeled by a non-homogeneous Poisson point process

with a known intensity function. For a such system, we express the stationary time

averaged availability for periodic inspections, develop the concept of intensity-based

inspections, in which inter-inspection times are matched to the intensity function.

Finally, we develop and analyze an improved inspection strategy which provides a

higher availability than periodic inspections without changing the limiting inspection

rate. In Chapter IV, we describe a general framework to model non-replaceable sys-

tems, which includes non-monotonic hazard rate functions, fallible inspections and a

pre-clinical duration. We provide an algorithm for improving a given schedule to re-

duce the expected delay without changing the number of inspections if the pre-clinical
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duration is infinite. Chapter V focuses on how to quantify the value of information

for a mixture population and we provide numerical examples for different mixtures.

Finally, in Chapter VI, contributions of our research and future directions are dis-

cussed.
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CHAPTER II

RELATED LITERATURE

Many probabilistic models have been studied in the operations research literature to

plan maintenance strategies to detect failures. In this research, we are interested in

developing inspection strategies for systems with non-self-announcing failures, which

can only be detected by inspections. In this dissertation, we distinguish between

replaceable and non-replaceable systems. For replaceable systems, a replacement

can be performed either as a result of detecting failures or preventively to avoid the

delay caused by failures. On the other hand, for non-replaceable systems, inspections

are only performed until the detection of the first failure and after that, no more

inspections are made.

1. Industrial Studies: Replaceable Systems

Studies focused on systems with non-self-announcing failures date back to Barlow,

Hunter and Proschan (1963). Since inspections are required to detect failures, de-

veloping inspection schedules and assessing their performance have been the main

objective. Many of the papers in the literature used the expected cost of maintenance

as their performance measure to assess inspection schedules (Kolesar (1966), Menipaz

(1979) and Munford (1981)). In such studies, costs of inspections and downtimes are

taken into the account to describe the maintenance cost. When it is difficult to quan-

tify the relationship between the cost of inspections and downtimes, non-monetary

performance measures such as the availability are used to assess inspection sched-

ules (Wortman and Klutke (1994) and Parmigiani (1994)). An excellent literature

review for studies on inspection strategies for systems with non-self-announcing fail-

ures using different types of performance measures can be found in Valdez-Flores
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and Feldman (1989). In this section, studies focused on replaceable systems with

non-self-announcing failures will be discussed.

Replaceable systems with non-self-announcing failures have been studied in the

literature using two different approaches. In the first one, it is assumed that a system

has a nominal life and exposes to a hazardous environment, which is described by a

stochastic process. Main objectives for such models are being able to characterize the

lifetime distribution and to construct effective inspection strategies to detect failures

if possible. In the second approach, the lifetime distribution under current operating

conditions is known (i.e., no need to separately model exogenous environment and

the nominal life) and the goal is to construct effective inspection strategies.

In the first category, different assumptions about properties of exogenous operat-

ing environments and nominal life distributions can provide different insights. Proper-

ties of operating environment and nominal life distributions can be used to character-

ize properties of lifetime distributions. Esary, Marshall and Proschan (1973) showed

that properties of nominal life distributions are inherited by the lifetime distribution if

the damage process is described by a homogeneous Poisson point process. More specif-

ically, they studied the conditions under which nominal life distribution properties

such as having log-concave densities (which is also called Pòlya frequency functions

of order 2), increasing (decreasing) hazard rate function, an increasing (decreasing)

failure rate function on average or a new better (worse) than used distribution func-

tion are inherited by the lifetime distribution. Abdel-Hameed and Proschan (1973)

extended these results when the damage process is described by a non-homogeneous

Poisson point process. For more general damage processes such as pure jump pro-

cesses (Abdel-Hameed, 1984b) and Lévy processes (Abdel-Hameed, 1984a), similar

results were also obtained. Yang and Klutke (2000b) studied how inspection sched-

ules will change if parameters of damage processes change. Specifically, they studied
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a quantile based inspection schedule change when the damage process is an increasing

Lévy process and the damage process’s Lévy measure changes.

Since developing optimum inspection schedules is quite challenging when ex-

plicitly describing the nominal life distribution and the damage process, calculating

performance measures for more common inspection schedules such as periodic inspec-

tions is more appealing. Wortman, Klutke and Ayhan (1994) expressed the stationary

availability for systems with non-self-announcing failure if the nominal life distribu-

tion is known and the damage process is a compound Poisson process. They showed

that deterministic inspections are the best inspection policy among a renewal types

of inspection schedules with a constant inspection rate. Kiessler, Klutke and Yang

(2002) expressed the time averaged stationary availability for periodic inspections if

the nominal life distribution is known and the hazard rate function of the damage

process is described by a discrete Markov chain. Çınlar and Özekici (1987) worked

on a similar problem if the nominal life distribution is exponential and the damage

process is an increasing semi-Markov process. Many different damage processes such

as Hunt, Itô, semi-Markov, Lévy processes are studied in the literature. An extended

literature review for damage processes used for replaceable systems can be founded

in Yang (1999).

In the case where the lifetime distribution is known, it becomes easier to construct

and assess inspections schedules. Parmigiani (1993) studied the optimum inspection

schedules to minimize the long run cost per unit time, which includes the cost of

different types of inspections, the number of inspections, the cost of the down time,

for systems with non-self-announcing failures. He showed that if the lifetime density

function is PF2 (i.e., the density is a log-concave function), then the optimum inter-

inspection times should be non-increasing. Yang and Klutke (2000a) studied more

general densities than Parmigiani using the stationary time averaged availability and
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the limiting inspection rate as their performance measures. Their model schedules

inspections such that the conditional survival probability is constant between inspec-

tions. Additionally, in the case that lifetime distributions have monotone failure rates,

they proposed two hybrid policies, which are mixtures of periodic and their original

inspection strategy so that inter-inspection times will not be a death-watch.

Earlier studies for replaceable systems either calculated performance measures

for specific inspection schedules or constructed optimum inspection schedules for a

specific class of densities with a increasing failure rates (i.e., PF2 densities). In

this research, our focus is to schedule screening inspection effectively for systems

with lifetime distributions which may have non-monotone failure rates. We explicitly

construct an improved inspection schedule over periodic inspection such that our

schedule provides a higher time averaged availability than periodic inspections do

but has the same limiting inspection rate with them.

2. Health Care Studies: Non-replaceable Systems

For non-replaceable systems with non-self-announcing failures, the primary goal is to

characterize the lifetime distribution so that inspections schedules can be constructed

according to its properties. Disease screening is a good example for non-replaceable

systems with non-self-announcing failures. In order to evaluate the benefit of screen-

ing trials, several large randomized screening trials such as HIP (Health Insurance

Plan of Greater New York (1963-1966)), CNBSS (Canadian National Breast Screen-

ing Study (1980-1985)) and PLCO (Prostate, Lung, Colorectal and Ovarian Cancer

Screening Trial (1991-2001)) were performed. The primary benefit of screening trials

is that if diseases are detected at an early stage, it will provide a substantial reduction

in mortality. We would like to point out that though most studies suggest screening
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trials to save lives, in some cases, benefits of screening trials are questioned by some

studies. For instance, Gøtzsche and Olsen (2000) and Olsen and Gøtzsche (2001)

suggested that mammography can expose women to unnecessary surgical procedures.

But, later, Freedman, Petitti and Robins (2004) counterpointed these two studies by

stating that Gøtzsche and Olsen judgements are due to misreadings of the data and

the literature. Especially, Freedman et al. provide excellent references for studies

focus on quantifying benefits of screening trials.

Though disease screening or incipient failures are non-self-announcing, after a

certain duration, the disease moves from a pre-clinical stage to a clinical (i.e., ex-

ternally observable) phase. In other words, the failure is non-self-announcing during

only a certain period of time, (the pre-clinical duration) and after that period, it be-

comes self-announcing. Different objectives can arise for maintaining non-replaceable

systems depending on the fact that the pre-clinical duration is finite or infinite. In

this section, we review both non-replaceable systems with finite pre-clinical duration

and those with infinite pre-clinical duration.

2.1. Finite Pre-clinical Duration

In the literature, it is assumed that certain medical diseases evolve according to the

natural disease history (Figure 2) as time goes by. It is assumed that there is a certain

time duration which patients are free from the disease, (the disease-free duration), and

then the disease starts and only can be detected by screening tests or inspections in our

words. This duration is called pre-clinical duration, which can have multiple sub-time

intervals. At the end of the pre-clinical duration, obvious symptoms of the disease are

present. Zelen and Feinleib (1969) consider such a disease model under the assumption

that the disease-free duration is uniformly distributed. Their goal is to develop ways

to estimate the expected pre-clinical duration, which is used to determine the expected
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lead time gained as a result of performing screening tests. Zelen and Feinleib used

The Health Insurance Plan for Greater New York (HIP) data for the breast cancer

screening using mammography and concluded that the pre-clinical distribution was

exponential. To assess the value of screening, Swartz (1978) developed a probabilistic

model based on the change in the life expectancy as a result of performing screening

inspections. Later, Albert, Gertman and Louis (1978) introduced the mathematical

framework for the natural history of a disease. Their work is the first one which

mathematically defines traditional epidemiologic descriptors as age specific incidence

and prevalence, lifetime attack rate, mean duration of the disease and in this sense,

it provides the foundations for statistical problems related to disease screening. In a

similar model, Louis et al worked how to estimate the joint distribution of the disease-

free duration and the pre-clinical duration using a non-parametric model in Louis,

Albert and Heghinian (1978) and Albert, Gertman, Louis and Liu (1978) studied the

effects of changes in population at risk to the estimation of the expected pre-clinical

duration. Estimation of the expected pre-clinical duration and/or the estimation

of sensitivity of screening tests are studied for breast cancer and colorectal cancer

in Day and Walter (1984), Walter and Day (1983) and Prevost, Launoy, Duffy and

Chen (1998). Recently, Dinse and Hoel (1992) investigated time trends in incidence

rates for various cancers.

Fig. 2. Sample path for a disease history
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Although studies mentioned so far used clinical data to estimate the expected pre-

clinical duration and the lead time gained due to the screening for a specific schedule,

they did not consider inspection strategies to reduce the expected delay between the

detection and the disease start time. Zelen (1993) considered the problem of better

schedules for medical disease screening under the assumptions that the disease-free

duration has a uniform distribution and the pre-clinical duration has a exponential

distribution. He used the probability of detection during the screening duration as his

performance measure. This measure is especially suitable for non-invasive diseases

since being detected before reaching the clinical level is more important than the

expected delay. He showed that periodic inspection schedule would be optimum

only if screening inspections are error-free. Gustafsson and Adami (1992) developed

simulation based inspection schedules using age-specific incidence rate for cervical

cancer in Sweden and age-specific sensitivity of inspections. Later, Parmigiani (1997)

developed inspections strategies to minimize approximate expected cost, which have

three parts: the cost per inspection, the cost of medical care due to the detection

in pre-clinical or clinical state and the cost of being detected at a certain health

status. In his study, he assumed a disease natural history as in Albert, Gertman and

Louis (1978) and used an inspection intensity model, which was originally proposed

by Keller (1974), to approximate the expected cost.

2.2. Infinite Pre-clinical Duration

Infinite pre-clinical durations can be considered for systems with purely non-self-

announcing failures. Although this is a simplification for the case of finite pre-clinical

duration, it provides insightful information to examine the effects of properties of the

lifetime distribution on screening schedules. In this category, Barlow et al. (1963)

can be considered as the milestone paper for developing inspection schemes when
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the lifetime distribution is known. In their model, the lifetime distribution F and

its density f are assumed to be known, and there are two types of cost, the cost of

each inspections performed c1 and the cost of unit downtime c2. If inspections are

performed at {xk}
∞
k=0, the expected cost can be expressed as

C = E[Cost] =
∞∑

k=1

xk∫

xk−1

k · c1 + c2 · (xk − t)F (dt) (2.1)

∂C

∂xk

= 0 k = 1, 2, . . . (2.2)

and the optimal cost can be determined by solving (2.2). Inter-inspection times

satisfying (2.2) can be expressed in terms of c1, c2 and x1 (the first inspection time).

They showed that inter-inspection times should be nonincreasing if the failure rate

α(t) = f(t)/(1−F (t)) is increasing. Therefore, the problem becomes finding the first

inspection time such that inter-inspection times will be nonincreasing.

Sengupta (1982) extended Barlow et al. to the case where inspections are fallible

(an inspection reports the correct state with probability 1 − γ when the system is

failed) and the lifetime distribution is exponential. Sengupta shows that the optimum

inspection should be in form of xk+1 = x + k · y, k = 0, 1, . . ., which says that it is

optimum to follow periodic inspections after the first inspection. Earlier, Parmigiani

(1993; 1996) extended results in Barlow et al. and Sengupta by allowing fallible-

inspections for lifetime distributions with increasing failure rate. Recently, Jiang and

Jardine (2005) addressed the high sensitivity of inter-inspection times in Barlow et al.

(1963) to the accuracy of the first inspection time and developed easily computable

methods to approximate inter-inspection times in Barlow et al..

Trade-offs between the detection delay and the number of inspections performed

are modeled as an unconstrained cost problem in the papers of Barlow et al., Sen-

gupta, Parmigiani and Jiang and Jardine. Kirch and Klein (1974) developed an
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inspection strategy that has the same expected number of inspection until detection

with a given periodic inspection. Their strategy assumed that every 5 years, periodic

inspection with different inter-inspection times will applied. Their assumptions about

the distribution of the failure and the time inspections cease are somewhat restrictive

in order to apply convex constrained optimization.

Since inspection strategies based on Barlow’s approach require cumbersome cal-

culations, Keller (1974; 1982) proposed an approximation to this model by introducing

the concept of the inspection intensity function n(t). He assumed that inspection will

be performed at xk+1 = xk + (n(xk))
−1 and used an approximation to the original

cost function in Barlow et al. Using calculus of variations, he determined the opti-

mum intensity and showed that his approximation method is accurate. Later, Kaio

and Osaki (1984) used the same method to described the optimum inspection rate

function when fallible inspections are allowed. More recently, Leung (2001) studied

the optimal inspection rate function for systems having multiple types of failures and

systems with unknown lifetime distribution, respectively.

Millioni and Pliska (1988) developed an optimum inspection strategy for a sys-

tem in which there are three stages (good, defective and bad). In their model, during

the defective stage, corrective actions (i.e., treatments) can be taken in order to avoid

entering the bad stage and transitions between stages are described by a increasing

Markov renewal process. In their model, they assumed that inspections were fal-

lible. Özekici and Papazyan (1988) also developed a cost model under transitions

governed by a increasing Markov renewal process, presented a numerical results in

which inspections could display both false positive and false negative. Later, Özekici

and Pliska (1991) extended their previous results by allowing both types of fallible

inspection but assuming that once the disease leaves the healthy state and transitions

between other states are described by a continuous increasing Markov chain.
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For non-replaceable systems, studies focused on designing the effective inspec-

tion schedules assumed that the disease-free duration (the lifetime) has an increasing

hazard rate function. However, clinical studies suggest that the hazard rate func-

tion for disease occurrence may be non-monotonic. Many papers discuss the medical

importance of screening, but we review here by only those papers that discuss an an-

alytical approach to scheduling screening exams. In our research, for non-replaceable

systems, we focus on how to schedule screening inspections using a limited number

of inspections if the disease-free duration has a non-monotone hazard rate.



17

CHAPTER III

IMPROVED INSPECTIONS FOR REPLACEABLE SYSTEMS

In this chapter, we consider scheduling inspections in a simple replaceable failure

prone system when the hazard rate function for time to failure is known. Our results

show that it is possible to construct effective inspection schedules for such systems

using hazard rate information when the number of inspections performed are consid-

ered as a limited resource. The chapter is organized as followed. The first section

describes our model and defines the performance measures used. In the second sec-

tion, we present closed form expressions for performance measures of interest for

periodic inspections and construct inspection strategies with unequal times between

inspections based on the hazard rate function. We prove that one of these strategies

outperforms periodic inspections. Finally, we investigate performance of different

inspection policies numerically in the last section.

1. Assumptions and Notation

We consider a simple failure prone system subject to shock degradation where our

interest is to detect the first of occurrence of a particular event (we call it a failure to

be consistent with the reliability literature). The detection of a security breach in a

network or the appearance of a tumor are examples of these types of events. Suppose

that the system has a nominal life of 1 unit under operating conditions and is subject

to shocks such that each shock removes 1 unit of the life. Assume further that a

stochastic point process describes the time of shocks. In this scenario, the first shock

will cause the system to fail. Although assumptions about the lifetime and the size

of shocks are restrictive when considering failures of a machine, which will usually

degrade gradually, it is reasonable for us since we are interested in detecting shocks
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(in this case, shocks represent events we would like to detect) as early as possible

rather than to model how much damage each shock causes.

In the following, we assume that inspections are performed at times {τk : k ≥ 1},

and that inspections can detect whether the system is operational or failed. If an

inspection finds the system operational, the system is left undisturbed and checked

again at the next scheduled inspection time. If an inspection finds the system failed,

the system is restored to a good-as-new state (that is, perfect repair or replacement

by an identical system) and the inspection process continues, taking the replacement

time as a new time origin for the inspection strategy. Shocks occur according to

a non-homogeneous Poisson point process {N(t) : t ≥ 0} (i.e., N(t) represents the

number of shocks by the time t). Additionally, we assume that {N(t) : t ≥ 0} has a

periodic piecewise constant intensity function α(t). More specifically, we will assume

that the intensity function α(·) of the point process satisfies the following conditions.

For some ci ∈ Q+ for i = 1, . . . , nα and {αi}
nα

i=1,

α(t) = α(t + i · cnα
) ∀ t > 0 and ∀ i ∈ N (3.1)

α(t) = αi > 0 for t ∈ [ci, ci+1) i = 0, 1, . . . , nα (3.2)

m(t) =

t∫

0

α(s)ds (3.3)

Finally, let V (t) be the status of the system at time t. That is,

V (t) =







1, If the system is working

0, Otherwise

A typical sample path is shown in Figure 3 where Li, i = 1, 2, . . . denote successive

failure-free times (uptimes) or successive lifetimes and Ri, i = 1, 2, . . . denote the

replacement epochs.
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Fig. 3. Sample path for failure prone replaceable systems

The objective is to schedule inspections to increase the limiting uptime duration for

a given limiting inspection rate (so, inspections are considered a limited resource).

In order to this, we use two performance measures, the stationary time-averaged

availability and the limiting inspection rate (hereafter, we refer them as the availability

and the inspection rate, respectively).

Definition 1 The limiting average availability, Aav, and the limiting inspection rate,

Ir are defined as

Aav = lim
t→∞

t∫

0

P{V (s) > 0} ds

t
(3.4)

Ir = lim
t→∞

M(t)

t
(3.5)

where M(t) = sup {k ≥ 1 : τk ≤ t} is the number inspections performed by the time t.

Before continuing to the next section, we consider the relationship between the hazard
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rate function of Li and the intensity function α(t) of the shock process {N(t) : t ≥ 0}.

First, let us define the conditional hazard rate function.

Definition 2 The random variable Hi(t) is called the conditional hazard rate function

for Li, i = 1, . . . if

Hi(t) = lim
s→0

E
[
1{t<Li≤t+s}|Ri−1

]

s · E
[
1{Li>t}|Ri−1

] (3.6)

= lim
s→0

P {t < Li ≤ t + s|Ri−1}

s · P {Li > t|Ri−1}
(3.7)

It is easy to see that

Hi(t) = lim
s→0

e−(m(Ri−1+t)−m(Ri−1)) ·
(
1 − e−(m(Ri−1+t+s)−m(Ri−1+t))

)

s · e−(m(Ri−1+t)−m(Ri−1))
(3.8)

= α(Ri−1 + t) (3.9)

Equation (3.9) states that by knowing the intensity function and the replacement

time for a particular cycle, we can determine the hazard rate function of the lifetime

distribution for that particular cycle. This was a main motivation for us to look at

this simple failure prone system since scheduling inspection using information about

the intensity function is the same as scheduling them using the information about the

hazard rate function of each cycle. In the next sections, we will express performance

measures for different inspection schedules and compare them.

2. Inspection Strategies

2.1. Periodic Inspections

For a given τ > 0, the periodic inspection schedule is one where τk = k ·τ, k ≥ 0. The

periodic inspection policy is widely used in practice since it is easily implemented,

but it has the disadvantage of not taking the failure intensity function into account
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explicitly. Many authors have studied periodic maintenance policies ((Shahani and

Crease, 1977), (Zuckerman, 1980), (Nakagawa, 1984), (Abdel-Hameed, 1987) and

(Wortman et al., 1994)) under different assumptions. We will denote periodic in-

spection schedules with inter-arrival times τ as PI(τ). The next theorem gives the

availability and the inspection rate for PI(τ).

Theorem 1 The availability and the inspection rate for PI(τ) where τ ∈ Q+ are

Aav =

k∗

τ∑

i=1

i·τ∫

(i−1)·τ

e−(m(s)−m(τ ·(i−1))) ds

k∗
τ · τ

(3.10)

Ir =
1

τ
(3.11)

where k∗
τ

1 is defined as

k∗
τ = inf{k ≥ 1 : k · τ is divisible by cnα

}

Proof: Define ζ0 = τ and ζi = τ + i · (k∗
τ · τ), i = 1, 2, . . .. Note that since m(ζi + t)−

m(ζi) = m(ζ0 + t) − m(ζ0), i = 1, 2, . . ., N(ζi + t) − N(ζi)
d
= N(ζ0 + t) − N(ζ0). So,

{ζi : i ≥ 0} are regeneration points for {N(t) : t ≥ 0}. Therefore, by using Smith’s

theorem (see page 263 in Resnick (1992)),

Aav =
E

[
ψ

]

k∗
τ · τ

(3.12)

where ψ =
ζ1∫

ζ0

1{V (s)=1} ds is the total up-time between ζ0 and ζ1. Now, we will write

ψ in terms ψi = inf{t > 0 : N(t + i · τ) − N(i · τ) > 0}, i = 1, 2 . . . , k∗
τ .

ψ =

k∗

τ∑

i=1

ψi ∧ τ (3.13)

1When τ and cnα
are rational numbers, k∗

τ will certainly be a finite number. How-
ever, if either τ or cnα

is irrational, k∗
τ may not exist.
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Note each term in the equation (3.13) represents the up-time between ith inspection

and (i + 1)th inspection.

Aav =

E
[ k∗

τ∑

i=1

ψi ∧ τ
]

k∗
τ · τ

(3.14)

=

k∗

τ∑

i=1

τ∫

0

P (ψi > s) ds

k∗
τ · τ

(3.15)

=

k∗

τ∑

i=1

(i+1)·τ∫

i·τ

e−(m(s)−m(i·τ)) ds

k∗
τ · τ

(3.16)

The number of inspection by time t, is M(t) = ⌊ t
τ
⌋. So,

1

τ
·
(

1 −
τ

t

)

≤
M(t)

t
≤

1

τ
(3.17)

By taking the limit of the equation (3.17), we get the result. ¥

2.2. Intensity-Based Inspections

A natural approach for scheduling inspections is to choose inspections such that inter-

inspection times will increase (or decrease) if the hazard rate is decreasing (increasing)

so that we are likely to perform more inspections when there is a higher chance of

failure. We consider inspections such that the expected number of shocks between

two inspection is constant (see Figure 4). In this case, we set

E[N(τ1)] = m(τ1) = β (3.18)

E[N(τi) − N(τi−1)] = m(τi) − m(τi−1) = β, i = 2, 3, . . . (3.19)

By equations (3.18) and (3.19), τi = m−1(i · β) i = 1, 2, . . .. Fixing the number of

shocks between inspections is the same as fixing the probability of having no shocks
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Fig. 4. IBI(β) inspection times

between two inspections since one shock causes the failure.

P{No failure between τi and τi−1} = P{N(τi) − N(τi−1) = 0} (3.20)

= e−(m(τi)−m(τi−1)) (3.21)

= e−β (3.22)

A similar policy, the quantile-based-inspection which assumes that the survival prob-

ability between inspections are fixed, was studied in Yang and Klutke (2000a) and

Shahani and Crease (1977) for systems whose the lifetime distribution is known. In

our context, we call this the intensity based inspection policy with β (IBI(β)) since

inspection times can be calculated using the intensity function α(t).

Theorem 2 If inspections are performed at {m−1(i · β)}∞i=1, then

Aav =
1 − e−β

β
(3.23)

Ir =
α

β
(3.24)

where {ci}
∞
i=0 are discontinuity points of α(·), cnα

is the period of α(·) and α =
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nα∑

i=1

αi ·
(ci−ci−1)

cnα

Note: Theorem 2 says that applying IBI(β) when shocks are governed by a non-

homogeneous Poisson point process gives the same availability as if we followed PI(β)

when shocks are governed by a homogeneous Poisson point process with α(t) = 1.

This result is intuitively clear because epochs of a non-homogeneous Poisson point

process (let’s denote them {Xn : n ≥ 1}) are a transformation of those of a homo-

geneous Poisson process with α(t) = 1 (let’s denote them {Γn : n ≥ 1}) under the

inverse transformation Xn = m−1(Γn) (See page 312 in Resnick (1992) for further

details). Since the IBI(β) is obtained from PI(β) using this same transformation,

(3.23) is expected.

Proof: By definition, M(t) = sup{n ≥ 1 : m−1(i · β) ≤ t}.

Ir = lim
t→∞

M(t)

t
(3.25)

= lim
t→∞

M(t)

m(t)
· lim

t→∞

m(t)

t
(3.26)

=
1

β
· α (3.27)

Let Rn, Ln be the the nth replacement time and the up-time between Rn−1 and Rn

as in Figure 3, respectively. Additionally, let NIn denote the number of inspection

performed during the nth replacement cycle. Then, it is easy to see that {NIi}
∞
i=1

is an i.i.d sequence with P (NI1 = k) = (1 − e−β) · e−β·(k−1). So, {m(Ri)}
n
i=0 (i.e.,

m(Rn) = β
n∑

i=1

NIi) is a renewal sequence and let’s define

U(t) = inf{n ≥ 1 : m(Rn) > t} (3.28)

Ũ(t) = E [U(t)] (3.29)
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Aav = lim
t→∞

t∫

0

P (V (s) > 0) ds

t
(3.30)

= lim
t→∞

m(t)

t
·

∞∑

k=1

E
[
Lk · 1{Rk−1≤t}

]

m(t)
−

E

[(
LU(m(t) + RU(m(t))−1 − t

)

+

]

t
(3.31)

Note that since m(t) is not necessarily a linear function, (Ln, Rn − Rn−1 : n ≥ 1)

are not identically distributed, and we can not apply the Renewal Reward Theorem

directly. We will use a similar approach by showing

∞∑

k=1

E
[
Lk · 1{Rk−1≤t}

]

m(t)
→

1 − e−β

α · β
(3.32)

E

[(
LU(m(t) + RU(m(t))−1 − t

)

+

]

t
→ 0 (3.33)

Before proving (3.32) and (3.33) , let A1(t) =
∞∫

0

∞∫

y

“

1
α(m−1(y))

− 1
α

”

·ey−z

m(t)
dz Ũ(dy) and

αmin = min
i=1,...,nα

αi. Then,

lim
t→∞

A1(t) = 0 (3.34)

This follows from

lim sup
t→∞

A1(t) =



sup
t<∞

t∫

0

et−y Ũ(dy)



 · lim sup
t→∞

∣
∣
∣
∣

m−1(t)

t
−

1

α

∣
∣
∣
∣

+



sup
t<∞

t∫

0

et−y Ũ(dy)



 ·
α + αmin

α · αmin

· lim sup
t→∞

1

t
(3.35)

= 0 (3.36)
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Note that sup
t<∞

t∫

0

et−y Ũ(dy) < ∞ because e−x is a directly Riemann integrable function

(see page 231 in Resnick (1992)).

lim
t→∞

∞∑

k=1

E
[
Lk · 1{Rk−1≤t}

]

m(t)
= lim

t→∞

Ũ(m(t))

m(t)
+ lim

t→∞
A1(t) (3.37)

=
1

α · E [m(R1)]
by the Elementary Renewal Theorem

(3.38)

=
1 − e−β

α · β
(3.39)

Let A2(t) =
E[(LU(m(t))+RU(m(t))−1−t)+]

t
.

lim
t→∞

A2(t) ≤ lim
t→∞

E
[
RU(t) − RU(t)−1

]

m−1(t)
(3.40)

= lim
t→∞

E

[
m(RU (t))∫

m(RU(t)−1)

1
α(m−1(z))

dz

]

m−1(t)
(3.41)

≤ lim
t→∞

E
[
m(RU(t)) − m(RU(t)−1)

]

m−1(t) · αmin

(3.42)

= lim
t→∞

t

m−1(t) · αmin

· lim
t→∞

E
[
m(RU(t)) − m(RU(t)−1)

]

t
(3.43)

=
α

αmin

· 0 = 0 (3.44)

Since {m(Ri)}
∞
i=1 is a renewal sequence and U(t) is its renewal function,

lim
t→∞

E
[
m(RU(t)) − m(RU(t)−1)

]

t
→ 0 (3.45)

follows from page 134 in Ross (1996). ¥

We expected that IBI will outperform PI since inter-inspection times in IBI

are matched to the intensity function. However, we found that in most cases, it does

not perform better than PI. For instance, consider the intensity function α(1)(·) in
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Figure 5. In this case, the intensity changes every one unit of time and changes in

the intensity function are not drastic.

α(1)(t) =







0.9, t ∈
∞⋃

n=0

[3n, 3n + 1)

1.2, t ∈
∞⋃

n=0

[3n + 1, 3n + 2)

0.6, t ∈
∞⋃

n=0

[3n + 2, 3n + 3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2  2.5  3

α(1
) (t

)

t

Fig. 5. The intensity function α(1)(t) versus t

Table I shows that periodic inspections usually perform better than intensity-based

inspections though the difference between them is not significant . In few cases, IBI

slightly outperforms PI (Ir = 3.3, 0.33 and 0.17) but our numerical studies show this

situation happens rarely.
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Table I. Comparison of the availability of IBI and PI for the intensity function α(1)(·)

Ir Aav(IBI) Aav(PI) 100 · Aav(PI)−Aav(IBI)
Aav(IBI)

10 0.9563 0.9564 0.0098%

5 0.9152 0.9155 0.038%

3.3 0.8764 0.8762 −0.021%

2 0.8053 0.8071 0.22%

1 0.6594 0.6646 0.79%

0.5 0.4637 0.4698 1.3%

0.33 0.3455 0.3294 −4.7%

0.25 0.2702 0.2737 1.3%

0.17 0.1843 0.1758 −4.7%

0.1 0.1111 0.1125 1.3%

We also look at a case where the intensity function drastically changes by considering

the intensity function α(2)(·) in Figure 6. The intensity function α(2)(·) has the same

period with α(1)(·) and also changes every one unit of time as α(1)(·) does but there

are considerable fluctuations in values of α(2)(·). In contrast to the first case, IBI

performs poorly when it is compared with PI (see Table II). We analyzed different

types of intensity functions to compare the performance of IBI and PI. Our results

showed that IBI generally can not provide an improvement over PI or if it does, the

improvement is insignificant. To this end, we will not consider IBI in the remaining

of this chapter when comparing inspection strategies.
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α(2)(t) =







5, t ∈
∞⋃

n=0

[3n, 3n + 1)

30, t ∈
∞⋃

n=0

[3n + 1, 3n + 2)

10, t ∈
∞⋃

n=0

[3n + 2, 3n + 3)

 0

 5

 10

 15

 20

 25

 30

 0  0.5  1  1.5  2  2.5  3

α(
t)

t

Fig. 6. The intensity function α(2)(t) versus t

2.3. Improved Inspections

Though intensity based inspections seems to adapt to changes in the hazard rate

function, they do not necessarily perform better than periodic inspections (there are

some cases in which IBI slightly outperforms periodic inspections and these examples

are presented in Section 3.1). Thus, they do not help us to achieve the primary goal

which is to construct inspection schedules better than periodic inspections. In this

section, we present an iterative approach which does provide a better inspection

schedule over periodic inspections in terms of our performance measures.

When we examine Theorem 1 closely, we observe that it uses the fact that {i ·k∗
τ ·
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Table II. Comparison of the availability of IBI and PI for the intensity function α(2)(·)

Ir Aav(IBI) Aav(PI) 100 · Aav(PI)−Aav(IBI)
Aav(IBI)

10 0.5179 0.5786 12%

5 0.3167 0.4102 30%

3.3 0.2198 0.3167 44%

2 0.1333 0.2108 58%

1 0.06667 0.1107 66%

0.5 0.03333 0.05537 66%

0.33 0.02222 0.06629 198%

0.25 0.01667 0.02768 66%

0.17 0.01111 0.03315 198%

0.1 0.006667 0.01107 66%

τ}∞i=1 are regeneration points for {N(t) : t ≥ 0} so that the availability is the expected

up-time between τ and (k∗
τ + 1) · τ divided by k∗

τ · τ . So, calculating (and increasing)

the availability for inspections which repeat themselves every k∗
τ · τ interval is the

same as calculating (and increasing) the expected uptime between 0 and k∗
τ · τ when

k∗
τ many inspections are scheduled up to k∗

τ · τ . To use the same analytical approach,

we will consider a class of inspection schedules, which satisfy the following conditions,

1. There exists {τ̃i}
k∗

τ

i=1 such that 0 = τ̃0 < τ̃1 < τ̃2 < . . . < τ̃k∗

τ
≤ k∗

τ · τ

2. Inspection will be performed at {τk : k ≥ 1} such that

τk = τ · k∗
τ · ⌊

k

k∗
τ

⌋ + τ̃k−⌊ k
k∗τ

⌋·k∗

τ
k = 1, . . . (3.46)

Therefore, τ1 = τ̃1, τ2 = τ̃2, . . ., τk∗

τ
= k∗

τ ·τ , τk∗

τ+1 = k∗
τ ·τ + τ̃1, τk∗

τ+2 = k∗
τ ·τ + τ̃2 and so

on. By choosing inspection times in this way, we guarantee that the inspection rate
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of this schedule is the same as PI(τ) because in both inspections strategies, k∗
τ many

inspections are performed on every interval in the form of ((i − 1) · k∗
τ , i · k∗

τ ) , i =

1, 2, . . .. But, the crucial question is how to choose these {τ̃i}
k∗

τ

i=1, depending on the

inter-inspection time of periodic inspections, to improve the availability. The following

theorem provides a simple way to choose them.

Theorem 3 For fixed τ ∈ Q+,

1. if k∗
τ = 1,

τ̃1 = argmax{g(z, τ + z) : 0 ≤ z ≤ τ} (3.47)

if k∗
τ ≥ 2, then i = 1, . . . , k∗

τ − 1

τ̃i = argmax{g(τ̃i−1, z) + g(z, (i + 1) · τ) : τ̃i−1 ≤ z ≤ (i + 1) · τ}, (3.48)

τ̃k∗

τ
= argmax{g(τ̃k∗

τ−1, z) + g(z, k∗
τ · τ + τ̃1) : τ̃k∗

τ−1 ≤ z ≤ k∗
τ · τ} (3.49)

where g(a, z) =
z∫

a

e−(m(s)−m(a)) ds.

2. If inspections are performed at τk = τ · k∗
τ · ⌊

k
k∗

τ
⌋ + τ̃k−⌊ k

k∗τ
⌋·k∗

τ
k = 1, . . ., then the

availability Ãav and the inspection rate Ĩr are

Ãav =

k∗

τ∑

i=1

τ̃i+1∫

τ̃i

e−(m(s)−m(τ̃i) ds

k∗
τ · τ

(3.50)

≥ Aav (PI(τ)) (3.51)

Ĩr =
1

τ
(3.52)

Proof: By definition, M(t) = sup{k ≥ 1 : τk ≤ t}. So,

k∗
τ · ⌊

t
k∗

τ ·τ
⌋

t
≤

M(t)

t
≤

k∗
τ · ⌈

t
k∗

τ ·τ
⌉

t
(3.53)
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By taking the limit of (3.53), we get the result.

Ĩr =
1

τ
(3.54)

Let U(I1, I2, . . . , Ik∗

τ
) denote the expected up-time between I1 and I1 + k∗

τ · τ

provided that Ii ≤ Ii+1 ≤ k∗
τ · τ, i = 1, 2, . . . , k∗

τ − 1 and inspections are performed

at τk = k∗
τ · τ · ⌊ k

k∗

τ
⌋ + Ik−⌊ k

k∗τ
⌋·k∗

τ
, k = 1, . . .. By the proof of Theorem 1, it is easy to

see that the average availability will be
U(I1,I2,...,Ik∗τ

)

k∗

τ ·τ
. Therefore, it is enough to prove

that U(τ̃1, . . . , τ̃k∗

τ
) ≥ U(τ, 2τ, . . . , k∗

τ · τ).

Let ∆U1 = U(τ̃1, 2τ, 3τ, . . . , k
∗
τ · τ) − U(τ, 2τ, . . . , k∗

τ · τ).

∆U1 =
(
g(0, τ̃1) − g(τ̃1, 2τ)

)
−

(
g(0, τ) − g(τ, 2τ)

)
(3.55)

≥ 0 by the definition of τ̃1 (3.56)

A similar result holds for l = 2, 3, . . . , k∗
τ − 1. Let

∆Ul = U(τ̃1, . . . , τ̃l, (l + 1) · τ, . . . , k∗
τ · τ) − U(τ̃1, . . . , τ̃l−1, l · τ, . . . , k

∗
τ · τ) (3.57)

∆Ul =
(
g(τ̃l−1, τ̃l) + g(τ̃l, (l + 1) · τ)

)
−

(
g(τ̃l−1, l · τ) + g(l · τ, (l + 1) · τ)

)
(3.58)

≥ 0 by the definition of τ̃l (3.59)

Finally, let ∆Uk∗

τ
= U(τ̃1, . . . , τ̃k∗

τ
) − U(τ̃1, . . . , τ̃k∗

τ−1, k
∗
τ · τ).

∆Uk∗

τ
=

(
g(τ̃k∗

τ−1, τ̃k∗

τ
) + g(τ̃k∗

τ
, τ̃1 + k∗

τ · τ)
)
−

(
g(τ̃k∗

τ−1, k
∗
τ · τ) + g(0, τ̃1)

)
(3.60)

≥ 0 (3.61)
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By equations (3.56), (3.59) and (3.61),

U(τ1, . . . , τk∗

τ
) ≥ U(τ, 2τ, . . . , k∗

τ · τ) (3.62)

¥

The idea behind Theorem 3 is the following:

1. At the first step, we assume that the first inspection time τ̃1 is unknown and

the rest of inspection times are known (they’re at τj = j · τ, j = 2, . . . , k∗
τ ). We

choose the best possible inspection between 0 and 2τ using Equation (3.48) (see

Figure 7).

Fig. 7. The first iteration in Theorem 3

2. At the jth step (j = 2, . . . , k∗
τ −1), we have already fixed the first j−1 inspection

times and we assume that only the jth inspection time is unknown and the rest

of inspections are performed at τi = i · τ, i = j + 1, . . . , k∗
τ . Equation (3.48)

gives us the best possible jth inspection time between τ̃j−1 and (j + 1) · τ (see

Figure 8).

3. Finally, at the k∗
τ
th step, we find the k∗

τ
th inspection using (3.49).
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Fig. 8. The jth iteration in Theorem 3

Although Theorem 3 suggests constructing an improved inspection schedule over pe-

riodic inspection by iteratively solving one dimensional optimization problems (Equa-

tions (3.47),(3.48) and (3.49)), it does not specify how to solve them. Before explain-

ing how to solve those equations, consider a simple case where the intensity function

is α(3)(t) as below and τ = 0.4, which is the same period of the intensity function.

α(3)(t) =







2, t ∈
∞⋃

n=0

[0.4 · n, 0.4 · n + 0.1)

3.4, t ∈
∞⋃

n=0

[0.4 · n + 0.1, 0.4 · n + 0.2)

1.6, t ∈
∞⋃

n=0

[0.4 · n + 0.3, 0.4 · (n + 1))

Therefore, k∗
τ = 1 and we want to solve the following equation

τ̃1 = argmax{

0.4+z∫

z

e−(m(s)−m(z)) ds : 0 ≤ z ≤ 0.4} (3.63)

Figure 9 shows how the availability changes as a function of the value of the first

inspection time. The figure suggests that in order to maximize this function, since
0.4+z∫

z

e−(m(s)−m(z)) ds is not differentiable at the discontinuity points of the intensity

function, we can find its maximum by finding local maximums in each interval where

the intensity function is continuous and then comparing these local maximums to get

the global maximum over the whole interval.
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z + 0.4 e-(m(s) -m(z)) ds

Fig. 9. Aav for α(3)(t) versus the first inspection time when τ = 0.4

Lemma 1 gives details of how to find the local maximum in each sub-interval where

the intensity function is constant.

Lemma 1 Let f(·) be a differentiable function on [d, e] and let {jk}
n
k=1 be disconti-

nuity points of α(·) on (a, b), j0 = a and jn+1 = b.

1. If

f ′(z) = C1 · e
−α·(z−d) + C2 · e

−α·(e−z) (3.64)

and C1 ≥ 0 and α ≥ 0, then

max{f(z) : z ∈ [d, e]} = max{f(z) : z ∈ {d, e, s(d,e)}} (3.65)

where s(d,e) =
α·(d+e)−2·ln(−

C2
C1

)

2α

2. For any a < b,

max
z∈[a,b]

{g(a, z) + g(z, b)} = max
0≤k≤n

max{g(a, z) + g(z, b) : z ∈ {jk, jk+1, s(jk,jk+1)}}

(3.66)

where s(jk,jk+1) =
α(j1)·(jk+jk+1)−2·ln(−

C2
C1

)

2α(jk) , C1 = e−
(
m(j1)−m(a)

)

and
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C2 =
b∫

j2

e−
(
m(s)−m(j2)

)

− 1.

Proof: If C2 ≥ 0, then f is an increasing function and the maximum of f is achieved

at e. If C2 < 0, then

f ′′(z) = −α · C1 · e
−α·(z−d) + α · C2 · e

−α·(e−z) < 0 (3.67)

Therefore, f(z) is concave if C2 < 0 and

f ′(z) = 0 ⇔ z =
α · (d + e) − 2 · ln(−C2

C1
)

2α
.

Note that if there is no root for f ′(z) = 0 on the domain of f , f has to be a monotone

function. Therefore, the maximum of f can be achieved at either endpoints or at the

stationary point if it exists.

In order to do the maximization in the second part of Lemma 1, let’s look at the

g(a, z) + g(z, b) on (j1, j2) where j1 and j2 be consecutive jump points for α(·) (i.e.,

m(s) − m(j1) = α(j1) · (s − j1), j1 ≤ s ≤ j2). For z ∈ (j1, j2),

d

dz

(
g(a, z) + g(z, b)

)
= e−

(
m(z)−m(a)

)

− e−
(

m(j2)−m(z)
)

+

b∫

j2

α(j1) · e
−
(

m(s)−m(z)
)

ds (3.68)

= C1 · e
−α(j1)·(z−j1) + C2 · e

−α(j1)·(j2−z) (3.69)

where C1 = e−
(

m(j1)−m(a)
)

and C2 =
b∫

j2

e−
(

m(s)−m(j2)
)

− 1.

max
z∈[a,b]

{g(a, z) + g(z, b)} = max
0≤k≤n

max {g(a, z) + g(z, b) : z ∈ [jk, jk+1]} (3.70)

= max
0≤k≤n

max{g(a, z) + g(z, b) : z ∈ {jk, jk+1, s(jk,jk+1)}}

(3.71)



37

The equation (3.71) follows from the fact that g(a, z) + g(z, b) behaves as the

function f in the part 1 when z ∈ [j1, j2], ¥

Corollary 1 If the intensity function is constant between two inspection points and

one more inspection is to be scheduled between these inspections, then the midpoint of

the original inspections is optimum for the extra inspection time. In other words, if

α(t) = α, t ∈ (a, b) for some α > 0, then

argmax{g(a, z) + g(z, b) : z ∈ (a, b)} =
a + b

2
(3.72)

Proof: Note if α(t) = α, t ∈ (a, b), C1 = 1 and C2 = −1 < 0. By the first part of

Lemma 1, g(a, z) + g(z, b) is concave on this interval and its stationary point is

s(a,b) =
α · (a + b) − 2 · ln(1)

2 · α
=

a + b

2
(3.73)

¥

Our iterative improvement approach considers periodic inspections as a starting

point and finds the local maximum for τ̃i, i = 1, . . . , k∗
τ . However, for each point,

the right endpoint of its domain changes in the next iteration (i.e., the domain for

τ̃1 is [0, 2 · τ ] but after τ̃2 is calculated, it becomes [0, τ̃2] and so on). This change in

domains of the inspection times suggests that using our iterative approach repeatedly

by choosing the last updated version of τ̃i, i = 1, . . . , k∗
τ . To this end, our iterative

algorithm will work repeatedly by assuming that the previous solution as its starting

point and a descriptive pseudocode is given below.
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Input: τ , k∗
τ , ǫ and Nmax

Set τ̃
(0)
i ← i · τ, i = 0, . . . , k∗

τ , maxdistance ← ∞ and l ← 1 ;

while l < Nmax or maxdistance < ǫ do

τ̃
(l)
i ← τ̃

(l−1)
i , i = 0, . . . , k∗

τ ;

for j ← 1 to k∗
τ do

τ̃
(l)
j ← argmax

z∈[τ̃
(l)
j−1, τ̃

(l−1)
j+1 ]

{g(τ̃
(l)
j−1, z) + g(z, τ̃

(l−1)
j+1 )} using Lemma 1

end

maxdistance ← max
{∣

∣
∣τ̃

(l)
j − τ̃

(l−1)
j

∣
∣
∣ : j = 1, . . . , k∗

τ

}

;

l ← l + 1

end

Examples demonstrating how inspection points are moved by the algorithm can found

in Appendix A.

3. Numerical Studies

In this section, we present numerical results for our inspections schedules for replace-

able systems with non-self-announcing failures. First, we analyze the performance

of the improved inspection scheme against periodic inspections. Later, we discuss

the basic properties of the improved inspection algorithm. Specifically, we examine

numerically the convergence of the improved inspection scheme and if convergence is

demonstrated, the scheme converges to the the optimum inspection schedule.

3.1. Performance of The Improved Inspection Scheme

In this section, we present the performance of the improved inspection scheme and

periodic inspections. Consider the intensity function α(4)(t) with The period 5 given

in Figure 10.



39

Table III. The availability for PI(τ) and the improved inspections when α(4)(·),

Nmax = 50 and ǫ = 0.0001

τ Ir Aav(PI(τ)) Ãav
Ãav−Aav(PI(τ))

Aav(PI(τ))

0.2 5 0.938 0.941 0.24%

0.4 2.5 0.883 0.888 0.63%

0.6 1.67 0.832 0.842 1.2%

0.8 1.25 0.786 0.797 1.5%

1 1 0.743 0.754 1.4%

1.2 0.8 0.686 0.711 3.8%

1.8 0.571 0.61 0.644 5.5%

2 0.5 0.574 0.605 5.4%

2.5 0.4 0.484 0.551 14%

3 0.333 0.456 0.497 9.2%

3.5 0.286 0.408 0.459 13%

4 0.25 0.37 0.43 16%

5 0.2 0.301 0.389 29%

7.5 0.133 0.201 0.265 32%

10 0.1 0.157 0.202 29%

15 0.0667 0.105 0.135 29%
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α(4)(t) =







0.5, t ∈
∞⋃

n=0
[5n, 5n + 1)

0.75, t ∈
∞⋃

n=0
[5n + 1, 5n + 2.25)

1.5, t ∈
∞⋃

n=0
[5n + 2.25, 5n + 2.75)

0.6, t ∈
∞⋃

n=0
[5n + 2.75, 5n + 4)

0.3, t ∈
∞⋃

n=0
[5n + 4, 5n + 5)
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Fig. 10. The intensity function α(4)(t) versus t

Table III shows the availability for periodic inspection and the improved inspec-

tions. As expected, when the inspection rate is high (in other words, inter-inspection

for periodic inspections is small), the improvement algorithm does not give a substan-

tial increase in the availability. Although the algorithm can not improve the avail-

ability of periodic inspections more than 1.5%, for τ ≤ 1, the improvement becomes

more visible as the inspection rate (and hence the availability) gets smaller. Since the

inspection rate can be considered a limited resource for the maintenance provider’s

point of view, the improved inspections are beneficial when the available resource are

scarce. Furthermore, in some cases, the difference between their performance (τ = 2
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and τ = 4) are relatively substantial. More examples about performance of these

strategies can be found in Appendix B
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3.2. Convergence of the Improved Inspection Scheme

Let’s consider the same intensity function α(4)(t) in the previous section. Assume that

τ = 0.625 (so, k∗
τ = 8), Nmax = 30 and ǫ = 0.0001. As a result of applying our im-

provement algorithm, the availability increases 0.823 to 0.837 (i.e., 1.7% improvement

in the availability). The question we would like to ask is how τ̃
(n)
i , i = 1, . . . , 8 changes

(or more specifically, do they converge?). Figure 11 shows how τ̃
(n)
i , i = 1, . . . , 8

changes through several iterations. It suggests that all τ̃
(n)
i , i = 1, . . . , 8 converge

but the speed of the convergence is not always same. For instance, τ̃
(n)
7 does not

change after 5th iteration but on the other side, τ̃
(n)
3 requires 14 iterations to con-

verge. Although the convergence could not be proven analytically, when we look at

different types of intensity functions, they all suggest that the convergence occurs (see

Appendix C).

Numerical evidences for the convergence raise the issue whether or not the algo-

rithm converges to the optimum schedule. Checking the optimality when k∗
τ = 2 is

possible by an exhaustive search of the three dimensional graph of Aav versus (τ̃1, τ̃2)

(the first two inspection times). For higher dimensions, this would not work and the

non-differentiability at discontinuity points of the intensity function makes it hard to

analyze derivatives of the expression for the availability.

In this part, we present numerical result that suggests that when k∗
τ = 2 (i.e.,

τ = 2.5), the algorithm finds the optimum solution. For the case k∗
τ = 2 and 0 ≤

τ̃1 < τ̃2 ≤ 2 · τ

Aav =

τ̃2∫

τ̃1

e−(m(s)−m(τ̃1))ds +
2·τ+τ̃1∫

τ̃2

e−(m(s)−m(τ̃2))ds

2 · τ
(3.74)
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When Aav is plotted against (τ̃1, τ̃2) for α(4)(t) (see Figure 10 for α(4)(t)), in two

iterations, the optimum schedule is obtained. Figure 12 and 13 shows the optimality

and the movement of τ̃i, i = 1, 2. Although this particular case suggests that the

convergence occurs fast for the case k∗
τ = 2, Appendix D provides additional examples

where the convergence is slower.
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CHAPTER IV

AN IMPROVED INSPECTION STRATEGY FOR NON-REPLACEABLE

SYSTEMS

This chapter discusses how to schedule screening inspections for non-replaceable sys-

tems when the lifetime distribution is known. For such systems, our goal is to reduce

the expected delay between the detection and the failure by using scheduling a fixed

number of inspections on a finite interval. The results show that for if the pre-clinical

duration is infinite, then a similar iterative approach in Chapter III can be used to

reduce the expected delay.

This chapter is organized as followed. The first section describes assumptions

about the model and defines performance measures which will be used in this chapter.

In the second section, we discuss the assumption for the lifetime distribution to be

a Pòlya frequency function of order 2 (PF2), which has been used in the literature,

and compare it with our assumption. In the next section, the performance measure

is described for the general natural disease history when pre-clinical duration is finite

or infinite, and improved inspection schedules are constructed for the case where

pre-clinical duration is infinite. In the last section, numerical results are discussed.

1. Assumptions and Notation

Consider a system with non-self-announcing failure such that the failure can be de-

tected by inspection during a certain period, after which failure becomes self-apparent.

The occurrence of certain medical diseases, surveillance and computer network secu-

rity are good examples for such systems. In the health care literature, the lifetime

(the failure-free duration) is referred to as the disease free duration and the time

from the disease start to the first time it becomes apparent is called the pre-clinical
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duration. Our goal in this chapter is to schedule a fixed number of inspections over a

finite horizon to reduce the expected delay between the time of failure and the time

of detection.

We assume that the time to failure, or onset of disease in the health-care setting

(the lifetime), is represented by a random variable L. After the failure occurs, it is

detectable only by inspections for a period of time denoted by Y (the pre-clinical

period), after which the failure is outwardly observable, and the inspection process

ends. Thus failure is detectable only by inspection during the interval [L,L + Y ).

The hazard rate function of L (hereafter, denoted by α(t)) is used to describe the

distribution of L and is assumed to be piecewise linear right continuous. Specifically,

α(t) is assumed to satisfy the following conditions:

1. for any given t, there exits at, bt, ct and dt such that t ∈ [ct, dt) and

α(s) = at + bt · (s − ct) ≥ 0, ∀s ∈ [ct, dt) (4.1)

2. There is no s1 < s2 such that

α(s) = 0 ∀s ∈ (s1, s2) (4.2)

In this chapter, we consider both error-free and fallible inspections. Fallible inspec-

tions are performed at {τi}
k∗+1
i=0 over a finite horizon [a, b] such that τ0 = a and

τk∗+1 = b and an error-free inspection is performed only if a fallible inspection reports

that the failure occurred. This two stage inspection policy reflects the situation that

error-free inspections (for instance, a biopsy) can be too harmful or expensive to per-

form as a first screening course. Since a fallible inspection that reports a failure is

followed by an error-free inspection, the specificity of fallible inspections (false positive

probability) will not affect the expected delay between the occurrence and identifi-
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Fig. 14. Sample path for non-replaceable systems

cation of failure, which serves as our performance measure. Parmigiani (1996; 1993)

considered the effect of the specificity of fallible inspections by assigning different

costs for fallible and error-free inspections. However, the sensitivity of fallible in-

spections (false negative probability), must also be considered, since for any given

schedule, as the sensitivity decreases, the expected detection delay will decrease as

well. As Figure 14 illustrates, it is possible to to perform more than one inspections

after failure because inspections may report that the system is working when in fact

it has failed.

The inspection sensitivity will be denoted by γ; i.e.,

P {Inspection reports no failure |Failure occurred} = γ (4.3)

Additionally, we assume that the results of successive inspections are independent

from each other given L and Y . In other words, if Zi represents the result of the

ith inspection (with Zi = F (NF ) denoting that the ith inspection reports failure (no

failure)), then for i = 1, . . . , k∗ + 1 and rj ∈ {F,NF}, j = 1, . . . , k∗ + 1,

P{Z1 = r1, . . . , Zk∗+1 = rk∗+1|τi−1 < L ≤ τi, Y } =
k∗+1∏

j=1

P{Zj = rj|τi−1 < L ≤ τi, Y }

(4.4)

As our performance measure, we will use the expected detection delay (simply called

the expected delay), where the delay is defined as follows.
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Definition 3 The delay, D, for a schedule {τi}
k∗

i=1 with τ0 = a and τk∗+1 = b, is

defined as, i = 1, . . . , k∗ + 1

D (ω) =
k∗+1∑

j=i

(τj − L(ω)) · 1{τj≤L(ω)+Y (ω)} · 1{Zj(ω)=F} ·

j−1
∏

l=i

1{Zl(ω)=NF}

+ Y (ω) ·
k∗+1∑

j=i

1{τj>L(ω)+Y (ω)>τj−1} ·

j−1
∏

l=i

1{Zl(ω)=NF}, ω ∈ τi−1 < L(ω) ≤ τi (4.5)

As mentioned earlier, our goal is to reduce the expected delay by scheduling a fixed

number of inspections in the interval [a, b]. The objective in this chapter resembles

ones in the previous chapter when we compare decreasing the expected delay for a

fixed number of inspections in this chapter with increasing the availability for a fixed

inspection rate in the previous chapter.

2. Properties of PF2 Densities

There are numerous studies in the reliability literature focused on timing screening

tests for detecting failures. Most of them assume the lifetime density has a Pòlya

frequency function of order 2 (PF2). In this section, we address some shortcomings

for using the PF2 assumption and present some clinical data which does not support

the PF2 assumption.

The following four statemens are equivalent definitions for a Pòlya frequency

function of order 2 (PF2) and are taken from Barlow et al. (1963).

Definition 4 f is PF2 if one of four statement below holds

1. for t1 < t2 and y1 < y2

∣
∣
∣
∣
∣
∣
∣

f(t1 − y1) f(t1 − y2)

f(t2 − y1) f(t2 − y2)

∣
∣
∣
∣
∣
∣
∣

≥ 0 (4.6)
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2.

f(x − δ)

f(x)
(4.7)

is increasing in x for all δ ≥ 0.

3.

f(x + δ)

f(x)
(4.8)

is decreasing in x for all δ ≥ 0.

4.

f(t) = e−ψ(t) (4.9)

where ψ(t) is convex in an open interval u < t < v (−∞ ≤ u < v ≤ +∞),

ψ(t) = +∞, t < u and t > v and

lim
s↓u

ψ(s) ≤ ψ(u) ≤ +∞, lim
s↑v

ψ(s) ≤ ψ(v) ≤ +∞ (4.10)

Because of the characterization of equation (4.9), PF2 functions are also called

as log-concave functions. Many common distributions, including uniform, normal,

exponential, logistics, extreme-value and Laplace, have log-concave densities for any

value in their parameters’ range. On the other hand, Weibull, power function, gamma

and beta distribution families have log-concave densities when their parameters satisfy

certain conditions. If a distribution has a log-concave density, then its hazard rate

function is non-decreasing. Therefore, distributions with log-concave densities form

a subset of distributions with non-decreasing hazard rate functions. Although it is

reasonable to assume that a device or system gets more fragile as it is used so that

the increasing hazard rate assumption could be valid, it is easy to construct non-log-
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concave densities with an increasing hazard rate function. For instance, consider a

density f(t) = α13(t) · e
−

R t

0 α13(s) ds, t ≥ 0 where α13(t) is the hazard rate function for

f and is a piecewise linear increasing function as below.

α13(t) =







0.2, t ∈ [0, 1)

0.2 + 0.1 · (t − 1], t ∈ [1, 2]
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Fig. 15. The log(f(t)) versus t for the hazard rate function α13(t)

As illustrated in Figure 15, f does not have a log-concave density although its hazard

rate function is increasing. Thus the class of log-concave densities is not rich enough

to model all systems with increasing hazard rate functions. Moreover, several clinical

studies suggest that the assumption of a log-concave hazard rate, or even an increasing

hazard rate, may not be appropriate for certain diseases. For instance, data from

Albert, Gertman and Louis (1978), page 23, suggest that the density function for the

disease free duration for carcinoma in situ of the cervix, does not satisfy the PF2

assumption (see Figure 16).

To this end, our assumption that the hazard rate for the lifetime distribution is a

piecewise linear function can be considered a reasonable assumption since it can help
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situ of the cervix in 1960-1966 British Columbia

us to develop inspections strategies for more general class of the lifetime distributions

(i.e., ones with monotone or non-monotome hazard rate functions, which can not be

described by PF2 densities).

3. A General Approach Using the Natural Disease History

As described in Definition 3, the delay for an inspections schedule is defined as the

time between the detection and the occurrence of the failure if it happend during the

screening interval (i.e., it is defined only if the failure occurred between τ0 = a and

τk∗+1 = b). Three cases can be considered for the general disease history.

1. The pre-clinical duration is infinite.

2. The pre-clinical duration is an almost surely finite random variable and is in-

dependent of the disease-free duration.

3. The pre-clinical duration is an almost surely finite random variable and the

pre-clinical and the disease-free durations are dependent (i.e., the age might be

an affect on the duration which the disease becomes self-apparent).
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For the first case, it is possible to construct an iterative algorithm as in Chap-

ter III, which can provide a lower expected delay from any given starting schedule.

Although we are not able to provide an explicit method to construct improved in-

spection strategies for the second case, the performance measure for this case can be

described along with the first case and it will be one of the future directions of this

research to investigate this case in details. We would like to investigate the third

case in the future since it will be the most general model which can capture the true

nature of the disease history. Theorem 4 describes the expected delay for the first

two cases.

Theorem 4 Given that the sensitivity of fallible inspections is γ.

1. If the disease-free duration and the pre-clinical durations are independent, their

densities are f(·) (with a know hazard rate function α(·)) and g(·), respectively

then the expected delay E[D] for a given inspection schedule {τi}
k+1
i=0 (τ0 = a and

τk+1 = b),

E [D]=
k∗+1∑

i=1

k∗+1∑

j=i

τi∫

τi−1

∞∫

τj−s

g(x) d(x) · (τj − s) · γj−i · (1 − γ)· α(s) · e−(m(s)−m(a)) ds

+
k∗+1∑

i=1

k∗+1∑

j=i

τi∫

τi−1

τj−s∫

τj−1−s

γj−i · x · g(x) dx · α(s) · e−(m(s)−m(a)) ds (4.11)

2. If the pre-clinical duration is infinite and the distribution of the disease-free

duration has a hazard rate function α(·), then the expected delay E[D] for a

given schedule {τi}
k+1
i=0 (τ0 = a and τk+1 = b),

E [D] =
k∗+1∑

i=1

k∗+1∑

j=i

τi∫

τi−1

(τj − s) · γj−i · (1 − γ) · α(s) · e−(m(s)−m(a)) ds (4.12)

Proof: Note that since inspections are applied systems with a lifetime larger that a,

the conditional lifetime density for such systems is α(s) · e−(m(s)−m(a)), s ≥ a.



53

1. for i = 1, . . . , k∗ + 1.

E [D|τi−1 < L ≤ τi, Y ] =
k∗+1∑

j=i

(τj − L) · 1{τj≤L+Y } · γ
j−i · (1 − γ)

+
k∗+1∑

j=i

Y · 1{τj>L+Y >τj−1} · γ
j−i (4.13)

Since L and Y are independent with probability density functions f(·) (its

hazard rate function is α(·)) and g(·), respectively

E[D] =
k∗+1∑

i=1

τi∫

τi−1







∞∫

0

E [D|L = s, Y = x] · g(x) dx






· α(s) · e−(m(s)−m(a)) ds

(4.14)

By combining (4.13) and (4.14), the equation (4.11) is obtained.

2. For this case, the detection can only occur as a result of a positive test (be-

cause pre-clinical duration is infinite). Therefore, the second term in the delay

expression is almost surely 0. So,

E [D|τi−1 < L ≤ τi, ] =
k∗+1∑

j=i

(τj − L) · γj−i · (1 − γ) (4.15)

E[D] =
k∗+1∑

i=1

τi∫

τi−1

{E [D|L = s]} · α(s) · e−(m(s)−m(a)) ds (4.16)

(4.12) follows from (4.15) and (4.16) ¥

3.1. An Improved Inspection Strategy for Infinite Pre-clinical Duration

In this section, we show that it is possible to reduce the expected delay by iteratively

changing a given inspection schedule when pre-clinical duration is infinite. The de-

velopment is similar to Chapter III, which optimizes the performance measure for a

single variable in each step. Before giving details of the algorithm, we consider some



54

special cases that provide insight into improving the scheduling algorithm. First, we

consider a simple case in which k∗ = 1, a = 0, b = 5 and the hazard rate function

is α14(t). Additionally, we assume that all of inspections are error-free (i.e., γ = 0).

Since k∗ = 1, the goal is to find τ1 between τ0 = a and τ2 = b that minimizes E[D].

α14(t) =







0.2 − 0.05 · t, t ∈ [0, 2)

0.1 + 0.2 · (t − 2), t ∈ [2, 4)

0.5 − 0.2 · (t − 4), t ∈ [4, 5]
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Fig. 17. The hazard rate function α14(t) versus t

In other words, τ1 can be written as

τ1 =argmin
z∈[τ0,τ2]







z∫

τ0

(z − s) α(14)(s)e−(m(s)−m(a)) ds +

τ2∫

z

(τ2 − s) α(14)(s)e−(m(s)−m(a)) ds







(4.17)

Figure 18 show how E[D] changes versus τ1 and suggests that on each interval

where the hazard rate function is linear, E[D] is either unimodal, or the interval can

be divided into two pieces such that in the first part, E[D] is concave and in the

remaining part, E[D] is convex. We will show that the second situation arises if the
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hazard function is “sharply” increasing in the interval. This suggests that when the

hazard rate is relatively high, it is beneficial to postpone the inspection for a while

to increase the chance of finding the failure as soon as it happens.

Next, we consider a slightly more complicated case in which all of the inspection

times except the lth inspection time are known (assume that they are performed at

xi, i = 0, . . . , l − 1, l, . . . , k∗ + 1), and the goal is how to choose it between xl−1 and

xl+1 so that it will minimize the expected delay. In other words, we want to minimize

E[D(xl)], which is the function of xl, lth inspection

E[D(xl)] =
l+1∑

i=1

xi∫

xi−1

k∗+1∑

j=i

(xj − s) · γj−i · (1 − γ) · α(s) · e−(m(s)−m(a)) ds

+
k∗+1∑

i=l+2

xi∫

xi−1

k∗+1∑

j=i

(xj − s) · γj−i · (1 − γ) · α(s) · e−(m(s)−m(a)) ds

︸ ︷︷ ︸

Constant

(4.18)
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Lemma 2 will show that equation (4.18) can be divided into disjoint intervals in which

(4.18) is either unimodal or it is concave and then becomes convex.

Lemma 2

1. For any given x0, . . . , xl−1, xl+1, . . . , xk∗+1 and xl ∈ [xl−1, xl+1], let’s define

gl(xl) :=
l+1∑

i=1

xi∫

xi−1

k∗+1∑

j=i

(xj − s) · (1 − γ) · γj−i · α(s) · e−(m(s)−m(a)) ds (4.19)

If [j1, j2] ⊆ [xl−1, xl] such that α(s) = λ · (s − j1) + δ for some λ and δ, then

gl(xl) is either unimodal on [j1, j2] or there is a point j1 < j∗ < j2 such that it

is concave on [j1, j
∗] and convex on [j∗, j2]. Therefore,

argmin
xl−1≤u≤xl+1

g(u) = argmin
i=1,...,nl

{

min
{jl

i−1,sl
i,j

l
i}

g(u)

}

(4.20)

where {[jl
i−1j

l
i]}

nl

i=1 are subintervals such that α(s) = λi · (s − jl
i−1) + δi for some λi

and δi, [xl−1, xl+1] =
nl⋃

i=1

[jl
i−1j

l
i] and sl

i is the stationary point for the convex part of

g(xl) on [jl
i−1j

l
i] (if it exists).

Proof: Consider an arbitrary subinterval [jl
i−1, j

l
i] of [xl−1, xl] such s ∈ [jl

i−1, j
l
i),

α(s) = λi · (s − jl
i−1) + δi, s ∈ [jl

i−1.j
l
i). If xl ∈ (jl

i−1, j
l
i), then

g
′

l(xl) =
l∑

i=1

xi∫

xi−1

(1 − γ) · γl−i · α(s) · e−(m(s)−m(a)) ds

−

(
k∗+1∑

j=l+1

(xj − xl) · γ
j−(l+1)

)

(1 − γ)2 · α(xl) · e
−(m(xl)−m(a)) (4.21)

g
′′

l (xl) = k(xl) · e
−(m(xl)−m(a)) (4.22)
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where

k(xl) = (1−γ) ·
(
2 − γk∗+1−l

)
·α(xl)+(1 − γ)2 (

−λi + α(xl)
2) ·

k∗+1∑

j=l+1

(xj −xl) ·γ
j−(l+1)

There are two case for sign changes for g
′′

l (xl), xl ∈ (jl
i−1, j

l
i):

Case 1: If λi ≤ 0 or λi > 0 and δ2
i ≥ λi, then g

′′

l (xl) ≥ 0, xl ∈ (jl
i−1, j

l
i).

Case 2: If λi > 0 and δ2
i < λi, then there is a jl

i−1 < j∗ ≤ jl
i such that −λi + α(s)2 <

0, s ∈ (jl
i−1.j

∗) and −λi + α(s)2 ≥ 0, s ∈ (j∗, jl
i). So g

′′

l (xl) ≥ 0, xl ∈ (j∗, jl
i)

and also, note that k
′

(xl) ≥ 0, xl ∈ (jl
i−1, j

∗). Therefore, g
′′

l (xl) < 0 if and only

if xl ∈ (jl
i−1, j

∗) and k(jl
i−1) < 0.

So, on each [jl
i−1, j

l
i], i = 1, . . . , nl, the minimum can obtained either endpoints or

the stationary point for the convex part, which can be obtained by numerically solv-

ing (4.21). Therefore, the equation (4.20) follows by finding the minimum on each

[jl
i−1, j

l
i], i = 1, . . . , nl. ¥

Using the same approach in Chapter III, we can improve any initial inspection

schedule, {τi}
k∗+1
i=0 , by rescheduling inspections one by one in the following way:

• Consider the expected delay as a function first inspection point τ1 under the

assumption that the rest of inspections are performed according to the original

schedule and minimize this function on [τ0, τ2]. Let’s call the new first inspection

time as τ̃1.

• Similarly, consider the expected delay as a function ith inspection point under

the assumption that τl = τ̃l, l = 1, . . . , i − 1 and the rest of inspections are

performed according to the original schedule. Then, minimize this function on

the [τ̃i−1, τi+1].
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Theorem 5 For a given inspection schedule {τi}
k∗+1
i=0 , define τ̃0 = a, τ̃k+1 = b and

l = 1, . . . , k∗:

τ̃l = argmin
τ̃i−1≤u≤τi+1







l+1∑

i=1

xi∫

xi−1

k∗+1∑

j=i

(xj − s) · (1 − γ) · γj−i · α(s) · e−(m(s)−m(a)) ds






(4.23)

where xi = τ̃i, i = 0, 1, . . . , l − 1, xl = u and xi = τi, i = l + 1, . . . , k∗ + 1.

If E [D] (E[D̃]) denotes the expected delay if inspections are performed at {τi}
k∗+1
i=0

({τ̃i}
k∗+1
i=0 ), then

E[D] ≥ E[D̃] (4.24)

Proof: The first part uses Lemma 2 to calculate τ̃i, i = 1, . . . , k∗ and the proof of the

second part is the same as the proof of Theorem 3 in Chapter III. ¥

Our iterative approach takes a starting schedule and updates each inspection

point one by one assuming that inspections after the current inspection point are made

according to the original schedule and produces a new inspection schedule. Since our

approach does not require a new specific assumption about the initial schedule other

than being a valid schedule (τ0 = a < τ1 < . . . < τk∗ < τk∗+1 = b), we can use the new

schedule as the new starting schedule and try to improve that one too. So, hereafter

we assume that our iterative approach will work repeatedly by assuming that the

previous solution as its starting point and a descriptive pseudocode is below.
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Input: a, b, k∗, ǫ and Nmax

Set τ = b−a
k∗+1

, τ̃
(0)
i ← a + i · τ, i = 0, . . . , k∗ + 1, maxdistance ← ∞ and n ← 1

while n < Nmax or maxdistance < ǫ do

τ̃
(n)
i ← τ̃

(n−1)
i , i = 0, . . . , k∗

τ ;

for l ← 1 to k∗ do

τ̃
(n)
l = argmin

τ̃
(n)
l−1≤u≤τ̃

(n)
l+1







l+1∑

i=1

xi∫

xi−1

k∗+1∑

j=i

(xj − s) · (1 − γ) · γj−i · α(s) · e−(m(s)−m(a)) ds







using Lemma 2 where xi = τ̃
(n)
i , i = 0, 1, . . . , l − 1, xl = u and

xi = τ
(n)
i , i = l + 1, . . . , k∗ + 1.

end

maxdistance ← max
{∣

∣
∣τ̃

(n)
i − τ̃

(n−1)
i

∣
∣
∣ : i = 1, . . . , k∗

}

;

n ← n + 1

end

Examples for improved schedules can found in Appendix E.

4. Numerical Examples for the Infinite Pre-clinical Duration

In this section, we will present numerical results for our inspections schedules for

non-replaceable systems with infinite pre-clinical duration. We are interested in three

questions,

• Does the iterative algorithm converge?

• If it does, is there any numerical evidence that it convergences to the optimum

schedule?

• How does it perform against periodic inspections?

Although, we do not have a proof, numerical studies suggest that the answer for

first two questions is positive. Later, we compare improved inspections and periodic
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inspections for different k∗ values.

As an example, consider the hazard rate function in Figure 19. We apply our

iterative approach to α19(·) with a = 0, b = 5, k∗ = 6, ǫ = 0.0001, γ = 0 and

Nmax = 30. As seen in Figure 20, τ
(n)
i , i = 1, . . . , 6 converges but the speed of

the convergence is different for each inspection. Additional numerical studies of the

convergence can be found in Appendix F.

α19(t) =







0.05, [0, 1)

0.05 + 0.05 · (t − 1), [1, 2)

0.2, [2, 3)

0.1 − 0.05 · (t − 3), [3, 4)

0.025, [4, 5]

 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5

α 1
9(

t)

t

Fig. 19. The hazard rate function α19(t) versus t
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Fig. 20. τ
(n)
i , i = 1, . . . , 6 versus n for α19(t)

As in Chapter III, the convergence of our improvement algorithm raises the

question whether or not it converges to the optimum schedule. Although we are not

able to prove the optimality analytically, we investigate the graph of E[D] versus

(τ1, τ2) for various hazard rate functions when k∗ = 2. For instance, for α19(·), if

γ = 0.1, Nmax = 30, ǫ = 0.0001, our algorithm converges to τ1 = 2.192, τ2 = 3.079

with E[D] = 0.272. Figure 21 shows that this is the true optimum. More examples
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can be found in Appendix G.
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Fig. 21. E[D] versus (τ1, τ2) and iterations of the improvement algorithm for α19(·)
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Since periodic inspections are widely used for screening inspections, we would like

to compare our improved inspections with periodic inspections. Again, for the hazard

rate α19(·), if improved inspections are constructed using Nmax = 30, ǫ = 0.0001 and

γ = 0.1, the expected delay for improved inspections and periodic inspections are

presented in Table IV. More examples can be found in Appendix H.

Table IV. Comparison of periodic and improved inspections for α15(·)

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 0.463 0.432 −6.72%

2 0.341 0.3 −12%

3 0.257 0.233 −9.54%

4 0.21 0.184 −12.2%

5 0.175 0.154 −11.8%

6 0.151 0.131 −13.1%

7 0.132 0.115 −13.3%

8 0.117 0.102 −13.3%

10 0.096 0.0843 −12.1%

20 0.0503 0.0444 −11.9%
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CHAPTER V

QUANTIFYING THE VALUE OF INFORMATION FOR THE MIXTURE OF

POPULATIONS

In Chapter IV, we were able to develop effective inspection schedules for non-replaceable

systems with infinite pre-clinical duration. One of the critical assumptions in Chapter

IV was that the population at risk is homogeneous so that knowing the hazard rate

function is enough to describe the likehood of failure for each member of the pop-

ulation at risk. However, it is possible to have a non-homogeneous population such

that each sub-population shows different susceptibility to the failure. For instance,

medical evidence suggests that carrying BRCA1 and BRCA2 genes (or their mutated

versions) increases the chance of developing breast cancer, or having a certain fam-

ily background such as multiple occurrence of a certain disease among other family

members can change susceptibility to the diseases.

Therefore, when inspection schedules are planned according to aggregate popu-

lation information, the benefits of screening inspections may not be fully utilized by

each sub-group because of their difference from the rest of populations. For example,

the mixture of populations whose sub-populations have increasing hazard rate func-

tions does not necessarily have an increasing hazard rate function. A good schedule

for a non-monotone hazard rate function is not necessary a good one for increasing

hazard rate functions. This observation raises the question of how we can quantify

the value of information that identifies a particular sub-class of the population in

terms of benefits to individual populations and the whole population. In this chap-

ter, we provide some numerical insights and measurements when sub-populations can

completely be identified.

This chapter is organized as followed. In the first section, assumptions are stated
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and performance measurements are defined for the mixture of populations. In the

next section, we describe the mixture of populations in terms of its sub-populations

and discuss how to approximate its hazard rate function. In the last session, we

present a numerical study

1. Assumptions and Notation

Consider a collection of positive random variables {Li, i = 1, . . . , npop} such that the

probability density function and the hazard rate function for Li are fi(·) and αi(·),

respectively. We assume that αi(·) is a piecewise linear function for each i satisfying

the following conditions:

1. for any given t, there exits at, bt, ct and dt such that t ∈ [ct, dt) and

αi(s) = at + bt · (s − ct) ≥ 0, ∀s ∈ [ct, dt) (5.1)

2. There is no s1 < s2 such that

αi(s) = 0 ∀s ∈ (s1, s2) (5.2)

Li represents the lifetime for each sub-population, and the lifetime for the mixture of

populations is denoted by LΛ where Λ is a discrete random variable independent of

Li, i = 1, . . . , npop and has the probability density function

P{Λ = i} = pi, i = 1, . . . , npop (5.3)

npop∑

i=1

pi = 1 (5.4)

In this chapter, we consider a non-replaceable system such that its disease-free dura-

tion is LΛ. We assume that the pre-clinical duration is infinite and inspections are

scheduled to detect the failure. The setup in Chapter IV (two stage inspection policy,
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the fixed number of inspections on a finite interval and etc) is assumed to hold in

this chapter as well. We can not apply the results of Chapter IV directly because

the hazard rate function for LΛ is not necessarily a piecewise linear function. But, if

we can approximate the hazard rate function of LΛ by piecewise linear functions, we

can construct an effective inspection schedules and use them to evaluate the expected

delay for each population. In the next section, a simple approximation approach will

be discussed and the schedule constructed. The approximation to the mixture hazard

rate function will be denoted as {τj(pop)}k∗+1
j=1 , where k∗ is the number of additional

screening inspections during the screening horizon [a, b] as in Chapter IV.

We would like to answer two questions:

• How does the expected delay change for sub-populations if we know the hazard

rate function for each sub-population?

• How can one quantify the value of identifying sub-populations to the whole

population?

For the first question, it is obvious that by identifying sub-populations, we can

construct better schedules, which provide a lower expected delay for each population.

However, depending on how different from each other the sub-populations are and the

mixture probability of each group, the improvement may or may not be significant.

In order to quantify the value of information, we consider two different expected

delays for each sub-population: the expected delay without the information and the

expected delay with the information. We use E [Di (pop)] to denote the expected delay

for the ith population if inspections are performed at {τj(pop)}k∗+1
j=1 (i.e., inspections

are not customized). If the ith population is identified, then a customized schedule,

{τj(i)}
k∗+1
j=1 , can be constructed using the iterative approach in Chapter IV. Thus,

E [Di] will denote the expected delay for the ith sub-population if inspections are
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applied at {τj(i)}
k∗+1
j=1 .

The next question is how the benefit of customized schedules can be measured

for the whole population. In order to quantify the value of identification of sub-

populations to the whole population, we consider the following measure

npop∑

i=1

pi ·
E [Di (pop)]

E [Di]
(5.5)

If we consider E[Di(pop)]
E[Di]

as the benefit gained by the ith population by using a cus-

tomized schedule, equation (5.5) can be interpreted as the weighted average of the

benefit. We analyze this measure for different mixture rates in Section 2.

1.1. The Hazard Rate for the Mixture of Populations

The following proposition shows how to describe the density of the lifetime and the

hazard rate functions for mixtures of populations.

Proposition 1 For a mixture lifetime random variable LΛ,

1. The density of LΛ, fmix(·) is

fmix(s) =

npop∑

i=1

pi · fi(s) (5.6)

=

npop∑

i=1

pi · αi(s) · e
−

R s

0 αi(u) du (5.7)
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2. The hazard rate of LΛ, αmix(·) is

αmix(s) =

npop∑

i=1

pi · fi(s)

∞∫

s

npop∑

i=1

pi · fi(u) du

(5.8)

=

npop∑

i=1

pi · αi(s) · e
−

R s

0 αi(u) du

∞∫

s

npop∑

i=1

pi · αi(u) · e−
R u

0 αi(v) dv du

(5.9)

Proof:

1. First, note that we can write fi(·), i = 1, . . . , npop as

fi(s) = αi(s) · e
−

R s

0 αi(v) dv (5.10)

So,

P{LΛ ≤ s} =

n(pop)
∑

i=1

pi · P{Li ≤ s|Λ = i} (5.11)

=

n(pop)
∑

i=1

pi ·

s∫

0

fi(s) ds (5.12)

Equations (5.6) and (5.6) follows by taking the derivative of (5.12).

2. Since αmix(s) = fmix(s)
P{LΛ>s}

, equations (5.8) and (5.9) follows easily follows (5.6),

(5.7) and (5.12).

¥

Before stating how we can simply approximate to αmix(·), consider the following

examples to better understand how the mixture hazard rate may not reflect individual

populations. Assume that there are two populations with the following hazard rate
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functions,

α1(t) = 0.25 (5.13)

α2(t) = 7.5 · t2 (5.14)

Further, we assume that αmix(·, p) represents the mixture hazard rate function when

P{Λ = 1} = p and P{Λ = 2} = 1 − p. Although both populations have a non-

decreasing hazard rate function, Figure 22 shows that αmix(·, p) is non-monotone.

This situation arises when one of populations has a relatively shorter lifetime than

other (i.e., the second population is a lot more susceptible to the failure).
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αmix(t, 0.3) 
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αmix(t, 0.7) 

αmix(t, 0.05) 

Fig. 22. Hazard rate functions for the mixture of two populations

As mentioned earlier, the lifetime distribution of the mixture of two (or more)

populations with piecewise linear hazard rate functions does not necessarily have a

piecewise linear hazard rate function. For instance, consider two populations with

hazard rate functions α1(t) = 0.5 and α2(t) = 0.1, respectively. Additionally, assume
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that the first population forms 90% of the whole population. Figure 23 shows that

although hazard rate functions are simply constant, the mixture hazard rate is not

even a linear function.

!
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α2 (.) =0.1

Fig. 23. The hazard rate function for the mixture of two populations with constant

hazard rate functions

So, in order to apply our approach in Chapter IV, the mixture hazard rate

function should be approximated by a piecewise linear function. There can be many

ways to approximate the mixture hazard rate function but in this research, our focus

is to describe the mixture hazard rate by a close enough piecewise linear function

using a simple approach. We use a simple approach, which is called linear spline. In

short, this approach takes a finite number points on an interval, connects those points

by linear functions, this piecewise linear function becomes the approximate function

on the interval. The accuracy of the approximation can be controlled by changing
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the number of intervals. The next definition gives the details of this approach.

Definition 5 Let αmix(·) be a mixture hazard rate for some LΛ. On a finite interval

[a, b] with knots x0 = a < x1 < . . . < xn−1 < xn = b, the approximate hazard rate,

α̃mix(·), is

α̃mix(s) = αmix(xi−1) +
αmix(xi) − αmix(xi−1)

xi − xi−1

· (s − xi−1), s ∈ [xi−1, xi) (5.15)

for i = 1, . . . , n.

2. Numerical Examples

In this section, we present how each sub-population is affected by customization of

inspection schedules and how the whole population is affected by customizations. We

consider two cases:

• Case 1: we assume that there are two populations with hazard rate functions

α1(t) = 0.5 and α2(t) = 0.1. Inspections are applied between a = 0 and b = 30.

• Case 2: we assume that there are two populations with hazard rate functions

α1(t) = 0.05 + 0.005 ∗ t and α2(t) = 0.05 + 0.0075 ∗ t. Inspections are applied

between a = 0 and b = 30.

We looked that E [Di (pop)] , i = 1, 2 and E [Di] , i = 1, 2 values for two values k∗ = 6

and k∗ = 15, and different values for p. In order to approximate the mixture hazard

rate, a linear spline with 5 equal knots is used.
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In case 1, two populations are substantially different from each other (i.e., the

first population can be considered five times more susceptible to the failure than the

second population). As seen in Table V and VI, there is a considerable individual

benefit in most mixture percentages. In Table VII, if we look at the whole population

benefit, which also takes into the account the rate of subpopulations, the overall

benefit is the highest when the population at risk is evenly formed by sub-populations

(in other words, the rate of sub-populations in the mixture are close to each other).

Even for relatively small mixture rates, there is a slight increase in the benefit due to

a considerable difference between characteristics of two populations.

In Case 2, two populations have a same hazard rate at the beginning and pop-

ulations become different as t gets larger (i.e., their hazard rate is not close each

other anymore). However, even at the end of the screening period, they do not differ

from each other as two populations in Case 1 do. Therefore, customizing schedules

do not reduce the expected delay as much as in Case 1 (see Table VIII and IX) and

the benefit of customizing schedules does not provide an substantial benefit for the

population at risk (see Table X).
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Table V. Case 1: E [Di (pop)] and E [Di] comparisons for k∗ = 6

p E[D1(pop)] E[D2(pop)] E[D1] E[D2]
E[D1]−E[D1(pop)]

E[D1(pop)]
E[D1]−E[D1(pop)]

E[D1(pop)]

0.05 1.45 1.86 0.749 1.85 −48.3% −0.174%

0.1 1.37 1.86 0.749 1.85 −45.3% −0.585%

0.2 1.25 1.89 0.749 1.85 −40.3% −1.82%

0.3 1.16 1.92 0.749 1.85 −35.5% −3.62%

0.4 1.08 1.97 0.749 1.85 −30.9% −5.97%

0.5 1.02 2.03 0.749 1.85 −26.5% −8.83%

0.6 0.967 2.11 0.749 1.85 −22.6% −12%

0.7 0.925 2.19 0.749 1.85 −19% −15.4%

0.8 0.865 2.38 0.749 1.85 −13.5% −22.1%

0.9 0.806 2.74 0.749 1.85 −7.13% −32.3%

0.95 0.774 3.14 0.749 1.85 −3.25% −41%

Table VI. Case 1: E [Di (pop)] and E [Di] comparisons for k∗ = 15

p E[D1(pop)] E[D2(pop)] E[D1] E[D2]
E[D1]−E[D1(pop)]

E[D1(pop)]
E[D1]−E[D1(pop)]

E[D1(pop)]

0.05 0.671 0.787 0.317 0.791 −52.7% 0.526%

0.1 0.638 0.785 0.317 0.791 −50.3% 0.832%

0.2 0.589 0.783 0.317 0.791 −46.1% 1.03%

0.3 0.55 0.785 0.317 0.791 −42.4% 0.863%

0.4 0.518 0.788 0.317 0.791 −38.7% 0.372%

0.5 0.491 0.794 0.317 0.791 −35.3% −0.309%

0.6 0.466 0.801 0.317 0.791 −31.9% −1.26%

0.7 0.441 0.814 0.317 0.791 −28% −2.79%

0.8 0.414 0.835 0.317 0.791 −23.4% −5.23%

0.9 0.381 0.886 0.317 0.791 −16.8% −10.7%

0.95 0.358 0.961 0.317 0.791 −11.5% −17.7%
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Table VII. Case 1: Benefit for the whole population for k∗ = 6 and k∗ = 15

k∗ = 6

p
2∑

i=1

pi ·
E[Di(pop)]

E[Di]

0.05 1.0484

0.1 1.0882

0.2 1.1497

0.3 1.1915

0.4 1.2172

0.5 1.2291

0.6 1.2297

0.7 1.2192

0.8 1.1811

0.9 1.1168

0.95 1.0666

k∗ = 15

p
2∑

i=1

pi ·
E[Di(pop)]

E[Di]

0.05 1.0508

0.1 1.0937

0.2 1.1629

0.3 1.2145

0.4 1.2502

0.5 1.2748

0.6 1.2865

0.7 1.281

0.8 1.2559

0.9 1.1935

0.95 1.134
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Table VIII. Case 2: E [Di (pop)] and E [Di] comparisons for k∗ = 6

p E[D1(pop)] E[D2(pop)] E[D1] E[D2]
E[D1]−E[D1(pop)]

E[D1(pop)]
E[D1]−E[D1(pop)]

E[D1(pop)]

0.05 2.02 1.96 2.01 1.96 −0.59% −0.00207%

0.1 2.02 1.96 2.01 1.96 −0.526% −0.00769%

0.2 2.01 1.96 2.01 1.96 −0.41% −0.0294%

0.3 2.01 1.96 2.01 1.96 −0.309% −0.0648%

0.4 2.01 1.96 2.01 1.96 −0.223% −0.113%

0.5 2.01 1.96 2.01 1.96 −0.152% −0.174%

0.6 2.01 1.96 2.01 1.96 −0.095% −0.247%

0.7 2.01 1.96 2.01 1.96 −0.0521% −0.33%

0.8 2.01 1.97 2.01 1.96 −0.0224% −0.424%

0.9 2.01 1.97 2.01 1.96 −0.00525% −0.527%

0.95 2.01 1.97 2.01 1.96 −0.00118% −0.583%

Table IX. Case 2: E [Di (pop)] and E [Di] comparisons for k∗ = 15

p E[D1(pop)] E[D2(pop)] E[D1] E[D2]
E[D1]−E[D1(pop)]

E[D1(pop)]
E[D1]−E[D1(pop)]

E[D1(pop)]

0.05 0.856 0.835 0.859 0.835 0.301% −0.0621%

0.1 0.856 0.836 0.859 0.835 0.319% −0.127%

0.2 0.856 0.837 0.859 0.835 0.341% −0.266%

0.3 0.856 0.838 0.859 0.835 0.344% −0.414%

0.4 0.856 0.84 0.859 0.835 0.33% −0.57%

0.5 0.856 0.841 0.859 0.835 0.303% −0.733%

0.6 0.856 0.842 0.859 0.835 0.262% −0.901%

0.7 0.857 0.844 0.859 0.835 0.211% −1.07%

0.8 0.857 0.845 0.859 0.835 0.149% −1.25%

0.9 0.858 0.847 0.859 0.835 0.0785% −1.43%

0.95 0.858 0.848 0.859 0.835 0.0402% −1.53%
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Table X. Case 2: Benefit for the whole population for k∗ = 6 and k∗ = 15

k∗ = 6

p
2∑

i=1

pi ·
E[Di(pop)]

E[Di]

0.05 1.0003

0.1 1.0006

0.2 1.0011

0.3 1.0014

0.4 1.0016

0.5 1.0016

0.6 1.0016

0.7 1.0014

0.8 1.001

0.9 1.0006

0.95 1.0003

k∗ = 15

p
2∑

i=1

pi ·
E[Di(pop)]

E[Di]

0.05 1.0004

0.1 1.0008

0.2 1.0015

0.3 1.0019

0.4 1.0021

0.5 1.0022

0.6 1.0021

0.7 1.0018

0.8 1.0013

0.9 1.0007

0.95 1.0004
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CHAPTER VI

CONCLUSION

In this chapter, we present a summary of the research and the contributions of our

results. We also provide a discussion of possible future directions.

1. Summary and Contributions

It is crucial to use available information as effectively as possible while making deci-

sions. In this research, our motivation was to use information such as the knowledge of

the hazard rate function when scheduling screening inspections for systems with non-

self-announcing failures. Since inspections are resources for such systems, the better

allocation of resources (i.e, the better schedules) is of great interest. We looked at

two different systems: replaceable (industrial studies) and non-replaceable systems

(healthcare studies). Depending on whether or not we are allowed to make a replace-

ment, our performance measures and mathematical models change but in both cases,

we use the hazard rate function to design better schedules.

In Chapter III, we consider scheduling inspections in a simple replaceable fail-

ure prone system when the hazard rate function for time to failure is known. The

availability and the inspection rate are used as our performance measures. For such

systems, we derived expressions periodic inspections, intensity based inspections and

improved inspections, which are iteratively constructed from periodic inspections.

Our results showed that when the inspection rate is kept constant, it is possible to

construct improved inspections schedules that a higher availability than periodic in-

spections. Additionally, our numerical result showed that for lower inspection rates,

the difference between improved inspections and periodic inspections increases. As

opposed to earlier studies, which consider inspections as a limited resource, our ap-
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proach provide an analytical assessment tool when the hazard rate function is not

described by monotone functions.

For non-replaceable systems in Chapter IV, we considered a general natural his-

tory model with two stage inspection policy in which fallible inspections are performed

first and error-free inspections are performed only if a fallible inspection report the

failure. For a two-stage inspection policy, we derived the expression for the expected

detection delay when pre-clinical and disease-free durations are independent. Later,

our result showed an iterative approach can be used to reduce the expected detec-

tion delay without changing the number of inspection performed during the screening

horizon when pre-clinical duration is infinite. Though there are some earlier studies

which focuses on scheduling inspections for non-replaceable systems with non-self-

announcing failures, most of them are restricted to the special class of hazard rate

functions. In this research, our results holds for piecewise linear hazard rate functions,

which can be used to approximate more general hazard rate functions than ones in

earlier studies. To our best knowledge, this study is the first study which studied a

more general class of hazard rate functions and developed analytical proven improved

two stage inspection schedules using a fixed number of inspections.

When screening inspections are applied to a mixture of populations, the benefit

of screening may not be fully utilized by each sub-populations. For instance, people

with certain family background or certain types of genes may be more or less likely

to have a certain disease than the rest of population. In such case, customizing

schedules for these people might be really beneficial. In Chapter V, we developed

measures to quantify the value of benefits of customized schedules to individuals and

the whole population at risk. Numerical studies showed that customization can be

really beneficial when there are minorities which has a lot more susceptible to the

failure than the rest of the population at risk.
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2. Directions for Future Research

For replaceable systems, we developed inspection schedules that will always give

higher availability than periodic inspections under the constant inspection rate. In

this case, our assumption about α(t) is that it is a periodic piecewise constant func-

tion. Although this assumptions simplified our analytical solution, it is restrictive in

the sense that it cannot capture continuous changes in α(t) and, more importantly, it

only considers deterministic failure rates. To address these issues, we plan to consider

following cases in which

1. α(t) is a periodic piecewise non-constant function

2. α(t) is described by a continuous time Markov chain.

So far, we assumed that α(t) is a periodic deterministic function. In this case, both

the time spent in the each failure rate state and the change of states of failure rates

are deterministic. However, it is reasonable to expect that there will be uncertainty

in both how failure rate states changes and how much time spent in each one of them.

So, in order to allow random failure rate state times and randomly changing failure

rate states, we plan to allow {α(t) : t ≥ 0} to be described by a stochastic process,

particularly, a continuous Markov chain.

Our results in Chapter IV are based on the fact that pre-clinical duration is

infinite. Although we derived an expression for the expected delay when pre-clinical

duration is finite and independent from the disease-free duration, we did not analyze

how to construct better schedules for this case. In the medical literature, there is

ongoing work focused on the estimation of pre-clinical duration for certain types

of screenings. Incorporating the finite pre-clinical duration to our model will be

valuable to assess cases studies for medical screening problems. We plan to use
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certain classes of distribution families (such as exponential and uniform families) as

the pre-clinical duration and build better schedules for them. The ultimate goal is to

develop screening schedules which also consider the dependency between disease-free

and pre-clinical durations.

We quantified the value of customizing schedules for individual and the whole

population at risk in Chapter V. We assumed that it is possible to correctly separate

the population at risk into sub-populations using some identification tests. However,

these tests may not be error-free and, so certain follow-up tests may need to be

applied for the correct identification. We plan to make a cost-benefit analysis of

fallible identification tests to better understand the value of customizing schedules.
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APPENDIX A

COMPARISON OF DIFFERENT INSPECTION SCHEMES FOR

REPLACEABLE SYSTEMS

In this appendix, how inspection points are moved by our improvement algorithm in

Chapter III are presented. We compare periodic inspection points and our improved

inspection points for simple failure prone replaceable systems. Throughout this part,

we use Nmax = 30 and ǫ = 0.0001.

α(5)(t) =







0.2, t ∈
∞⋃

n=0
[15n, 15n + 5)

0.4, t ∈
∞⋃

n=0
[15n + 5, 15n + 10)

0.6, t ∈
∞⋃

n=0
[15n + 10, 15 · (n + 1))

 0
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 0.3
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 0.5

 0.6

 0  2  4  6  8  10  12  14  16

α(5
) (t

)

t

Periodic
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Fig. 24. Improved inspections and periodic inspections for α(5)(·) when τ = 1.875



88

Table XI. The improved inspection and periodic inspection schedules for α(5)(·) when

τ = 1.875

i PI(τ) τ̃i ∆τ̃i

1 1.875 2.019 2.019

2 3.75 4.038 2.019

3 5.625 6.199 2.161

4 7.5 7.879 1.68

5 9.375 9.559 1.68

6 11.25 11.47 1.912

7 13.12 13.24 1.765

8 15 15 1.765
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α(6)(t) =
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Fig. 25. Improved inspections and periodic inspections for α(6)(·) when τ = 1.875
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Table XII. The improved inspection and periodic inspection schedules for α(6)(·) when

τ = 1.875

i PI(τ) τ̃i ∆τ̃i

1 1.875 1.667 1.667

2 3.75 3.333 1.667

3 5.625 5 1.667

4 7.5 6.667 1.667

5 9.375 8.333 1.667

6 11.25 10 1.667

7 13.12 12.06 2.061

8 15 14.12 2.061
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α(7)(t) =
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Fig. 26. Improved inspections and periodic inspections for α(7)(·) when τ = 1.25
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Table XIII. The improved inspection and periodic inspection schedules for α(7)(·) when

τ = 1.25

i PI(τ) τ̃i ∆τ̃i

1 1.25 1.515 1.515

2 2.5 2.723 1.209

3 3.75 3.85 1.126

4 5 4.921 1.071

5 6.25 5.991 1.071

6 7.5 7 1.009

7 8.75 8 1

8 10 9 1

9 11.25 10.79 1.791

10 12.5 12.6 1.809

11 13.75 13.84 1.24

12 15 15 1.16
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α(8)(t) =
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Fig. 27. Improved inspections and periodic inspections for α(8)(·) when τ = 1.25
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Table XIV. The improved inspection and periodic inspection schedules for α(8)(·) when

τ = 1.25

i PI(τ) τ̃i ∆τ̃i

1 1.25 1 1

2 2.5 2 1

3 3.75 3 1

4 5 4.876 1.876

5 6.25 6.783 1.907

6 7.5 8.206 1.422

7 8.75 9.273 1.068

8 10 10.18 0.9089

9 11.25 11.09 0.9088

10 12.5 12 0.9088

11 13.75 13 1

12 15 14.2 1.2
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APPENDIX B

NUMERICAL RESULTS FOR PERFORMANCE OF DIFFERENT

INSPECTIONS STRATEGIES FOR REPLACEABLE SYSTEMS

The availability for periodic inspections and the improved inspections are presented

in this appendix. Nmax = 50 and ǫ = 0.0001 are used for the improved inspections.
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Fig. 28. The intensity function α(9)(t) versus t where τ = 1 and k∗
τ = 6
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Table XV. The availability for PI(τ) and the improved inspections when α(9)(·),

Nmax = 50 and ǫ = 0.0001

τ Ir Aav(PI(τ)) Ãav
Ãav−Aav(PI(τ))

Aav(PI(τ))

0.2 5 0.983 0.983 0.019%

0.4 2.5 0.966 0.967 0.073%

0.6 1.67 0.95 0.951 0.11%

0.8 1.25 0.934 0.936 0.24%

1 1 0.92 0.922 0.23%

1.2 0.8 0.899 0.903 0.47%

1.8 0.571 0.862 0.87 0.86%

2 0.5 0.854 0.856 0.24%

2.5 0.4 0.811 0.823 1.5%

3 0.333 0.795 0.801 0.73%

3.5 0.286 0.749 0.766 2.3%

4 0.25 0.729 0.74 1.6%

5 0.2 0.669 0.704 5.1%

7.5 0.133 0.558 0.591 5.9%

10 0.1 0.478 0.503 5.1%

15 0.0667 0.361 0.384 6.1%
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Table XVI. The availability for PI(τ) and the improved inspections when α(10)(·),

Nmax = 50 and ǫ = 0.0001

τ Ir Aav(PI(τ)) Ãav
Ãav−Aav(PI(τ))

Aav(PI(τ))

0.2 5 0.983 0.983 0.033%

0.4 2.5 0.965 0.967 0.11%

0.6 1.67 0.949 0.951 0.21%

0.8 1.25 0.933 0.936 0.28%

1 1 0.916 0.92 0.49%

1.2 0.8 0.899 0.902 0.36%

1.8 0.571 0.862 0.868 0.69%

2 0.5 0.836 0.853 1.9%

2.5 0.4 0.811 0.819 0.94%

3 0.333 0.766 0.792 3.3%

3.5 0.286 0.749 0.761 1.6%

4 0.25 0.714 0.737 3.2%

5 0.2 0.667 0.687 3.1%

7.5 0.133 0.558 0.574 2.9%

10 0.1 0.469 0.489 4.3%

15 0.0667 0.348 0.369 6.1%
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α(10)(t) =
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Fig. 29. The intensity function α(10)(t) versus t where τ = 1 and k∗
τ = 6
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α(11)(t) =
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Fig. 30. The intensity function α(11)(t) versus t where τ = 0.5 and k∗
τ = 6
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Table XVII. The availability for PI(τ) and the improved inspections when α(11)(·),

Nmax = 50 and ǫ = 0.0001

τ Ir Aav(PI(τ)) Ãav
Ãav−Aav(PI(τ))

Aav(PI(τ))

0.1 10 0.993 0.993 0.012%

0.2 5 0.985 0.985 0.033%

0.4 2.5 0.971 0.971 0.075%

0.5 2 0.963 0.965 0.13%

0.75 1.33 0.946 0.947 0.12%

1 1 0.929 0.931 0.22%

1.2 0.8 0.912 0.915 0.28%

1.5 0.667 0.896 0.9 0.49%

1.7 0.575 0.88 0.884 0.45%

2 0.5 0.864 0.87 0.66%

2.2 0.444 0.849 0.856 0.84%

2.5 0.4 0.834 0.845 1.2%

3 0.333 0.807 0.826 2.4%

4 0.25 0.752 0.76 0.99%

6 0.167 0.661 0.677 2.4%

9 0.111 0.55 0.563 2.4%

12 0.0833 0.465 0.476 2.4%
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α(12)(t) =
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[3n + 0.5, 3n + 1.0)

0.1, t ∈
∞⋃

n=0
[3n + 1.0, 3n + 2.0)

0.15, t ∈
∞⋃

n=0
[3n + 2.0, 3n + 2.5)

0.2, t ∈
∞⋃

n=0
[3n + 2.5, 3n + 3)

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2  2.5  3

α(1
2)

(t
)

t

Fig. 31. The intensity function α(12)(t) versus t where τ = 1 and k∗
τ = 6
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Table XVIII. The availability for PI(τ) and the improved inspections when α(12)(·),

Nmax = 50 and ǫ = 0.0001

τ Ir Aav(PI(τ)) Ãav
Ãav−Aav(PI(τ))

Aav(PI(τ))

0.1 10 0.993 0.993 0.011%

0.2 5 0.985 0.985 0.031%

0.4 2.5 0.971 0.971 0.068%

0.5 2 0.963 0.965 0.12%

0.75 1.33 0.946 0.947 0.14%

1 1 0.929 0.93 0.13%

1.2 0.8 0.912 0.915 0.28%

1.5 0.667 0.896 0.901 0.6%

1.7 0.575 0.88 0.884 0.45%

2 0.5 0.864 0.869 0.54%

2.2 0.444 0.849 0.856 0.82%

2.5 0.4 0.834 0.844 1.2%

3 0.333 0.804 0.826 2.8%

4 0.25 0.752 0.76 0.99%

6 0.167 0.658 0.677 2.8%

9 0.111 0.548 0.563 2.8%

12 0.0833 0.463 0.476 2.8%
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APPENDIX C

NUMERICAL RESULTS FOR CONVERGENCE OF IMPROVEMENT

ALGORITHM FOR REPLACEABLE SYSTEMS

This appendix provides more numerical results for the convergence of τ̃
(n)
i , i = 1, . . . , k∗

τ

for improved inspection schedules in Chapter III. The same intensity functions in Ap-

pendix B are used (α(9)(t), α(10)(t), α(11)(t) and α(12)(t) ). We use Nmax = 30 and

ǫ = 0.0001, τ and k∗
τ will be stated for each intensity function.
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APPENDIX D

NUMERICAL RESULTS FOR CONVERGENCE TO OPTIMAL SCHEDULE OF

IMPROVEMENT ALGORITHM FOR REPLACEABLE SYSTEMS WHEN

K∗
τ = 2

In this appendix, the availability plot versus the first two inspection times are pre-

sented for the case k∗
τ = 2. The same intensity functions in Appendix B are used

(α(9)(t), α(10)(t), α(11)(t) and α(12)(t) ). Additionally, Nmax = 30 and ǫ = 0.0001 are

used.
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APPENDIX E

IMPROVED INSPECTION SCHEDULES FOR NON-REPLACEABLE SYSTEMS

In this appendix, improved inspection points generated by our improvement algorithm

in Chapter IV are presented. Hazard rate functions and the k∗ values are given for

cases. We assume that periodic inspections are used as a starting schedule, a = 0,

b = 15, Nmax = 50, γ = 0.1 and ǫ = 0.0001.

α15(t) =







0.05 · t, t ∈ [0, 5)

0.25 + 0.075 · (t − 5) , t ∈ [5, 10)

0.625 + 0.1 · (t − 10) , t ∈ [10, 15]

 0
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α 1
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t
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Improved

Fig. 44. Improved and periodic inspections for α15(·) when k∗ = 10
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Table XIX. Improved and periodic inspection schedules for α15(·) when k∗ = 10

i PI(τ) τ̃i ∆τ̃i

1 1.364 2.133 2.133

2 2.727 3.161 1.028

3 4.091 4.073 0.9118

4 5.455 4.947 0.8743

5 6.818 5.826 0.879

6 8.182 6.71 0.8843

7 9.545 7.646 0.9355

8 10.91 8.687 1.041

9 12.27 9.92 1.234

10 13.64 11.53 1.608

11 15 15 3.472
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α16(t) =







1.125 − 0.1 · t, t ∈ [0, 5)

0.625 − 0.075 · (t − 5) , t ∈ [5, 10)

0.625 − 0.05 · (t − 10) , t ∈ [10, 15]
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Fig. 45. Improved and periodic inspections for α16(·) when k∗ = 10
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Table XX. Improved and periodic inspection schedules for α16(·) when k∗ = 10

i PI(τ) τ̃i ∆τ̃i

1 1.364 0.2403 0.2403

2 2.727 0.4864 0.2461

3 4.091 0.7706 0.2842

4 5.455 1.105 0.3345

5 6.818 1.508 0.4033

6 8.182 2.01 0.5019

7 9.545 2.662 0.6516

8 10.91 3.559 0.8976

9 12.27 4.907 1.347

10 13.64 7.223 2.317

11 15 15 7.777
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α17(t) =







0.3 + 0.1 · t, t ∈ [0, 2)

0.5 + 0.075 · (t − 2) , t ∈ [2, 4)

0.65 + 0.05 · (t − 4) , t ∈ [4, 6]

0.75, t ∈ [6, 9)

0.75 − 0.05 · (t − 9) , t ∈ [9, 11)

0.65 − 0.075 · (t − 11) , t ∈ [11, 13)
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Fig. 46. Improved and periodic inspections for α17(·) when k∗ = 10
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Table XXI. Improved and periodic inspection schedules for α17(·) when k∗ = 10

i PI(τ) τ̃i ∆τ̃i

1 1.364 0.5669 0.5669

2 2.727 1.081 0.5139

3 4.091 1.611 0.5299

4 5.455 2.169 0.5585

5 6.818 2.777 0.6076

6 8.182 3.461 0.6841

7 9.545 4.258 0.7968

8 10.91 5.24 0.9827

9 12.27 6.549 1.308

10 13.64 8.551 2.002

11 15 15 6.449
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α18(t) =







0.6 − 0.15 · t, t ∈ [0, 2)

0.3 − 0.075 · (t − 2) , t ∈ [2, 4)

0.15 − 0.05 · (t − 4) , t ∈ [4, 6]

0.05, t ∈ [6, 9)

0.05 + 0.05 · (t − 9) , t ∈ [9, 11)
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Fig. 47. Improved and periodic inspections for α18(·) when k∗ = 10



120

Table XXII. Improved and periodic inspection schedules for α18(·) when k∗ = 10

i PI(τ) τ̃i ∆τ̃i

1 1.364 0.4271 0.4271

2 2.727 0.8775 0.4504

3 4.091 1.416 0.5388

4 5.455 2.081 0.6642

5 6.818 2.937 0.8567

6 8.182 4.014 1.077

7 9.545 5.485 1.471

8 10.91 7.945 2.46

9 12.27 10.99 3.045

10 13.64 12.87 1.877

11 15 15 2.132
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APPENDIX F

NUMERICAL RESULTS FOR CONVERGENCE OF IMPROVEMENT

ALGORITHM FOR NON-REPLACEABLE SYSTEMS

This appendix provides more numerical results for the convergence of τ
(n)
i , i = 1, . . . , k∗

for improved inspection schedules in Chapter IV. Throughout this part, we use

Nmax = 30 and ǫ = 0.0001, a = 0, γ = 0 and k∗ = 6.

α20(t) =







0.05, [0, 1)

0.05 + 0.025 · (t − 1), [1, 2)

0.075 + 0.045 · (t − 2), [2, 3)

0.12 + 0.06 · (t − 3), [3, 4)

0.18 + 0.07 · (t − 4), [4, 5)

0.25 + 0.1 · (t − 5), [5, 6]
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Fig. 48. The hazard rate function α20(t) versus t
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α21(t) =







0.35 − 0.1 · t, [0, 1)

0.25 − 0.07 · (t − 1), [1, 2)

0.18 − 0.06 · (t − 2), [2, 3)
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Fig. 50. The hazard rate function α21(t) versus t
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Fig. 51. τ
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α22(t) =







0.25, [0, 1)

0.05 + 0.05 · (t − 1), [1, 2)

0.1 + 0.025 · (t − 2), [2, 3)
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Fig. 52. The hazard rate function α22(t) versus t
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Fig. 53. τ
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i , i = 1, . . . , 6 versus n for α22(·)



127

α23(t) =







0.2 − 0.05, [0, 1)

0.1 − 0.035 · (t − 1), [1, 2)

0.065 − 0.025 · (t − 2), [2, 3)

0.05, [3, 4.5)

0.05 − 0.015 · (t − 4.5), [4.5, 5.5)
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 0

 0.05

 0.1

 0.15

 0.2

 0  1  2  3  4  5  6  7  8

α 1
5(

t)

t

Fig. 54. The hazard rate function α23(t) versus t



128

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1

 0  5  10  15  20  25  30

τ(n
) 1 

 n

τ(n)
1 

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0  5  10  15  20  25  30

τ(n
) 2 

 n

τ(n)
2 

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 0  5  10  15  20  25  30

τ(n
) 3 

 n

τ(n)
3 

 3.85

 3.9

 3.95

 4

 4.05

 4.1

 4.15

 4.2

 4.25

 4.3

 0  5  10  15  20  25  30

τ(n
) 4 

 n

τ(n)
4 

 5.34

 5.36

 5.38

 5.4

 5.42

 5.44

 5.46

 5.48

 0  5  10  15  20  25  30

τ(n
) 5 

 n

τ(n)
5 

 6.4

 6.45

 6.5

 6.55

 6.6

 6.65

 6.7

 6.75

 0  5  10  15  20  25  30

τ(n
) 6 

 n

τ(n)
6 

Fig. 55. τ
(n)
i , i = 1, . . . , 6 versus n for α23(·)



129

APPENDIX G

NUMERICAL RESULTS FOR CONVERGENCE TO OPTIMAL SCHEDULE OF

IMPROVEMENT ALGORITHM FOR NON-REPLACEABLE WHEN K∗ = 2

In this appendix, the expected delay versus (τ1, τ2) are presented for the case k∗ = 2.

The same hazard rate functions in Appendix F are used (α20(t), α21(t), α22(t) and

α23(t)). Additionally, Nmax = 30, a = 0, γ = 0.1 and ǫ = 0.0001 are used.
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APPENDIX H

NUMERICAL RESULTS FOR PERFORMANCE OF DIFFERENT

INSPECTIONS STRATEGIES FOR NON-REPLACEABLE SYSTEMS

The expected delay for periodic inspectins and the improved inspectins are compared

in this appendix. Comparison are made for the same hazard rate functions in Ap-

pendix F (α20(t), α21(t), α22(t) and α23(t)). We generate Tables for γ = 0.1, γ = 0.3

using Nmax = 30, a = 0, ǫ = 0.0001.

Table XXIII. Comparions of periodic and improved inspections for α20(·) and γ = 0.1

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 0.793 0.772 −2.68%

2 0.579 0.563 −2.76%

3 0.457 0.443 −2.99%

4 0.377 0.365 −3.35%

5 0.321 0.31 −3.35%

6 0.279 0.27 −3.36%

7 0.247 0.238 −3.61%

8 0.222 0.213 −3.76%

10 0.184 0.177 −3.81%

15 0.129 0.124 −3.72%
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Table XXIV. Comparions of periodic and improved inspections for α20(·) and γ = 0.3

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 0.731 0.73 −0.112%

2 0.603 0.593 −1.76%

3 0.515 0.499 −3.12%

4 0.45 0.431 −4.17%

5 0.398 0.379 −4.63%

6 0.356 0.338 −4.91%

7 0.322 0.305 −5.19%

8 0.294 0.278 −5.35%

10 0.25 0.236 −5.5%

15 0.181 0.171 −5.43%
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Table XXV. Comparions of periodic and improved Inspections for α21(·) and γ = 0.1

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 1.21 1.04 −13.6%

2 0.791 0.659 −16.6%

3 0.582 0.48 −17.6%

4 0.458 0.377 −17.8%

5 0.378 0.31 −17.9%

6 0.321 0.264 −17.8%

7 0.279 0.229 −17.9%

8 0.247 0.202 −18%

10 0.2 0.164 −18%

15 0.136 0.112 −17.3%

Table XXVI. Comparions of periodic and improved inspections for α21(·) and γ = 0.3

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 1.27 1.09 −14%

2 0.971 0.781 −19.5%

3 0.772 0.605 −21.7%

4 0.635 0.494 −22.2%

5 0.536 0.416 −22.3%

6 0.462 0.36 −22.1%

7 0.405 0.317 −21.9%

8 0.361 0.283 −21.6%

10 0.296 0.233 −21.1%

15 0.203 0.162 −20.2%
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Table XXVII. Comparions of periodic and improved inspections for α22(·) and γ = 0.1

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 1.17 1.17 −0.0935%

2 0.832 0.793 −4.78%

3 0.648 0.601 −7.18%

4 0.528 0.484 −8.32%

5 0.444 0.404 −9%

6 0.383 0.348 −9.17%

7 0.337 0.306 −9.24%

8 0.3 0.272 −9.16%

10 0.245 0.224 −8.69%

15 0.169 0.155 −8.53%

Table XXVIII. Comparions of periodic and improved inspections for α22(·) and γ = 0.3

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 1.17 1.16 −0.433%

2 0.957 0.889 −7.05%

3 0.813 0.721 −11.2%

4 0.7 0.606 −13.4%

5 0.611 0.522 −14.5%

6 0.539 0.46 −14.8%

7 0.482 0.41 −14.9%

8 0.434 0.37 −14.8%

10 0.36 0.31 −14.1%

15 0.253 0.22 −12.8%
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Table XXIX. Comparions of periodic and improved inspections for α23(·) and γ = 0.1

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 1.11 0.958 −13.7%

2 0.754 0.653 −13.4%

3 0.566 0.496 −12.4%

4 0.452 0.406 −10.3%

5 0.376 0.344 −8.64%

6 0.322 0.298 −7.31%

7 0.282 0.261 −7.46%

8 0.251 0.231 −8.02%

10 0.207 0.191 −7.69%

15 0.143 0.132 −7.21%

Table XXX. Comparions of periodic and improved inspections for α23(·) and γ = 0.3

k∗
E[Dperiodic] E[Dimproved] 100 ·

E[Dperiodic]−E[Dimproved]

E[Dperiodic]

1 1.12 0.959 −14.7%

2 0.871 0.714 −18%

3 0.7 0.575 −17.9%

4 0.581 0.487 −16.1%

5 0.495 0.425 −14%

6 0.43 0.376 −12.6%

7 0.381 0.337 −11.7%

8 0.343 0.306 −11%

10 0.287 0.259 −9.61%

15 0.202 0.186 −8.03%
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