PREDICTION OF PROTON AND NEUTRON ABSORBED-DOSE DISTRIBUTIONS IN PROTON BEAM RADIATION THERAPY USING MONTE CARLO N-PARTICLE TRANSPORT CODE (MCNPX)

A Thesis
by
BRIAN EDWARD MASSINGILL

Submitted to the Office of Graduate Studies of Texas A\&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2007

PREDICTION OF PROTON AND NEUTRON ABSORBED-DOSE DISTRIBUTIONS IN PROTON BEAM RADIATION THERAPY USING MONTE CARLO N-PARTICLE TRANSPORT CODE (MCNPX)

A Thesis
by
BRIAN EDWARD MASSINGILL

Submitted to the Office of Graduate Studies of Texas A\&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, John R. Ford
Committee Members, John W. Poston, Sr.
Michael Walker
Head of Department, John W. Poston, Sr.

August 2007

Major Subject: Health Physics

Abstract

Prediction of Proton and Neutron Absorbed-Dose Distributions in Proton Beam Radiation Therapy Using Monte Carlo N-Particle Transport Code (MCNPX). (August 2007)

Brian Edward Massingill, B.S., Texas A\&M University

Chair of Advisory Committee: Dr. John R. Ford

The objective of this research was to develop a complex MCNPX model of the human head to predict absorbed dose distributions during proton therapy of ocular tumors. Absorbed dose distributions using the complex geometry were compared to a simple MCNPX model of the human eye developed by Oertli. The proton therapy beam used at Laboratori Nazionali del Sud-INFN was chosen for comparison. Dose calculations included dose due to proton and secondary interactions, multiple coulombic energy scattering, elastic and inelastic scattering, and non-elastic nuclear reactions. Benchmarking MCNPX was accomplished using the proton simulations outlined by Oertli. Once MCNPX was properly benchmarked, the proton beam and MCNPX models were combined to predict dose distributions for three treatment scenarios. First, an ideal treatment scenario was modeled where the dose was maximized to the tumor volume and minimized elsewhere. The second situation, a worst case scenario, mimicked a patient starring directly into the treatment beam during therapy. During the third simulation, the treatment beam was aimed into the bone surrounding the eye socket to estimate the dose to the vital regions of the eye due to scattering. Dose distributions observed for all three cases were as expected. Superior dose distributions were observed with the complex

geometry for all tissues of the phantom and the tumor volume. This study concluded that complex MCNPX geometries, although initially difficult to implement, produced superior dose distributions when compared to simple models.

This work is dedicated to several individuals who, if not for them, I would not be where I am today.

To Jesus - Thank you for guiding me true and giving me the courage and strength to persevere through all life's challenges.

To Punkin \& Memaw, Robert B. and Tommie J. Massingill - Thank you for always being there and pushing me to do my best. Without your love and support, I would not be the person that I am today.

To Granny, Gracie L. Flory - Thank you for being such a strong individual and showing me that when life knocks you down, God is always there to pick you up. Rest in Peace. To Mom and T.J. (Dad), Margaret J. and Thurman Moore, Jr. - Thank you for raising me to know God and for the courage to pursue a life filled with success and happiness. To Dad, Robert D. Massingill, Sr. - Thank you for the advice, guidance and encouraging words when I was confused as to which path to take.

To my brother, Robert D. Massingill, Jr., - Thank you for setting the example of what a successful individual should be. I am very lucky to have you as a big brother.

To my girlfriend, Tamara L. Gill - Thank you for standing by my side throughout the trials and tribulations of my college career.

To my brothers, Brandon D. Moore and Dalton L. Massingill - Thank you for allowing me to set the example for you just as Robert has set the example for me. Never forget, "Anything worth having is worth working for." - John Burroughs

You have all provided me with endless love and support and are all a constant catalyst for growth and an inspiration in love.

I love you all.

ACKNOWLEDGEMENTS

I would like to thank my advisor and committee chair, Dr. John R. Ford, for his patience, guidance, and unwavering support during this research. I would also like to thank my committee member, Dr. John W. Poston, Sr., for answering my many questions, his guidance during both my undergraduate and graduate careers, and his keen eye for editing. Additionally, I would like to thank my committee member, Dr. Michael Walker, for his support in all my efforts during this research.

TABLE OF CONTENTS

Page

ABSTRACT iii
DEDICATION v
ACKNOWLEDGEMENTS vi
LIST OF FIGURES ix
LIST OF TABLES xi
CHAPTER
I INTRODUCTION AND BACKGROUND 1
Proton vs. Conventional Radiotherapy 1
Objective 3
Status of the Question and Model Development 4
II THE MODEL 8
Benchmarking 8
The Phantom 13
Coupling the Beam and the Phantom 18
III RESULTS AND DISCUSSION 21
Ideal Case 21
Worst Case Scenario - Lens 33
Worst Case Scenario - Ocular Socket 39
Error Discussion 41
IV CONCLUSIONS 43
Summary 43
Eye Model Conclusions 44
Simulation Conclusions 46
REFERENCES 47
APPENDIX A 51

Page

APPENDIX B ... 56
VITA .. 82

LIST OF FIGURES

FIGURE Page

1 Dose/depth comparison of 15-MV photons and intensity-modulated protons (Smith 2006)2

2 A tumor covering the optic and macula before proton radiation (visual acuity of 20/200 (left)) and thirty-eight months after proton therapy (tumor regression and visual acuity of 20/25 (right))5
3 Heating mesh tally of $200-\mathrm{MeV}$ protons entering a water phantom. Cylinders (from left to right) (a) zero importance, (b) iron, (c) void. 8
4 Measured ionization (top), MCNPX energy deposition (bottom)(Cirrone et al. 2004) as a function of depth into water and the phantom,respectively10
5 SOBP resulting from the sum of individual Bragg peaks (Kooy 2003) 11
6 Measured SOBP (left), simulated SOBP (right) (Cirrone et al. 2004) 12
7 Cross section of the original Zubal head phantom as viewed from above (Zubal 2007) 14
8 Cross section of the modified Zubal head phantom 15
9 Diagram of progressive slices through the tumor and surrounding cells.Numbers indicate voxel universes for tallying deposited dose. Colorscheme: blue (outside universe), black (eye ball); green (eye - aqueoushumor); red (fat); pink (optic nerve); yellow (tumor). Each sectioncorresponds to a layer in the z direction16
10 Cross sections of the lens indicating $2.2 \times 2.2 \times 1.4 \mathrm{~mm}$ voxel universe numbers. Each section corresponds to a layer (z-axis) of the lens 17
11 Cross section of the modified Zubal head phantom for the ideal scenario 18
12 Cross section of the modified Zubal head phantom worst case \#1 19
13 Cross section of the modified Zubal head phantom worst case \#2 20
14 Simplified eye geometry of the human developed by Oertli 21
15 Ideal case: proton beam missing the lens (left) and directed into the center of the tumor (right) 22

$$
\begin{array}{ll}
16 \text { Dose (Gy) distribution for the typical case scenario through the lens of the } \\
\text { modified Zubal phantom (read left to right). Each section corresponds to a } \\
\text { layer (z-axis) of the lens.. } 24
\end{array}
$$

17 Cross section representation (bottom to top) illustrating the dose distribution across the tumor volume in units of Gy. Each section corresponds to a layer (z-axis) of the tumor25
18 SOBP obtained using the energy distribution from Oertli (2006) 26
19 Ideal case SOBP through the center of the tumor. Circled data points are within the tumor volume 28
20 Ideal case total dose deposition SOBP. Circled data points are within the tumor volume 28
21 Benchmark Bragg peak vs. simulated Bragg peak (ideal case). Circled data points (pink) are within the tumor 29
22 Neutron absorbed-dose (Gy) distribution through the lens of the eye read from left to right (ideal case). Each section corresponds to a layer (z-axis) of the lens. 32
23 Neutron absorbed-dose (Gy) distribution through the tumor (ideal case). Each section corresponds to a layer (z-axis) of the tumor 33
24 Lens worst case: proton beam directly into the lens (left) and missing the tumor (right) 34
25 Dose distribution (Gy/fraction) through the lens for the worst case scenario(lens) and is read left to right. Each section corresponds to a layer (z-axis) ofthe lens36
26 Neutron absorbed-dose (Gy) distribution through the lens of the eye (worst case). Each section corresponds to a layer (z-axis) of the lens 37
27 Neutron absorbed-dose (Gy) distribution through the tumor (lens worst case). Each section corresponds to a layer (z-axis) of the tumor 38
28 Ocular socket worst case: proton beam into the ocular socket nearest the lens (left) and missing both the tumor and lens (right) 40

LIST OF TABLES

TABLE Page
1 Tumor classification for uveal melanoma (Cirrone et al. 2004) 17
2 Dose deposition comparison for a typical treatment scenario 23
3 Dose distribution in the right eye wall as defined by Oertli (2006). 27
4 Neutron dose deposition within tissues of the modified Zubal phantom (ideal case) 31
5 Dose deposition comparison for a worst case (lens) treatment scenario 35
6 Dose deposition during the ocular socket worst case scenario 40
7 Interpretation of the relative error R (Shultis and Faw 2006) 42

CHAPTER I

INTRODUCTION AND BACKGROUND

Proton vs. Conventional Radiotherapy

The goal of conventional radiation therapy is to deliver radiation to a target volume within the human body while sparing the surrounding normal tissues. Intensitymodulated radiation therapy (IMRT), the most advanced method for photon delivery, helps to minimize the dose to healthy tissues by applying radiation fields of varying intensities and directions to the target tissue. However, because the photon does not have complete energy deposition within the tumor volume, residual dose is delivered to normal tissues along the path of the photon beam; thus resulting in a large planning treatment volume (PVT) and a large integral dose. A constant concern associated with IMRT is the growth of secondary malignancies due to radiation-induced damage to the DNA of surrounding healthy tissues.

In comparison, protons irradiate a smaller volume of normal tissue at higher doses than is feasible with IMRT. This is due to the differences between photon and proton energy deposition characteristics. Photon energy decreases exponentially with depth in a material while protons have a finite range with no residual dose beyond that point. As with all charged particles, protons have a rapid energy loss near the end of their track, which causes a large peak in the deposited dose, known as the Bragg peak. The depth at which the Bragg peak occurs is directly related to the initial energy of the incident protons. Hence the Bragg peak, i.e. the region of maximum dose, can be precisely placed

[^0]within the tumor volume. For irradiation purposes, both the intensity and energy of the incident proton is varied to achieve the desired dose within the tumor volume. Modulation of the proton beam results in a spread out Bragg peak (SOBP) that delivers a uniform dose across the malignant volume. "[Therefore], in contrast to photon radiotherapy, a single proton field can achieve dose conformation to the target volume" (Levin et al. 2005). A depth-dose comparison of a $15-\mathrm{MV}$ potential photon beam and a SOBP is shown in Fig. 1. Here, the SOBP has been developed to provide a high, uniform dose within the tumor volume (Smith 2006).

Fig. 1: Dose/depth comparison of 15-MV photons and intensity-modulated protons (Smith 2006)

Due to its energy deposition characteristics, proton radiotherapy is replacing many tumor treatment methods. One example is enucleation of the eye resulting from malignant melanoma. Although radiation therapy can damage critical organs of the eye
necessary for eyesight, radiotherapy is considered a conservative method of treatment when comparing alternatives.

Objective

The objective of this research was to perform a comparison between two MCNPX models of the human eye that approximate doses delivered during proton therapy. Oertli's (2006) simple MCNPX model of the human eye will be compared to a complex MCNPX geometry that incorporates the entire human head. Calculations using these models will provide approximate doses delivered during proton therapy due to proton interactions, "secondary interactions including multiple columbic energy scattering, elastic and inelastic scattering, and non-elastic nuclear reactions (i.e., the production of secondary particles)" (Oertli 2006). In addition, proton and neutron absorbed-dose distributions throughout the human head will be obtained using the complex MCNPX model. The steps to completion included:

1. Selection of the proton beam to model.
2. Benchmarking MCNPX using a simple phantom simulation to ensure proper functioning of the code during proton attenuation/dose depth calculations.
3. Constructing the complex geometry of the human head.
4. Incorporating the selected proton beam with eye models.
5. Incorporate the geometry, the eye models and the proton beam into the computer code.
6. Simulation of proton-radiation therapy treatments using an appropriate number of proton histories.
7. Observe comparison of the dose distributions found with models.
8. Observe dose distributions throughout the human head model.

Status of the Question and Model Development

As early as 1946, Wilson proposed the potential application of protons and other charged particles in radiation therapy (Raju 1980). Since that time great strides have been made to tap this potential and make proton radiotherapy a reality. As early as the 1950's, patients with pituitary tumors were being treated (Gargoundas 2006). Since that time, more than 30,000 patients world wide have been treated at more than 20 research facilities. Most proton radiotherapy treatments have been concentrated on small sites in the skull and head-and-neck region, with Constable and Koehler being the first to identify the benefits of proton treatment in ocular tumors. In 1975, the first eye melanoma was treated (Turesson et al. 2003; Constable and Koehler 1974; Gargoundas 2006). In the mid to late 1970s, preclinical studies of proton therapy were being conducted to assess the efficiency of proton beams on intraocular tumors. Lesions were being induced on the fundus of monkey eyes and irradiate with collimated beams to demonstrate the efficiency and selectivity of proton radiotherapy (Gargoundas 2006). Further research, conducted after proton radiotherapy was established as a means to treat ocular melanoma, improved the accuracy with which proton radiotherapy could be delivered. In the early 1980s a comparison of the survivability of patients who had undergone radiotherapy to those who had undergone enucleation was made to further substantiate protons as a treatment modality (Gargoundas 2006). A comparison of ocular melanoma pre-irradiation and post-irradiation is shown in Fig. 2.

Fig. 2: A tumor covering the optic disc and macula before proton radiation (visual acuity of 20/100 (left)) and thirty-eight months after proton therapy (tumor regression and visual acuity of 20/25 (right)) (Gargoundas 2006)

The Monte Carlo method has been used for centuries; however, only in the past several decades has the method gained the status of a numerical method capable of addressing the most complex applications. In 1986, two-dimensional Monte Carlo codes were pioneered. These codes were used to study factors that influenced the edge of the proton beam at the Harvard Cyclotron. Here, research was conducted to determine the efficiency and effectiveness of various collimating apertures and range compensators of the proton beam (Urie et al. 1986). In 1995, a milestone was reached in proton radiotherapy research. Monte Carlo simulations were combined with proton imaging to increase precision during alignment of the patient and proton beam (Romero 1995). Due to early concerns about the radioresistance of ocular melanomas and precision of proton radiotherapy, the mortality rate of 2069 patients was carefully monitored. To date, the five-, 10 -, and $15-$ year survival rates are $86 \%, 77 \%$, and 73%, respectively (Gargoundas 2006). These rates are comparable to five-year survival rates using modern proton facilities (Gargoundas 2006). In 1998 secondary radiation doses initiated by proton
therapy, fluence rates and the relative biological effectiveness of protons in ocular treatments were studied using Monte Carlo simulations (Agosteo et al. 1998; Paganetti 1998). In 2000, two Monte Carlo codes were benchmarked-the Los Alamos High Energy Transport Code (LAHET) and the Monte Carlo N-Particle Transport Code (MCNPX) against a proton radiotherapy beam utilized at Loma Linda University Medical Center. Both codes simulated the patient-specific dose distributions for proton radiotherapy in prostate cancer (Oertli 2006). The development of MCNPX was a major undertaking at Los Alamos National Laboratory (LANL) for several years (Hughes et al. 2000). Through the efforts of researchers, MCNPX has become the cornerstone for many particle transport applications including protons. In 2001, a systematic Monte Carlo study was conducted on secondary electron fluence perturbation in clinical proton beams. Using Monte Carlo algorithms, beams from 70-250 MeV were modeled to assess perturbation effects from cavity ion chambers to increase the effectiveness of proton radiotherapy (Verhaegen and Palmans 2001). In 2004 GEANT4, a Monte Carlo algorithm, was applied to a CT-voxel benchmarking the phantom in a manner similar to Siebers in 2000 (Paganetti et al. 2004). The Midwest Proton Radiotherapy Institute in Bloomington, Indiana began operations in 2004 and, by the end of last year, the Shands Medical Center in Jacksonville, Florida and the M.D. Anderson Cancer Center in Houston, Texas began seeing patients to treat eye tumors and other malignancies with extensive modeling of their respective beam being completed in MCNPX (Gargoundas 2006).

In principle, the Monte Carlo transport technique can provide accurate predictions of the proton treatment beams used in today's proton treatment facilities. To date, Monte

Carlo transport codes can take into account all physical processes involved in proton treatment. Coulombic energy loss, energy straggling, multiple Coulomb scattering, elastic and non-elastic nuclear interactions, and the transport of secondary particles can be simulated and resolved in a reasonable time frame (Oertli 2006). It has not been shown, however, whether it is possible to commission a proton treatment facility using data obtained by Monte Carlo predictions alone (Newhauser et al. 2005).

CHAPTER II

THE MODEL

Benchmarking

Benchmarking the MCNPX computer code was accomplished using the same method outlined by Oertli (2006). A $10-\mathrm{cm}$ diameter, $200-\mathrm{MeV}$ proton beam entering a $10-\mathrm{cm}$ radius, $30-\mathrm{cm}$ high (vertical z-axis) cylinder phantom was constructed. For qualitative purposes, three small cylinders (normal to the z-axis) were modeled at different locations within the phantom and assigned a proton importance. One cylinder was defined as a zero importance region, i.e., any proton entering its volume would cease to exist. The second and third cylinders were defined as having an importance of one; however, one cylinder was defined as iron and the other as being void. For qualitative purposes, a heating mesh tally was used to demonstrate the interactions (or lack thereof) that occured within the three cylinders. The results are shown in Fig. 3. Here the blue and red color schemes indicate cool and hot regions, respectively.

Fig. 3: Heating mesh tally of $200-\mathrm{MeV}$ protons entering a water phantom. Cylinders (from left to right) (a) zero importance, (b) iron, (c) void

As expected, the proton beam was "killed" within the zero importance region (left) resulting in limited reactions within the volume (not all particles were assigned zero importance) and a shadow cast down stream from the proton source. The shadow is a consequence of the sudden cooling due to the decrease in the number of protons and thus interactions above the zero importance region. As anticipated, the iron cylinder (center) was the hottest region within the phantom. The higher density of the iron resulted in a high interaction rate, a shorter proton range after the cylinder and greater heating within and following the iron. The void cylinder (right) provided expected results also. No interactions were recorded within the volume thus resulting in a longer proton range following the void. All three cylinders yielded expected results confirming that the MCNPX code was, quantitatively, performing as expected.

Benchmarking the code for radiotherapy purposes was accomplished using the $62-\mathrm{MeV}$ proton beam from the Laboratori Nazionali del Sud-INFN for two different scenarios. First, the source energy and beam diameter of the model were adjusted to match the $62-\mathrm{MeV}$ beam and the three cylinders were removed. The original phantom was subdivided into progressive layers and deposited energy was tallied within each layer of water; thus measuring energy deposition as a function of depth in the phantom. As expected, the energy deposition curve showed the characteristic Bragg peak; however, the maximum energy deposition occurred at a greater depth in the phantom. The variation in maximum penetration depth is due to electron straggling effects and the low energy cut-off in MCNPX simulations. The MCNPX code cannot be used to track protons and scattered electrons with energies lower than 1 keV and 1 MeV , respectively. This limitation means that the dose deposited by both delta rays and low-energy
protons $(<1 \mathrm{MeV})$ is neglected; thus explaining the difference between the two curves. A comparison between the simulated and measured values in a water phantom is shown in

Fig. 4.

Fig. 4: Measured ionization (top) (Cirrone et al. 2004), MCNPX energy deposition (bottom) as a function of depth into water and the phantom, respectively

Secondly, the actual data collected at the Laboratori Nazionali del Sud-INFN were simulated. In practice, a modulator is frequently incorporated into the treatment
scenario to vary the beam energy and thus the range of the protons exiting the modulator. Using a modulator wheel with varied material characteristics effectively and efficiently generates a proton-energy spectrum that produces a uniform dose distribution over a target volume. The resulting energy deposition curve is illustrated in Fig. 5 and is called a spread out Bragg peak (SOBP). This curve is obtained by summing the individual Bragg peaks created by the various proton energies. The resulting proton beam uniformly deposits a higher dose in the target volume.

Fig. 5: SOBP resulting from the sum of individual Bragg peaks (Kooy 2003)

Using the proton energy spectrum and frequency with which each energy should be introduced into the beam as determined by Oertli (2006), the characteristic SOBP resulting from the proton beam at the Laboratori Nazionali del Sud-INFN was generated. The resulting Bragg peak, shown in Fig. 6, closely resembled actual data. Slight variations between the two curves are a result of the limited ability to use the MCNPX code to track low energy electrons $(<1 \mathrm{keV})$ and low energy $(<1 \mathrm{MeV})$ protons, as
previously discussed. However, with these results the MCNPX code was appropriately benchmarked.

Fig. 6: Measured SOBP (left), simulated SOBP (right) (Cirrone et al. 2004)

The Phantom

Although the focus of the model to be used in the dose calculations was placed on critical structures of the eye such as the lens, cornea, optic nerve, choroid and sclera, all structures of the human head including but not limited to the brain, cerebral fluid, temporal lobe, spinal cord, and sinuses were of concern. For that reason, a complex geometry was chosen for all simulations performed.

The Zubal head phantom, a voxel-based anthropomorphic phantom created by Zubal (2007), is a phantom of the human head created by segmenting MRI head slices of two living human males. The manually segmented 124 transverse MRI slices were used to create a computerized 3-dimensional volume array; thus modeling all major internal structures of the human head (Zubal 2007). The transverse slices were recorded in a 256 x 256 matrix having isotropic voxel dimensions of 1.5 mm . Originally, the phantom contained sixty-two neurological and taxonomical structures in the human brain as well as anatomical regions and was contained within a $256 \times 256 \times 128$ byte array (Zubal 2007). A cross-section of the original Zubal head phantom is shown in Fig. 7. Here critical structures of the eye including the lens and optic nerve, in addition to critical structures of the brain including the cerebellum and temporal lobe, are visible.

Fig. 7: Cross section of the original Zubal head phantom as viewed from above (Zubal 2007)

For the purposes of the simulations conducted, a modified Zubal head phantom was used. The modified phantom, which models 29 critical structures of the human head, was created by Jeff Evans with revisions by Chenguan Li at the Department of Mechanical Engineering at The Ohio State University (Evans and Li 2007) and is based on the original Zubal phantom. Most of the modified head geometry is $85 \times 109 \times 120$ lattice of voxels, where each voxel is $2.2 \times 2.2 \times 1.4 \mathrm{~mm}^{3}$ (Evans and Li 2007). To obtain a cross-sectional representation of the modified Zubal phantom a MATLAB routine (Appendix A), developed by Pasciak (2007), was used. The routine was used to read the original voxel map into a three-dimensional matrix, which allowed cross-sections of the phantom to be plotted and modifications made. Fig. 8 is a voxel cross-section of the modified Zubal head phantom. Again the critical structures of the eye and brain are illustrated. Volumes and material compositions of all structures included in the modified Zubal phantom were calculated and included in the original MCNPX input deck prepared by Evans and Li (2007).

Further modifications to the modified Zubal head phantom were necessary to complete the required simulations. First, a large (stage 3) $3 \times 7 \times 4$ voxel tumor with a volume of $81.2 \mathrm{~mm}^{3}$ was inserted into the phantom located in the upper right quadrant of the right eye. Each voxel of the tumor was defined as an independent region in which absorbed dose was calculated.

Fig. 8: Cross section of the modified Zubal head phantom

Defining each voxel independently of one another produced a dose distribution across all regions of the lesion. Cirrone et al. (2004) reported that the majority of the patients examined in a study conducted at the Laboratori Nazionali del Sud-INFN suffered from stage T3 uveal melanomas (large lesions); therefore, a large lesion was chosen. As shown in Table 1, among the uveal melanomas treated, 28 patients were stage T3 (60\%), 17 stage T2 (36\%) and 2 stage T1 (4\%) (Cirrone et al. 2004).

It was also important to determine a dose deposition to healthy tissues
surrounding the tumor．This was accomplished by defining and calculating the dose deposition within a series of voxels surrounding the tumor．These voxels were defined as being independent of surrounding tissues while maintaining their respective material properties．Cross sections of each layer of the tumor indicating voxel numbers and surrounding tissues are shown in Fig． 9.
BOTTOM LAYER

	Left													
产	460	455	450	385	365	223	228	230	232	234	236	238	240	苐
	461	456	451	386	366	224	205	208	211	214	217	220	241	
	462	457	452	387	367	225	206	209	212	215	218	221	242	
	463	458	453	388	368	226	207	210	213	216	219	222	243	
	464	459	454	389	369	227	229	231	233	235	237	239	244	
	Right													

	Left													
	475	470	465	390	370	263	268	270	272	274	276	278	280	$\begin{aligned} & \text { 華 } \\ & \text { صِّ } \end{aligned}$
	476	471	466	391	371	264	245	248	251	254	257	260	281	
	477	472	467	392	372	265	246	249	252	255	258	261	282	
	478	473	468	393	373	266	247	250	253	256	259	262	283	
	479	474	469	394	374	267	269	271	273	275	277	279	284	
	Right													

	Left													
E.	490	485	480	395	375	303	308	310	312	314	316	318	320	艺
	491	486	481	396	376	304	285	288	291	294	297	300	321	
	492	487	482	397	377	305	286	289	292	295	298	301	322	
	493	488	483	398	378	306	287	290	293	296	299	302	323	
	494	489	484	399	379	307	309	311	313	315	317	319	324	
	Right													

	Left													
悉	505	500	495	400	380	343	348	350	352	354	356	358	360	
	506	501	496	401	381	344	325	328	331	334	337	340	361	
	507	502	497	402	382	345	326	329	332	335	338	341	362	
	508	503	498	403	383	346	327	330	333	336	339	342	363	
	509	504	499	404	384	347	349	351	353	355	357	359	364	
	Right													

Fig．9：Diagram of progressive slices through the tumor and surrounding cells．Numbers indicate voxel universes for tallying deposited dose．Color scheme：blue（outside universe），black（eye ball）；green（eye－ aqueous humor）；red（fat）；pink（optic nerve）；yellow（tumor）．Each section corresponds to a layer in the z－ direction

Table 1: Tumor classification for uveal melanoma (Cirrone et al. 2004)		
Lesion Size	Lesion Type or Stage	\% Patients Examined
Diameter $<10 \mathrm{~mm}$ and/or thickness $\leq(3 \mathrm{~mm})$	Small lesions (S) or T_{1} (TNM)	2 Patients (4\%)

Modifications to the lens of the eye were performed as well. In the original voxel phantom, the lens was defined as a series of voxels making up a single universe. This is a valid method for determining effects of radiation dose to the whole lens. However, knowing the dose profile through in the lens of the eye would be an invaluable tool in determining the severity to which the lens was irradiated; if a miscalculation occurs and the patient stares directly into the treatment beam. Therefore, each voxel within the lens was defined as a single independent universe; thus allowing the dose profile to be generated and the maximum and minimum doses in the lens to be calculated. Cross sections of the lens of the eye indicating voxel numbers are shown in Fig. 10.

Fig. 10: Cross sections of the lens indicating $2.2 \times 2.2 \times 1.4 \mathrm{~mm}$ voxel universe numbers. Each section corresponds to a layer (z-axis) of the lens

As with most proton-therapy treatments a range modifier was needed to adjust the maximum range of the protons. Therefore, one final modification to the phantom was performed. The outside universe surrounding the phantom was converted from air to water thus simulating a water range modifier between the proton source and the eye allowing for maximum dose deposition within the tumor volume.

Coupling the Beam and the Phantom

Three situations for proton radiotherapy were modeled and simulated: one ideal and two worst case scenarios. During all simulations the location of the tumor and the orientation of the eye were static; however, the orientation of the beam was varied. During the ideal case, the eye was oriented with the lens of the eye looking up and way from the proton beam to minimize the dose deposited to vital optical tissues while maximizing dose deposition within the tumor volume as shown in Fig. 11.

Fig. 11: Cross section of the modified Zubal head phantom for the ideal scenario

During the first worst case scenario the lens remained in the same position; however, the proton beam was aimed directly into it. This geometry allowed for the dose deposited in vital regions of the eye to be determined as shown in Fig. 12. This scenario could be a result of a miscalculation with the result being direct radiation of the lens.

Fig. 12: Cross section of the modified Zubal head phantom worst case \#1

During the second worst case scenario, the lens of the eye was again oriented looking up and way from the ideal beam trajectory; however, the beam was aimed directly into the bone of the ocular socket as Fig. 13 illustrates. This simulation was performed to determine the deposited dose within the vital tissues of the eye due to scattering.

In all cases the dose deposited due to protons and secondary interactions, multiple coulombic energy scattering, elastic and inelastic scattering, and non-elastic nuclear reactions (i.e., the production of secondary electrons) was calculated. This was
accomplished by tallying energy deposition in units of $\mathrm{MeV} / \mathrm{g} /$ proton history. A typical proton-therapy treatment for uveal melanoma consists of four treatment sessions delivering a total dose of approximately 50 Gy within the tumor volume. This translates to approximately 12.5 Gy delivered to the tumor volume per treatment (Metz 2006). Therefore, once energy deposition within the tumor was calculated, it was converted to units of Gy/history and multiplied by the appropriate proton fluence required to deposit 12.5 Gy to the tumor volume per fraction. Doses to all tissues for all cases within the modified Zubal phantom were then calculated.

Fig. 13: Cross section of the modified Zubal head phantom worst case \#2

At high proton energies, interactions of all types are possible. One such interaction is the production of neutrons due to proton interaction with carbon and nitrogen. Therefore, neutron absorbed-dose distributions from the production of neutrons during treatment were calculated for all scenarios.

CHAPTER III RESULTS AND DISCUSSION

Ideal Case

Three scenarios were simulated for proton radiotherapy, as previously stated.
For all cases the proton SOBP simulated during the benchmark was used and the results compared to those obtained by Oertli (2006). Fig. 14 illustrates the simplified geometry of the human eye developed by Oertli (2006).

Fig. 14: Simplified eye geometry of the human developed by Oertli (Oertli 2006)

Obtaining the dose delivered to various parts of Oertli's (2006) eye was accomplished by subdividing the eye into dosimetric volumes, which include the lens,
cornea, anterior and vitreous humors, and a series of volumes in the eye wall (Oertli 2006). Due to the size of the voxels the anterior and vitreous humors over lap in the voxel map; therefore, the terms will be used interchangeably from this point forward. These volumes are illustrated in Fig. 14 (above).

Typical case simulations were performed using the simplified eye model and the complex Zubal phantom and comparisons made. During the typical scenario the proton beam was directed into the tumor volume; thus maximizing dose within the lesion and minimizing dose to vital tissues as illustrated in Fig 15.

Fig. 15: Ideal case: proton beam missing the lens (left) and directed into the center of the tumor (right)

As previously stated, a typical proton therapeutic dose for uveal melanoma is about 50 Gy delivered over four fractions (12.5 Gy per fraction) (Metz 2006). Therefore, all simulations were optimized to deliver a dose of 12.5 Gy per fraction to the tumor
volume while minimizing dose elsewhere. The results for the typical treatment scenario obtained using the simplified and complex geometries are shown in Table 2.

Table 2: Dose deposition comparison for a typical treatment scenario

Oertli's Phantom (2006)			Modified Zubal phantom		
Dose Volume	Dose per Fraction (Gy)	Total Dose (Gy)	Dose Volume	Dose per Fraction (Gy)	Total Dose (Gy)
Cornea	0.60	2.41	Cornea	0.42	1.68
Anterior/Vitreous humor	5.02	20.1	Anterior/Vitreous humor	4.09	16.36
Lens	0.09	0.36	Lens	0.0021	0.0082
Optic Nerve	1.06	4.26	Optic Nerve	0.0686	0.2742
Eye Wall	73.85	295.38	Eye Wall	3.52	14.06
Tumor	12.50	50.00	Tumor	12.50	50.00

Results indicate that doses to all vital tissues for both models were within acceptable limits. Doses to the lens were 0.09 and $0.0021 \mathrm{~Gy} /$ fraction for the simplified and complex geometries, respectively. These doses are well below the acceptable limit of less than 8 Gy - 10 Gy to the lens (Jones and Errington 2000). Similarly, doses to the optic nerve were 1.06 and 0.0082 Gy per fraction, respectively, which is below the acceptable the limit of 10 Gy to the optic nerve (Jones and Errington 2000). For each treatment, the cornea received 0.6 and 0.42 Gy per fraction, respectively, which is well within the acceptable limit of 15 Gy (Simonva 2002). For the ideal case, the cumulative dose to the lens was 0.36 and 0.0082 Gy , while the dose within the tumor was the prescribed 50 Gy per four fractions.

Although both simulations produced acceptable results, differences between the two models were evident. First, for the complex geometry, the lens of the eye was divided into individual $2.2 \times 2.2 \times 1.4 \mathrm{~mm}$ voxel universes to illustrate the maximum and
minimum dose deposition within the lens. Fig. 16 shows the dose distribution within the lens of the eye for all layers.

Fig. 16: Dose (Gy) distribution for the typical case scenario through the lens of the modified Zubal phantom (read left to right). Each section corresponds to a layer (z-axis) of the lens

As demonstrated above, the maximum and minimum doses were 0.0004 and 0.0000 Gy , respectively, which is well below the acceptable limit.

Secondly, the tumor in the complex geometry was separated into individual voxel universes producing a dose distribution across the tumor volume, as illustrated by Fig. 17. Here, the white on blue color scheme indicates the tumor volume while the red on black illustrates the surrounding tissues. The cross-sections of the tumor clearly illustrate the Bragg peak occurring within the tumor volume, which is an invaluable tool when designing proton therapy treatments. Using the simplified model, one is unable to obtain a dose distribution throughout the tumor volume, thus illustrating the superiority of the complex model.
Bottom Layer

$\begin{aligned} & \vec{y} \\ & \stackrel{0}{x} \end{aligned}$	Left													\#\%
	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.01	0.00	
	0.08	0.09	0.09	0.10	0.10	0.11	0.11	0.11	0.11	0.10	0.08	0.04	0.01	
	0.11\|	0.12	0.13	0.14	0.15	0.15	0.15	0.15	0.16	0.15	0.11	0.06	0.02\|	
	0.08	0.09	0.09	0.10	0.10	0.11	0.11	0.11	0.11	0.11	0.08	0.04	$0.01]$	
	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.01	0.00	
	Right													

${ }_{B}^{E}$	Left													뀿
	0.03	0.03	0.04	0.00	0.04	0.05	0.05	0.05	0.05	0.05	0.04	0.02	0.00	
	0.11	0.12	0.13	0.13	0.14	0.14	0.15	0.15	0.15	0.14	0.11	0.06	0.01	
	0.19	0.20	0.21	0.23	0.24	0.24	0.24	0.25	0.25	0.23	0.17	0.08	0.02	
	0.11	0.12	0.12	0.13	0.14	0.15	0.15	0.15	0.15	0.14	0.10	0.05	0.01	
	0.03	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.04	0.02	0.00	
	Right													

$\stackrel{\rightharpoonup}{0}$	Left													\#
	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.04	0.02	0.00	
	0.11	0.12	0.12	0.13	0.14	0.15	0.15	0.15	0.15	0.15	0.11	0.05	0.02	
	0.19	0.20	0.21	0.23	0.24	0.24	0.24	0.24	0.24	0.22	0.16	0.08	0.02	
	0.11	0.12	0.12	0.13	0.14	0.15	0.15	0.15	0.15	0.14	0.10	0.05	0.02	
	0.03	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.05	0.05	0.04	0.02	0.00\|	
	Right													

Top Layer

Fig. 17: Cross section representation (bottom to top) illustrating the dose distribution (Gy/fraction) across the tumor volume. Each section corresponds to a layer (z-axis) of the tumor

The location and size of the tumor also differs between the two models. In the simplified model the tumor was located in the wall (choroid or sclera) of the eye with a volume of $0.822 \mathrm{~cm}^{3}$ while in the complex geometry the tumor was located in the vitreous humor with a volume of $8.12 \mathrm{~cm}^{3}$. The location of the tumor had little effect on
the dose distribution throughout the eye and the tumor; however, the volume can greatly affect energy deposition curves within the tumor volume.

The tumor size used in Oertli's (2006) simplified model was small compared to the SOBP created by the energy distribution used. The energy distribution used generated a SOBP that occurred over a range of 15 mm as illustrated in Fig 18.

Fig. 18: SOBP obtained using the energy distribution from Oertli (2006)

Although a range modifier was used in Oertli's (2006) model, it did not affect the size of the SOBP. It merely shifted it to a shallower depth into the phantom. The dose deposition from the front and rear walls of the simplified geometry indicated that the SOBP occurred over the entire eye and was not confined to the tumor volume. Table 3 shows the dose distribution throughout the dosimetric volumes of the eye wall defined by Oertli (2006). The dose ranges from a 43.45 Gy maximum in the front of the eye wall to a 40.89 Gy maximum at the back of the eye wall with 50.01 Gy to the tumor $(7 R-$
middle of the eye wall). This dose distribution clearly indicates that the SOBP occurred over the entire right eye wall.

Table 3: Dose distribution in the right eye wall as defined by Oertli (2006)

Dose Volume	Dose per Fraction $(\mathbf{G y})$	Total Dose $(\mathbf{G y})$
2R	10.86	43.45
3R	10.25	40.99
4R	9.71	38.85
5R	9.67	38.7
6R	10.51	42.02
7R	12.5	50.01
8R	10.22	40.89
9R	1.56	6.23
10R	0.02	0.09

Because the SOBP occurred over a large volume and was not confined within the tumor, a high proton fluence was necessary to deposit the prescribed 12.5 Gy within the tumor volume for Oertli's (2006) model. The high fluence used resulted in unusually high doses to areas surrounding the tumor volume as shown in Table 3 (above). The effects of the large fluence are more evident during worst case simulations.

Fig. 19 and Fig. 20 are graphical representations of the Bragg peak occurring within the tumor volume for the complex model.

Fig. 19: Ideal case SOBP through the center of the tumor. Circled data points are within the tumor volume

Fig. 20: Ideal case total dose deposition SOBP. Circled data points are within the tumor volume

Although the Bragg peak occurs within the tumor volume for the complex model, there are discrepancies between the data obtained and the expected values as illustrated in Fig. 21.

Fig. 21: Benchmark Bragg peak vs. simulated Bragg peak (ideal case). Circled data points (pink) are within the tumor

As illustrated, data points at the beginning of the Bragg peak are lower than expected values and the entire plot is shifted to the left (i.e., dose deposition occurs at a greater rate than the benchmark suggests). These discrepancies are explained by three phenomena:

- Resolution of the dose distribution
- Scattering effects
- Varying densities of the tissues within the eye

The relatively large size of the voxels $(2.2 \times 2.2 \times 1.4 \mathrm{~mm})$ limits the resolution of the deposited dose within each voxel because the dose is averaged over the entire voxel volume; therefore, obtaining data points at smaller intervals is impossible. Additionally, scattering occurs within and outside of each voxel. If an interaction occurs on or near a voxel border, the scattered particles are likely to be scattered outside of the sensitive volume resulting in lower than expected dose deposition. Furthermore, the densities of the tissues within the eye are not constant. Most tissues within the eye have a density
greater than that of water (the material used for benchmarking); therefore, the protons undergo more interactions and lose energy faster than the benchmark scenario suggests. Greater energy deposition per unit path length traveled by the proton would cause the proton to lose all of its energy at a faster rate and explain why the SOBP shifts to the left.

Another major difference between the two models is the complexity of the modified Zubal phantom. The simple phantom contains six structures of the human eye whereas the modified Zubal phantom models 29 critical structures of the human head. Table 4 shows the dose deposited within these 29 voxel universes. As demonstrated, there is little or no residual dose to tissues behind or near the affected eye. The dose profile of protons allows for maximum dose deposition within the tumor volume while sparing healthy tissues around the lesion. However, at high proton energies interactions of all types are possible. The doses that were recorded in tissues behind the eye are a result of one such interaction; (p, n) interactions with carbon, oxygen and nitrogen atoms within the tissues of the eye produce secondary neutrons which deposit dose along their path. Due to their neutral charge, secondary neutrons have a long range and fewer interactions with nearby atoms. Therefore, the neutron dose can be deposited relatively far from the initial interaction that produced the neutron. For this reason, neutron absorbed-dose values to all tissues for all cases were calculated. Fig. 22 and Fig. 23 show the neutron absorbed-dose values obtained for the ideal case in the lens of the eye and the tumor, respectively.

Table 4: Neutron dose deposition within tissues of the modified Zubal phantom (ideal case)

Cell \#	Tissue	Dose (Gy)
1	Skin	8.63×10^{-6}
2	cerebral fluid	6.11×10^{-9}
3	Fat	7.33×10^{-6}
4	skeletal bone	1.65×10^{-8}
5	skeletal muscle	6.59×10^{-6}
6	white matter (left)	0.00
8	temporal lobe (left)	0.00
9	temporal lobe (right)	0.00
10	spinal cord	0.00
26	bone marrow	0.00
30	Cartilage	2.77×10^{-7}
40	internal capsule (left)	0.00
41	internal capsule (right)	0.00
42	Septum pellucidium	0.00
43	Thalamus (left)	0.00
44	Thalamus (right)	0.00
48	motor cortex (left)	0.00
49	motor cortex (right)	0.00
50	falx cerebri	0.00
51	parietal lobe (left)	0.00
52	parietal lobe (right)	0.00
55	amygdala (left)	0.00
56	amygdala (right)	0.00
59	Globus pallidus (left)	0.00
60	Globus pallidus (right)	0.00
63	prefrontal lobe (left)	0.00
64	prefrontal lobe (right)	0.00
72	Parotid gland (left)	0.00
73	Parotid gland (right)	0.00
74	Lacrimal gland (left)	0.00
75	Lacrimal gland (right)	0.00
76	cerebellum (white matter)	0.00
77	cerebellum (cortex)	0.00
80	medulla oblongata	0.00
81	Frontal lobe (left)	0.00
82	Frontal lobe (right)	4.49×10^{-8}
83	Pons	0.00
84	Occipital lobe (left)	0.00
85	Occipital lobe (right)	0.00
86	hippocampus (left)	0.00
87	hippocampus (right)	0.00
88	Pituitary gland	0.00
89	uncus (left)	0.00
90	uncus (right)	0.00
91	caudate nucleus (left)	0.00
92	caudate nucleus (right)	0.00
93	insula cortex (left)	0.00
94	insula cortex (right)	0.00
95	Sinuses	3.8×10^{-7}
96	Putamen (left)	0.00
97	Putamen (right)	0.00

Fig. 22: Neutron absorbed-dose (Gy) distribution through the lens of the eye read from left to right (ideal case). Each section corresponds to a layer (z-axis) of the lens

As expected, neutron absorbed-dose values were very low. For the ideal case scenario only 758 neutrons were produced during the simulation. Throughout the phantom neutron absorbed-dose values for all tissues were as expected. Once again the complex modified Zubal phantom produced a dose distribution through the tumor that could not be produced with a simple geometry phantom.
Bottom Layer

	Left												
	1×10^{-10}	1×10^{-10}	1×10^{-10}	6×10^{-11}	6×10^{-11}	3×10^{-11}	2×10^{-11}	1×10^{-11}	1×10^{-11}	1×10^{-11}	0	0	9×10^{-12}
	2×10^{-10}	1×10^{-10}	5×10^{-11}	1×10^{-11}	3×10^{-11}	3×10^{-11}	4×10^{-11}	4×10^{-11}	2×10^{-11}				
\%	1×10^{-10}	1×10^{-11}	2×10^{-11}	2×10^{-11}	8×10^{-12}	1×10^{-11}	1×10^{-11}	8×10^{-12}	$1 \times 10^{-11} \stackrel{0}{\circ}$				
	5×10^{-11}	1×10^{-10}	2×10^{-10}	1×10^{-10}	9×10^{-11}	4×10^{-11}	8×10^{-11}	8×10^{-11}	0	5×10^{-14}	4×10^{-14}	1×10^{-11}	1×10^{-11}
	1×10^{-10}	7×10^{-11}	3×10^{-11}	7×10^{-11}	9×10^{-11}	2×10^{-11}	3×10^{-11}	3×10^{-11}	1×10^{-11}	2×10^{-11}	2×10^{-11}	1×10^{-11}	2×10^{-11}
Right													

	Left												
	1×10^{-10}	1×10^{-10}	2×10^{-10}	7×10^{-11}	1×10^{-11}	3×10^{-11}	2×10^{-11}	1×10^{-11}	1×10^{-11}	1×10^{-11}	1×10^{-10}	1×10^{-10}	2×10^{-10}
	2×10^{-10}	2×10^{-10}	1×10^{-10}	1×10^{-10}	8×10^{-10}	1×10^{-10}	8×10^{-11}	7×10^{-11}	7×10^{-11}	32×10^{-11}	2×10^{-10}	2×10^{-10}	1×10^{-10}
O	2×10^{-10}	2×10^{-10}	2×10^{-10}	1×10^{-10}	1×10^{-10}	7×10^{-11}	5×10^{-11}	3×10^{-11}	4×10^{-11}	4×10^{-11}	2×10^{-10}	0	*
	1×10^{-10}	1×10^{-10}	1×10^{-10}	9×10^{-11}	9×10^{-0}	7×10^{-11}	5×10^{-11}	4×10^{-11}	3×10^{-11}	1×10^{-14}	1×10^{-10}	1×10^{-10}	1×10^{-10}
	3×10^{-10}	6×10^{-11}	7×10^{-11}	6×10^{-11}	6×10^{-11}	2×10^{-11}	3×10^{-11}	3×10^{-11}	1×10^{-11}	2×10^{-11}	3×10^{-10}	6×10^{-11}	7×10^{-11}
Right													

	Left												
	5×10^{-10}	1×10^{-10}	1×10^{-10}	6×10^{-11}	6×10^{-11}	3×10^{-11}	2×10^{-11}	1×10^{-11}	1×10^{-11}	1×10^{-11}	2×10^{-11}	9×10^{-12}	0
	1×10^{-10}	1×10^{-10}	1×10^{-10}	1×10^{-10}	5×10^{-10}	9×10^{-10}	8×10^{-11}	7×10^{-11}	4×10^{-11}	1×10^{-11}	4×10^{-11}	4×10^{-11}	2×10^{-11}
E	3×10^{-10}	1×10^{-10}	1×10^{-10}	7×10^{-10}	9×10^{-10}	1×10^{-11}	9×10^{-11}	7×10^{-11}	4×10^{-12}	3×10^{-11}	1×10^{-11}	8×10^{-12}	1×10^{-11} ¢
	1×10^{-11}	1×10^{-10}	2×10^{-10}	2×10^{-10}	1×10^{-11}	4×10^{-11}	4×10^{-11}	7×10^{-11}	8×10^{-11}	5×10^{-14}	0	0	0
	3×10^{-10}	7×10^{-11}	7×10^{-11}	7×10^{-11}	9×10^{-11}	2×10^{-11}	3×10^{-11}	3×10^{-11}	1×10^{-11}	2×10^{-11}	2×10^{-11}	1×10^{-11}	2×10^{-11}
Right													

Fig. 23: Neutron absorbed-dose (Gy) distribution through the tumor (ideal case). Each section corresponds to a layer (z-axis) of the tumor

Worst Case Scenario - Lens

Two worst case simulations were performed using the complex Zubal phantom.
However, due to the limited capabilities of the simplified eye model, comparisons were made for only one scenario.

The lens of the eye is a highly radiosensitive organ that is surrounded by cuboid cells which are also very radiosensitive. Coagulation of proteins within the lens occurs at doses greater than 2 Gy resulting in visual impairments such as cataract (IAEA 2007). Due to the radiosensitive characteristics of the lens, a worst case simulation mimicking a patient starring directly into the treatment beam during therapy was performed. Fig. 24 illustrates the orientation of the lens of the eye with respect to the proton beam for the lens worst case scenario.

Fig. 24: Lens worst case: proton beam directly into the lens (left) and missing the tumor (right)

The results for the direct irradiation of the lens obtained using the simplified and complex geometries are shown in Table 5. Because this simulation mimicked a patient gazing into the beam during treatment, the same dose profile, number of proton histories $(300,000)$ and proton fluence from the typical treatment scenario was used.

Table 5: Dose deposition comparison for a worst case (lens) treatment scenario

Oertli's Phantom (2006)			Modified Zubal phantom		
Dose Volume	Dose per Fraction (Gy)	Total Dose (Gy)	Dose Volume	Dose per Fraction (Gy)	Total Dose (Gy)
Cornea	9.02	36.08	Cornea	4.26	17.04
Anterior/Vitreous humor	31.34	125.36	Anterior/Vitreous humor	4.87	19.48
Lens	38.72	154.88	Lens	5.99	20.77
Optic Nerve	0.00	0.00	Optic Nerve	0.00	0.00
Eye Wall	0.81	3.24	Eye Wall	0.60	2.40
Tumor	0.00	0.00	Tumor	0.01	0.02

As discussed earlier, a high proton fluence was used to deposit the prescribed 12.5 Gy within the tumor volume for Oertli's (2006) ideal case. As shown in Table 5 (above), the effects of the large fluence resulted in unnecessarily large doses to vital tissues of the eye during the worst case simulation. Although doses above the threshold values were observed for both phantoms, Oertli's (2006) simulation resulted in extremely high doses, which would result in sure vision loss.

Results indicate that doses to vital tissues were above acceptable limits. Total doses to the lens were 154.88 and 20.77 Gy for the simplified and complex geometry, respectively. These doses are well above the acceptable limit of $8-10$ Gy to the lens (Jones and Errington 2000). Fig. 25 illustrates the dose distribution through the lens of the eye for the modified Zubal simulation.

Fig. 25: Dose distribution (Gy/fraction) through the lens for the worst case scenario (lens) and is read left to right. Each section corresponds to a layer (z-axis) of the lens

The cross-sections depicted above illustrate the severity of the dose deposition within the lens of the eye. The maximum and minimum doses to the lens of the eye were 0.2338 and 0.1039 Gy , respectively. On average, 0.1498 Gy was deposited per voxel $\left(6.776 \mathrm{~mm}^{3}\right)$ of the lens. Therefore, because the lens is very radiosensitive and detrimental effects occur at recorded doses (greater than 2Gy), visual impairments such as cataract are imminent. The cross-section of the lens of the eye also allows for a dose reconstruction to be performed in the event of direct irradiation of the lens. A dose reconstruction cannot be performed with the simplified model discussed herein; thus illustrating the superiority of the complex geometry.

The optic nerve received 0.00 Gy for both simulations which is below the acceptable the limit of 10 Gy (Jones and Errington 2000). This result is not surprising. Although the optic nerve was directly in the path of the proton beam for each simulation, the proton energy was not great enough for the protons to reach the optic nerve before depositing all of their energy. For each treatment, the cornea received 36.08 and 17.04 Gy, respectively, which is well above the acceptable limit of 15 Gy (Simonova 2002).

One would expect severe visual impairments at doses recorded for this worst case
scenario. Coagulation of proteins within the lens would likely occur resulting in visual impairments such as cataracts. Doses to the tumor volume were 0.00 and 0.02 Gy for the simplified and complex geometries, respectively.

As previously stated, (p,n) interactions with carbon, oxygen and nitrogen atoms within the tissues of the eye are likely at high proton energies. As a result secondary neutrons can deposit dose within tissues outside the region of interest. For this reason, neutron absorbed-dose values to all tissues are presented here. Fig. 26 and Fig. 27 show the neutron absorbed-dose distribution obtained for this worst case in the lens of the eye and the tumor, respectively. As expected, neutron absorbed-dose values for direct irradiation of the lens were very low. For this scenario, only 752 neutrons were produced during the simulation. Throughout the phantom, neutron absorbed-dose values for all tissues were as expected. Again the complex modified Zubal phantom demonstrated its superiority by producing a dose distribution through the lens and tumor that could not be produced with a simple geometry phantom.

Fig. 26: Neutron absorbed-dose (Gy) distribution through the lens of the eye (worst case). Each section corresponds to a layer (z-axis) of the lens

Bottom Layer

Left														
	3×10^{-11}	1×10^{-11}	1×10^{-13}	4×10^{-12}	8×10^{-15}	3×10^{-16}	1×10^{-16}	0	0	1×10^{-11}	0	0	0	
	2×10^{-11}	2×10^{-11}	1×10^{-11}	2×10^{-12}	1×10^{-11}	0	0	0	5×10^{-12}	2×10^{-11}	4×10^{-11}	0	0	
$\stackrel{\square}{2}$	2×10^{-11}	1×10^{-11}	1×10^{-14}	2×10^{-11}	1×10^{-11}	3×10^{-12}	0	0	$2 \times 10{ }^{-11}$	1×10^{-11}	1×10^{-11}	8×10^{-12}	0	$\stackrel{0}{0}$
	1×10^{-11}	4×10^{-12}	2×10^{-11}	3×10^{-11}	4×10^{-11}	2×10^{-12}	2×10^{-12}	6×10^{-11}	0	0	4×10^{-14}	0	0	
	3×10^{-11}	6×10^{-11}	3×10^{-11}	3×10^{-11}	5×10^{-11}	$3 \times 10{ }^{-11}$	7×10^{-11}	2×10^{-11}	1×10^{-11}	6×10^{-11}	2×10^{-11}	$1 \times 10{ }^{-11}$	0	
Right														

Left														
	1×10^{-11}	4×10^{-12}	8×10^{-15}	0	0	6×10^{-15}	3×10^{-11}	1×10^{-11}	1×10^{-11}	6×10^{-15}	1×10^{-10}	1×10^{-10}	0	
	1×10^{-11}	2×10^{-12}	1×10^{-11}	0	0	0	2×10^{-11}	0	0	5×10^{-12}	2×10^{-10}	0	0	
O-	4×10^{-11}	2×10^{-11}	1×10^{-11}	3×10^{-12}	3×10^{-12}	2×10^{-11}	2×10^{-11}	0	4×10^{-11}	2×10^{-11}	2×10^{-10}	0	0	-
5	6×10^{-11}	3×10^{-11}	4×10^{-11}	2×10^{-12}	2×10^{-12}	0	1×10^{-11}	4×10^{-12}	6×10^{-11}	0	1×10^{-10}	1×10^{-10}	0	
	2×10^{-11}	3×10^{-11}	5×10^{-11}	3×10^{-11}	7×10^{-11}	1×10^{-11}	3×10^{-11}	6×10^{-11}	2×10^{-11}	1×10^{-11}	3×10^{-10}	6×10^{-11}	7×10^{-11}	
	Right													

Left													
	5×10^{-12}	3×10^{-16}	1×10^{-16}	7×10^{-12}	0	1×10^{-11}	4×10^{-12}	8×10^{-15}	1×10^{-11}	1×10^{-11}	2×10^{-11}	9×10^{-12}	0
	8×10^{-12}	0	0	4×10^{-13}	$1 \times 10{ }^{-11}$	2×10^{-11}	2×10^{-12}	$1 \times 10{ }^{-11}$	2×10^{-11}	1×10^{-11}	0	0	2×10^{-11}
O	1×10^{-11}	$3 \times 10{ }^{-12}$	3×10^{-12}	0	0	1×10^{-11}	2×10^{-11}	1×10^{-11}	0	0	$1 \times 10{ }^{-11}$	8×10^{-12}	$1 \times 10^{-11} \stackrel{0}{0}$
	3×10^{-11}	2×10^{-12}	2×10^{-12}	3×10^{-12}	7×10^{-12}	4×10^{-12}	3×10^{-11}	4×10^{-11}	4×10^{-12}	6×10^{-11}	0	0	0
	7×10^{-11}	3×10^{-11}	7×10^{-11}	7×10^{-12}	1×10^{-11}	6×10^{-11}	3×10^{-11}	5×10^{-11}	6×10^{-11}	2×10^{-11}	2×10^{-11}	1×10^{-11}	2×10^{-11}
Right													

	Left												
	7×10^{-12}	3×10^{-11}	6×10^{-15}	1×10^{-11}	3×10^{-11}	1×10^{-11}	6×10^{-15}	0	1×10^{-16}	1×10^{-11}	0	0	0
	4×10^{-13}	1×10^{-11}	5×10^{-12}	2×10^{-11}	2×10^{-11}	2×10^{-11}	5×10^{-12}	0	0	1×10^{-11}	0	0	0
E	0	0	2×10^{-11}	1×10^{-11}	2×10^{-11}	1×10^{-11}	2×10^{-11}	3×10^{-12}	3×10^{-12}	4×10^{-11}	1×10^{-11}	0	$1 \times 10^{-11} \stackrel{0}{0}$
	3×10^{-12}	7×10^{-12}	7×10^{-12}	4×10^{-12}	1×10^{-11}	4×10^{-12}	7×10^{-12}	2×10^{-12}	0	6×10^{-11}	4×10^{-14}	1×10^{-11}	1×10^{-11}
	7×10^{-12}	1×10^{-11}	1×10^{-11}	6×10^{-11}	3×10^{-11}	6×10^{-11}	1×10^{-11}	3×10^{-11}	7×10^{-11}	2×10^{-11}	2×10^{-11}	1×10^{-11}	2×10^{-11}
Right													

Top Layer
Fig. 27: Neutron absorbed-dose (Gy) distribution through the tumor (lens worst case). Each section corresponds to a layer (z-axis) of the tumor

Worst Case Scenario - Optical Socket

A second worst case scenario was performed in which the proton beam was directed into the ocular socket of the eye. During this simulation the lens of the eye was oriented looking up and away from the ideal treatment scenario; however, the beam was aimed into the ocular socket nearest to the lens as Fig. 28 illustrates. For this simulation, secondary interactions, multiple coulombic energy scattering, elastic and inelastic scattering, and non-elastic nuclear reactions (i.e., the production of secondary electrons) were included. Comparison between the two geometries was not possible due to the simplicities of Oertli's (2006) model. The purpose of this simulation was to determine the significance of the dose deposition within the vital tissues of the eye due to scattering. Because of its higher density, one would expect more interactions and thus more scattering events within the bone of the ocular socket as opposed to the tissues of the eye. As previously stated; however, MCNPX is unable to track low-energy electrons ($<1 \mathrm{keV}$) and low-energy protons $(<1 \mathrm{MeV})$. Although low doses were expected within the eye, the dose distribution through the eye was lower than expected. This is because scattered electrons and protons less than 1 keV and 1 MeV , respectively, were neglected. It is expected that the majority of the dose deposited during this simulation is due to secondary neutron production during (p, n) reactions as discussed earlier. Table 6 shows the doses to vital tissues of the eye obtained during this simulation.

Fig. 28: Ocular socket worst case: proton beam into the ocular socket nearest the lens (left) and missing both the tumor and lens (right)

Table 6: Dose deposition during the ocular socket worst case scenario

Ocular socket worst case scenario		
Modified Zubal phantom		
Dose Volume	Dose per Fraction $(\mathbf{G y})$	Total Dose $(\mathbf{G y})$
Cornea	0.00	0.00
Anterior/Vitreous	0.0001	0.0002
humor	0.0003	0.0012
Lens	0.00	0.00
Optic Nerve	0.0007	0.0029
Eye Wall	0.00	0.00
Tumor		

As expected, doses to all tissues of the eye were very low indicating that little or no detrimental effects would occur within the eye post irradiation.

Neutron absorbed-dose values were also calculated for this simulation. As expected, neutron absorbed-dose distributions agreed with values obtained during the previous two cases.

Error Discussion

To ensure the precision of the results obtained for all simulations, the MCNPX code includes ten standard statistical tests. All simulations performed during this research earned passing marks. Two of the tests are discussed here.

Printed out with each tally bin is the tally mean related to fluctuations in the number of particles simulated. These errors are not reliable (hence neither is the tally itself) unless the error is low. Only random fluctuations in tally values with increased particle histories should be observed, which was true for all simulations (Hughes et al. 2002).

Another statistical measure is the relative error (R) which is the estimated relative error defined as one estimated standard deviation of the mean divided by the estimated mean. The relative error relates the tally mean with the overall uncertainty. In MCNPX, the quantities required for this error estimate are computed after each complete history, thus accounting for "the fact that the various contributions to a tally from the same history are correlated" (Shultis and Faw 2006). Therefore, by using the estimated relative error one can form confidence intervals about the estimated mean; thus allowing statements about the true results to be made. Guidelines for interpreting the quality of the confidence interval for various values of R are listed in Table 7 (Shultis and Faw 2006).

Table 7. Interpretation of the relative error R (Shultis and Faw 2006)

Simulation R Value	Quality of Talley
>0.5	Meaningless
0.2 to 0.5	Factor of a few
<0.1	Reliable (except for point/ring detectors)
<0.05	Reliable even for point/ring detectors

The relative errors for all cases were below 0.05 indicating reliable results.
Furthermore, all simulations attained excellent statistics in the remaining eight statistical indices performed by MCNPX.

CHAPTER IV

CONCLUSIONS

Summary

The primary objective of this research was to develop a complex MCNPX model of the human head to predict absorbed dose distributions and neutron absorbed-dose values during proton therapy of ocular tumors. Absorbed dose distributions using the complex geometry were compared to a simple MCNPX model of the human eye developed by Oertli (2006). Dose calculations included contributions due to proton and secondary interactions, multiple coulombic energy scattering, elastic and inelastic scattering, and non-elastic nuclear reactions. Once MCNPX was properly benchmarked, the proton beam and MCNPX models were combined to predict dose distributions for three treatment scenarios. First, an ideal treatment scenario was modeled where the dose was maximized to the tumor volume and minimized elsewhere. The second situation, a worst case scenario, mimicked a patient starring directly into the treatment beam during therapy. During the third simulation the treatment beam was aimed into the bone surrounding the eye socket to estimate the dose to the vital regions of the eye due to scattering. Dose distributions for all cases were calculated throughout the vital tissues of the eye. Dose distributions observed for all three cases were as expected. Superior dose distributions were observed with the complex geometry for all tissues of the phantom and the tumor volume. During the ideal case simulation, therapeutic doses were achieved within the tumor volume while sparing all vital tissues of the eye. The worst case scenario in which the proton beam was directed into the lens of the eye yielded expected
results as well. The lens of the eye received doses above recommended limits indicating that detrimental effects are likely post irradiation. The worst case simulation in which the proton beam was directed into the ocular socket also produced anticipated results. Minimal doses due to scattering were observed in all tissues of the head and eye.

Eye Model Conclusions
Although difficult to model, complex geometries produced superior results during proton therapy simulations. Great detail incorporated into the modified Zubal phantom allows simulations to model many cancerous tumors. The eye phantom defined by Oertli (2006) will not allow for certain tumors to be modeled due to the simplicities of the model. Although a simplified tumor was modeled in the complex geometry, a large tumor was simulated. Simulating a large tumor in a voxel-based geometry produced a dose distribution across a large region of the eye. The distribution obtained allows dose estimates for complex tumors to be made. The densities of the tumor and tissues surrounding the tumor differ slightly; therefore, the dose profile will be similar in all tissues. However, simulating a dose distribution closer to the actual distribution is relatively simple using the Zubal phantom. Changing the density of selected voxels to match the density of the surrounding aqueous humor would modify the shape and size of the tumor; thus resulting in a more complex tumor. Further modifications would be required for proper simulation if the size and shape of the tumor is changed. For example, the energy spectrum produced by the modulator would need to be adjusted to maximize dose within the complex tumor volume and minimize it elsewhere. These two modifications would produce a reliable dose distribution through a complex tumor.

Additionally, a shape modifier (collimator) could be simulated between the proton beam the patient. The shape modifier would collimate the beam into the shape of the tumor further limiting the dose to healthy tissues surround the lesion.

Furthermore, tissues outside the eye including the brain, sinuses, skeletal bone and skin that were neglected in the simplified model were included in the modified Zubal phantom; thus allowing for dose deposition calculations to be made to regions outside the eye. The complex geometry predicts doses to 29 critical structures within the eye and head while the simplified model infers dose to adjacent organs by adjusting the penetration depth of the proton beam. This method is not adequate in all cases. The structure of the ocular socket for example, limits treatment angles of the proton beam. If the treatment angle is too great, the ocular socket protruding from below or above the eye socket will interfere with the treatment. Because the simplified phantom does not model such structures, it was not possible estimate doses to tissues surrounding the eye. Understanding doses outside the eye is critical when designing treatments for cancer patients.

Although very complex, more detail can be added within the eye of the modified Zubal phantom. For example, cilliary bodies and the iris surrounding the lens are areas where cancerous growth can occur. With the Zubal phantom it is possible to place a tumor in the general vicinity of the iris; however, it is not possible to simulate these types of tumors and their treatments in their exact location. Additionally, greater resolution could be obtained by reducing voxel dimensions further. The current voxel size is 2.2 x $2.2 \times 1.4 \mathrm{~mm}$. Reducing the voxel size by half would increase the resolution of the
organs within the head and eye. Doses to the sclera, choroid and retina might then be obtainable.

Simulation Conclusions

For all cases the modified Zubal phantom produced superior results in comparison to the simplified model. Dose distributions through both tumor and lens were able to be produced for the ideal case; thus ensuring that the Bragg peak occurred within the tumor volume and minimized doses to healthy tissues. Additionally, a dose distribution through the lens of the eye was produced for the case simulating a patient gazing into the treatment beam. This dose distribution allows one to estimate the severity to which the lens was irradiated. Although dose deposition within the eye was minimal during the worst case in which the ocular socket was the target, such a simulation is impossible with the simplified model. This research shows that, for all simulations modeled herein, a complex voxel base phantom produced higher quality results when compared to a simplified model.

REFERENCES

Agosteo S, Birattari C, Caravaggio M, SilariMand G. Secondary neutron and photon dose in proton therapy. Radiother Oncol 11(48):293-305; 1998.

Constable I., Koehler A., Experimental ocular irradiation with accelerated protons. Invest. Opthalmol. Vis. Sci. 47(11): 280-287; 1974.

Cirrone P., Cuttone G., Lojacono P. A., Lo Nigro S. Mongelli V., Patti I. V., Privitera G., Raffaele L., Rifuggiato D., Sabini M. G., Salamone V., Spatola C., Valastro L. M. A 62 MeV proton beam for the treatment of ocular melanoma at Laboratori Nazionali del SudINFN. IEEE Trans. Nucl. Sci. 51(3): 860-865; 2004.

Evans J., Li C. Modified Zubal phantom input deck. Department of Mechanical Engineering, The Ohio State University; 2007.

Gargoundas E. S., Proton beam irradiation of uveal melanomas: The first 30 years - The Weisenfield Lecture. Invest. Opthalmol. Vis. Sci. 13(4): 4666-4673; 2006.

Hughes G., Chadwick M., Egdorf H., Little R., Macfarlane R., Mashink S., Pitcher E., Prael R., Sierk A., Waters L., While M., Young P., Gallmeier F., Snow E., Corzine R. Status of the MCNPX transport code. Los Alamos National Laboratory Report LA-UR-00-4942; 2000.

Hughes G., Chadwick M., Egdorf H., Little R., Macfarlane R., Mashink S., Pitcher E., Prael R., Sierk A., Waters L., While M., Young P., Gallmeier F., Snow E., Corzine R. MCNPX user manual. Los Alamos National Laboratory Report LA-UR-02-2607; 2002.

International Atomic Energy Agency. Radiation protection in nuclear medicine Available at: rpop.iaea.org/.../Content/Documents/TrainingNuclearMedicine/Lectures/ RPNM_Part01_biological_effects_WEB.ppt. Accessed 17 March 2007.

Levin WP, Kooy H, Loeffler JS, Delaney TF. Proton beam therapy. Br J Cancer 93(8):849-854; 2005.

Metz, J. Reduce normal tissue toxicity with proton therapy. Available at: http://www.oncolink.org/treatment/article.cfm?c=9\&s=70\&id=211. Accessed 13 March 2006.

Newhauser W, Koch N, Hummel S, Ziegler M, Titt U. Monte Carlo simulations of a nozzle for the treatment of ocular tumours with high-energy proton beams. Phys Med Biol 50:5229-5249; 2005.

Oertli, D. Proton dose assessment to the human eye using Monte Carlo N-particle Transport Code (MCNPX). M.S. Thesis. Texas A\&M University; 2006.

Paganetti H. Calculation of the spatial variation of relative biological effectiveness in a therapeutic proton field for eye treatment. Phys Med Biol 43:2147-2157; 1998.

Paganetti H, Jiang H, Lee SY, Kooy HM. Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Med Phys 31:2107-2118; 2004.

Pasciak, A. Various MATLAB routines. Texas A\&M University; 2007.
Raju, M.R. Heavy particle radiotherapy. Los Angeles, California: Academic Press; 1980.
Romero JL. Patient positioning for proton therapy using a proton range telescope. Nucl Instrum Methods A 356:558-565; 1995.

Siebers J. Application of Monte Carlo to proton therapy radiation therapy. Proceedings from Advanced Monte Carlo for Radiation Physics, Particle Transport Simulations, and Applications. Lisbon: Nuclear Energy Agency; (New York: Springer) pp 1051-1056; 2000.

Simonova G, Novotny J, Liscak R, Pilbauer J. Leksell gamma knife treatment of uveal melanoma. J Neurosurg 97:635-639; 2002.

Shultis J, Faw R. An MCNP primer. Available at: http://ww2.mne.ksu.edu/~jks/MCNPprmr.pdf. Accessed 3 January 2006.

Smith A. Proton therapy. Phys Med Biol 51:R491-R504; 2006.
Turesson I., Johansson K-A., Mattsson S. The potential of proton and light ion beams in radiotherapy. Acta Oncologica 42:107-114; 2003.

Urie M, Sisterson J, Koehler A, Goitein M, Zoesman J. Proton beam penumbra: effects of separation between patient and beam modifying devices. Med Phys 13:734-741; 1986.

Verhaegen F, Palmans H. A systematic Monte Carlo study of secondary electron fluence perturbation in clinical proton beams $(70-250 \mathrm{MeV})$ for cylindrical and spherical ion chambers. Med Phys 28:2088-2095; 2001.

Zubal, G. The Zubal phantom. Available at: http://noodle.med.yale.edu/zubal/info.htm. accessed 12 April 2007

Supplemental Sources - Used for background knowledge

Hendricks, McKinney JS, Waters GW, Roberts LS, Egdorf TL, Finch HW, Trellue JP, Pitcher HR, Mayo EJ, Swinhoe DR, Tobin MT, Durkee SJ, Gallmeier JW, David FX, Hamilton JC, Lebenhaft WB, J. MCNPX extensions version 2.5.0. Los Alamos National Laboratory Report LA-UR-04-0570; 2004.

Hughes G, Prael R, Little R. MCNPX - the LAHET/MCNP code merger technical report LA-UR-97-4891 Los Alamos National Laboratory, 1997.

Medin J, Andreo P. Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV). Phys Med Biol 42:89-105; 1997.

Munzenrider J, Verhey LJ, Gragoudas ES, Seddon JM, Urie M, Gentry R, Birnbaum S, Ruotolo DM, Crowell C, McManus P. Conservative treatment of uveal melanoma: local recurrence after proton beam therapy. Int J Radiat Oncol Biol Phys 17:493-8; 1989.

Newhauser WD, Titt U, Dexheimer D, Yan X, Nill S. Neutron shielding verification measurements and simulations for a $235-\mathrm{MeV}$ proton therapy center. Nucl Instrum Methods A. 476:80-84; 1989.

Paganetti H. Calculation of the spatial variation of relative biological effectiveness in a therapeutic proton field for eye treatment. Phys Med Biol 43:2147-2157; 1998.

Paganetti H. Monte Carlo method to study the proton fluence for treatment planning. Med Phys 25:2370-2375; 1998.

Polf JC, Newhauser WD. Effect of range modulation on the neutron dose equivalent around a passive scattering proton therapy treatment nozzle. Phys Med Biol 50:38593873; 2005.

Sakae T, Nohtomi A, Maruhashi A, Sato M, Terunuma T, Kohno R, Akine Y, Hayakawa Y, Koike Y. Multi-layer energy filter for realizing conformal irradiation in charged particle therapy. Med Phys 27:368-373; 2000.

Schneider U, Agosteo S, Pedroni E, Besserer J. Secondary neutron dose during proton therapy using spot scanning. Int J Radiat Oncol Biol Phys 53:244-251; 2002.

Schulte RW, Bashkirov V, Loss-Klock MC, Li T, Wroe AJ, Evseev I, Williams DC, Satogata T. Density resolution of proton computed tomography. Med Phys 32:10351046; 2005.

Suit HD. Protons to replace photons in external beam radiation therapy? Clin Oncol 15:S29-S31; 2002.

Tourovsky A, Lomax AJ, Schneider U, Pedroni E. Monte Carlo dose calculations for spot scanned proton therapy. Phys Med Biol 50:971-981; 2005.

Wroe AJ, Cornelius IM, Rosenfeld AB. The role of nonelastic reactions in absorbed dose distributions from therapeutic proton beams in different medium. Med Phys 32:37-41; 2005.

Zaidi H. Therapeutic Applications of Monte Carlo Calculations in Nuclear Medicine. London: IOP Publishing Ltd; 2003.

APPENDIX A

MATLAB routines (Pasciak 2007)

Routine to read MCNPX matrix into3-dimensional MATLAB matrix

```
clc; clear all;
filename = 'phan';
fid = fopen(filename, 'r');
VoxMap = zeros(85, 109, 119);
INDEX_X = 1;
INDEX_Y = 1;
INDEX_Z = 1;
INDEX_X_MAX = 85;
INDEX_Y_MAX = 109;
INDEX_Z_MAX = 120;
myline = fgetl(fid);
i = 0;
current_line = 1;
while 1
    tempchar = '';
    charcnt = 1;
    for i = 1:length(myline)
        tempchar;
        if(myline(i) ~= ' ')
            tempchar(charcnt) = myline(i);
            charcnt = charcnt + 1;
        end
        if((myline(i) == ' ') | (i == length(myline)))
            if(charcnt ~= 1)
                prevchar = tempchar;
                if(prevchar(end) == 'r')
                        numentries = str2num(prevchar(1:(end-1)));
                            entry = str2num(olderchar);
                else
            numentries = 1;
            entry = str2num(prevchar);
                end
                olderchar = prevchar;
                for jp = 1:numentries
                    if(INDEX_X > INDEX_X_MAX)
                INDEX_X = 1;
                INDEX_Y = INDEX_Y + 1;
                    end
                    if(INDEX_Y > INDEX_Y_MAX)
                    INDEX_Z = INDEX_ZZ + 1;
                    INDEX_X = 1;
                INDEX_Y = 1;
```

```
end
    % [INDEX_X INDEX_Y INDEX_Z entry]
    VoxMap(INDEX_X, INDEX_Y, INDEX_Z) = entry;
    INDEX_X = INDEX_X + 1;
    end
                tempchar = '';
                charcnt = 1;
            end
        end
    end
    myline = fgetl(fid);
    current_line = current_line + 1;
    if(mod(current_line,100) == 0)
    current_line
    end
    if ~ischar(myline), break, end
end
fclose(fid)
```


Routine to plot 3-dimensional MATLAB matrix

```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% START EDITING %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Plot a line over the phantom
plotline = 1; % set to 0 for no line, 1 for a line
direction = [0 1 0]; % unit vector direction (X,Y,Z)
start_coor = [-2.9 -10.96 83.77]; % where to start the line (in cm)
(X, Y, Z)
line_width = 2;
z_start_vox = 772; %Z value at the bottom of the voxel map (in mm)
phantom_opacity = .95; %the opacity of the voxel phantom
size_x = 2.2; %size of X voxel in mm
size_y = 2.2; %size of Y voxel in mm
size_z = 1.4; %size of Z voxel in mm
Xmax = 85;
Ymax = 109;
Zmax = 120;
Xrange = [1:85]; %max 85
Yrange = [23:109]; %max 109
Zrange = [1:120]; %max 120
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% STOP EDITING ᄋ%O%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

```
start_coor = start_coor .* 10;
```

start_coor = start_coor .* 10;
%axis([((min(Xrange) - .5) .* size_x) ((max(Xrange) - .5) .* size_x)
%axis([((min(Xrange) - .5) .* size_x) ((max(Xrange) - .5) .* size_x)
((min(Yrange) - .5) .* size_y) ((max(Yrange) - .5) .* size_y)
((min(Yrange) - .5) .* size_y) ((max(Yrange) - .5) .* size_y)
((min(Zrange) - .5) .* size_z) ((max(Zrange) - .5) .* size_z)])
((min(Zrange) - .5) .* size_z) ((max(Zrange) - .5) .* size_z)])
hold on
hold on
close all; clc; hold off;
close all; clc; hold off;
h = vol3d('cdata',VoxMap(Xrange, Yrange, Zrange),'texture','2D');
h = vol3d('cdata',VoxMap(Xrange, Yrange, Zrange),'texture','2D');
view(3);
view(3);
vol3d(h);
vol3d(h);
grid;
grid;
alphamap(alphamap .* phantom_opacity); %Change opacity
alphamap(alphamap .* phantom_opacity); %Change opacity
xlabel('Y Axis');
xlabel('Y Axis');
ylabel('X Axis');
ylabel('X Axis');
zlabel('Z Axis');
zlabel('Z Axis');
if (plotline == 1)
if (plotline == 1)
hold on;
hold on;
xvst = (((start_coor(1) ./ size_x)) - (min(Xrange) - 1)) + (Xmax ./
xvst = (((start_coor(1) ./ size_x)) - (min(Xrange) - 1)) + (Xmax ./
2);
2);
yvst = (((start_coor(2) ./ size_y)) - (min(Yrange) - 1)) + (Ymax ./
yvst = (((start_coor(2) ./ size_y)) - (min(Yrange) - 1)) + (Ymax ./
2);
2);
zvst = (((start_coor(3) ./ size_z)) - (min(Zrange) - 1)) -
zvst = (((start_coor(3) ./ size_z)) - (min(Zrange) - 1)) -
(z_start_vox ./ size_z);
(z_start_vox ./ size_z);
T = [0:100];

```
    T = [0:100];
```

```
    plot3((T .* direction(2)) + yvst, (T .* direction(1)) + xvst, (T
    .* direction(3)) + zvst, 'k-', 'LineWidth', line_width );
end
colorbar
vol3dtool
%%%%%%%%%%%%%%%%%%%%%%%%%%
% tempVmap = VoxMap;
% pcolor(VoxMap(:,:,Z))
% VoxMap(X,Y,Z) = #
```


Routine to write MATLAB code back to MCNPX matrix format

```
filename = 'filename';
%voxel map must be named "VoxMap"
fid = fopen(filename, 'w');
INDEX_X_MAX = 85;
INDEX_Y_MAX = 109;
INDEX_Z_MAX = 120;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
INDEX_X = 1;
INDEX_Y = 1;
INDEX_Z = 1;
startline = ' ';
stop = 0;
while(INDEX_Z <= INDEX_Z_MAX)
    while(length(startline) < 75)
        if(INDEX_X > INDEX_X_MAX)
            INDEX_X = 1;
            INDEX_Y = INDEX_Y + 1;
        end
        if(INDEX_Y > INDEX_Y_MAX)
            INDEX_Z = INDEX_Z + 1;
            INDEX_X = 1;
            INDEX_Y = 1;
        end
        if(INDEX_Z == (INDEX_Z_MAX + 1))
            break;
            end
                % [INDEX_X INDEX_Y INDEX_Z entry]
                startline = cat(2, startline, num2str(VoxMap(INDEX_X, INDEX_Y,
INDEX_Z)), ' ');
        INDEX_X = INDEX_X + 1;
    end
    while(length(startline) < 80)
        startline = cat(2, startline, ' ');
    end
    fprintf(fid, '%s\n', startline);
    startline = ' ';
end
fclose(fid)
```


APPENDIX B

MCNPX Output deck - Ideal Case Scenario- tally change from h to n for the neutron case
For the worst case scenario (lens) the source location was changed to (-3.74-10.1 83.85) (All else the same - tally change from h to n for the neutron case)
For the worst case scenario (ocular socket) the source location was changed to (-4.96-8.9 83.43) (All else the same - tally change from h to n for the neutron case)

c This geometric model has been used in: J.F. Evans, T. E. Blue, N. Gupta,
c "Absorbed dose estimates to structures of the brain and head using a high-re
c voxel-based head phantom." Med Phys. 2001 May;28(5):780-6.
c Most of the head is $85 \times 109 \times 120$ lattice of voxels, where each voxel is 2.2
29 critical structures of the head are identified by their individual univer
attached to a simplistic model of the neck and torso.
c
c Other citations in this input deck:
J. E. Woollard, T. E. Blue, N. Gupta, and R. A. Gahbauer, "Development and a
neutron field optimization parameters for an accelerator-based neutron sourc
neutron capture therapy," Nucl. Technol. 115, 100-113 (1996).
ICRU 46, "Photon, electron, proton, and neutron interaction data for body ti
International Commission on Radiation Units and Measurements, Bethesda, MD,
c Begin MCNP input deck.
$9980-21-43-6 \quad 5 \quad$ fill=999 (-8.91 -13.42 77.2)

41271-
41272-
41273-
41274-
41275-
41276-
41277-
41278-
41279-
41280-
41281-
1281-
41283-
41284 -
41285-
41286-
41287-
41288-
41289-
1290-
41291-
41292-
1293-
1295-
$112-1.09-87-109-1211$
2 like 1 but mat=4 rho=-1.007
3 like 1 but mat=14 rho=-0.95
4 like 1 but mat=8 rho=-1.61
5 like 1 but mat=7 rho=-1.05
6 like 1 but mat=3 rho=-1.043
7 like 1 but mat=3 rho=-1.043
8 like 1 but mat=2 rho=-1.039
9 like 1 but mat=2 rho=-1.039
10 like 1 but mat=11 rho=-1.03
20 like 1 but mat=1 rho=-1
26 like 1 but mat=10 rho=-1.18
30 like 1 but mat=9 rho=-1.10
40 like 1 but mat=2 rho=-1.039
41 like 1 but mat=2 rho=-1.039
42 like 1 but mat=2 rho=-1.039
43 like 1 but mat=2 rho=-1.039
44 like 1 but mat=2 rho=-1.039
45 like 1 but mat=5 rho=-1.076
46 like 1 but mat=5 rho=-1.076
47 like 1 but mat=2 rho=-1.039
48 like 1 but mat=2 rho=-1.039
49 like 1 but mat=2 rho=-1.039
50 like 1 but mat=7 rho=-1.05
51 like 1 but mat=2 rho=-1.039 vol=63.1523 u=51 \$ parietal lobe (left)
vol=232.159 u=1 \$ skin
vol=214.027 u=2 \$ cerebral fluid vol=551.058 u=3 \$ fat
vol=557.461 u=4 \$ skeletal bone
vol=409.840 u=5 \$ skeletal muscle
vol=246.965 u=6 \$ white matter (left)
vol=245.413 u=7 \$ white matter (right)
vol=120.050 u=8 \$ temporal lobe (left) vol=121.697 u=9 \$ temporal lobe (right) vol=2.96789 u=10 \$ spinal cord
vol=9640.50 u=20 \$ water (outside phantom) vol=7.31808 u=26 \$ bone marrow vol=58.2397 u=30 \$ cartilage
vol=4.65511 u=40 \$ internal capsule (left) vol=4.39085 u=41 \$ internal capsule (right) vol=1.00962 u=42 \$ septum pellucidium vol=6.24747 u=43 \$ thalamus (left) vol=6.13228 u=44 \$ thalamus (right) vol=7.27742 u=45 \$ eyeball (left) vol=6.35589 u=46 \$ eyeball (right) vol=11.2685 u=47 \$ corpus callosum vol=2.53422 u=48 \$ motor cortex (left) vol=3. 45576 u=49 \$ motor cortex (right)

41343-			$(54:-55:(-5663): 57: 59:-60: 64)(54:-55:(-5663):-58: 59:-60: 64)$									
41344-								vol=	$=472.1$	\$h	ad_neck	
41345-	161	$12-1.09$	-72 65	-66	-5	67		vol=	$=15.08$	\$sk	in_face	
41346-	162	$12-1.09$	-72 68	-73	66	-5	67	70 vol=	=2.0		in_face	
41347-	163	$12-1.09$	-72 74	-73	-67	64		vol=	$=20.31$	\$sk	in_face	
41348-	164	$12-1.09$	-74 70	-67	39			vol=	$=38.619$	\$sk	in_neck	
41349-	165	12-1.09	-75 68	73	-5	67	70	vol=	=2.26	\$sk	in_back	
41350-	166	$12-1.09$	-74 70	75	73	-5	67	vol=	$=1.353$	\$sk	in_back	
41351-	167	$7-1.05$	-79-39	11				vol=	$=43982.3$	\$tr	unk	
41352-	168	$12-1.09$	-81 79	-39	11			vol=	$=1328.27$	\$tr	unk_skin	
41353-	200	$1-1-99$	5 \#998						\$wa	ter	(outsid	phantom)
41354-	201	$1-1-99$	-5 39	(72:	$73: 5$:-64	4) (7	$74: 67:-39$	9) (75:-	-73:	:-67)	
41355-			(74:-75:	:-73:	:-67)						ter (ou	side phan
41356-	202	1 -1 -99	-39 (81:	:39:	-11)				\$wa	ter	(outsid	e phantom)
41357-	205	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	u=205 \$	\$ TUM		
41358-	206	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	u=206 \$	\$ TUM		
41359-	207	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	u=207 \$	\$ TUM		
41360-	208	like 1 but	mat=6	rho	$=-1.07$		vol=	=. 006776	u=208 \$	\$ TUM		
41361-	209	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	u=209 \$	\$ TUM		
41362-	210	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	$\mathrm{u}=210$ \$	\$ TUM		
41363-	211	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	u=211 \$	TUM		
41364-	212	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	$\mathrm{u}=212$ \$	\$ TUM		
41365-	213	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	$\mathrm{u}=213$ \$	S TUM		
41366-	214	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	u=214 \$	\$ TUM		
41367-	215	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	u=215 \$	\$ TUM		
41368-	216	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	u=216 \$	TUM		
41369-	217	like 1 but	mat=5	rho	$=-1.009$		vol=	$=.006776$	$\mathrm{u}=217$ \$	Ey	(BT)	
41370-	218	like 1 but	mat=5	rho	$=-1.009$		vol=	. .006776	$u=218$ \$	Ey	(BT)	
41371-	219	like 1 but	mat=5	rho	$=-1.009$		vol=	. .006776	u=219 \$	\$ Ey	(BT)	
41372-	220	like 1 but	mat=5	rho	$=-1.009$		vol=	. .006776	u=220 \$	Ey	(BT)	
41373-	221	like 1 but	mat=5	rho	$=-1.009$		vol=	$=.006776$	u=221 \$	Ey	(BT)	
41374-	222	like 1 but	mat=5	rho	$=-1.009$		vol=	. .006776	u=222 \$	Ey	(BT)	
41375-	223	like 1 but	mat=5	rho	$=-1.009$		vol=	. .006776	u=223 \$	Ey	(LT)	
41376-	224	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	$\mathrm{u}=224$ \$	\$ TUM		
41377-	225	like 1 but	mat=6	rho	$=-1.07$		vol=	=. 006776	$\mathrm{u}=225$ \$	\$ TUM		
41378-	226	like 1 but	mat=6	rho	$=-1.07$		vol=	. .006776	$\mathrm{u}=226$ \$	\$ TUM		
41379-	227	like 1 but	mat=5	rho	$=-1.00$		vol=	. .006776	u=227 \$	Ey	(RT)	
41380-	228	like 1 but	mat=5	rho	$=-1.009$		vol=	. .006776	u=228 \$	\$ Ey	(LT)	
41381-	229	like 1 but	mat=5	rho	$=-1.009$		vol=	$=.006776$	u=229 \$	Ey	(RT)	
41382-	230	like 1 but	mat=5	rho	$=-1.009$		vol=	. .006776	$\mathrm{u}=230$ \$	Sye	(LT)	
41383-	231	like 1 but	mat=5	rho	$=-1.009$		vol=	. .006776	u=231 \$	Ey	(RT)	
41384-	232	like 1 but	mat=5	rho	$=-1.009$		vol=	$=.006776$	u=232 \$	Ey	(LT)	
41385-	233	like 1 but	mat=5	rho	$=-1.009$		vol=	$=.006776$	u=233 \$	Ey	(RT)	
41386-	234	like 1 but	mat=5	rho	$=-1.009$		vol=	$=.006776$	u=234 \$	Ey	(LT)	
41387-	235	like 1 but	t mat=5	rho	$=-1.009$		vol=	. .006776	$\mathrm{u}=235$ \$	Ey	(RT)	
41388-	236	like 1 but	t mat=14	rho	$=-0.95$		vol=	. .006776	u=236 \$	Fat	(LT)	
41389-	237	like 1 but	mat=5	rho	$=-1.00$		vol=	. 006776	$\mathrm{u}=237$ \$	\$ Ey	(RT)	

41531-	379 like 1 but mat=5	rho $=-1.009$	vol=. 006776	$\mathrm{u}=379$	\$ Eye (RT)
41532-	380 like 1 but mat=5	rho=-1.009	$\mathrm{vol}=.006776$	$\mathrm{u}=380$	\$ Eye (LT)
41533-	381 like 1 but mat=6	rho=-1.07	vol=.006776	$\mathrm{u}=381$	\$ TUMOR
41534 -	382 like 1 but mat=6	rho $=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=382$	\$ TUMOR
41535-	383 like 1 but mat=6	rho=-1.07	$\mathrm{vol}=.006776$	$\mathrm{u}=383$	\$ TUMOR
41536-	384 like 1 but mat=5	$r h o=-1.009$	$\mathrm{vol}=.006776$	$\mathrm{u}=384$	\$ Eye (RT)
41537-	385 like 1 but mat=5	rho=-1.009	vol=.006776	$\mathrm{u}=385$	\$ Eye (FT)
41538-	386 like 1 but mat=6	$\mathrm{rho}=-1.07$	vol=.006776	u=386	\$ TUMOR
41539-	387 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=387$	\$ TUMOR
41540 -	388 like 1 but mat=6	$\mathrm{rho}=-1.07$	vol=.006776	$\mathrm{u}=388$	\$ TUMOR
41541-	389 like 1 but mat=5	rho $=-1.009$	$\mathrm{vol}=.006776$	$\mathrm{u}=389$	\$ Eye (FT)
41542-	390 like 1 but mat=5	rho $=-1.009$	vol=.006776	$\mathrm{u}=390$	\$ Eye (FT)
41543-	391 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	u=391	\$ TUMOR
41544-	392 like 1 but mat=6	rho $=-1.07$	$\mathrm{vol}=.006776$	u=392	\$ TUMOR
41545-	393 like 1 but mat=6	$\mathrm{rho}=-1.07$	vol=.006776	$\mathrm{u}=393$	\$ TUMOR
41546-	394 like 1 but mat=5	rho $=-1.009$	$\mathrm{vol}=.006776$	$\mathrm{u}=394$	\$ Eye (FT)
41547-	395 like 1 but mat=5	rho $=-1.009$	vol=.006776	$\mathrm{u}=395$	\$ Eye (FT)
41548-	396 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	u=396	\$ TUMOR
41549-	397 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	u=397	\$ TUMOR
41550-	398 like 1 but mat=6	rho=-1.07	vol=.006776	$\mathrm{u}=398$	\$ TUMOR
41551-	399 like 1 but mat=5	rho=-1.009	$\mathrm{vol}=.006776$	$u=399$	\$ Eye (FT)
41552-	400 like 1 but mat=5	rho $=-1.009$	vol=.006776	$\mathrm{u}=400$	\$ Eye (FT)
41553-	401 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=401$	\$ TUMOR
41554-	402 like 1 but mat=6	rho=-1.07	vol=.006776	$\mathrm{u}=402$	\$ TUMOR
41555-	403 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=403$	\$ TUMOR
41556-	404 like 1 but mat=5	$r h o=-1.009$	$\mathrm{vol}=.006776$	$u=404$	\$ Eye (FT)
41557-	410 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=410$	\$ Lens
41558-	411 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=411$	\$ Lens
41559 -	412 like 1 but mat=6	rho=-1.07	vol=.006776	$\mathrm{u}=412$	\$ Lens
41560-	413 like 1 but mat=6	$\mathrm{rho}=-1.07$	vol=.006776	$\mathrm{u}=413$	\$ Lens
41561-	414 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=414$	\$ Lens
41562-	415 like 1 but mat=6	rho $=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=415$	\$ Lens
41563-	416 like 1 but mat=6	rho=-1.07	$\mathrm{vol}=.006776$	$\mathrm{u}=416$	\$ Lens
41564 -	417 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=417$	\$ Lens
41565-	418 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=418$	\$ Lens
41566-	419 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=419$	\$ Lens
41567-	420 like 1 but mat=6	$\mathrm{rho}=-1.07$	vol=.006776	$\mathrm{u}=420$	\$ Lens
41568-	421 like 1 but mat=6	rho=-1.07	vol=.006776	$\mathrm{u}=421$	\$ Lens
41569-	422 like 1 but mat=6	rho $=-1.07$	vol=.006776	$\mathrm{u}=422$	\$ Lens
41570-	423 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=423$	\$ Lens
41571-	424 like 1 but mat=6	rho $=-1.07$	vol=.006776	$\mathrm{u}=424$	\$ Lens
41572-	425 like 1 but mat=6	$\mathrm{rho}=-1.07$	vol=.006776	$\mathrm{u}=425$	\$ Lens
41573-	426 like 1 but mat=6	$\mathrm{rho}=-1.07$	vol=.006776	$\mathrm{u}=426$	\$ Lens
41574 -	427 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=427$	\$ Lens
41575-	428 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=428$	\$ Lens
41576-	429 like 1 but mat=6	rho $=-1.07$	vol=.006776	$\mathrm{u}=429$	\$ Lens
41577-	430 like 1 but mat=6	$\mathrm{rho}=-1.07$	$\mathrm{vol}=.006776$	$\mathrm{u}=430$	\$ Lens

41625-
41626-
41627-
41628-
41629-
41630-
41631-
1632-
1632-
1633-
1634-
41635-
41636-
41637-
41638-
41639-
41640 -
41641-
41642-
41643-
41644-
41645-
41646 -
41647-
41648-
41649 -
41650-
41651-
41652-
1653-
41654-
41655-
41656-
41657-
1658-
41659-
41660 -
1661-
41662-
41663-
41664-
41665-
41666-
41667-
41668-
1669-
1671-

478 like 1 but mat=1 rho=-1 vol=. 006776 u=478 \$ water (FT/outside phantom) 479 like 1 but mat=1 rho=-1 vol=. $006776 \mathrm{u}=479$ \$ water (FT/outside phantom) 480 like 1 but mat=5 rho=-1.076 vol=.006776 u=480 \$ Eye Ball (FT)
481 like 1 but mat=5 rho=-1.076 vol=.006776 u=481 \$ Eye Ball (FT)
482 like 1 but mat=5 rho=-1.076 vol=. 006776 u=482 \$ Eye Ball (FT)
483 like 1 but mat=5 rho=-1.076 vol=.006776 u=483 \$ Eye Ball (FT)
484 like 1 but mat=5 rho=-1.076 vol=.006776 u=484 \$ Eye Ball (FT)
485 like 1 but mat=1 rho=-1 vol=. 006776 u=485 \$ water (FT/outside phantom)
486 like 1 but mat=1 rho=-1 vol=. $006776 \mathrm{u}=486$ \$ water (FT/outside phantom) 487 like 1 but mat=5 rho=-1.076 vol=.006776 u=487 \$ Eye Ball (FT) 488 like 1 but mat=5 rho=-1.076 vol=.006776 u=488 \$ Eye Ball (FT)
489 like 1 but mat=5 rho=-1.076 vol=.006776 u=489 \$ Eye Ball (FT)
490 like 1 but mat=1 rho=-1 vol=. 006776 u=490 \$ water (FT/outside phantom) 491 like 1 but mat=1 rho=-1 vol=.006776 u=491 \$ water (FT/outside phantom) 492 like 1 but mat=1 rho=-1 vol=. 006776 u=492 \$ water (FT/outside phantom) 493 like 1 but mat=1 494 like 1 but mat=1 95 like 1 but mat=5 496 like 1 but mat=5
497 like 1 but mat=5
498 like 1 but mat=5
499 like 1 but mat=5 500 like 1 but mat=5 501 like 1 but mat=5 02 like 1 but mat=5 503 like 1 but mat=5 504 like 1 but mat=5 505 like 1 but mat=1 506 like 1 but mat=1 507 like 1 but mat=1 508 like 1 but mat=1 509 like 1 but mat=1 5150 99
c $\mathrm{FT}=$ Directly In Front of Tumor
c LT = Directly Left of Tumor
c RT $=$ Directly Right of Tumor
c BT $=$ Directly Behind Tumor

1	px	-8.91
2 px	9.79	
3 py	-13.42	
4 py	10.56	
5 pz	77.2	
6 pz	94.	
7 px	0	
8	0	
8	px	.22

41717-	ar h
41718-	phys:h 70
41719-	si1 0.55
$41720-$	sp1 -21 1
41721-	si2 040.580240 .796644 .194447 .524950 .679553 .685056 .562659 .329762
41722-	c
41723-	sp2 00.0509 .00200 .05870 .06650 .09830 .09020 .14340 .22200 .47
41724 -	c Water out side phantom [Oertli, 2006]
41725-	m1 1001 -0.11111 8016 -0.8889 hlib=.24h \$ Water
41726 -	c Brain, grey matter, Optic Nerve [Duck FA, 1990]
41727-	m2 1001 -. $1076000-.0957014-.018$ 8016-. 767
41728-	$11023-.00215031-.00316000-.00217000-.003$
$41729-$	$19000-.003 \mathrm{hlib}=.24 \mathrm{~h}$
41730-	c Brain, white matter [Duck FA, 1990]
41731-	m3 1001 -. $1066000-.1947014-.0258016-.661$
41732-	$11023-.00215031-.00416000-.00217000-.003$
41733-	$19000-.003 \mathrm{hlib}=.24 \mathrm{~h}$
$41734-$	c Cerebrospinal fluid [Duck FA, 1990]
41735-	m4 1001 -. 1118016 -. $88011023-.00517000-.004 \mathrm{hlib}=.24 \mathrm{~h}$
41736-	c Eyes [Duck FA, 1990]
41737-	m5 1001 -. $1076000-.0697014-.017 \quad 8016-.803$
41738-	$15031-.00116000-.00119000-.002 \mathrm{hlib}=.24 \mathrm{~h}$
41739-	c Eye lens, Adult [ICRU Report 46, 1992]
41740-	m6 1001-.096 6000-. $1957014-.0578016-.646$
41741-	$11023-.00115031-.00116000-.00317000-.001 \mathrm{hlib}=.24 \mathrm{~h}$
41742-	c Muscle (skeletal), Adult [ICRU Report 46, 1992]
41743-	m7 1001 -. $1026000-.1437014-.0348016-.710$
41744 -	$11023-.00115031-.00216000-.00317000-.001$
41745-	$19000-.004 \mathrm{hlib}=.24 \mathrm{~h}$
41746-	c Skeleton-cranium (whole), Adult [ICRU Report 46, 1992]
41747-	m8 1001 -. $0506000-.2127014-.040 \quad 8016-.435$
41748-	$11023-.00112000-.00215031-.08116000-.003$
41749-	$20000-.176 \mathrm{hlib}=.24 \mathrm{~h}$
$41750-$	c Skeleton-cartilage, Adult [ICRU Report 46, 1992]
41751-	m9 1001-.096 6000-.099 7014-.022 8016-. 744
41752-	$11023-.00515031-.02216000-.00917000-.003 \mathrm{hlib}=.24 \mathrm{~h}$
41753-	c Skeleton-spongiosa, Adult [ICRU Report 46, 1992]
41754 -	m10 1001 -. $0856000-.4047014-.0288016-.367$
41755-	$11023-.00112000-.00115031-.03416000-.002$
41756-	$17000-.00219000-.00120000-.07426056-.001 \mathrm{hlib}=.24 \mathrm{~h}$
41757-	c Spinal chord [Duck FA, 1990]
41758-	m11 1001 -. $1076000-.1457014-.0228016-.712$
41759 -	$11023-.00215031-.00416000-.00217000-.003$
41760-	$19000-.003 \mathrm{hlib}=.24 \mathrm{~h}$
41761-	c Skin, Adult [ICRU Report 46, 1992]
41762-	m12 1001 -. $1006000-.2047014-.0428016-.645$
41763-	$11023-.00215031-.00116000-.00217000-.003$

41764 -
41765-
41766 -
41767-
41768-
41769 -
41770-
41771-
41772-
41773-
41774-
41775-
1776-
1777
41778-
41779-
41780-
41781-
41782-
41783-
41784-
41785-
41786-
41787-
41788-
41789-
41790-
41791-
1792-
1793-
41794 -
41795-
41796-
41797-
41798 -
41799 -
1800-
41801-
41802-

19000 -. 001 hlib=. 24 h
c Thyroid, Adult [ICRU Report 46, 1992]
m13 1001 -. $104 \quad 6000$-. $119 \quad 7014$-. $024 \quad 8016$-. 745 $11023-.00215031-.00116000-.00117000-.002$ 19000 -. 00153127 -. $001 \mathrm{hlib}=.24 \mathrm{~h}$
c Adipose tissue, Adult \#2 [ICRU Report 46, 1992]
m14 1001 -. 1146000 -. $598 \quad 7014$-. 0078016 -. 278
$11023-.00116000-.00117000-.001 \mathrm{hlib}=.24 \mathrm{~h}$
F6:H $1 \begin{array}{lllllllllllllllllll} & 2 & 3 & 4 & 5 & 6 & 8 & 9 & 10 & 26 & 30 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 48\end{array}$ $\begin{array}{lllllllllllllll}49 & 50 & 51 & 52 & 55 & 56 & 57 & 58 & 59 & 60 & 61 & 63 & 64 & 72 & 73 \\ 74\end{array}$ $\begin{array}{lllllllllllllllll}75 & 76 & 77 & 80 & 81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 & 91 & 92\end{array}$ $\begin{array}{llllllllllllll}93 & 94 & 95 & 96 & 97 & 98 & 99 & 205 & 206 & 207 & 208 & 209 & 210 & 211\end{array}$ $\begin{array}{lllllllllll}212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222\end{array} 223$ 224225226227228229230231232133234235 236237238239240241242243244245246247 $\begin{array}{llllllllllll}248 & 249 & 250 & 251 & 252 & 253 & 254 & 255 & 256 & 257 & 258 & 259\end{array}$ $\begin{array}{llllllllllll}260 & 261 & 262 & 263 & 264 & 265 & 266 & 267 & 268 & 269 & 270 & 271\end{array}$ $\begin{array}{lllllllllllllllll}272 & 273 & 274 & 275 & 276 & 277 & 278 & 279 & 280 & 281 & 282 & 283\end{array}$ $284285286287288289290291 \quad 292 \quad 293 \quad 294295$ $296297298299300301302303 ~ 304 ~ 305 ~ 306 ~ 307$ $308309310311312313314315316317318 \quad 319$ $\begin{array}{lllllllllllll}320 & 321 & 322 & 323 & 324 & 325 & 326 & 327 & 328 & 329 & 330 & 331\end{array}$ 332333334335336337338339340341342343 344345346347348349350351352353354355 $\begin{array}{lllllllllllllllll}356 & 357 & 358 & 359 & 360 & 361 & 362 & 363 & 364 & 365 & 366 & 367\end{array}$ $\begin{array}{lllllllllllll}368 & 369 & 370 & 371 & 372 & 373 & 374 & 375 & 376 & 377 & 378 & 379\end{array}$ $\begin{array}{llllllllllll}380 & 381 & 382 & 383 & 384 & 385 & 386 & 387 & 388 & 389 & 390 & 391\end{array}$ $\begin{array}{lllllllllllll}392 & 393 & 394 & 395 & 396 & 397 & 398 & 399 & 400 & 401 & 402 & 403\end{array}$ 404410411412413414415416417418419420 421422423424425426427428429430431432 433434435436437438439440441442443444 445446447448449450451452453454455456 457458459460461462463464465466467468 $\begin{array}{llllllllllll}469 & 470 & 471 & 472 & 473 & 474 & 475 & 476 & 477 & 478 & 479 & 480\end{array}$ $\begin{array}{llllllllllll}481 & 482 & 483 & 484 & 485 & 486 & 487 & 488 & 489 & 490 & 491 & 492\end{array}$ 493494495496497498499500501502503504 505506507508509
nps 300000
prdmp 2j 1

		$1.29645 \mathrm{E}-03$	0.0106
cell	2		
		$1.24636 \mathrm{E}-06$	0.7207
cell	3		
		7.51061E-04	0.0187
cell	4		
		$2.23772 \mathrm{E}-06$	0.2836
cell	5		
		$8.62917 \mathrm{E}-04$	0.0143
cell	6		
		$0.00000 \mathrm{E}+00$	0.0000
cell	8		
		$3.33380 \mathrm{E}-07$	1.0000
cell	9		
		$0.00000 \mathrm{E}+00$	0.0000
cell	10		
		$0.00000 \mathrm{E}+00$	0.0000
cell	26		
		$0.00000 \mathrm{E}+00$	0.0000
cell	30		
		$4.99060 \mathrm{E}-05$	0.2235
cell	40		
		$0.00000 \mathrm{E}+00$	0.0000
cell	41		
		$0.00000 \mathrm{E}+00$	0.0000
cell	42		
		$0.00000 \mathrm{E}+00$	0.0000
cell	43		
		$0.00000 \mathrm{E}+00$	0.0000
cell	44		
		$0.00000 \mathrm{E}+00$	0.0000
cell	45		
		$0.00000 \mathrm{E}+00$	0.0000
cell	46		
		$3.06275 \mathrm{E}-01$	0.0073
cell	48		
		$0.00000 \mathrm{E}+00$	0.0000
cell	49		
		$0.00000 \mathrm{E}+00$	0.0000
cell	50		
		$0.00000 \mathrm{E}+00$	0.0000
cell	51		
		$0.00000 \mathrm{E}+00$	0.0000
cell	52		
		$0.00000 \mathrm{E}+00$	0.0000
cell	55		
		$0.00000 \mathrm{E}+00$	0.0000
cell	56		
		$0.00000 \mathrm{E}+00$	0.0000
cell	57		
		$0.00000 \mathrm{E}+00$	0.0000
cell	58		
		$9.48006 \mathrm{E}-01$	0.0065
cell	59		
		$0.00000 \mathrm{E}+00$	0.0000
cell	60		
		$0.00000 \mathrm{E}+00$	0.0000
cell	61		
		$0.00000 \mathrm{E}+00$	0.0000
cell	63		
		$0.00000 \mathrm{E}+00$	0.0000
cell	64		
		$0.00000 \mathrm{E}+00$	0.0000
cell	72		
		$0.00000 \mathrm{E}+00$	0.0000
cell	73		
		$0.00000 \mathrm{E}+00$	0.0000
cell	74		
		$0.00000 \mathrm{E}+00$	0.0000
cell	75		

cell		$0.00000 \mathrm{E}+00$	0.0000
	76		
		$0.00000 \mathrm{E}+00$	0.0000
cell	77		
		$0.00000 \mathrm{E}+00$	0.0000
cell	80		
		$0.00000 \mathrm{E}+00$	0.0000
cell	81		
		$0.00000 \mathrm{E}+00$	0.0000
cell	82		
		$4.82408 \mathrm{E}-06$	0.6117
cell	83		
		$0.00000 \mathrm{E}+00$	0.0000
cell	84		
		$0.00000 \mathrm{E}+00$	0.0000
cell	85		
		$0.00000 \mathrm{E}+00$	0.0000
cell	86		
		$0.00000 \mathrm{E}+00$	0.0000
cell	87		
		$0.00000 \mathrm{E}+00$	0.0000
cell	88		
		$0.00000 \mathrm{E}+00$	0.0000
cell	89		
		$0.00000 \mathrm{E}+00$	0.0000
cell	90		
		$0.00000 \mathrm{E}+00$	0.0000
cell	91		
		$0.00000 \mathrm{E}+00$	0.0000
cell	92		
		$0.00000 \mathrm{E}+00$	0.0000
cell	93		
		$0.00000 \mathrm{E}+00$	0.0000
cell	94		
		$0.00000 \mathrm{E}+00$	0.0000
cell	95		
		$4.59435 \mathrm{E}-05$	0.3910
cell	96		
		$0.00000 \mathrm{E}+00$	0.0000
cell	97		
		$0.00000 \mathrm{E}+00$	0.0000
cell	98		
		$0.00000 \mathrm{E}+00$	0.0000
cell	99		
		4.96653E-03	0.1522
cell	205		
		$2.36855 \mathrm{E}+01$	0.0184
cell	206		
		$3.40955 \mathrm{E}+01$	0.0153
cell	207		
		$2.44975 \mathrm{E}+01$	0.0183
cell	208		
		$2.41832 \mathrm{E}+01$	0.0193
cell	209		
		$3.42971 \mathrm{E}+01$	0.0160
cell	210		
		$2.50251 \mathrm{E}+01$	0.0189
cell	211		
		$2.35561 \mathrm{E}+01$	0.0206
cell	212		
		$3.48157 \mathrm{E}+01$	0.0170
cell	213		
		$2.51087 \mathrm{E}+01$	0.0201
cell	214		
		$2.21236 \mathrm{E}+01$	0.0228
cell	215		
		$3.26843 \mathrm{E}+01$	0.0187
cell	216		
		$2.32913 \mathrm{E}+01$	0.0223
cell	217		
		$1.75603 \mathrm{E}+01$	0.0269

cell	218		
		$2.40251 \mathrm{E}+01$	0.0230
cell	219		
		$1.71710 \mathrm{E}+01$	0.0272
cell	220		
		$9.23453 \mathrm{E}+00$	0.0382
cell	221		
		$1.22857 \mathrm{E}+01$	0.0328
cell	222		
		$9.20346 \mathrm{E}+00$	0.0381
cell	223		
		$6.47344 \mathrm{E}+00$	0.0345
cell	224		
		$2.33969 \mathrm{E}+01$	0.0179
cell	225		
		$3.34152 \mathrm{E}+01$	0.0148
cell	226		
		$2.36328 \mathrm{E}+01$	0.0176
cell	227		
		$7.01634 \mathrm{E}+00$	0.0337
cell	228		
		$6.63394 \mathrm{E}+00$	0.0349
cell	229		
		$6.93939 \mathrm{E}+00$	0.0345
cell	230		
		$7.05594 \mathrm{E}+00$	0.0360
cell	231		
		$7.13998 \mathrm{E}+00$	0.0358
cell	232		
		$7.34268 \mathrm{E}+00$	0.0375
cell	233		
		$7.33679 \mathrm{E}+00$	0.0369
cell	234		
		$7.11625 \mathrm{E}+00$	0.0403
cell	235		
		$7.14643 \mathrm{E}+00$	0.0402
cell	236		
		$6.39359 \mathrm{E}+00$	0.0464
cell	237		
		$6.20197 \mathrm{E}+00$	0.0455
cell	238		
		$3.27393 \mathrm{E}+00$	0.0666
cell	239		
		$3.19878 \mathrm{E}+00$	0.0651
cell	240		
		$7.18561 \mathrm{E}-01$	0.1385
cell	241		
		$2.60561 \mathrm{E}+00$	0.0721
cell	242		
		$3.55662 \mathrm{E}+00$	0.0612
cell	243		
		$2.52651 \mathrm{E}+00$	0.0715
cell	244		
		$6.25280 \mathrm{E}-01$	0.1371
cell	245		
		$3.27520 \mathrm{E}+01$	0.0155
cell	246		
		$5.42096 \mathrm{E}+01$	0.0119
cell	247		
		$3.27724 \mathrm{E}+01$	0.0157
cell	248		
		$3.34498 \mathrm{E}+01$	0.0162
cell	249		
		$5.51431 \mathrm{E}+01$	0.0125
cell	250		
		$3.25471 \mathrm{E}+01$	0.0164
cell	251		
		$3.42287 E+01$	0.0172
cell	252		
		$5.59270 \mathrm{E}+01$	0.0133
cell	253		

cell		$3.31940 \mathrm{E}+01$	0.0174
	254		
		$3.18139 \mathrm{E}+01$	0.0189
cell	255		
		$5.04778 \mathrm{E}+01$	0.0149
cell	256		
		$3.14644 \mathrm{E}+01$	0.0191
cell	257		
		$2.41594 \mathrm{E}+01$	0.0229
cell	258		
		$3.78227 \mathrm{E}+01$	0.0185
cell	259		
		$2.27377 \mathrm{E}+01$	0.0237
cell	260		
		$1.22155 \mathrm{E}+01$	0.0332
cell	261		
		$1.77545 \mathrm{E}+01$	0.0270
cell	262		
		$1.19708 \mathrm{E}+01$	0.0332
cell	263		
		$1.00846 \mathrm{E}+01$	0.0273
cell	264		
		$3.17934 \mathrm{E}+01$	0.0149
cell	265		
		$5.39829 \mathrm{E}+01$	0.0115
cell	266		
		$3.25733 \mathrm{E}+01$	0.0151
cell	267		
		$1.02634 \mathrm{E}+01$	0.0275
cell	268		
		$1.03924 \mathrm{E}+01$	0.0279
cell	269		
		$1.02527 \mathrm{E}+01$	0.0283
cell	270		
		$1.07761 \mathrm{E}+01$	0.0289
cell	271		
		$1.05987 \mathrm{E}+01$	0.0290
cell	272		
		$1.09132 \mathrm{E}+01$	0.0303
cell	273		
		$1.11014 \mathrm{E}+01$	0.0304
cell	274		
		$1.05695 \mathrm{E}+01$	0.0330
cell	275		
		$1.09777 \mathrm{E}+01$	0.0330
cell	276		
		$8.61144 \mathrm{E}+00$	0.0389
cell	277		
		$8.37846 \mathrm{E}+00$	0.0393
cell	278		
		$4.34222 \mathrm{E}+00$	0.0554
cell	279		
		$4.50599 \mathrm{E}+00$	0.0554
cell	280		
		$8.40161 \mathrm{E}-01$	0.1227
cell	281		
		$3.25248 \mathrm{E}+00$	0.0626
cell	282		
		$5.43104 \mathrm{E}+00$	0.0508
cell	283		
		$3.30140 \mathrm{E}+00$	0.0633
cell	284		
		$9.86552 \mathrm{E}-01$	0.1064
cell	285		
		$3.29342 \mathrm{E}+01$	0.0154
cell	286		
		$5.38043 \mathrm{E}+01$	0.0120
cell	287		
		$3.21972 \mathrm{E}+01$	0.0156
cell	288		
		$3.39742 \mathrm{E}+01$	0.0161

cell	289		
		$5.32649 \mathrm{E}+01$	0.0127
cell	290		
		$3.30032 \mathrm{E}+01$	0.0164
cell	291		
		$3.42891 \mathrm{E}+01$	0.0171
cell	292		
		$5.41277 \mathrm{E}+01$	0.0136
cell	293		
		$3.40841 \mathrm{E}+01$	0.0173
cell	294		
		$3.22314 \mathrm{E}+01$	0.0188
cell	295		
		$4.84883 \mathrm{E}+01$	0.0152
cell	296		
		$3.11976 \mathrm{E}+01$	0.0192
cell	297		
		$2.34662 \mathrm{E}+01$	0.0233
cell	298		
		$3.61005 \mathrm{E}+01$	0.0188
cell	299		
		$2.30832 \mathrm{E}+01$	0.0234
cell	300		
		$1.19617 \mathrm{E}+01$	0.0334
cell	301		
		$1.69299 \mathrm{E}+01$	0.0279
cell	302		
		$1.18330 \mathrm{E}+01$	0.0335
cell	303		
		$1.03778 \mathrm{E}+01$	0.0270
cell	304		
		$3.27378 \mathrm{E}+01$	0.0150
cell	305		
		$5.41651 \mathrm{E}+01$	0.0115
cell	306		
		$3.22780 \mathrm{E}+01$	0.0152
cell	307		
		$1.03019 \mathrm{E}+01$	0.0270
cell	308		
		$1.05461 \mathrm{E}+01$	0.0280
cell	309		
		$1.07671 \mathrm{E}+01$	0.0275
cell	310		
		$1.06736 \mathrm{E}+01$	0.0293
cell	311		
		$1.09667 \mathrm{E}+01$	0.0286
cell	312		
		$1.11067 \mathrm{E}+01$	0.0307
cell	313		
		$1.12491 \mathrm{E}+01$	0.0303
cell	314		
		$1.05090 \mathrm{E}+01$	0.0335
cell	315		
		$1.07898 \mathrm{E}+01$	0.0333
cell	316		
		$8.54184 \mathrm{E}+00$	0.0396
cell	317		
		$7.99935 \mathrm{E}+00$	0.0405
cell	318		
		$4.46066 \mathrm{E}+00$	0.0568
cell	319		
		$3.75738 \mathrm{E}+00$	0.0596
cell	320		
		$1.02990 \mathrm{E}+00$	0.1097
cell	321		
		$3.55531 \mathrm{E}+00$	0.0605
cell	322		
		$5.07449 \mathrm{E}+00$	0.0520
cell	323		
		$3.59294 \mathrm{E}+00$	0.0620
cell	324		

cell	325	7.33969E-01	0.1324
		$2.50800 \mathrm{E}+01$	0.0179
cell	326		
		$3.40759 \mathrm{E}+01$	0.0154
cell	327		
		$2.41816 \mathrm{E}+01$	0.0181
cell	328		
		$2.53067 \mathrm{E}+01$	0.0188
cell	329		
		$3.48417 \mathrm{E}+01$	0.0160
cell	330		
		$2.45005 \mathrm{E}+01$	0.0190
cell	331		
		$2.50769 \mathrm{E}+01$	0.0201
cell	332		
		$3.51502 \mathrm{E}+01$	0.0170
cell	333		
		$2.47636 \mathrm{E}+01$	0.0201
cell	334		
		$2.33593 \mathrm{E}+01$	0.0223
cell	335		
		$3.16965 \mathrm{E}+01$	0.0189
cell	336		
		$2.34587 \mathrm{E}+01$	0.0222
cell	337		
		$1.77181 \mathrm{E}+01$	0.0270
cell	338		
		$2.44109 \mathrm{E}+01$	0.0229
cell	339		
		$1.76954 \mathrm{E}+01$	0.0269
cell	340		
		$9.25840 \mathrm{E}+00$	0.0384
cell	341		
		$1.22231 \mathrm{E}+01$	0.0330
cell	342		
		$9.45103 \mathrm{E}+00$	0.0378
cell	343		
		$6.23907 \mathrm{E}+00$	0.0346
cell	344		
		$2.46930 \mathrm{E}+01$	0.0174
cell	345		
		$3.39569 \mathrm{E}+01$	0.0149
cell	346		
		$2.39116 \mathrm{E}+01$	0.0177
cell	347		
		$6.63816 \mathrm{E}+00$	0.0347
cell	348		
		$6.65942 \mathrm{E}+00$	0.0352
cell	349		
		$6.67057 \mathrm{E}+00$	0.0352
cell	350		
		$6.97738 \mathrm{E}+00$	0.0364
cell	351		
		$6.87598 \mathrm{E}+00$	0.0359
cell	352		
		$6.83314 \mathrm{E}+00$	0.0383
cell	353		
		$7.25637 \mathrm{E}+00$	0.0375
cell	354		
		$7.15437 \mathrm{E}+00$	0.0415
cell	355		
		$7.27292 \mathrm{E}+00$	0.0398
cell	356		
		$5.41892 \mathrm{E}+00$	0.0505
cell	357		
		$5.90058 \mathrm{E}+00$	0.0468
cell	358		
		$2.68538 \mathrm{E}+00$	0.0725
cell	359		
		$3.29337 \mathrm{E}+00$	0.0644

cell	360		
		5.57763E-01	0.1530
cell	361		
		$2.16068 \mathrm{E}+00$	0.0756
cell	362		
		$3.78887 \mathrm{E}+00$	0.0609
cell	363		
		$2.38700 \mathrm{E}+00$	0.0744
cell	364		
		$6.28935 \mathrm{E}-01$	0.1399
cell	365		
		$6.36436 \mathrm{E}+00$	0.0336
cell	366		
		$2.26233 \mathrm{E}+01$	0.0174
cell	367		
		3.22583E+01	0.0145
cell	368		
		$2.28244 \mathrm{E}+01$	0.0172
cell	369		
		$6.63097 \mathrm{E}+00$	0.0325
cell	370		
		$9.72689 \mathrm{E}+00$	0.0271
cell	371		
		$3.15448 \mathrm{E}+01$	0.0147
cell	372		
		$5.30822 \mathrm{E}+01$	0.0111
cell	373		
		$3.17452 \mathrm{E}+01$	0.0148
cell	374		
		$9.72936 \mathrm{E}+00$	0.0270
cell	375		
		$9.84195 \mathrm{E}+00$	0.0268
cell	376		
		$3.15995 \mathrm{E}+01$	0.0146
cell	377		
		$5.29154 \mathrm{E}+01$	0.0111
cell	378		
		$3.12213 \mathrm{E}+01$	0.0149
cell	379		
		$1.00279 \mathrm{E}+01$	0.0265
cell	380		
		$6.01238 \mathrm{E}+00$	0.0342
cell	381		
		$2.41752 \mathrm{E}+01$	0.0170
cell	382		
		$3.24157 \mathrm{E}+01$	0.0145
cell	383		
		$2.33933 E+01$	0.0171
cell	384		
		$6.30462 \mathrm{E}+00$	0.0335
cell	385		
		$5.75280 \mathrm{E}+00$	0.0332
cell	386		
		$2.16833 \mathrm{E}+01$	0.0168
cell	387		
		$3.05437 \mathrm{E}+01$	0.0143
cell	388		
		$2.18598 \mathrm{E}+01$	0.0169
cell	389		
		$6.08106 \mathrm{E}+00$	0.0326
cell	390		
		$8.97319 \mathrm{E}+00$	0.0267
cell	391		
		$2.97788 \mathrm{E}+01$	0.0143
cell	392		
		$5.02842 \mathrm{E}+01$	0.0109
cell	393		
		$2.95769 \mathrm{E}+01$	0.0144
cell	394		
		$9.20284 \mathrm{E}+00$	0.0264
cell	395		

cell	396	$9.09944 \mathrm{E}+00$	0.0266
		$2.94742 \mathrm{E}+01$	0.0143
cell	397		
		$5.05707 \mathrm{E}+01$	0.0108
cell	398		
		$2.94877 \mathrm{E}+01$	0.0145
cell	399		
		$9.17632 \mathrm{E}+00$	0.0259
cell	400		
		$5.64607 \mathrm{E}+00$	0.0336
cell	401		
		$2.26957 \mathrm{E}+01$	0.0164
cell	402		
		$3.00947 \mathrm{E}+01$	0.0141
cell	403		
		$2.20488 \mathrm{E}+01$	0.0167
cell	404		
		$5.95038 \mathrm{E}+00$	0.0331
cell	410		
		$0.00000 \mathrm{E}+00$	0.0000
cell	411		
		$4.64009 \mathrm{E}-02$	0.3810
cell	412		
		3.20366E-04	1.0000
cell	413		
		8.32163E-03	1.0000
cell	414		
		$0.00000 \mathrm{E}+00$	0.0000
cell	415		
		$0.00000 \mathrm{E}+00$	0.0000
cell	416		
		$0.00000 \mathrm{E}+00$	0.0000
cell	417		
		$5.77752 \mathrm{E}-03$	1.0000
cell	418		
		$1.00388 \mathrm{E}-02$	0.8959
cell	419		
		$0.00000 \mathrm{E}+00$	0.0000
cell	420		
		$7.86376 \mathrm{E}-02$	0.3325
cell	421		
		$1.47088 \mathrm{E}-02$	0.4703
cell	422		
		$3.06120 \mathrm{E}-03$	1.0000
cell	423		
		$1.23589 \mathrm{E}-02$	1.0000
cell	424		
		$4.18576 \mathrm{E}-02$	0.5223
cell	425		
		$9.02344 \mathrm{E}-03$	0.7383
cell	426		
		$9.91177 \mathrm{E}-03$	1.0000
cell	427		
		$4.18945 \mathrm{E}-03$	0.8838
cell	428		
		$5.27046 \mathrm{E}-03$	1.0000
cell	429		
		$0.00000 \mathrm{E}+00$	0.0000
cell	430		
		4.28151E-02	0.4049
cell	431		
		$1.39836 \mathrm{E}-02$	0.5984
cell	432		
		$0.00000 \mathrm{E}+00$	0.0000
cell	433		
		$0.00000 \mathrm{E}+00$	0.0000
cell	434		
		$2.07339 \mathrm{E}-02$	0.9231
cell	435		
		$3.31669 \mathrm{E}-02$	0.6738

cell	436		
		5.46662E-02	0.4044
cell	437		
		$1.87302 \mathrm{E}-02$	0.5569
cell	438		
		$0.00000 \mathrm{E}+00$	0.0000
cell	439		
		$0.00000 \mathrm{E}+00$	0.0000
cell	440		
		$1.79018 \mathrm{E}-02$	0.7434
cell	441		
		$0.00000 \mathrm{E}+00$	0.0000
cell	442		
		$0.00000 \mathrm{E}+00$	0.0000
cell	443		
		$0.00000 \mathrm{E}+00$	0.0000
cell	444		
		$0.00000 \mathrm{E}+00$	0.0000
cell	445		
		$4.41266 \mathrm{E}-03$	1.0000
cell	446		
		$0.00000 \mathrm{E}+00$	0.0000
cell	447		
		$0.00000 \mathrm{E}+00$	0.0000
cell	448		
		$0.00000 \mathrm{E}+00$	0.0000
cell	449		
		$0.00000 \mathrm{E}+00$	0.0000
cell	450		
		$5.18373 \mathrm{E}+00$	0.0323
cell	451		
		$2.05223 \mathrm{E}+01$	0.0166
cell	452		
		$2.84513 \mathrm{E}+01$	0.0139
cell	453		
		$2.04410 \mathrm{E}+01$	0.0164
cell	454		
		$5.52579 \mathrm{E}+00$	0.0324
cell	455		
		$4.86820 \mathrm{E}+00$	0.0322
cell	456		
		$1.89253 \mathrm{E}+01$	0.0159
cell	457		
		$2.63090 \mathrm{E}+01$	0.0137
cell	458		
		$1.91076 \mathrm{E}+01$	0.0161
cell	459		
		$4.95625 \mathrm{E}+00$	0.0314
cell	460		
		$4.58518 \mathrm{E}+00$	0.0320
cell	461		
		$1.79874 \mathrm{E}+01$	0.0158
cell	462		
		$2.51497 \mathrm{E}+01$	0.0135
cell	463		
		$1.81455 \mathrm{E}+01$	0.0159
cell	464		
		$4.67990 \mathrm{E}+00$	0.0316
cell	465		
		$8.26304 \mathrm{E}+00$	0.0267
cell	466		
		$2.78459 \mathrm{E}+01$	0.0139
cell	467		
		$4.71650 \mathrm{E}+01$	0.0105
cell	468		
		$2.75318 \mathrm{E}+01$	0.0140
cell	469		
		$8.53846 \mathrm{E}+00$	0.0255
cell	470		
		$7.67955 \mathrm{E}+00$	0.0259
cell	471		

cell	472	$2.59392 \mathrm{E}+01$	0.0137
		$4.37731 \mathrm{E}+01$	0.0102
cell	473		
		$2.56451 \mathrm{E}+01$	0.0137
cell	474		
		$7.83693 \mathrm{E}+00$	0.0254
cell	475		
		$7.29560 \mathrm{E}+00$	0.0255
cell	476		
		$2.47861 \mathrm{E}+01$	0.0135
cell	477		
		$4.18187 \mathrm{E}+01$	0.0102
cell	478		
		$2.43861 \mathrm{E}+01$	0.0137
cell	479		
		$7.26601 \mathrm{E}+00$	0.0250
cell	480		
		$8.28389 \mathrm{E}+00$	0.0258
cell	481		
		$2.73929 \mathrm{E}+01$	0.0139
cell	482		
		$4.68410 \mathrm{E}+01$	0.0105
cell	483		
		$2.74736 \mathrm{E}+01$	0.0140
cell	484		
		$8.51040 \mathrm{E}+00$	0.0256
cell	485		
		$7.74127 \mathrm{E}+00$	0.0255
cell	486		
		$2.58056 \mathrm{E}+01$	0.0137
cell	487		
		$4.40292 \mathrm{E}+01$	0.0103
cell	488		
		$2.57997 \mathrm{E}+01$	0.0140
cell	489		
		$7.91637 \mathrm{E}+00$	0.0250
cell	490		
		$7.41962 \mathrm{E}+00$	0.0253
cell	491		
		$2.45890 \mathrm{E}+01$	0.0135
cell	492		
		$4.21070 \mathrm{E}+01$	0.0102
cell	493		
		$2.44373 \mathrm{E}+01$	0.0137
cell	494		
		$7.68348 \mathrm{E}+00$	0.0247
cell	495		
		$5.20738 \mathrm{E}+00$	0.0327
cell	496		
		$2.13501 \mathrm{E}+01$	0.0161
cell	497		
		$2.84401 \mathrm{E}+01$	0.0138
cell	498		
		$2.05777 \mathrm{E}+01$	0.0163
cell	499		
		$5.37283 \mathrm{E}+00$	0.0319
cell	500		
		$4.88976 \mathrm{E}+00$	0.0326
cell	501		
		$1.98033 \mathrm{E}+01$	0.0157
cell	502		
		$2.63698 \mathrm{E}+01$	0.0135
cell	503		
		$1.92335 \mathrm{E}+01$	0.0161
cell	504		
		$4.87555 \mathrm{E}+00$	0.0321
cell	505		
		$4.59496 \mathrm{E}+00$	0.0321
cell	506		
		$1.88146 \mathrm{E}+01$	0.0156

cell	507	$2.48636 \mathrm{E}+01$	0.0134
cell	508	$1.83901 \mathrm{E}+01$	0.0158
cell	509	$4.57277 \mathrm{E}+00$	0.0323

normed average tally per history	$=1.29645 \mathrm{E}-03$	
estimated tally relative error	$=0.0106$	unnormed average tally per history $=3.28072 \mathrm{E}-01$
relative error from zero tallies	$=0.0097$	estimated variance of the variance $=0.0004$
	relative error from nonzero scores	$=0.0042$

if the largest history score sampled so far were to occur on the next history, the tfc bin quantities would change as follows:

estimated quantities	value at nps	value at nps+1	value(nps+1)/value(np
mean	$1.29645 \mathrm{E}-03$	$1.29736 \mathrm{E}-03$	0.000701
relative error	$1.05859 \mathrm{E}-02$	$1.06016 \mathrm{E}-02$	0.001480
variance of the variance	$3.62682 \mathrm{E}-04$	$3.78499 \mathrm{E}-04$	0.043612
shifted center	$1.29655 \mathrm{E}-03$	$1.29655 \mathrm{E}-03$	0.000001
figure of merit	$2.49085 \mathrm{E}+03$	$2.48350 \mathrm{E}+03$	-0.002954

the estimated slope of the 200 largest tallies starting at $6.75804 \mathrm{E}+00$ appears to be decreasing at least exponentially the large score tail of the empirical history score probability density function appears to have no unsampled regions.
results of 10 statistical checks for the estimated answer for the tally fluctuation chart (tfc) bin of tally 6

this tally meets the statistical criteria used to form confidence intervals: check the tally fluctuation chart to verify. the results in other bins associated with this tally may not meet these statistical criteria.
estimated asymmetric confidence interval(1,2,3 sigma): 1.2828E-03 to 1.3103E-03; 1.2691E-03 to 1.3240E-03; 1.2554E-03 to $1.3377 \mathrm{E}-03$ estimated symmetric confidence interval(1,2,3 sigma) : 1.2827E-03 to 1.3102E-03; 1.2690E-03 to 1.3239E-03; 1.2553E-03 to 1.3376E-03
fom $=($ histories/minute)*(f(x) signal-to-noise ratio)**2 $=(2.791 \mathrm{E}+04) *(2.987 \mathrm{E}-01) * * 2=(2.791 \mathrm{E}+04) *(8.924 \mathrm{E}-02)=2.491 \mathrm{E}+03$

1status of the statistical checks used to form confidence intervals for the mean for each tally bin
tally result of statistical checks for the tfc bin (the first check not passed is listed) and error magnitude check for all bins
6 passed the 10 statistical checks for the tally fluctuation chart bin result missed all bin error check: 358 tally bins had 64 bins with zeros and 37 bins with relative errors exceeding 0.10
the 10 statistical checks are only for the tally fluctuation chart bin and do not apply to other tally bins.
the tally bins with zeros may or may not be correct: compare the source, cutoffs, multipliers, et cetera with the tally bins.
warning. 1 of the 1 tallies had bins with relative errors greater than recommended.
1tally fluctuation charts

run terminated when 300000 particle histories were done.
computer time $=4.88$ minutes
menpx version 2.5.0 Mon Mar 21 08:00:00 MST 2005 04/07/07 19:54:32 probid= 04/07/07 19:49:22

VITA

Name:	Brian Edward Massingill
Address:	Department of Nuclear Engineering Texas A\&M University 3133 TAMU College Station, TX 77843-3133
Email Address:	bmassingill@ gmail.com
Education:	B.S., Radiological Health Engineering, Texas A\&M University, 2005 M.S., Health Physics, Texas A\&M University, 2007

[^0]: This thesis follows the style of the journal of Health Physics.

