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ABSTRACT 

Multiscale Analysis of Nanocomposite 

and Nanofibrous Structures. (August 2007) 

Vinu Unnithan Unnikrishnan, B. Tech., University of Kerala; 

M. S., Indian Institute of Technology, Madras 

Chair of Advisory Committee: Dr. J. N. Reddy 

 

The overall goal of the present research is to provide a computationally based 

methodology to realize the projected extraordinary properties of Carbon Nanotube (CNT)-

reinforced composites and polymeric nanofibers for engineering applications. The 

discovery of carbon nanotubes (CNT) and its derivatives has led to considerable study 

both experimentally and computationally as carbon based materials are ideally suited for 

molecular level building blocks for nanoscale systems. Research in nanomechanics is 

currently focused on the utilization of CNTs as reinforcements in polymer matrices as 

CNTs have a very high modulus and are extremely light weight.  

The nanometer dimension of a CNT and its interaction with a polymer chain 

requires a study involving the coupling of the length scales. This length scale coupling 

requires analysis in the molecular and higher order levels. The atomistic interactions of the 

nanotube are studied using molecular dynamic simulations. The elastic properties of neat 

nanotube as well as doped nanotube are estimated first. The stability of the nanotube 

under various conditions is also dealt with in this dissertation. 

The changes in the elastic stiffness of a nanotube when it is embedded in a 

composite system are also considered. This type of a study is very unique as it gives 

information on the effect of surrounding materials on the core nanotube. Various 

configurations of nanotubes and nanocomposites are analyzed in this dissertation. 

Polymeric nanofibers are an important component in tissue engineering; however, 

these nanofibers are found to have a complex internal structure. A computational strategy 



 

 

 

iv 

is developed for the first time in this work, where a combined multiscale approach for the 

estimation of the elastic properties of nanofibers was carried out. This was achieved by 

using information from the molecular simulations, micromechanical analysis, and 

subsequently the continuum chain model, which was developed for rope systems. The 

continuum chain model is modified using properties of the constituent materials in the 

mesoscale. The results are found to show excellent correlation with experimental 

measurements. 

Finally, the entire atomistic to mesoscale analysis was coupled into the macroscale 

by mathematical homogenization techniques. Two-scale mathematical homogenization, 

called asymptotic expansion homogenization (AEH), was used for the estimation of the 

overall effective properties of the systems being analyzed.  This work is unique for the 

formulation of spectral/hp based higher-order finite element methods with AEH. Various 

nanocomposite and nanofibrous structures are analyzed using this formulation. 

In summary, in this dissertation the mechanical characteristics of nanotube based 

composite systems and polymeric nanofibrous systems are analyzed by a seamless 

integration of processes at different scales. 
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CHAPTER I 
 

INTRODUCTION 
 

A. BACKGROUND 

 

Nanotechnology, the science and technology of precisely controlling the structure of 

matter at the molecular level, is widely viewed as the most significant technological 

frontier currently being explored. Nanoparticles, nanotubes, and nanocomposites 

exhibit extremely high mechanical strength, and they are of great interest to researchers. 

The perfect formation of the nano units and the ease by which the structural as well as 

functional units can be manipulated helps in finding exciting applications. For the 

manipulation of nanoscale systems, understanding of the mechanics involved is 

necessary. The mechanics in a molecular level are based on the assumption that the 

atomic interactions are described by means of classical mechanics models. These 

interactions have to be scaled up spatially as well as temporally for the realization of the 

cumulative effects. Analysis of various physical processes occurring at various higher 

scales of interest can be grouped as multiscale analysis. Nanomechanics involves 

coupling of the mechanics at various length and time scales for understanding the local 

interactions as well as phenomenological behavior occurring at larger scales. 

Carbon based materials are ideally suited for molecular level building blocks for 

nanoscale systems design, fabrication and application because of its unique metallic, 

semi conducting and electromechanical properties and yet are extremely lightweight. 

From an engineering perspective, there has been a tremendous interest in studying 

CNTs as reinforcements in composites even as replacements to the high strength carbon 

fibers. With the high axial strength and low weight of the CNT, the resulting composite 

could be exceptionally light weight with enhanced strength. The computational analysis 

remains the main focus of this present research in nanocomposites. 

This dissertation follows the style of ASME Journal of Biomechanical Engineering. 
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B. MOTIVATION  

 

From a review of the literature it can be seen that there is a severe lack of 

comprehensive knowledge in estimating the mechanical properties of nanostructures in 

the atomistic level and how it affects the properties in the macroscale. Thus, there is 

need to combine methods from atomistic simulation to macroscale mechanical analysis 

by seamlessly integrating the transfer of information. This research is aimed at 

formulating a multiscale computational model that bridges different scales using the 

classical Molecular Dynamics (MD) model as the atomistic computation tool, the 

micromechanical methods in the micro scale, and ultimately applying homogenization 

techniques with higher order numerical methods in the macroscale. The proposed 

multiscale modeling strategy is developed to provide a better tool in understanding the 

characteristics that rule the transition from the atomistic scale to the macro scale.  

Having motivated the use of multiscale methods for the analysis of nanocomposites 

and polymeric nanofibrous systems, this dissertation undertakes the study of the effect 

of nanotube on the mechanical properties of a nanocomposite system and estimates the 

elastic properties of a complex polymeric nanofibrous structure. The properties 

estimated in the atomistic scale are scaled to the mesoscale and then to the macroscale 

by the use of a novel homogenization method with higher order finite element method. 

 

The following results included in this dissertation are unique: 

1. Estimation of elastic properties of silicon doped nanotubes and based 

nanocomposites. 

2. Estimation of the effect of the surrounding structures on the core nanotube in a 

nanocomposite and multi-nanotube system. 

3. Multiscale analysis and estimation of elastic properties of a polymeric nanofiber 

taking into consideration the properties in the atomistic scale up to the 

macroscale. 

4. Formulation and use of higher order spectral/hp based finite element method 

for the homogenization of nanostructure by asymptotic finite element method. 
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C. SCOPE OF THE RESEARCH 

 

Studies on nanostructures have been focused on the different scales of interest at the 

atomistic and the macroscopic levels. There is a need to develop theoretical 

formulations and associated computational procedures that take into account the 

physical processes that occur at different spatial and temporal scales and the coupling 

between these scales are obtained by sound physical reasoning and theoretical 

formulations.  

 

The primary objectives of this study are divided into four main categories: 

 

CARBON NANOTUBE BASED NANOSTRUCTURES  

• Analysis of CNT structures like single and multiwalled carbon nanotubes, 

nanoropes, and the effect of spatial arrangement, chirality on the mechanical 

strength. 

• Analysis of substitutional impurity on CNT structures, doping with silicon 

atoms.  

• Analysis of multifunctional CNT structures by functionalization with chemical 

groups and study the effect on how functionalization modifies the fiber matrix 

interactions. 

 

CARBON NANOTUBE BASED NANOCOMPOSITES 

• Develop sound theoretical formulations for the study of CNT reinforced 

composites with special emphasis on the mechanical properties. 

• Atomistic study using molecular dynamics to establish the properties of CNT-

reinforced composites with multifunctional features.  

• Analysis of interphase effect on the continuum properties of the composite. 
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ANALYSIS OF POLYMERIC NANOFIBERS  

• Obtain elastic properties of polymeric materials by MD simulations. 

• Homogenization of the Shish-Kebab models for multiscale modeling. 

• Development of theoretical models to predict mechanical properties by using 

the proposed “modified Continuous Chain Model” (CCM). 

• Study the effect of the size of fibrils and the effect on the tensile strength of the 

polymeric nanofiber.  

• Be able to predict the elastic properties of the nanofiber and compare with 

experimental methods. 

 

MULTISCALE ANALYSIS OF NANOSTRUCTURES BY HOMOGENIZATION 

TECHNIQUES 

• Develop asymptotic expansion homogenization techniques for coupling 

mesoscale with the macroscale properties. 

• Formulation and development of higher order finite element methods for the 

analysis of high gradient field problems. 

• Application of the developed methods to the analysis of CNT based 

nanostructures and polymeric nanofibers. 

 

In this dissertation work, novel multiscale modeling strategies are proposed for the 

analysis of carbon nanotube (CNT) fiber reinforced composite structures with CNTs of 

various morphologies (orientation, functionalization etc) and chiralities for application 

as multifunctional nanocomposites. This research provides a strong interlinking from 

the atomistic scale to the macroscale. With a full-scale mathematical basis, this 

methodology would be applied to the analysis of CNT reinforced nanocomposite 

structures and polymeric nanofibers. This research would provide a sound theoretical 

and computational tool for the analysis and design of an enhanced strength 

nanocomposite using CNTs and nanofibers. 

The dissertation is organized as follows. In Chapter II, the theoretical analysis of 

CNT structures like single walled nanotube and double walled nanotubes are 
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presented. The atomistic simulation is carried by molecular dynamic simulation and a 

brief description is given in this chapter. The analysis of mechanical properties of CNT 

is also given in this chapter. This chapter also contains a discussion on the effect of 

doping of CNT structure and the estimation of the mechanical properties along with the 

discussion on the thermal stability.  

Chapter III is concerned with the effect of matrix on the mechanical stiffness of 

CNTs. Apart from the effect of the surrounding matrix; this chapter also includes a 

discussion of the effect of functionalization of the nanotube and the effect when the 

functionalized CNT is embedded in a matrix or within nanoropes. The mechanical 

property estimation carried out in this chapter is for the core or central nanotube. The 

mesoscale coupling is also highlighted in this chapter with a micromechanical analysis 

of the nanocomposite system. 

The analysis of polymeric nanofiber is carried out in Chapter IV, where the 

atomistic properties are estimated using molecular dynamic simulation and the 

mesoscale properties are estimated using micromechanical methods. The 

morphological characteristics are taken into consideration in the estimation of the 

overall elastic properties by considering the effect of the Shish-Kebab model and the use 

of a modified continuum chain model. This chapter also shows how the results compare 

with experimental studies in literature.  

The mesoscale-macroscale coupling is achieved by using the Asymptotic 

Expansion Homogenization (AEH) techniques which is discussed in Chapter V. The 

homogenization of material properties is carried out by coupling with higher order 

spectral/hp finite element methods. This developed spectral based homogenization 

method is used in the estimation of the macroscale effective properties of 

nanocomposite systems as well as nanofibrous systems. Finally, in Chapter VI some 

concluding remarks are made with comments on ongoing and future research. 
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CHAPTER II 
 

ANALYSIS OF UNDOPED AND DOPED CARBON NANOTUBES 

 

In this chapter the general analysis of neat and doped carbon nanotubes using 

molecular dynamic simulations is presented. A discussion of different types of carbon 

nanotubes and the methods of analysis using atomistic simulation is presented. The 

chapter is organized as follows. In Sections A to C, carbon nanotubes and estimation of 

its mechanical properties are discussed. The concept of doping with silicon atoms on a 

CNT is also presented. Sections D and E contain numerical simulations of doped and 

undoped CNT using molecular dynamics. The chapter concludes with a summary in 

Section F. 

 

A. INTRODUCTION 

 

Carbon nanotubes are present mainly in three configurations: single-walled carbon 

nanotubes (SWNT), multiwalled carbon nanotubes (MWNT), and carbon nanotube 

bundles or ropes (see Figure 2.1). Carbon nanotubes (CNTs) are many orders of 

magnitude stronger, stiffer, conductive, and lighter than the best available carbon fibers 

[1-15]. The perfect formation of nano-units and the ease by which the structural as well 

as functional units can be manipulated helps in finding exciting applications. For the 

manipulation of nanoscale systems, molecular level study involving interactions in the 

atomic scale should be analyzed. The simulation of molecular systems is based on the 

assumption that the atomic interactions are described by means of classical mechanics 

models [2, 16-20].  
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Figure 2.1 Zig-Zag double walled (DWNT) and single walled carbon nanotube (SWNT) 
nanoropes and nanocomposites 

 

 Analysis of CNT reinforced polymer composites (see Figure 2.2) [3, 11, 19] under the 

application of various forces is the computational problem that is primarily studied. 

The fiber phase materials, which are of a few orders of nanometers, interact with the 

surrounding polymer matrix. The primary requirement for the realization of the 

maximum effective property is that the reinforcements are required to be distributed 

homogeneously in the matrix and aligned in specific orientations to obtain the desired 

effective properties in a composite material system. Though the basic principles appear 

similar to conventional fiber reinforced composites [21], the scale of the conventional 

fibers (of the order of µm) is quite different from that of CNTs which are in the order of 

a few nano meters. This disparity in scales brings with it a new set of challenges. To 

achieve the promise of transferring the exceptional properties of the carbon nanotubes 

into practical devices, one need to understand how the processes that occur at the 

nanoscale affect those at macroscales (µm to mm to m). This can only be achieved 

through multi-scale modeling. This research is mainly focused on the analysis of CNT 
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and CNT-reinforced composite structures to obtain the macroscale properties by means 

of an efficient multiscale modeling method.  

Silicon doped carbon nanotube (CNT) may find potential multifunctional 

applications where novel mechanical and electronic properties are desired. Ab-initio 

analysis of CNT doped with silicon has shown that the resulting structure is stable. 

However, simulation on the effect of silicon doping on the mechanical properties of the 

CNT structure, which has not been carried out to-date, is studied in this chapter. 

Analysis of silicon doped carbon nanotube for the estimation of elastic properties is also 

presented.  

 

B. IDENTIFICATION AND PROBLEM DESCRIPTION 

 

CNT reinforced polymer composites [3, 11, 19] under the application of various forces is 

the physical computational domain. To realize this, let us consider a plate structure 

acted upon by external forces and moments. This structure is reinforced with CNT 

fibers of finite length and of various chiralities, functionalization, spatial orientation 

with respect to the structural axis and other mechanical, chemical and thermal 

properties (see Figure 2.2). The fiber phase materials, which are of a few orders of 

nanometers, interact with the surrounding polymer matrix. The problem is very unique 

from a conventional fiber composite material in the sense that the fiber phase interacts 

with the matrix phase through molecular interactions. The material/mechanical 

properties of the participating phases in a conventional composite material analysis is 

widely studied and accepted. This is, however, not the case with the nanometric sized 

fibers, as the material properties are still being debated and even weak molecular 

interactions is found to alter the overall properties drastically [2, 13]. 
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Figure 2.2 Nanotube reinforced polymer nanocomposite with graded dispersion of 

CNT 

 

Research in the determination of overall properties of the composite was carried 

out earlier with a bottom to top approach. Of late, greater focus is on the accuracy in the 

prediction of lower order properties and hierarchical transfer of the material properties 

to the larger scale. In the previous works on multiscale modeling, the response in the 

atomistic level was transferred to the mesoscale or microscale by the explicit use of 

equivalence of the response variables [22]. This equivalency of the displacement or the 

stress field has a major drawback: the loss of essential information important in the 

atomistic scale is either not considered or averaged out in the higher scales [10]. 

Another multiscaling method involves the use of micromechanical schemes to model 

the mesolevel and subsequently use continuum formulation for scaling the domain of 

interest. The obvious drawback of such an approach is that the local variations in 

morphology and structure are not considered or do not translate to the macroscopic 

scale. Keeping these models in mind, a radical approach in the modeling and analysis 

of CNT filled polymer matrix composites is proposed. This model draws inspiration 

from various attempts in multiscale modeling thus far and improves upon them 

wherever necessary, such that a two-way coupling of information is achieved with a 

strong bottom to top coupling and a weak top to bottom coupling (see Figure 2.3). 
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The strong bottom-to-top approach analysis can be carried out by the use of 

explicit modeling of various atomistic configurations and simulating each of these 

configurations and subsequently relaying information to the higher scales. The various 

scales involved in a nanocomposite analysis are: atomistic level which spans a few 

orders of nanometers, mesoscale which spans a couple of µm to ~10-7 and finally the 

microlevel which spans a few µm to a few millimeters.  
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Figure 2.3 Scaling from atomistic to continuum by two-way coupling 

 

In the atomistic level the interactions exists in the molecular level and are 

modeled using pair potentials to respond to externally applied disturbance. The 

response variables in the lower scales are passed on to the next higher scale, seeking 

change in the material properties. This method is justified, since the material response 

at an atomistic scale is highly nonlinear [18] and any change in the local environment 

has been found to vary the ensemble properties dramatically [2]. However, previous 

works in this area have not been able to capture the local variations in a global sense, 

which is achieved in this work. For example, changes in the chirality, orientations of the 
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fiber phase with the global orientation and chemical functionalization are found to 

change the atomistic ensemble properties. Thus these properties are captured and 

passed on to the higher scales which subsequently affect the macroscopic response.  

Once the atomistic material properties have been determined for various 

morphologies of the fiber phase, the volume average over the ensemble would give the 

averaged material properties [22, 23]. The volume averaged properties are subsequently 

scaled to the mesolevel by applying the Eshelby’s equivalent eigenstrain method and 

Mori-Tanaka formulation to obtain the effective material response in the mesolevel (see 

Figure 2.4). A weak coupling can be achieved by this method, but this is a definite 

improvement over conventional multiscale methods. The advantage of this coupling 

method is the ultimate realization of an analysis and design philosophy based on the 

macroscopic structural behavior, by predicting and enhancing the micro structural 

level.  
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Figure 2.4 Top-down model of various spatial domains 
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C. CARBON NANOTUBES  

Single-walled nanotubes are idealized as being formed by the folding of a graphene 

sheet into a hollow cylinder, which is composed of hexagonal carbon ring units referred 

to as graphene units [1, 18, 20, 24] (see Figure 2.5a). Each of the carbon atoms forming 

the tubules has three nearest neighboring bonds. In a fully relaxed structure, the angles 

between these bonds depend on the radius of the cylinder as well as on their orientation 

[1, 18]. All the three angles approach 120º (perfect graphitic plane) with increasing 

cylindrical radius.  

 

 

(a)      (b) 

Figure 2.5 (a) Graphene sheet representation  (b) Type of CNT : Chiral, Zig-Zag and 
Armchair 

 

 The fundamental CNT structure can be classified into three categories: Armchair, 

Zig-Zag, and Chiral, in terms of their helicity. One of the advantages of atomistic 

simulation is the ease with which various configurations can be studied (see Figure 

2.6a, b). The experimental investigation of CNT is extremely difficult as the capability is 

limited by the availability of high quality defect free CNTs of sufficient length and 

measurement of nanoscale structures [25]. Studies in the mechanical, electrical and 

thermal behavior of CNTs were focused primarily on the use of empirical potentials 

using Molecular Dynamics (MD) and continuum models using the elasticity theory [4, 

6, 14, 15, 18, 19, 22, 26]. Despite the immense success of MD simulations in atomistic 
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scale, the computational adaptation to model macroscopic problems based on CNT’s 

are not completely established. The application of continuum mechanics principles into 

nanomechanics demands the bridging of the two or more scales of interest. From a 

computational perspective, these techniques should be able to efficiently represent the 

processes in a fine scale and provide solutions to the analysis in the macroscale. 

 

 

(a) 

 

 

(b) 

 

Figure 2.6 (a) CNT under elastic axial tension (b) CNT under elastic axial compression 

 

D. MOLECULAR DYNAMIC SIMULATION 

 

A completely quantum mechanical simulation is the ultimate analysis possible for an 

atomistic system. These are called the ab-initio methods and are either semi-empirical 

or fully quantum mechanical. The Density Functional Theory (DFT) and the Tight 

Binding methods are some of the ab-initio methods available in literature. These types 

of analysis are extremely time consuming and are only capable of simulating atomistic 

ensembles which consists of very few atoms. However, for a realistic estimation of the 

properties in the macroscale, simulation in the atomistic scale should consist of 

adequate number of atomistic entities for a longer period of simulation times.  
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There are numerous methods of analysis large atomistic systems and are based on 

empirical potentials to represent the interaction between atoms. Molecular Dynamics 

has been a very popular tool for the simulation of such atomistic structures for the 

determination of mechanical, thermal and other properties of interest [2, 8, 9, 20, 27]. 

Embedded atom method (EAM) which is also based on empirical potentials are found 

to be extremely useful for the investigation of structure, thermodynamic and atomic 

transport properties. The EAM is based on the concept of pseudopotential theory, 

where the atomic interactions are represented as a sum of each pairwise interaction and 

are dependant on the effective density around an atom [28]. 

The starting point of a molecular dynamics simulation is the non-relativistic 

quantum mechanical time dependant Schrödinger equation. The thermodynamic state 

characterized by the fixed number of atoms, volume and temperature called the 

Canonical Ensemble [27] forms the basis of the molecular dynamic simulation in this 

work. The simulated system and the heat bath couple to form a composite system. The 

conservation of the energy still holds in the composite system but the total energy of the 

simulated system fluctuates. The motion of the particles in the system is governed by 

the Hamiltonian which is a function of the position and momentum of the particles, and 

the Hamiltonian equations of motion.  The Hamiltonian representing the total energy of 

an isolated system is given as the sum of the potential, kinetic energy terms and 

thermodynamic terms 
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degrees of freedom, 
B

k is the Boltzmann’s constant. For an isolated Number-Volume-

Energy (NVE) Ensemble, the Hamiltonian is given by 
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Using the time and spatial derivative of the Hamiltonian [29] 
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Similarly, the equations of motion for the additional degrees of freedom in the NVT 

system can also be obtained (see Eqns 1-6 in Ref. [27]). The MD computational scheme 

in this chapter has been successfully used by various researchers to estimate the elastic 

properties of CNTs [2, 19, 30, 31]. After each straining process the ensemble is stabilized 

and the control temperature is maintained. The mechanical straining process imparts 

energy to the isolated system; the assumption is that the difference between the strained 

equilibrium energy and the unstrained equilibrium energy is the mechanical strain 

energy and this contributes to the mechanical stiffness of the CNT [10].  

 The reliability of a molecular dynamics simulation depends on the type of 

potential functions. In general, the total potential of the CNT structure is given by the 

sum of valence bond energies and nonbonding interactions 

tot B NB

ij ij

j j i

U V V

>

 = + ∑∑      (2.6) 

where 
B

ij
V is the potential energy due to bonding and 

NB

ij
V is the potential energy due to 

nonbonding interactions. Tersoff-Brenner empirical bond order potentials are found to 
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be excellent for the simulation of carbon based materials [2, 8, 10, 20, 27, 30, 32]. These 

potentials are capable of describing the changes in the bonding between atoms but lacks 

in describing the long range interactions [17]. The binding energy of an atomic many-

body system can be computed in terms of pair-wise nearest-neighbor interactions 

modified by the local atomic environment. In this dissertation, the Tersoff-Brenner 

potential for the simulation of C–C interactions in nanotubes has been used, and the 

total potential energy of an atomic ensemble is given by 

 

( ) ( )
c ij r ij ij a ij

j j i

U f a E r b E r

>
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where 
ij i j

r r r= − , ( ) ij ij
r

r ij ij
E r A e

λ−−−−

====  represents the repulsive pair-wise potential, such as 

the core- core interactions, of the potential function, and ( ) ij ij
r

a ij ij
E r B e

µ−−−−

==== represents the 

attractive part of the potential function that represents the bonding due to the valence 

electrons. The parameters of the Tersoff-Brenner potential for carbon atoms have been 

taken from Brenner [32] which are widely used in the MD simulation of CNT based 

structures [2, 8, 10, 27, 31-33].  

For a multicomponent system consisting of more than one species of atoms, the 

choice of potential functions becomes even more taxing. According to Tersoff [34], the 

potentials for a multicomponent system can be generalized by combining the 

parameters obtained for individual species of elements. In such a method, the 

parameters for the individual species are determined independently by curve fitting to 

the original elemental data and are generalized for multicomponent systems [34]. The 

parameters for Si atoms were taken from Tersoff (see Table 1 in Ref. [34]) and are 

combined with those of Carbon atoms as shown below.  
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where, i and j represents the atoms in the system and 
ij

X  represents the various 

parameters { , , , , , }A B R Sλ µ that appear in the Tersoff equation for a bond ij . The 

accuracy of such a combination of potential parameters for multicomponent systems 

was guaranteed as was shown by Tersoff [34].  

 The force of attraction and repulsion (F
α

) experienced by each atomic entity is 

obtained from the gradient of the potential field (α represents the direction vectors) 

tot
U

F
r

α

α

∂
= −

∂
.      (2.10) 

The molecular dynamic time stepping is carried out by the standard veocity-verlet 

algorithm and the time step is normally in the range of a few femtoseconds [8, 12, 16, 

31]. At the beginning of each simulation time step, updated velocities )(tv
i

are 

calculated for each particle using 

t
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where t is the time, t∆ is the time step of the molecular dynamics simulation, )(tf
i

is 

the total force acting on the particle i given by 
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and 
i

m is the mass of the particle. The coordinates of the particles )(tr
i

 are updated 

from the velocities using 

tttvtrttr
iii

∆∆++=∆+ )2/()()(     (2.13) 

 

1. TERSOFF-BRENNER POTENTIAL 

 

One of the best potentials which are capable of catering to a whole range of atomic 

entities is the Tersoff type of Tersoff-Brenner potentials [2, 7, 10, 27, 31-33]. In Tersoff 

type of potentials the binding energy of an atomic many-body system can be computed 

in terms of pair-wise nearest-neighbor interactions modified by the local atomic 
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environment. Tersoff employed this prescription to obtain the binding energy. The 

Tersoff-Brenner potentials are employed for the simulation of C-C interactions [12, 35]. 

The total potential energy for carbon-carbon interactions can be given as 

{ }
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i j i
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where, *
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B  represents the many body coupling between the bond from atom i to atom 

j and the local environment of the atom i  
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 is the cut-off function. The cut-off function introduces a significant increase in the 

interatomic force near the bond breaking length [32, 36]. 



 19 

2. NUMERICAL SIMULATION PROCEDURE 

 

The procedure employed for the estimation of the elastic modulus of doped, undoped 

nanotubes and for various nanotubes configurations (the same procedure is used for 

analysis in Chapter II) in this work is described below. The minimum energy 

configuration of the CNT is determined using the minimization of the total potential 

energy (PE) at 0 K using an NVE procedure. The CNT is minimized for each 

temperature increments (from 0 K) and the minimized energy at 3K is taken as the 

minimum PE of the CNT. Increment in displacement is applied to the relaxed structure 

and is allowed to equilibrate over a number of time steps. The straining process (see 

Figure 2.7) induces changes in the force experienced by each atom and determines the 

overall stiffness of the structure. This force is used in calculating the updated position of 

the atoms by the Velocity-Verlet time integration scheme [12].  Any change in the total 

potential energy is the strain energy induced by the applied stress or strain. The CNT is 

strained at a constant rate to calculate the strain energy of deformation by minimizing 

the total potential energy at each increment and the difference in the PE gives the strain 

energy due to deformation [2, 10, 12, 13, 24, 31, 37].  

In a composite structure where the CNTs are dispersed in a polymer matrix, the 

orientations and morphological characteristics like diameter, length and chirality varies. 

These variations of the nanodimensional quantities results as variations in the 

macroscopic properties of the composite. The characteristics observed because of these 

morphological features of the CNT are different since the Tersoff-Brenner potential is 

anhormonic or non-isotropic in compression and tension [32]. Recent studies by Sears 

and Batra [10], also emphasises the nonsymmetry of the energy envelope in tension and 

compression [12, 13]: therefore, elastic tension and compression simulations of the CNT 

are carried out in this work (see Figures 2.8 A & B). The elastic property of the CNT 

obtained in our analysis matches closely with many of the theoretical [10, 27, 33]  and 

experimental methods [14, 25, 38] and is shown in figure 2.9. Figure 2.6 shows the final 

configuration of a CNT subjected to tensile and compressive loading during the MD 

run. 
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Figure 2.7 Applied boundary conditions on CNT fibers 

 

For the analysis of silicon doped CNT, randomly selected carbon atoms of the 

equilibrated CNT are replaced by silicon atoms. The doped CNT structure is 

subsequently allowed to undergo energy minimization and is followed by mechanical 

straining by incremental displacement applied to the doped CNT as was carried out for 

the undoped CNT. On minimization of the doped CNT over a series of temperature 

increments, it is observed that the silicon atoms settle to a minimum position above the 

tubular structure, therefore having fewer interactions with the surrounding carbon 

atoms. This phenomenon was also observed by Baierle et al. [39] and is attributed to the 

weak bonding between the Carbon and Silicon atoms.  

 The application of any thermostat in an MD simulation should be carried out 

before the straining process and the elastic properties are extracted at the desired 

temperatures. In the “energy approach”, the elastic constants is obtained directly from 

the second derivative of the potential energy [4, 10] with respect to the change in the 

spatial distance for doped and undoped [3, 12, 31] CNT. By this method, the use of an 

intermediate stress form or called the atomistic virial stress [2, 16], which contains the 

velocity term as used in some of the earlier works [2, 20, 31] can be avoided. The total 

potential energy due to the strain, the elastic strain energy can be expanded as a Taylor 

series for small displacements i.e. the initial position is represented by the equillibrium 

position. The components αβγδ
C of the elastic moduli tensor can be written as 



 21 

2

2 2

0

1 1 1 1

2
ij ij ij ij ij ij

j ia ij ij ij ij ij ij

A

d U dU dU
C a a a a a a

N r dr r dr r dr

αγ

α β γ δ α γ

αβγδ βδ
δ

≠

=

 
  
 = − +   Ω  
 
 

∑
�����

 (2.21) 

where ( )
ij

U U r=  is the potential energy as a function of the interatomic distance ij
r ; 

αγ
A is the internal stress tensor, and at equillibrium is equal to zero; a

Ω is the average 

volume of an atom and N is the number of atoms; αβ
δ is the Dirac-Delta function and 

δγβα ,,, are the spatial dimensions. ij
a is the undeformed value of ij

r , ijijij
aru −= , 

and αβ

αβ
ε

ijij
au = , αβ

ε is the homogenous infintesimal strain tensor applied between 

atoms i  and j .  The force calculated during an MD dynamic time step is used in 

calculating the updated position of the atoms and is carried out by the Velocity-Verlet 

time integration scheme [12, 13].  
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Figure 2.8 (A)  Strain energy of (17,0) SWNT in axial tension  
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Figure 2.8 (B)  Strain energy of (17,0) SWNT in axial compression 
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Figure 2.9 Variation of elastic modulus of CNT with strain applied 
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 In this nanometer scale, material exists in atomic lattices and the elastic properties of 

this atomic system are obtained as an equivalent continuum (EC) method [22, 40]. One 

of the fundamental quantities that directly affect the elastic modulus is the physical 

dimension of the atomistic structure. Estimating the elastic property is a 

homogenization process, where the average potential energy is obtained from the total 

interacting atoms. The length, diameter and the thickness of the CNT are the 

fundamental quantities of interest here. It is assumed in earlier works in the mechanical 

simulation of elastic properties of nanotubes, that the tube thickness is equal to the 

interplanar spacing of graphite[4, 20]. However, recent research by Vodenitcharova and 

Zhang [41], and indirectly by Sears and Batra [10] has shown that the estimated 

thickness of the CNT (0.617 Å) is smaller than the interplanar spacing of graphite. This 

is one of the main reasons for the disparity in the range of the elastic properties 

estimated by various researchers. Continuum mechanics principles used for the 

estimation of the effective thickness cannot be strictly applied to atomistic systems. It 

should be obtained from chemical analysis or ab-initio studies. The thickness of the 

CNT is still an unsettled question and, therefore, the currently accepted/widely used 

thickness of the CNT (3.4Å) is used. It should also be emphasized that this constant, 

scales the estimated elastic modulus linearly. If a properly accepted thickness different 

from the currently used value is determined, the new modulus of the CNT can also be 

scaled accordingly. Also, note that the emphasis is on highlighting the characteristics of 

doping of a CNT by Silicon atoms and its effect on the elastic modulus. 

 

E. SILICON-DOPED CNT DISCUSSION AND NUMERICAL ANALYSIS 

 

Poor solubility and tendency to aggregate as bundles is one the main hindrance to the 

application of CNT in composites. In a CNT reinforced nanocomposite the load 

transferring properties can be increased by chemical functionalization [7, 8, 31]. The 

same effect can also be observed by doping or adding substitutional impurity: i.e. 

replacing the atom in a CNT chain by another atom. However, care has to be taken so as 
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not to disturb the tubular structure of the CNT necessitating very low orders of doping. 

With a low percentage of doping in a finite length CNT, the overall structural 

characteristics are found to change [39, 42-46]. CNT having some of the Carbon atoms 

replaced by Silicon atoms is a new and exciting area in nanotechnology. This doping of 

CNT, which broadly comes under functionalization of CNT holds the key for future 

applications of CNT. Most of the earlier studies have been concentrated on the 

electronic, mechanical and thermal stability and estimation of formation energy rather 

than on the structural properties of the CNT. The effect of CNT and the mechanical 

behavior due to the low order Silicon doping of the CNT is studied in this chapter.  

The study of silicon substitutional impurities in SWNTs was first carried out by 

Baierle et al. The research carried out by this group is by far the best available literature 

in this area [39, 42-45]. The use of silicon as an impurity was chosen based on the fact 

that due to the different sizes of the Silicon and the Carbon atoms and the difference in 

the hybridization, an electronic hole would be formed at the doping location which 

leads to changes in the semiconductor properties of the nanotube. According to Baierle 

et al. [39] the electron density around the Silicon impurity changes thereby altering the 

chemical properties. This has motivated the present study on estimating the mechanical 

properties of Silicon doped CNT.  Current research in nanotechnology is aimed at 

finding multifunctional applications of carbon nanotube based structures. Apart from 

the desired electrical/electronic properties the silicon doped CNT would also have to 

act conjunctionally as a mechanical structure. Since the doping with an isovalent 

impurity in CNT is relatively new [39, 42-44], this work is novel for the study of the 

mechanical properties of Si-doped Single walled CNT (see Figure 2.10). The variation of 

the stiffness of the doped CNT is studied for various low fractions of Silicon doping at a 

temperature of 3K. The stability of the doped CNT is an extremely important factor for 

potential application in real life situation and the effect of temperature on the stability is 

also discussed in this chapter. 
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Figure 2.10 Silicon doped SWNT 

 

Molecular Dynamic simulations of CNT of finite length using Tersoff-Brenner 

potential were carried out for a Zig-Zag (17,0) CNT (408 C atoms) at 3K with periodic 

boundary conditions. To exclude the boundary effect the atoms of the CNT for about 

one diameter length from the edge are restrained (see Figure 2.7) [2, 10, 31]. The second 

derivative of the strain energy profile obtained from the simulation gives the elastic 

modulus. From 0 K the temperature of the equilibrated CNT is slowly raised to 3 K over 

a sequence of temperature increments. The equilibrium position at 3 K is taken as the 

ground potential energy state. Atoms of the CNT are replaced randomly with Silicon 

atoms and are further allowed to equilibrate and the temperature is slowly raised to 3K. 

The Silicon atom in the relaxed configuration undergoes radially outward local 

distortion as reported by Baierle et al. [39]. The Silicon atoms in the CNT settle to a 

stable position above the CNT tubular structure. This is due to the weak bonding 

between the Carbon and Silicon atoms.  The doped Si atoms have very low interactions 

with the surrounding carbon atoms as seen in Figure 2.11 [39]. 

 

(a)      (b) 

Figure 2.11 Equilibrium configuration of (a) 4%  and (b) 3% silicon doped CNT  

 

 The CNT units are strained at a constant rate to a maximum of 3% strain. The 

potential energy is determined at the end of each increment as shown in Figure 2.12a 
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for tension and Figure 2.12b for compression. The compressive strain applied is 

considerably less to cause buckling in the CNT. The elastic modulus for the tensile as 

well as compressive deformation is obtained from the variation of the potential energy 

with respect to the applied strain. It is observed that the strength of the silicon doped 

CNT changes with variation in the numbers of silicon doping (see Figure 2.13a, b) and 

the structure becomes unstable at larger doping percentages and temperatures. Even at 

low doping levels the CNT structure starts to become unstable at large strains and 

therefore the allowable strain is limited, to obtain a suitable estimate of the elastic 

properties. This is also due to the difference in bonding between the Si-C atoms in the 

CNT which is different from the strong C-C bonding. Also, the silicon atom which is 

smaller compared to the carbon atoms, settles to the surface of the CNT under 

equilibrium conditions. The silicon atom experiences weak interaction forces and are 

forced out of the tubular frame as the simulation proceeds. The elastic modulus of the 

Zig-Zag CNT falls within a range of 0.90-0.95 TPa for tensile and compressive modulus 

for Zig-Zag CNT which is in good agreement with published results [4, 9, 10, 24, 47] 

and the modulus of the doped CNT varies within a larger range of 0.15 – 0.16 TPa with 

change in the number of doping atoms (see Figure 13a, b) in tension  and within 0.15 – 

0.19 TPa for compressive modulus for 2 and 3 doped Si atoms in the CNT structure. The 

elastic modulus for a larger doping of 4 and 5 atoms further increases marginally for 

tension strain (0.32-0.5 TPa) while it increases considerably (1.16-1.05 TPa) for 

compressive strain. This variation in the modulus can be attributed to the low 

interaction of the C-Si bond strength which becomes pronounced during tensile loading 

and the repulsive effect between these atoms increases the modulus in compression. 

Another factor that is important is the random nature of the doping location. 
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(b) 

Figure 2.12 Strain energy of doped and undoped (17,0) SWNT in axial (a) tension and 
(b) compression (modified from [12]) 
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Figure 2.13 Modulus of doped and undoped (17,0) Zig-Zag SWNT (a) in tension (b) in 
compression (modified from [12]) 
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F. CONCLUSIONS 

 

In this chapter, the mechanical analyses by MD simulations were carried out with the 

estimation of the elastic properties of single walled nanotubes. These simulations were 

carried out using Tersoff-Brenner potential for isothermal strain conditions and the 

elastic modulus was obtained by the energy method. The estimated values were found 

to conform to the various published works in literature. Specialized CNTs can find 

significant multifunctional applications where novel mechanical and electronic 

properties are desired. Silicon as an impurity in CNT is found to form electronic holes 

leading to semiconductor properties in the resulting CNT. In the second part of this 

chapter, the analysis of Silicon doped CNT to estimate the elastic properties have been 

presented and some of the significant conclusions of this were enumerated. The doped 

CNT was found to be unstable at higher doping percentages and test temperature. 

Silicon atoms were found to attain an equilibrium position above the tubular structure 

of the CNT which had also been verified by earlier ab-initio studies. This instability was 

attributed to the low interaction with the surrounding Carbon atoms. 
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CHAPTER III 
 

MECHANICS OF THE CORE NANOTUBE IN NANOCOMPOSITES, 

NANOROPES AND FUNCTIONALIZED NANOTUBE SYSTEMS 

 

In this chapter, the properties of the central CNT when a functionalized CNT or other 

CNT structures are embedded in a matrix are studied. Functionalized involves the 

attachment of chains of foreign species on the nanotube surface to enhance the desired 

properties [25, 48]. This chapter also presents the effect of chemical functionalization on 

the stiffness of CNTs on the tubule axis along with matrix embedding. The nanometer 

dimension of a CNT and its interaction with a polymer chain requires a study involving 

the coupling of various length scales. There have been many attempts in predicting the 

overall bulk properties of such nanocomposites. These studies were based upon 

idealizations applicable only in a continuum framework. The investigation of 

mechanical behavior of nanostructure materials is carried out using Molecular 

Dynamics (MD) simulations and this interaction is subsequently idealized into an 

Equivalent-Continuum (EC) model. The interaction of the molecules of the CNT with 

the matrix creates an interphase with a reduced mobility. This chapter also discusses 

the variation of effective properties of the interphase region in a functionalized and neat 

CNT reinforced Poly-Ethylene (PE) nanocomposite systems. 

This chapter is organized as follows. Section B gives a brief description of carbon 

nanotubes reinforced polymer composites. Section C through Section D discusses the 

simulation of nanocomposites, functionalized nanotubes, and nanoropes based on 

single-walled CNT and its behavior when embedded in a composite system.  

 



 31 

Section E describes the interphase effect on a CNT reinforced nanocomposites, 

functionalized nanotubes, and nanoropes.  Section G describes the estimation of 

effective properties using micromechanical methods and the effect of fiber orientation. 

Summary and conclusions are presented in Section H. 

 

A. INTRODUCTION 

 

Due to the atomically smooth nonreactive surface of nanotubes built of rolled graphene 

sheets, weak interfacial bonding inhibits load transfer from the matrix to nanotubes 

across the nanotube/polymer interface [49, 50]. The limited role of CNT as 

reinforcements in a composite, due to these weak bonding with the matrix, can be 

overcome by functionalization of the nanotubes, which provides multiple bonding sites 

to the organic/inorganic polymer matrix and thus inhibiting separation between the 

surfaces of polymer and nanotubes [25, 48]. Various researchers have studied the effect 

of different functional groups attached onto the nanotubes [2]. Some of the examples 

are fluorination of CNTs using alcohol solvents, functionalization by attaching 

hydrogen atoms through chemical and electric discharge processes, attachment of alkyl 

chains and carboxylic acids etc. Wei [51] studied the chemical bonding between the 

polymer and CNT using the Tersoff–Brenner potential. They found that multiple-site 

chemical bonding was energetically favorable, i.e., it enhanced the mechanical load 

transfer from the polymer chain to the CNT [49]. Liao and Li [6] observed that for a 

single-wall CNT composite system, the interfacial adhesion forces arises from the 

electrostatic and van der Waal interactions, the radial deformation induced by these 

forces, and the mismatch in the coefficients of thermal expansion for the polymer and 

the SWCNT. It was also reported that the interfacial shear stress of the CNT-polymer 

system due to CNT pullout is significantly higher than most carbon fiber reinforced 

composite systems.   

CNT form agglomerates during its synthesis due to the strong surface area 

attractions between the carbon atoms and majority of the purification effort is spent on 
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the separation of the CNT units into individual units [38]. The molecular interactions 

and load transfer therefore would not only depend on the physical interactions between 

the nanotubes and polymer systems but also on the internal interactions within the 

nanotube rope systems. Therefore, the natural state for the production of the CNT 

based composite system would be a CNT rope – polymer composite system. However, 

from a computational perspective, the incorporation of CNT rope into a composite 

system would substantially increase the simulation time due to the large number of 

atoms involved in the model. Therefore, the search is on for a methodology that 

involves representation of the processes in the atomistic scale and translates the 

information efficiently into the next scale of interest using well established continuum 

theories [52].  

There have been numerous experimental works that bring out the high strength 

aspects of  CNT reinforced composite structures [11, 53]. However, a theoretical 

analysis is necessary for the accurate estimation of various interactions, especially in a 

multiscale framework. The objective of this chapter is to study the mechanics of the 

central CNT in a neat, functionalized and nanorope based CNT-nanocomposite system. 

Most of the earlier works in this area consider the effect of CNT-composite RVE in 

estimating the effective properties.  However, in this chapter, focus is placed on the core 

or central CNT, and study how the mechanical properties are affected by the 

surrounding polymer, nanotubes, functionalizations, etc. This chapter also discusses the 

effect of the overall effective property of the interphase effect in a CNT reinforced 

polymer nanocomposite system. 

 

B. CNT REINFORCED POLYMER COMPOSITE 

 

Polymer based composites reinforced with carbon fibers have been widely used in 

advanced structures. Use of CNT as a potential composite reinforcement has many 

advantages over conventional fibers, enhanced mechanical strength of CNT being one 

of them. Few theoretical works have been undertaken to ascertain the effective 
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properties of CNT based polymers and experimental studies have found a 25% to 40% 

increase in strength [23]. CNT based composites are analyzed by considering the CNT 

as dispersed in a matrix and the interactions of the atoms of the CNT with the atoms of 

the matrix molecules is being studied by MD simulations [19, 20, 27, 30, 33, 49, 51]. The 

problem is different from a conventional fiber composite material in the sense that the 

fiber phase interacts with the matrix phase through molecular interactions. In a 

conventional composite material analysis, the material/mechanical properties of the 

participating phases are widely studied and accepted. This is however not the case with 

the nanometric sized fibers, as the material properties are still being debated and even 

weak molecular interactions is found to alter the overall properties drastically [2, 13]. 

Research in the determination of overall properties of the composite was carried out 

earlier with a bottom to top approach [2, 13, 22, 54]. Of late, focus is on the accuracy in 

predicting the lower order properties and hierarchical transfer of the material 

properties to the larger scale. In the previous works on multiscale modeling, the 

response in the atomistic level was transferred to the mesoscale or microscale by the 

explicit use of equivalence of the response variables [22]. This equivalency of the 

displacement or the stress field has a major drawback, where there is a loss of essential 

information that is important in the atomistic scale, which is either not considered or 

averaged out in the higher scales [10]. Another multiscale method involves the use of 

micromechanical schemes to model the mesolevel and subsequently use of continuum 

formulation for scaling the domain of interest [52]. The obvious drawback of such an 

approach is that the local variations in morphology and structure are not considered or 

do not translate to the macroscopic scale. Keeping these models in mind, a novel 

approach is used in the modeling and analysis of CNT filled polymer matrix 

composites. This model draws inspiration from various attempts in multiscale 

modeling. The interactions in the molecular level are modeled using pair potentials to 

respond to externally applied disturbance. The response variables in the lower scales 

are passed on to the next higher scale, seeking a change in the material properties. This 

method is justified, since the material response at an atomistic scale is highly nonlinear 

[18] and any change in the local environment has been found to vary the ensemble 
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properties dramatically [2]. However, previous works in this area have not been able to 

capture the local variations in a global sense, which is intended to be achieved in this 

chapter. For example, changes in the chirality, orientations of the fiber phase with the 

global orientation and chemical functionalization are found to change the atomistic 

ensemble properties. Thus, they are captured and can be passed on to the higher scales 

subsequently affecting the macroscopic response. 

 

1. APPLICATIONS 

 

The most exciting use of CNT is as reinforcements in polymeric nanocomposites. 

Polymer based composites reinforced with carbon fibers have been widely used in 

advanced structures. Use of CNT as potential composite reinforcements has many 

advantages over conventional fibers. The enhanced mechanical strength of CNT is one 

of the primary reasons. Apart from this enhanced strength, various multifunctional 

features can also be obtained by the use of CNT fibers. One of the most popular 

methods of analysis of the discrete atomistic system and scaling up to the continuous 

macroscale domain is through homogenization methods [13, 23, 55], similar to the 

analysis of heterogeneous composite structures. 

 

2. MODELING OF CNT-POLYMER MATRIX RVE 

 

Polyethylene is one of the simplest polymers studied due to a simple molecular 

structure. Majority of the works carried out so far has predicted an increase in the 

stiffness of the resulting PE composite RVE (Representative Volume Element or called 

Periodic Unit Cell) reinforced with CNT (see Figure 3.1) [1, 11, 23, 27, 30, 56]. This 

prediction of an increase in the effective modulus of the composite RVE is expected as 

the stiffness of a CNT is many orders higher than that of the surrounding polymer. 

However, what has to be estimated in this nano-molecular level is how the interactions 

of the surrounding molecules affect the properties of CNT. The properties estimated 

from the atomistic simulations, especially in crystalline materials, are always found to 
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be higher than the bulk properties of the same material. This was attributed to the 

microscale imperfections in the bulk material that degrades the higher scale properties. 

In estimating the properties due to the molecular interactions it is not always 

straightforward as predicting the material properties based on the principles of 

continuum mechanics.  

 

Figure 3.1 Modeling carbon nanotube-polymer nanocomposites 

 

The large surface area and the nanometer dimensions of the CNT increase the 

quantum of molecular interactions between the molecules of the surrounding polymer 

and the atoms of the CNT. This has been experimentally observed especially in the 

works of Ding et al., [57]. These experiments categorically prove that the interfacial 

strength of CNT-Polymer interface are strong enough for an effective load transfer and 

hence mathematical simulations with perfect load transfer conditions are acceptable. 

Another important factor that affects the interfacial strength of the CNTs is that the 

nanotubes form agglomerates when free. This is due to the strong surface attractions 

between the neighboring nanotubes [50].  The emphasis of this study is on the 

characterization of the layer of polymer immediately surrounding the CNT, called the 

interphase, which is found to change the elastic modulus not related to the bulk of the 

material. Ding et al. [57] has observed that the total effective diameter of the MWNT 

embedded in a polycarbonate polymer is larger and this indicates that there exists 

stronger interaction between the polymer molecules immediately surrounding the 

CNT. 
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The minimum energy configuration of the CNT is minimizing at 0 K using an NVE 

procedure. The CNT is minimized for each temperature increments from 0 K up to 

300K and is taken as the minimum potential energy of the CNT system. Increment in 

displacement is applied to the relaxed structure and is allowed to equilibrate over a 

number of time steps. The CNT system is strained at a constant rate to calculate the 

strain energy of deformation by minimizing the total potential energy at each increment 

and the difference in the potential energy gives the strain energy due to deformation [2, 

10, 12, 13, 24, 31, 37].  

 

a. ANALYSIS OF SINGLE AND DOUBLE WALLED CNT –POLYMER RVE 

 

In this study, the Zig-Zag (17,0) CNT and compatible Zig-Zag multiwalled nanotubes 

are used to estimate the effective property of a CNT-reinforced polymer 

nanocomposite. These nanocomposites are ultimately used as coatings or as load 

bearing structures. The fundamental requirement of these materials is the enhanced 

mechanical strength and durability. As the first step in analyzing the material property 

of the macrostructure, the atomistic interactions need to be analyzed. The CNT which 

forms the reinforcements in a polymeric matrix material was analyzed using molecular 

dynamics. The second step involves the analysis of the mesoscale regime and 

subsequently the higher scales of interest. 

 

Figure 3.2 Study on the effect of polymer matrix on the property of carbon nanotube 
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For a complete understanding of the molecular effects and how these percolate 

into the upper scales, one has to study the effect of one medium over the other. In this 

case, it should be understood as to how the property of the CNT affects the polymer 

matrix and vice-versa (see Figures 3.2 and 3.3). It has been experimentally proven that 

the interface between the CNT and the polymer has an altered property compared to 

the polymer itself. This is due to the atomistic interactions of the polymer and 

nanotube. This also sheds light on the fact that the atomistic interactions not normally 

considered could affect the macroscopic material property considerably and therefore 

needs to be estimated for each case. In this study, estimating the effect of the polymer 

on the CNT is of primary interest. The analytical domain consists of an RVE (or Periodic 

Unit cell) of a CNT (Zig-Zag in this case) surrounded by layers of Poly-Ethylene (PE) 

molecules. The polyethylene molecules studied in this work are crystalline.  

 

 

Figure 3.3 Deformation characteristic of SWNT under the influence of polymer 
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(a) 

 

(b) 

Figure 3.4 (a) Strain energy variation, and (b) axial stiffness with axial strain for SWNT-
PE composite 
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It is found that the effective property of the CNT reduces during the tension and 

compressive loading stages. The analysis was also carried out for various numbers of 

surrounding polyethylene molecules for a detailed estimate. As the numbers of 

polyethylene molecules are increased the effective property reduces and reaches an 

asymptotic value when the number of polyethylene (PE) layers equals 8 (see Figure 3.4). 

This possibly suggests the effect of infinite polymer medium, normally encountered in 

nanocomposite specimens, on the CNT. This reduced effective property of the CNT will 

be used in the estimation of the higher scale properties by homogenization methods. No 

relevant works were found to compare this reduction in the property of the CNT under 

the influence of the surrounding polymer; however, it is very clear that the property has 

to change compared to a freely existing atomistic entity. Most of the works that estimate 

the effective property of the CNT-Polymer RVE calculate the effect of the total RVE as 

such or take into consideration the effect of the individual independent components. 

Analysis was also carried out for DWNT with surrounding polymer materials, and the 

effective property of the core DWNT was also found to be less than would be estimated 

for a neat DWNT (see Figure 3.5 and 3.6a&b). 

 

 

Figure 3.5 Modeling double walled CNT PE nanocomposites 
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 (a)  

  

(b) 

Figure 3.6 Strain energy variation with axial strain and axial stiffness for double walled 
CNT -PE composite 
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b. ANALYSIS OF SWNT NANOROPE –POLYMER RVE 

 

Analysis was also carried out on the combined effect of surrounding polymer matrix 

and CNTs on the core CNT. This simulates the effect of the CNT nanorope embedded in 

a polymer matrix. The computational time required for the analysis increases 

prohibitively high for a large polymeric system RVE (see Figure 3.7) with nanoropes. 

The strain energy variation with the applied tensile and compressive deformation is 

given in Figure 3.8.  

  

Figure 3.7 SWNT nanorope –polymer RVE – computational unit 
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Figure 3.8 Strain energy variations with axial tensile and compressive strain for a 
SWNT-nanorope-polymer RVE 
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Perfect load transfer is assumed in many of the works in CNT-composite models. In 

some works where this perfect condition is not achieved, the effective load transfer is 

enhanced using functionalization of the CNTs. For the realization of the multifunctional 

property in the CNT, substitution impurity or doping the CNT is another promising 

area. This section is focused on the effect of the surrounding polymer on the stiffness of 

the neat (pure or non-functionalized) and functionalized CNT. In majority of the works 

carried in CNT composite structures, it is inaccurately assumed that the CNT does not 

undergo any change in its properties. In this work, however, the effect of the polymer 

on the degradation or enhancement of the CNT properties is investigated.  By this 

approach, it is possible to take into consideration two factors that affect the stiffness of 

the composite. First, by considering the change in the property of the CNT under the 

influence of the surrounding polymer and incidentally, the effect of imperfect load 

transfer is indirectly taken into consideration. The argument for such a treatment is that 

if there is an imperfect load transfer then one can naturally surmise that the property of 

the CNT does not change under the influence of the matrix and on the other hand if it 

changes, then conclude that the polymer affects the property of the CNT. Second, by 

considering the property of the surrounding interphase layer greater accuracy is 

achieved in predicting the effective property of the composite structure. It should be 

emphasized that the simulations carried out in this work do not take into consideration 

the change in the effective property of the surrounding matrix. 
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C. ANALYSIS OF FUNCTIONALIZED CNT 

 

A functionalized CNT with ethylene chains as the functional group is shown in figure 

3.9. The sites of substitution is chosen randomly along the lengh of the CNT and 

therefore no specific order is used in the creation of the functionalized CNT. The 

ethylene group is of sufficient length so that it can also be attached to the surrouding 

polymer as in the case of an embedded CNT-matrix structure. After minimization of the 

functionalized CNT ensemble, tensile and compressive strains are applied 

incrementally. The change in the elastic modulus (in TPa) of the functionalized CNT is 

compared with a neat (meaning CNT with no functionalization) CNT as shown in 

figures 3.10 a & b. The properties thus obtained, can be used in the higher scale analysis 

for various CNT structures and morphologies for a multiscale analysis. When strain is 

applied to a composite material quickly, the chemical attachment generally breaks at 

the fiber wall. However, when the composite is deformed slowly the bonded chain gets 

sufficient time to get disentangled from the surrounding matrix. In either case, the 

movement of the attached polymer dissipates energy during deformation thus 

increasing the overall resistance of the material to failure [58]. This phenomenon of 

slow matrix re-entanglement is enhanced when the CNT is functionalized [2]. However, 

the rate of application of strain has to be controlled. 

 

 
Figure 3.9 Functionalized singlewalled CNT 
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Figure 3.10 Elastic properties of functionalized SWNT in (a) tension and (b) 
compression (1. neat SWNT, 2. functionalized SWNT) 
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1. ANALYSIS OF FUNCTIONALIZED CNT REINFORCED POLYMER 

COMPOSITE 

 

A functionalized CNT embedded in a matrix enclosure is shown in figure 3.11. The sites 

of substitution in this case is also chosen randomly along the CNT. The ethylene group 

is of sufficient length so that it can be attached to the surrouding polymer in this case. 

After minimization of the functionalized CNT ensemble, tensile strains are applied 

incrementally. The change in the elastic modulus (in TPa) with a neat and 

functionalized CNT is shown in figure 3.12. The properties calculated in this study is 

for the central CNT and not for the whole ensemble as it is very important to estimate 

the effect in-situ. In most of our simulations, it has been found that no direct correlation 

can be made on the effect of various features on the properties of CNT and therefore 

analysis needs to be carried out for each scenario. 

 

 

Figure 3.11 Functionalized SWNT embedded in a polythelene matrix 
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Figure 3.12 Elastic properties of various SWNT ensembles 

 

Tensile tests carried out on the CNT-matrix RVE, interestingly shows that 

functionalized chains form attachments with the surrounding matrix. This series of 

bonding and rebonding has also been observed in pullout tests conducted on 

functionalized CNT-matrix interactions [31]. However, the important point in this 

simulation is the fact that even during energy minimization processes, the 

functionalized chains of the CNT establishes bonding with the matrix chains. This 

feature is important in the load transfer from the matrix to the CNT and vice-versa as 

can be seen in Figure 3.13. One of the most important characteristics of such a 

phenomenon is the effect of such an interaction on the macroscopic material property, 

where the interactions in the nanoscale affect the properties in the macroscale leading to 

a coupled multiscale model. 
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Figure 3.13 Re-attachment of ethylene chains in the CNT to the ethylene chains in the 
matrix after stabilization 
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  (a)      (b)    

Figure 3.14 (a) Functionalized SWNT surrounded by 2 polymer layers (b) strain energy 
variation with respect to the applied strain 
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The variation of the strain energy with respect to the applied strains in 

comparison with neat CNT, functionalized CNTs and matrix-embedded functionalized 

CNT is show in figures 3.14b.  Figures 3.15a show a CNT matrix embedded in 4 layers 

of polymer matrix and Figure 3.15b show the corresponding strain energy variation. 

The difference in the strain energy between figures 3.14b and 3.15b is due to the effect 

of the number of polymer layers on the central or the core CNT.  

When strain is applied to a composite material quickly, the chemical attachment 

generally breaks at the fiber wall. However, when the composite is deformed slowly the 

bonded chain gets sufficient time to get disentangled from the surrounding matrix. In 

either case, the movement of the attached polymer dissipates energy during 

deformation thus increasing the overall resistance of the material to failure [58]. This 

phenomenon of slow matrix re-entanglement is enhanced when the CNT is 

functionalized [2]. However, the rate of application of strain has to be controlled. 
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Figure 3.15 (a) Functionalized SWNT surrounded by 4 polymer layers (b) strain energy 
variation with respect to the applied strain 
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The properties of the functional CNT and its behavior when embedded in a 

matrix structure and also the effect of chemical functionalization on the stiffness of 

CNTs along the tubule axis can also be established. For the macroscopic functionalized 

nanocomposite structure to be stable, the functionalized CNT atomistic unit has to be 

structurally stable under various thermal conditions. The stability of the CNT affected 

by the substitutional changes has to be studied by monitoring the structural change in 

the CNT profile under various loading and temperature conditions. These properties 

help in establishing the use of functionalized CNT in composite structures. It is found 

that the CNT functionalized with chemically active functional chains are stable to a 

sufficient strain level and there is no adverse effect on the tubular structural integrity of 

the CNT.  Also, the functionalized CNT embedded in the matrix is found to be stable; 

however the material stiffness shows variation with the change in the number of layers 

of matrix molecules it is embedded in. Figure 3.16 shows the variation of the elastic 

stiffness of the CNT for various states of the neat and functionalized CNT in 

compression and is within the range of 0.5 -5.5 TPa as in the literature [23, 31]. It can be 

seen that with the increase in the number of polymer layers, the effective elastic 

modulus of the CNT is found to decrease as the number of farfield molecular 

interactions increases.  
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Figure 3.16. Elastic properties of various types of SWNT ensembles in compression 
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D. ANALYSIS OF CNT NANOROPES AND FUNCTIONALIZED CNT 

NANOROPES 

1. CNT NANOROPES 

 

Carbon nanotubes are normally found to exist in an aggregated state. It is infact a 

known property of carbon based nanotubes to form agglomerates during its synthesis 

and majority of the purification effort is spent on the separation of the CNT units into 

individual units. The tiny structure of single-walled carbon nanotubes has very high 

curvature, which results in a high surface energy [50]. Therefore, the individual 

nanotubes tend to self-organize into crystalline bundles or into a set few hundred 

aligned nanotubes arranged in a two-dimensional lattice in the plane perpendicular to 

the common axes. These highly uniform tubes which have a greater tendency to form 

aligned bundles have led Smalley to christen the bundles nanotube "ropes". Initial 

experiments indicated that the rope samples contained a very high proportion of 

nanotubes with a specific Armchair structure. Subsequent work has suggested that the 

rope samples may be less homogeneous than originally thought. Nevertheless, the 

synthesis of nanotube ropes (see Figure 3.17) gave an important boost to nanotube 

research. The incorporation of CNT rope into a composite system would substantially 

increase the simulation time due to the large number of atoms involved in the model. 

The molecular interaction and load transfer in such a system would not only depend on 

the physical interactions between the nanotubes and polymer but also on the internal 

interactions within the nanotube rope system. Hence it is required that the nanotube 

rope system should also be analyzed independently. The type of nanoropes used in the 

current analysis is shown in Figure 3.17, and it consists of a triadic arrangement of CNT. 
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(a) 

  

(b)       (c) 

Figure 3.17 (a) Triangular arrangement of SWNT – nanoropes (b) hexagonal and (c) 
pentagonal arrangement of CNT based nanoropes 

 

Various configurations of nanoropes also under study are shown in Figure 

3.17b&c however the results presented in this chapter pertains only to the triadic 

system.  Experimental analysis by Atomic Force Microscopy (AFM) of nanoropes to 

estimate the elastic properties of CNT based ropes by Salvetat [38] is one of the few 

experimental works available, a couple of theoretical works exists in` the analysis of 

CNT based ropes [50, 59]. The experimental analysis by Salvetat has shown that the 

overall properties of the nanorope are less than the effective property of a single 

nanotube. This degradation in the property of the CNT is also reflected in this analysis 

(see figure 3.18). The property of the nanotubes is estimated indirectly in this analysis 

by considering the effect of the surrounding CNT on the core CNT. There is no direct 

study to compare this degradation of the property of the core CNT, due to the nature of 

the atomistic interactions at the nanoscale, the tensile and compressive (attractive and 

repulsive forces) forces on individual CNT atoms affect the strain energy thereby 
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affecting the elastic modulus. Any change in the property of this core CNT would be 

due to the effect of the surrounding CNT. This method of analysis is also aimed at 

studying the effect of a surrounding polymer or functionalization on a CNT.  It has 

been stated that the interactions between the different non bonded CNTs is by van der 

Waals forces and this contributed to the radial deformability of individual nanotubes 

and also leads to changes in the inter-tube contact within a rope [50]. 
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Figure 3.18a Elastic strain energy under tensile strains for CNT based nanoropes 
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Figure 3.18b Elastic strain energy under compressive strains for CNT based nanoropes 

 

The variation of the elastic strain energy for the core CNT in a Triad-Nanorope 

reveals the effect on the core CNT under tensile loading and is found to be marginal; 

however the compressive loading has a profound effect. This is because in compression 

the surrounding CNTs interacts more (repulsive effect) with the core CNT rather than 

in tension. The elastic modulus of the core CNT obtained by the above method (see 

Figure 3.19) closely matches with the experimental analysis of Salvetat [38] for the type 

of CNTs used in this analysis.  Salvetat has observed ranges from 1.3TPa to 67GPa for 

various rope diameter and lengths. The elastic modulus was found to decrease as the 

physical dimension of the evaluated specimen increases.  
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 (a)      (b) 

Figure 3.19 Elastic properties of CNT based nanoropes in (a) tension and (b) 
compression 

 

a. ARMCHAIR (10,10) CNT NANOROPE 

 

To have a better estimate of the elastic properties of individual configurations that 

should be transferred to the higher scale, one need to do individual MD analysis on 

each of these CNT configurations. Therefore, MD analysis was carried out on an 

Armchair (10,10) CNT (see Figure 3.20) and the effect the core or central CNT would 

experience when it is surrounded by a layer of CNTs has been estimated.  

 

  

 

Figure 3.20 Undeformed and deformed configuration of Armchair (10,10) SWNT 
nanoropes 
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It should be noted that for the strains applied, there is no structural instability 

observed on the core or surrounding CNTs. The strain energy variation during the 

tensile deformation process is plotted in Figure 3.21(a). The variation of the strain 

energy has been found to be similar to what has been observed for the Zig-Zag CNT 

based nanorope and the elastic modulus obtained is shown in Figure 3.21(b). 
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Figure 3.21. (a) Strain energy variation during the deformation process  
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Figure 3.21 (b) Elastic modulus for a neat (10,10) CNT and core CNT of a nanorope 
 

2. FUNCTIONALIZED CNT NANOROPES 

 

As a continuation of the previous sections on the analysis of CNT nanorope, the effect 

of functionalization of CNT ropes and its interaction with the central neat CNTs are 

studied. The main interest is in the behavior of central CNT in the presence of the 

functionalization and peripheral nanotubes.  Though various configurations of 

nanoropes are possible, this chapter mainly concentrates on the quad and hexagonal 

arrangements. The incorporation of CNT rope into a composite system would 

substantially increase the simulation time due to the large number of atoms involved in 

the model. The molecular interaction and load transfer in such a system would not only 

depend on the physical interactions between the nanotubes and polymer but also on the 

internal interactions within the nanotube rope system [50]. The type of nanorope used 

in the current analysis is shown in Figure 3.22a, which consists of a diamond 

arrangement of CNT. The variation of the elastic strain energy for the core CNT in a 

quad-nanorope in tension is shown in Figure 3.22b.  
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Functionalization studies on a hexagonal arrangement (see Figure 3.23a) of the 

CNT ropes are also being carried out. The strain energy variation with the applied 

strain for this configuration is shown in Figure 3.23b.  The strain energy profile changes 

with the number of surrounding CNT’s and due to the presence of the functional 

groups on the surface of the CNT. It can be seen that the strain energy profile is drawn 

to a point below the zero energy state in the case of the hexagonal nanorope. This is 

because due to the large number of atoms in the ensemble drastically increases the 

computational time required for total minimization. The minimization procedure is 

terminated before a true minimization may be achieved. The corresponding strain 

energy profile originating from this ensemble therefore shows a non-zero energy state 

and this residual strain energy is indicated (see Figure 3.23b). 

 

 

  (a)       (b)    

Figure 3.22 (a) Functionalized SWNT quad-nanorope (b) Strain energy variation with 
respect to the applied strain 
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 (a)       (b)    

Figure 3.23 (a) Functionalized SWNT hexagonal-nanorope (b) variation of strain energy 
with respect to applied strains 

 

E. INTERPHASES IN NANOCOMPOSITE 

 

One of the most popular methods of analysis of a nanocomposite is the homogenization 

methods similar to the analysis of heterogeneous composite structures. Polyethylene is 

one of the simplest among the various polymers studied and the advantage lies in the 

fact that it has a simple molecular structure. Majority of the works carried out so far has 

predicted an increase in the stiffness of the resulting PE composite reinforced with CNT 

[1, 11, 27, 30, 56, 60]. The large surface area and the nanometer dimensions of the CNT 

increase the quantum of molecular interactions between the molecules of the 

surrounding polymer and the atoms of the CNT. This has been experimentally 

observed especially in the works of Ding [57] and Sandler [61] and Barber [62]. These 
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experiments categorically prove that the interfacial strength of CNT-Polymer interface 

is strong for an effective load transfer and hence mathematical simulations with perfect 

load transfer conditions are acceptable. The emphasis of this study is on the 

characterization of the layer of polymer immediately surrounding the CNT called the 

interphase, which is found to have an altered effective property not related to the bulk 

of the material. Ding has observed that the total effective diameter of the MWNT 

embedded in a polycarbonate polymer is larger and this indicates that there exists 

stronger interaction between the polymer molecules immediately surrounding the 

CNT.  

According to Fisher and Brinson [60] the interphase thickness is of the order of 

the diameter of the CNT. Therefore the effect of the interphase cannot be completely 

eliminated in the analysis of the effective properties of the composite. Interphase 

analysis of fiber matrix composites due to various effects considers the variation of the 

interphase property based on Wacker’s mathematical model [63] given by 
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where , ,i f m
E is the modulus of the interphase, fiber and matrix phases respectively and 

0 1α≤ ≤ , and 2,3,...n = . The effective average transverse modulus of the interphase is 

given by 
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=

∫
     (3.2) 

It is also reported that for purely polyethylene based composites the value of α 

is around 0.21 with the value of n fixed and taken as 2 [63]. The stiffness of the matrix is 

taken as 610 MPa [27]. Since this model takes into consideration the polymer based 

composite systems, the direct application of the load transfer mechanism into the 

molecular regime can be implicitly assumed. Thus, one can model the effective 

properties of the interphase based on the properties of the surrounding matrix in the 
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outer layer and also the effective property of the CNT, which forms the inner core. The 

properties of the interphase vary within this layer according to this model. The effective 

property of the interphase is calculated from Wacker’s model in the longitudinal 

direction to the fiber phase for CNT systems having neat and functionalized CNTs.  It is 

not clearly established that the size of the interface layer is limited to only the diameter 

of the fiber phase. Figure 3.24 shows the variation of the axial stiffness of the interphase 

region along the radius. The stiffness of the CNT used is the modified stiffness of the 

CNT, due to the effect of the surrounding polymer or functionalization and this is one 

of the uniqueness of the current work.  
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Figure 3.24 Variation of axial stiffness along the radius of the composite in the 
interphase region for neat and functionalized CNT systems 
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F. ADHESION ENERGY OF CNT COMPOSITE SYSTEMS 

 

Most of the works in molecular simulation of the mechanical properties of CNT and 

CNT-reinforced composites has either been concentrated on the effect of the chirality of 

the CNT or the volume fraction of the CNT in composites. There have been very few 

reported studies [64-68] on the effect of strain on the adhesion energy of the CNT-based 

composite systems. The CNT-PE RVE has been analyzed using molecular dynamics 

with variation in the nanotube volume fractions. However, in an actual composite 

structure the matrix and fiber (CNT) phase undergoes strain variations. Since the 

effective property of the RVE is dependent on the current state of the system, a look at 

the adhesion energy is also important to get a reliable estimate of the bonding between 

the matrix and the fiber-phase. In the literature, the adhesion energy is calculated from 

the difference between the energy of the composite from the sum of the energy of the 

CNT and the polyethylene molecules [66-68]. However, in this study, a novel method of 

estimating the adhesion state of the CNT with the surrounding matrix is presented. The 

difference of the total strain energy of the deforming CNT and the CNT under the 

influence of the polyethylene matrix would give an estimate of the total amount of 

energy interaction that is occurring between the CNT and the matrix. This method can 

be applied to single-walled nanotubes (SWNTs) as well as doubled walled nanotubes 

(DWNT’s). 
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 (a)        (b)  
 
Figure 3.25 Variation of adhesion energy for (a) SWNT and (b) DWNT CNT composite 

systems 
 

The adhesion energy of the CNT obtained for the composite shows that there 

exists a zone of snap-through of the chemical bonds (see Figure 3.25a), leading to an 

enhancement in the interaction between the matrix and the CNT phases as been 

reported by Zhao et al. [67] and Heterl et al. [68]. The snap-through in the bonding is 

found to occur at a strain of 0.03 for SWNT, and for MWNT there does not seem to be a 

clear demarcation in the two zones. The zones are also found to depend on the number 

of polymer layers surrounding the CNT. For a large number of matrixes in the DWNT, 

a clear demarcation has not been observed but this does exist in a low percentage of 

matrix polyethylene (see Figure 3.25b). The matrix molecules in the low-volume-

fraction CNT-Composite RVE have been arrested from deforming beyond a region of 

influence. By arresting these far away molecules, one can reduce the computational 

time taken for analysis. This method is justifiable because the actual effect of the 

surrounding molecules on the CNT is restricted to the immediate layers around the 

CNT and the farther the layers are, the lesser is the influence. That is to say, no direct 
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influence exists between a far away atom and near atom separated beyond the radius of 

influence of the carbon atoms in the CNT. 

 

G. CONTINUUM VOLUME AVERAGING: MICROMECHANICAL METHOD 

 

The outstanding scientific problem such as turbulence and nonlinear material behavior 

exemplifies multi-scale problems in time, length and/or energy scales. While in each of 

these multi-scale problems, processes occur simultaneously at various scales which 

affects parameters at other scales, what distinguishes one problem from the other is the 

degree to which each of those scales are coupled. Both experimental and computational 

strategies should recognize the strength of those couplings before devising methods to 

analyze them. In cases where the coupling is weak, each of those scales can be solved 

independently with a few selected parameters passing up and down the scales (e.g., 

elasticity, metal thermal conductivity, and so on). The main objective therefore is 

modeling the mechanical behavior of the heterogeneous macrostructure, made of 

nanocomposite materials, through numerical homogenization. The information of 

interest (e.g., mechanical, thermal properties, etc.,) in the atomistic level is usually 

“lumped” into very few macroscopic parameters like the elastic modulus, thermal 

conductivity etc. These properties depend on the symmetry properties of the 

macroscopic material [69]. These homogenization methods provide ways to predict the 

mechanical response of heterogeneous specimens by replacing the specimen with a 

homogeneous equivalent continuum through suitable averaged quantities [70]. For 

example the atomistic information of the mechanical properties of the individual atoms 

in the CNT is averaged for a CNT and this average is taken as the continuum equivalent 

of the elastic stiffness. The multiscale formulation, which combines the essential ideas of 

variational multiscale methods and Eshelby’s equivalent eigenstrain principle [12, 13, 

54, 55, 71], have being applied for homogenizing the displacement fields. Apart from 

the mechanical properties, this formulation can also deal with thermal properties in 

which only a few works have been reported. The method being proposed is generalized 
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in the sense that the cause of eigenstrain can either be due to material inhomogeneity or 

due to thermally or electrically induced strains. 

 Direct application of the micromechanical methods into the nanometer level raises 

several questions. A volume averaging of the constituent properties is one of the 

accepted methods for bridging the scales [11, 12, 19, 55, 72] and this forms the 

preliminary basis of a multiscale analysis. Let us consider a carbon nanotube, 

considered as a fiber, embedded in a matrix layer and subjected to far-field applied 

strain. In the eigenstrain formulation, the fiber is approximated as a distinct cylindrical 

inclusion in the matrix phase. Applying Eshelby’s eigenstrain due to the inclusion [12, 

13, 22, 73] on the matrix, the self-consistent model can be obtained (see Figure 3.26).  

 

 

Figure 3.26 Matrix composite with an inclusion under far field - strain 

 

The elastostatic equilibrium of a homogeneous matrix without an inclusion can 

be represented by the boundary value problem 
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In which 
ij

σ are the Cauchy stress components that are linked to the infinitesimal strain 

components by the generalized Hooke’s law and the Lagrange strain defined by the 

gradient of the displacement field 

klijklji
C εσ =       (3.4) 

( )
ijjijiij

uuu ,,),(
2

1
+==ε .    (3.5) 

The solution of the boundary value problem with an inclusion (see Figure 3.26) can be 

expressed as the sum of the homogenous displacement field u and the deviation field 

u′ caused due to the presence of an inhomogeneity given as 

uuu ′+= .     (3.6) 

By use of the far field strain conditions on a composite RVE, the deviation field can be 

modeled in terms of the equivalent eigenstrain. The proposed formulation involves the 

use of the corresponding eigenstrain in terms of the deviation field for modeling the 

effective modulus of the nanocomposite RVE. From the analysis carried out so far, one 

can estimate the stiffness variations of the functionalized CNTs as a structural unit and 

as embedded in the matrix. The elastic property calculated from these simulations helps 

in the multiscale formulations to estimate the macroscale properties of the CNT and 

CNT-reinforced composite structures. Estimation of the mechanical properties can be 

carried out by considering the volume averaging of the various measures in a 

mechanical straining process. For an elastic composite material, the effective 

constitutive relations are given by the volume average of the stress and strain [22]. 

Similarly, for each phase k on the micro/nano scale the constitutive relation can be 

given as 
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tot

kk

tot
C εσ =

     (3.7) 
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In which
k

tot
.  is the volume averaged state of phase k , including the matrix, fiber and 

any interphase layers [13, 72], C is the elastic moduli and ,α β are the Cartesian co-

ordinates. The volume averaging of the state variables are given by: 
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Whereas for an N particles atomic ensemble the state variables are: 
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 For a simple EC (see Figure 3.27) the average stresses due to the atomic ensemble is 

equal to the average stress due to volume averaging, establishing the relationship 

between the material constants derived from the MD simulation and volume averaging 

for use in the micromechanical techniques [22]. Applying the Eshelby eigenstrain 

formulation, the effect of the fiber phase on the matrix stress is captured by means of an 

averaged strain concentration tensor [23]. For the analysis of multiphase materials, the 

Mori-Tanaka (MT) method has been used to model the effective behavior of composites 

[19, 23, 55, 56].  

 

 

Figure 3.27 MD computational unit cell of CNT-matrix and equivalent continuum 
model 
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Consider an RVE in a CNT reinforced composite (see Figure 3.28) subjected to a 

homogenous displacement boundary condition which produces a uniform strain o

ij
ε in 

an infinite homogenous material containing an embedded inclusion shown in figure 

3.26. Eshelby has shown that under the above conditions, the ellipsoidal inclusion 

experiences a uniform eigenstrain *
ij

ε . By applying the eigenstrain method the effective 

modulus of the composite RVE can be calculated (see Figure 3.19). One of the well 

known methods of approximation is Mori-Tanaka Method (MT). MT theory was 

originally concerned with the calculation of internal stress in a matrix containing 

inclusions with eigenstrains. The concentration matrices are determined for each phase 

having different properties. However, this theory is valid only for cases where the 

concentration of the inclusion phase is small.  
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Figure 3.28 Representation of CNT reinforced composite 

 

The MT method treats the different phases as distinct regions and does not take 

into consideration the geometry [23, 73]. The MT formulation followed in this work 

follows closely with the works of Fisher et al. [23, 60]. In a multiphase model as in the 

case of a fiber-interphase-matrix RVE the different regions are represented as distinct 

cylindrical phases equivalently dispersed in the matrix. This model is further used in 

the study of fiber orientations. To elucidate the expressions for MT method, assume the 

composite is composed of K phases. The stiffness of the matrix is given by 
m

C and the 

volume fraction of the matrix given by 
m

v . The kth phase has a stiffness of 
k

C  and 
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volume fraction of
k

v . The dilute strain concentration factor for the kth phase, dil

k
A  

relates the volume averaged strain in the kth inclusion to that of the matrix [23, 73] and is 

obtained from 
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(a)     (b) 

Figure 3.29 Equivalent eigenstrain inclusion for far field strains 

 

 To elucidate the expressions for MT method, assuming the composite is composed 

of k  phases. The stiffness of the matrix is given by 0C and the volume fraction of the 

matrix by 0v . The th
k  phase has a stiffness of 

k
C  and volume fraction of

k
v . The dilute 

strain concentration factor for the th
k  phase, dil

k
A  relates the volume averaged strain in 

the th
k  inclusion to that of the matrix is given by 
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− = + −      (3.10) 

I is the Identity tensor, 
k

S is the Eshelby Tensor for the th
k phase dispersed inclusion. 

The values of the Eshelby tensor for various fiber phase geometries can be obtained 

from literature [23, 73]. The effective modulus of the composite C is found from 
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Thus effective material relation for the homogenized composite structure is given by 

tot tot
Cσ ε=      (3.12) 
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 The effective modulus of polyethylene matrix polymer is taken as 610 GPa [27] with 

a Poisson’s ratio of 0.3. Mori Tanaka method has been applied to estimate the effective 

property of undoped CNT reinforced composites [12, 55]. In this dissertation, the 

applicability of this micromechanical method is extended to doped-CNTs. The 

continuum form of the tensile and compressive modulus of the undoped CNT is 

obtained by the equivalence of the strain energy and according to equations (3.7) - (3.9). 

The effective modulus of the doped CNT based composite is obtained using Mori 

Tanaka method. The overall effective strength of the matrix composite increases with 

increasing fiber phase as expected (see Figure 3.30 for tension and Figure 3.31 for 

compression of Zig-Zag CNT). One of the limitations of this analysis is the assumption 

that perfect load transfer exists between the CNT and the polymer matrix. Even though 

not ideal, valuable information on the effective strength of the resulting composite can 

still be determined. The significant contributions of this work are in the study of 

stability and estimation of elastic properties of silicon doped CNT and the estimation of 

effective property of doped CNT based nanocomposites. 
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Figure 3.30 Effective tensile modulus of doped and undoped (17,0) Zig-Zag SWNT 

reinforced composite (modified from [12]) 
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Figure 3.31 Effective compressive modulus of doped and undoped (17,0) Zig-Zag 
SWNT reinforced composite (modified from [12]) 

 

1. FIBER ORIENTATION MICROMECHANICAL ANALYSIS OF 

NANOCOMPOSITE 

 

Micromechanical analysis of composite materials provides an estimate of their overall 

behavior from the known properties of the individual constituents and their detailed 

interaction. However, the behavior of short-fiber-reinforced composites is not only a 

function of the constituent properties, but also of the interfacial quality, which governs 

nearly all properties of a composite material. For any fibrous composite, the 

orientations of the fibers affect the overall properties. Apart from the molecular 

structure and the molecular interaction of the CNT with the matrix polymer, the large-

scale morphology also affects the overall properties of the composite material. Attempts 

in studying the effect of CNT fiber orientation [19] were initiated by considering 

different orientation angles of the fiber [74-76]. In this work, the fiber orientation of the 

CNT-PE RVE has been studied by the Mori Tanaka method for two-phase composites 
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[12, 55].  Also, one can extend the model to include the CNT-Interphase RVE with the 

interphase and CNT RVE as equivalently distributed in the matrix (Figure 3.32). 
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Figure 3.32 Micromechanical model of the CNT-fiber RVE orientations 

 

The orientation of the CNT fibers affects the strain concentration tensor, and has 

to be modified accordingly. The strain concentration tensor is transformed from the 

fiber direction to the global direction by a simple transformation. The orientation 

average of this tensor is obtained by an averaging scheme [22, 74-76], which depends on 

an orientation distribution function. A random distribution of the fibers as well as an 

aligned fiber distribution is also considered in this work. 

The dilute strain concentration factor for the kth phase, dil

k
A  relates the volume-

averaged strain in the kth inclusion (local direction) to that of the matrix and is obtained 

from 
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where T is the transformation tensor; dil

k
A is the transformed strain concentration 

tensor; and ( )ψγφλ ,, is the orientation distribution function 
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= , 21, ss are factors that control the orientation [19], 

0,0 21 == ss  for the random distribution, and ∞=∞= 21 , ss  for the aligned 

distribution. The orientation analysis of the fiber distribution is carried out by the 

transformation of the fourth-order tensor followed by a spatial averaging over the RVE 

corresponding to the material point in the continuum, thus giving the overall averaged 

properties (see Figure 3.33). The fiber orientation in the RVE is subsequently defined by 

the orientation distribution function of the Euler angles.  
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Figure 3.33 Two-phase variation of effective properties of the CNT-reinforced 
nanocomposite for aligned fiber 
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H. CONCLUSIONS 

 

For the accurate and reliable estimation of the properties of nanocomposites an efficient 

multiscale modeling strategy is imperative. A multiscale computational framework 

would unify and improve the existing methods of analysis in the individual scales of 

interest and provide adequate mathematical stability and accuracy. In this chapter, the 

mechanical properties of the central CNT are determined when a functionalized CNT or 

other CNT structures are embedded in a matrix structure. In this study, the effect of 

chemical functionalization on the stiffness of CNTs along the tubule axis is also 

estimated. For the macroscopic functionalized nanocomposite structure to be stable, the 

functionalized CNT atomistic unit has to be stable under various conditions. The 

stability of the CNT affected by the substitutional changes is studied by monitoring the 

structural change in the CNT profile under various loading conditions. These properties 

help in establishing the use of functionalized CNTs in composite structures. 

Micromechanical techniques are used to obtain the effective properties in the 

homogenized mesoscale thereby bridging the different scales. This study also features a 

procedure for the estimation of the effective properties of the doped CNT based 

composite using Mori-Tanaka methods. 
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CHAPTER IV 
 

ATOMISTIC-MESOSCALE COUPLED MECHANICAL  

ANALYSIS OF POLYMERIC NANOFIBERS* 

 

In this chapter the theoretical analysis of Poly-(L)-Lactic Acid (PLLA) nanofibers is 

presented. This study aims to analyze the mechanical properties of PLLA nanofibers so 

that optimal scaffolds in tissue engineering applications can be developed. Analysis of 

PLLA nanofibers is carried out to estimate the mechanical properties from basic 

building blocks to the nanofibrous structures. A single PLLA nanofiber is made up of 

shish-kebab like fibrils intertwined together and can contain both amorphous and 

crystalline phases.  The elastic modulus of the Lactic acid monomeric formation in the 

crystalline phase is derived using second-derivative of the strain energy using 

molecular dynamics simulation. The mechanical property of the Shish-Kebab fibril is 

derived by homogenization. The fiber modulus is then obtained using the Northolt and 

van der Hout's continuous chain theory. One of the significant contributions in this 

dissertation is the use of modified continuous chain theory, where a combined 

multiscale approach is used in the estimation of the mechanical properties of PLLA 

nanofibers. The theoretical results correlate well with reported experimental data.   

This chapter is organized as follows. Section B describes the atomistic simulation 

of crystalline lactic acid using MD simulation for the estimation of the mechanical 

properties in the atomistic scale. Homogenization and description of the Shish-Kebab 

model is discussed in Section C.  

 

*Part of the numerical results presented in this chapter appear in "Atomistic-Mesoscale 
Coupled Mechanical Analysis of Polymeric Nanofibers," by Unnikrishnan, V. U., 
Unnikrishnan, G. U., Reddy, J. N., and Lim, C. T., Journal of Materials Science,  Accepted for 
publication. (DOI: 10.1007/s10853-007-1820-6). The original publication is available at 
http://www.springerlink.com. 
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The multiscale transfer of quantities of interest from the atomistic scale to the mesoscale 

by micromechanical methods is discussed in Sections D and E. In Section F, the 

formulation of the continuum chain model to scaleup the material properties is 

discussed. Section G combines the results from various methods and finally the chapter 

concludes with a summary in Section H. 

 

A. INTRODUCTION 

 

Polymeric nanofibers are attractive materials for a wide range of applications in the bio-

medical, textile and other emerging technologies. This is primarily due to their large 

surface area to volume ratio and the unique features at the nanometer scale [77].  

Structures of fibrous polymers are generally very flexible, and their conformation is 

easily deformed against mechanical extension or induced motion between its atoms. In 

any industrial application, the suitability of a material and/or structure relies 

significantly on their physical properties, especially their mechanical and electrical 

properties. Whilst the mechanical design ensures dimensional stability and structural 

integrity, the electrical design aims to fulfill the functionality of the products.   

In recent years, polymeric nanofibers have been developed for a variety of 

applications such as tissue engineering, molecular filters, sensors and protective 

clothing [78-82]. For example, polymeric nanofibers can be used to form nanofibrous 

scaffolds for tissue engineering application [83]. These polymeric scaffolds allow cells to 

proliferate and grow into tissues with defined sizes and shapes for transplantation 

purposes [84, 85]. An understanding of the structure–property relationship is essential 

for the engineering applications of polymeric nanofibers since they are affected by the 

mechanical properties arise from the internal molecular structures. Tremendous savings 

in cost can be achieved if preliminary experimental designs can be evaluated 

theoretically to eliminate inferior designs and reduce the number of experiments. The 

proposed theoretical work in the analysis of nanofiber is primarily aimed at providing a 

computational framework for the estimation of the mechanical properties and to 
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provide a strong connection between experimental observations and theoretical 

analysis.  

Fibers prepared from polymer solution or melt by conventional methods (melt, 

dry and wet spinning) have diameters in the range of 5–500 mm [86]. Recently, there 

has been  increased interest in the fabrication of nanofibers (with diameters in the range 

from tens to hundreds of nanometers) using electrospinning [77, 86, 87] for mechanical 

characterization studies. Using molecular dynamics (MD) simulation, crystalline lactic 

acid monomer units are equilibrated and thermostatted to the experimental conditions 

by a series of NVE ensemble (Microcanonical ensemble) and NVT ensemble (Canonical 

ensemble) analysis and subjected to isothermal strain conditions to obtain the 

mechanical properties [12, 88]. To develop an optimal scaffold for tissue engineering 

application, it is required to manipulate the mechanical characteristics of the 

nanofibrous scaffolds. There has been numerous experimental studies on the design of 

optimal scaffolds [84].  However, very few theoretical studies exist in predicting the 

mechanical properties and behavior of nanofibers under external mechanical loads 

using multiscale simulation. This chapter aims to analyze the mechanical properties of 

PLLA nanofibers via an atomistic-mesoscale stimulation method.  

Analysis of the orientation process during uniaxial drawing of a polymer has 

long been investigated in many theoretical and experimental studies [83, 89, 90]. Based 

on the deformation of cellulose fibers, analytical models were developed for rodlets 

connected by crosslinks. These models were modified with the various additions like 

cross-linking with forces applied to the ends of the chains as well as changes in material 

properties. This research leads to two different formulations for the analysis of 

polymeric chains: the rubber elasticity theory based on complex constitutive relations 

and the orientation based mechanism for the analysis of semi-crystalline polymers 

leading to the aggregate model [91]. The fibrils in a nanofibrous material are found to 

intertwine to form polymeric nanofibers.  The fiber modulus is obtained using the 

Northolt and van der Hout's continuous chain theory [89, 92-94]. This is an 

enhancement over conventional homogenization techniques, because the effect of shear 

deformation of the fibrils is not taken into consideration. The continuum chain 
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formulation used in this chapter gives relationships between the macroscopic elastic 

constants and the orientation parameters based on the spatial distribution of the 

nanofibrils. 

 

B. ATOMISTIC SIMULATION  

 

The knowledge of structure and molecular motion in polymers is essential to 

understand the properties of practical interest. Theoretical simulation of  the physical 

processes forms the first step in this work. The estimation of the mechanical properties 

of the PLLA fibers needs to be carried out. There are various methods of estimating the 

physical properties of atomistic structures, molecular dynamics (MD) simulation being 

one of them and is used here. Molecular dynamics has been a very popular tool for the 

determination of mechanical, thermal and other properties of interest in atomistic 

structures [2, 8, 9, 20, 27].  The starting point of a MD simulation is the non-relativistic 

quantum mechanical time dependent Schrödinger equation. The thermodynamic state 

characterized by the fixed number of atoms, volume and temperature called the 

canonical ensemble [27] forms the basis of the MD simulation.  

The knowledge of structure and molecular motion in polymers is essential to the 

understanding of mechanical and thermal properties. The crystallization behaviour of 

PLLA shows that it is  a semicrystalline polymer that crystallizes from melt and from 

solution to form fibres [95]. Studies on crystal structure of lactide copolymers by 

various studies have shown that the  unit cell of PLLA is a pseudo-orthorhombic 

structure (a = 10.6 Å, b = 6.1 Å, and c = 28.8 Å), which is used here [96-99]. X-ray 

diffraction experiments and Nuclear Magnetic Resonance (NMR) analysis for the 

estimation of the fibrous and crystal structure of PLLA has shown that the crystalline 

structure of PLLA differs slightly [99] from that used by Hoogsteen et al. [96] and De 

Santis et al. However, these differences are not high enough to cause a change in the 

properties of the PLLA structure. MD analysis of crystalline PLLA is carried out with 

the crystal structure and the entire computational model is equilibrated to the 

experimental conditions (see Figure 4.1). The minimum energy condition is the starting 
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point for the thermostating analysis, where the crystal structure is analyzed under the 

influence of thermal energies. Isothermal strain conditions were applied to the 

thermally equilibrated unit cell and the elastic constants were obtained using second 

derivative elastic constant analysis [12, 31, 54]. 

 

 

 

Figure 4.1 Computational domain of the cryastalline PLLA unit cell 

 

C. SHISH-KEBAB MODEL- ELECTROSPUN NANOFIBERS 

 

Orientation and extension of molecules in a polymer melt affects the crystallization 

kinetics, structure and morphology. In an entangled polymer, one of the most common 

crystallization formations is the Shish-Kebab structure [100-102]. The innermost portion 

of a Shish-Kebab structure is a long and macroscopically smooth extended chain which 

is crystalline in nature, called a shish. The kebabs are folded chain crystalline structures 

entangling the shish. The direction of growth of the kebab is normal to the shish [88]. 

There are various views on the formation of the Shish-Kebab structure in a 

crystallization process; however, in this study the interest is only in the experimentally 

observed shish structures in some of the very latest works on crystalline PLLA 



 80 

nanofibers. Shish-Kebab structure can be found in many of the crystallization inducing 

processes like electro-spinning, melt spinning, etc. [87, 90, 103].  

For the polymeric nanofiber, AFM imaging also reveals a ‘‘Shish-Kebab’’ 

structure [87, 102]. The elastic property obtained from MD analysis is used in the 

homogenization of the Shish-Kebab model. In this work, the homogenization of the 

Shish-Kebab model is proposed assuming that the homogenized axial modulus of shish 

is obtained from the crystalline modulus using MD simulations and the kebab modulus 

is obtained from the average of the modulus of the RVE in all the directions (see Figure 

4.2). This assumption is valid since the Shish-Kebab model consists of only crystalline 

formations.  

 

 

Figure 4.2 Shish-Kebab model and the homogenized equivalent continuum Shish-
Kebab model 

 

D. MICROMECHANICAL ANALYSIS 

 

For a simple EC, the average stresses due to the atomic ensemble is equal to the average 

stress due to volume averaging, establishing the relationship between the material 

constants derived from the MD simulation and volume averaging of the state variables 

for use in the structural homogenization and micromechanical techniques. Structural 

models have been developed for foams and cellular materials based on a unit cell. 

Though these models are based on the information that the porosity of the material is 

above 70%, this method can be used in the present analysis, as there is a large expected 
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range of porosity of the polymeric fiber based on experimental studies [54]. The 

effective modulus by the structural model is given as [104] 

 

( )

3
* 3

2.3 1
2

E

E

 
= − Φ  

 
    (4.1) 

Another structural-based homogenization procedure for porous material such 

as foam, called the 3D open cell material model, is from Gibson and Ashby [104]. The 

effective modulus of the porous material is related to the fiber modulus by [104] 
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According to Thelen et al. [104], the 3D open cell model is based on assumptions of high 

porosity; and it gives good predictions of modulus for materials with porosities in the 

range of 10 to 90%. The nanofibrous materials definitely fall in this range, and therefore, 

this model can be used in the conservative prediction of the elastic modulus [95, 105, 

106]. However, the major drawback of the methods mentioned above is that the actual 

amount of voids present in the nanofibers is not known for comparing with 

experimental data. Hence the porosity based methods cannot be used for a reliable 

estimate of the stiffness of the nanofiber and, therefore, one need to look at theories that 

take into consideration both the porosity and orientation of the nanofiber constituents. 

 

E. CONTINUUM VOLUME AVERAGING 

 

Applying the Eshelby eigenstrain formulation, the effect of the fiber phase on the 

matrix stress is captured by means of an averaged strain concentration tensor [12]. The 

strain concentration tensors for various morphologies of the fiber phase are considered 

to cause corresponding eigenstrains on the matrix layer. This can be analyzed using the 

Mori-Tanaka (MT) method which has been discussed in Chapter II. The MT 
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formulation used in this work follows closely with that of Fisher et al. [23]. In a 

multiphase model (i.e. material with multiple inclusions), as in the case of a void-PLLA 

RVE, the different regions are represented as distinct cylindrical phases equivalently 

dispersed in the matrix (see Figure 4.3). This model is further used in the study of fiber 

orientations. 

 

 

Figure 4.3 Idealized lamellar fibril homogenized model 

 

F. CONTINUOUS CHAIN MODEL OF POLYMERIC FIBERS 

 

Subsequent to the homogenization of the Shish-Kebab model, it is found that a fibril 

intertwines around other fibrils to form the nanofiber. Tan and Lim [87] have reported 

that a fibril might terminate by connecting another fibril or it may branch into two 

others. This type of complex intertwining cannot be modeled by simple 

homogenization techniques and therefore a detailed analytical procedures need to be 

considered. The deformation characteristics of an oriented crystalline polymeric fiber 

have to take into consideration, apart from the mechanical properties of the material, 

the molecular arrangement in the nanoscale, and at larger length scale [94, 107]. The 

model used in this chapter is based on the analysis of extension of oriented crystalline 

fibers called the continuum chain model. However, this theoretical formulation is 

extended by incorporating the effect of the smaller-scale material properties by 

adequate homogenization techniques. It has also been experimentally shown that a 

polymeric fiber experiences shear deformation when subjected to a tensile test [93]. The 

elastic deformation of a crystalline fibril is the result of the extension of the chain, which 

is the predominant effect, and the shear between adjacent chains is the secondary effect 

[89, 108].  
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The continuous chain model (series model) developed by Northolt and van der 

Hout [89, 94, 109] is used for the description of the tensile deformation of the fibers (see 

Figure 4.4). This model describes the deformation of a polymeric fiber as the sum of a 

linear extension and a rotation of the chains towards the fiber axis. The deformation of 

the fiber is taken as the average deformation of a polymer chain in the direction of the 

fiber axis as is shown in Figure 4.5. Detailed description of the continuous chain model 

can be found in Northolt [95], and Northolt and van der Hout [89]. The elastic and 

shear modulus (
c

E ,
c

G ) of the chain used is modified in this model by the homogenized 

elastic and shear modulus ( ( ), ,
c S k

E S v v , ( , , )
c s k

G S v v ), which are functions of (1) the 

Eshelby tensor ( S ) for the circular inclusions, and (2) the volume fraction of the shish 

and kebab ( ,
S k

v v ) or an equivalent homogenized structure. Thus, the effective fiber 

modulus is obtained by 
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where 
fiber

E is the fiber modulus, 2sin
E

θ is the strain orientation parameter and is 

given by the equations (4.4) and (4.5) [89, 93]: 
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The modified fibril strain can subsequently be written as the sum of the elastic strain 

and the strain due to elastic rotation or shear of the fibrils as given by 
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Figure 4.4 Schematics of a chain, a chain segment and the surrounding domain in the 
analysis using a continuous chain model 

 

G. RESULTS AND DISCUSSION 

 

There is a wide range in the reported values of the mechanical properties of PLLA 

fibers [89, 93, 94, 108, 109]. These are primarily affected by various factors like rate of 

drawing of the polymer, temperature and crystallinity of the polymer material [89, 93, 

109]. Most of the studies carried out so far do not take into consideration the porosity of 

the nanofiber. There have been very few studies on the internal structure of an 

electrospun nanofibrous material and most of these studies have been aimed at 

providing the factors affecting the nanofiber dimensions [110, 111].  The mechanical 

stiffness of the nanofiber obtained by using Timoshenko beam theory and ordinary 

beam bending theory give conservative values. These results are not reliable since they 

do not capture the inherent orientation inhomogeneity of the nanofiber. The material 

modeling strategy used here is novel as it considers the inhomogeneity of the nanofiber 

and the orientation of the fibrils [83, 87, 90, 103]. This modeling procedure is carried out 

by using mathematically well established multiscale modeling simulation techniques 

coupling the atomistic scale to macroscopic scales. To the best knowledge of the 

authors, such a methodology of extracting the material properties from a completely 

computational point of view (independent of experimental data) for nanofibers has not 
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been attempted. As homogenization methods considering only the individual aspects of 

material modeling at different scales are available in literature, a multiscale 

computational framework is being proposed in this work.  The material properties are 

extracted from the molecular to the macro level, and finally validated with independent 

experimental results. The uniqueness is in the multiscale approach proposed here.  

High strength PLLA fibers of the order of 16 GPa with high crystallinity and 

porosity has been produced by dry spinning [106]. Leenslag and Pennings has reported 

a tensile modulus of 14 GPa for solution-spun PLA fibers [105]. Numerous studies by 

researchers have produced high modulus PLLA fibers for various uses, having elastic 

modulus ranging from 1 - 20 GPa. For example, Tan and Lim [103] reported elastic 

modulus values of 1 GPa to 10 GPa, Hoogsteen et al. [96] 16 GPa, Yuan et al. [112] 1 to 

~5 GPa, Broz et al. [113] 3.0 GPa, and Cicero and Dorgan [114] reported 1.5 to 3.0 GPa 

for different draw ratios.  Inai et al. [77] reported the elastic modulus in the range of 2.9 

± 0.4 GPa for semi-crystalline electrospun polymeric PLLA fibers. Most of the above 

reported values were attained by the estimation of elastic stiffness in tension. Flexural 

modulus in the range of 6-9 GPa was obtained by Lim et al. [115]. 

The Young’s modulus obtained from MD analysis of crystalline lactic acid 

should conform to the experimental value of the modulus of crystalline PLLA [116]. The 

experimentally obtained elastic modulus for a ~90% crystalline PLLA made by a hot 

drawn (melt spinning) process is 9.2 GPa [116] and a Poisson’s ratio of 0.44 has been 

reported by Balac et al. [117]. In this study, an elastic modulus of 9.44 GPa and a 

Poisson’s ratio of 0.4 were obtained using MD simulations. As the elastic modulus 

obtained in this analysis conforms to the experimental values, it is used in the higher 

scale homogenization processes.  
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Figure 4.5 Variation of elastic modulus of nanofibers with void volume fractions 

 

The elastic stiffness calculated using the Mori-Tanaka, 3-D open cell and 

honeycomb structure models is given in Figure 4.6. It can be seen that the predicted 

stiffness values has a maximum of 5.9 GPa and decreases with an increase in porosity. 

The amount of porosity is also indicative of the diameter of the fiber, as the diameter 

increases the porosity of the fiber also increases as seen from experimental observations 

[87]. It can be seen from Figure 4.5 that with an increase in diameter the elastic stiffness 

would decrease. This method, however, fails to provide an accurate estimation of the 

elastic modulus of nanofibrous materials, when compared to experiments (see, for 

example, Inai et al. [77]). The average elastic property obtained by homogenization of 

the Shish-Kebab model is used in the modified continuum chain model. In this 

continuum chain model, the homogenized elastic property is predicted by Equation 17 

using the strain orientation parameter derived from the birefringence data (Equation 

18). This analytically predicted elastic modulus of PLLA fibers (as shown in Figure 4.6) 

closely matches with the experimental values of Mezghani [118].  The stress-strain 
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curves, using the continuum chain model and the experimentally determined values for 

different draw velocities by Inai et al. [77] is compared in Figure 4.7. From the figure, it 

can be seen that the predicted stress-strain curve lies closer to the higher draw velocity 

curve. The modified continuum chain model predicts a stiffer fiber due to the 

inadequate information on the internal structure of the nanofiber. With a better 

understanding of the internal structure a more refined estimate of the stress-strain 

curve can be obtained. 
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Figure 4.6 Variation of elastic modulus with the strain orientation parameter 
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Figure 4.7 Comparison of stress- strain curves with that obtained from experiments 

 

H. CONCLUSIONS 

 

In this study, a multiscale modeling approach is used to obtain the effective elastic 

modulus of the PLLA nanofiber. The analysis is carried out from the atomistic level 

using MD simulation to obtain the crystalline elastic modulus. The next scale of 

modeling is the homogenization of the Shish-Kebab model using the Mori-Tanaka 

method. Based on this homogenization principle, the modified elastic constants are 

obtained and are subsequently used in the homogenized-continuum chain model to 

obtain the macroscale homogenized elastic modulus. The highlight here is the 

multiscale method of estimating the elastic properties of PLLA nanofibers, as compared 

to previous computational procedures that depend solely on either the conventional 

continuum chain model or atomistic simulations only. The simulation results obtained 

show excellent correlation with that of experiments, even without involving any 

experimental data in the analysis. 
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CHAPTER V 
 

SPECTRAL/hp BASED ASYMPTOTIC EXPANSION 

HOMOGENIZATION OF HETEROGENEOUS MEDIA:  

ANALYSIS OF NANOSTRUCTURES 

 
In this chapter a two scale asymptotic expansion homogenization of heterogeneous 

structures is carried out using spectral/hp finite element methods. For a realistic 

estimation of the properties of the processes that occur in the mesoscale and how they 

affect the macroscopic mechanical properties, multiscale computational 

homogenization models needs to be employed. The model should take into 

consideration the volume average of the properties in the atomistic scale and transfer of 

these properties to the next higher scales of interest. Two scale asymptotic expansion 

homogenization methods is a mathematical homogenization procedure where the 

material heterogeneities with a periodic microstructure are homogenized. For 

applications having high-field gradients the use of lower order finite element methods 

are unsuitable and requires higher order finite element methods. The developed 

computational procedure is applied to the multiscale homogenization of carbon 

nanotube based nanocomposites and self reinforced Poly-Lactic acid composites. 

This chapter is organized as follows. The physical problem is described in 

Section B followed by the asymptotic expansion homogenization method. This section 

also deals with the spectral/hp finite element method along with the formulation of the 

combined spectral/hp with the AEH. Numerical examples with both verification and 

analysis of CNT-based nanocomposites and the analysis of polylactic acid nanofiber are 

given in Section C.  The chapter concludes with a discussion of the results and a 

summary in Section D. 
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A. INTRODUCTION 

 

In a multiscale model, the material and structural behavior is manifested as processes 

occurring in different time, length and energy scales. For each of these multi-scale 

problems, the processes occurring simultaneously at one scale affect the parameters at 

the other scales. However, what distinguishes one problem from the other is the degree 

to which each of these scales is coupled. For both experimental and computational 

strategies, one need to understand the strength of those couplings before devising 

methods to analyze them. The information of interest (e.g., mechanical, thermal 

properties, etc.,) at the atomistic level is usually “lumped” into very few macroscopic 

parameters like the elastic modulus, thermal conductivity etc. These lumped-up 

properties depends on the symmetry properties of the macroscopic material [119]. The 

homogenization methods provide ways to predict the mechanical response of 

heterogeneous specimens by replacing the specimen with an equivalent homogeneous 

continuum through suitable averaged quantities [70].  

The mathematical homogenization methods are based on the assumption that 

there exist two or more scales of interest. These are the nanoscale, the microscale, 

mesoscale and the macroscale. In this homogenization principle two scales of interest 

are considered The microscale is being homogenized into the mesoscale where 

continuum principles are assumed to be valid. Homogenization reduces the 

computational size of the problem by decoupling the scales of interest into what can be 

considered as a macroscale problem and a microscale problem. Homogenization 

method based on a two-scale asymptotic expansion was developed for composites by 

Bensoussan et al [120, 121]. The common homogenization methods currently are based 

on three principles namely: conventional mechanics based modeling, homogenization 

theory, and finite element methods based homogenization techniques. This method is 

effective in evaluating both macroscopic constitutive equations and microscopic 

distributions of stress and strain in such composites. The advantage of asymptotic 

expansion based homogenization method is that the microscopic as well as the 

macroscopic stress and strain states in composites can be analyzed [122]. 
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Asymptotic expansion homogenization (AEH) methods have been applied for 

the simulation of various applications in elasto-plastic and structural problems [120, 

123-131]. The macroscale and the microscale problems essentially mean that the physics 

of the problems defined in these scales are different and therefore the bridging can be 

done by various methods. Most of the works in AEH uses the conventional finite 

element methods. However, the use of higher order finite element methods like spectral 

element methods is important for the analysis of problems involving complex 

geometries or high gradient fields. The spectral element method was first presented by 

Patera [132] for the solution of Navier-Stokes equations. A detailed history of the 

development of spectral element methods can be found in [133]. Based on the immense 

popularity of the spectral/hp finite element method in the solution of problems in solid 

and fluid mechanics [133-139], they are combined with the asymptotic expansion 

homogenization method for the multiscale simulation of Carbon Nanotube (CNT) 

based nanocomposites.  

The nanometer dimension of a CNT and its interaction with a polymer chain 

requires a study involving the coupling of the different length scales [6, 14, 15, 18, 26, 

140, 141] using multiscale modeling techniques. Modeling phenomenon in the 

continuum scale was mainly carried out by describing conservation laws and 

constitutive relations. These methodologies were successful and great strides were 

made in the understanding of solid and fluid mechanics problems [52, 136, 142]. One of 

the biggest drawbacks of the continuum theory of macromechanical processes is that as 

one goes down the scale, the theories defining the continuum formulations becomes 

questionable [143]. In this chapter, the mechanical properties of the CNT-based 

nanocomposite structures are analyzed using the developed multiscale modeling by 

spectral/hp asymptotic expansion homogenization method. 

Polymer nanofibers are very attractive materials for wide range of applications 

in bio-medical industry, textile industry and other emerging technologies. This is 

because of their large surface area to volume ratio and the unique features in the 

nanometer dimensions [77].  Structures of fibrous polymers are generally flexible, and 
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their conformation is easily deformed against some mechanical extension or induced 

motion between the atoms.  

An understanding of the structure–property relationship is essential for the 

engineering applications of polymeric nanofibers since they are affected by the 

mechanical properties arise from the internal molecular structures. Tremendous savings 

in cost can be achieved if preliminary experimental designs can be evaluated 

theoretically to eliminate inferior designs and reduce the number of experiments. To 

develop an optimal scaffold for tissue engineering application, it is required to 

manipulate the mechanical characteristics of the nanofibrous scaffolds. There has been 

numerous experimental studies on the design of optimal scaffolds [84].  However, very 

few theoretical studies exist in predicting the mechanical properties and behavior of 

nanofibers under external mechanical loads using multiscale simulation. The multiscale 

analysis of Poly-Lactic acid fibers has been carried in an earlier study by Unnikrishnan 

et al. [54] using Modified Continuum Chain Model [89, 94]. In this chapter, the 

mechanical properties of PLLA nanofibers are analyzed via the developed multiscale 

spectral/hp AEH finite element method. 

 

B. THE DESCRIPTION OF THE PHYSICAL PROBLEM 

 

The main feature of this multiscale method is to use the homogenized material 

properties derived from the atomistic or Y- scale (nanometer) and apply them in the 

micro level or X-scale (micrometer) as shown in Figure 5.1a. This process of 

homogenization uses the concept of volume averaging. The micro-level property can 

subsequently be translated to the structural level by considering the homogenized 

region as representing an inclusion surrounded by a homogenous matrix layer. Since 

the macroscopic continuum formulations are valid in this regime, computational 

techniques for the analysis of macroscopic bodies can be applied. The equivalent body 

which in the ε-space, is a realistic representation of the heterogeneous structure with 

proper boundary conditions and under the action of various external forces (see Figure 

5.1a). The AEH therefore isolates the atomistic from the mesoscale by approximating 
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with a homogenized body in X and a scaled representative unit cell in Y. The solution in 

the smooth scale (here mesoscale) is affected by the ε–scale inhomogeneity and the 

solution gets modified appropriately (see Figure 5.1b). 

 

 

(a) 

 

(b) 

 

Figure 5.1 (a) Physical representation of a multiscale heterogeneous structure and (b) 
the mathematical solution of the problem 

 

1. ASYMPTOTIC EXPANSION HOMOGENIZATION 

 

Asymptotic expansions are applied in the analysis of mathematical functions to 

describe its behavior in a limiting situation. Such methods are called “perturbation 

methods”. A perturbation method is a method of approximating the solution of 

problems involving a small parameter that can be obtained by expanding in an 

asymptotic series. When a function ( , )y x ε  depends on a small parameterε  and the 

solution of the governing equation for this function is known when 0ε = , then a 
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perturbation method may prove useful in obtaining a solution for small values ofε . 

Such an approach is particularly attractive when the governing equation is nonlinear 

and no general techniques are available for exact solution.  If ε appears as a 

multiplicative factor in a term in the governing equation, the standard approach is to 

try a power series solution as given in equation (5.1). This series function is now 

substituted in the governing equations and boundary conditions. The coefficients of the 

same powers of ε are grouped to yield an equivalent number of equations which are 

solved sequentially.  

 
2

0 1 2( , ) ( ) ( ) ( ) .....y x y x y x y xε ε ε= + + +    (5.1) 

 
Two-scale asymptotic expansion homogenization method is one such method of 

mathematical homogenization in which the material heterogeneities with a periodic 

microstructure are homogenized. The material can be considered to consist of two 

scales, (1) a micro Y scale described by atoms interacting through a potential and (2) a 

macro X scale described by continuum constitutive relations (see Figure 5.2). The 

periodic Y scale can have inhomogeneities like dislocations, impurity atoms etc. This 

type of multiscale homogenization substantially decreases the computational size of the 

problem by decoupling the scales into a micro scale and a macro scale. 

 

 

Figure 5.2 Two-scale system of composite structure for AEH 
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To begin with let us consider a simple case in which a body Ω with an internal 

periodic structure consisting of atleast two constituents is subjected to macroscopically 

uniform strain and stress. Consider a two-coordinate system, i.e., macroscale coordinate 

system ( )1 2,X x x and a mesoscale coordinate system ( )1 2,Y y y , related by the scale ratio 

ε as: 

( )

( )

1 2

1 2

,

,

Y y y

X x x
ε=       (5.2) 

 

where X can describe the global structure as well as the local region and Y describes the 

microstructure [125, 128, 138, 144, 145]. A homogenization framework thus facilitates 

this weak coupling between the lower scale and the higher scale. In order to decouple 

the length scales, one must appreciate the weak convergence properties by considering 

the limit of the time-independent asymptotic expansion parameter ε → 0. When a load 

is applied to a composite structure, the periodicity of the local region is maintained and 

therefore the mesoscale is assumed to deform uniformly. This assumption forms the 

basic premise of the deformation characteristic of a two scale material structure.  Let us 

consider a simply connected domain in d
ℜ ( 1,2d = ), with body force b  under 

equilibrium. The solution is to find a set of admissible functionu
ε . The field equations 

for overall material ( )X
ε  can be given by: 

0f

x

ε

ε

σ∂
+ =

∂
  d

x∀ ∈Ω∈ℜ      (5.3) 

with boundary conditions 

_

 
u

t

u u x

n t x

C e

u
e

x

ε

ε

ε ε

ε

ε

σ

σ

= ∀ ∈Γ

= ∀ ∈Γ

=

∂
=

∂

      (5.4) 
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ij
σ is the Cauchy stress component and is related to the Lagrange strain ( e

ij
ε ) 

component by the elasticity tensor (
ijkl

C ). Now, expanding the primary variables as an 

asymptotic series, one obtains 

 

( )
( )

( )
( )

( )
( )

0 1 22, , , ..u u x y u x y u x y
ε

ε ε= + + +     (5.5) 

 

The functions ( )
( )

iu x,y are Y periodic in variable y  and are independent of the scaling 

parameter ε.  Strain can be expanded in an asymptotic expansion  

 

( )
( ) ( ) ( ) ( ) ( )0 0 1 1 2

1
...

u u u u u
e u

y x y x y

ε
ε

ε

     ∂ ∂ ∂ ∂ ∂
= + + + + +          ∂ ∂ ∂ ∂ ∂     

   (5.6) 

 

The constitutive equation is substituted in the equilibrium equation and the coefficients 

of the powers of ε are separated to get the three hierarchical equations as shown below. 

( )0

0
u

C
y y

 ∂∂
=  ∂ ∂ 

     (5.7) 

( ) ( ) ( )0 1 0

0
u u u

C C
y x y x y

    ∂ ∂ ∂∂ ∂
+ + =        ∂ ∂ ∂ ∂ ∂    

    (5.8) 

( ) ( ) ( ) ( )1 2 0 1

0
u u u u

C C f
y x y x x y

      ∂ ∂ ∂ ∂∂ ∂
+ + + + =            ∂ ∂ ∂ ∂ ∂ ∂      

   (5.9) 

 

In the homogenization process, the terms with the same order of the 

perturbation parameter must be equal to zero so as to ensure the asymptotic series 

approximation to be valid as this parameter approaches zero. From equation (5.7), 

(0)
u is independent of the local co-ordinate system y as shown in equation (5.10).  

(0) (0)( , ) ( )u x y u x=      (5.10) 
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Now, using the transformation as shown in equation (5.11), where, kl

i
χ is called the 

elastic corrector or characteristic function and is clearly independent of (0)
u , 

 

( )
( )0

1 u
u

x
χ

∂
=

∂
      (5.11) 

the microscale equation in equation (5.8) becomes 

 

( )0

. 0
u

C
y y x

χ
δ δ

   ∂∂ ∂
+ =  

∂ ∂ ∂  
,    (5.12) 

 

which in variational form, is given as 

 

Y Y

v C
C dY v dY

y y y

χ ∂∂ ∂
=

∂ ∂ ∂
∫ ∫ .     (5.13) 

 

The corrector term in macro scale is due to microscale perturbations. The Y scale 

here is composed of a finite element mesh depicting a composite RVE and the 

macroscopic behavior can be solved by the following equilibrium equation. 

 

( ) ( ) ( ) ( )1 2 0 1

0
u u u u

C C f
y x y x x y

      ∂ ∂ ∂ ∂∂ ∂
+ + + + =            ∂ ∂ ∂ ∂ ∂ ∂      

  (5.14) 

 

Upon application of the mean operator on this equation, by virtue of Y-periodicity of 

( )2u , the above equation reduces to 

 

0

0H u
C f

x x

  ∂∂
+ =   ∂ ∂  

     (5.15) 
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where CH is the homogenized elasticity matrix for the overall region given by  

1
.H

Y

C dy
Y y

χ
δ δ
 ∂

= + 
∂ 

∫ .     (5.16) 

 

2. SPECTRAL/hp FINITE ELEMENT METHOD 

 

The spectral element method was developed to combine the advantages of the spectral 

method with the ability of the finite element method to handle higher gradient fields 

and geometries [146]. Spectral element methods require fewer degrees of freedom to 

obtain the required accuracy than the normal finite element methods however requires 

more work per degree of freedom as the degree of the element is generally higher [147]. 

Let Ω be the closure of an open bounded Lipshcitz domain 2
Ω ⊂ ℜ and let 

( )x ,x y= be a point in Ω = Ω ∪ ∂Ω  where ∂Ω = Γ is the boundary ofΩ . The hp-version 

of the finite element method [148] is of interest here. In h-, p-, hp-FEM, the 

approximation spaces V are spaces of the piecewise polynomials. While the formulation 

of the finite element methods is independent of the actual choice of the polynomial 

basis, using the basis of the spatial approximation the analysis can be easily carried out 

in the framework of Legendre methods [134, 135].  

Given that ( )
1
0V H⊂ Ω  then the finite element method states: find u V∈ such 

that ( ) ( ) ( ){ }
1 1
0 0H Hψ ψΩ = ∈ Ω Γ = ; where, Γ denotes the boundary of Ω . 

Discretization of the governing differential equation is based on the spectral element 

method (SEM), which is a high-order weighted residual technique similar to the finite 

element method. The nodes of the Lagrange polynomials are taken to be the Gauss-

Lobatto-Legendre (GLL) quadrature points [149, 150].  Within each element the basis 

functions are based on tensor-products of nth-order Lagrange polynomials [132, 151-

153]. For two-dimensional elements, one can construct two-dimensional basis functions 

as the tensor product of one-dimensional Legendre basis functions as given below: 
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( ) ( ) ( ),
i j k

h hψ ξ η ξ η= where 21,.....i P=  and , 1,.....j k P=    (5.17) 

 

Here, P  denotes the number of Gauss-Legendre-Lobatto (GLL) points in each direction 

( ,ξ η ) and 1P p= + where p denotes the polynomial order of the Legendre basis 

functions. The one dimensional Legendre basis function given by 

 

( )
( ) ( )

( ) ( )( )

21

1

p

i

p i i

L

h
p p L

ξ ξ
ξ

ξ ξ ξ

′−
=

+ −
    (5.18) 

 

in which
p

L is the pth order Legendre polynomial and 
p

L′ is the derivative. In order to 

keep the Legendre basis function general the following form of the shape functions is 

utilized. 

( )
( )

( )1

P
j

i

j i j
j i

h
ξ ξ

ξ
ξ ξ=

≠

 −
 =
 − 

∏     (5.19) 

( )
1 1

1PP

ji

k j i k i j
k i j i

h ξ ξ
ξ

ξ ξ ξ ξ ξ= =

≠ ≠

 − ∂
=    ∂ − −  
∑∏     (5.20) 

 

where 
i

ξ , 
j

ξ and 
k

ξ  are the permutations of the collocation points. In the spectral 

element method the control points or nodes of the finite element mesh are chosen to be 

the n+1 Gauss-Lobatto-Legendre (GLL) points which are roots of the relation given 

below: 

( ) ( )
21 0

h
Lξ ξ′− =      (5.21) 

where ( )h
L ξ′  denotes the derivative of the Legendre polynomial of degree p . It is due 

to the fact that the combination of the LaGrange interpolants with the GLL quadrature 

leads to an exact diagonal mass matrix.  The nodes of the Lagrange polynomials are 
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taken to be the Gauss-Lobatto-Legendre (GLL) quadrature points as shown in Figure 

5.3. 

 

 

Figure 5.3 Computational domain of the Y-periodic unit cell 

 

3. SPECTRAL/hp – AEH FORMULATION 

 

In this chapter the AEH – homogenized constitutive equation in equation (5.16) is 

solved by the finite element method with appropriate boundary conditions (BC) to give 

the solution corrected for atomic scale effects. This method needs to be applied by 

considering the unit cell to be under periodic boundary conditions. In this simulation, 

the periodic boundary condition (PBC) is maintained by arresting the corresponding 

degrees of freedom at the edges of the unit cell.  The variational form of the microscale 

equation in equation (5.22) can be discretized using Lagrange shape functions and 

suitable quadrature rules. 

Y Y

v C
C dY v dY

y y y

χ ∂∂ ∂
=

∂ ∂ ∂
∫ ∫      (5.22) 

 

This form of the variational statement can be considered by assuming the usual finite 

element strain matrix which is related to the displacement field by the element strain 

matrix given by 
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{ } [ ]{ }e B u=        (5.23) 

in which 

[ ]

1 2

1 2

1 1 2 2

0 0 ... 0

0 0 ... 0

...

n

n

n n

dhdh dh

dx dx dx

dhdh dh
B Dh

dy dy dy

dh dhdh dh dh dh

dy dx dy dx dy dx

 
 
 
 

= =  
 
 
 
 

,   (5.24) 

 

and the stress would be given by 

 

{ } [ ][ ]{ }C B uσ =      (5.25) 

 

Thus, the finite element analogue of the variational equivalent of the BVP in the y-

periodic domain is given by [128] 

 

[ ] [ ][ ] [ ] [ ] [ ]
e e

T Te e

Y Y

B C B dy B C dyχ =∫ ∫    (5.26) 

Subsequently, the solution of the homogenized material property would reduce to the 

following for each element in the FE Mesh as 

 

[ ] [ ]( )
1

elm
n

h e ee

e tot

V
C C I B

V
χ

=

     = −     ∑     (5.27) 

 

In which h
C    is the homogenized property matrix; elm

n is the number of elements in 

the unit cell; [ ]I identity matrix; e
B   is the element strain matrix; 

e
χ    is the matrix of 

nodal χ values. 
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C. NUMERICAL STUDIES 

 

1. VERIFICATION OF THE FORMULATION 

 

To illustrate the foregoing methods by a numerical example, let us consider a glass-

epoxy composite material with varying volume fractions [125, 144, 154, 155]. The 

following material properties have been taken: 

 

Epoxy: E = 3.5 GPa; ν = 0.35 

Glass: E = 70.0 GPa; ν = 0.2. 

 

The computational domain is shown in Figure 5.4a and the variation of corrector 

term in the unit cell is shown in Figure 5.4b. . In the computations, the periodic 

boundary conditions are enforced in the unit cell by arresting the degrees of freedom in 

all the external nodes. Spectral element analysis of the asymptotic expansion 

homogenization is carried out for various spectral degrees using Lagrange polynomials. 

The homogenized stiffness values obtained from AEH have been compared with the 

variationally consistent Hashin-Shtrikman upper and lower bounds as well as the Voigt 

and Reuss bounds.  It was also observed by various researchers [125, 154-156] that the 

homogenized material properties actually lies close to the lower bounds as observed in 

Figure 5.5. The homogenized elastic constants is now given against the fiber phase 

volume fraction for various polynomial expansions using the developed spectral/hp 

finite element as is shown in Figure 5.6. It should be noted that there is a rapid 

convergence in the homogenized material constant, as the spectral degree was 

increased and therefore polynomial order above 4 are not required [157]. 
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(a) 

 

 

 

 

(b) 

Figure 5.4 (a) Computational domain of the Y-periodic unit cell (b) contour plot of the 
elastic corrector function [ kl

i
χ ] 
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Figure 5.5 Variation of the AEH based homogenized elastic-material constants and 
comparison with the Voigt, Reuss, Hashin-Shtrikman (HS) upper, and lower bounds 
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Figure 5.6 Variation of the AEH based homogenized elastic material constants and 
comparison with the Hashin-Shtrikman bounds for various spectral degrees 
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2. SPECTRAL/hp BASED AEH OF NANOCOMPOSITE STRUCTURES 

 

Polymer-based composites reinforced with carbon fibers have been widely used in 

advanced structures. Use of CNT as potential composite reinforcements has many 

advantages over conventional fibers. The enhanced mechanical strength of CNT is one 

of the primary advantages. Few theoretical works have been undertaken to ascertain 

the effective properties of CNT-based polymers and experimental studies have found a 

25% to 40% increase in strength [27]. CNT-based nanocomposites are analyzed by 

considering neat, functionalized and embedded CNTs as being dispersed in a matrix 

and the atomic interactions between the atoms of the CNT and matrix is studied by MD 

simulations [19, 20, 27, 30, 120]. The problem is different from a conventional fiber 

composite material as the fiber phase interacts with the matrix phase through molecular 

interactions. In a conventional composite material analysis, the material/mechanical 

properties of the participating phases are widely studied. This is however not the case 

with the nanometric sized fibers, as the material properties are still being debated and 

even weak molecular interactions are found to alter the overall properties drastically [2, 

12]. Another multiscale method involves the use of micromechanical schemes to model 

the mesolevel and subsequently use the continuum formulation for scaling the domain 

of interest [52]. The obvious drawback of such an approach is that the local variations in 

morphology and structure are not considered or do not translate to the macroscopic 

scale.  

 

a. NANO-MESOSCALE COUPLING 

 

The elastic property calculated from the atomistic simulations helps in the multiscale 

formulations to estimate the macroscale properties of the CNT and CNT-reinforced 

composite structures. These simulations can be carried out by considering the volume 

averaging of the various measures in a mechanical straining process. For an elastic 

composite material, the effective constitutive relations are given by the volume average 
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of the stress (σ ) and strain (ε ) [22]. Similarly, for each phase k , on the micro/nano 

scale the constitutive relation can be given as 

 
k

tot

kk

tot
C εσ =

     (5.28) 

In which
k

tot
.  is the volume-averaged state of phase k , including the matrix, fiber and 

any interphase layers [13], C represents the elastic moduli and ,α β are the Cartesian 

co-ordinates. The volume averaging of the state variables are given in equation (5.29) 

and for an N particles ensemble is given in equation (5.30). The average stresses due to 

the atomic ensemble is equal to the average stress due to volume averaging in an EC 

thereby establishing the relationship between the material constants derived from 

molecular dynamic simulation and volume averaging for use in the micromechanical 

techniques from an earlier publication by the author [12].  

∫
Ω

= dv
VEC

αβαβ
σσ

1
;  ∫

Ω

= dv
VEC

αβαβ
εε

1
;   

ECEC
C

αβαβ
εσ =  (5.29) 

 

∑
=

=

N

iN 1

1
αβαβ

σσ ; ∑
=

=

N

iN 1

1
αβαβ

εε ;  
αβαβ

εσ C=   (5.30) 

Let us now consider a cylindrical RVE of a CNT-reinforced composite structure. 

Considering an axisymmetric model of the plane as shown in Figure 5.7a, a finite 

element mesh of the half plane can be constructed and AEH can be used to extract the 

homogenized mesoscale material property (see Figure 5.7b). A neat CNT and 

functionalized nanocomposite ensemble are studied in this chapter. Perfect load 

transfer is assumed in many of the works in CNT-composite models [2] and in cases 

where this perfect condition is not achieved, the effective load transfer is enhanced 

using functionalization of the CNTs. 
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(a)      (b) 

Figure 5.7 (a) Homogenization of a nanocomposite RVE and (b) computational domain 
of the Y-periodic unit cell 

 

b. NUMERICAL ANALYSIS 

 

The following material properties are taken in the numerical simulation. 

Matrix Phase: E = 610 MPa; ν = 0.3 

Fiber Phase:  Neat CNT, E = 922 GPa; ν = 0.3; 

Functionalized CNT = 872 GPa; ν = 0.3. 

Embedded CNT = 648.3 GPa; ν = 0.3. 

 

The variation of the elastic corrector function, which is also dependant on the 

position of the fiber phase, is shown in Figure 5.8. The elastic corrector function which 

is dependant on the position of the fiber directly influences the homogenized material 

property. The effect of various volume fractions of the fiber phase is studied for a 

polynomial expansion degree 2 and it can be seen that the homogenized properties 

obtained by the method described in this chapter lies within the Voigt-Reuss bounds for 

neat, functionalized and CNT embedded in matrix respectively as shown in Figures 5.9 

a, b and c respectively. The difference between the two methods is due the difference in 

the solution strategy in Song et al. [158] which is a three dimensional analysis while this 

chapter uses a two dimensional analysis. The effect of the aspect ratio on the effective 
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property is also carried out and it can be seen that there is negligible effect on the 

variation of the aspect ratio of the fiber on the overall effective property as shown in 

Figures 5.10. Thus it can be seen from the above analysis that use of higher order finite 

element is advantageous in the estimation of the effective proprieties of composite 

structures without resorting to intense computational resources, forming the major 

contribution of this work. 

 

 

Figure 5.8 Contour plot of the elastic corrector functions [ kl

i
χ ] 
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(a) Neat CNT  

Figure 5.9 Variation of axial elastic modulus with spectral degrees for various CNT 
volume fractions  
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(b) Functionalized CNT  

Figure 5.9 Continued 
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(c) CNT embedded in a Matrix 

Figure 5.9 Continued 
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Figure 5.10 Variation of elastic stiffness with neat CNT volume fraction with spectral 
degree for fiber aspect ratio of 500 and 1000 

 

3. ANALYSIS OF PLLA NANOFIBERS 

 

Orientation and extension of molecules in a polymer melt affects the crystallization 

kinetics, structure and morphology. In an entangled polymer, one of the most common 

crystallization formations is the Shish-Kebab structure [100-102]. The innermost portion 

of a Shish-Kebab structure is a long and macroscopically smooth extended chain which 

is crystalline in nature, called a shish. The kebabs are folded chain crystalline structures 

entangling the shish. The direction of growth of the kebab is normal to the shish [88]. 

For polymeric nanofibers, AFM imaging also reveals a ‘‘Shish-Kebab’’ structure [87, 

102]. In a previous work by the authors, the analysis of the elastic properties of the 

PLLA nanofibrous ensemble was estimated by homogenization of the Shish-Kebab 

model. It is assumed that the homogenized shish axial modulus is obtained from the 

crystalline modulus using molecular dynamics simulations and the kebabs modulus is 
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obtained form the average of the modulus of the RVE in all the directions (see Figure 

5.11) [54].  

 

Figure 5.11 Shish-Kebab model and homogenized equivalent continuum Shish-Kebab 
model 

 

Let us now consider a cylindrical RVE of an equivalent Shish-Kebab cylindrical 

model as shown in Figure 5.11. Considering an axisymmetric model of the plane as 

shown in Figure 4a, one can construct a finite element mesh of the half plane and, using 

the spectral/hp AEH finite element, the homogenized mesoscale material property can 

be obtained. 

The following material properties are used in the numerical simulation. 

Average Shish modulus of 5.14445 GPa 

Crystalline modulus: 9.4425 GPa 

Average Poisson’s Ratio=0.4 

The homogenized elastic constants in the mesoscale are shown in Figure 5.12 for 

varying fiber phase volume fractions. A good comparison of the elastic modulus with 

Unnikrishnan et al. [54] is observed, where the authors [54] presented homogenized 

values and compared it with experimental results. The variation of the elastic modulus 

was also plotted against varying fiber volume fraction for different expansion 

polynomial order as shown in Figure 5.13, and it can be see that greater convergence is 

obtained using higher order elements. It should also be noted that the values obtained 

using this method results in an effective modulus within the H-S bounds. 
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Figure 5.12 Variation of elastic constants for various volume fractions of shish phase 
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Figure 5.13 Variation of elastic constants for various volume fractions of shish phase for 
various spectral degrees 
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D. CONCLUSIONS  

 

For the accurate and reliable estimation of the properties of nanocomposites, an efficient 

multiscale modeling strategy is imperative. In the case of problems in micro- or 

nanoscale systems and devices, the continuum theories cannot be applied naively. 

Fundamental molecular interactions need to be studied to scale up the properties to the 

continuum level by multiscale techniques. Such a framework should be able to unify 

and improve the existing methods of analysis and most importantly these methods 

should be able to provide adequate mathematical stability and accuracy. In this chapter, 

a multiscale computational strategy for the analysis of heterogeneous nanocomposites 

is presented. The chapter also deals with the effect of higher order finite element 

methods on the developed multiscale analysis strategy. The two-scale asymptotic 

expansion homogenization (AEH) method is used to estimate the mechanical properties 

of nanocomposites. 
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CHAPTER VI 
 

CONCLUSIONS 
 

A. SUMMARY AND CONCLUDING REMARKS 

 

In this work, a novel multiscale modeling strategy is proposed for the analysis of 

Carbon Nanotube (CNT) fiber reinforced composite structures with CNTs of various 

morphologies and chiralities and polymeric nanofibers. This research provides a strong 

interlinking from the atomistic scale to the macroscale. With a full-scale mathematical 

basis, the proposed strategy is applied to the analysis of CNT reinforced nanocomposite 

structures and polymeric nanofibers. This research provides a sound theoretical and 

computational tool for the analysis and design of an enhanced strength nanocomposite 

using CNTs and nanofibers. 

Analysis of Silicon doped CNT to estimate the elastic properties were presented 

in Chapter II and some of the significant conclusions were enumerated. The MD 

simulation was carried out using Tersoff-Brenner potential for isothermal strain 

conditions and the elastic modulus was obtained by the energy method. The doped 

CNT was found to be unstable at higher doping percentages the test temperature. 

Silicon atoms were found to attain an equilibrium position above the tubular structure 

of the CNT which had been verified earlier by ab-initio studies. 

In Chapter III, the mechanical properties are determined for the central CNT 

when a functionalized CNT or other CNT structures was embedded in a matrix 

structure. The effect of chemical functionalization on the stiffness of CNTs along the 

tubule axis is estimated, and the functionalized CNT atomistic unit was found to be 

stable under various conditions. The stability of the CNT affected by the substitutional 

changes was studied by monitoring the structural change in the CNT profile under 

various loading conditions. These properties help in establishing the use of 

functionalized CNTs in composite structures. 
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Multiscale modeling to obtain the effective elastic modulus of the PLLA 

nanofiber having a Shish-Kebab model was shown in Chapter IV. The analysis was 

carried out at the atomistic level using MD simulation, to obtain the crystalline elastic 

modulus, and the homogenization of the Shish-Kebab model was carried out using 

micromechanical methods. The modified elastic constants were obtained and used in 

the proposed homogenized-continuum chain model to obtain the macroscale 

homogenized elastic modulus of the nanofiber. The simulations showed excellent 

correlation with that of experiments, without involving any experimental data in the 

analysis. In Chapter V, a multiscale computational strategy for the analysis of 

heterogeneous nanocomposites was presented. The two-scale asymptotic expansion 

homogenization (AEH) method was used to estimate the mechanical properties of 

nanocomposites and nanofibers. The effect of higher order of the polynomial expansion 

on the homogenized material property was also studied in this chapter. 

 

B. TOPICS OF ONGOING AND FUTURE RESEARCH 

 

In this dissertation work, only the mechanical characteristics of nanotube and 

nanocomposite systems were considered. However, for a truly multifunctional 

application, one needs to look into the thermal and electronic properties.  

As an ongoing research it is only naturally for the estimation of the thermal 

properties of nanotube systems.  It has therefore let to the study of thermal analysis of 

nanotube systems in the atomistic scale as well as in the mesoscale.  The thermal 

conductivity analysis of a nanotube system having pure water and water with additives 

are currently under study. The aim of this study would be to quantify the effect of the 

admixture on the interfacial thermal resistance by molecular dynamic simulations. 

Here, some preliminary results on the estimation of the interfacial thermal resistance 

analysis are presented. 

A (5,5) single-walled nanotubes with a diameter of 7Å immersed in water has 

been used in the analysis. The simulations are carried out on a CNT with 200 carbon 

atoms, corresponding to a nanotube length of~23.0 nm, and 435 water molecules and 



 118 

the carbon and hydrogen atoms are modeled explicitly (see Figure 6.1). In the 

simulations the entire systems was minimized and later equilibrated for 1ps 

(1000steps). The temperature scaling was carried out in 10ps as an NVT ensemble 

(10,000 steps). During the minimization and NVT processes, the atoms in the periodic 

unit cell are allowed to equilibrate within the fixed MD cell. Periodic boundary 

conditions are applied in all directions. 

 
 

Figure 6.1 Initial state of unit cell with SWNT immersed in water  
 

In the equilibration simulations, the atoms in the nanotube are heated 

instantaneously to 500K, 750 and 1000K by rescaling the velocities of carbon atoms in 

the nanotube. The system is allowed to relax without any thermostating effects. It is 

normally seen that the decay of the temperature is of an exponential order [159]. This 

decay of the temperature from the nanotube to the surrounding matrix molecules is 

limited by the interfacial thermal resistance. [160]. Under such conditions, the time 

constant, τ , of the decay depends on the nanotube heat capacity, 
T

C and the thermal 

resistance of the nanotube-matrix interface 
k

R  

k T

T

R C

A
τ =       (6.1) 

where 
T

A is the area of the nanotube and 
T T

C A is the heat capacity per unit area of the 

SWNT and is usually taken as 5.6 x 10-4 J/m2K [161-163]. The cooling profile of the two 
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ensembles against the MD time step is shown in Figures 6.2. Further details of the 

analysis will be presented in† [164]. 
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Figure 6.2 Cooling profile of SWNT in water 

 

The obtained interfacial thermal resistance is now used in various effective 

medium theories to ascertain the effect on the overall thermal conductance of the 

composite system. The effective conductivities are found to be bounded by the Hashin- 

Shtrikman bounds which are established by micromechanical methods. The multiscale 

computational strategies developed in Chapter V can be used for the estimation of the 

macroscopic thermal conductivities. 
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