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ABSTRACT 
 
 

The Establishment, Biological Success and Host Impact of Diorhabda elongata, 

Imported Biological Control Agents of Invasive Tamarix in the United States. 

(August 2007) 

Jeremy L. Hudgeons, B.S., Texas Tech University 

Co-Chairs of Advisory Committee: Dr. Kevin M. Heinz 
                   Dr. Allen E. Knutson 

 

 Diorhabda elongata elongata leaf beetles were released at two field locations in 

the upper Colorado River watershed of Texas in 2003 and 2004 for the biological control 

of invasive Tamarix, exotic trees deteriorating riparian ecosystems of western North 

America.  Establishment and biological success were monitored using trees on transects 

from the release points.  D. elongata elongata released at the Lake Thomas site in 

August 2003 successfully overwintered and were recovered in the spring 2004; however, 

beetles were not present after June 2004.  The April 2004 release at Beals Creek led to 

establishment and survival during 2005 and 2006.  Mean abundance increased from less 

than five insects per tree per 2 minute count in August 2004 to more than 40 insects per 

tree per 2 minute count in August 2006.   By then the population was dispersed 

throughout an area of approximately 12 hectares and beetles were present on 100% of 

the 47 trees surveyed, 57% of which were at least 90% defoliated.   

 To measure the impact of beetle defoliation on Tamarix, nonstructural 

carbohydrates (NCHOs) were measured in manipulative field cage experiments in Texas 

and natural experiments in Nevada.  There was no significant difference in NCHOs 
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between trees with versus trees without beetle herbivory in the cage experiment, 

although spring foliage regrowth was reduced by 35% in trees defoliated the previous 

fall.  In Nevada, root crown tissue was sampled in 2005 and 2006 from trees that had 

experienced 0-4 years of defoliation.  In 2005, NCHO concentrations differed between 

tree stands and ranged from 9.0 ± 0.8% (Mean ± SE) in non-defoliated trees to 3.2 ± 

0.4%, 2.1 ± 0.4% and 2.3 ± 0.4% in trees defoliated for 1, 2 and 3 successive years, 

respectively.  NCHO concentrations in 2006 were similar, ranging from 13.6 ± 0.9% in 

non-defoliated trees to 7.6 ± 0.8%, 2.3 ± 0.4%, 1.5 ± 0.3% and 1.7 ± 0.4% in trees 

defoliated for 1, 2, 3 and 4 years, respectively.  The establishment, biological success 

and host impact of D. elongata leaf beetles suggest there is potential for biological 

control of Tamarix in the United States. 
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CHAPTER I 

INTRODUCTION 

Background 

 One of the most serious invasions of a noxious weed within the United States 

involves species of the exotic genus Tamarix L. (Stein and Flack 1996).  Tamarix is one 

of four genera in Tamaricaceae (Tamaricales) and is represented by 54 species, none of 

which occur naturally in the Western Hemisphere (Baum 1967).  The genus arose during 

the Cretaceous Period in the Central Asian deserts (Pakistan – Afghanistan – Iran – 

Turkmenistan – southern Kazakhstan – western China) where it adapted particularly well 

to saline soils of riparian habitats (Kovalev 1995).  The native range of the genus 

extends from its northern extremes in China and Mongolia southward into India, 

circumvents the Mediterranean regions from the Middle East through southern Europe to 

Spain, and across northern Africa and along eastern Africa to southern Africa (Baum 

1978).     

 Tamarix species are woody perennial trees, having a well developed trunk, or 

multi-stemmed shrubs (Baum 1978).  The plants can grow between one and twelve 

meters tall depending on water availability, elevation and species (Everitt 1980).  As 

riparian species, the plants are found in direct association with a stream channel or its 

immediate flood plain, yet they are very adaptable and tolerant of a wide range of 

environmental conditions.  This ability to adapt to variable conditions is in part due to 

________________ 
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Tamarix being facultative phreatophytes, meaning they are able to obtain their water 

from both phreatic (groundwater or capillary fringe of the groundwater table) and vadose 

(unsaturated soil moisture) zones (Smith et al. 1998).  Tamarix are also facultative 

halophytes which are capable of tolerating soluble salt concentrations ranging between 

650 and 16,000 ppm and averaging approximately 6,000 ppm (Carman and Brotherson 

1982, Brotherson and Winkel 1986).  Tamarix can be found at elevations below sea level 

or at elevations above 2000 meters (Everitt 1980).  The plants can propagate sexually 

(via seeds) and vegetatively (Everitt 1980).  Tamarix can produce a prodigious number 

of seeds (up to 500,000 per tree per year) virtually throughout the growing season from 

May to October (Brotherson and Field 1987).  The tiny seeds are equipped with a tuft of 

hair allowing for wind distribution, but may also be carried and deposited along river 

channels by water (Everitt 1980).  In addition, new plants can develop from adventitious 

rooting of submerged or buried stems (Everitt 1980). 

Tamarix Invasion 

 The oldest known references of Tamarix in North America are from a nursery 

catalogs published in New York in 1823 and in California in 1856 (Horton 1964).  

During the early years of its introduction, Tamarix plants were grown as ornamentals, 

planted to create wind breaks, provide shade, and stabilize eroding stream banks (Neill 

1985).  By the 1920s the plants had escaped cultivation and were becoming a serious 

ecological threat (Brotherson and Field 1987).     

 Between eight and twelve species of Tamarix have been introduced into North 

America since the early 1820s (Baum 1967, Crins 1989).  All introduced species except 
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Tamarix aphylla (L.) Karsten are deciduous and commonly referred to as saltcedar or 

tamarisk.  There is some controversy regarding the identity and corresponding native 

range of the majority of invasive Tamarix species (Gaskin and Schaal 2003).  With the 

exception of T. aphylla and Tamarix parviflora De Candolle, most naturalized species 

are difficult to distinguish morphologically (Crins 1989).  The invasion by Tamarix in 

the United States may represent a species complex (Gaskin and Schaal 2003), and this 

complex has invaded over 500,000 hectares of riparian habitat in the western United 

States (Robinson 1965).  Tamarix continues to expand its range as far north as Montana 

and is believed to be capable of extending into the plains of Canada (Pearce and Smith 

2003).  

 Many factors have been attributed to the North American invasion by Tamarix.  

Anthropogenic alterations of western riparian ecosystems including dam and reservoir 

construction, river diversions, flow regulations, native phreatophyte control programs 

and agricultural activity contributed to creating ideal conditions for Tamarix invasion of 

disturbed areas (DiTomaso 1998, DeLoach et al. 2000).  The many innate biological 

characteristics of Tamarix mentioned previously, including its prolific seed production, 

vegetative reproduction capacity, tolerance of wide range of environmental conditions, 

interspecific competition through salt excretion and rapid recovery from fire have also 

contribute to its success as an invasive weed (Brotherson and Field 1987).  Finally, the 

release from natural enemy regulation in North America is hypothesized to aid in the 

Tamarix invasion (DeLoach et al. 1989).   
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 The impacts associated with the Tamarix invasion in North America include their 

damage to native plant communities, effects on wildlife, stream channel modification, 

deterioration to outdoor recreational areas and high water usage.  The ability of Tamarix 

to function as facultative phreatophytes in an arid floodplain has resulted in a shift in 

species composition from native cottonwoods (Populus spp.) and willows (Salix spp.), 

obligate phreatophytes which historically dominated much of the vegetation along 

riparian ecosystems of the arid southwestern United States (Smith et al. 1998).  

Furthermore, Tamarix can utilize high saline groundwater and excrete excess salts 

through leaf glands, which then accumulate on the soil surface.  Excessive deposits of 

salt can reduce the growth or inhibit germination of native non-halophytic species, 

thereby further restricting competition with other understory and overstory vegetation 

for space and water (Brotherson and Field 1987).  As a result, the plants commonly form 

near monotypic stands where they grow and reach densities of 700-1000 plants per 

hectare in some regions (Ellis 1995, Hart et al. 2005).   

 Most wildlife species are adversely affected by the displacement of native 

vegetation by Tamarix.  A few native or naturalized insects thrive on introduced 

Tamarix including the cicada (Diceroprocta apache Davis) and the honey bee (Apis 

mellifera L.) (Horton and Campbell 1974).  The leafhopper (Opsius stactogalus Fieber) 

which was introduced into the US from Eurasia by unknown means can reach high 

population numbers during the growing season.  In general, however, native plant 

communities support a greater diversity of insect life than does introduced Tamarix 

(Neill 1985).  Insect diversity at the family and species level are greatly reduced in 
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Tamarix stands when compared to native willow (Salix interior Rowlee) and seep-

willow (Baccharis salicina Torr. & Gray) stands (Knutson et al. 2003).   

 Measure of total bird density and species diversity are often lower in Tamarix 

stands when compared to native plant communities (Anderson et al. 1977, Kerpez and 

Smith 1987).  Johnson (1987) found that native riparian areas along the Colorado River 

sustained a density of 154 birds per 40 hectares; whereas the Tamarix dominated areas 

sustained only four birds per 40 hectares.  Some obligate riparian bird species can 

successfully utilize Tamarix stands (Ellis 1995).  While the southwestern willow 

flycatcher (Empidonax trailii extimus Phillips) breeds in a diverse array of riparian 

habitats, it now nests extensively in Tamarix in some areas in Arizona (Sogge and 

Marshall 2000).  In 1998, 77.6% of E. t. extimus nests in Arizona were in Tamarix trees 

(Paradzick et al. 1999).  Because E. t. extimus is protected by federal law as an 

endangered species (U.S. Fish and Wildlife Service 1995), the effects of Tamarix 

management on southwestern willow flycatcher populations has raised some concerns in 

terms of conflicts of interest.  DeLoach et al. (2000) have argued that control of Tamarix 

and the subsequent restoration of native plant communities are not expected to 

negatively impact native species (DeLoach et al. 2000); however, monitoring and 

protecting flycatcher populations in Arizona during the restoration process will be 

important.  

 Tamarix stands are used for vegetational cover by some mammal species 

including feral hog (Sus scrofa L.); however, with the exception of woodrats (Neotoma 

spp.) and the desert cottontail (Sylvilagus audubonii Baird), no other native mammal 
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species are known to feed on mature Tamarix plants (DiTomaso 1998).  Thirty-four 

species of fish which are federally listed as either threatened or endangered by the U.S. 

Fish and Wildlife Service occur in areas infested by Tamarix (DeLoach et al. 2000).  

Tamarix degrades fish habitat by reducing water levels, modifying stream morphology 

(see below) and shading.  Removal of Tamarix along one springbrook in Nevada 

increased the density of the endangered desert pupfish (Cyprinodon pecosensis Echelle 

& Echelle) (Kennedy et al. 2005).  

 Alteration in stream hydrology is often caused by the dense stands of Tamarix 

which form on the stream banks.  The dense stands slow river flow which increases 

sedimentation and bank aggradation (Brotherson and Field 1987).  As the river recedes, 

the plants establish themselves further into the channel, reducing normal stream flow and 

exacerbating the process.  The result is a narrowing and deepening of the channel which 

can increase the incidence and severity of flooding (Blackburn et al. 1982).  

Furthermore, invasive Tamarix reduces recreational usage of parks and other outdoor 

areas for boating, camping, hiking, hunting, fishing, wildlife watching and photography 

(DeLoach 1991).  This occurs not only because Tamarix causes declines in species 

diversity but also because the near impenetrable Tamarix stands block access to 

recreational waters. 

 A number of factors affect the volume of water transpired by Tamarix including 

time of season, weather conditions, plant density and size, salinity, soil type and depth to 

water table (Davenport et al. 1982, Devitt et al. 1997, White et al. 2003).  Estimates of 

Tamarix evapotranspiration (ET) vary depending on the method of measurement, study 
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location and length of study (Hays 2003).  Tamarix ET in July varied from 22 to 158 

cubic meters per hectare per day depending on stand density; the latter estimate was 

roughly 2.4 times the ET rate of grass during the same period (Davenport et al. 1982).  

Hays (2003) estimated the May through October growing season water use by Tamarix 

at locations along the Canadian, Colorado and Pecos Rivers in Texas.  Water use varied 

from 39 cubic meters per hectare per day to 210 cubic meters per hectare per day 

depending on depth to groundwater, soil texture, specific yield and stand density (Hays 

2003).  Conservative economic estimates of the impact of water losses to western United 

States municipalities, agriculture and hydropower generation total $280-450 per hectare 

of Tamarix (Zavaleta 2000).  

Control of Invasive Tamarix 

  Tamarix is necessary to begin restoring riparian habitats to their pre-invasion 

conditions in North America.  Various strategies have been employed to manage 

Tamarix including burning, mechanical removal and chemical control.  Control of 

Tamarix by fire is ineffective because Tamarix sprouts readily from below ground 

vegetative structures (Anderson et al. 1977, Busch and Smith 1993).  The ability of the 

Tamarix to reproduce vegetatively from pieces of stems and roots predisposes 

mechanical control through cutting and shredding to be a failure.  Effective mechanical 

control requires removing the root crown from the soil, raking to remove stems and 

burning removed material (McDaniel and Taylor 2003).  A second mechanical clearing 

is often needed to reach satisfactory control; the combined treatments are labor intensive 

and costly, exceeding $1000 per hectare (McDaniel and Taylor 2003).  Chemical control 



 8

of Tamarix has historically been unsatisfactory (Stevens and Walker 1998, Duncan and 

McDaniel 1998).  However, recent research indicates that the herbicide imazapyr 

(Arsenal™, BASF, Ludwigshafen am Rhein, Germany) applied alone (1.12 kg a.i./ha) or 

in combination with glyphosate (Rodeo™ or Roundup™, Monsanto, St. Louis, MO, 

USA) (0.56+0.56 kg a.i./ha of imazapyr and glyphosate) provides more than 84% 

mortality of Tamarix (Duncan and McDaniel 1998, Hart et al. 2005).  Large scale 

herbicide treatments using imazapyr are now underway along the Pecos and Colorado 

River systems in Texas (Hart et al. 2005, McGinty et al. 2006).  However, chemical 

control alone is not desirable for several reasons including (1) its ability to kill non-

target plant species makes chemical treatment in highly mixed vegetation difficult, (2) its 

less than complete effectiveness allows potential re-infestation of a treated area and (3) 

the economic costs prohibit repetitive treatment applications. 

Biological Control of Tamarix 

 To help combat the Tamarix invasion, the United States Department of 

Agriculture –Agricultural Research Service (USDA-ARS) initiated an importation 

biological control research program in the late 1960s by directing overseas surveys to 

identify potential control agents (DeLoach et al. 2003).  Pre-release natural enemy 

evaluations were conducted at the USDA-ARS Arthropod Containment Facility at 

Temple, Texas starting in 1986 (DeLoach et al. 2000).  Classical biological control of 

invasive plants is the importation and release of exotic insects, mites or pathogens for the 

purpose of reducing the vigor, reproductive capacity, or density of weeds.  The premise 

behind classical biological control is that natural enemies limit population growth of 
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their target plants in native regions and the introduction of these enemies will therefore 

limit the population growth of the invasive species in introduced areas.  Overseas 

surveys list more than 300 species of insects and other arthropods that feed on Tamarix 

in its native range; only five of these Tamarix feeding arthropods have been introduced 

into the US by unknown means, none of which are providing substantial natural control 

(DeLoach et al. 2003).  The high ecological threat of Tamarix, the lack of taxonomically 

related plants in North America, the abundance of host-specific and damaging insects 

that attack Tamarix in its native range and the lack of natural enemies in its invasive 

range make the weed an ideal candidate for biological control.   

 Biological control of Tamarix is not expected to be rapid.  Successful control at 

given sites will probably require the introduction of several agents and 5 to 10 years 

time; successful control may not be possible in all invaded areas (DeLoach 1996).  

Impacts to non-targets are also a concern in Tamarix biological control.  Host range 

testing of a potential biological control agent is necessary to ensure important native and 

agricultural plants are not damaged (see below).  And as mentioned previously, any 

control of Tamarix in Arizona will necessitate protecting E. t. extimus populations. 

Biological Control Agents 

 The leaf beetle Diorhabda elongata (Brullé) sensu lato (Coleoptera: 

Chrysomelidae) is one of the first biological control agents investigated in the USDA-

ARS biological control program.  Populations of D. elongata are found throughout most 

of the native range of Tamarix.  Populations of D. elongata collected to date for study 

within the biological control program originate from Turpan and Fukang, Xinjiang 
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Province, China; Chilik, Kazakhstan; Sfax, Tunisia; Sfakaki, Crete and Kalandra, 

Greece; and Karshi (Qarshi), Uzbekistan, (DeLoach et al. 2003, Milbrath and DeLoach 

2006b).  The broad geographic distribution of D. elongata in the Old World is expected 

to translate to populations which can adapt to geographic conditions at release areas in 

North America.     

 The biology of Diorhabda elongata (Brullé) deserticola Chen has been described 

in detail (Lewis et al. 2003b).  The adult and all three larval instars feed on the foliage of 

Tamarix.  When fully grown, the third instar larvae crawl or drop to the ground and 

pupate in the underlying leaf litter.  The adult stage overwinters in the leaf litter and 

becomes active coincident with Tamarix budbreak in the spring.  Female lifetime 

fertility average 194 eggs; females glue the eggs to the host foliage singly or, more 

typically, in masses ranging from two to twenty (Lewis et al. 2003b).  In its native range, 

D. elongata deserticola herbivory can cause heavy to complete defoliation of Tamarix 

(DeLaoch et al. 2003).   

 Host range studies confirmed that D. elongata deserticola is sufficiently host-

specific to the genus Tamarix.  Of native North American plants, those nearest related to 

Tamarix are six species of Frankenia (family Frankeniaceae: order Tamaricales) which 

occur mostly in the desert areas of the southwestern United States and northern Mexico 

(Whalen 1980, Whalen 1987); besides the native Frankenia and the introduced Tamarix, 

no other plant species within the order Tamaricales are found in North America.  

Laboratory and field trials demonstrated that D. elongata deserticola survival from 

larvae to adult is significantly reduced on Frankenia and that these plants are poor hosts 
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for the agent (DeLoach et al. 2003, Lewis et al. 2003a).  Other native and agricultural 

plants included in the tests did not support larval development (DeLoach et al. 2003).    

 Due to its broad geographic range in the Old World, presumed adaptability in the 

United States, ability to defoliate trees in natural conditions and high host specificity, 

Diorhabda elongata deserticola was recommended for the biological control of Tamarix 

in 1994 (DeLoach 1994, DeLoach et al. 2003).  The USDA-Animal and Plant Health 

Inspection Service (APHIS) issued permits for release of this agent into field cages in 

1999 (DeLoach et al. 2003).  Subsequently, APHIS issued permits for limited open field 

releases at ten research sites in six western states (California, Nevada, Utah, Wyoming, 

Colorado and Texas), and the first releases were made at eight of these sites in May and 

June 2001 (DeLoach et al. 2003). 

Evaluation of Biological Control Agent 

 Harris (1991) divides the progress of a biological control program into four steps: 

establishment, biological success, host impact and control success.  Harris (1991) 

defines establishment as the recovery of the biological control agent for at least two 

years following its release into the open field.  Biological success is a measure of 

resource use by the agent in relation to the resource available.  An agent that remains 

rare and consumes little of its host resources in relation to available resources contributes 

little to control and is considered a failure.  Host impact is a measure of the decrease of 

reproduction or biomass of the weed at sites where the agent is established.  Control 

success relates to the objectives of the project and can reflect environmental, economic 

and human values in addition to the impact of control on weed density.      
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 The establishment of natural enemies following their release is the first step to a 

successful classical biological control program.  D. elongata deserticola from Fukang, 

China (latitude 44.16°N, longitude 87.98°E) and Chilik, Kazakhstan  (latitude 43.33°N, 

longitude 78.25°E) was the first biological control agent investigated at the APHIS 

approved sites.  The beetles successfully overwintered at sites north of the 38th parallel, 

but the beetles failed to overwinter at the two most southern sites near Hunter-Liggett 

Military Base, California (latitude 35.95°N, longitude 121.30°W) and Seymour, Texas 

(latitude 33.58°N, longitude 99.26°W).  Investigators determined that the most probable 

cause of the failure to overwinter was the shorter summer daylength at the southern sites 

(Lewis et al. 2003b, Bean et al. 2007).  The maximum summer daylengths at Fukang, 

China and Chilik, Kazakhstan are at least 15h 20min, whereas the maximum summer 

daylengths at the California and Texas sites are less than 14h 40min which was 

determined to be a critical photoperiod for these beetle populations (Bean et al. 2007).  

The shorter daylength induced the beetles to enter diapause in July at the southern sites; 

as a consequence, the beetles exhausted their fat reserves during fall and winter and 

starved before Tamarix foliage appeared in March (Lewis et al. 2003b).   

 More southern populations of Diorhabda elongata sensu lato have shorter 

critical photoperiods for diapause induction (Bean et al. 2004), and thus are more likely 

to establish at release sites in more southern latitudes in North America.  Diorhabda 

elongata elongata (Brullé) from Crete, Greece (latitude 35°15’N, longitude 24.6°E) has 

since been approved for release in the United States.  Under natural conditions, the 

critical photoperiod for diapause induction in D. elongata elongata is approximately 12 
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hours (Bean et al. 2004).  The first objective of our study is to evaluate the establishment 

and biological success of D. elongata elongata at release sites within the upper Colorado 

River watershed in Texas. 

 Once established and biologically successful, the biological control agent must 

exert enough herbivore pressure on the target weed to decrease its biomass or 

reproductive capacity. Leaf-chewing chrysomelid beetles have been used with great 

successes in biological control programs (Crawley 1989).  Within ten years of its 

introduction in 1946, Chrysolina quadrigemina (Suffrian), and to a lesser degree, 

Chrysolina hyperici (Förster), reduced klamath weed, (Hypericum perforatum L.) 

abundance to less than one percent of its former occurrence in California with a 

concurrent increase in native grasses (Huffaker and Kennett 1959).  Herbivory by 

Calligrapha pantherina Stål has provided substantial to complete control of spinyhead 

sida (Sida acuta Burman f.) in coastal regions of Australia (Flanagan et al. 2000).     

 Some workers have proposed that leaf-chewing insects have been successful 

biological control agents because the removal of photosynthetic tissue by defoliation 

reduces the ability of plants to maintain growth and vigor.  The biological control of 

perennial woody plants such as Tamarix is thought to be more difficult.  The large food 

reserves of woody plants often enable them to re-foliate after herbivory by defoliating 

insects.   However, several examples of successful biological control of woody plants 

have been reported.  The leaf beetle Metrogaleruca obscura Degeer and the eurytomid 

gall wasp Eurytoma attiva Burks have successfully controlled the woody shrub, black 

sage (Cordia macrostachya (Jacquin)) in Mauritius (Fowler et al. 2000) and Maylasia 
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(Simmonds 1980).  The leguminous, woody tree Sesbania punicea (Cav.) Benth has 

been successfully controlled in South Africa by the combined effects of three introduced 

weevil species: Trichapion lativentre (Beguin-Billecocq) which primarily destroys 

flower buds, Rhyssomatus marginatus Fahraeus which destroys the developing seeds, 

and Neodiplogrammus quadrivittatus (Oliver) whose larvae bore into the trunk and 

stems (Hoffman and Moran 1998).  Though three insect species combined to control 

Sesbania punicea, Hoffman and Moran (1998) emphasize that it is the impact the agents 

have on the target weed rather than the quantity of insect species that ultimately holds 

the key to reductions in host plant densities. 

 Tamarix biological control workers have observed D. elongata to completely 

defoliate Tamarix trees.  However, the consequences of D. elongata herbivory on 

Tamarix growth and vigor are largely unknown.  To recover from defoliation, plants 

need adequate carbohydrate reserves to regenerate new leaf tissue (Loescher et al. 1990, 

Chapin et al. 1990).  Furthermore, stored carbohydrates serve important roles in 

metabolism, growth, development of cold hardiness, defense and the survival of woody 

plants (Kozlowski 1992).  Maintenance respiration in living cells when photosynthesis is 

low or has stopped due to defoliation or deciduousness is dependent on adequate 

carbohydrate reserves, as is new spring leaf growth in all deciduous species (Loescher et 

al. 1990, Kozlowski 1992).  Thus a reduction in carbohydrate reserves in Tamarix by D. 

elongata defoliation could lower plant growth and vigor. 

 The removal of photosynthetic tissue by defoliation lowers carbohydrate storage 

reserves in plants.  Reduction in carbohydrate reserves following artificial defoliation of 
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eight salt-desert shrub species may be the result of continued respiration, reduction in 

photosynthesis and the use of reserves in producing regrowth (Trlica and Cook 1971).  

Reserve carbohydrates were reduced while supporting new leaf growth following 

artificial defoliation of honey mesquite (Prosopis glandulosa Torr.) (Cralle and Bovey 

1996).  Contrary to these results, the transient effects on carbohydrate reserves and the 

rapid recovery of growth revealed the tolerance of healthy stands of hybrid poplar 

(Populus X canadensis cv Eugeneii) to outbreaks of the defoliating gypsy moth 

(Lymantria dispar L.) (Kosola et al. 2001).  Whether Tamarix will show a similar 

pattern in carbohydrate reserves and regrowth following defoliation by D. elongata 

needs to be investigated. 

 Diorhabda elongata deserticola has established at northern release sites in the 

United States.  Evaluating the establishment, dispersal and biological success of 

Diorhabda elongata elongata at release sites in Texas will aid in understanding the 

adaptability of the beetle to habitats invaded by Tamarix in the southern regions of the 

United States.  Further, monitoring the effects of D. elongata sensu lato defoliation on 

Tamarix carbohydrate reserves and regrowth will indicate the degree of host impact the 

agent has on the target weed.  These studies will give insight to the potential for control 

success of Tamarix in the United States. 
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Research Objectives 

 This study focused on evaluating the efficacy of Diorhabda elongata (Brullé) 

sensu lato leaf beetles as biological control agents against Tamarix in the United States.  

The specific objectives were to (1) evaluate establishment and biological success from 

releases of Diorhabda elongata elongata (Brullé) which were made in the upper 

Colorado River watershed of Texas during 2003 and 2004 and (2) measure host impact 

by quantify the effects of D. elongata elongata and D. elongata deserticola defoliation 

on Tamarix carbohydrate reserves and regrowth from trees in field cage and natural 

experiments conducted between 2004 and 2006 in Texas and Nevada. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 17

CHAPTER II 

ESTABLISHMENT AND BIOLOGICAL SUCCESS OF 

Diorhabda elongata elongata ON INVASIVE Tamarix IN TEXAS 

Introduction 

 One of the most serious invasions of a noxious weed within the United States 

involves species of the exotic genus Tamarix L. (Tamaricales: Tamaricaceae) (Robinson 

1965, Stein and Flack 1996, DeLoach et al. 2000).  Tamarix species are woody perennial 

trees or multi-stemmed shrubs native to arid riparian habitats of Eurasia and Africa 

(Baum 1978).   Tamarix are facultative phreatophytic (capable of obtaining water from 

both the phreatic and vadose zones) (Smith et al. 1998) and facultative halophytic 

species (capable of tolerating soluble salt concentrations ranging between 650 and 

16,000 ppm) (Carman and Brotherson 1982, Brotherson and Winkel 1986).  The plants 

are able to produce a prodigious number (up to 500,000 per tree per year) of tiny seeds 

throughout the growing season which are equipped with a pappus allowing for wind 

distribution, but may also be carried and deposited along river channels by water 

(Brotherson and Field 1987, Everitt 1980). 

 The oldest known references of Tamarix in North America are from nursery 

catalogs published in New York in 1823 and in California in 1856 (Horton 1964).  

During the early years of its introduction, Tamarix trees were grown as ornamentals, 

planted to create windbreaks, provide shade, and stabilize eroding stream banks (Neill 

1985).  By the 1920s Tamarix species had escaped cultivation and were becoming a 

serious threat to arid riparian ecosystems in North America (Brotherson and Field 1987).  
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Between 8 and 12 species of Tamarix have been introduced into North America since 

the early 1820s (Baum 1967, Crins 1989).  All introduced species except Tamarix 

aphylla (L.) Karsten (athel trees) are deciduous and commonly referred to as saltcedar or 

tamarisk.  The invasion by Tamarix in the United States represents a complex of 4 to 6 

species and their hybrids (Gaskin and Schaal 2003), and this complex has invaded over 

500,000 hectares of riparian habitat in the western United States (Robinson 1965).  

Tamarix continues to expand its range south into northern Mexico (González y Aldape 

1991) and as far north as Montana and may be capable of extending into the plains of 

Canada (Pearce and Smith 2003).  

 The negative effects of the Tamarix invasion far exceed the desirable qualities 

associated with their original introduction and cultivation.  The plants commonly form 

monotypic stands where they grow and reach densities of 700-1000 plants per hectare in 

some regions (Ellis 1995, Hart et al. 2005).  In most cases, faunal diversity is reduced in 

Tamarix stands when compared to native vegetation (Anderson et al. 1977, Kerpez and 

Smith 1987, Knutson et al. 2003).  Furthermore, the dense stands along river banks and 

floodplains can result in increased sedimentation and bank aggradation (Brotherson and 

Field, 1987), a narrowing of the channel with increased incidence of flooding 

(Blackburn et al., 1982) and a lowering of water tables (Smith et al. 1998).  

 To help combat the Tamarix invasion, the United States Department of 

Agriculture – Agricultural Research Service (USDA-ARS) initiated an importation 

biological control research program in the late 1960s by directing overseas surveys to 

identify potential control agents (DeLoach et al. 2003).  Pre-release natural enemy 
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evaluations were conducted at the USDA-ARS Arthropod Containment Facility at 

Temple, Texas starting in 1986 (DeLoach et al. 2000). One result of this program was 

the pre-release screening and approval for release of Diorhabda elongata (Brullé) sensu 

lato (Coleoptera: Chrysomelidae) (DeLoach et al. 2003).  The adult and all three larval 

instars feed on the foliage of Tamarix.  When fully grown, the third instar larvae crawl 

or drop to the ground and pupate in the underlying leaf litter.  Two and sometimes three 

generations can be produced in North America, prior to entrance of adults into 

reproductive diapause in response to shortened daylength (Bean et al., 2007).  The adult 

stage overwinters in the leaf litter and becomes active around spring budbreak.  Females 

oviposit 128 - 280 eggs in masses (3-8 eggs per mass) on the host foliage (Lewis et al. 

2003, Milbrath et al. 2007).  In its native range, D. elongata herbivory can cause heavy 

to complete defoliation of Tamarix (DeLoach et al. 2003). 

 The establishment of a natural enemy following its release is the first step for a 

successful classical biological control agent.  Diorhabda elongata deserticola Chen from 

near Fukang, China (ca. 50 km NNE of Urumqi, latitude 44.16°N, longitude 87.98°E, 

elevation 567 m) and near Chilik, Kazakhstan (120 km ENE Almaty, latitude 43.33°N, 

longitude 78.25°E, elevation 662 m) successfully overwintered in the U.S. at sites north 

of the 38th parallel, but the beetles failed to overwinter at the two most southern sites: 

near Hunter-Liggett Military Base, California (latitude 35.95°N, longitude 121.30°W) 

and at Seymour, Texas (latitude 33.58°N, longitude 99.26°W).  Investigators determined 

that the most probable cause of the failure to overwinter was the shorter summer 

daylength at the southern sites (Lewis et al. 2003, Bean et al. 2007).  The shorter 
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summer daylength induced the beetles to enter diapause in early summer at the southern 

sites; as a consequence, the beetles exhausted their metabolic reserves during fall and 

winter and starved before Tamarix foliage appeared in March (Lewis et al. 2003).   

 Subsequently, Diorhabda elongata elongata (Brullé) from Crete, Greece 

(latitude 35°15’N, longitude 24.6°E) was imported into the United States.  This southern 

adapted species has shorter critical photoperiod requirements for diapause induction 

(Bean et al. 2004), and thus is more likely to establish at release sites in more southern 

latitudes in North America.   The objective of this study is to measure the establishment 

and biological success of the leaf beetle Diorhabda elongata elongata at two sites within 

the upper Colorado River watershed in northwestern Texas.  Establishment was defined 

as the recovery of the biological control agent for at least 2 years following its release 

into the open field and biological success is the measure of resource use by the agent in 

relation to the resource available (Harris 1991).  Biological success was determined by 

assessing the frequencies of Tamarix trees occupied and defoliated by D. elongata 

elongata.  In addition to establishment and biological success, measures of dispersal 

distances and rates were calculated at the release sites. 

Materials and Methods 

Species Released   

 The insects released in this study originated from approximately 200 adults 

collected on Tamarix species 3km west of Sfakaki, Crete, Greece (latitude 35.38°N, 

longitude 24.6°E, elevation 7m) in April 2002.  Insects were identified as Diorhabda 

elongata elongata (Brullé) by I.K. Lopatin (Professor, Byelorussian University, Minsk, 
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Belarus).  The beetles were exported from Crete to the USDA-ARS Exotic and Invasive 

Weed Research Unit quarantine facility at Albany, California.  Beetles (eggs and adults) 

were subsequently sent to the USDA-ARS Arthropod Containment Facility at Temple, 

Texas and maintained on cultivated Tamarix in lab and field cages in Temple since June 

2002.  Field cages measured 3.5 m by 2.8 m by 2.6 m high and were covered by 32 X 32 

woven high-density polyethylene fabric insect screening (PAK Unlimited Inc., Cornelia, 

GA).  In July 2003, APHIS approved limited open field releases of D. elongata elongata 

in Texas.  Subsequently, field cages were erected over individual Tamarix trees in 

Borden and Howard counties in July of 2003 in order to rear and amass D. elongata 

elongata insects for open field releases within the upper Colorado River watershed.   

Release Sites 

 D. elongata elongata were released at two sites termed “Lake Thomas” and 

“Beals Creek”, both located within the upper Colorado River watershed (Fig. 1).  The 

Lake Thomas site is on the western end of Lake J. B. Thomas in Borden County, Texas.  

The current drought affecting the area has reduced the lake’s storage to below 20% of its 

24,600 ha-m (200,000 acre-ft) capacity and much of the former lake bottom has been 

invaded by Tamarix trees.  The first open field release of D. elongata elongata in Texas 

was made at this site (latitude 32.60° N, longitude 101.21° W, elevation 677 m) on 21 

August 2003 (Table 1).  Soil samples collected from the surface to 15 cm (6 in) deep 

were analyzed by the Soil, Water and Forage Testing Laboratory at Texas A&M 

University (College Station, Texas) and found to be 40% clay, 50% silt and 10% sand.  

The vegetation at this site consists primarily of Tamarix species or hybrids (3-6 m in 



 22

height), willow baccharis (Baccharis salicina Torr. and Gray), Chloracantha spinosa 

(Benth.) Nesom and Lippia nodiflora (L.) Michx. with lesser amounts of Bermuda grass 

(Cynodon dactylon (L.) Pers.) and western ragweed (Ambrosia psilostachya DC.).  On 

the fringe of the site and occasionally in the site, there were honey mesquite (Prosopis 

glandulosa var. glandulosa Torr.) and willow trees (Salix nigra Marsh.). 

 The second release location, Beals Creek, is 9km ESE of Big Spring (latitude 

32.25° N, longitude 101.38° W, elevation 714 m) in Howard County, Texas.  The site is 

on private land and within the flood plain of Beals Creek, a tributary of the Colorado 

River.  Soil samples were also collected and analyzed at this site as previously described 

and were found to be 63% sand, 31% silt, 6% clay. The dominant vegetation at Beals 

Creek is Tamarix species or hybrids (3-6 m in height), P. glandulosa, alkali sacaton 

(Sporobolus airoides Torr.), and saltgrass (Distichlis spicata var. stricta (L.) Greene) 

with lesser amounts of B. salicina and iodinebush (Allenrolfea occidentalis (Wats.) 

Kuntze).  There is also some C. dactylon in patches and an occasional thicket of 

Berlandier’s wolfberry (Lycium berlandieri Dunal).  

 All releases were made by the USDA-ARS and Texas A&M University in 

cooperation with the Colorado River Municipal Water District.  Dates and number of 

insects released at each site are summarized in Table 1.  Voucher specimens of D. 

elongata elongata were deposited to the Texas A&M University Insect Collection, 

College Station, Texas (under lot no. 663). 
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Insect Sampling 

 Transects were established along sixteen directions radiating out 200 m from the 

release point at each site.  At 20 m intervals along each transect, the numbers of D. 

elongata elongata egg masses, larvae and adults were censused from a single Tamarix 

tree during a two-minute visual inspection of tree branches accessible from the ground 

by the census taker.  Percent tree defoliation was also estimated by visual observation.  If 

a tree did not occur at the 20 m mark along the transect, the nearest tree within 10 m in  

any direction was inspected.  In cases where Tamarix trees were absent along a transect, 

no data were collected.  Census data were entered into a GeoExplorer3 datalogger 

(Trimble, Sunnyvale, CA) and subsequently imported into a geographic information 

system (ESRI ArcView GIS 9.0, Redlands, CA) for observational analysis.  Following 

transect establishment, surveys were generally conducted monthly between May and 

September during 2004 and 2005.  Exceptions occurred when sites were inaccessible due 

to flooding or when logistical constraints prevented sites from being visited.  The Beals 

Creek site was sampled on two additional dates in 2006. 

 For each census date, we report the total abundance of all D. elongata elongata 

life stages present (egg masses + larvae + adults) per all trees surveyed per 2 minute 

count.  To determine whether insect abundance differed between the same months of 

successive years, the mean number of insects per tree among those months sampled 

more than once were examined using a Kruskal-Wallis nonparametric one-way analysis 

of variance (ANOVA) followed by a nonparametric multiple comparison test (SPSS 

11.5, Chicago, Illinois).    
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 The distance (D) from the release point for each observed D. elongata elongata 

insect stage was calculated by the Pythagorean theorem: D = 
2

21
2

21 )y-(y  )x-(x + .  In 

this equation, (x1 = 0, y1 = 0) is the position of the release tree and (x2, y2) is the position 

of the tree where the insect was observed.  The mean dispersal distance for the 

population was calculated by summing the dispersal distances of all observed insects and 

dividing by the sum total of observed insects in each census.  The maximum distance 

from the release point for an individual insect was noted in each census. The annual rate 

of dispersal for the population was calculated as the difference in mean dispersal 

distances per consecutive August and May months and is reported as meters per year.  

The relative frequency of transect trees occupied by D. elongata elongata at each 

sampling date was the number of trees with at least one insect stage divided by the 

number of trees surveyed.  The relative frequency of defoliated transect trees was the 

number of trees more than 90% defoliated divided by the number of trees surveyed.  In 

August of each year, the area occupied by defoliated trees within the Tamarix stand was 

mapped and calculated by circumnavigating this area with the GeoExplorer3 datalogger.  

Also, the number of trees within this area which were more than 90% defoliated was 

estimated.  

Results 

Lake Thomas 

 Before transects were established at Lake Thomas, preliminary surveys were 

conducted on the release tree and 19 surrounding trees in April and May 2004 to 

measure overwintering survival of beetles released the  previous August.  In April 2004, 
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D. elongata elongata egg masses, larvae and adults were found on 12 of the 20 surveyed 

trees (Table 2).  Though census numbers were lower in May 2004, all stages of D. 

elongata elongata were found.  Transects were established and 65 trees, including the 

release tree, were surveyed again in June 2004.  Two adults were found on the release 

tree and two larvae and two adults were found on one tree 20 m from the release tree.  

Despite two additional releases of approximately 1000 adults at the original release tree 

in July (Table 1), five subsequent surveys through July, 2005 at Lake Thomas failed to 

recover any D. elongata elongata (Table 2). 

 The positions of the surveyed trees were not accurately recorded at the time of 

the initial surveys at Lake Thomas, thus mean dispersal distances could not be calculated 

for the D. elongata elongata insects found in April and May 2004.  All 20 trees were 

within approximately 30 m of the site release tree, and thus 30 m is the estimated 

maximum dispersal distance at Lake Thomas. 

Beals Creek 

 D. elongata elongata were released at Beals Creek in April and July 2004 (Table 

1) at three locations. The locations of these releases were within an estimated 50 m of 

each other and on the western front of the Tamarix stand.  By mid-July 2004, D. 

elongata elongata larvae and adults had defoliated two abutting Tamarix trees within 20 

m of a field cage that was being used to rear beetles.  Due to the concentration of D. 

elongata elongata at these two defoliated trees, this site was selected as the release point 

and origin of the transects. The location of the two defoliated trees on the western edge 
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of the Tamarix stand resulted in a less than perfect center release scenario with only 

eastern transects available for survey. 

 Forty-seven trees that fell on the transects were surveyed during each census.  D. 

elongata elongata were recovered during every census over the next two years.  Mean 

abundance of D. elongata elongata per tree per 2 min count at Beals Creek is 

summarized in Fig. 2.  Following each overwintering period, D. elongata elongata 

abundance was low during the May censuses, but numbers increased by late summer of 

each year.  The mean abundance in May 2006 was significantly higher than the mean 

abundance in May 2005 (χ2 = 5.74; df = 1; P = 0.02).  Similarly, the mean abundance in 

August 2006 was significantly higher than mean abundance in August 2005 which was 

significantly higher than mean abundance in August 2004 (χ2 = 61.10; df = 2; P < 

0.001). 

 The mean and maximum dispersal distances of the D. elongata elongata 

population at the Beals Creek release site are summarized in Table 3.  The positions of 

the trees surveyed are illustrated in Fig. 3.  The mean dispersal distance of the population 

generally increased during the census period.  There was a slight retraction of the mean 

dispersal distance from October 2004 to June 2005 due in part to the low number of D. 

elongata elongata insects observed during the spring 2005 surveys.  By August 2005, 

the mean dispersal distance of the D. elongata elongata population was approximately 

55 ± 1.3 m from the release point, and insects were observed on the furthest transect tree 

surveyed, or 221 m from the release point (Fig. 3).  By August 2006, the mean dispersal 

distance of the population was 128 ± 1.5 m from the release point.  Seven random trees 
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were chosen to supplement the final survey.  D. elongata elongata insects were observed 

on six of the seven trees, the furthest tree being located 375 m from the release point.  

Between August 2004 and August 2005, the D. elongata elongata population dispersed 

at a rate of 28 meters per year.  Between May 2005 and May 2006 the rate of dispersal 

was 49 meters per year.  Between August 2005 and August 2006 the rate of dispersal for 

the population had increased to 73 meters per year. 

 The majority of tree defoliation occurred in late summer and early fall when 

insect abundance was reaching its peak (Table 3).  In August 2005, one year following 

the release, D. elongata elongata insects were present on 62% of the trees surveyed, and 

21% of the surveyed trees were at least 90% defoliated (Table 3).  Considering the entire 

Tamarix stand, an estimated 100 trees in a 0.4 hectare zone were at least 90% defoliated 

at this time.  Though the defoliated trees generated new foliage in the spring of 2006, D. 

elongata elongata returned to defoliate the same trees later in the season.  By August 

2006, D. elongata elongata insects were observed on all 47 trees surveyed, 57% of 

which (27 trees) were at least 90% defoliated.  The beetle population occupied at least 

12 ha of the tree stand, and an estimated 400 trees covering 2 hectares nearest the release 

point were at least 90% defoliated.   Figure 3 illustrates the defoliated area mapped 

during each August survey from 2004 to 2006. 

Discussion 

 Harris (1991) divides the progress of a biological control agent into four steps: 

establishment, biological success, host impact and control success.  Establishment is 

defined as the recovery of the biological control agent for at least 2 years following its 
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release into the open field (Harris 1991).  Biological success is a measure of resource use 

by the agent in relation to the resource available.  An agent that remains rare and 

consumes little of its host resources in relation to available resources contributes little to 

control and is considered a failure.  Host impact is a measure of the decrease of 

reproduction or biomass of the weed at sites where the agent is established.  Control 

success relates to the objectives of the project and can reflect environmental, economic 

and human values in addition to the impact of control on weed density. 

 Using the definition of establishment as the recovery of an agent for at least 2 

years following its open field release (Harris 1991), Diorhabda elongata elongata 

established at one of two release sites in the upper Colorado River watershed.   Though 

D. elongata elongata survived a winter at Lake Thomas, as can be attested by the 

presence of all life stages on trees the following April 2004, the population quickly 

declined as the season progressed, and no life stages were recovered past June 2004.  

Following their release in April and July 2004, a population of D. elongata elongata 

established at Beals Creek as adults survived two winters and were recovered during 

every survey through August 2006.    

 Aggregation behavior of the beetles may have played a part in the successful 

establishment at Beals Creek.  Following three small releases totaling approximately 200 

adults in the spring and early summer of 2004, two abutting trees were completely 

defoliated by D. elongata elongata in July.  Though the defoliated trees were 50 m from 

where beetles were earlier released, they were within 20 m of the nursery cage used to 

rear beetles at the site.  We surmise that adults in the open field were attracted to 
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chemical cues emitted from the caged insects and congregated and laid large numbers of 

eggs in the two Tamarix trees closest to the nursery cage.  The absence of a nursery cage 

with beetles at Lake Thomas, where beetles failed to establish, supports this hypothesis. 

The tendency of conspecifics to aggregate following dispersal was noted in introductions 

of the chrysomelid beetle Galerucella calmariensis for the control of purple loosestrife 

(Lythrum salicaria) (Grevstad and Herzig, 1997).  The authors suggested the possibility 

that the beetles may aggregate to ameliorate Allee effects such as predator dilution and 

increased availability of mates.  Herzig and Root (1996) found that males of the 

chrysomelid beetle Trirhabda virgata colonized occupied patches of its goldenrod host 

(Solidago altissima) more frequently than unoccupied patches, suggesting that males 

aggregate to find mates. 

 The possibility of aggregation behavior in D. elongata elongata is further 

supported by the recent demonstration of an aggregation pheromone isolated from D. 

elongata deserticola.  Cossé et al. (2005) analyzed volatiles collected from feeding male 

and female D. elongata deserticola adults and found two components produced almost 

exclusively by males.  Subsequent field tests in their study demonstrated that males and 

females were attracted in roughly equal numbers to synthetic blends of the components 

indicating an aggregation pheromone produced by feeding males.  Development of a 

synthetic Diorhabda aggregation pheromone and delivery system may improve the 

retention of adult populations of D. elongata elongata and the establishment rates at 

future release sites. 
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 Though our survey methods were not intended to accurately estimate the number 

of beetles at the site, census data at Beals Creek is indicative of high mortality between 

fall and spring.  However, the D. elongata elongata population experienced significant 

growth during the summer months, and the population grew each successive year.  

Beetle abundance in August 2006 was almost three and ten times greater than 

abundances in August 2005 and 2004, respectively.  Furthermore, census data suggest 

that the D. elongata elongata population is dispersing at an increasing rate.  From 

August 2004 to August 2005 and from August 2005 to August 2006, the population 

dispersed at average rates of 28 and 73 meters per year, respectively.  However, this may 

be a conservative estimate of the population dispersal as it is based solely on census data 

from the 47 transect trees.  By August 2006, D. elongata elongata could be found in 

trees along the periphery of the 12 ha Tamarix stand and in trees along Beals Creek, all 

of which were beyond the surveyed transect trees.  These results suggest the beetles 

occupied at least 12 ha just 2 years following their release.  The defoliated area had 

expanded to more than 2 ha and included an estimated 400 trees.  Results from an aerial 

image taken on 19 September, 2006, reveal that Tamarix trees scattered about 7 ha 

around the release point were completed defoliated.  Also, on 3 November 2006, adult 

and larvae D. elongata elongata were found on trees upstream on Beals Creek, the 

furthest insects being 1.7 km WNW of the release point.  The relative frequencies of 

Tamarix trees occupied and defoliated by D. elongata elongata and the dispersal of the 

population give an indication as to the biological success of the beetle population at 

Beals Creek.   
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 Increasing rates of expansion and major defoliation events have occurred at 

northern sites where D. elongata deserticola has been released.  One year following a 

release near Lovelock, Nevada in 2001, D. elongata deserticola defoliated Tamarix trees 

covering 2 ha; the area of defoliation expanded to an estimated 120 ha of trees by the 

end of the 2003 growing season (Tom Dudley, Marine Science Institute, UC Santa 

Barbara, personal communication).  Remote sensing assessment at the Lovelock release 

site estimated 1800 ha and 8100 ha of defoliated Tamarix by June 2004 and September 

2005, respectively (Geraci 2006).  Similarly, one year following a release near Moab, 

Utah in 2004, D. elongata deserticola defoliated an estimated 0.8 ha of Tamarix; the 

defoliated area had expanded to an estimated 44 ha by August 2006 (Swedhin et al. 

2006).            

 This study is the first to document the successful establishment and biological 

success of D. elongata elongata in the United States.  D. elongata elongata adults from 

the Beals Creek population were captured and re-released at 15 sites in 10 west Texas 

counties during the summer of 2006 as part of a Texas Cooperative Extension Tamarix 

integrative pest management program (Knutson et al. 2006).  Results from these releases 

will further elucidate the potential for D. elongata elongata establishment in Texas.  If 

defoliation by D. elongata elongata results in significant host impact in terms of 

reducing weed biomass or abundance at Beals Creek, there is promise for biological 

control success of Tamarix by D. elongata elongata at this site. 
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CHAPTER III 

DEFOLIATION BY INTRODUCED Diorhabda elongata LEAF BEETLES 

REDUCES CARBOHYDRATE RESERVES AND REGROWTH OF Tamarix 

Introduction 
 

 One of the most serious invasions of a noxious weed within the United States 

involves species of the exotic genus Tamarix L. (Tamaricales: Tamaricaceae) (Stein and 

Flack 1996, DeLoach et al. 2000).  Tamarix species are woody perennial trees or multi-

stemmed shrubs native to arid riparian habitats of Eurasia and Africa (Baum 1978).  

Between 8 and 12 species of Tamarix have been introduced into North America since 

the early 1820s (Baum 1967, Crins 1989).  During the early years of its introduction, 

Tamarix trees were grown for a multiple purposes including: as ornamentals, for 

windbreaks, to provide shade, and to stabilize eroding stream banks (Neill 1985).  By the 

1920s Tamarix species had escaped cultivation and were becoming serious threats to 

arid riparian ecosystems in North America (Brotherson and Field 1987).  All introduced 

species except Tamarix aphylla (L.) Karsten are deciduous and commonly referred to as 

saltcedar or tamarisk.  The invasive taxa in the United States are T. ramosissima Ledeb., 

T. chinensis Lour., T. parviflora DC, T. gallica L. and hybrids of these (Gaskin and 

Schaal 2002).  These species have invaded over 500,000 hectares of riparian habitat in 

the western United States (Robinson 1965).  They continue to expand their range into 

northern Mexico (González y Aldape 1991) and as far north as Montana and may be 

capable of extending into the plains of Canada (Pearce and Smith 2003, Morisette et al. 

2006).   The Tamarix invasion is often reported to have negative ecological effects such 
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as displacement of native vegetation (Brotherson and Field 1987), reduction in faunal 

diversity (Anderson et al. 1977, Kerpez and Smith 1987, DeLoach et al. 2000, Knutson 

et al. 2003, Shafroth et al. 2005), increased sedimentation and bank aggradation 

(Brotherson and Field 1987), increased channelization (Blackburn et al. 1982) and a 

lowering of water tables resulting from high evapotranspiration rates (Smith et al. 1998 

Nagler et al. 2005).  

Biological Control Program 
 
 To help combat the Tamarix invasion, the United States Department of 

Agriculture –Agricultural Research Service (USDA-ARS) initiated an importation 

biological control research program in the late 1960s by directing overseas surveys to 

identify potential control agents (DeLoach et al. 2003).  Pre-release natural enemy 

evaluations were conducted at the USDA-ARS Arthropod Containment Facility at 

Temple, Texas starting in 1986 (DeLoach et al. 2000).  One result of this program was 

the pre-release screening and approval for release of Diorhabda elongata (Brullé) sensu 

lato leaf beetles (Coleoptera: Chrysomelidae) (DeLoach et al. 2003).  The adult and all 

three larval instars feed on the foliage of Tamarix.  When fully grown, the third instar 

larvae crawl or drop to the ground and pupate in the underlying leaf litter.  Two and 

sometimes three generations can be produced in North America, prior to entrance of 

adults into reproductive diapause in response to shortened daylength (Bean et al. 2007).  

The adult stage overwinters in the leaf litter and becomes active around spring budbreak.  

Females oviposit 128 - 280 eggs in masses (3-8 eggs per mass) on the host foliage 
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(Lewis et al. 2003b, Milbrath et al 2007).  In its native range, D. elongata herbivory can 

cause heavy to complete defoliation of Tamarix (DeLoach et al. 2003). 

Host Impact and the Effects of Defoliation 
 
 For D. elongata to be a successful biological control agent, its defoliation must 

have a significant impact on Tamarix growth and survival.  Leaf-chewing chrysomelid 

beetles have been used with great successes in weed biological control programs 

including the control Hypericum perforatum L. by Chrysolina quadrigemina (Suffrian) 

in California (Huffaker and Kennett 1959) and the control of Sida acuta Burman f. by 

Calligrapha pantherina Stål in Australia (Flanagan et al. 2000).   Leaf-chewing insects 

have been important to successful biological control programs because they remove 

photosynthetic tissue, which reduces the ability of plants to maintain growth and vigor.  

The biological control of perennial woody plants such as Tamarix is thought to be more 

difficult than control of annual herbaceous plants because the large food reserves of 

woody plants often enable them to compensate for herbivory by defoliating insects.  

However, examples of successful biological control of woody plants exist.  Black sage 

(Cordia macrostachya (Jacquin)) was successfully controlled by the leaf beetle 

Metrogaleruca obscura Degeer and the eurytomid gall wasp Eurytoma attiva Burks in 

Mauritius (Fowler et al. 2000) and Malaysia (Simmonds 1980).  Additionally, the 

leguminous, woody tree Sesbania punicea (Cav.) Benth has been successfully controlled 

in South Africa by the combined effects of three introduced weevil species: Trichapion 

lativentre (Beguin-Billecocq), Rhyssomatus marginatus Fahraeus and Neodiplogrammus 

quadrivittatus (Oliver) (Hoffman and Moran 1998).  Although three insect species 
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combined to control Sesbania punicea, Hoffman and Moran (1998) emphasize that it is 

the impact the agents have on the target weed rather than the quantity of insect species 

that ultimately holds the key to reductions in host plant densities.   

 The consequences of D. elongata herbivory on Tamarix growth and vigor are 

largely unknown. While D. elongata can completely defoliate Tamarix trees, plants can 

re-foliate within weeks of defoliation.  To recover from defoliation, plants need adequate 

carbohydrate reserves to regenerate new leaf tissue (Chapin et al. 1990, Loescher et al. 

1990).  Stored carbohydrates in woody plants serve important roles in metabolism, 

growth, development of cold hardiness, defense and survival (Kozlowski 1992).  Thus a 

reduction in carbohydrate reserves in Tamarix by D. elongata defoliation could lower 

plant growth and vigor. 

 The removal of photosynthetic tissue by defoliation has been documented to 

lower carbohydrate storage reserves in some plants.  Reduction in carbohydrate reserves 

following artificial defoliation of eight salt-desert shrub species was the result of 

continued respiration, reduction in photosynthesis and the use of reserves in producing 

regrowth (Trlica and Cook 1971).  Reserve carbohydrates were reduced while 

supporting new leaf growth following artificial defoliation of honey mesquite (Prosopis 

glandulosa Torr.) (Cralle and Bovey 1996).  Contrary to these results, the transient 

effects on carbohydrate reserves and the rapid recovery of growth revealed the tolerance 

of healthy stands of hybrid poplar (Populus X canadensis cv Eugeneii) to outbreaks of 

the defoliating gypsy moth (Lymantria dispar L.) (Kosola et al. 2001). 
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 Woody plants accumulate and store carbohydrate reserves during periods when 

supply exceeds demands for maintenance and growth (Oliveira and Priestly 1988, 

Kozlowski et al. 1991).  Concentrations of nonstructural carbohydrates have been used 

to measure metabolic reserves in many plants including salt-desert shrubs (Trlica and 

Cook 1971), sugar maple (Acer saccharum Marsh) (Renaud and Mauffette 1991), poplar 

(Populus spp.) (Kosola et al. 2001), honey mesquite (Prosopis glandulosa Torr.) (Cralle 

and Bovey 1996), Chinese tallow (Sapium sebiferum L.) (Conway et al. 1999) and 

Tamarix (Sosebee 2004).  Nonstructural carbohydrates (NCHOs) are accumulated and 

stored resources which can be remobilized to support biosynthesis for growth or other 

plant functions.  Starch, sucrose and reducing sugars comprise the NCHOs, whereas 

cellulose, lignin and hemicellulose are primarily structural in nature and not available as 

reserves (Weinmann 1947, Loescher et al. 1990).   Based on the plants’ reliance on 

reserve carbohydrates following the stress of defoliation, we predict that defoliation by 

Diorhabda elongata will reduce Tamarix nonstructural carbohydrates.  Additionally, we 

predict that insect defoliation will result in a reduction in spring above-ground regrowth 

which may ultimately lead to tree death.    

 The objectives of this study were to determine the impact of Diorhabda elongata 

defoliation on (1) the nonstructural carbohydrate concentrations of Tamarix root crowns 

in both manipulative field cage and non-manipulative natural experiments and (2) the 

spring above-ground regrowth in field cage experiments.  These results will help 

determine the potential impact of Diorhabda elongata as an effective biological control 

agent of Tamarix species. 
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Materials and Methods 

Insect Species   

 Insects used in the field cage experiment at Lake Thomas, Texas in 2004 and 

2005 originated from beetles collected on Tamarix species 3km west of Sfakaki, Crete, 

Greece (latitude 35.38°N, longitude 24.6°E, elevation 7m) in April 2002.  The insects 

released into the field near Lovelock, Nevada in 2001 originated from beetles collected 

from Tamarix species 7km west of Fukang, China (latitude 44.16°N, longitude 87.98°E, 

elevation 567m) in July 1999.  Beetles collected from Crete were identified as 

Diorhabda elongata elongata (Brullé) and from Fukang as Diorhabda elongata 

deserticola Chen by I.K. Lopatin (Professor, Byelorussian University, Minsk, Belarus).   

 All imported beetles came through the USDA-ARS Exotic and Invasive Weed 

Research Unit quarantine facility at Albany, California where parasites, predators and 

other organisms were removed.  Beetles (eggs and adults) were subsequently sent to the 

USDA-ARS Arthropod Containment Facility at Temple, Texas and maintained on 

cultivated Tamarix in laboratory and field cages where details regarding beetle biology 

(Lewis et al. 2003b) and host range (DeLoach et al. 2003, Lewis et al. 2003a, Milbrath 

and DeLoach 2006a,b) were examined.  Voucher specimens of D. elongata elongata 

used in our field cage study and D. elongata deserticola from the Lovelock release site 

were deposited to the Texas A&M University Insect Collection, College Station, Texas 

(under lot nos. 663 and 665, respectively). 
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Manipulative Field Cage Experiment, Lake Thomas, Texas 

  The effect of D. elongata elongata defoliation on Tamarix nonstructural 

carbohydrates (NCHOs) and regrowth under field cage conditions was determined by 

caging beetles on individual trees in a Tamarix stand on the western end of Lake J. B. 

Thomas (latitude 32°36.5’ N, longitude 101°14.1 W, elevation 675 meters) in Borden 

County, Texas (Fig. 4A).  The field cage experiment was conducted during the 2004 

growing season and replicated during the 2005 growing season.  We used a randomized 

stratified block design with an individual Tamarix tree as the experimental unit.  Only 

trees which could fit within a field cage without modifications were used.  Cages were a 

square 3.3 m on the sides and 2 m in height.  Each cage was covered with 20 X 20 mesh, 

Lumite fabric (Synthetic Industries, Gainesville, Georgia, USA).  Cages facilitated the 

replication of beetle treatments by confining beetles and excluding insect predators 

which may inhibit D. elongata elongata population increases.  Tree volume estimates 

were made from measures of canopy diameter and total height [volume = (π) x 

(diameter/2)2 x (height)].  Trees were stratified into blocks based on estimated volume, 

and one tree from each block was randomly assigned one of the following three 

treatments: caged beetle treatment (20 mating pairs of D. elongata elongata per tree); 

cage controls (cages with no beetles added); and no-cage, no-beetle controls.  The no-

cage treatment controlled for experimental artifacts due to cage effects.  The 2004 study 

included six replicates for each treatment.  The 2005 study included trees not used in the 

2004 study with 10 replicates for each treatment. 
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Prior to inoculation with beetles, core samples were taken from the tree root 

crowns (July 2004, July 2005) and analyzed for nonstructural carbohydrates as described 

below.  Following defoliation, cages and beetles were removed from the trees and root 

crowns were re-sampled (September 2004, December 2005).  To measure the regrowth 

potential of tree root crowns following defoliation, all above-ground tissue from the 

experimental trees was removed while the trees were dormant (December 2004, 

December 2005).  Spring regrowth was quantified by removing, oven drying and 

weighing all new shoot and leaf biomass the following spring (May 2005, May 2006).  

Non-manipulative Natural Experiment, Lovelock, Nevada 

  Heavy snowfall during 1982-1983 resulted in flooding along the Humboldt 

River in Nevada.  As the waters receded from the terminal basin, Tamarix invaded the 

Humboldt sink.  Natural Resource Conservation Service (NRCS) officials estimate more 

than 5000 hectares or 60% of the sink area is exclusively Tamarix canopy (Stevenson 

1996).  In the summer of 2001, approximately 1650 D. elongata deserticola adults were 

released into a monotypic stand of Tamarix in the lower Humboldt sink near Lovelock, 

Nevada (Fig. 4B).  The release has resulted in temporally different and spatially 

segregated defoliation of Tamarix at the release site.  By the end of summer 2002, the 

beetles had multiplied, dispersed and defoliated trees occupying an estimated 2 hectares 

surrounding the release origin.  At the end of the 2003 and 2004 season, the beetles had 

defoliated trees occupying an estimated 200 and 1800 ha surrounding the release origin, 

respectively (Geraci 2006). 
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By the end of 2004, four areas within the terminal sink of the Humboldt River 

could be distinguished by the number of consecutive years the trees had experienced 

defoliation by D. elongata deserticola.  In this study, we consider each spatially 

segregated area of defoliation a separate treatment: treatment ‘three’ includes trees from 

the 2 ha which had experienced beetle defoliation for 3 consecutive years; trees in 

treatments ‘two’ and ‘one’ had experienced 2 and 1 years of defoliation, respectively.  

Trees in treatment ‘zero’ had experienced little to no defoliation by the end of the 2004 

season.  Prior to spring bud break (March 2005), the root crowns of 30 trees were 

sampled from treatments two, one and zero, and 15 trees were sampled from treatment 

three using the method described below.   

By the end of the 2005 season, the beetles had defoliated trees occupying an 

estimated 8100 ha (Geraci 2006).  As a result, all previously sampled treatment trees had 

experienced one additional year of beetle defoliation including trees from treatment 

‘zero’.  In early April 2006, prior to budbreak, the same trees sampled in 2005 were re-

sampled and considered as the 2005 treatment plus one (e.g. trees from treatment ‘three’ 

in 2005 were considered as treatment ‘four’ in 2006).  Few trees could be found in the 

lower Humboldt sink which had not been defoliated by D. elongata deserticola after the 

2005 season.  As a consequence, 15 trees from Pyramid Lake (another terminal basin 

approximately 75 km E-SE from the Humboldt sink sites) were sampled to serve as the 

‘zero’ treatment in 2006 (Fig. 4B).   
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Tissue Collection and Enzymatic Analyses 

 Tissue for NCHO analysis was taken from the root crown of the trees.  The root 

crown is defined as the tissue between the branching stems and the roots of a plant and is 

located at or just below the soil surface.  The root crown has been noted as a 

carbohydrate storage organ in woody plants (Trlica and Cook 1971) including Tamarix 

(Sosebee 2004).  Root crown tissue was removed using an 18 Volt cordless drill and a 

20mm (¾”) wood boring bit.  The bark layer was removed from the point of sampling 

using the boring bit, the crown was bored 10mm deep, and wood shavings were 

collected in aluminum foil placed under the boring bit.  Holes were plugged with bees 

wax to prevent infections from entering the tree wound.  Tissue samples were stored on 

dry ice in the field.  Upon return to the laboratory, the samples were heated to 100°C for 

90 minutes to halt any innate enzymatic activity and then dried at 65°C for 72 hours to 

remove all moisture.  After drying, each sample was ground separately using a Wiley 

mill fitted with a 40 mesh (0.5mm) screen.  Samples were stored in air tight vials in the 

dark and at room temperature until carbohydrate analysis.   

 Root crown samples were analyzed for sucrose, glucose, fructose and starch 

concentrations using the enzymatic method (Smith et al. 1964, McBee et al. 1983, 

Kiniry 1993) with some modifications.  A 0.25g sample of dry material was measured 

into a disposable 50ml centrifuge tube and extracted three times with 95% ethanol at 

80°C for 30 minutes.  The supernatants from each sample extraction were decanted and 

combined in a clean 50ml centrifuge tube.  The resulting ethanol extractions contained 

the water soluble sugars sucrose, glucose, and fructose.  Pellet residues were saved for 
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subsequent starch analysis.  A colorimetric enzyme kit (#E0716260, R-Biopharm Inc., 

Marshall, MI, USA) and spectrophotometer (Spectronic 601, Milton-Roy, Ivyland, PA) 

were employed to determine sucrose, glucose and fructose concentrations from 200µl 

aliquots of the ethanol extractions.  The residue pellets remaining after the aqueous 

extraction were resuspended in 15ml of distilled water and heated at 95°C for 30 minutes 

and then cooled on ice for 10 minutes.  After cooling, 10ml of 100mM sodium acetate 

buffer (pH 4.5) and 20µl of amyloglucosidase (11,500 units/ml, A-3042, Sigma-Aldrich, 

St. Louis, MO, USA) were added to each sample, and the samples were digested for 24 

hours at 55°C.  Amyloglucosidase hydrolyzes starch to quantitative yields of glucose.  

From the digested starch solution, 100µl samples were analyzed for glucose, and starch 

concentrations were calculated from the glucose yields.  Water soluble sugar (WSS) and 

starch concentrations were calculated as a percentage of sample dry weight, and tree 

NCHO concentration was reported as the sum of the WSS and starch concentrations.  

Statistical Analyses 

 For the manipulative field cage experiment, proportional changes in NCHOs 

were calculated as ([post-treatment NCHOs] – [pre-treatment NCHOs]) / [pre-treatment 

NCHOs].  Data were transformed in cases where ANOVA assumptions for normality 

and equality of variance could not be verified from results generated by the Shapiro-

Wilk test for normality and the Levene’s test for equality of error variance.  

Manipulative field cage regrowth data were natural-log transformed, and natural 

experiment NCHO data were square root transformed.  Two-way analyses of variance 

(ANOVA) were used to test for differences in proportional change in NCHOs and total 
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spring above-ground regrowth between treatments and between years in the 

manipulative field cage experiment (SPSS 11.5, SPSS Inc., Chicago, Illinois).  Similarly, 

a two-way ANOVA was used to test for differences in NCHOs between years of 

defoliation and between sampling date in the natural experiment.  When significant F-

values were found, Fischer’s protected least significant difference (LSD) test was 

utilized to separate significant (P < 0.05) mean differences.  Mean regrowth and NCHO 

data were back-transformed for presentation.  Additionally, the percent contributions of 

the WSS and starch concentrations to NCHO concentration were calculated in the 

natural experiment.       

Results 

Manipulative Field Cage Experiment 

 Experimental artifacts caused by cage effects were unlikely to have affected 

results as no significant differences in proportional change in NCHOs or spring regrowth 

between cage and no-cage controls (all P ≥ 0.05) were found.  Thus the no-cage controls 

were excluded and only the beetle treatment and cage controls were compared.  No 

significant treatment-by-year (F = 0.35; df = 1, 31; P = 0.56) interaction effects were 

found for proportional changes in NCHOs, indicating the effects of cage control or 

beetle treatment on NCHOs did not vary with the year in which the experiment was 

conducted.  Following defoliation, the cage control and beetle treatments did not differ 

significantly (F = 0.38; df = 1, 31; P = 0.54) in the mean proportional change in NCHOs 

(Fig. 5).  NCHO concentrations increased 18.0 ± 9.2% and 12.1 ± 6.6% in the cage 

control and beetle treatment trees, respectively. Also, no significant treatment-by-year (F 
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= 1.35; df = 1, 31; P = 0.25) interaction effects on spring above-ground regrowth were 

found.  However, the cage control and beetle treatments did differ significantly (F = 

6.91; df = 1, 31; P = 0.01) in the mean spring above-ground regrowth (Fig. 6).  Mean 

spring above-ground regrowth was 135.6 ± 17.3 grams in control trees and 89.7 ± 9.5 

grams in trees which were exposed to beetles the previous season.   

Non-manipulative Natural Experiment 

 Treatment (years of defoliation) by sampling date interaction (F = 9.20; df = 3, 

222; P < 0.001) effects on NCHO concentrations were found in the natural experiment.  

Because of the interaction between the main effects, comparisons of NCHOs between 

treatments were analyzed separately for each year.  Root crown NCHO concentrations 

differed significantly between treatments in 2005 (F = 34.58; df = 3, 102; P < 0.001) and 

in 2006 (F = 50.34; df = 4, 118; P < 0.001).  In 2005, the mean NCHO concentration 

was significantly less (P < 0.05) in trees with at least one year of defoliation than in trees 

with no years of defoliation (Fig. 7).  Mean percent NCHO concentration in trees which 

were not defoliated was 9.0 ± 0.8, compared to 3.2 ± 0.4%, 2.1 ± 0.4% and 2.3 ± 0.4% in 

trees defoliated for one, two and three years, respectively. 

 In 2006, the mean NCHO concentration was significantly less in trees which had 

experienced at least two years of defoliation than in trees which had experienced no 

more than one year of defoliation.  Furthermore, NCHO concentration was significantly 

less in trees which had experienced one year of defoliation when compared to trees 

which had experienced no defoliation (Fig. 8).In 2006, mean percent NCHO 

concentration in trees which were not defoliated was 13.6 ± 0.9, compared to 7.6 ± 
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0.8%, 2.3 ± 0.4%, 1.5 ± 0.3% and 1.7 ± 0.4% in trees defoliated for one, two, three and 

four years, respectively.  Starch contributed most to NCHO concentrations and was the 

component most reduced in trees which had experienced defoliation (Figs. 7 and 8).  In 

2006, starch contributed 84% and 78% to NCHOs in trees defoliated for zero and one 

year, respectively; whereas the starch contribution was 55%, 66% and 60% in trees 

defoliated for two, three and four years, respectively. 

Discussion 

Manipulative Field Cage Experiment 

 All experimental trees accumulated nonstructural carbohydrates in the root 

crowns between July and September 2004.  This is in accord with the seasonal 

phenology of carbohydrates observed in many woody plants including Acer saccharum 

(Renaud and Mauffette 1991), Prosopis glandulosa (Fick and Sosebee 1983), Prunus 

avium L. (Clair-Maczulajtys et al. 1994), Sapium sebiferum (Conway et al. 1999) and 

Tamarix (Sosebee 2004).  In general, carbohydrate reserves of storage organs decrease 

rapidly in early spring as the organs serve as carbohydrate sources to supply energy for 

budbreak, root growth and vegetative and reproductive development (Kozlowski 1992).  

Reserves usually reach a maximum in the fall when acquisition via photosynthesis 

exceeds allocation to growth, and they then begin to decline after leaf fall and 

throughout the dormant season as the plants must rely on these reserves for all metabolic 

activity, especially respiration (Loescher et al. 1990, Kozlowski 1992).  

 Though beetle treatment trees accumulated less NCHOs than did control 

treatment trees in the 2004 experiment (data not shown), analysis of the 2004 data did 
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not detect a significant difference in the mean proportional change in NCHOs between 

treatments.  We speculate two reasons for this result: 1) the limited sample size and high 

variation in NCHO data obscured the trend and 2) the fact that there was little time lag 

between beetle defoliation and the post treatment sampling of the root crowns in 2004.  

Beetles were introduced on 16 July 2004.  Very little defoliation was observed by 4 

August.  Trees were completely defoliated by 3 September, at which time we removed 

tissue from the root crown for post-treatment analysis.  Richards (1993) suggested that 

herbivory has the strongest impact on plant growth and survival if a long delay occurs 

between loss of photosynthetic tissue and leaf regrowth.  This suggestion may extend to 

the effects of herbivory on plant carbohydrate storage because the plant must draw on 

these stored reserves during the defoliated period.  Since the beetle treatment trees were 

without photosynthetic tissue for less than one month before we re-sampled for NCHOs, 

few carbohydrate reserves probably were utilized by the plants. 

 For the 2005 experiment, we increased the sample size to 10 per treatment.  We 

also increased the period of time between beetle defoliation and post treatment 

quantification of NCHOs in 2005 by sampling for NCHOs in December, 4 months 

following beetle treatment.  However, beetle numbers did not increase significantly in 

2005.  Consequently, the trees were only lightly to moderately defoliated by the end of 

the season.  The incomplete defoliation may have contributed to the non-significant 

treatment effect on NCHOs.  It is also possible that a single late season defoliation event 

does not have an immediate effect on root crown NCHOs due to compensatory effects 

such as carbohydrate re-allocation from the root system.     
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 Although root crown NCHOs were not significantly affected by the single late 

season defoliation event, the above-ground regrowth measured the following spring was 

significantly different between beetle treatment and control trees.  Over the combined 

experiments, beetle treatment trees manufactured approximately 35% less above-ground 

regrowth following one defoliation event the previous fall than did cage control trees.  

Reichenbacker et al. (1996) also reported significant reductions in above-ground growth 

parameters following manual defoliation of hybrid Populus, but nonstructural 

carbohydrates were only mildly affected when defoliation levels were between 25 and 

75%.  These results suggest that above-ground growth may be a more sensitive indicator 

of mild defoliation stress.  However, barring any further defoliation stress, it is possible 

beetle treatment trees are able to recover from the reduction in spring regrowth.  Due to 

the limitations in the design of our study, we are unable to state if and when the beetle 

defoliated trees made a recovery in regrowth.      

Non-manipulative Natural Experiment 

 Unlike our manipulative experiment, the non-manipulative, natural experiment 

allowed us to sample trees which had been defoliated for extended periods of time and 

under natural conditions.  Extended defoliation by D. elongata deserticola at Lovelock, 

Nevada significantly reduced NCHOs in Tamarix root crown tissue.  Results from the 

2005 sampling indicate that mean NCHO concentration was more than 9% of total dry 

weight in trees which were not defoliated compared to less than 4% in trees which were 

defoliated for one or more years.   In 2006, NCHO concentration was more than 13% in 

trees which were not defoliated, 7% in trees which were defoliated for one year and less 
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than 3% in trees defoliated two or more consecutive years.  The significantly higher 

NCHO concentration in the non-defoliated trees in 2006 compared to the non-defoliated 

trees in 2005 raises questions regarding the use of trees from Pyramid Lake in the 

comparison.  Though the Pyramid Lake trees were not significantly different in size, we 

cannot say how other variables at this site which might impact carbohydrate reserves 

(such as water and soil nutrient availability) compare to the sites in the Humboldt sink.  

Regardless, the exclusion of the Pyramid Lake trees does not negate the fact that NCHOs 

accounted for less than 3% of total dry weight in trees defoliated 2 or more years.         

 Of the individual carbohydrates quantified, starch was the predominant 

component to overall NCHO concentration, and it was the carbohydrate most reduced by 

defoliation.  Starch levels were also significantly reduced in roots of Acer saccharum 

trees severely defoliated by insects (Wargo et al. 1972).  The authors suggested that 

starch levels indicate changes in carbohydrate metabolism and perhaps the magnitude of 

physiological disturbance.  Starch is considered the most important reserve carbohydrate 

in woody plants because it indicates when and where a carbohydrate surplus is present 

above current needs (Kozlowski 1992).  In the present study, Tamarix trees defoliated 

for one to four years still had measurable quantities of starch and water soluble sugars.  

The presence of starch and water soluble sugars may not necessarily be an indication of 

continuing plant metabolism.  Some carbohydrate stores may become inaccessible to 

woody plants with time because they are in dead cells and cannot be retrieved by the 

plant (Ziegler 1964).  This suggests that NCHOs can be detected in dead trees.    
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 The depletion of Tamarix root crown nonstructural carbohydrates due to 

extensive defoliation in the natural experiment suggests a reduction in the vitality of the 

trees.  At Lovelock, an estimated 40% of trees in the 2 ha area which had experienced 

defoliation for 4 consecutive years failed to produce any foliage in 2006 and were 

considered dead (Dudley et al. 2006).  If these trees did die, it may have been due to the 

exhaustion of carbohydrate reserves by repeated defoliation.  Death of Eucalyptus 

species in Australian forests after repeated defoliation by phasmatids or psyllids 

(Glacaspis spp.) was purported to be due to the exhaustion of starch reserves to a level 

which did not support respiration and growth (Bamber and Humphres 1965).  The 

European gypsy moth (Lymantria dipar L.), increases tree mortality as the intensity, 

duration and frequency of defoliation increases (Davidson et al. 1999).  Additional 

studies are required to determine the minimum level of carbohydrate storage that results 

in Tamarix death.   

 Carbohydrate reserves are also important to reproduction, and the depletion of 

these reserves in plants by herbivores has been demonstrated to reduce reproduction 

(Chapin et al. 1990).  Flower and fruit production were significantly reduced in the 

perennial herb Aralia nudicaulis the year following herbivory by moose (Alces alces) 

(Edwards 1985).  Although direct measures of the effects of defoliation on reproductive 

fitness were not measured in these studies, we observed that Tamarix trees were never 

reproductively active at the time of defoliation.  Thus defoliation and the reduction in 

carbohydrate reserves by D. elongata herbivory may reduce recruitment of seedlings and 

slow the spread of Tamarix. 
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Summary 

 Carbohydrate reserves are essential for plant survival (Loescher et al. 1990, 

Chapin et al. 1990).  Maintenance respiration in living cells when photosynthesis is low 

or has stopped due to defoliation or deciduousness is dependent on adequate 

carbohydrate reserves, as is new spring leaf growth in all deciduous species (Loescher et 

al. 1990, Kozlowski 1992).  The results from the manipulative field cages experiment at 

Lake Thomas, indicate that a single late season defoliation by D. elongata elongata did 

not significantly affect root crown NCHOs; however, above-ground regrowth was 

reduced the following spring.  Additional studies are needed in Texas to determine if 

defoliation by D. elongata elongata will have significant impacts on NCHOs and 

subsequently reduce Tamarix survival.  D. elongata elongata has successfully 

established at a release site near Big Spring, Texas.  The widespread defoliation by the 

beetle at this site in 2005 and 2006 affords the opportunity for additional host impact 

studies.   

 The results from the natural experiment demonstrate that extended defoliation by 

D. elongata deserticola significantly reduces nonstructural carbohydrate reserves in 

Tamarix and that repeated defoliation in subsequent years prevents recovery of these 

reserves.  The decline in tree NCHOs appears to be associated with a reduction in foliage 

growth and may affect tree survival and seedling recruitment.  Forty percent of the trees 

which were defoliated for 4 consecutive years are believed to be dead.   These results 

indicate that D. elongata deserticola has a significant host impact and suggests there is 

the potential for successful control of Tamarix at the Nevada site.   
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CHAPTER IV 

CONCLUSIONS 

 The current status of Diorhabda elongata leaf beetles as biological control agents 

of Tamarix in the United States was evaluated using the four steps of progression 

defined by Harris (1991): establishment, biological success, host impact and control 

success.   In Chapter II, we evaluated the establishment and biological success of 

Diorhabda elongata elongata (Brullé) at two release sites in west Texas.  In Chapter III 

we evaluated the host impact of D. elongata elongata and Diorhabda elongata 

deserticola Chen in manipulative field cage and non-manipulative natural experiments in 

Texas and Nevada, respectively.   The results from these studies shed light on the 

potential control success of Tamarix in Texas and the United States. 

 During the summers of 2003 and 2004, D. elongata elongata from Crete, Greece 

was released at two sites within the upper Colorado River watershed in Texas.  Using the 

definition of establishment as the recovery of an agent for at least two years following its 

open field release (Harris 1991), D. elongata elongata successfully established at Beals 

Creek.  Following its release at Beals Creek in 2004, D. elongata elongata was 

recovered during every census between 2004 and 2006, and the population dispersed at 

an increasing rate from the site of release.  The established D. elongata elongata 

population has been biologically successful as demonstrated by the increasing number of 

host trees attacked and defoliated.  By August 2006, the area of tree defoliation at Beals 

Creek exceeded 2 ha and included approximately 400 trees. 



 52

 However, following releases in 2003 and 2004, D. elongata elongata has failed 

to establish at Lake Thomas.  Results from other experimental releases of Diorhabda 

species have also been extremely variable, ranging from failure of the beetles to 

establish viable populations to outbreak populations which have defoliated thousands of 

hectares of Tamarix (Kazmer et al. 2006).  The reason(s) for the failure to establish at 

Lake Thomas and the successful establishment at Beals Creek can only be surmised.  

The fact that the first observed open field population increase of D. elongata elongata at 

Beals Creek occurred at two trees nearest the on-site nursery cage suggest the adults 

beetles were attracted to conspecifics in the nursery cage.  Aggregative behavior in the 

Diorhabda species group is supported by the recent isolation of an aggregation 

pheromone from D. elongata deserticola (Cossé et al. 2005).  An aggregative behavior 

in Diorhabda species may increase reproductive success.  Hopper and Roush (1993) 

suggest that many biological control introductions fail because Allee effects (reduced 

recruitment at low densities) drives small, introduced populations extinct.  Allee (1931) 

suggested that processes such as defense against predators or habitat amelioration 

decline as density declines so that per capita population growth rate may decrease as 

density decreases.  Below some threshold density, growth rate would fall below zero and 

the population would go extinct.   

 Predation may have reduced the released populations of D. elongata elongata at 

Lake Thomas to a density below the critical density needed to overcome Allee effects.  

Predation by passerine birds and general arthropod predators is hypothesized to be a 

major cause of establishment failure or limited population growth of Diorhabda species 
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at some release sites (Kazmer et al. 2006).  Red imported fire ants (Solenopsis invicta 

Buren) are believed to be responsible for the low survival of beetles at four sites where 

D. elongata elongata was released in the upper Colorado River watershed in 2006 

(Knutson et al. 2006).  Though S. invicta was not observed at Lake Thomas, other 

potential general arthropod predators were observed including adult Coccinellidae, 

Reduviidae and Araneae.  A study has been initiated to identify the spider fauna 

inhabiting Tamarix in west Texas and determine which may have an impact on limiting 

the success of D. elongata elongata establishment (Eric Knutson, New Mexico State 

University, personal communication).   

 Increasing the number of beetles released or adapting the method of release 

might lead to increases in establishment success.  Adult beetles from the Beals Creek 

population are being distributed to other sites within the upper Colorado River and Pecos 

River watersheds.  Between May and July 2006, more than 4000 adult beetles were 

released at 15 sites in 10 counties in west Texas (Knutson et al. 2006).  The purpose of 

the study is two-fold: to assist in distributing the beetles to watersheds infested with 

Tamarix throughout west Texas and to determine which method of release will optimize 

establishment of Diorhabda at release sites.  The methods include sleeve caging beetles 

on branches, caging beetles on single trees within 3.3m by 3.3m by 2m field cages and 

open field releases onto Tamarix trees without cages.  Caging beetles at the time of 

release may minimize dispersal and predation and allow the beetle population to reach 

the threshold density necessary to sustain population growth, at which time the cage can 

be removed.  The development of a synthetic Diorhabda aggregation pheromone and 
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delivery system may improve establishment by retaining and aggregating beetles at new 

release site and thus overcoming Allee effects.            

 A logical approach is to introduce agents from regions of the native range that 

match the climate of the release area in the introduced range reasonable well.  While the 

results from Beals Creek suggest D. elongata elongata is well adapted to the climate and 

habitat at that site, this beetle may not be the best-adapted or only candidate in the 

Diorhabda species group for the highly varied climates and habitats in the southwestern 

US.  In a review of the taxonomy and biogeography of the Diorhabda species group, 

Tracy et al. (2004) note that D. elongata elongata is indigenous to Mediterranean and 

temperate forests of Italy to southern Bulgaria and central Turkey and may not be 

adapted to desert and grassland habitats in the southwestern United States.  Using habitat 

suitability index (HSI) models which included sixty environmental layers, Tracy et al. 

(2004) suggest Diorhabda elongata sublineata Lucas and southern populations of 

Diorhabda carinata Faldermann may be better suited to climates of the southwestern 

U.S. deserts and grasslands, whereas D. elongata elongata is better suited to coastal 

regions of Texas and California. 

 Complementing the HSI modeling and hoping to take advantage of the full 

geographic range of Diorhabda species currently held in experimental colonies in the 

United States (D. elongata deserticola from Fukang, China 44.16°N and Turpan, China 

42.86°N; D. carinata from Karshi, Uzbekistan 38.86°N; D. elongata elongata from 

Crete, Greece 35.19°N; and D. elongata sublineata from Sfax, Tunisia 34.66°N), 

investigators have begun regional testing of the different ecotypes inside secure field 
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cages at sites across the United States ranging from latitudes 30-48°N (Dalin et al. 

2006).  The study was initiated at nine sites during the fall 2006, including one site near 

Borger, Texas (35.65°N), with plans to increase to sixteen sites in 2007.  The experiment 

will provide knowledge as to which Diorhabda species are likely to establish and be 

successful biological control agents of Tamarix over the widespread range of infestations 

in the United States, including Texas. 

 Perhaps as important as latitudinal and climatic suitability of each biological 

control agent are the genotypes of the target weed at each site.  We do not know if the 

different genotypes within the Diorhabda species group will vary in their ability to 

attack different genotypes and species of Tamarix.  Such interactions may influence 

beetle establishment and the level of control achievable.  Determining the Diorhabda 

host range within Tamarix will be difficult because Tamarix taxa are difficult to 

distinguish (Crins 1989) and hybridization has further complicated determining which 

taxa are naturalized in the US (Gaskin and Schaal 2003).  Limited molecular genotyping 

has been conducted from trees near the Lake Thomas and Beals Creek release sites by 

John Gaskin (Principal Investigator, USDA-ARS, Northern Plains Agricultural Research 

Laboratory, Sidney, MT) using chloroplast and nuclear sequence data.  Sixteen trees 2 

km from the Lake Thomas release site were identified as Tamarix chinensis Loureiro, 

Tamarix ramosissima Ledebour or their hybrids.  Five trees at the Beals Creek release 

site were identified as either T. chinensis, T. ramosissima, the genetically 

indistinguishable Tamarix gallica L. and Tamarix canariensis Willdenow. or their 

hybrids.  However, with the limited information and without empirical studies, we 
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cannot say whether or not host genotype had a role in the successful and failed 

establishment at Beals Creek and Lake Thomas, respectively.  If inconsistencies in 

establishment success continue at future release sites, it will be necessary to more 

closely determine the Tamarix genotypes and if Diorhabda species virulence varies with 

Tamarix genotypes. 

 Once establishment and biological success are achieved, the biological control 

agent must exert sufficient herbivore pressure on the target weed to decrease its biomass 

or reproductive capacity.  Though one defoliation event by D. elongata elongata in the 

manipulative field cage study did not affect root crown nonstructural carbohydrate 

(NCHO) content, spring above-ground regrowth was reduced.  Results from the natural 

experiment indicate a significant reduction in Tamarix NCHO content following 

extensive and repeated defoliation by D. elongata deserticola.  Trees which had been 

defoliated for two or more consecutive seasons had less than 3% NCHO content 

compared to 8% and 16% in trees which had been defoliated one or no seasons.  

Approximately 65% of these trees failed to produce any green foliage in 2006.  If these 

trees are dead, it may be because repeated defoliation exhausted carbohydrate reserves to 

a level which does not support respiration and growth.     

 The established D. elongata elongata population at Beals Creek and the 

manipulative field cage study suggest that D. elongata elongata has the potential for 

establishment, biological success and host impact in west Texas.  The established D. 

elongata deserticola population in Nevada has certainly been biologically successful as 

determined by the thousands of hectares of Tamarix trees defoliated since 2002 (Geraci 
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2006).  The reduction in NCHO content and the concurrent lack of foliage regeneration 

from these trees indicate that D. elongata deserticola is significantly impacting its host.   

 Control success is the fourth and last measurable step in the progression of a 

biological control agent and needs to relate to the objectives set out upon initiation of the 

project (Harris 1991).  Tamarix management projects are being conducted by many 

separate agencies over many different states.  The objectives of each project are likely to 

be different depending on the severity of the infested site, different management tactics 

in use and the stakeholders involved.   The objectives need not be solely in terms of 

changes in weed density but can reflect economic and environmental costs such as 

savings on herbicide applications or the amount of water salvaged. 

 Control success by a biological control agent can be defined as (1) complete, 

when no other control method is required or used; (2) substantial, where other methods 

are needed but the effort required is reduced; and (3) negligible, where despite damage 

inflicted, control of the weed is dependent on other control measures (Hoffman 1995).  

Though measures of establishment, biological success and host impact are evident, it is 

too early to predict to what degree of control success Diorhabda leaf beetles will achieve 

or if they will be successful in all ecoclimatic areas where Tamarix is damaging.  

Complete success by one biological control agent over the ecoclimatic range of a target 

weed is not common (McFadyen 1998).  Complete control of Tamarix by Diorhabda 

species over portions of the infested area is a reasonable goal.  However, in some fringe 

areas, substantial control of Tamarix by Diorhabda species may be achieved with 
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complete control resulting from the combined effects of other control measures 

including additional biological control agents and herbicide applications. 

 Biological control of Tamarix may require the introduction of several agents over 

several years (DeLoach 1996).  Testing has been initiated at overseas laboratories on 

some twenty species of insects (DeLoach et al. 2000).  Seven of these have been 

received in quarantine at the USDA-ARS Arthropod Containment Facility at Temple, 

Texas and testing has been completed on two species other than the Diorhabda species 

group: a mealybug, Trabutina manipara Hemprich and Ehrenberg, from Israel and a 

foliage-feeding weevil, Coniatus tamarisci F., from France (DeLoach 1996).  Pending 

approval for release by APHIS, T. manipara and C. tamarisci may complement Tamarix 

biological control by Diorhabda species by further damaging the plant and/or by 

attacking in areas where Diorhabda species are less effective than desired. 

 Herbicide treatments provide rapid and consistent control of saltcedar and are 

well suited to large, monotypic infestations that have a significant negative impact, such 

as infestations in and around water reservoirs.  The Tamarix management program for 

the upper Colorado River watershed of Texas includes large scale chemical applications 

using imazapyr and rotary wing aircraft (McGinty et al. 2006).  Beginning at the Lake 

Thomas dam and extending to the top of the Lake Spence watershed, an estimated 1600 

hectares of riparian habitat in the upper Colorado River watershed were sprayed during 

2005 and 2006, including Beals Creek from Moss Lake to its confluence with the 

Colorado River; spraying will continue in 2007 and extend to the Lake Spence dam to 

treat an estimated 2400 ha of Tamarix (McGinty et al. 2006).    



 59

 Classical biological control is included as part of the Tamarix management 

program for the upper Colorado River watershed for several reasons: (1) chemical 

control by aircraft is not 100% effective and may not be appropriate for small localized 

Tamarix populations or where Tamarix is mixed with desirable vegetation; (2) some 

landowners may not approve of  an herbicide application on their property; (3) the 

beetles have the potential to persist and suppress re-invasion of herbicide treated areas, 

whereas herbicides lack residual control; and (4) biological control is less expensive 

relative to herbicide treatments, and offers a long-term, sustainable approach to 

managing Tamarix.  Control success of Tamarix by Diorhabda leaf beetles in the upper 

Colorado River watershed may largely be dependent upon the insects’ achievement of 

persistent suppression in and outside of herbicide treated areas.   

 The established population of D. elongata elongata at Beals Creek is less than 10 

km upstream from Moss Lake where herbicide treatment has begun.  If populations of 

the insect do not reach herbicide treated areas on their own accord within the next couple 

of years, attempts will likely be made to distribute populations into treated areas.  Future 

research at these localities will likely address the compatibility of these two control 

measures.  If D. elongata elongata populations are sustained on localized populations of 

Tamarix and can suppress the re-invasion in herbicide treated areas, control success by 

D. elongata elongata and management success of the weed may be achievable.  Such a 

scenario in the upper Colorado River watershed could serve as a model for other 

management programs in the United States.  
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Fig. 1. Field release sites at Lake Thomas and Beals Creek within the upper Colorado 

River watershed of Texas. 
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Table 1.  Date and number of D. elongata elongata released at the Lake Thomas and 

Beals Creek release sites in Texas 2003-2004. 

 
Release Site  County  Release Dates  Insects Released 
 
Lake Thomas  Borden  21 August 2003 1600 adults, 500 larvae 
     16 July 2004  580 adults 
     21 July 2004  400 adults 
 
Beals Creek  Howard 22 April 2004  37 adults 
     1 July 2004  141 adults 
     6 July 2004  30 adults 
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Table 2.  Abundance of D. elongata elongata insect stages observed at the Lake Thomas 

field release site in Texas 2004-2005. 

  # Trees  # Trees w/          
Date  Surveyed Diorhabda Egg Masses      Larvae               Adults 
21 Apr  04 20 12 126  17 15 
25 May 04 20 11  3  54   1 
10 Jun 04 65   2     0    2   4 
16 Jul 04 65   0     0    0   0 
10 Aug 04 40   0     0    0   0 
22 Oct 04 65   0     0      0   0 
12 May 05 65   0     0      0   0 
15 Jul 05 65   0     0      0   0 
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Fig. 2.  Mean abundance of D. elongata elongata observed per tree searched per 2 

minute observation at the Beals Creek field release site 2004-2006 (N = 47 trees per 

search).  Standard error bars based upon total insect populations are shown. 
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Table 3.  Mean and maximum dispersal distances and relative frequencies of trees 

occupied and defoliated by the D. elongata elongata population at the Beals Creek 

release site in Texas 2004-2006. 

  Mean Dispersal   Maximum            
Survey  Distance (±SE)    Dispersal        _      Frequency of Trees_____ 
Date      in Meters  Distance (m)       Occupied         ≥ 90% Defoliated 
3 Aug 2004 27 (0.7) 69 0.19 0.04 
21 Oct 2004 42 (2.6) 69 0.19 0.08 
11 May 2005 32 (1.9) 69 0.17    0 
16 Jun 2005 24 (0.4) 28 0.06 0 
7 Jul 2005  47 (1.2) 69 0.23 0.04 
3 Aug 2005 55 (1.3) 221 0.62 0.21 
9 Sep 2005 57 (2.0) 221 0.55 0.25 
24 May 2006 81 (3.7) 177 0.4    0 
17 Aug 2006       128 (1.5) 375 1.0 0.57 
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Fig. 3.  Tamarix tree stand, location of trees surveyed along transects and progression of 

defoliated area in each August survey from 2004 to 2006 at the Beals Creek release site 

in Texas. 
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Fig. 4.  Field cage experiment site near Lake Thomas in Texas (A) and natural 

experiment site in Nevada (B).  Numbers next to Nevada sample sites indicate treatment: 

number of years of tree defoliation by D. elongata deserticola in 2005 and 2006.  Trees 

at Pyramid Lake were sampled in 2006 to serve as ‘zero’ years of defoliation treatment. 

 



 78

 

 

Fig. 5.  Mean (± SE) proportional change in Tamarix root crown nonstructural 

carbohydrates (NCHOs) from the field cage experiment conducted at Lake Thomas, 

Texas in 2004 and 2005.  Means are not significantly different (P ≥ 0.05). 
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Fig. 6.  Mean (± SE) spring above-ground regrowth of Tamarix trees from the field cage 

experiment conducted at Lake Thomas, Texas in 2004 and 2005.  Means are 

significantly different (P ≥ 0.05). 
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Fig. 7.   Mean percent of water soluble sugars (WSS = fructose + glucose + sucrose), 

starch and nonstructural carbohydrates (NCHOs = WSS + starch) per Tamarix tree at the 

natural experiment site near Lovelock, Nevada in 2005.  Standard error bars based upon 

NCHOs are shown.  Mean NCHO with same letter above bars are not significantly 

different (P ≥ 0.05). 
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Fig. 8.   Mean percent of water soluble sugars (WSS = fructose + glucose + sucrose), 

starch and nonstructural carbohydrates (NCHOs = WSS + starch) per Tamarix tree at the 

natural experiment site near Lovelock, Nevada in 2006.  Standard error bars based upon 

NCHOs are shown.  Mean NCHO with same letter above bars are not significantly 

different (P ≥ 0.05). 
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