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ABSTRACT 
 
 

Flow Control Optimization in a Jet Engine Serpentine 

 Inlet Duct. (August 2007) 

Abhinav Kumar, B.E., Mumbai University 

Chair of Advisory Committee:  Dr. Othon K. Rediniotis 
 
 

Computational investigations were carried out on an advanced serpentine jet 

engine inlet duct to understand the development and propagation of secondary flow 

structures. Computational analysis which went in tandem with experimental 

investigation was required to aid secondary flow control required for enhanced pressure 

recovery and decreased distortion at the engine face. In the wake of earlier attempts with 

modular fluidic actuators used for this study, efforts were directed towards optimizing 

the actuator configurations. Backed by both computational and experimental resources, 

many variations in the interaction of fluidic actuators with the mainstream flow were 

attempted in the hope of best controlling secondary flow formation. Over the length of 

the studies, better understanding of the flow physics governing flow control for 3D 

curved ducts was developed.  

 Blowing tangentially, to the wall at the bends of the S-duct, proved extremely 

effective in enforcing active flow control.  At practical jet momentum coefficients, 

significant improvements characterized by an improved pressure recove ry of 37% and a 

decrease in distortion close to 90% were seen.  
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INTRODUCTION 
 

General 

Advanced jet engine inlets are increasingly evolving into complex serpentine 

geometries. Serpentine inlet ducts as opposed to conventional diffusing ducts 

tremendously increase the stealth capabilities of an aircraft by reducing infrared and 

radar signature.  An S – shaped inlet can essentially block the line of sight of a 

compressor intake thus sealing it from incoming radar waves along with the prevention 

of the heat signature being sent out by hot gases produced in the combustor. 

 The benefits of using serpentine ducts are further realized in reduction of aircraft 

weight and size. These features prove more beneficial for Unmanned Aerial Vehicles 

(UAVs) which offer lesser size and design constraints as opposed to manned aircraft 

which have to accommodate for cockpit and support systems. Studies have estimated a 

significant weight and size reduction of UAVs through use of serpentine jet engine 

inlets.  

In spite of the aforementioned benefits which are offered through use of 

serpentine ducts, they induce significant flow distortion at the engine inlet, detrimental 

to the engine performance, mechanical performance of the blades and fuel efficiency. 

Inlet flow distortion is a serious issue and has been a matter of concern for many 

previous aircrafts including F-111, F-14, Mig 25, A300 etc1.  

 

This thesis follows the format of the AIAA Journal. 
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 Flow distortion, which is mainly attributed to the presence of large secondary 

flow vortices, is characterized by presence of zones of extremely low pressure recovery. 

The rotor when passing through the low pressure zones can be subject to fluctuating 

stresses which can lead to severe fatigue loads. Since the flow in these low pressure 

zones enters at large oblique angles with respect to the compressor due to large 

rotational components in the plane of the engine face. They can result in a rotational stall 

analogous to the stall over an airfoil at high angles of attack. Flow control is employed to 

reduce flow distortion and enhance pressure recovery for the internal flow in such ducts. 

This thesis presents results from flow control attempts on a similar inlet duct as part of 

ongoing research at Texas A&M University. 

Background 

Subsonic internal flows are commonly found in most contemporary air breathing 

systems. The inlets often show variations in cross section and curved centerlines. Apart 

from the viscous effects resulting in thick boundary layers, there are strong secondary 

flow structures which can have detrimental effects on both engine health and 

performance. Secondary flow structures are specific to geometric variations, bend 

steepness etc, and hence every case poses a need for careful flow investigations to gain 

an understanding of the extent and nature of distortion. Apart from separation at bends of 

high gradient, curved ducts show a classical pattern of counter rotating vortices, a result 

due to a pressure differential in the near-wall regions of the duct2. The flow towards the 

inside sees a steeper bend resulting in higher acceleration and subsequently higher 

velocity as compared to the flow in the outer regions of the duct. The slow moving flow 
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near the boundary layer immediately reacts to the pressure drop due to increased 

velocities and starts to migrate towards the inside of the duct. The flow in the core region 

is pushed towards the outside due to centrifugal effects leading eventually to two counter 

rotating vortices as seen in Figure 1. A typical S-shaped Duct would have two bends 

which would result in two locations for vortex liftoffs. The vortices at the first bend 

would have more time to diffuse and hence would be weaker at the engine face than the 

distortion caused due to the second bend, which would have traveled a shorter length. 

Hence the engine face would see one strong and a mild pair of counter-rotating vortices. 

                         

 

Figure 1: Secondary flow vortices in a curved duct 
 
 

Many researches including Scribben, Ng and Burdisso3, 4 have tried to analyze  

the distortion is serpentine ducts with reference to engine performance. It is realized that 

though curved serpentine inlets have various benefits over conventional inlets, the flow 

distortion is significant enough to actually offset the advantages.  This has opened new 



 4 

areas of interests in the field of flow control, to provide remedies for controlling 

distortion due to bending of the centerline. Flow control has grown to become a fairly 

developed field and encompasses various techniques and procedures which have proven 

effective for many previous flow distortion problems. Flow control evolved from passive 

control techniques which included guide vanes and vortex generators. Though these 

methods are fairly effective, a need was realized for active control techniques for higher 

effectiveness or control of complex secondary flows. Fixed passive control structures 

pose further disadvantages as opposed to active flow control methods which will be 

discussed shortly.  Flow control devices may simply energize the flow by adding high 

momentum fluid or may introduce a specific vorticity which may counter the secondary 

flow vorticity. The former technique works better for separation delay or control while 

the latter proves more effective for curved ducts where secondary flow vortices are 

dominant in distorting the primary flow. This thesis provides analyses employing both 

techniques, however due to the presence of heavy secondary flow vortices, use of 

vorticity introduction into the flow field would be discussed more extensively.  Many 

secondary flow control attempts have been made with remarkable success through the 

use of vortex generator vanes. A study carried out by the NASA/MOD Joint program1 on 

the M2129 S duct showed through the use of CFD that not only vane vortex generators 

prove effective for a wide range of boundary conditions; they reduce engine face 

distortion and flow unsteadiness by upto 80%. In a similar attempt Anabtawi et al.5 used 

flat plate vortex generators on a curved diffuser designated for use with the BWB 

concept. Their experimental analysis show significant improvements in engine face 
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distortion through alteration of the flow structure and separation control. Various other 

efforts including those by Reichert and Wendt6, 7 derive positive conclusions.  

In spite of the aforementioned successful implementations, passive flow control 

possesses serious deficiencies in terms of adaptability with the change in boundary 

conditions, a requirement, increasing realized for tackling dynamic flow complexities. 

Passive flow devices are physically intrusive hence come along with a drag penalty as 

stated by Sullerey et al.8. Moreover in the eventuality of mechanical failure, VG vanes 

can be sucked into the compressor posing serious hazards. Contrary to fixed vane 

vortices, active control offers a control loop and hence the ability to adjust to the flow 

conditions. Micro-jets are seen widely used for flow control applications. Micro-jets 

which are characterized by high momentum and low mass flow through small orifices 

enhance mixing between high and low energy layers finally leading to delay or 

suppression of separation. Kumar and Alvi9, 10 used an array of 400µm microjets on a 

simple Stratford ramp (Figure 2).  

 

 

Figure 2: Stratford ramp9 
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Compressed nitrogen was used for actuation as it has properties comparable to 

air. The studies showed successful suppression of flow separation due to adverse 

gradients created by the ramp through use of micro jets actuated at super sonic 

velocities. A study conducted at the Indian Institute of Technology8, 11 used 4mm 

diameter jets at varied skew and pitch angles with respect to the mainstream flow to 

counter vorticity of secondary flows in addition to reenergizing the boundary layer 

through turbulent mixing. Such a cont rol is governed by the principle of vorticity 

signature which states, secondary flow control is achievable through governance of the 

strength and orientation of vorticity being introduced by flow control devices.  This 

technique is likely to be more effective for controlling engine face distortion as it 

globally restructures the flow through introduction of opposite vorticity into the 

secondary flow field. In all previous micro-jet studies, the possibility of altering the 

interaction of jets with the mainstream flow through variation of jet slot geometry and 

orientation could not be explored. Recent advances have used synthetic jets ejected 

through rectangular slots instead of small circular orifices as the case with micro-jets.  

The synthetic jets through straight slots are capable of introducing vorticity into the flow 

along with mixing of boundary layer with mainstream flow. Research conducted at 

Georgia Institute of Technology by Amitay et al.12 demonstrated the use of synthetic jets 

through rectangular slots. The duct used by them however was a simple two dimensional 

diffuser hence the flow was deficient of secondary flow vortices.  The researchers used a 

rectangular jet slot array arranged in the stream-wise location placed within the flow 

separation region. They used 17 slots which were individually addressable to control the 
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span-wise non-uniformities in separation. The jet velocities were limited to 11 m/s at an 

excitation frequency of 1032Hz.  The researchers were able to demonstrate complete 

flow reattachment up to a velocity of 75 m/s (M = 0.2) and a partial reattachment up to a 

velocity of 105 m/s (M = 0.3).  

In a similar research carried out at Virginia Polytechnic Institute and State 

University13, flow control through the use of synthetic jets was attempted on a 2-D 

serpentine inlet. Suction plenum was placed close to the separation location immediately 

followed downstream by the blowing plenum. Suction was achieved through suction 

holes towards the inlet duct profile while blowing holes were made to blow almost 

tangential to the surface of the duct to add maximum tangential momentum to the flow 

than momentum normal to the surface. Suction and blowing was achieved individually 

through use of compressed air; ejector pumps powered by compressed air were used to 

create low pressure forcing air out of the suction plenum. Plenum chambers were 

required for uniform flow through all the holes. The researchers used sensitive 

microphones to detect transition from laminar to turbulent boundary layer hence offer 

much insight on the flow characteristics including separation location and intensity.  

Though most of the above discussed studies worked extremely well for 2D 

serpentine duct/diffusers, the principle of vorticity signature could not be well 

demonstrated. Straight slots as discussed earlier can be used to induce desired vorticity 

in the core flow by careful manipulation of the slots orientation. In a study conducted by 

Bridges and Smith14, the orientation of the orifice slot was shown to have significant 

influence on the interaction of the jet with boundary layer and mainstream flow. They 



 8 

tried different yaw angles (the angle between the axis of the slot and velocity vectors) to 

document the relationship of yaw angle with vorticity. As stated earlier, at 0° yaw angle 

the synthetic jet introduced a pair of counter rotating pair of vortices with stream-wise 

vorticity. Though the origin of vortices from a jet is still not quite clear, the relation of 

the yaw angle with vorticity is being understood. In this study, as the yaw angle was 

slowly raised the vortex upstream of the slot diminished while the one downstream of 

the slot strengthened (Figure 3). This lone vortex was however observed to be closer to 

the wall as compared to counter rotating pair for the zero yaw case, a clear indication 

towards a decrease in penetration ability of the jet with increase in angle. These results 

were verified by CFD analysis presented in the results section of this thesis. CFD 

analysis showed an almost complete disintegration of vorticity at higher angles (40°). 

Clearly the control of vorticity simply through the change of orientation pointed at the 

possibility of countering secondary flow vorticity through use of jets.   

Hence, having explored all the features and characteristics of fluidic actuators 

with rectangular slots, they were found to be more appropriate for the duct geometry 

being studied in the current research. Moreover the fluidic actuator models designed for 

this particular application is are driven by a centrifugal fan, blowing the same air derived 

from the suction module back into the duct. This eliminated the need for external flow 

for bleeding requiring pressure chambers and complicated plumbing, clearly not feasible 

for realistic applications.   
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Figure 3: Effect of orientation on the interaction of synthetic jet with flow 
 

 

Further to the numerous studies done in the area of flow control applied to 

serpentine ducts, much research work was carried out at Texas A&M University as part 

of the initial attempts made to understand the duct flow characteristics and evaluate 

distortion suppression methods15. Most of the setup used during these tests remained 

mostly unchanged over the entire analysis phase and is presented in the setup section of 

this thesis.  

Surface flow visualization tests were carried out  on the duct model as part of 

initial investigations to better understand and recognize the separation locations along 

with secondary flow vortex liftoff locations. Titanium dioxide particles suspended in an 

organic medium was applied to the whole duct to generate oil traces on the walls. The 

heavier titanium dioxide particles adhere to the wall while, the organic medium quickly 
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evaporates during test conditions. The traces are created by viscous shear stress 

components dictated by the flow conditions at the wall. Figure 4 shows the formation of 

vortices through wall traces at the first bend cross section of the duct. The picture shows 

a clear span wise separation pattern indicated by an abrupt transition from laminar wall 

traces to extremely turbulent ones. The Vortex cores depict the liftoff locations for the 

counter rotating vortex pair. Further insight into the flow pattern was gained by careful 

investigations of the wall traces.   

 

Figure 4: Flow visualization 
 
 

Even though it was understood, suction by itself was not expected to significantly 

reduce flow distortion, removal of low energy boundary layer could delay flow 

separation or even prevent the flow from separating. To study the effects of pure suction, 

tests with suction itself were carried out. The suction plenum was directly connected to 

vacuum pumps capable of delivering high pressure differentials. High mass flow rates, at 

an inlet Mach of 0.18 through the throat, as opposed to a Mach of 0.09 which was used 

for the tests discussed in later section of this thesis, were used. The suction was 

measured as the percentage of total mass flow entering the duct. Suction amounts of 
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1.25%, 1.75% and 2.25% were applied to develop a relation between amounts of suction 

pressure recovery. As expected, the separation location was pushed further downstream 

by application of suction at the bends indicated by wall static pressures. However an 

increase in suction did not aid in delaying separation any further but pressure recovery 

was greatly increased. However as discussed earlier, the migration of boundary layer 

could not be avoided as suction could not impose any countering vorticity in the flow 

field. As compared to the baseline, suction of 2.25% greatly increased pressure recovery 

but could do little to decrease the extent of distortion as shown in Figure 5. The factor 

Cploss is defined in equation (2) presented in the setup section of this thesis. However a 

suction of as much as 2.25% of the total mass flow rate entering the duct would be too 

expensive to realize in practical applications.  

 

Figure 5: Effect of pure suction at engine face 
 

Baseline Flow  
Control 
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Suction and blowing is realizable and practical for real applications. Blowing 

was achieved through venting the high pressure air from the suction plenum in the 

blowing plenum. The actuator used for this application is discussed in detail in the later 

sections of this thesis. Suction and blowing tests were carried out at velocities of 30 m/s 

(Mach = 0.09) and the tests were carried out over a range of Cµ’s which is simply the 

combined momentum through the blowing slots normalized by the total momentum 

entering the duct. Blowing and suction at the bends showed a certain improvement over 

the baseline results for high values of Cµ, however for smaller values there were no  

significant improvements.  Higher amounts of blowing however showed an increased 

pressure recovery and lower amounts of distortion which were gauged by DC60, a 

distortion descriptor defined in equation (3) given in the setup section. Interestingly the 

distortion was reduced even though the jets introduced zero net vorticity into the flow 

through stream-wise jet slots. Figure 6 shows engine face total pressure loss plots for the 

suction blowing case for the maximum attempted Cµ of 0.024 against the baseline 

pressure loss contours.  
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Figure 6: Effect of suction-blowing at engine face 
 

CFD Analysis 

CFD analysis is probably the  first step in the field of fluid flow analysis. A sound 

CFD analysis was necessitated by the obvious need for a good understanding of the 

baseline flow of the inlet duct. Various CFD studies have been conducted on inlet ducts 

with or without flow control with the aim of accurately modeling the phenomena  and the 

effects of flow control2, 16.  Accuracy of CFD modeling is dictated by various 

parameters. CFD validation and accuracy is a topic always open to debate and hence has 

to be carefully dealt with. Marvin17 states that CFD research is still led by issues related 

to flow physics understanding, validation and modeling. Few of the more commonly 

encountered issues include appropriate mesh generation, specification of boundary 

conditions, selection of the correct turbulence model and scheme, manipulation of model 

Baseline 
Flow Control 



 14 

constants and under-relaxation parameters, etc. These issues are particularly important as 

they are in general very specific to the flow physics and the problem itself.  

         In this particular study, CFD results were compared with experimental results for 

validation. Worthy results were used to further probe into more intricate details of the 

flow which could not be captured by experimental results. They were also used to guide 

future experiments and actuator designs. Most experimental investigations were pre-

tested using CFD. Many researchers have done CFD analysis on complex internal flows 

similar in characteristics to the geometry in investigation. Peifen and Jue16 performed 

simulations on a similar inlet for a cruise missile under maneuvers. They used a 

Renormalization Group (RNG) k – e model along a with a two layer zonal wall model 

for capturing near wall phenomenon, to solve RANS in 3D curvilinear system. They 

demonstrated a good agreement with experimental results and repeated the simulations 

for various flight conditions. These simulations are particularly helpful in cases where 

flight conditions are difficult to achieve in laboratory such as a missile under steep 

maneuvers. They also aid in probing into details which are otherwise very difficult to 

look into using conventional experimental techniques. Most experimental techniques are 

intrusive except PIV, LDV etc which are difficult to use for internal flows. Conventional 

techniques, even though easy to use, have issues such as resolution of various time 

scales and length scales, even more dominant when examining near wall regions. 

Though CFD has various benefits over experimental anaylsis especially pertinent to the 

case at hand, formulation is always an important issue and requires careful deliberation. 

Grid generation is unarguably the most significant step in pre-processing. The grid 
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represents the numerical domain where eventually the conservation equations are solved. 

It is therefore important to have an appropriate mesh with the right quality. Xiong, Ya, 

Changsheng & Yutao18 demonstrate the use of custom grid fitting techniques using 

mapping and controlling functions for grid concentration near boundary and shock 

propagation regions in their simulation on a ramjet inlet. While custom grid fitting offers 

more control on the desired quality and scheme of mesh, it is recommended for simple 

2D or axisymmetric geometries only. For complex 3D geometries such as the serpentine 

duct, it is usually advisable to use commercially available codes such as GRIDGEN, 

ICEM, GAMBIT etc. as they offer various control features for appropriate grid 

generation.  Bahar et al.19 demonstrated the use of commercial grid generation codes to 

generate a mesh around a medium range cargo aircraft. In spite of an Euler solution, the 

geometric complexities forced various grid variations in terms of scheme and 

concentration. They controlled the grid by surface mesh generation which is particularly 

important in handling highly curved regions (localized areas of high gradients which 

tend to concentrate streamlines). Most codes are able to generate structured, unstructured 

and hybrid grids which is desirable for modeling complex geometries such as the inlet 

duct. They also provide the feature of graphical representation of the mesh created, 

which gives a chance for visual examination.   

Complex flows need to be given much thought before the right model or scheme 

can be decided upon. Traditionally many attempts have been made in literature to 

employ custom codes for modeling complex flows. Ding and Weng20 modeled 

separation on a missile inlet using similar practice. They tested the standard k – e model 
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and the RNG k – e model to make a distinction between the two and use the one more 

appropriate for their case. Selection of the right model is rarely intuitive and must be 

validated before results can be relied upon. This often requires simulations with different 

models and schemes to facilitate the selection of the one which most closely resembles 

experimental results. Most commercial codes include most of the widely accepted 

models and hence give a chance to compare the results with little effort. Advancements 

in commercial CFD allow geometries to be imported directly from solid modeling 

software; this eliminates the need for defining databases for geometry-description. 

Taskinoglu and Knight21 exported an inlet duct geometry designed in commercially 

available CAD program Pro/Engineer and later exported it to commercial grid 

generation code GRIDPRO/az3000. They finally solved the 3D flow problem in 

GASPex using a Wilcox k – ?  model. The technique discussed in the above example is 

convenient and easy to implement. Most of the commercial codes are able to provide 

similar interfacing.  

          Many flow control applications including the ones used in this study are difficult 

to implement in experimental analysis. Their orientation, positioning and profiles are 

very crucial for their effectiveness. It is an expensive routine in experimental analysis to 

try all likely configurations and possibilities before identifying the one most effective for 

the specified problem. It is in scenarios like these, where CFD analysis proves extremely 

effective. Researchers have tried incorporating passive and active flow control devices in 

CFD models to test their effects22. In passive control techniques, micro-vanes and vortex 

generators can be easily integrated to a geometry using a standard 3D modeling 
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software. These geometries can then be exported to a Grid generation code and 

appropriately meshed. In case of active flow control, actuators can be integrated by 

simply specifying the designated body surfaces as desired boundary conditions, either 

constant or periodic depending on the type of control. If well formulated, these 

simulations show a very good match with experimental results. Jirasek22 successfully 

demonstrated the efficacy of vortex generators for flow control in an RAE M2129-S duct 

using a novel vortex generator model termed as the jBay model. It was clearly argued 

that since both geometrical characteristics of the VGs (Vortex Generators) and their 

orientation highly depends on the flow characteristics and the type of problem, it is 

highly recommended to use advanced CFD in conjunction with experimental analysis. 

Through careful use of CFD, good agreement between experimental and computational 

results was achieved. Success in active flow control techniques which may require 

suction or blowing through actuators has been demonstrated as well.   
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SETUP AND PROCEDURE 
 

CFD Problem Setup 

The inlet duct geometry has an extremely complex definition. Unfortunately 

there is little literature available on the development and evolution of complex and  

secondary flow structures which eventually distort the flow. Difficult flow physics and 

geometry made the inlet duct a particularly challenging CFD problem.  Issues ranging 

from mesh generation to turbulence model selection posed unique challenges. As stated 

earlier in this text, attempts have been made to model similar geometries2, 22 however 

these problems are very sensitive to minor changes in offset angles and cross-sectional 

variations. Moreover the M2129-S duct modeled by Jirasek is simpler than the geometry 

tested in this study. The problem however was approached in a stepwise and systematic 

fashion.  

Grid               

The geometry being symmetric about the mid plane allowed the use of only half 

of the actual geometry spilt about the mid or symmetry plane.  It is a well accepted 

practice to break a complex geometry into multiple domains and grid them individually 

as pointed by Gribben, Badcock and Richards23. Discretizing the domain into multiple 

zones gives more control over the mesh type and quality;  this allows meshes to be 

specific to the zones giving the flexibility of choosing the ideal scheme and density.  The 

inlet duct geometry was subject to the same treatment, the geometry was split into 
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thirteen domains using the 3D modeling software SOLIDWORKS and  this proved 

advantageous in defining the splitting planes as shown in Figure 7.  

 

Figure 7: Duct geometry showing multiple zones 
                                              

  Even though the grid itself is generated as multiple segments, the final grid is 

connected and is treated by the solver as a continuous grid without intermediate 

boundaries as depicted in Figure 8.  
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Figure 8: Final mesh generated on the multi -block grid 
 

The final grid is hybrid and consists of a combination of both structured and 

unstructured meshes with varying schemes in different domains as shown in Figure 9.  

 

Figure 9: Inlet face and symmetry face grid 
 



 21 

Grid quality is often an issue which is easily overlooked in computational 

analysis and its consequences greatly undermined. Grid quality can significantly affect 

the results and lead to erroneous conclusions as clearly pointed by Logan and Nitta24. 

They pointed out that ideally a solution should be grid independent however this may 

never be perfectly attainable. Grid convergence simply refers to the ability of the grid to 

least interfere with the solution. It may be stated that this does not assure the 

trustworthiness of the solution as there are many other issues to CFD validation which 

are foreign to grid convergence. The simplest test for grid convergence is the usage of 

three different meshes with varying quality starting from coarse to fine. Grid 

convergence is assumed if there is a fair agreement between the results from the 

different  meshes. For the inlet duct geometry, three individual meshes with varying 

mesh quality are generated. The node density among these grids varies with the ratio of 

1:2:4 implying the medium quality having twice as many nodes as the coarse one and the 

fine grid having four times as many as the coarse grid as depicted in the Figure 10 

showing the grid at the outflow faces of the three grids.  
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Figure 10: Mesh at outflow face 
 

The baseline simulations were run on all three meshes for testing grid 

convergence. All three instances had the same setup and the residuals were allowed to 

fall below a particular specified level. Figure 11 shows the total pressure contours at the 

outflow faces of the three meshes.  

 

 

Figure 11: Total pressure contours at outflow 
 

Even though there are significant differences in the three results, the fine and the 

medium meshes show a fair agreement for practical purposes. Hence the medium quality 
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mesh is used for all computations to save on computation time which would otherwise 

be expensive on the fine mesh.  

 

Problem Definition 
 

The accuracy of a CFD simulation depends almost entirely on the problem 

definition. Correct selection of boundary types and specification of boundary conditions 

along with the correct model for turbulence or laminar flow is most crucial. The type of 

scheme and order can affect the accuracy as well; however these parameters can be 

traded off with computational cost if desired. The flow through the inlet geometry was 

well below 0.3 local Mach number, hence incompressible assumptions were acceptable. 

The selection of the correct boundary type is often more complex than apparent in most 

cases. The boundary types must be able to replicate the test scenarios to a reasonable  

level. The selection is hence governed by the understanding of the flow characteristics at 

the boundary planes. Presence of reversed vectors at the exit planes, compressibility 

effects, wakes, turbulence levels and leakages can have significant effects on the 

problem definition. Often characteristics or Riemann invariants are used to impose the 

correct boundary conditions for complex problems as stated by Bahar et al.19.  For the 

inlet duct geometry the incompressible flow assumption holds well, also the inlet 

velocity is known, experimental results show no evidence of reversed flow vectors at the 

engine face.  Moreover the static pressure at the engine face is unknown and non 

uniform which made velocity inlet - outflow combination as the ideal choice for the 

specified problem. FLUENT features velocity inlet boundary conditions which provide 
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the option of specifying magnitude normal to the face or individual velocity components 

and also the turbulence data for turbulence models. The outflow boundary condition can 

be used in cases where the exit plane velocity and pressure are unknown and /or non 

uniform as in the case with the inlet duct, provided the compressibility effects can be 

neglected.  

Selection of the correct turbulence model is probably the most important step in 

CFD problem setup. A well posed problem on a good grid can give highly erroneous 

results as a result of inappropriate model selection.  For the inlet duct geometry the 

standard k-e, k-e (RNG) and the k – ?  (SST) model were considered. The standard k-e 

model incorporates the transport equations for k (turbulent kinetic energy) and e 

(dissipation rate) along with the five standard conservation equations. The k-e model 

lacks molecular viscosity and hence is unable to capture effects very close to the wall 

(especially the laminar sub-layer) and relies on wall function for near wall profiles, it is 

thus preferred for fully turbulent flows. The RNG model uses the instantaneous form of 

the Navier-Stokes equations through a mathematical concept called “Renormalization 

Group” (RNG). It features model constants different from its standard k-e counterpart 

and also has additional terms in the evolution equations of k and e. The RNG k-e model 

has been observed to give slightly better results than the standard k-e model. The SST 

(Shear Stress Transport) k – ?  model acquires its name from its ability to account for 

principal shear stress along with turbulent viscosity. The SST model has advantages over 

both the standard k – ? and the standard k-e model. It also encompasses a cross diffusion 

term and blending functions for correct behavior in both near and far wall regions. The 
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standard k-e and the standard k – ?  models were tested on the inlet duct and their results 

compared to experimental results. It is in general very difficult to have an exact match 

between computational and experimental result s especially for a complex geometry 

given the constraints for mesh generation and lack of sufficient understanding of flow 

physics. For practical purposes such as flow control in this particular study, defining 

parameters such as separation and vortex lift-off locations, total pressure loss, vortex 

patterns, separation frequency are good enough comparisons for trusting CFD results. 

The k – ?  model came closest to the experimental results in the comparison study which 

is visible in the total pressure contours at the engine face shown in Figure 12. 

 

 

Figure 12: Comparison of turbulence models to experimental results 
 

The k – ? SST model by definition is better equipped to handle the inlet duct 

geometry as it is able to handle both near wall and far wall effects similar to the k-e RNG 

and the two layer zonal wall model used by Peifen and Jue16 for modeling flow inside a 

cruise missile inlet under maneuvers. The k-e model under-predicts separation and 

boundary layer location hence showing weak vortices formed due to the second bend. It, 
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however, completely fails to show separation at the low gradient first bend depicting the 

model’s short-coming to capture the laminar sub layer resulting due to absence of 

molecular viscosity. The k – ? SST on the other hand correctly predicts the location of 

separation at both bends as well as the correct boundary layer migration pattern. It shows 

two pairs of counter rotating vortices from each of the bends replicating the classic two 

bend duct flow pattern.  

The problem setup often requires specification of various parameters other than 

model and boundary conditions, solver selection being an important step of formulation. 

FLUENT allows for choosing between coupled or segregated solvers. Solvers in general 

deal with the way conservation and other evolution equations are discretized. The 

segregated solver sequentially solves the conservation equations, it updates properties 

which are then used to solve for velocities in the momentum equation and the  values 

may then be updated by using a pressure velocity coupling obtained through the 

momentum equation. Finally the energy equation is solved and species and turbulent 

stresses are updated and the solution is tested for convergence, if the convergence 

criteria are not met the steps are repeated.  The coupled solver on the other hand solves 

for all conservation equations together and updates turbulent stresses before checking for 

convergence. The segregated solver is the preferred solver for incompressible problems 

such as the low speed flow through the inlet duct hence making it the right solver for the 

problem in hand. The Segregated solver can only accept an implicit scheme which is the 

preferred formulation for problems which may pose strict or complex stability 

conditions.  Other parameters include using a steady state solver for a steady state 
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solution as desired by the problem and a cell based gradient method ideal for an FVM 

formulation. Further controls include type of pressure velocity coupling, under-

relaxation parameters and discretization of individual flow variables. For the specified 

case second order discretization was selected for all variables including pressure, 

momentum, turbulent kinetic energy and specific dissipation rate. A simple pressure – 

velocity coupling suitable in most cases was specified and under – relaxation parameters 

were varied during the initial iteration to speed up or slow down convergence to resolve 

stability issues if any. As for convergence, the individual variable residuals were allowed 

to drop down to significantly low values, in most cases the residuals either almost ceased 

to drop any further at these values or dropped at a very slow rate. Researchers suggest 

that for convergence the residuals must drop to at least three orders below the starting 

value and most of them did drop below 1E-4 which satisfied the convergence criteria 

given the start values as shown in Figure 13 depicting the residuals for the baseline 

simulation.  
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Figure 13: Residuals for baseline simulation on k – ? SST model 

Experimental Setup 

This section will discuss the experimental setup used for the various experiments 

carried out as part of this research. The overall geometry and specifications of the duct 

will be discussed followed by a brief description of the fiberglass sections developed as 

part of the previous research including the actuator designs. Most importantly the 

various actuator configurations will be explained, developed as part of the ongoing 

research. Finally the wind-tunnel setup along with the various data acquisition systems 

including both hardware and software will be discussed.  

Compact, Serpentine Jet Engine Inlet Duct 

The Serpentine inlet duct provided by Lockheed Martin had a fairly complex 

geometry as compared to the relatively simpler curved ducts such as the M2129 S duct6, 

7, 25, 26 geometries used in earlier studies. The inlet duct geometry shown in Figure 14 is 

divided into a number of clearly divided sections. The duct consists of a Bell-mouth 
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Section, Constant Area Section, Forward Effector Pack, Offset Section, Aft Effector 

pack and finally the Cross-Section Transition Section. The Bellmouth with a contraction 

ratio of 7.4 and a length of 10” provides for a uniform, low turbulence flow field also 

preventing separation at the lip of the inlet section. The constant area section spanning 

10” in length and an aspect ratio of 4 acts as the inlet section leading the duct flow to 

develop.  

 

Figure 14: Serpentine duct geometry 
 

 

The duct has a forward and aft effectors pack providing the serpentine geometry 

with two 45 degree bends. The bends are connected by an offset section between them;  

the second bend finally leads to the transition section leading the elliptical cross-section 

Contraction 7.4 

Length = 25.4cm 
Aspect Ratio = 4 L/D = 2.5 

Diameter = 25.4cm 
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to transition to circular. The exit diameter is 10” and the overall duct length is 25.4” 

giving an overall L/D of 2.5. The inlet duct is roughly 50% scale of a practical inlet duct 

employed for UAVs.  

Test Duct Models 

As part of the background research15 the initial baseline results were obtained on 

duct model donated by Lockheed Martin Aeronautics. The original duct model 

manufactured of resin proved fine for initial experimentations where only understanding 

of the baseline flow characteristics was important. However for integration of flow 

actuators for active flow control as part of the subsequent research endeavors, machining 

the resin duct was found impractical. As part of the background research at Texas A&M 

University, test duct sections made out of fiberglass enforced with wooden ribs and 

flanges were made. To produce multiple fiber glass models, molds of the duct pieces 

were formed out of the original resin duct and used for setup. These molds were later 

used to reproduce the fiberglass duct parts for varied configurations. The final duct 

sections made out of fiber glass with flow control actuator modules integrated are shown 

in Figure 15.  
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Figure 15: Fiberglass duct section with flow actuators 
 

Testing Facilities 

Being an internal flow problem, the engine face of the duct geometry had to be 

somehow interfaced with the cross-section of a suck down wind-tunnel acting as a 

compressor in a real case scenario. The open- loop wind tunnel used for the 

experimentations had an approximately 1.5’ X 1.5’ square cross-section. The setup used 

as part of earlier research on the serpentine duct had remained mostly unchanged 

through the entire length of the project. The interfacing was carried out by a 10” circular 

cross section to a 1.5’X1.5’ square cross-section diffuser. The main tunnel needed to be 

separated from the duct vibrating due to separating flows, by a rubber coupler. The 

coupler connected a steel pipe with a flange bolted to the duct engine face. The steel pipe 

incorporated a slot spanning half the upper circumference for probe access and later 

providing a slider mechanism for the probe rake.  The 7-hole probe used for initial 
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testing was attached to a sting holding the probe normal to the engine face. The sting 

was held by a traverse mechanism allowing horizontal and vertical movement. Figure 16 

shows the duct model mounted to the wind tunnel along with all the other attachments.  

 

 
 

 
 

Figure 16: Experimental setup showing the duct model attached to the wind tunnel 
 
 
 

The tunnel was powered by a centrifugal blower, 0.6096 m in diameter capable 

of delivering a maximum flow rate of 3.3 kg/s through the duct corresponding to a 

velocity of roughly 65 m/s or 0.19 local Mach through the constant area segment of the 

duct. The Reynolds number based on the exit diameter for the flow is 1.1 X 106.  

Servo 
Controller 

Modular 
Fluidic  
Actuator Steel Pipe  

Fiberglass 
Diffuser 

Flexible Pipe  
Coupler 



 33 

Data Acquisition Devices 

Electronically Scanning Pressure Sensors (ESP) 
 

ESPs or electronically scanning pressure sensors shown in Figure 17 are an array 

of multiple piezoresistive pressure transducers. A standard 32 channel Pressure Systems 

ESP-32 HD scanner was employed. These sensors are electronically multiplexed at rates 

up to 20,000Hz through a single onboard instrumentation amplifier. Which means the 

sampling frequency per port for the ESP is limited to 625 Hz. ESPs are typically very 

accurate pressure measuring devices with an accuracy of ±.05% of full scale deflection 

(FSD). 

 

 

Figure 17: Electronically scanning pressure sensors  
 
 
 

Two ESPs were available for the research carried out at Texas A&M University. 

The first ESP was used for rapid scanning of pressure signals through the conventional 

seven hole probe scanning the engine face and locations else where. Later 

experimentations however stressed mainly on the engine face scanning through the use 
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of a probe rake. Also static pressure taps were placed on each side of the duct to gather a 

fair idea about the static pressure distribution. Both the probe rake and static pressures 

were scanned by a single ESP by alternate usage.  

ESPs are sensitive to minor changes in temperature and reference pressure and 

hence must be calibrated carefully before usage. The calibration procedure requires four 

inputs to the ESP, switches C1 and C2 which control the positioning of the calibration 

position valve.C1 switches the ESP from run mode to calibration mode which basically 

cuts-off all the ports from atmosphere and makes them sense a common pressure from 

the calibrator through the Cal port.  Cal Ref is the reference pressure for the calibration 

input pressure. The Pref port is used only during the run mode to provide a common 

reference to the various pressure ports.  

 

   
Figure 18: ESP pin diagram 

 
 

The ESP connector contains 15 pins as shown in Figure 18 with designated 

purposes. The pins A0 to A5 are the digital addresses; together they form the 6 digit 

binary address referring to the port being sent out at output pin (11).  The Pins 8 and 9 

form the sensor supply Vs+ and Vs- respectively.  An additional 12 V supply is required 

on the pins 6 and 7. Finally pins 10 and 13 form the supply ground and sensor ground 
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respectively.   The ESP input/ output cable is directly connected to the Data acquisition 

unit.  

A pressure regulating device (calibrator) was used to control the flow to the 

calibration port of the ESP. The calibration pressure was monitored using a barocell 

manometer.  Five different pressure values in the range expected to be captured during 

experimentation were fed into the calibration port of the ESP which indeed gave out five 

different voltage values for each of the port corresponding to the respective pressure 

inputs. This data was used to finally come up with a 32 distinct curve fits for each of the 

32 ports of the ESP. The whole system was controlled by Aero-acquire, data acquisition 

software.  The signal to the various ports of the ESP, namely C1, C2, Cal and Cal ref 

were sent through the main data acquisition and control unit provided by Aeroprobe. The 

calibration curve generated is a fourth order polynomial, hence it is able to resolve high 

orders of non linearity. It basically requires five different known pressure inputs to 

correlate the respective voltages and come up with a generalized relation. The relation 

has a typical form presented in equation (1).  
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Where: 
P = Pressure to be measured 
C0 = offset (psi) 
C1 = sensitivity (psi/volt) 
C2 = non- linearity (psi/volt2) 
C3 = non- linearity (psi/volt3) 
C4 = non- linearity (psi/volt4) 
V = transducer voltage at P 
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Acquisition Hardware and Software  

The analog signals from the ESP were fed into the hardware supplied by 

Aeroprobe. The Aeroprobe hardware, the schematic of which is shown in Figure 19 is 

controlled by the Aeroacquire software and acts as the main data acquisition console. 

The data acquisition unit is controlled by a 70psi pressure feed. This is required for the 

functioning of the internal va lves. The console also integrates pressure signal inputs for 

calibration and working of the ESP including C1, C2, Cal ref, Cal signals explained 

earlier. The data acquisition unit is also accountable for sending multiplexing signals to 

the ESP and receiving back the analog signals from the piezoelectric pressure sensors. 

The Aeroacquire software allows specification of various control parameters relevant for 

data acquisition. These include the sampling rate for ESP sensors which was set to 256 

Hz sampled for 10 seconds assuming an almost steady state flow for most of the 

experimental runs. The software also allows the use of a calibration file for the ESP 

which can be created using the Aeroacquire software itself as explained in the earlier 

sections. The program can output instantaneous pressure values for each of the 32 ports 

of the ESP being written into an rpf file. The rpf file can be reduced and averaged to get 

averaged pressure values over the sampling interval.   Earlier efforts in research were 

concentrated towards the use of a 7 Hole probe. Aeroacquire also provides the option to 

use probe calibration files which can convert the 7 individual pressure signals to 3 

velocity components and total and static pressure for the location being measured by the 

probe. The software also allows for control of stepper motors to move the traverse 

mechanism.  
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Figure 19: Data acquisition array used for experimentations  
 

Static Taps 

Static pressure taps correspond to the wall pressure which is in turn governed by 

the edge velocity hence giving a good idea of the state of the core flow. For the duct, 

static pressure taps of 1/16” diameter, 18 on the bottom surface and 25 on the top surface 

were placed along the length to give a fair idea of the static pressure distribution along 

the wall corresponding to the centerline region. Static tap plots for the current research 

proved particularly useful as the distribution profiles pointed at the internal flow 

conditions distinguishing the attached flows from separated ones.  

Probe Rake 

 The engine face flow represents the most crucial parameter of the current 

research. The distortion at engine face is seen directly by the compressor blades leading 

to a decrease in efficiency or further detrimental effects including rotating stall. In an 

ideal case scenario, the total pressure should remain constant through the engine face at 
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inlet, however due to distortion caused by secondary flow structures and viscous 

diffusion, the exit plane of the inlet duct corresponding to the engine face sees a highly 

distorted flow with massive total pressure variation. It is for this reason; a detailed total 

pressure plot was needed for the engine face. Earlier distributions were acquired us ing 

the probe moved by a double axis traverse mechanism, however this proved extremely 

time consuming and tedious for which a faster and more efficient probe rake mechanism 

was developed. The probe rake, which is basically a stand alone mechanism, can do a 

survey of half the engine face through angular traverse by sliding on the steel pipe bolted 

to the engine face. The rake which consists of two perpendicular arms has 16 pressure 

probes on each of the arms out of which 15 are standard 1/16” diameter steel tubes while 

one is a fast response piezoelectric sensor capable of resolving high frequency 

fluctuations in the total pressure. The probe rake was supported on a rim which could fit 

in a custom groove on the steel pipe allowing for easy sliding. The same slot which was 

used for probe survey was used to provide for the movement of the rake as shown in 

Figure 20. During experimentations, the probe rake was moved manually using an 

angular scale as reference, graduated at 10 degrees. Tubing attached to the steel tubes 

was given access through the slots on the rim. As explained earlier, the probe rake could 

survey only half the face, however due to assumed symmetry of flow due to duct 

symmetry, the data points were simply mirrored about the mid axis to get pressure plots 

over the entire face. The uncertainty in the movement of probe rake was limited to 1 

degree.  
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Figure 20: Probe rake at the engine face 
 

In order to evaluate the extent of distortion at the engine face and to monitor 

subsequent improvements with flow control efforts, two flow description parameters 

were used. The two parameters namely Cploss, averaged(Cploss,avg) and DC60 were 

defined exactly as per the SAE ARP142027 guidelines. The first parameter, Cploss,avg is 

the ratio of the averaged losses over the engine face to the dynamic pressure at the 

engine face. Hence higher values of Cploss,avg represent a higher loss or lower pressure 

recovery at the engine face. The Cploss,avg is defined as in equation (2). 
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In the above equation, the term Ptot8  denotes the total pressure at the inlet. This is 

the reference total pressure which should be conserved throughout the flow assuming no 

losses. The term Ptotef,avg represents the total effective averaged pressure at the engine 

face gathered from the probe rake. The losses are normalized by the dynamic pressure at 

the engine face, q8 . The dynamic pressure is a better normalizing parameter than total 

pressure as the plots for different inlet velocities can be compared.  

The main distortion descriptor used was DC60. The parameter tries to relate the 

region of maximum losses to the averaged losses over the entire face. The engine face is 

virtually divided into numerous overlapping 60 degree wedges, the total pressure over 

which is averaged. The Pmin60,avg in equation (3) is the minimum of total averaged 

pressure of all the wedges. Ptotef,avg is as exactly defined in equation (2) while qef,avg is the 

effective dynamic pressure at the engine which is simply the average of ideal flow 

dynamic pressure minus the losses. For all industrial applications, a DC60 of 20% or 

lesser is acceptable.  
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Fluidic Actuator 

As part of background efforts to integrate fluidic actuators and attempt flow 

control on the duct, a novel fluidic actuator design was developed15. The actuators 

integrated distinct blowing and suction modules contrary to true SJAs (synthetic jet 

actuators) which use a common orifice for an alternating suction and blowing flow and 

have a zero net mass flux. The actuator also integrated a rotary slot to provide for pulsed 
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blowing. Typical SJA’s are powered by rotary, reciprocating mechanism or even 

oscillating membranes as suggested by Gilarranz et al.28. However for the current 

research, the geometry posed challenges due to its extreme complexity, for which a far 

more simplified actuator setup was suggested integrating separate suction and blowing 

modules.    

            Various efforts were concentrated on ascertaining the locations of the fluidic 

actuators, experimental analysis included use of static taps for the wall static pressure 

profile of the baseline and surface flow visualization tests. These aided in determining 

the near accurate separation and vortex liftoff locations for the baseline flow. Further aid 

was derived from computational results which could provide clear oil flow traces and 

other details which could not be attained through conventional experimental techniques. 

The suction slots were placed just above the separation location, which as evaluated by 

earlier studies is the most suited location for boundary layer removal to aid in delay of 

separation. As discussed earlier, suction by itself was not expected to aid in secondary 

flow control, for which the placement and positioning of the blowing module remained a 

crucial issue. The entire actuator assembly had to conform to the internal duct profile for 

which, the complexities in geometry and space constraints dictated the development of 

the blowing module. The blowing module was placed approximately 1” downstream of 

the end of the suction module in a setup similar to the one described by Harper et al.29. 

The schematic of the cross section of the fluidic actuator is shown in the Figure 21. Four 

such actuators were placed side by side each connected and conforming to internal duct 

profile.   The intake region of the suction plenum was covered by a perforated plate 
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enhancing boundary layer removal. As shown in the schematic, the flow enters the 

suction plenum pulled by the centrifugal fan, the centrifugal action further accelerates 

the flow into the blowing plenum, where after the flow re-nters the duct energizing the 

core flow. Figure 22 shows the placement of the fluidic actuators relative to the duct 

geometry.  

 

 

 

Figure 21: Schematic of fluidic actuator 
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Figure 22: Placement of fluidic actuators  
 

 

These modular fluidic actuators were designed on Solidworks 3D modeling 

software and manufactured using a rapid prototyping technology available at Texas 

A&M University us ing molten ABS plastic for layer by layer deposition. The blowing 

slots were integrated into replaceable plates manufactured separately. This was done to 

exercise flexibility in changing slot configurations without the need of remanufacturing 

the entire blowing plenum. Figure 23 shows the first bend blowing module  with 5 slot 

stream-wise plates installed. The modular actuator spanning the entire width of the bend 

was made constructed out of 4 isolated chambers. This was done to simplify the design 

over the complex elliptic cross-section and also to exercise flexibility for possible 

individual control of the actuator sections at different locations. Figure 23 also shows the 

more complex second bend blowing module with connected individual compartments.   
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The absence of plate configurations expose the blowing plenum showing the 

embedded slots allowing the air to enter from the suction plenum. Rotary slots were 

installed for previous pulsed blowing attempts. Figure 24 shows the entire first bend SJA 

module connected to the throat section. The perforated suction strip over the suction 

module can be seen immediately upstream of the jet slots. The picture also shows the 

connected motors responsible for driving the centrifugal fans.  

 

 

Figure 23: Blowing modules for first and second bend 
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Figure 24: Complete 1st bend actuator module 
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Uncertainty Analysis 

A sound uncertainty analysis was performed to quantify the various uncertainties 

present in the experimental readings presented in this thesis. Uncertainty in an 

experiment can be attributed to the various errors present during the measurement of a 

certain value. Sources of uncertainty can be largely divided into two groups. One due to 

random fluctuations in the readings observed with steady conditions over time. This 

uncertainty which is mainly termed the precision limit is the lack of repeatability.  The 

second type is the bias uncertainty and is due to the fixed error incurred during 

experimentations. The bias uncertainty mainly arises from instrument errors.  

 For the experiments conducted the precision limit was calculated by taking data 

sample set over a span of 10 seconds at a frequency of 1024 Hz for the ESP. The 

standard deviation was calculated about the mean reading. An absolute uncertainty was 

assumed to be double of the standard deviation for a confidence level of 95%. The bias 

uncertainty was assumed as the specified uncertainty of the instrument manufacturer for 

a confidence level of 95%. This was obtained individually for the manometer and the 

ESP.  Viskanta et al.30 combined the two uncertainties with a relation given in equation 

(4). 

22
yyY BPU +=                  (4) 

In the above relation,  Uy represents the uncertainty of the variable Y, Py is the 

precision uncertainty in Y while By is the bias uncertainty in the Y.  In general the 

uncertainty (w(Y)) in a dependent variable Y was best defined in a relation given by 

Kline and McClintock31 given in equation (5). 
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In the above equation n is the number of xi independent variables contributing to 

the uncertainty in Y while w (xi) represents the individual uncertainties of variables xi.   

The averaged random uncertainties calculated from the individual standard 

deviations observed during experiments were 0.04155 torr for static taps and 0.06846 

torr for probe rake. The instrument uncertainty as specified by the ESP manufacturer is 

0.05% of full scale. Full scale for the particular sensor is 20” of water and hence the ESP 

uncertainty was found out to be 0.1868 torr.  The total averaged uncertainty in static taps 

was calculated to be 0.046 torr and 0.071 torr. Additionally the instrument uncertainty of 

the manometer as provided by the manufacturer is 0.00748 torr and 0.05% of the reading 

for barocell manometer used in the calibration of ESP.  
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CFD RESULTS AND DISCUSSIONS 
 

The aim of this study was to develop a good understanding of the physics 

governing the flow through the inlet duct and later study the effects of flow control 

through fluidic actuation and was done through conjunction of CFD and experimental 

analysis. Many prior studies have been conducted in the similar fashion including a 

study of flow through curved ducts conducted by Towne2. Towne made certain 

assumptions valid for low speed viscous flows through curved ducts and reduced them to 

a simpler form. He then solved the flow through the duct using an explicit formulation 

on a coordinate system following the duct curvature. Through careful formulation he 

could attain a good agreement between computational and experimental results. This 

section discusses CFD results of the baseline flow reaching important deductions 

followed by flow control results. The CFD problem setup explained in an earlier section 

was adopted for all simulations with minor variations if required. Most of the processing 

was carried out in batch mode on the two supercomputers at Texas A&M University. Of 

the available machines either SGI Altix 3700 or an IBM Regatta p690 were used for 

simulations. The SGI Altix comprises of 32 pairs of 1.3 GHZ Itanium-2 64-bit µ - 

processors whereas IBM Regatta p690 has 32 1.3 GHZ processors. Most simulations 

were carried out on a requested memory of 3GB and 4 processors.   

             The boundary conditions used for simulations were fairly standard and known 

from experimental settings and testing conditions. The velocity normal to the inlet plain 

was specified at 60 m/s.  The turbulence in the inlet flow is specified as turbulence 
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intensity and turbulent viscosity ratio, turbulence intensity is the percentage ratio of the 

root mean square of fluctuations to the average velocity. For low disturbance and 

controlled cases a value of less than 1% is achievable, a value of 0.5% was assumed for 

the experimental runs. Turbulent viscosity ratio is the ratio of turbulent viscosity to 

molecular viscosity and is proportional to Reynolds number, for the inlet duct flow, a 

value of 10 was preferred. The outflow condition simply takes mass weight age as input 

which equals 1.0 for the baseline case ignoring compressibility effects. The convergence 

in most cases was achieved within 1500-2000 iterations run for about 10-12 hours. 

Initial iterations were carried out in the interactive mode to monitor stability and 

manipulate under-relaxation parameters if necessary.  

Baseline Results 

Baseline results presented here show the most important characteristics of the 

inlet duct flow. The results obtained in the baseline cases compare well to the ones 

obtained by Mohler for his simulations on the M2129 S-Duct26. The bends cause high 

static pressure gradients to appear between the near wall and core regions of the duct as 

visible in Figure 25 showing static pressure contours at the symmetry plane.   The region 

after the second bend shows chaotic pressure recovery contours as a result of flow 

separation. 
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Figure 25: Static pressure contours for symmetry plane 
 

The total pressure which refers to the total energy contained in the fluid shows 

heavy depletion in many zones on the symmetry plane (refer Figure 26). The green 

zones close to the wall are mainly due to viscous diffusion and relate to the boundary 

layer growth.  Further downstream the core flow sees heavy losses due to separation and 

secondary flow formation showing a total pressure recovery as low as 60%. Separation 

and vortex formation result in heavy turbulent mixing, eddy formation and flow 

retardation. Recovery of total pressure is the main aim of the current study which is why 

it is important to identify sources of losses.  
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Figure 26: Total pressure contours for symmetry plane 
 

The simulations show strong evidence of flow separation and boundary layer 

migration. The velocity vectors on the symmetry plane show slowing down velocities at 

the near wall region of the duct especially near the centre of the duct where the 

migration effects are substantial. The reversed vector regions can be clearly seen 

diffusing into the mainstream flow at the first and the second bend shown as blue regions 

in Figure 27. 
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Figure 27: Velocity vectors at symmetry plane 
 

The high pressure in the mean flow is dictated by the edge velocity which 

increases at steep bend followed by steep decele ration or recovery. This in turn results in 

a steep rise in pressure immediately after the bend causing the low energy fluid very 

close to the wall to stagnate and reverse direction, the reversed flow vectors then diffuse 

back into the high speed main stream fluid giving the classic separation pattern as visible 

in Figure 28. Separation in general decreases efficiency as it is a source of energy losses 

which is finally visible in decreased stagnation pressure as a result of low momentum 

fluid. It can also be seen that separation bubble generally ends with reattachment of the 

boundary layer. 



 53 

  

 

Figure 28: Separation at the bends (symmetry plane) 
 

The most significant feature of the curved duct flows is boundary layer migration 

observed in many previous studies2, 4, 5, 8, 15. The core flow while trying to negotiate a 

steep bend experiences a centrifugal force which in turn translates as a pressure 

differential between the inside and outside of the duct attracting fluid elsewhere to the  

center of the duct. The slow moving boundary layer with a small centrifugal force reacts 

quickly to the pressure gradient and migrates to the center along the walls. The 

accumulation eventually pushes out existing fluid into mainstream giving the 

characteristic liftoff effect. Anabtawi et al.4  stated that in a two bend system it could be 

thought that the secondary flows due to second bend may cancel out the effects of those 

due to first bend. However, the secondary flows due to both the bends remained and  

propagated well into the engine face with no evidence of cancellation effect. This is an 

important insight in the understanding of secondary flows in S shaped ducts theorizing 

the irreversible nature of boundary layer migration and that the boundary layer continues 

to migrate even after the first bend. The CFD simulations for the problem in question 
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gave similar results showing clear evidence of boundary layer migration. Figure 29 

shows the migration pattern of pathlines near the wall at first bend using oil traces which 

are analogous to surface flow visualization techniques in experimentation.  

 

 

Figure 29: Boundary layer migration at first bend 
 

The path- lines on the bottom experience maximum influence from the second 

bend. The light blue streamlines on the surface show separation due to bend gradient. 

The yellow and orange streamlines can be seen migrating from the outside of the cross-

section to the inside. The onset of counter-rotating vortices can also be seen in the 

circulation patterns immediately after the bends. The gap at the centre of the wall depicts 

the liftoff of the path lines due to fluid accumulation at the centre finally resulting in 

strong secondary flows. The second bend has a much steeper bend with a sharp variation 

in cross-section transitioning from elliptical to circular cross section. The high gradients 

produce a much higher centrifugal force and a stronger separation. The migration of 

Flow 
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boundary layer was visibly more aggressive for the second bend giving out secondary 

flows with much higher distortion effects. Figure 30 shows the migration as caught by 

oil flow traces at the second bend. Interestingly the irreversibility of migration is verified 

by the continuing center gap at the bottom surface, an after effect of first bend migration. 

 

Figure 30: Boundary layer migration at second bend 
 
 

The migration patterns finally results in the counter rotating vortex pairs at the 

engine face. As discussed earlier in this text, the vortex pair due to second bend is 

stronger as it has traveled a shorter length hence undergoing lesser diffusion in addition 

to the steeper second bend for the problem in question clearly visible in the engine face 

vector plot shown in Figure 31. The vectors at the lower regions of the engine face show 

signs of weaker or suppressed vortices due to higher diffusion into the core flow. This is 

Flow 
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the characteristic pattern of flow distortion for the inlet S-duct flows. The effectiveness 

of flow control is monitored by the suppression of distortion. 

 

 

Figure 31: Vector plot at the engine face 
 

First Bend Flow Control Results 
 

Flow control in the S shaped duct was attempted using fluidic actuators through 

suction or blowing. For initial investiga tions only suction was integrated immediately 

downstream of the first bend. This was done to study the effectiveness of suction for 

separation suppression or delay which may result in higher pressure recovery at the 

engine face.  However, no substantial effect on secondary flows was expected as 

secondary flows relate to generation of vorticity structures which must be countered by 
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use of vorticity signature by active flow control devices. The low energy fluid in the 

boundary layer is highly susceptible to adverse pressure gradients leading to separation. 

Suction tries to energize the boundary layer by pulling the main stream flow into the 

boundary layer reenergizing it. Almost complete pressure recovery can be achieved 

through pure suction for curved ducts with square or rectangular cross section as 

demonstrated by Kumar and Alvi10 for the Stratford ramp using microjets for flow 

control.   

Suction for the inlet duct problem was achieved by modeling a suction slot as an 

outflow boundary condition on the bottom duct wall immediately after the first bend. 

The slot had a width of 1” and a span covering the entire bottom span of the duct cross-

section. The suction was allowed to consume 1% of the total mass flow rate entering the 

duct through the velocity inlet. The initial studies were aimed at purely studying the 

effect of flow control at the first bend. To save on computational time and expense, the 

duct portion following the offset section was removed. This was based on the 

assumption that the disturbances at the second bend were not expected to influence flow 

characteristics at locations following the first bend. Baseline simulations were conducted 

on the modified duct geometry (second bend and cross-section transition portion 

removed) to have baseline comparison for flow control simulations. Figure 32 and 

Figure 33 show baseline velocity vectors at symmetry plane and at the outflow plane 

respectively. The symmetry plane clearly shows strong reversed flow vectors depicting 

the extent of separation. The outflow plane velocity vectors show strong secondary 

flows. The vortex pair shed due to migration of the boundary layer at the first bend is 
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visible on the bottom of the outflow vector. The slow moving vortex cores, characteristic 

to viscous vortices contributes to maximum total pressure losses across the duct cross 

section. Two weaker vortex cores can also be seen close to each edge of the elliptical 

cross section. The exact physics for the formation of these vortices is still unclear but 

they exhibit opposite vorticity to the core vortices in the centre of the duct hinting at the 

tertiary nature of these vortices. 

 

 

Figure 32: Outflow face velocity vectors 
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Figure 33: Symmetry face velocity vectors 
 
 

The suction case showed significant improvement over the baseline results. The 

suction definitely proved effective in reenergizing the near separating boundary layer 

immediately after the first bend. The separation was delayed significantly. The 

separation origin or the saddle point shifted from 12.5” in the axial direction to17”. Oil 

traces shown in Figure 34, following the first bend show a fair amount of improvement 

over baseline oil traces (Figure 29). The flow separation pattern clearly appears to have 

moved down, the boundary layer migration looks much weaker than in no control case 

but it still exists as seen by converging flowlines, the gap in the centre of the duct is still 

representative of the massive liftoff zones showing flow lifting off the lower wall.  
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Figure 34: Oil traces on offset section immediately after first bend 
 
 

The vector sketches reaffirm the partial success of suction at first bend. Figure 35 

shows the velocity vectors at the symmetry plane. Clearly a far better behaved flow 

compared to the no control case is visible. The reversed flow vectors conclusive of flow 

separation have shifted to a far more down stream location with reduced intensity. This 

also indicates an increased pressure recovery. Figure 36 shows some interesting features. 

Instead of showing a single pair of secondary flow vortices, the suction case shows 

multiple vortices at the outflow. As discussed earlier, suction by itself would not be 

much effective in suppressing secondary flows; however, the current study shows it can 

definitely decrease the intensity giving higher total pressure, if not a reduced distortion 

itself. The multiple vortices seen at the outflow have opposite vorticity with respect to 

their immediate neighbors. Suction definitely gave encouraging results for the case in 

hand.  
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Figure 35: Velocity vectors at the symmetry plane 
 
 

 

Figure 36: Velocity vectors at the exit plane for the suction only case 
 

Flow distortion remains the main focus of the study. Even though suction by 

itself was promising for the first bend, it still gave considerable flow distortion at 

outflow. The first bend distortion contributes to a small percentage at the engine face 
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after going diffusion over the length of the duct. The investigation on first bend also 

gave significant guidelines for the extent and type of flow control which would be 

required for the steeper and closer to engine face, second bend.  Various studies have 

used micro jets for injecting high momentum fluid in the core flow but jet injection slots 

were used for the current study because of their various advantages over authentic micro 

jets as already cited. 

Twelve stream-wise slots were used for blowing. All slots were 2mm wide and 

1” in length along the stream-wise direction. The equally spaced slots were all placed 

parallel to each other 1” downstream to the end of suction slot on the bottom surface of 

the offset section as visible in Figure 37 showing the underside of the duct. 

 

 

Figure 37: Suction and blowing dimension at the first bend 
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The actual actuator used for experimental analysis, consists of a connected 

suction and blowing plenum hence it was necessary to maintain mass conservation for 

computational studies as well. The blowing was thus done at 1% of the total mass inlet.  

Suction and blowing together proved to be very effective for achieving flow 

control at the first bend. The actuator jets blew at approximately 40 m/s as shown in 

Figure 38. The high momentum jets could reach into the core flow and redistribute the 

vorticity and enabling pressure equalization, achieving almost complete pressure 

recovery.   

 

 

Figure 38: Jets blowing through actuator slots 
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The oil traces for the suction and blowing in Figure 39 show elimination of flow 

separation marked by absence of disintegrating flow-paths, which was expected as the 

jets can energize low energy fluid by turbulent mixing along with inducing vorticity in 

the core flow. Elimination of separation marks a noteworthy accomplishment for this 

study as it aids substantially towards total pressure recovery. The path- lines at the wall 

remain largely streamlined with minimal convergent behavior and negligible vorticity 

evident of almost complete elimination of secondary flows which can be attributed to the 

effectiveness of vorticity introduction in the core flow through two blowing slots. 

Further details towards effects of flow control through fluidic actuators can be obtained 

through the vector plots. 

  The velocity vectors reveal the true flow characteristics following steady 

blowing and suction. The symmetry plane velocity vectors (Figure 40) don’t show any 

sign of flow reversal and strong evidence towards complete elimination of separation is 

seen in the oil traces. The vectors also show a higher dynamic pressure close to the wall, 

indicating a higher over all pressure recovery at the exit plane, finally translating to the 

engine face.  
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Figure 39: Oil traces on the offset section following first bend 
 

The outflow vectors show interesting flow characteristics at the exit plane. The 

high momentum jets blowing into the flow induce counter-rotating vortices along the 

slot length giving mushroom-like structures visible at the exit plane.  These counter 

rotating vortices are sensitive to slot orientation as explained by Bridges and Smith14 in 

their study on effects of slot orientation. However, for the case in discussion, stream-

wise slots were used (perpendicular to the flow front) which give vortices of equal 

strength. So even though the net vorticity introduced is zero, the vortex pairs enhance 

mixing of layers with varying dynamic pressures enabling a more homogenized flow 

field delaying or eliminating separation and to some extent the formation of secondary 

flow vortices.  The exit plane shown in Figure 41 show interestingly twelve mushroom 

like structures, each representative of a pair of counter rotating vortices of equal strength 
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depicting the turbulent mixing of the actuator jets into the core flow. The velocity 

vectors at exit plane show no signs of secondary flows.  

 

 

Figure 40: Velocity vectors at symmetry plane for suction blowing plane 
 

 

Figure 41: Velocity vectors at exit plane for suction blowing case 
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A final comparison of total pressure for the no control, suction and steady 

blowing & suction case is shown in Figure 42.   

 

 

Figure 42: Total pressure contours for studies at first bend 
 

Second Bend Flow Control Results 
 

Flow control at the second bend was particularly of more interest due to higher 

contribution to flow distortion. The second bend clearly sees a much higher gradient 

across and also goes through a steep cross sectional variation, transitioning from 

elliptical to circular over a small length. The aforementioned characteristics of the 

second bend lead to a more violent secondary flow production and separation patterns. 

Totol Pr. 
(Pa) 
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 Suction by itself was clearly not expected to be very helpful in pressure recovery. 

Strong secondary flows such as the ones produced by the second bend require strong jets 

enabling turbulent mixing and vorticity redistribution. This can be achieved only through 

the use of jets blowing high momentum flow in the mainstream flow along with suction. 

Similar to the treatment used for the first bend, suction and blowing was attempted at 

locations close to the second bend. The need for integrating flow at the complex second 

bend and cross-section transition required use of unstructured grid which would have 

other wise become an extremely complex grid generation problem in GAMBIT. Figure 

43 shows the grid modification following the offset section, showing a mainly 

unstructured grid concentrated close to the boundary layer.  

 

 

Figure 43: Hybrid grid showing use of structured grid for offset section followed by unstructured 
grid 
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The change of mesh made the computations more time consuming and 

computationally heavy, firstly due to increased grid points and secondly due to the 

inherent nature of unstructured grids to consume more resources. There were noticeable 

differences for the baseline flow compared to the earlier simulations; this included 

secondary flow vortices at the engine face due to the second bend being slightly smaller 

and weaker. The flow distortion however appeared more or less to the same extent 

making its severity almost comparable to the original baseline case. Figure 44 and 

Figure 45 show the symmetry plane and engine face vectors respectively for reference.  

Over the entire length of the inlet duct, the distortion effects due to the first bend 

diffuse into the flow hence decreasing their contribution to engine plane distortion. 

Clearly as pointed earlier in this text, the second bend due to its severity in geometry and 

proximity to the engine face accounts for maximum pressure loss and distortion. The 

separation and migration patterns are similar to those seen for the first bend but vary in 

intensity. This clearly points at the possibility of having the need to use more effective 

flow control than that used for the first bend.  
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Figure 44: Velocity vectors at symmetry plane 
 
 
 

 

Figure 45: Velocity vectors at outflow plane 
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Fluidic actuators were integrated for flow control, defined in a way similar to the 

first bend. The suction slot was placed a small distance upstream of the first saddle point. 

The blowing slots were similar in dimension to the first bend slots; however 20 

individual blowing slots were used for the second bend compared to 12 slots used for the 

first bend. The slots were made to blow air at a Cµ of .02 which is basically a ratio of the 

momentum through the slots to the momentum entering through the velocity inlet. For a 

velocity inlet of 60 m/s. the jet velocity worked out to approximately 70 m/s. Again 

through mass conservation the suction was made to consume mass flow equivalent to the 

rate discharged through the slots. 

The vector plots shown in Figure 46 and 47 show velocity vectors for the 

symmetry plane and outflow vectors respectively for the suction-blowing case applied at 

the second bend. Clearly the vectors at the symmetry plane show a considerable 

separation delay as marked by the downstream location of the reversed flow vectors, 

however, contrary to the effect seen for the first bend, the separation could not be 

eliminated. The outflow vector plots show interesting features. The vector plots vortices 

stretched towards the duct extremities as opposed to being in the middle for no flow 

case. This can be mainly attributed to a delayed or weaker boundary layer migration due 

to flow turbulent mixing caused by high momentum SJA jets. The total face also sees a 

higher dynamic pressure due to delayed separation. The vortex strength is apparently a 

little higher for the flow control case than the no control case probably because of 

delayed evolution of vortices causing lesser viscous dissipation close to the wall and 

giving concentrated core vortices. Over all, suction and blowing definitely aids in total 
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pressure recovery and flow distortion reduction. However, significant distortion is still 

prevalent as evident in the vector and total pressure plots.  

 

 

 

Figure 46: Velocity vectors at symmetry plane for suction-blowing at second bend 
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Figure 47: Velocity vectors at engine face for suction-blowing at second bend 
 

Beyond conventional SJA, the only practical option was to introduce vorticity 

signature in the flow. This required changing the orientation of the blowing slots with 

respect to the direction of the flow. As discussed earlier in the text, a slot lined parallel to 

the stream would give a jet with equal strength vortices; however changing the 

orientation would expose the broad side to the mainstream flow suppressing the 

upstream vortex and strengthening the downstream vortex. 

For studying the effects of slot orientation on jet vorticity a computational test 

grid was used. The test section had a rectangular cross section, large enough to allow for 

sufficient diffusion. The slot used had dimensions same as the ones used for 
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experimental and computational simulations. The inlet velocity for the test chamber was 

maintained at 60 m/s with the jet blowing at 32.5 m/s. 

Various cases are discussed in this section pertaining to different slot orientations 

including slots streamlined with the inlet flow, slots at 30 & 45 degree to the inlet flow, 

two stream-wise slots blowing into the mainstream flow separated by a small distance 

and slot blowing at 30 degrees to the slot fact normal. The first case, jet blowing through 

a slot lined up parallel to the flow vectors shown in Figure 48, clearly shows two 

vortices evolving with almost equal and opposite vorticity. The slight difference in 

vorticity and jet orientation is probably due to minor numerical instabilities. Figure 49 

shows a jet through a slot aligned at 30 degrees to the velocity inlet. The interaction of 

the jet with the mainstream flow shows formation of a single strong vortex closer to the 

wall. This shows the success of introducing desired vorticity into the flow through 

controlling slot orientation. Figure 50 depicts a jet pattern for a slot aligned at 45 degree 

to the flow inlet; the pattern is representative of weak disintegrating vortex like 

structures. This could be an effect of high momentum losses due to large exposure of the 

broad side of the slot to the mainstream flow.  This also indicates a limit to which the 

slot orientation can be changed to reap benefits from vorticity control. The next case 

shown in Figure 51 shows two individual slots streamlined, separated by a small 

distance ejecting jets into the mainstream. The interaction of vorticity produced by jets 

close to each other can be easily seen. The vortices facing each other exhibit opposite 

vorticity hence weakening each other. The final case shown in Figure 52 shows 

maximum vorticity control but is the most difficult to realize in practical scenarios. This 
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involves actually controlling the direction of the inlet jet with respect to the duct surface. 

For the studied case, the jet was made to blow at 30 degree to the slot normal. A clear 

strong single vortex in the region of jet inclination can be seen.  

 

 

Figure 48: Blowing configuration slot at 0 degrees 
 

 

 

Figure 49: Blowing configuration slot at 30 degrees 
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Figure 50: Blowing configuration slot at 45 degrees 
 

 

 

Figure 51: Blowing configuration for two slots 0 degrees close to each other 
 



 77 

 

Figure 52: Blowing configuration for jet blowing at 30 degrees to the slot normal 
 
 
 

From the slot orientation simulations, last discussed, the slots lined at 30 degrees 

to the flow direction, appeared to be the most feasible option for the case in hand. The 

problem remained largely similar to the case with stream-wise slots, with slots orientated 

in a way as to oppose the secondary flow vorticity. The results for the 30 degree slot 

blowing and suction are shown in the vector plots below. Figure 53 shows vector plots at 

the symmetry face whereas Figure 54 shows vector plots at the outflow face. The 

symmetry plane shows dominant reverse flow vectors in the cross-section transition 

section unexpectedly worse than the stream-wise slot case; the heavy separation could be 

representative of momentum losses due to an exposed jet. A single vortex may also be 

incapable of providing sufficient turbulent mixing, energizing boundary layer to 

withstand high gradient bends. The vector plots for the outflow face, show strong 

dominant secondary flow vortices clearly showing the ineffectiveness of the 30 degree 

slot case. The results depicted are clearly quite different from the expectations and 
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require further investigations as the reasons currently are not clear and can be best 

attributed to the loss of penetration depth into the mainstream flow due to jet momentum 

losses at high angles to local flow vectors.  

 

 

Figure 53: Velocity vectors at symmetry plane for 30 degree slots 
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Figure 54: Velocity vectors at outflow plane for 30 degree slots 
 

The total pressure contours as shown in Figure 55 show the  comparison for the 

no control, suction and blowing through stream-wise slots & suction and blowing 

through 30 degree slots for the second bend at the engine face. The no control case 

shows excessive total pressure losses from separation and secondary flow formation. 

The control case with streamline slot shows an appreciable pressure recovery and 

vortices stretched to the face edges showing a weakened separation and delayed 

migration. The 30 degree slot case however, shows strong secondary flow vortices with 

little improvement over the no control case, exhibiting the need for further investigation 

of the problem.  
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Figure 55: Total pressure comparison for second bend flow control attempts 
 

Improvements from practical amounts of normal blowing jets were below 

expectations. The conventional flow control techniques at the second bend failed to 

parallel benefits of flow control seen at the first bend. The angled slots case failed to 

deliver any significant improvements over the baseline case. On the contrary, blowing 

through slots at 30 degrees performed worse than the stream wise slots. The angled slot 

results were clearly unexpected as the introduction of vorticity was assumed to aid in the 
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manifestation of flow control through vorticity signature. The perceived failure could be 

attributed to many reasons; however no single explanation is convincing enough to 

explain the observations and would require aid from further studies. In the wake of the 

aforementioned results, a more radical configuration design was attempted. Unlike all 

the previous flow control attempts, the idea was to experiment with tangential blowing. 

Tangential blowing attempts to directly reenergize the deficient boundary layer through 

jets as opposed to mixing of different fluid layers. The benefits of using tangential 

blowing were reported by Sun and Hamdam32 in their computational studies with flow 

control on a NACA 0012. Tangential blowing was achieved through 16 equally spaced 

slots spanning the width of the duct at the onset of the second bend. Each of these slots 

was 1.5 mm to 25.4 mm. Since a perfectly tangential slot is unattainable in real 

scenarios, a small angle of 10 degrees was imposed between the jet axis plane and the 

duct surface (Figure 56). The jet momentum coefficient was set at .0014 with the slots 

blowing at 30 m/s.  
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Figure 56: Tangential blowing jets 
 
 

Tangential blowing with slots blowing at 30m/s proved to be fairly effective in 

controlling separation and reducing distortion as shown in the comparison between 

baseline and flow control case shown in Figure 57. Flow control which was applied only 

to the second bend shows a definite improvement. The distortion, marked by the heavy 

pressure loss region due to secondary flow vortices shows a significant reduction in size 

and severity, marking a higher pressure recovery and delayed or weakened boundary 

layer migration possibly due to redistribution of wall pressure due to tangential blowing.  
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Figure 57: Effect of tangential blowing at engine face  
 

 

 

Figure 58: Tangential blowing at higher jet momentum 
 

 

Total Pr. (Pa) 
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Higher jet velocities were attempted to simulate the maximum possible jet 

momentum in experimental simulations. The higher momentum case with tangential jets 

blowing at 35 m/s showed a definite change in distortion pattern as compared to the 30 

m/s case. Higher jet momentum (figure 58) shows a small vortical structure stretched 

closer to the wall. This is a definite indication towards a delayed liftoff as compared to 

the discussion following results in Figure 57. The weakened and smaller vortex at the 

engine face is also representative of further decreased distortion attributing more 

credibility to tangential blowing. 

Tangential blowing proved to be more effective than normal blowing in terms of 

distortion reduction and hence appeared to be a plausible solution for this particular 

problem. Tangential blowing, unlike the normal blowing attempts, did not introduce a 

net vorticity in the core flow and theoretically exhibits no such mechanism to attack 

counter rotating vortices. However, blowing tangentially to the wall definitely 

redistributes wall pressures possibly decreasing the span-wise pressure differential hence 

theoretically weakening the foundation of boundary layer migration.   
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EXPERIMENTAL INVESTIGATIONS 

 

Bench Top Tests 
 

The fluidic actuators designed for studies presented in this thesis were subject to 

bench top testing to monitor their performance as a function of the pressure gradients 

across the blower fan or the suction and blowing plenum. These tests were conducted in 

a way similar to the descriptions presented by Guy et al.33 in their study pertaining to 

synthetic jet velocity measurement. The pressure across the centrifugal fan in the 

actuator assembly decreases the jet velocity through the slots. A study which measures 

the synthetic jet characteristics is important to relate synthetic jet velocity to the fan 

RPM and pressure gradient. The tests were conducted for both the 3 slot and 5 slot cases 

(Figure 59 & 60). The calculated uncertainty of the bench top tests was limited to a 

maximum 1.43 m/s for a 95% confidence level. 
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Figure 59: 5 Slot plate performance 
 
 
 

 

Figure 60: 3 Slot plate performance 
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Experimental Results 
 

Experimental simulations were carried out for various SJA slot configurations. 

The configurations were changed simply by replacing the slot plates. Experimental 

analysis for each configuration included a complete probe rake survey of the engine face 

to obtain total pressure face contours and acquisition of wall static pressure distributions  

for both the top and bottom surface of the duct along the mid axis.  

Engine face surveys were done by the probe rake as described earlier. Earlier 

research at Texas A&M had used 7 hole probe for engine face surveys, though the total 

pressure contours obtained from multi-hole probe and probe rake were identical, the 7 

Hole Probe could generate 3 dimensional velocity vector plots on the engine face. Even 

though, vector plots provided useful insights on the secondary flow characteristic at the 

engine face, for all practical purposes the total pressure contours were sufficient. Losses 

in total pressure were indicative of presence of large secondary flows which related to 

the core problems with serpentine duct flows. The 32 single hole probes were read real 

time by an ESP. Static pressure distributions were obtained by using by reading the 

pressure values at 25 pressure taps on the top surface and 18 taps on the bottom surface 

through the same ESP used or probe rake survey.  Wall static pressures can provide 

valuable insights into the flow characteristics. Wall static pressures distributions proved 

to be particularly useful in relaying separation location, extent and recovery, also 

providing a parameter to gauge the effectives of flow control apart from face plots.  

Previous research at Texas A&M had concentrated on interaction of jets through 

stream-wise slots only. As observed in earlier research, this orientation can introduce a 
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pair of equal strength counter rotating vortices with zero net vorticity, however to use the 

principle of vorticity signature angled slots similar to the ones described by Bridges and 

Smith14 were used in later attempts. The slots were oriented so as to introduce the correct 

vorticity into the flow to oppose the locally encountered secondary flow vorticity. Since 

the Slots were spread span-wise, each slot had to be oriented in order to account for the 

local mainstream flow conditions. Also since the secondary flow vorticity revered 

direction at the symmetry axis of any cross-sectional plane, the slots also were actually 

mirrored about the symmetry plane to produce opposite vorticity at either side. The 

blowing strength was measured by a non dimensional factor called Cµ. The factor 

follows the definition (equation (6)) derived from the one used by Amitay et al.34 in their 

tests 2-D diffuser ramps. 

( )
( )

2

2
jet

duct

U l w n
C

U Aµ

ρ

ρ

⋅ ⋅ ⋅ ⋅
=

⋅ ⋅
      (6) 

The variables in the above equation follow the standard definitions, ? is the 

density, U is free stream velocity at inlet for the duct and the exit velocity of the jet for 

SJAs. A is the area of the duct inlet; l is the length of the slot, w is the width while n is 

the total number of slots.  The uncertainty in Cµ comes from various variables 

incorporated in equation (iv). Uncertainty in Uduct comes from the uncertainty of the 

handheld manometer while the errors may come from pitot tube placement and tubing. 

Density was also read from the manometer which was calculated by simple ideal gas 

law. The uncertainty in density was mainly due to uncertainty of the manometer in 

reading atmospheric pressure and temperature and also due to minor compressibility 
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effects; however these effects could be safely neglected. The uncertainty in Ujet was 

probably the highest contributor to uncertainty in the value of Cµ. As the values for the 

jet velocity were obtained from bench top tests conducted for a range of pressure 

differentials. These results assumed a constant jet velocity over the entire span of the 

slot, moreover the same velocity over all the slots. The values used also related to a zero 

pressure differential across the SJA fans, however, real time data gathered from the 

differential pressure sensors used to monitor pressure differential across the suction and 

blowing surfaces showed a small adverse pressure gradient of less than 0.5 torr, which 

could have related to further reduced values in velocities, not accounted for. The 

uncertainties in l and w were encountered mainly due to loose tolerances attained 

through rapid prototyping of components; these tolerances were small enough to not 

significantly influence the uncertainty of Cµ. The uncertainties in the values for Cµ were 

approximated close to 5% using the approach described earlier. For all the experimental 

runs, the inlet duct velocity was maintained at 30 m/sec. For each configuration SJA jet 

velocities were varied by changing the centrifugal fan speed from 0 RPM for baseline to 

15000 RPM in steps of 2500 RPM.  
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5 30 Degree Slots 
 

As an initial attempt to counter vorticity in agreement with the concept of 

vorticity signature, slots at 30 degree to the local free stream were employed. 5 slots 

were used on each of the four plates as with the case with earlier attempts at Texas A&M 

University.  The 5 – 30 degrees slot plates as shown in Figure 61 were installed for both 

the first and second bend actuator setups.  The static pressure distributions over the 

length of the duct are shown in Figure 62 and 63. One of the major problems 

encountered due to the installation of SJAs was their interference with the external 

profile of the duct, making a large portion of the external duct area near the bends 

inaccessible for installation of static taps. Integration of surface taps with SJAs was ruled 

out due to the many possible geometry complications. These drawbacks eventually made 

the distribution curves deficient of various points near the bends; however the important 

flow characteristic could still be captured and interpreted. The Bottom Surface 

distributions show a steep dip at the first bend. The recovery region however shows a 

slightly erratic distribution for lower RPMs of the centrifugal fan. The recovery curve 

shows a definite smoothening along with an increased slope for higher RPMs indicative 

of delayed or eliminated separation. The top surface distribution which captures the 

more crucial second bend shows a similar trend with increase in RPM. Though none of 

the distributions show a complete elimination of separation, a definite delay trend can be 

seen with increase in jet velocities. RPMs under 10000 show no significant improvement 

over baseline, however higher RPMs show a smooth steep recovery though eventually 

leading to separation in the later part of the transition region of the duct.  The total 
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pressure contours at the engine face (Figure 64) show an agreement with wall pressure 

data. The plots compared to baseline show an improvement with an increase in Cµ or jet 

momentum. The secondary flow vortices; move closer to the wall with increase in fan 

velocities representing a delay in flow separation and vortex liftoff locations. The 

vortices at higher amounts of flow control are denser but show lower diffusion hence 

giving higher total pressure elsewhere. These observations point at a later boundary layer 

migration eventually a delay in liftoff of secondary flow vortices. Though even at higher 

RPMs a significant distortion can be seen, a reduction of 32% in distortion and an 

improvement of 24% in Cploss is observed for Cµ of 0.024 as seen in Table1.  The weaker 

distortion from first bend shows an almost complete elimination over distortion from 

second bend which shows its dominant presence even for the lowest distortion case. The 

5 30 degree slots fail to show an improvement over their stream wise equivalent. This 

was unexpected and gave rise to speculations on the effects and implementation of 

angled plates to exploit vorticity signature. 
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Figure 61: 5 – 30° slot plate 
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Figure 62: Bottom surface pressures 5 slot, 30 degrees  
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Top Surface - 5 Slots, 30 Degree
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Figure 63: Top surface pressures 5 slot, 30 degrees 
 

 

Table 1:  Duct performance descriptors for 5 slots 30 degrees plates 
Fan Speed 

(RPM) 
Jet Velocity 

(m/s) 
Cm Mass 

Flow 
CPloss,avg  DC60 

0 0.0 0.0 0.0 % 51.39 ± 0.98 99.34 ± 4.09 
5000 13.5 0.0029 0.63 % 44.19 ± 1.32 85.12 ± 3.57 
7500 20.0 0.0063 0.94 % 40.87 ± 1.22 91.76 ± 3.78 
10000 26.5 0.011  1.24 % 35.34 ± 1.13 87.00 ± 3.47 
12500 33.0 0.017  1.54 % 28.80 ± 0.92 74.34 ± 3.36 
15000 39.5 0.024  1.85 % 27.40 ± 0.88 67.43 ± 3.09 
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Figure 64: Cploss for 5, 30 degree slots per plate case 
 

Cµ= 0.0029 Cµ= 0.0063 

Cµ= 0. 011 Cµ= 0. 017 

Cµ= 0. 024 
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Changing the orientation of slots for 5 slot plates proved to do be lesser effective 

than expected in controlling flow distortion at the engine face. These results called for 

further probing and reconsidering the  implementation of SJAs for the duct geometry. 

The 5 slot configuration could have had slots close enough for each other to have 

interfered with each others jet vorticity, an effect possibly detrimental for secondary 

flow cont rol as shown in CFD simulation showing two slots ejecting close to each other. 

A reduction in number of slots was contemplated which would possibly lead to higher 

momentum through each slot enabling an increased penetration with higher mixing. The 

interference with vortices from adjacent jets would be lower as well, this could be 

particularly important when targeting particular vorticity through the jets as required in 

countering secondary flow vorticity.  

Three slot configurations were thus tried in subsequent experimental studies, 

with a hope of higher localized momentum through lesser slots enabling higher turbulent 

mixing through jets. Though the bench top tests for these configurations did not show a 

significant increase in momentum over 5 slot equivalents, the effects of increased 

separation between slots motivated further studies on these configurations.  

The flow configurations tested included stream-wise blowing, blowing at 10 degrees and 

30 degrees to the streamlines.  Standard conditions were maintained for test as explained 

for earlier tests. These configurations were designed and installed separately for both 

bends. Comparisons are provided for total pressure at the engine face for all attempted 

Cµ's. 
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3 Stream Wise Slots         
 

The 3 Slot stream-wise plates (Figure 65) show little improvement over baseline 

results, they apparently weaken the effects of separation and secondary slow distortion, 

however, failing to show any substantial improvement. The results look better for higher 

fan RPMs but definitely not better than the 5 slot case. The wall static pressures shown 

in Figure 66 and 67 show a definite improvement with increase in jet momentum. The  

first bend separation captured by baseline bottom wall static pressures shows a gradual 

delay with increase in RPMs with an almost complete elimination at higher RPMs 

marked by a smooth and steep recovery. The ineffectiveness of the technique at the 

second bend is clearly depicted by closely coinciding recovery patterns for all RPMs. 

Though higher RPMs show a delay in separation, the slight improvements are mainly 

insignificant as opposed to the earlier configurations. The engine face total pressure 

(Figure 68) plots show little reduction in distortion. The effects of flow control cease to 

get any better at the Cµ 0.0081 depicted in Table 2. These results were somewhat 

expected as the stream wise slots did not introduce any net vorticity in the flow, on the 

contrary a reduction in number of slots had caused a decrease in net jet momentum at a 

specified RPM as can be seen in Table 2 when compared to Table 1. The main purpose 

of using 3 stream wise slot plates was to develop a basis of comparison for angled 3 slot 

plates so as to isolate the effects of vorticity induction.  
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Figure 65: 3 Stream-wise slot plate 
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Figure 66: Bottom surface pressures 3 slot,  stream-wise 
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Top Surface - 3 Slots, Streamwise
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Figure 67: Top surface pressures 3 slot, stream-wise 
 

 

Table 2: Duct performance descriptors for 3 slots streamwise plates 
Fan Speed 

(RPM) 
Jet Velocity 

(m/s) 
Cm Mass 

Flow 
CPloss,avg  DC60 

0 0.0 0.0 0.0 % 46.29 ± 1.38 90.26 ± 3.61 
5000 14.67 0.0020 0.41 % 45.46 ± 1.34 105.68 ± 4.43 
7500 21.80 0.0044 0.61 % 41.37 ± 1.24 110.30 ± 4.55 
10000 29.42 0.0081 0.82 % 36.93 ± 1.18 100.56 ± 4.02 
12500 36.25 0.0123 1.01 % 35.16 ± 1.13 97.79 ± 4.42 
15000 43.88 0.0180 1.23 % 37.03 ± 1.19 106.94 ± 4.9 
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Figure 68: Cploss for 3 streamline slots per plate case 

Cµ = 0.0020 Cµ = 0.0044 

Cµ = 0.0081 Cµ = 0.0123 

Cµ = 0.0180 
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3 10 Degree Slots 
 

For initial tests with angled slots, smaller angles of 10 degree to local free stream 

were used (Figure 69). As explained earlier the slots were oriented so as to introduce a 

net vorticity opposite to the local secondary flow vorticity. As observed for most of the 

earlier cases, the less severe first bend shows good recovery curves for even small 

amounts of synthetic jet momentum as shown in Figure 70. The top surface static 

pressure distributions (Figure 71) show a definite improvement over the stream-wise slot 

case, Figure 67. Though separation can be seen for all RPMs, a definite delay patter can 

be seen with increase in RPMs. Higher RPMs show a smooth initial recovery curves 

before eventually leading to separation under adverse recovery pressures giving random 

fluctuations in the recovery region. The total pressure face plots shown in Figure 72, 

show an improvement trend with increasing Cµ. The distortion shows a gradual 

diminishing accompanied by weakening vortices. The vortices also appear to move 

closer to the wall with higher Cµs signifying a weakening migration due to induced jet 

vorticity resulting in delayed vortex lift-off. Even though the results shows a gradual 

improvement with increasing jet momentum and slightly better results than 3 stream 

wise slot case which can be attributed to the jet vorticity, the results fall behind 5 slot 

cases by a significant margin with an improvement in Cploss of just 14% as seen in Table 

3.   
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Figure 69: 3-10° slot plate 
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Figure 70: Bottom surface pressures 3 slot, 10 degrees 
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Top Surface, 3 Slots, 10 Degrees
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Figure 71: Top surface pressures 3 slot, 10 degrees 
 

 

 
Table 3:  Duct performance descriptors for 3 slots 10 degrees plates 

Fan Speed 
(RPM) 

Jet Velocity 
(m/s) 

Cm Mass 
Flow CPloss,avg  DC60 

0 0.0 0.0 0.0 % 47.96 ± 0.91 93.46 ± 3.86 
5000 14.67 0.0020 0.41 % 44.94 ± 1.33 107.54 ± 4.50 
7500 21.80 0.0044 0.61 % 41.49 ± 1.24 109.02 ± 4.49 
10000 29.42 0.0081 0.82 % 38.42 ± 1.23 103.02 ± 4.15 
12500 36.25 0.0123 1.01 % 34.77 ± 1.17 97.58 ± 4.42 
15000 43.88 0.0180 1.23 % 34.15 ± 1.10 93.53 ± 4.29 
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Figure 72: Cploss for 3,10 degree slots per plate 
 
 

Cµ = 0.0180 
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3 30 Degree Slots 
 

A straight slot at 30 degree to the free stream gives a single strong vortex at the 

downstream side of the slot as seen from the CFD simulations, at higher angles though 

the vortices start to disintegrate accompanied by lower penetration in the free stream. 

The 30 degree 3 slot configurations shown in Figure 73 were the final attempt with 

normal blowing to be tried on the serpentine duct model. The wall static pressures 

showed no significant improvement over previous results. As seen in earlier results the 

wall static pressure at the first bend visible in Figure 74 shows almost coincident  

recovery curves for all fan RPMs with no signs of separation at any downstream 

location, clearly representative of the success of flow control in eliminating at the less 

severe first bend. The crucial second responsible for maximum total pressure losses at 

the engine face however shows strong resistance to flow control. As seen in Figure 75, 

smaller RPMs of 5000 and 7500 show almost no improvement over baseline results, 

higher RPMs show slight delay in separation but eventually lead to separation a small 

distance downstream to the second bend. The total pressure contours (Figure 76) show a 

certain improvement till the Cµ of 0.0081 at 10000 RPM over the earlier 3 slot 

configurations attributing the gains to countering vorticity signature; however the results 

clearly deteriorate at higher RPMs also supported by Table 4, a result definitely counter-

intuitive. Further investigations and theory would be required to support these results 

before this phenomenon can be effectively addressed. 
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Figure 73: 3-30° slot plate 
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Figure 74: Bottom surface pressures 3 slot, 30 degrees 
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Top Surface - 3 Slots, 30 Degrees
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Figure 75: Top surface pressures 3 slot, 30 degrees 
 

 
 

Table 4: Duct performance descriptors for 3 slots 30 degrees plates 
Fan Speed 

(RPM) 
Jet Velocity 

(m/s) 
Cm Mass 

Flow 
CPloss,avg  DC60 

0 0.0 0.0 0.0 % 45.58 ± 0.87 90.00 ± 3.72 
5000 14.67 0.0020 0.41 % 42.92 ± 1.28 101.00 ± 4.24 
7500 21.80 0.0044 0.61 % 36.71 ± 1.10 94.27 ± 3.89 
10000 29.42 0.0081 0.82 % 32.87 ± 1.05 90.31 ± 3.61 
12500 36.25 0.0123 1.01 % 37.16 ± 1.19 113.77 ± 5.13 
15000 43.88 0.0180 1.23 % 35.03 ± 1.13 110.35 ± 5.06 
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Figure 76: Cploss for 3, 30 degree slots per plate case 
 

Cµ = 0.0020 Cµ = 0.0044 

Cµ = 0.0081 Cµ = 0.0123 

Cµ = 0.0180 
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Tangential Blowing 
 

The final effort towards flow control in support of this thesis was the use of 

tangential blowing. Tangential blowing as opposed to normal blowing directly energizes 

the boundary layer proving to be most effective for separation control. The plates for this 

configuration had 4 slots with a length of 25.4 mm and a depth of 1.5 mm so as to have 

the same mass flux as for the 5 slot plates. Tangential blowing required careful internal 

profiling as shown in Figure 77 to correctly vector the flow at approximately 10 degrees 

to the wall. Tangential blowing was only attempted for 2nd bend while as distortion from 

1st bend could be suppressed by almost any of the tried flow control configuration. 5 

Stream wise slots configuration, which had proved most effective among the normal 

blowing case was used for the 1st bend. Tangential blowing proved to very effective in 

controlling separation at second bend as shown in Figure 79. At higher RPMs the 

distributions show a smooth and sharp recovery with delayed separation. 15000 RPM 

shows an extremely delayed and weakened separation evident from an almost smooth 

curve. The face plots show a significant weakening of vortices and diminishing 

distortion with increasing Cµ.  At 15000 RPM or Cµ of 0.01942 the Cploss shows a 

reduction of 37% from baseline and a DC60 as low as 22% shown in Table 5. Tangential 

blowing beyond doubt proved to be the most effective configuration among the ones 

tested in this particular thesis.  
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Figure 77:  Cross section of tangential blowing plates 
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Figure 78: Bottom surface pressures, tangential slots 
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Top Surface - Tangential Blowing
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Figure 79: Top surface pressures, tangential slots 
 

 

Table 5: Duct performance descriptors for tangential blowing 
Fan Speed 

(RPM) 
Jet Velocity 

(m/s) 
Cm Mass 

Flow 
CPloss,avg  DC60 

0 0.0 0.0000 0.0 % 58.21±1.11 157.27±6.47 
5000 12.5 0.00247 0.59 % 54.73±1.63 138.50±5.808 
7500 19.0 0.00572 0.90 % 39.21±1.17 89.03±3.66 
10000 25.0 0.00990 1.18 % 29.31±0.94 63.51±2.53 
12500 30.0 0.01426 1.42 % 23.87±0.76 40.35±1.823 
15000 35.0 0.01942 1.66 % 21.21±0.68 22.90±1.049 
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Figure 80: Cploss for tangential blowing 
 

Cµ = 0.00247 Cµ = 0.00572 

Cµ = 0.00990 Cµ = 0.01426 

Cµ = 0.01942 
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CONCLUSIONS AND RECOMMENDATIONS 
 

The final section of this thesis would summarize the results discussed earlier. 

Conclusions relevant to the motive of the research would be derived from both 

experimental and computational studies. Recommendations would be provided based on 

the conclusions to lead future research on this problem. 

Conclusions  

Diffusing ducts are integral part of a modern aircraft. These ducts can be 

modified in shape to get additional advantages including reduction in aircraft size, 

weight and thermal & radar signature. The serpentine duct analyzed in this problem is 

designated for use with advanced UCAVs and would greatly reduce the thermal 

signature of these aircrafts sent out from the engine intake also blocking compressor 

from incoming radar signal.  

         The baseline flow which was simulated using experimental and computational 

models as part of this study showed heavy losses characterized by highly distorted flow 

at the engine face. These losses were mainly due to development of secondary flows 

produced at the bends of the S duct dominated by presence of counter rotating vortices.  

The distorted flow was found to be extremely detrimental for compressor and can greatly 

decrease the stability limit of the engine, making a stall more likely. The main objective 

of the study was to develop a good understanding of the underlying flow physics 

governing the development and propagation of secondary flows followed by 
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implementation of active flow control methods which decrease distortion to an 

acceptable value if not completely eliminate it. Zero net mass flux modular fluidic 

actuators integrating blowing and suction were installed at the bends. Though earlier 

studies with blowing alone showed partial success in pressure recovery at engine the 

essence of secondary control was in introducing vorticity through synthetic jets capable 

of countering secondary flow vorticity. It was found, changing the orientation of a 

straight jet slot with respect to the local free stream could introduce a net vorticity in the 

desired sense. Initial studies were carried out on CFD which showed the first bend of the 

S duct less severe compared to the second bend hence use of 1% suction and blowing 

through stream wise slots showed a complete elimination of flow separation and a 

greatly reduced or negligible distortion at the engine face. Also the secondary flows due 

to first bend traveled a longer length downstream before reaching the engine hence had 

greatly reduced influence at the engine due to diffusion and presence of highly dominant 

secondary flow structures due to the more recently encountered second bend. The 

secondary flows due to boundary layer migration at the steeper and more geometrically 

complex second bend showed much resistance towards standard flow control methods 

applied at the first bend. Though there were definite improvements over the baseline 

results at high blowing and suction rates of 1.8% of the total mass flux entering the duct 

with a Cploss reduction of 23% and a distortion coefficient reduction of 32%. There was a 

definite need to better the results to meet acceptable standards. The results were equally 

supported by both CFD and experimental simulations. As an initial attempt to induce 

vorticity through synthetic jets, configurations with 5 slots at 30 degree to the local free 
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stream for each plate were installed on the blowing plenum. As seen in earlier tests, an 

improving trend with increase in actuator mass flux was seen, however the results failed 

to do any better than stream wise slots. The failure though not explored in depth was 

attributed to the interference of adjacent jet vorticity as seen in CFD simulations. The 

next step was to use plates with lesser slots (3 slots), in hope of higher localized jet 

momentum and lesser interference from neighboring jets. Though the bench top testing 

of these configurations showed a marginal increase in momentum per slot over the 5 slot 

per plate configurations, they were employed mainly in the hope of reaping benefits 

from the principle of vorticity signature. 3 slot stream wise configurations  showed slight 

improvements over baseline results but definitely could not match up to 5 slot stream-

wise slots. The 10 degree slots however showed little improvements over the stream-

wise case, assigning some definite credibility to the vorticity negation through slot 

orientation.  Further to the use of angled slots, 30 degree 3 slot configurations were 

attempted. These plates showed an obvious improvement over earlier 3 slot 

configurations upto fan RPM of 10000, however beyond 10,000 the effects of flow 

control deteriorated causing strong secondary vortices with with reduced pressure 

recovery to reappear. This was similar to the results of CFD showing the failure of 

angled slots to reduce secondary flows any more than stream wise slots. This unexpected 

failure of angled slots at high Cµs forced radical changes in blowing configurations. As a 

final attempt to reduce distortion tangential blowing plates were employed. Tangential 

blowing proved to be more effective than expected. Though clearly more effective in 

reenergizing boundary layer than normal blowing, they were somehow able to even 
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reduce distortion to values way below the best normal blowing case. For a maximum jet 

momentum coefficient of 0.01942, the Cploss pressure loss descriptor decreased by 37% 

and the description descriptor was brought down to 22.9% which is close to the 

acceptable industry standard of 20%.  As a final comparison of performance, the Cploss 

and DC60 variation for the various configurations discussed in this thesis are provided in 

figure 81 & 82. 

Performace Distribution (Cploss) at Engine Face

10

15

20

25

30

35

40

45

50

55

0 2000 4000 6000 8000 10000 12000 14000 16000

Fan RPM

C
p

lo
ss

 (A
vg

) 5 Slot Plate, Streamwise
5 Slot Plate, 30 Deg

3 Slot Plate, Streamwise
3 Slot Plate, 10 Deg

3 Slot Plate, 30 Deg
4 Slot Plate, Tangential

 
Figure 81: Cploss,avg  comparison for different configurations 
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Perfomance Distribution (DC 60) at Engine Face
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Figure 82: DC60 comparison for different configurations 

 

Recommendations  

Various observations and occurring over the length of the project have opened 

areas for further exploration and betterment pertaining to this duct problem and flow 

control in general. Of the areas with immediate interests, synthetic jet slot orientation 

definitely requires further investigations. The interaction of slanted jets normal to the 

surface require better understanding which can have definite improvements in flow 

control implementations.  One of the major short coming of this research could have 

been the placement of the SJA assembly, boundary layer migration as indicated by 

earlier studies is irreversible once initiated and its prevention relates a lot to the 
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positioning of the suction and blowing plenums. The positioning of the current actuator 

may be reconsidered and accordingly altered to optimize the effect of flow control.   

 Earlier attempts at Texas A&M University had attempted the use of pulsed 

blowing in the hope of matching natural frequencies of separation and increase the 

effectiveness of blowing. This however proved to be highly ineffective due to a loss in 

average jet momentum. Blowing pulsation can be reattempted with use of compressed 

air which is able to conserve the average jet momentum hence giving higher peak 

velocities at the times of jet ejections.  

           Of the various problems encountered during experimental testing, the 

susceptibility of the actuator setup to physical failure was one of the major hindrances. 

The ABS plastic though reasonably strong, showed poor resistance to heat and 

vibrations. Higher RPMs always posed threat to the actuator setup and hence there was 

always a need for a better cooling system and dampers for motors.  

 Further to recommendations, the essence of using active control over passive 

control lies in the ability to control the amount and characteristics of the synthetic jets 

with flow conditions. Though this study featured only open loop control, closed loop 

systems would be a practical solution for industrial applications. This would require real 

time monitoring of the flow within the duct through worthy sensing device able to 

resolve the deciding parameters such as the separation and liftoff locations, span of 

separation and vortex strengths.  

 Recommendations for CFD include use of better grid development methods and 

use of wall Yplus estimates, further control over turbulence models through a more 
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suitable specification of model constants. Also the boundary conditions can be better 

understood and specified for a more accurate problem definition.  
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