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ABSTRACT

Input-Output Approximation for

Nonlinear Structural Dynamics. (August 2007)

Stefanie Rene’ Beaver, B.S., Texas A&M University

Chair of Advisory Committee: Dr. John E. Hurtado

Input-output approximation of spacecraft motion is convenient and necessary in many

situations. For a rigid-body spacecraft, this process is simple because the system is

governed by a set of equations that is linear in the system parameters. However, the

combination of a flexible appendage and a rigid hub adds complexity by increasing

the degrees of freedom and by introducing nonlinear coupling between the hub and

appendage.

Assumed Modes is one technique for modeling flexible body motion. Traditional

Assumed Modes uses a set of linear assumed modes, but when dealing with rotating

flexible systems, a modification of this method allows for the use of quadratic assumed

modes. The quadratic assumed model provides an increased level of sophistication,

but the derivation still neglects a set of higher-order terms. This work develops the

nonlinear equations of motion that arise from retaining these nonlinear, higher-order

terms. Simulation results reveal that the inclusion of these terms noticeably changes

the motion of the system.

Once the equations of motion have been developed, focus turns to the input-

output mapping of a system that is simulated using this set of equations. Approxi-

mating linear systems is straightforward, and many methods exist that can success-

fully perform this function. On the other hand, few approximation methods exist

for nonlinear systems. Researchers at Texas A&M University recently developed one
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such method that obtains a linear estimation and then uses an adaptive polynomial

estimation method to compensate for the disparity between that estimate and the

true measurements. This research includes an in-depth investigation of this nonlinear

approximation technique.

Finally, these two major research thrusts are combined, and input-output approx-

imation is performed on the nonlinear rotational spacecraft model developed herein.

The results of this simulation show that the nonlinear method holds a significant

advantage over a traditional linear method in certain situations. Specifically, the

nonlinear algorithm provides superior approximation for systems with nonzero natu-

ral frequencies. For the algorithm to be successful when rigid-body modes are present,

the system motion must be persistently exciting. This research is an important first

step toward developing a nonlinear parameter identification algorithm.
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To Paige

test your limits, and keep going . . .
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CHAPTER I

INTRODUCTION

A number of operational satellites have flexible body appendages such as solar pan-

els. Approximating the motion of these spacecraft is essential for path planning and

determining control inputs. The Assumed Modes method is one method for modeling

flexible body motion. Coupling this method with the rigid body motion for a single-

axis rotation produces a set of linear equations that are valid for small deflections [1].

However, for large slewing maneuvers, these equations are no longer accurate. The

Assumed Modes method with quadratic assumed modes is one solution that provides

a more realistic representation of the system motion for these large maneuvers [2][3].

Quadratic assumed modes produce a set of linear equations only after nonlinear terms

have been neglected. One focus of this research is to develop the equations of motion

using the quadratic assumed modes but to retain the higher-order terms that will

lead to a set of nonlinear equations.

The other main research focus is encompassed by system identification, also

known as parameter identification. System identification is a topic that receives, and

will continue to receive, significant attention in structural dynamics research. The

goal of parameter identification is to use input-output data to identify an accurate

model of the system so that the model can be used to predict future system be-

havior. This problem is straightforward for linear systems, and numerous solution

methods exist for the linear class of problems. The Eigen Realization Algorithm and

Observer/Kalman Filter Identification are two examples of methods that have been

thoroughly investigated [4]. Regretfully, these algorithms are only valid for linear

This thesis follows the style of IEEE Transactions on Automatic Control.
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systems which are very rarely present in practice.

True systems are most often governed by a set of nonlinear equations. The de-

gree or severity of the nonlinearity varies from one system to the next, and for mildly

nonlinear systems, linear parameter identification is often sufficient. Many nonlin-

ear systems that only undergo small deflections can be easily approximated by a set

of linear equations, but when these systems undergo moderate to large deflections,

the estimate can be severely degraded. Finding a parameter identification method for

nonlinear systems is one primary motivation for this work. Neural networks have been

proposed as one possible identification method [5], and although they are typically

very accurate after the learning process, little insight can be gained from the resulting

model. The Global-Local Orthogonal Mapping algorithm (GLO-MAP) that was de-

veloped at Texas A&M University has been proposed as a neural network alternative

that gives the user more insight into the approximation [6]. Recently at Texas A&M,

GLO-MAP was integrated into a robust nonlinear parameter identification algorithm

[7]. A thorough investigation and several applications of this algorithm will be the

focus of the second half of this thesis. Although parameter identification has not

been achieved in this work, nonlinear input-output approximation is an important

first step in the nonlinear system identification process.

This research sits at the intersection of dynamics and estimation. Both of these

research areas are sophisticated, and when combined, the true beauty of each can

be better appreciated. In this work, a complex, nonlinear technique input-output

approximation technique is investigated for use on the class of rotating flexible space-

craft. An overview of the traditional Assumed Modes method is given in Chapter II.

Then, Chapter III will use variations of the Assumed Modes method to derive the

equations of motion for rotating flexible systems as well as provide simulation results

from these equations. At that point, the discussion will transition to input-output
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mapping. The Eigen Realization Algorithm presented in Chapter IV is the chosen

linear input-output approximation method, and Chapter V contains an extensive dis-

cussion of the nonlinear input-output approximation method recently developed at

Texas A&M. Finally, these two research thrusts are combined when the nonlinear

mapping is applied to a rotating spacecraft with a flexible appendage in Chapter VI.

Recommendations are the focus of Chapter VII, and conclusions are given in Chapter

VIII. To aid the reader, a nomenclature section has been included in Appendix A

which begins on pg. 104.



4

CHAPTER II

LINEAR STRUCTURAL DYNAMICS OVERVIEW

The equations of motion for flexible, continuous systems are partial differential equa-

tions (PDEs) over space and time. Analytical solutions to these equations are fre-

quently difficult to find or simply cannot be found using current PDE solution meth-

ods. Fortunately, many approximate solution methods exist. The Finite Element

Method (FEM) and the Assumed Modes method are two such approximate solution

methods. FEM produces reliable results for systems with arbitrary geometry, but

this reliability comes at the expense of high dimensionality [1]. On the other hand,

the Assumed Modes method has a manageable number of degrees-of-freedom but

is only useful for systems with relatively simple geometry [1]. This work will focus

on the Assumed Modes method because of its simplicity and limited computational

requirements.

In the Assumed Modes method, the transverse deflection of a deformable body,

y, is assumed to be a function of time and space, and these functions are assumed

to be independent of one another. This leads to an approximation by a finite set

of space-dependent functions, or assumed modes, linearly combined with a set of

time-dependent functions, or modal amplitudes.

y(x, t) =
n∑

j=1

φj(x)qj(t) (2.1)

Here, n is the number of modes included in the approximation, x is the distance

along the longitudinal axis, φj is the jth assumed mode, and qj is the jth generalized

coordinate.

For computational purposes, this infinite sum is typically truncated to the sum of

less than ten modes and amplitudes. Spatial functions, or assumed modes, are usually
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chosen to be a linearly independent set of functions that satisfy various constraints,

and the temporal functions, or generalized coordinates, satisfy a set of differential

equations derived from the equations of motion for the system.

The simplest and most common set of spatial functions only satisfies the geomet-

ric boundary conditions. These functions are called admissible functions. Admissible

functions are simple to compute, differentiate, and integrate, all of which will be

required to obtain an approximate solution.

A subset of the admissible functions is the slightly more complicated set of com-

parison functions. The comparison functions satisfy the natural boundary conditions

in addition to satisfying the geometric boundary conditions. As one would expect,

the increased accuracy requires a more complicated set of assumed modes.

Occasionally, an even higher level of accuracy may be required. For these cases,

eigenfunctions are chosen as the assumed modes. Eigenfunctions are a subset of

comparison functions. These functions satisfy the geometric and natural boundary

conditions as well as the partial differential equations that govern the system. This

produces the highest level of accuracy in the assumed modes method. Therefore,

for some simple geometries, the eigenfunctions actually form the exact solution to

the differential model. All in all, each set of assumed modes has its advantages and

disadvantages.

A. Cantilevered Beam Example

The assumed modes method will now be applied to a simple problem. The chosen

system is a beam of length L with x as the longitudinal coordinate and y as the

transverse displacement. The beam is fixed at the left end, or x = 0, and free at the

right end, or x = L. Figure 1 on the following page is an illustration of this system.
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Fig. 1. Simple Cantilevered Beam

For this simple system, the geometric boundary conditions require that the dis-

placement and the slope of the beam at the fixed end are both zero. In addition, the

shear stress and moment at the free end are constrained to be zero; these constraints

are called the natural boundary conditions.

One derivation of the equations of motion begins by forming the kinetic and

potential energies of the system, which are well-known and given by the following

two equations.

T =
1

2

∫ L

0

ρẏ2 dx (2.2)

V =
1

2

∫ L

0

EIy′′2 dx (2.3)

In these equations and those to follow, the dot notation represents differentiation with

respect to time, and the prime notation represents differentiation with respect to the

longitudinal coordinate.

The assumed modes method presumes that the transverse deflection can be ap-

proximated by a linear combination of time- and space-dependent variables as seen
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in Equation 2.1 which has been rewritten below.

y(x, t) =
n∑

j=1

φj(x)qj(t)

This equation can be easily substituted into the kinetic and potential energy equations

to produce the following results.

T =
1

2

∫ L

0

ρ

(
n∑

j=1

φj(x)q̇j(t)

)2

dx (2.4)

V =
1

2

∫ L

0

ρ

(
n∑

j=1

φ′′j (x)qj(t)

)2

dx (2.5)

From these equations, the differential equations of motion for the generalized coor-

dinates of the beam can be obtained using Lagrange’s equations. If there are no

externally applied forces, the equations are simply

Mq̈ +Kq = 0 (2.6)

where the matrices M and K are constant, positive-definite matrices that are func-

tions of the beam parameters and the chosen class of assumed modes. These matrices

are defined as in the following equations.

Mij ≡
∫ L

0

ρφi(x)φj(x) dx (2.7)

Kij ≡
∫ L

0

EIφ′′i (x)φ
′′
j dx (2.8)

for i = 1, 2, . . . , n and j = 1, 2, . . . , n

The chosen set of assumed modes will dictate the numerical values for these ma-

trices and therefore will impact the resulting generalized coordinate time histories.

Regardless of the choice of assumed modes, Equation 2.6 will remain a linear matrix

equation.
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When a solution to the equation of motion for the generalized coordinates is

combined with the modal amplitudes, it forms a mathematical model for the motion

of a flexible beam. Looking at Equation 2.6 on the preceding page more closely reveals

that there is no damping in this system. The lack of damping is a consequence of the

model and is rarely valid in reality. Indeed, even simple electrical cables and sensors

that are attached to a beam for measurement purposes add damping. To make this

model more realistic, the equation will be modified to include viscous damping.

B. Rayleigh Damping

The exact damping present in structural systems is generally unknown. As a re-

sult, the damping is typically approximated as viscous damping [8], which can be

implemented by using the following generic equation of motion.

Mq̈ + Cq̇ +Kq = 0 (2.9)

It is easy to see the similarity between this equation and Equation 2.6 on the page

before. There are several ways to generate the damping matrix C, but this research

will focus on Rayleigh Damping which is sometimes called proportional damping [8].

The theory behind Rayleigh damping is simple: let the damping be proportional

to the mass and stiffness of the system. This is convenient in terms of modeling, but

data suggest that this approximation has some experimental validity. The approxi-

mation will take the following form

C = αM + βK (2.10)

where α and β are constants that determine the level of viscous damping [1] [8]. To

simplify the process of choosing these constants, the equation of motion is diagonalized
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and therefore uncoupled.

Uncoupling a system of equations of the form given in Equation 2.6 on page 7

can be accomplished through a simple transformation by the eigenvectors. The eigen-

vectors come from solving the following equation

KΘ = MΘΛ (2.11)

where Λ = diag(λj) is the eigenvalue matrix, and Θ = [θ1,θ2, . . . ,θn] is the eigen-

vector matrix or modal matrix. It can easily be shown that this modal matrix is

orthogonal with respect to the mass and stiffness matrices [8], so Θ can be used to

diagonalize. If the modal matrix is scaled such that Θ is orthonormal to the mass

matrix, then the diagonalization takes the following form

ΘTMΘ = [1] (2.12)

ΘTKΘ = diag(ω2
1, ω

2
2, . . . , ω

2
n) (2.13)

where ωj is the jth natural frequency of the system. Proportional damping guarantees

that the modal matrix is orthogonal to the damping matrix as well, so the diagonal

form of the viscous damping can be assumed to be the following

ΘTCΘ = diag(2ζ1ω1, 2ζ2ω2, . . . , 2ζnωn) (2.14)

where ζj is the jth damping coefficient. This diagonalization will lead to a system of

uncoupled equations where the rth equation has the form shown below.

η̈r + 2ζrωrη̇r + ω2
rηr = 0 (2.15)

Values for ζr between zero and one correspond to an underdamped mode, a value

equal to one corresponds to a critically damped mode, and values greater than one
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correspond to an overdamped mode.

Recalling the equation for the proportional damping coefficient, Equation 2.10 on

page 8, the following relationship can be realized.

2ζrωr = Cr = α(1) + βω2
r (2.16)

This equation can be solved for the rth damping coefficient.

ζr =
α

ωr

+
βωr

2
(2.17)

From this equation, it is clear that choosing two damping coefficients will provide

unique values for α and β. Further examination of this equation reveals that at high

frequencies, the damping is dominated by β, and at low frequencies, the damping is

dominated by α. If the designer wishes to choose all of the damping coefficients as

opposed to only choosing two, modal damping maybe be used in place of Rayleigh

damping [8].

Including proportional damping in the system equation of motion yields the

following equation.

Mq̈ + Cq̇ +Kq = 0 (2.18)

C. Implementation

As previously stated, there are three main choices for assumed modes. These choices

along with candidate functions are listed here:

• Admissible functions: satisfy only the geometric boundary conditions.

φj(x) =
(x
L

)j+1

(2.19)

• Comparison functions: a subset of admissible functions that also satisfy the
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natural boundary conditions.

φj(x) = 1− cos

(
jπx

L

)
+

1

2

(
jπx

L

)2

(−1)j+1 (2.20)

• Eigenfunctions: a subset of comparison functions that satisfy the partial differ-

ential equation of the system. For a detailed derivation and explanation of the

eigenfunction solution, the reader is referred to Junkins and Kim, pg. 175-184

[1].

After choosing a set of assumed modes, the mass and stiffness matrices are calculated

according to Equations 2.7 to 2.8 on page 7, respectively. The differential equation of

motion for the generalized coordinates, Mq̈ + Cq̇ +Kq = 0, is then solved using an

numerical solver. For the simulation in this section, three assumed modes were used.

To obtain the estimated deflection, linearly combine the generalized coordinates with

the assumed modes calculated at the desired measurement points along the span.

Table I. Beam Parameters

Length 45.52 in

Modulus of Elasticity 161.6e6 oz/in2

Second Moment of Inertia of Bending Section 0.000813 in4

Density 0.003007 oz s2/in

The beam deflection plots result from applying the assumed modes method to a

beam with the characteristics given in Table I. There are three measurement points:

at the quarter-span, the midspan, and the tip. For simulation purposes, the initial

conditions for these measurement points were defined as two, four, and eight inches

respectively. This corresponds to initial deflections of approximately twenty percent

of the distance from the wall to the measurement location. Figures 2 and 3 on page
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Fig. 2. Midspan Deflection without Damping

Fig. 3. Tip Deflection without Damping
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12 show the simulation results for the midspan and tip deflections simulated without

proportional damping.

From these figures, it is easy to see that the difference in deflection between the

two simulation models is on the order of ten percent. The second figure also shows

that the error between the Admissible and Comparison solutions at the tip appears

to oscillate. This corresponds to the differences in natural frequencies for the two

systems. The differences become more apparent as the number of modes increases.

Table II is a comparison between the natural frequencies of the two simulation models.

Table II. Comparison of Natural Frequencies (Hz)

Admissible Comparison

ω1 1.785 1.786

ω2 11.29 11.28

ω3 59.98 31.79

Fig. 4. Midspan Deflection of Beam with Proportional Damping
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The same system simulations were run with proportional damping. For Figures

4 and 5 on pages 13-14, the proportional damping constants were α = 0.25 and

β = 0.0025. Comparing the figures with proportional damping to those without

damping reveals that the error between the two types of assumed modes is significantly

less for the simulation with damping. With damping, the error in the tip deflection

is on the order of ten percent whereas the error calculated without damping is closer

to twenty percent.

Fig. 5. Tip Deflection of Beam with Proportional Damping

It appears that as long as damping is included in the system then the Assumed

Modes method calculated using admissible versus comparison functions yields similar

results. This coupled with the simplicity of the admissible functions led the author

to prefer admissible functions for the simulations included in this work.
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CHAPTER III

STRUCTURAL DYNAMICS OF ROTATING SYSTEMS

As seen in the previous chapter, the assumed modes method produces linear systems

for some simple flexible body configurations. For rotating systems, the assumed

modes method yields results that are slightly more complex. One such example

is spacecraft, flexible appendage combination performing a single-axis rotation. A

derivation of the equations of motion for this system is straightforward and follows

the pattern for the simple cantilevered beam in the previous chapter.

The system is defined to be a spacecraft with cylindrical cross-section and a

flexible appendage modeled as a cantilevered beam. It is also assumed that the

Fig. 6. Rotating Spacecraft with Flexible Appendage

longitudinal and transverse axes of each beam lie in a plane and there is no motion

out of this plane. These assumptions are not necessary, but they simplify the problem

without interfering with the analysis. Figure 6 is a diagram of this system.
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A. Linear Assumed Modes Model

As before, the derivation begins by writing the kinetic and potential energies. How-

ever, the kinetic energy now has two parts: one for the hub and one for the flexible

appendage.

T = Thub + Tflex (3.1)

=
1

2
Jhubθ̇

2 +
1

2

∫ L

0

ρ ṗ · ṗ dx (3.2)

The potential energy remains unchanged.

V =
1

2

∫ L

0

EIy′′ dx (3.3)

Variables p, x, y, L, and θ̇ are defined as in Figure 6 on the page before, Jhub is the

inertia of the spacecraft hub, and variables ρ and EI are parameters that depend on

the size and material of the beam.

Before proceeding, it is necessary to investigate the kinematics for a generic

point on the beam, denoted by p in the previous figure. The radius to a differential

mass element can be defined from the center of mass of the system in a body-fixed

coordinate frame.

p = (R + x) b̂1 + y b̂2 (3.4)

If the spacecraft is spinning, the first derivative of the position can be easily calculated.

ṗ = (−y θ̇) b̂1 + (ẏ + (R + x) θ̇) b̂2 (3.5)

This expression can now be substituted, and after simplification, the kinetic energy

is the following:

T =
1

2
Ĵ θ̇2 +

∫ L

0

ρ
(
y2θ̇2 + ẏ2 + 2ẏθ̇(R + x)

)
dx (3.6)



17

where Ĵ ≡ Jhub +
∫ L

0
ρ (R + x)2 dx = Jhub + ρ(R2L+RL2 + 1/3L3).

At this point, the transverse displacement can be replaced by its assumed modes

approximation which was introduced in the previous chapter and is rewritten below.

y(x, t) =
n∑

j=1

φj(x)qj(t) (3.7)

Substituting this expression into the kinetic energy equation yields the following equa-

tion.

T =
1

2
Ĵ θ̇2 +

1

2

∫ L

0

ρ

[(
φjqj θ̇

)2

+ (φj q̇j)
2 + 2θ̇(R + x)φj q̇j

]
dx (3.8)

For simplicity, the summation symbols have been dropped, and index notation will

be employed in its place. From this point forward, it will also be implied that q is a

function of time and φ is a function of the longitudinal coordinate.

The qj terms are not functions of x, so these can be moved outside the integral.

This will allow for simplification by defining two constant matrices that are functions

of the assumed modes.

Mij ≡
∫ L

0

ρ φiφj dx (3.9)

Nj ≡
∫ L

0

ρ (R + x) φj dx (3.10)

Here, M is the mass matrix, and N contains the coupling between the rotational

and deformational motion. The kinetic energy equation can now be written in the

following simplified form.

T =
1

2
Ĵ θ̇2 +Nj θ̇q̇j +

1

2
Mij q̇iq̇j +

1

2
Mijqiqj θ̇

2 (3.11)

This is the final form of the kinetic energy equation.

Now, the focus returns to the potential energy from Equation 3.3 on the preceding

page. This equation can also be simplified by defining a constant matrix called the
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stiffness matrix.

Kij ≡
∫ L

0

EIφ′′i φ
′′
jdx (3.12)

Using this definition, the potential energy can be rewritten as

V =
1

2
Kijqiqj (3.13)

where the summation symbols have again been dropped in favor of index notation.

This equation is the final form of the potential energy equation.

The kinetic and potential energies can now be combined to form the Lagrangian.

After taking the necessary derivatives, one can obtain the equations of motion for

this system, written below in matrix form Mq̈ +Nθ̈ +
(
K −Mθ̇2

)
q = 0(

Ĵ + qTMq
)
θ̈ +NT q̈ + 2qTMq̇θ̇ = v

(3.14)

where v is the control torque applied to the spacecraft. Because this development mir-

rors that of the flexible beam in the previous chapter, it is not surprising that there

is no damping in this system either, and as stated in that chapter, the equations

of motion without damping do not provide a realistic model of the system. There-

fore, damping will be added to both the flexible and rotational equations. Applying

Rayleigh damping in the flexible body equation and adding proportional damping in

the rotational equation yields the following set of equations that will be implemented

for the Linear Assumed Model in this work. Mq̈ +Nθ̈ + Cq̇ +
(
K −Mθ̇2

)
q = 0(

Ĵ + qTMq
)
θ̈ +NT q̈ + Cθθ̇ + 2qTMq̇θ̇ = v

(3.15)

Figure 7 on page 20 depicts the motion of this system in response to an initial deflec-

tion of two, four, and eight inches at the quarter-span, midspan, and tip as well as an
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initial rotation rate of 0.3 rad/s. The beam parameters for the spacecraft simulations

are the same as for the flexible beam simulations in the previous chapter. These

parameters along with the hub dimensions can be seen in Table III and will be used

throughout this work.

Table III. Rotational Spacecraft Parameters

Beam Length 45.52 in

Beam Modulus of Elasticity 161.6e6 oz/in2

Second Moment of Inertia of Bending Section 0.000813 in4

Beam Density 0.003007 oz s2/in

Hub Radius 5.5470 in

Hub Mass 31.59 oz

Rayleigh Damping Coefficient, α 0.25

Rayleigh Damping Coefficient, β 0.0025

There are several items of interest in this set of equations. First, analyze the case

of zero rotational acceleration. For this case, the the angular velocity is a constant,

and the equations of motion for the system are just the equations for the generalized

coordinates. Also note that the first set of equations by themselves represent a linear

system for this case.

The addition of a control torque requires the addition of the rotational equation

which is linear by itself but nonlinear when coupled with the generalized coordinates.

These equations together govern the overall motion of the system.

The fourth term in the first equation also shows that as the rotation rate in-

creases, the beam appears to soften. This is actually counterintuitive because one

would expect the beam to stiffen as the spacecraft spins faster. There are several
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Fig. 7. Spacecraft Motion, Linear Modes

solutions to this apparent error, and this study will focus on the quadratic assumed

model to solve this problem [2].

B. Quadratic Assumed Modes Model

The previous section highlighted a derivation of the equations of motion for a rotating

spacecraft with a flexible appendage. The resulting equations showed that as the

spacecraft spins faster, the flexible structure will soften. However, intuition leads one

to believe that there should be a stiffening instead.

Quadratic assumed modes were created as a solution to this problem [2][3]. The

quadratic assumed mode allow for larger transverse deflections as well as for motion

along the longitudinal axis. A derivation of the equations of motion for this method

is outlined below.

This method begins by assuming that there is generic deformable body attached

at a point to a cylindrical rigid hub as seen in Figure 8 on the next page. The b̂ frame

is a body-fixed frame. A vector from the center of the hub to a generic mass element
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Fig. 8. Rotating Spacecraft with Deformable Body

can be defined by

p = (R + x) b̂1 + δ (3.16)

where R is the radius of the hub, x is the distance from the point of attachment to

the original location of the mass element along the b̂1 axis, and δ is the vector from

the end of the length x to the generic mass element. The vector δ can be split into

components in the b̂ frame.

δ(x, t) = u b̂1 + y b̂2 (3.17)

This equation can then be substituted into the previous one to produce the following

equation.

p = (R + x+ u) b̂1 + y b̂2 (3.18)

At this point, it is necessary to impose the constraint that each segment is inex-

tensible, which means that a differential section retains its length. From Figure 9 on

the following page, the corresponding constraint equation is,

‖P2 − P1‖ = ‖P ′2 − P ′1‖ (3.19)
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Fig. 9. Inextensible Section

and each side can be handled independently.

‖P2 − P1‖ = (x+ dx− x)2 + (0− 0)2 (3.20)

‖P ′2 − P ′1‖ = (dx+
du

dx
dx)2 + (

dy

dx
dx)2 (3.21)

Equating both sides produces the following result after dividing by dx2.

1 = 1 + 2
du

dx
+

(
du

dx

)2

︸ ︷︷ ︸
assume≈0

+

(
dy

dx

)2

(3.22)

It is important to notice that the third term on the right side of the previous equation

has been assumed to be approximately equal to zero. This is the only assumption

that has been made thus far.

Integrating this equation with respect to x produces an equation for the longi-

tudinal displacement.

u(x, t) = −1

2

∫ x

0

(
dy

dx

)2

dx (3.23)

The assumed modes simplification can then be substituted into Equation 3.23 to
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obtain the following equation.

u(x, t) =
n∑

i=1

n∑
j=1

qiqj

∫ x

0

−1

2
φ′iφ

′
j (3.24)

This leads to the definition of the quadratic assumed modes [2] which is given by

Equation 3.25.

ψij(x) = −1

2

∫ x

0

φ′iφ
′
jdx (3.25)

Now, the longitudinal displacement can be written as seen below.

u(x, t) =
n∑

i=1

n∑
j=1

ψijqiqj (3.26)

Finally, an equation for the motion along both the axial and transverse directions is

formed.

δ(x, t) =
n∑

i=1

n∑
j=1

ψijqiq b̂1 +
n∑

i=1

qiφi b̂2 (3.27)

This is the final form of the equation for displacement of a generic mass element.

With this modified definition of the distance to a differential mass element,

the derivation of the flexible spacecraft equations of motion can continue with the

quadratic assumed modes. In this derivation as in the one prior, the summation no-

tation has been dropped in favor of index notation. From above, one can substitute

the expression for δ into Equation 3.18 on page 21 and take the time derivative to

obtain an expression for the velocity of an arbitrary point on the beam.

ṗ =
(
2ψij q̇iqj − φiqiθ̇

)
b̂1 +

(
(R + x+ ψijqiqj)θ̇ + φiq̇i

)
b̂2 (3.28)
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This leads to the kinetic energy of the flexible appendage.

Tflex = 1
2

∫ L

0
ρ[4ψijψlkq̇iqj q̇lqk︸ ︷︷ ︸

H.O.T.

− 4φiψljqiq̇lqj θ̇︸ ︷︷ ︸
H.O.T.

+θ̇2φiφjqiqj

+θ̇2((R + x)2 + 2(R + x)ψijqiqj + ψijψlkqiqjqlqk︸ ︷︷ ︸
H.O.T.

)

+φiq̇iθ̇(2(R + x) + 2ψljqlqj︸ ︷︷ ︸
H.O.T.

) + φiφj q̇iq̇j] dx

(3.29)

The higher-order terms (H.O.T.) in this expression consist of products of more than

two assumed modes which will lead to nonlinear equations of motion if they are

included. To obtain linear equations, these higher-order terms will be neglected.

Before writing the final form of the kinetic energy, another matrix needs to be defined.

Hij ≡
∫ L

0

ρ (R + x)ψij dx (3.30)

This term is the quadratic modes analogy to Ni =
∫ L

0
ρ (R + x)φi dx for the linear

assumed modes. Now, the kinetic energy equation can be written in its final form as

T =
1

2
Ĵ θ̇2 +

1

2
Mijqiqj θ̇

2 +
1

2
Mij q̇iq̇j +Hijqiqj θ̇

2 +Nj q̇j θ̇ (3.31)

where the remaining variables are defined as before. For the quadratic assumed

modes derivation, the potential energy equation is the same as that used in the linear

assumed modes derivation.

Applying Lagrange’s equations yields the following equations of motion, which

were developed using quadratic assumed modes. Again, damping is added to this set

of equations, as with the linear modes, to maintain consistency. Figure 10 on the

next page is a plot of the beam deflection and associated rotation of the spacecraft
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with respect to time. Mq̈ +Nθ̈ + Cq̇ +
(
K − θ̇2(M + 2H)

)
q = 0(

Ĵ + qT (M + 2H)q
)
θ̈ +NT q̈ + Cθθ̇ + 2qT (M + 2H)q̇θ̇ = v

(3.32)

Fig. 10. Spacecraft Motion, Quadratic Modes

This set of equations yields a few interesting results. For the case of constant

rotation rate, the beam appears to exhibit the same softening with increased rotation

as seen with the linear modes. However, the term (M + 2H) can be shown to be

negative definite [9], which implies that the beam actually experiences a stiffening

as the spacecraft rotation rate increases. The special case of constant or prescribed

rotation rate also produces a linear system. When the rotation rate is variable, the

system becomes nonlinear due to the coupling between the flexible and rotational

motion.
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C. Quadratic Assumed Modes Model with Nonlinear Terms

The quadratic assumed modes model provides a more realistic representation of the

motion of the given rotational system than does the linear assumed modes model.

However, the observant reader will recall that a number of higher-order terms were

neglected in the derivation of the quadratic model. The fact that the quadratic

assumed modes provide a more realistic picture without the higher-order terms begs

the question of how the equations would differ if those nonlinear terms were not

neglected. A derivation follows that develops the equations of motion for the system

using the quadratic modes while keeping the higher-order terms.

From the previous section, the equation for kinetic energy with H.O.T.’s has

been rewritten below.

Tflex = 1
2

∫ L

0
ρ[4ψijψlkq̇iqj q̇lqk︸ ︷︷ ︸

H.O.T.

− 4φiψljqiq̇lqj θ̇︸ ︷︷ ︸
H.O.T.

+θ̇2φiφjqiqj

+θ̇2((R + x)2 + 2(R + x)ψijqiqj + ψijψlkqiqjqlqk︸ ︷︷ ︸
H.O.T.

)

+φiq̇iθ̇(2(R + x) + 2ψljqlqj︸ ︷︷ ︸
H.O.T.

) + φiφj q̇iq̇j] dx

This equation can be split into a linear and a nonlinear portion: T = TL + TNL. The

linear portion, TL, was thoroughly examined in the previous section, so the focus now

turns to the nonlinear portion.

TNL =
1

2

∫ L

0

ρ
[
4ψijψlkq̇iqj q̇lqk − 4θ̇φiψljqiq̇lqj + θ̇2ψijψlkqiqjqlqk + 2θ̇φiψlj q̇iqlqj

]
(3.33)

Close examination of the nonlinear terms reveals that there are two types of nonlin-
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earity. To simplify the subsequent derivation, the following tensors are defined.

Filj ≡
∫ L

0

ρ φiψlj dx (3.34)

Gijlk ≡
∫ L

0

ρ ψijψlk dx (3.35)

Substituting these tensors into the kinetic energy, the nonlinear terms simplify to the

following.

TNL = Gijlk

(
2q̇iqj q̇lqk +

1

2
θ̇2qiqjqlqk

)
+ Filj θ̇ (−2qiq̇lqj + q̇iqlqj) (3.36)

This result can be used to derive the nonlinear portion of the equations of motion for

the rotating spacecraft with a flexible appendage.

The linear portion of the equations of motion is the same as that obtained in the

previous section. Therefore, the remaining terms can be obtained by applying taking

appropriate partials of the nonlinear portion. The potential energy still leads to a

set of linear equations, so LNL = TNL − 0. Application of Lagrange’s equations will

continue in index notation.

The derivation proceeds by taking partial derivatives with respect to the individ-

ual generalized coordinates and with respect to the rotational coordinate. Taking the

partial derivative with respect to the first derivative of the sth generalized coordinate

yields

∂TNL

∂q̇s
= 2Gijlkqjqk

(
∂q̇i
∂q̇s

q̇l + q̇i
∂q̇l
∂q̇s

)
− 2θ̇Filjqiqj

∂q̇l
∂q̇s

+ θ̇Filjqlqj
∂q̇i
∂q̇s

(3.37)

In index notation, the term ∂q̇i

∂q̇s
reduces to δis, where δ is the substitution operator

[10]. Application of this property and simple manipulation yields the partial with

respect to q̇s.

∂TNL

∂q̇s
= 2qjqk (Gsjlkq̇l +Gijskq̇i) + θ̇qlqj (Fslj − 2Flsj) (3.38)
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This equation must be differentiated with respect to time. Foresight dictates that the

tensor symmetry will be explored before proceeding with the differentiation.

The definitions of the F and G tensors are rewritten here.

Filj ≡
∫ L

0

ρ φiψlj dx

Gijlk ≡
∫ L

0

ρ ψijψlk dx

The definition of the ψ term is also repeated.

ψij(x) = − 1

2

∫ x

0

φ′iφ
′
jdx

From this equation, it is obvious that ψij = ψji. This observation easily leads to the

following

Gijlk = Gjilk (3.39)

Gijlk = Gijkl (3.40)

Gijlk = Glkij (3.41)

Filj = Fijl (3.42)

which will be defined as symmetry properties of the higher-order tensors. These

properties are easily applied in the partial derivative of Equation 3.38 on the preceding

page. Simplifying and collecting terms yields the following equation.

d

dt

(
∂TNL

∂q̇s

)
= 2 (q̇jqkq̇l + qj q̇kq̇l + qjqkq̈l) (Gsjlk +Gljsk) (3.43)

+
(
θ̈qlqj + θ̇q̇lqj + θ̇qlq̇j

)
(−2Flsj + Fslj)

Next, the partial derivative of the nonlinear kinetic energy terms with respect to
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the sth generalized coordinate is taken to produce the following, after simplification.

∂TNL

∂qs
= Gislk

(
2q̇iq̇lqk + θ̇2qiqlqk

)
+Gijls

(
2q̇iq̇lqj + θ̇2qiqjql

)
(3.44)

−2θ̇q̇lqjFslj + Fils

(
−2θ̇qiq̇l + 2θ̇q̇iql

)
This and the previous equation are then combined along with the terms in Equa-

tion 3.32 on page 25 which were obtained by neglecting H.O.T. in the quadratic

modes derivation. The F and G terms are collected, rearranged, and regrouped to

obtain the simplified final form of the differential equation of motion for the sth

generalized coordinate.

A similar procedure is used to obtain the rotational differential equation of mo-

tion. From the nonlinear kinetic energy, partial derivatives are taken, and the results

after simplification are shown below.

d

dt

(
∂TNL

∂θ̇

)
= θ̈ Gijlkqiqjqlqk + 2θ̇ Gijlkqjqk (q̇iql + qiq̇l) (3.45)

+Filj (q̈iqlqj − 2qiq̈lqj − 2qiq̇lq̇j)

∂TNL

∂θ
= 0 (3.46)

These terms are combined with the linear terms obtained from the quadratic modes

derivation. For the forcing function v, the final form of the equations of motion for

the system is the following. (M +MNL)q̈ + (N +NNL)θ̈ + Cq̇ +KLq +KNL = 0

(N +NNL)T q̈ + (DL +DNL)θ̈ + Cθθ̇ + 2θ̇qT (M + 2H + EG)q − EF = v

(3.47)
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where the newly introduced coefficients are defined as follows.

MNL = 2qjqk(Gsjlk +Gljsk) (3.48)

NNL = qlqj(Fslj − 2Fjls) (3.49)

KL = K − θ̇2(M + 2H) (3.50)

KNL = KF +KG (3.51)

KF = 2θ̇q̇j(Fslj(ql + q̇l)− 2Fjlsql) (3.52)

KG = (2q̇jqkq̇l − θ̇2qjqkql)(Gsjlk +Gljsk) (3.53)

DL = Ĵ + qT (M + 2H)q (3.54)

DNL = Gsjlkqsqjqlqk (3.55)

EF = 2Fsjlqsq̇lq̇j (3.56)

EG = Gsjlk(q̇sql + qsq̇l) (3.57)

The equations of motion for the quadratic assumed model with nonlinear terms,

Equation 3.47 on the preceding page, is a set of nonlinear equations even for the case

of prescribed rotation rate. In contrast, the reader may recall that the linear and

quadratic assumed modes models produced sets of linear equations.

Figure 11 on the next page is a plot of the rotational spacecraft motion with

respect to time. The same spacecraft and beam parameters were used for this set of

equations as for the previous two, so the following section will compare the motion

simulated using these three derivations.

D. Comparison of Results

The linear and quadratic assumed modes models produce beam deflections that are

quite similar. A comparison of the output from these two sets of equations can be
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Fig. 11. Spacecraft Motion, Nonlinear Modes

seen in Figure 12. The initial rotation rate was 0.3 rad/s or slightly less than twenty

degrees per second. This is not a large angular velocity, so the differences between the

beam motion for these two methods are quite small in comparison to the magnitude

of the motion. The figures plot true difference instead of percent difference due to

the large number of zero crossings. Measurement differences for the quarter-span,

midspan, and tip are the three lines plotted in this figure.

From this figure, one might wonder if the differences between the linear and

quadratic assumed models are significant. It was hypothesized that these two deriva-

tions would produce different output due to the rotation rate. To test this hypothesis,

the equations were simulated with various initial rotation rates. Figure 13 on the fol-

lowing page shows the quadratic minus linear tip deflection for three different initial

rotation rates given in radians per second, and this figure reveals that as the rotation

rate increases, the two simulations begin to produce significantly different results. It

was previously stated that as the angular velocity increased, the quadratic assumed

models would experience a stiffening whereas the linear assumed models would expe-
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Fig. 12. Difference Between Quadratic and Linear Motion

Fig. 13. Difference in Tip Deflection for Various Initial Rotation Rates
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rience a softening. This can be easily shown by assuming the rotation rate is fixed,

calculating the effective mass and stiffness matrices for both methods, and then cal-

culating the natural frequencies. The effective stiffness matrices for the linear and

quadratic assumed modes with constant angular velocity are shown in the following

expressions.

Linear: Keff = K − θ̇2M (3.58)

Quadratic: Keff = K − θ̇2(M + 2H) (3.59)

Calculating the first natural frequency for a variety of rotation rates shows that the

Fig. 14. First Natural Frequency versus Angular Velocity

quadratic assumed modes natural frequency increases, or stiffens, as expected. A

comparison of the natural frequencies as a function of angular velocity can be seen in

Figure 14. Higher natural frequencies exhibit this same trend.
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Just as the quadratic and linear assumed modes developments produced differ-

ent results, the quadratic and quadratic nonlinear assumed models also produce very

different output. The nonlinear derivation is an extension of the quadratic modes

derivation obtained by retaining the higher-order terms which were previously ne-

glected, so it is interesting to examine the differences in the two sets of output given

in Figure 15.

Fig. 15. Difference Between Nonlinear and Quadratic Motion

The difference between these two simulations is significant, and although this

difference is sizable, the result should not discourage the use of the nonlinear set

of equations. Figure 16 on the next page is a plot of one second of tip deflection

calculated using the quadratic and nonlinear assumed modes. The plot reveals that

there is a phase shift between the two sets of measurements. This could easily account

for the large disparity between the two methods. The natural frequency evaluation
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Fig. 16. Difference Between Nonlinear and Quadratic Motion, 1 sec

could not be performed for the nonlinear modes because they do not form a set of

linear equations even for the case of constant angular velocity.

The simulations from this chapter revealed that the motion of a rotating space-

craft with flexible appendage can be calculated using several variations of the Assumed

Modes method. Linear, quadratic, and nonlinear assumed models each produce a dif-

ferent set of equations, and these equations yield results that are close enough to be

believable but different enough to be significant. In the chapters that follow, input-

output approximation techniques will be explored for simple systems as well as for

the three rotational flexible systems developed in this chapter.
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CHAPTER IV

LINEAR INPUT-OUTPUT APPROXIMATION

There are numerous occasions when identification of a system from input-output

behavior is desirable or necessary. Identification of linear systems can be accomplished

using a number of different techniques. The Eigen Realization Algorithm (ERA) is one

parameter identification method that can provide the desired input-output mapping.

This work will focus on the Eigen Realization Algorithm for because of its ability

to provide a minimal realization and return only the states that participate in the

measured motion. These advantages as well as the method itself will be developed

further in the following sections.

A. Eigen Realization Algorithm

The Eigen Realization Algorithm is a linear input-output mapping that evaluates the

sensor data time history to generate a state space model that could have produced

the data. ERA is particularly useful in determining the order of a given system.

For example, the motion of flexible structures is a function of an infinite number of

modes, but it is not practical to use an infinite number of modes in modeling. ERA

can determine the number of modes that are actually contributing to the measured

motion. If the higher frequency modes cannot be measured by the sensors, then they

do not need to be included in the model. The form of the identification is the standard

state space model which is included below. ẋ = ALx+ BLu

y = CLx+ DLu
(4.1)
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The subscript L signifies that the realization is linear, and the variables x, y, and u

represent the state, output, and input vectors respectively. These vectors are printed

in boldface and should not be confused with x, y, and u which represented the lon-

gitudinal coordinate, the transverse displacement, and the longitudinal displacement

in the previous chapters.

State space models such as this one are not unique. In fact, there are an infinite

number of possible state space models for a given system, and all of the models are

related to one another through linear transformations. With this in mind, it is not

important whether ERA returns the true model that was used to generate the data.

Rather, any state space model is acceptable as long as it is a linear transformation of

the truth. For example, let the subscript t denote the true linear system as seen in

the following equation.  ẋ = Atx+ Btu

y = Ctx+ Dtu
(4.2)

A linear transformation of this system by the transformation matrix T where z = Tx

would yield this equation.  Tẋ = AtTx+ Btu

y = CtTx+ Dtu
(4.3)

After rearranging, the new system becomes ż = Azz + Bzu

y = Czz + Dzu
(4.4)

where Az = T−1AtT, Bz = T−1Bt, Cz = CtT, and Dz = Dt. It is well known that

a linear transformation does not affect the frequency response of a system, so the

eigenvalues of At and Az will be the same [1].
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The Eigen Realization Algorithm identifies the most likely state space system for

the measurements given. The measurements should be the result of either an impulse

input or an initial condition input. These are the only two conditions for which ERA

is designed, but this is not as prohibitive as one might imagine. The initial condition

response can be a time history of the measurements without control. The algorithm

will be outlined here, but further details and explanations can be found in [4] and

[11].

Let the measured output vector, denoted by ymeas, contain a time history of the

discrete time outputs. These outputs are combined as follows to form the Hankel

matrix.

H(1) =



ymeas(2) ymeas(3) · · · ymeas(d1 + 1)

ymeas(3) ymeas(4) · · · ymeas(d1 + 2)

...
...

. . .
...

ymeas(d2 + 1) ymeas(d2 + 2) · · · ymeas(d1 + d2 + 1)


(4.5)

In this notation, ymeas(i) denotes the vector of output measurements at the ith discrete

time. The constants d1 and d2 determine the size of the matrix, and if both are greater

than the number of states, n, then the Hankel matrix will have rank n.

The next step in the Eigen Realization Algorithm is to decompose the Hankel

matrix using Singular Value Decomposition (SVD). More information on SVD can

be found in [12] and [13].

H = UΣV T (4.6)

In this equation, the columns of U and V are orthonormal to each other, and Σ is
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the diagonal matrix of singular values.

Σ =

 Σn 0

0 0

 (4.7)

Σn ≡ diag(σ1, σ2, . . . , σn) (4.8)

Only the n singular values that are above a certain threshold are included in the

estimation. The rest are ignored or assumed to be approximately zero. The other

matrices in the singular value decomposition are truncated accordingly to Un and

V n.

After this decomposition, the minimal realization is the following

AL = Σ−1/2
n V T

nH(1)UnΣ
−1/2
n (4.9)

BL or X0L = Σ1/2
n V T

nEr (4.10)

CL = ET
mUnΣ

1/2
n (4.11)

DL = ymeas(0) (4.12)

and Ej ≡ [ 1j 0j · · · 0j ]T (4.13)

where the subscript n is the number of states to be included in the realization, the

subscript r is the number of inputs, and the subscript m is the number of outputs.

The term 1j signifies an identity matrix of size j × j, and 0j signifies a matrix

of size j × j fully populated with zeros. Equation 4.10 yields the state space BL

matrix if the measured values were excited by an impulse input, and it yields the

initial condition vector X0L if the measured values were the consequence of an initial

condition response. This state space representation is assumed to capture the modal

frequencies of interest.
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B. Spring-Mass-Damper Example

A simple problem to which ERA can easily be applied is the spring-mass-damper

problem. This is a classic problem where a block of mass m is translating in one

degree of freedom. The mass is attached to a wall by a spring with spring constant k

and by a damper with damping coefficient c. The motion of the block is governed by

the second-order differential equation shown below, and there is no forcing function

on the system.

mẍ+ cẋ+ kx = 0 (4.14)

If the output is the position and velocity of the block, then the state space model for

this system is simply the following.

 ẋ

ẍ

 =

 0 1

−k/m −c/m


 x

ẋ


 y1

y2

 =

 1 0

0 1


 x

ẋ


(4.15)

It is obvious that this is a linear system, so the Eigen Realization Algorithm will

have no problems identifying this system. The system is simulated with the following

constants: m = 1, c = 0.25, and k = 1. Figure 17 on the next page shows the output

of this system where y1 is the position and y2 is the velocity of the block. From this

figure, one can see that the system was simulated with a non-zero initial condition

vector as opposed to an impulse input.

Taking this measurement time history and applying the Eigen Realization Algo-

rithm yields the following state space realization. It is important to note that ERA

outputs the system in discrete time, so the matrices must be converted into a continu-
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Fig. 17. Spring-Mass-Damper Output Measurements

ous time state space representation. This can be easily accomplished using a built-in

function like d2c in Matlab for example.

 ẋ

ẍ

 =

 −0.0093 0.3343

−2.9842 −0.2399


 x

ẋ

 , X0L =

 −0.5991

−0.3293


 y1

y2

 =

 −1.6194 −0.0907

0.2856 −0.5197


 x

ẋ


(4.16)

There is no control input to the system which is why ERA cannot estimate BL and

DL.

A plot of the error between the measurements and the ERA-identified system is

shown in Figure 18 on the following page. This plot reveals that the Eigen Realization

Algorithm is a very accurate approximation of the system. Comparing the eigenvalues
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Fig. 18. Error: Measurement - ERA Simulation Output

Table IV. Comparison of Truth and Estimated A Matrices

Eigenvalues Frequency (rad/s) Damping

Estimated System −0.1246± 0.9922i 1.00 0.125

True System −0.1250± 0.9922i 1.00 0.125

of the true versus the estimated state space A matrices shows close correlation between

the two. Table IV shows that the ERA representation accurately estimates the system

characteristics.

1. Duffing Oscillator

ERA was shown to be successful on the simple spring-mass-damper example shown

above. However, that was a linear system. The duffing oscillator is also a spring-
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mass-damper system except the spring has linear and nonlinear components. This

section will show that applying ERA to this system will result in significant modeling

errors. The equation of motion for this system involves a minor modification from

that of the spring-mass-damper.

mẍ+ cẋ+ kx+ εx3 = 0 (4.17)

With the same coefficients as in the previous example, and letting ε = 3, this system

exhibits visibly different motion as seen in Figure 19.

Fig. 19. Measured Values for Duffing Oscillator

The Eigen Realization Algorithm is applied to this output. For moderate to large

nonlinearities, ERA may try to realize the system with an inflated number of states

to compensate for the nonlinearity. With prior knowledge of the system kinematics

and dynamics, the ERA algorithm applied to this problem is instructed to return a
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system with exactly two states. The resulting system, transformed into continuous

time, is the following state space realization.

 ẋ

ẍ

 =

 1.1050 1.4724

−4.5862 −2.2793


 x

ẋ

 , X0L =

 −0.4661

−0.63030


 y1

y2

 =

 −1.3890 −0.5593

1.0304 −0.7667


 x

ẋ


(4.18)

This realization is decidedly different from the one obtained in the previous example.

Indeed, the nonlinearity cannot be captured by the linear state space model.

Fig. 20. Measurements versus ERA Output, ε = 3

A comparison of the ERA-identified model output and the true duffing oscillator

measurements can be seen in Figure 20. Comparing this figure with Figure 18 on

page 42 shows that the errors are 1000 times larger for the system with the nonlinear
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spring. The percent error for the duffing oscillator ERA model output is approxi-

mately 100%. Moreover, these errors resulted from an estimation based on perfect

measurements. Noisy data would have decreased the accuracy of the estimate even

further. From these observations, it is obvious that this linear approximation is un-

acceptable for the nonlinear system.

C. Rotating Spacecraft Application

Another linear system to which ERA can be applied is the case of the rotating space-

craft with flexible appendage. The equations of motion for this system were developed

for three different assumed mode types in Chapter III. In that chapter, it was noted

that for a known angular profile, the equations of motion for the linear and quadratic

assumed mode shapes were linear. The same was true for a constant angular velocity.

On the other hand, the nonlinear assumed modes model produced nonlinear equations

whether the angular profile was known or unknown. Therefore, the Eigen Realization

Algorithm should be able to accurately model the systems based on output from the

linear and quadratic assumed mode equations with fixed angular velocity.

1. Linear Assumed Model with Fixed Rotation Rate

Equations of motion for the spacecraft calculated using the linear assumed modes

was given in Equation 3.15 on page 18 and is repeated below for convenience.

Mq̈ + Cq̇ +
(
K −Mθ̇2

)
q = 0

This set of equations was simulated using the same spacecraft constants seen in the

previous chapter. The beam was initially deflected 1.5 in, 3 in, and 6 in at the quarter-

span, midspan, and tip. In addition, the rotation rate was set at 1.5 rad/s. Figure 21
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shows the results of this simulation using three modes and Admissible functions. The

deflections at the quarter-span, the midspan, and the tip are plotted on this figure.

Fig. 21. Rotational Spacecraft Beam Measurements, Linear Modes

Measurements from this system were inputs for the Eigen Realization Algorithm,

and the linear state space realization converted to continuous time is given in the

following equations.

ẋ =



0.651 3.331 −18.86 −123.7 −57.52 −30.59

4.305 8.044 90.25 −119.1 3.409 −28.54

15.98 −32.28 46.9 −296.8 −96.51 −11.39

13.32 97.34 233 −511.8 −374 −113.5

2.094 −41.28 −54.25 363.7 84.36 11.11

1.685 2.444 −6.438 27.25 20.67 3.185


x, (4.19)

X0L =

[
−0.7885 −5.854 −8.287 12.82 4.84 1.289

]T
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y =



−0.004384 −0.08377 −0.01627 0.03503 −0.01325 0.3773

−0.03186 −0.1876 0.04637 0.06282 −0.03814 1.273

−0.1755 −0.1918 0.4062 0.1794 0.2119 3.709

0.4511 4.716 −1.789 2.889 −4.884 −0.2098

2.814 7.688 −5.643 1.197 −3.69 2.303

14.64 2.538 11.48 10.35 −2.334 0.03119


x (4.20)

Fig. 22. Error: Measurements - ERA Output, Linear Modes

A comparison of the system characteristics reveals that the ERA-identified sys-

tem closely matches the true system. Figure 22 shows the agreement between the

two models.
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2. Quadratic Assumed Model with Fixed Rotation Rate

The same rotational system motion calculated using quadratic assumed modes also

yields a linear system. The equations of motion were developed in Chapter III, and

the linear equation for constant angular velocity is repeated below for reference.

Mq̈ + Cq̇ +
(
K − θ̇2(M + 2H)

)
q = 0

Simulation results for this set of equations are shown in Figure 23. The spacecraft

constants for this simulation were given in the previous chapter.

Fig. 23. Rotational Spacecraft Beam Measurements, Quadratic Modes

When this data is entered into ERA, the resulting state space realization is the
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following.

ẋ =



0.6313 3.36 −18.93 −123.5 −57.11 −31.64

4.247 7.969 90.17 −118.5 3.825 −29.11

15.89 −32.45 46.76 −296.9 −96.65 −12.34

13.3 97.11 232.1 −511.9 −373.4 −118.6

2.018 −41.29 −53.9 363.7 84.24 11.87

1.673 2.129 −7.19 31.64 21.93 3.665


x, (4.21)

X0L =

[
−0.802 −5.848 −8.269 12.83 4.833 1.346

]T

y =



−0.004313 −0.08342 −0.01511 0.03533 −0.0162 0.3779

−0.03133 −0.1864 0.04995 0.06374 −0.04839 1.273

−0.1728 −0.1883 0.4156 0.1817 0.1809 3.708

0.4724 4.715 −1.79 2.891 −4.883 −0.2452

2.862 7.685 −5.631 1.204 −3.707 2.336

14.68 2.503 11.5 10.35 −2.337 0.0114


x (4.22)

The estimated-system characteristics match closely with the true characteristics.

This agreement can be seen in a plot of the error between the output of the ERA-

identified model and the true measurements in Figure 24 on the next page.
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Fig. 24. Error: Measurements - ERA Output, Quadratic Modes
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3. Nonlinear Assumed Model with Fixed Rotation Rate

After successfully identifying the constant rotation rate system simulated using linear

and quadratic assumed modes, the Eigen Realization Algorithm was applied to the

constant rotation rate system simulated with nonlinear assumed modes. Figure 25 is

a plot of the simulated motion.

Fig. 25. Rotational Spacecraft Beam Measurements, Nonlinear Modes

As previously mentioned, the equations for the beam motion with nonlinear

modes are not a linear system, even for the case of constant angular velocity. There-

fore, one should not expect ERA to identify this system nearly as well as it did the

previous two. Indeed, simulation and evaluation reveals that this nonlinear system

is significantly more difficult to identify. The following equations show the ERA-
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identified model.

ẋ =



0.6217 2.898 −18.18 −123.2 −57.05 −30.95

4.497 8.201 90.49 −120.4 4.142 −28.97

15.82 −32.16 47.28 −296 −94.18 −10.85

13.37 97.69 236 −505.8 −368.5 −114

2.25 −40.79 −53.74 355.3 80.97 10.81

1.694 2.612 −6.393 25.85 20.04 3.044


x, (4.23)

X0L =

[
−0.7757 −5.883 −8.396 12.85 4.823 1.302

]T

y =



−0.004535 −0.08377 −0.01591 0.03457 −0.01346 0.3771

−0.03235 −0.1871 0.04778 0.06202 −0.03653 1.271

−0.1769 −0.1894 0.4081 0.1774 0.2239 3.702

0.4409 4.731 −1.763 2.898 −4.899 −0.2063

2.797 7.684 −5.646 1.17 −3.757 2.333

14.65 2.636 11.47 10.43 −2.275 0.05039


x (4.24)

Figure 26 on the next page shows that the error between the measurements and

the estimated output are three orders of magnitude larger than for the quadratic

or linear modes estimations. Although the errors are still relatively small compared

to the motion, it is important to note that all of the identification in this work is

performed on perfect measurements. Noisy measurements would significantly degrade

the estimates at which point a linear estimation of the nonlinear system would be

inadequate. The equations of motion for the rotational spacecraft with unknown

rotation rate are nonlinear for all three sets of assumed mode shapes, so ERA will

not provide an adequate approximation for these systems.

From these examples, it is obvious that the Eigen Realization Algorithm is a
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Fig. 26. Error: Measurements - ERA Output, Nonlinear Modes

suitable linear parameter identification method. ERA can determine an appropriate

order for the system based on the output measurements. It can also match the system

parameters with surprising accuracy. This method will be employed in future chapters

as the chosen linear approximation method.
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CHAPTER V

NONLINEAR INPUT-OUTPUT APPROXIMATION

The linear approximation technique outlined in the previous chapter is useful on a

wide class of systems, but it is only valid for linear systems. Many systems are non-

linear, so ERA and similar parameter identification algorithms will not accurately

approximate the motion. Nonlinear systems range in complexity from the simple

pendulum undergoing moderate or large deflections, to the rotating spacecraft prob-

lem described earlier, and to systems that are even more complex. For each of these

systems, input-output approximation is complicated but often necessary. Singla, et

al, have developed a nonlinear input-output mapping technique [7] [14]. This method

involves combining linear estimation techniques with a nonlinear function estimator.

A rigorous description of this method is the focus of this chapter.

Nonlinear Input-Output Approximation Goal: Given the output mea-

surements, ymeas, and the measured control input, umeas, as functions of time, find

an accurate representation of the system that generates these measurements.

A. Algorithm Overview

The goal of this method is to identify a linear model that captures the linear motion of

the system and then determine an estimate for a nonlinear function that captures the

difference between the linear motion and the measured values. The estimated linear

model is a linear state space representation as seen in the following set of equations ẋL = ALxL + BLu

yL = CLxL + DLu
(5.1)
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where the subscript L identifies the best linear model of the system. This model

may be obtained by any number of linear identification algorithms, but the Eigen

Realization Algorithm (ERA) will be used in this work for reasons expressed in the

previous chapter.

Once the state space representation has been found, the output equation can

be combined with the input measurements, ymeas, and the control input, umeas, to

obtain an estimate for the hidden state vector x. The output equation with the

measurements is simply the following.

ymeas = CLx+ DLumeas (5.2)

Because the only unknown in this equation is x, a linear least squares routine will

reveal the best guess for this hidden state vector.

x̂ =
(
CT

LCL

)−1
CT

L (ymeas −DLumeas) (5.3)

For nonlinear systems, simulating the ERA-identified linear state equation, ẋL =

ALxL + BLumeas, will produce a state vector that will not match the least squares

estimate. From this and the previous equations, one can see that if the nonlinearly

estimated state vector can track x̂, then the estimated output will equal ymeas.

To match the hidden state vector and the true output, the estimated system

has to capture the nonlinear motion as well as the linear motion. The goal of the

nonlinear function estimator is to estimate g(xg) such that the estimated state vector,

xg given by

ẋg = ALxg + BLumeas + g(xg) (5.4)

tracks the best estimate of the hidden state vector x̂. The nonlinear function esti-

mator compensates for the difference between the estimated hidden state vector and
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the state vector calculated using the linear model. Overall, the identified model is of

the form  ẋg = ALxg + BLumeas + g(xg)

yg = CLxg + DLumeas

(5.5)

where AL, BL, CL, and DL are the linear state space matrices, and g(x) is the nonlinear

function to modify the linear motion.

Duffing Oscillator Example: In Chapter IV, it was shown that the linear estimation

from the Eigen Realization Algorithm could not capture the nonlinear motion of a

duffing oscillator. The nonlinear input-output approximation algorithm from this

chapter will therefore be applied to this simple problem to aid in the explanation of

this technique. Although the problem was introduced in the previous chapter, it will

be reviewed here for convenience. The equation of motion for this system is rewritten

below.

mẍ+ cẋ+ kx+ εx3 = 0 (5.6)

As in the previous chapter, the measured output will be the position and velocity of

the moving block.

The duffing oscillator will be simulated with no external control, so the equation

of motion can be rewritten in state space form.

 ẋ

ẍ

 =

 0 1

−k/m −c/m


 x

ẋ

+

 0

εx3


 y1

y2

 =

 1 0

0 1


 x

ẋ


(5.7)

For this example, the numerical values for the constants are as follows: m = 1,
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Fig. 27. Measured Output of Duffing Oscillator

c = 0.25, and k = 1. This system is simulated with no control and initial conditions

x1 = 1 and x2 = 0 which corresponds to an initial deflection with no initial velocity.

The resulting motion can be seen in Figure 27.

B. Linear Input-Output Approximation

As previously mentioned, this method begins by obtaining a linear function estimate.

The Eigen Realization Algorithm is a preferred method, but any linear identification

technique could be used in its place. This algorithm was covered in depth in the

previous chapter, so the reader is referred there for more information.

The goal of ERA is to identify the most likely linear state space realization from

a time history of system outputs and inputs. Only the state space matrices are

estimated. The state vector is not estimated, but it can be easily calculated from the
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identified system. This system takes the form

ẋL = ALxL + BLumeas (5.8)

yL = CLxL + DLumeas (5.9)

where the output vector yL is not guaranteed to be equal to the measured output

vector ymeas. This potential problem arises because the algorithm is only guaranteed

for linear systems.

Application to a Duffing Oscillator: In the case of the duffing oscillator, the system

is not linear, so the ERA-identified realization cannot reproduce the measured output.

The realization for this system was given in the previous chapter, but it is included

again here for easy reference.

 ẋ

ẍ

 =

 1.1050 1.4724

−4.5862 −2.2793


 x

ẋ

 , x0L =

 −0.4661

−0.63030


 y1

y2

 =

 −1.3890 −0.5593

1.0304 −0.7667


 x

ẋ


As described previously, simulating this ERA-estimated linear system produces

linear output estimates that do not match the true measurements. This is due to the

nonlinearity in the true system. The discrepancy can be seen in Figure 28 on the

next page. This difference comes from the fact that the ERA-identified model can

only capture the linear motion. To capture the nonlinear motion as well, a nonlinear

function estimation algorithm like the one described in this chapter must be used.
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Fig. 28. Measurements vs. ERA-Estimated Output, ε = 3

C. Least Squares Estimation

The output equation for the linear system, Equation 5.9 on the preceding page, is a

linear equation. If the output vector, ymeas, and the input vector, umeas, are known,

and if the linear state space realization is also known, then the only unknown in this

equation is the hidden state vector. It is referred to as the hidden state vector because

the output and input of the system are known, but the true state vector is not.

With an estimate for the linear system, the hidden state vector can be estimated

using a linear least squares algorithm. The measurements and the estimated linear

state space matrices are combined as follows to obtain the estimate x̂.

x̂ = (CT
LCL)−1CT

L(ymeas −DLumeas) (5.10)

The least squares algorithm returns the best solution for the unknown parameter [15].
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Therefore, x̂ is the best estimate of the hidden state vector. It is important to note

that the measurements must be a function of all the states of the system. Otherwise,

the product (CT
LCL) will become singular. This will result in poor estimates for the

hidden state vector, and in turn, poor estimates for the entire nonlinear input-output

approximation process.

Once this estimate exists, the final step in the process is to estimate the non-

linear functions that are required to have the calculated state vector, xg, match the

estimated state vector, x̂.

Application to a Duffing Oscillator: The least squares estimation is straightforward

to apply to the duffing oscillator. There are only two states, so the inverse is quite

easy. Similarly, there is no control, so the equation is simply the following.

x̂ = (CT
LCL)−1CT

Lymeas (5.11)

Evaluating this equation with the output measurements and the ERA-identified CL

matrix yields an estimated state vector that is significantly different than the state

vector obtained by simulating the linear model. The magnitude of these differences

can be seen in Figure 29 on the next page. From this figure, one can see that xL

follows x̂ closely for about two seconds. After this point, the ERA-estimated linear

state vector motion damps out significantly faster than the least squares estimated

state vector. The nonlinear function estimator will need to capture this nonlinear

motion so that the calculated state vector can match the LSE-estimated state vector.
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Fig. 29. Error: LSE Estimated x̂ - ERA Estimated xL

D. Nonlinear Function Estimation

In the parameter identification process presented here, the nonlinear function estima-

tor should estimate g(xg) such that the output of the following system ẋg = ALxg + BLumeas + g(xg)

yg = CLxg + DLumeas

(5.12)

tracks the measured output ymeas. It has already been shown that if xg can track x̂

then yg will track ymeas. This comes straight from the least squares estimate.

Assume that the nonlinear function can be matched arbitrarily closely by a lin-

ear combination of polynomial functions. Using an infinite number of polynomial

functions would provide an exact match but is computationally prohibitive. On the

other hand, too few polynomials make the estimation simple but will result in poor
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matching. One solution is to use a finite number of orthogonal polynomials to bet-

ter match the truth while keeping the number of functions required to a minimum.

Unique properties of orthogonal polynomials allow them to capture a wider array of

motion with a smaller number of functions.

This reduction can be taken one step further. Rather than estimating the non-

linear function with a set of polynomials valid over the entire domain, or global

polynomials, one can use a smaller set of polynomials to fit the function in local re-

gions and then combine these local estimates to form the global solution. This type of

estimation scheme is the Global-Local Orthogonal Mapping algorithm (GLO-MAP)

developed by Junkins et al [6]. GLO-MAP is an innovative algorithm that can per-

form nonlinear function estimation in N-dimensions. The method is more translucent

than an Artificial Neural Networks (ANN), which typically operate as a black box

algorithm [7].

1. GLO-MAP Explanation

The GLO-MAP estimation routine operates on the principle that any function can

easily be approximated on a small interval by a finite number of orthogonal poly-

nomials. Therefore, to approximate a function on a large interval, one can split

the domain into a series of smaller intervals over which the function approximation

is straightforward. Then, combine these local approximations to obtain the global

estimate.

The basic GLO-MAP algorithm is implemented according to the following pro-

cess. To approximate a function L(X ):

1. Obtain function measurements in global coordinates X .

2. Discretize the domain and choose grid points accordingly.
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3. For the Jth grid point, JX:

(a) Nondimensionalize the global coordinates using the following equation for

each measurement location.

Jξ ≡ (X −JX)/h (5.13)

(b) Find all JX for which each state of Jξ lies within the interval [−1, 1].

(c) Calculate the weight function value for each local coordinate

w(ξ) = Πn
i=11− ξ2

i (3− 2|ξi|) (5.14)

where n is the number of states.

(d) Calculate the set of basis function values Φ(ξ) for each local coordinate.

The total basis function matrix is the set of all possible combinations of

these functions.

(e) Find the Fourier coefficient for each basis function and each local coordi-

nate. These are based on a ratio of inner products.

(f) Combine the Fourier coefficients with the basis functions to obtain the

local approximation.

(g) Combine the weight functions with the local approximation values to ob-

tain the Jth portion of the global approximation.

4. Sum the global approximations over all J to obtain the overall function approx-

imation.
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2. Time-Varying Function Estimation Using GLO-MAP

In the input-output approximation presented here, GLO-MAP needs to estimate

g(xg) so that the error, e = x̂ − xg → 0. The assumed form of this nonlinear

function is

g(xg, t) = Kg Φ(xg)w(xg)︸ ︷︷ ︸
≡ψ(xg)

(5.15)

where x = x(t), Kg is a constant matrix of Fourier coefficients that multiplies the

matrix of basis function combinations, Φ, and the vector of weight function combina-

tions, w. Here, the subscript g denotes the nonlinear estimate of the term obtained

with the help of GLO-MAP. The adaptive estimation of the Fourier coefficient matrix

and the control influence matrix are the final steps in the nonlinear parameter identi-

fication algorithm. The coefficient matrix, Kg , has dimensions: (number of states) ×

(number of acceptable basis function combinations). This will be explained in greater

detail in the following discussion. Substituting this approximation into the true state

equation yields

ẋt(t) = ALxt(t) + Btut(t) + Ktψ(xt) + ε (5.16)

where xt is the true hidden state vector, Bt is the true control influence matrix

not necessarily equal to its estimated value BL, and ε is the difference between the

nonlinear function approximation and the true nonlinear function. It is important to

note that the state space AL matrix is assumed to be estimated exactly by the Eigen

Realization Algorithm. This is valid because in the ERA development it was assumed

that AL captured all of the modal frequencies of interest.

The identified system will not exactly match the true system given by Equa-

tion 5.16. Instead, the nonlinearly identified system will contain an estimate for the

Fourier coefficient matrix Kg as well as for the control influence matrix Bg . These
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estimates will attempt to capture the difference between the least squares estimated

state vector, x̂, and the state vector estimated with the nonlinear function estimation

routine, xg.

The estimated control influence matrix, Bg, will not capture a nonlinear rela-

tionship between the state vector and the control, but this term will capture the any

difference in this matrix between the linearly-estimated system and the nonlinearly-

estimated one. On the other hand, the Fourier coefficient matrix combined with the

GLO-MAP polynomial generation will model any nonlinear relationship in the equa-

tions of motion for the state vector. The adaptive estimation equations for these

terms is developed in Appendix B as well as in Reference [7].

Ḃg = −PeuT ΓT
1 (5.17)

K̇g = −PeψT (xg)Γ
T
2 (5.18)

Here, P is a positive definite symmetric matrix, and Γ1 and Γ2 are convergence

parameter matrices with full rank. All of these matrices determine the convergence

speed of the algorithm, and they must be tuned accordingly. A formal proof of

convergence is in Reference [7].

a. Grid the Domain

The method begins by gridding the domain of the system. The grid is set up such

that the state vector will never leave the grid domain. This may seem unrealistic since

the true state vector is unknown, but the least squares estimation process provides

estimates for the best guess of the hidden state vector. These estimates can be used

as a starting point for the grid.

Once the domain for the grid has been chosen, the grid itself can be generated.

It is recommended that a reasonably small number of centroids or grid points are
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initially chosen for each dimension. Otherwise the number of grid points will become

an unnecessary computational burden when the individual grids are combined. If the

system exhibits highly nonlinear behaviors that cannot be estimated well, then the

grid size may be decreased as needed.

The adaptive estimation algorithm only estimates the Kg elements. The polyno-

mial combination ψ(xg) is determined by the current state of the system. Initially,

all coefficients are zero, the state vector is initialized according to the least squares

estimate x̂ at time zero, and yg(t0) = CLxg(t0) + DLumeas(t0).

Application to a Duffing Oscillator: The nonlinear spring-mass-damper has two

degrees-of-freedom, and the grid domains have been specified as [−1, 2] in both

directions. These values were chosen after examining the least squares estimated

state vector. Choosing four intervals in each domain would give centroids at { −1,

−0.25, 0.5, 1.25, 2} in each direction. It is only convenient, not necessary, that the

interval length is the same in both directions.

Now, one must obtain the coordinates for all possible grid points in the domain.

Rather than writing these combinations, they are displayed in graphical format in

Figure 30 on the next page. There are twenty-five grid points total.

It is clear from this simple example that as the number of degrees-of-freedom

increases, the total number of grid points quickly becomes very large. The number

of degrees-of-freedom also partially determines the number of coefficients that must

be adaptively estimated.

b. Integration and Adaptation

The estimation algorithm is completed inside a numerical integration routine. It is

important that the integration routine has a fixed time step equal to the time step of
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Fig. 30. Grid Point Locations for Spring-Mass-Damper

the system measurements. This is due to the fact that the error e = x̂− xg is based

on x̂, and values for x̂ are only known at the measurement times. Comparing these

values to xg at multiple intermediate times could prevent convergence or make the

system unstable.

The following steps are completed inside the numerical integration solver for a

given time step, ti. Let the estimated state vector at this time be denoted by xgi, and

let the estimated state vector be x̂i. The matrix of current coefficient estimates, Ki
g ,

and the current estimate for the control influence matrix, Bi
g , are also inputted.

1. Begin by finding the nearest grid points for the state vector.

Application to a Duffing Oscillator: In the example, xg0 = [−0.4661, −0.6303]T .

This point is denoted by the red x, so it would be nearest to the grid points

labeled 1, 2, 6, and 7 in Figure 31 on the following page. The solid line in this

figure is the time history of the xg vector as it travels through the phase plane.
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In this figure, the grid points have been numbered for easy reference although

this is not required for the estimation. It is important, however, that the order

of the grid points remains constant throughout the estimation process. This

order will determine the placement of values calculated in later steps.

Fig. 31. Phase-Plane Grid Points and State Vector xg Time History

2. The state vector is then converted into nondimensional coordinates with respect

to each of the nearest grid points. Choosing a uniform grid size for all states

will simplify this process.

Jξ ≡ (xgi −JX )/h (5.19)

Here, the J superscript denotes the Jth centroid, ξ is the nondimensional co-

ordinate vector, and h is the grid size. These local coordinates are used to

calculate the weight and basis function values in the following steps.
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Application to a Duffing Oscillator: Table V shows the values for the local

coordinates of xg0 with respect to the four nearest grid points.

Table V. Nondimensional Coordinates for xg0

Grid point ξ1 ξ2

1 0.7119 0.4930

2 −0.2881 0.4930

6 0.7119 −0.5070

7 −0.2881 −0.5070

3. Next, the weight function values are calculated. The total weight function value

for a state vector with respect to each centroid is simply the product of the one

dimensional weight functions for all states. The generic form for the single state

weight function is given by the following.

w(ξi) = 1− ξ2
i (3− 2|ξi|) (5.20)

This function was generated to have zero slope at ξi = 0 and at ξi = ±1. In

addition, the maximum magnitude of the weight function equals one [7] [14]. It

should also be noted that the total weight function vector has as many entries

as the number of centroids. Only two, raised to the power of the number of

states, entries of the weight function vector are nonzero.

Application to a Duffing Oscillator: The spring-mass-damper example has

two degrees-of-freedom, so its weight function value is simply the product of

each individual weight function.

w(Jξ) =
(
1−J ξ2

1(3− 2|ξ1|)
) (

1−J ξ2
2(3− 2|ξ2|)

)
(5.21)
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These values are aligned in a vector in order of grid point number. The to-

tal weight vector for this example is a column of twenty-five values where the

nonzero values are listed below.

w(1ξ)

w(2ξ)

w(6ξ)

w(7ξ)


=



0.1027

0.4078

0.0985

0.3910


(5.22)

The observant reader may notice that the sum of the weight functions with

respect to these four centroids is equal to one. This will always be true. It is

a consequence of the choice of weight function and the product combination of

multiple weight functions for multiple states.

4. Similar to weight functions, basis functions are also calculated as products of one

another for multi-dimensional cases. However, the calculation is somewhat more

complicated because there are many choices for the basis function combinations.

The basis functions presented in Table VI were generated to be orthogonal using

the Gram-Schmidt process [7]. To start, calculate this set of basis functions for

Table VI. Basis Functions [7]

Degree Basis Function

0 1

1 ξ

2 (−2 + 15ξ2)/13

3 (−9ξ + 28ξ3)/19

...
...
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each local coordinate. Then the total set of basis functions for each grid point

is just the product of all possible combinations of the basis functions.

Φ = Πn
i=1ϕκ(ξi) (5.23)

In this equation, ϕκ(ξi) is the basis function for the ith state, and κ denotes the

order of the ith basis function which will vary between different states.

Application to a Duffing Oscillator: Looking back to the nondimensionalized

coordinates from Table V on page 69, there are only four distinct local coordi-

nates. The basis functions of order zero through three for these coordinates are

listed in Table VII.

Table VII. Individual Basis Functions for Local Coordinates

ξi

0.7119 0.493 -0.2881 -0.507

ϕ0(ξi) 1 1 1 1

ϕ1(ξi) 0.7119 0.493 -0.2881 -0.507

ϕ2(ξi) 0.431 0.1266 -0.0581 0.1428

ϕ3(ξi) 0.1945 -0.0569 0.1012 0.0481

The order of magnitude of the total basis function combination is just the sum of

the individual basis function orders. Some of these basis function combinations

produce functions with high orders of magnitude, but one of the beauties of

GLO-MAP is that only low-order polynomials are required to fit the function

in the local interval. Therefore, the higher-order basis function combinations are

not necessary and can be omitted. The Φ matrix has the dimensions: (number
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of acceptable basis function combinations) × (number of grid points).

Application to a Duffing Oscillator: The spring-mass-damper example uses

four basis functions: degrees zero through three. For two states, that makes

sixteen possible basis function combinations. Table VIII lists all of these com-

binations. For the duffing oscillator, the maximum order of the basis functions

Table VIII. Possible Basis Function for the SMD

Combination 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ϕ(ξ1) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

ϕ(ξ2) 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

was restricted to four. This leads to combinations 12, 15, and 16 being dropped.

The combined basis function values for the remaining combinations can be seen

in Table IX on the following page. Once again, these are only the nonzero en-

tries of the basis function matrix. In the example given here, Φ has dimensions

13×25. The first, second, sixth, and seventh columns are shown in Table IX on

the next page, and the remaining columns are filled with zeros.

5. Combine the basis and weight functions to obtain the linear combinations of

polynomials.

ψ(xgi) = Φ(xgi)w(xgi) (5.24)

This vector is premultiplied by the coefficient matrix to obtain the nonlinear

polynomial estimate as a function of that specific state vector at that specific

time xgi.

g(xgi) = Ki
gψ(xgi) (5.25)
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Table IX. Basis Function Combination Values for xg0

1 ξ 2 ξ 6 ξ 7 ξ

ϕ00 1 1 1 1

ϕ10 0.7119 -0.2881 0.7119 -0.2881

ϕ20 0.431 -0.0581 0.431 -0.0581

ϕ30 0.1945 0.1012 0.1945 0.1012

ϕ01 0.493 0.493 -0.507 -0.507

ϕ11 0.351 -0.142 -0.3609 0.1461

ϕ21 0.2125 -0.0286 -0.2185 0.0294

ϕ31 0.0959 0.0499 -0.0986 -0.0513

ϕ02 0.1266 0.1266 0.1428 0.1428

ϕ12 0.0901 -0.0365 0.1016 -0.0411

ϕ22 0.0546 -0.0074 0.0615 -0.0083

ϕ03 -0.0569 -0.0569 0.0481 0.0481

ϕ13 -0.0405 0.0164 0.0342 -0.0139
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Then the derivative of the GLO-MAP-estimated state vector can be calculated.

ẋgi = ALxgi + Bi
gumeas + g(xgi) (5.26)

Application to a Duffing Oscillator: The values of Φ and w given previously

for the first time step of the spring-mass-damper example combine to produce

ψ(xg0) =

[
1 −0.0869 0.0403 0.12 0.0035 −0.0003 0.0001 . . .

. . . 0.0004 0.1345 −0.0117 0.0054 −0.0055 0.0005

]T

(5.27)

It is trivial to perform the K0
gψ(xg0) multiplication for the spring-mass-damper

system because at t0 the coefficient matrix is initialized to zero. Again, the

dimensions of this coefficient matrix are: (number of states = 2) × (number of

acceptable basis function combinations = 13).

6. Finally, it is necessary to calculate the estimated coefficient derivative, also

known as the adaptation of the coefficient matrix, and to calculate the control

influence matrix derivative. This adaptation is given by Equations 5.18 to 5.18

on page 65 which are rewritten below for convenience.

Ḃg = −PeuT ΓT
1

K̇g = −PeψT (xg)Γ
T
2

Reference [7] defines the variables in a slightly different manner, so the reader

should use caution when comparing the two algorithm developments.

This process is repeated for the entire time history. If the error e = x̂ − xg

converges, then the coefficients, and therefore the estimated output yg, will also

converge.
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Application to a Duffing Oscillator: Returning to the duffing oscillator example, the

final estimation can be seen in the following figures. Figure 32 shows the measured

output and the output from the nonlinear input-output approximation on the left.

The two sets of data appear to coincide. A plot of the error between the measured

and the estimated output, shown on the right, shows that the two cases do match

quite closely. Finally, the convergence of the coefficient matrix terms can be seen in

Figure 33 on the following page. From this plot, one can see that the coefficients

converge to constant values within the simulation time. This system was not excited

by a control input, so the control influence matrix was not estimated.

Fig. 32. Error between Measurements and Nonlinear Estimated Output

The system simulated using the nonlinearly identified model yielded significantly
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Fig. 33. Coefficient Matrix Convergence

lower error than that of the linearly identified model. This reveals that the combi-

nation of ERA and GLO-MAP function estimation for input-output approximation

of nonlinear systems easily outperforms ERA by itself. In the next chapter, this

algorithm will be applied to more complicated problems than the one presented here.
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CHAPTER VI

INPUT-OUTPUT APPROXIMATION FOR ROTATING FLEXIBLE SYSTEMS

The previous chapter presented a robust nonlinear input-output approximation method

that was recently developed at Texas A&M University. This method combines linear

estimation with a unique nonlinear function estimator to approximate nonlinear sys-

tems. Now the algorithm will be applied to the class of rotating flexible systems the

equations for which were developed in Chapter III.

A. Prescribed Rotation Rate

Linear parameter identification in the form of the Eigen Realization Algorithm (ERA)

was applied to the rotating spacecraft with constant rotation rate for the linear and

quadratic assumed modes in Chapter IV. The method was shown to be successful

as expected because the equations of motion for these cases are linear. However,

simulating the rotational spacecraft with constant angular velocity using the nonlin-

ear quadratic assumed modes yields a set of nonlinear equations which ERA is not

equipped to handle. This is the first rotating flexible system to which the nonlinear

approximation algorithm will be applied.

1. Quadratic Assumed Modes with Higher-Order Terms

The simplest case for this set of equations is, of course, the case of one mode and a

constant rotation rate. For this case, the set of equations given in Equation 3.47 on

page 29 simplifies to the following

(M +MNL)q̈ + Cq̇ +KLq +KNL = 0 (6.1)
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where the coefficients, defined earlier, have been simplified for one mode.

M11 =

∫ L

0

ρ φ2
1 dx (6.2)

K11 =

∫ L

0

EIφ′′21 dx (6.3)

N1 =

∫ L

0

ρ (R + x) φ1 dx (6.4)

H11 =

∫ L

0

ρ (R + x)ψ11 dx (6.5)

F111 =

∫ L

0

ρ φ1ψ1 dx (6.6)

G1111 =

∫ L

0

ρ ψ2
11 dx (6.7)

MNL = 4q2G1111 (6.8)

KL = K11 − θ̇2(M11 + 2H11) (6.9)

KNL = KF +KG (6.10)

KF = 2θ̇ F111(q̇
2 − qq̇) (6.11)

KG = 4q G1111(q̇
2 − θ̇2q2) (6.12)

In these equations, the variable x denotes the transverse distance from the hub to a

generic point on the flexible beam. It should not be confused with the state vector x

which is printed in bold.

From this point forward, the subscript 1 will be substituted for repeated 1 sub-

scripts. Values for these coefficients will be calculated using a admissible functions.

The first and only mode shape is given below.

φ1 =
(x
L

)2

(6.13)

Calculating the first and second derivatives of this function with respect to x gives
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the following.

φ′1 =
2x

L2
(6.14)

φ′′1 =
2

L2
(6.15)

Similarly, the equation for the quadratic mode yields this expression.

ψ1 =
−2x3

3L4
(6.16)

These can be used to calculate the constants given in Equations 6.2 to 6.7 on the

preceding page. After integration and simplification, expressions for these coefficients

can be found.

M1 =
ρL

5
(6.17)

K1 = 4
EI

L2
(6.18)

N1 =
ρL2

4
+
ρRL

3
(6.19)

H1 = − 2ρL

15
− ρR

6
(6.20)

F1 =
ρ

18
(6.21)

G1 =
2

63

ρ

L
(6.22)

The same spacecraft configuration simulated in previous chapters is implemented here.

Table X on the next page gives values for the system parameters. It is trivial to sub-

stitute these parameters and obtain numerical values for the system constants. These

values can be seen in Table XI on the following page. The reader may notice that

the terms F1 and G1 are significantly smaller than the other terms. However, they

still contribute to the motion of the system as seen in Chapter III and in this chapter

as well. Once the generalized coordinate and its derivative have been calculated as

functions of time, the data can be translated into deflection and deflection rate at
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Table X. Rotational Spacecraft Parameters

Beam Length 45.52 in

Beam Modulus of Elasticity 161.6e6 oz/in2

Second Moment of Inertia of Bending Section 0.000813 in4

Beam Density 0.003007 oz s2/in

Hub Radius 5.5470 in

Hub Mass 31.59 oz

Rayleigh Damping Coefficient, α 0.25

Rayleigh Damping Coefficient, β 0.0002

Table XI. Rotational Spacecraft Constants

M1 = 0.0274 oz s2 K1 = 55.71 oz in2

N1 = 1.811 oz s2 in H1 = −0.0210 oz s2

F1 = 1.671e−4 oz s2/in G1 = 2.0970e−6 oz s2/in2

different measurement locations on the beam. The deflection at the jth measurement

location is given by the Assumed Modes assumption

y(xj) = φ1(xj)q

=
(xj

L

)2

q

and similarly, the deflection rate at the jth measurement location is given by the

following equation.

ẏ(xj) = φ1(xj)q̇

=
(xj

L

)2

q̇
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In these equations, the variable y is the transverse deflection of the beam and should

not be confused with the state space output vector y.

Fig. 34. Beam Deflection: 1 Nonlinear Mode, θ̇ Constant

The system was simulated with initial beam deflections of two, four, and eight

inches at the quarter-span, midspan, and tip measurement points respectively. The

constant rotation rate was set at 1.5 rad/s which is slightly less than ninety degrees

per second. Figure 34 is a plot of the transverse beam deflection at the measurement

locations.

2. Application of Nonlinear Input-Output Approximation Algorithm

Once measurements of the beam displacement and displacement rate have been gath-

ered for the beam, the nonlinear input-output approximation algorithm can be ap-

plied. Both the generalized coordinates and the first derivative of the generalized
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coordinates must be directly or indirectly included in the measurements because the

measurements must contain information about all of the states of the system. As

mentioned in Chapter V, if only some of the states are included in the output, the

product CT
LCL becomes singular, and the least squares state estimation will not be

successful.

For this work, the measurement data, ymeas, is arranged as follows: deflection at

the quarter-span, midspan, tip, and deflection rate at the quarter-span, midspan, and

tip. The order is only important for comparing numerical results, such as the specific

values given in the linear state space realization for example, but it is not important

for algorithm convergence. It is important to note that the beam deflections and

deflection rates are not states of the system. Instead, they are linear combinations

of the states of the system. This is a small but important distinction. In the duffing

oscillator example, the measured outputs were the states themselves, but from this

example, it is clear that this is not necessary.

a. Linear Input-Output Approximation

The first step is to apply the Eigen Realization Algorithm to this data set. The

resulting continuous-time state space realization is given in the following equations. ẋ1

ẋ2

 =

 1.441 40.13

−5.128 −2.151


 x1

x2

 ,
 x1(0)

x2(0)

 =

 −0.9104

−2.197

 (6.23)
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y1

y2

y3

y4

y5

y6


=



−0.02454 −0.2312

−0.09818 −0.925

−0.3927 −3.700

1.150 −0.4788

4.602 −1.915

18.41 −7.66



 x1

x2

 (6.24)

In these equations, x1 and x2 represent generic states that do not necessarily equal

the generalized coordinate and its derivative. It is important to recall from Chapter

IV that ERA does not necessarily return the true system. Instead, it returns a linear

transformation of the true system, so the generic states x1 and x2 could be related to

q and q̇ through linear transformations.

Fig. 35. Comparison of Beam Deflection: Measurements - ERA Estimates

Simulating this linear system and comparing it to the true, measured output
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reveals significant errors. The error in the deflection is shown in Figure 35 on the

preceding page. By comparing this figure with Figure 34 on page 81, one can see

that the errors reach a maximum of approximately five percent between four and

five seconds. Errors of this magnitude would be unacceptable in cases where high

precision is required.

b. Least Squares Estimation

Since the linear state space realization is known, the best estimate of the hidden state

vector can now be calculated using linear least squares. This system was excited by

an initial deflection and no control, so the least squares estimation (LSE) is given by

the following.

x̂ = (CT
LCL)−1CT

Lymeas (6.25)

The error between the LSE-estimated state vector and the ERA-identified state vec-

tor is proportional to the error between the measured output and the ERA output.

Similarly, the motion of the LSE-estimated state vector is proportional to the mea-

sured output. Therefore, plots of these variables will not be included because they

provide the reader with no new information.

c. Nonlinear Function Estimation

Before proceeding, it will be advantageous to take another look at the equation of

motion for this one degree-of-freedom case. Unlike the duffing oscillator example

given in the previous chapter, the equation of motion for the rotating spacecraft has

several forms of nonlinearity.

(M1+4G1q
2︸ ︷︷ ︸

MNL

)q̈+Cq̇+
(
K1 − θ̇2(M1 + 2H1)

)
q+2θ̇ F1(q̇

2 − qq̇)︸ ︷︷ ︸
KF

+ 2q G1(2q̇
2 − θ̇2q2)︸ ︷︷ ︸
KG

= 0

(6.26)
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The nonlinear terms are identified above by their abbreviations. It is easy to see that

the nonlinearities in this equation come from the following types of terms: q̇2q̈, q̇2,

q̇2q, q̇q, and q3, and this is a significant set of nonlinear terms.

The final step in the input-output approximation process for this system is the

nonlinear function estimation. The estimation is straightforward and follows the

adaptive estimation algorithm with GLO-MAP, which was described in the previous

chapter. One drawback of the technique is that the convergence parameter matrix, Γ,

must be tuned in order to achieve satisfactory performance. This is not a complicated

process, but it is a delicate one. For simplicity, the gain matrix was assumed to be an

identity matrix with a constant multiple, γ. The nonlinear parameter estimation was

performed for a wide range of values, and γ = 2.5 was finally chosen as the gain that

produces the best coefficient convergence. A time history of the Fourier coefficient

estimates can be seen in Figure 36 on the following page. This figure shows that the

values converge to constants within the allotted time.

The error between the measured output and the estimated output for the two

methods can be seen in Figure 37 on page 87. The dark line is the error with respect

to ERA, and the light line is the error with respect to the nonlinear input-output

mapping. For all of the measurement locations, the nonlinear approximation out-

performed the linear method. This provides enough confidence to perform the same

investigation with an increased number of degrees of freedom.

3. Several Quadratic Assumed Modes with Higher-Order Terms

The same analysis was performed for the rotational spacecraft with three quadratic

nonlinear modes. The total number of degrees-of-freedom was limited to three for

all simulation cases because of memory constraints. Having more than three degrees-

of-freedom produces more than six states. At this point, the author encountered
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Fig. 36. Fourier Coefficient Convergence, 1 Nonlinear Mode, θ Prescribed, γ = 2.5

Out of Memory errors in Matlab due to the number of grid points required for the

nonlinear function estimation. Recall that for the same number of grid points in each

dimension, the total number of grid points is equal to the number of points in each

dimension raised to the power of the number of dimensions. For these simulations, five

grid points in each of eight dimensions produces 390625 total grid point combinations

whereas five grid points in six dimensions produces only 15625 combinations.

The results of the previous estimation were employed as a starting point for this

estimation, so the adaptive gain matrix, Γ, was initially chosen to be an identity

matrix with a constant multiple, γ. To tune the gain for this test case, the estimation

was run for a wide range of values. Ultimately, a gain of two was chosen. Gains that

are to either too small or too large do not allow the Fourier coefficients to converge.

The chosen value yields the convergence history seen in Figure 38 on page 88. This
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Fig. 37. Output Error Comparison, 1 Nonlinear Modes, θ Prescribed, γ = 2.5
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Fig. 38. Fourier Coefficient Convergence, 3 Nonlinear Modes, θ Prescribed, γ = 2

figure shows the individual elements of the Fourier coefficient matrix as a function of

time. From this plot, one can easily see that the coefficients may oscillate, but the

oscillation damps out before the end of the adaptation.

In addition, the estimate calculated using these coefficients in the nonlinear pa-

rameter identification is superior to the estimate using ERA by itself. Figure 39 shows

the error between the true output and the identified models. The results displayed in

this figure are even more compelling than that for the single degree-of-freedom case.

ERA by itself is not nearly as reliable an estimator as the combination of ERA and

the adaptive function estimator using GLO-MAP.

These results show that the nonlinear parameter identification method devel-

oped at Texas A&M University is successful in identifying the rotating spacecraft

with flexible appendage. In fact, the simulations also suggest that as the number of



89

Fig. 39. Output Error Comparison, 3 Nonlinear Modes, θ Prescribed, γ = 2
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degrees-of-freedom in the simulation increases, the combination of ERA and GLO-

MAP becomes even more effective compared to only using ERA. This is reassuring

because as the number of modes used in the simulation model increases, the measure-

ments provide a more realistic picture of the true system output.

B. Unknown Rotation Rate

For a spacecraft with a flexible appendage rotating at unprescribed rate, Chapter

III showed that the equations of motion are nonlinear regardless of the choice of

assumed modes. Before proceeding to this level of complexity, it was decided that

the nonlinear input-output approximation method should first be applied to a simple

problem with analogous characteristics. In Chapter V, the nonlinear approximation

algorithm was first applied to a nonlinear spring-mass-damper before it was applied

to flexible motion earlier in this chapter. Similarly, the approximation will now be

performed on a nonlinear spring-mass-damper system with rigid-body mode. The

rigid-body mode will mimic the coupling between the flexible and rotational motion

for the spacecraft with unprescribed rotation rate.

1. Duffing Oscillator Simplification

A rigid-body mode is present in the spacecraft with flexible appendage example. This

mode can be simulated in a simple spring-mass-damper system by allowing the system

to move relative to an inertially-fixed reference frame. Figure 40 on the next page is

a visual representation of this system. The duffing oscillator is connected to a block

of mass M that is not constrained to the reference frame. Therefore, when the small

mass is initially displaced, the result is to produce motion in the entire system. The
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equations of motion for this system are given below.

Mẍ1 + c(ẋ1 − ẋ2) + k(x1 − x2) + ε(x1 − x2)
3 = 0 (6.27)

mẍ2 + c(ẋ2 − ẋ1) + k(x2 − x1) + ε(x2 − x1)
3 = 0 (6.28)

This set of equations was simulated with the following constants: M = 3, m = 1,

c = 0.25, k = 1, and ε = 3. With the exception of M , these values are the same

as for the regular duffing oscillator. Figure 41 on the following page is a plot of the

system motion for the following initial state vector, x0 = [2, 1, 0.1, 0, 5]T . Applying

Fig. 40. Duffing Oscillator with Rigid-Body Mode

the Eigen Realization Algorithm to this system results in moderate approximation

errors. For the velocity of the small mass, dx2/dt, the percent error at four seconds is

on the order of fifty percent. This is clearly significant, so ERA does not effectively

approximate this system.

The nonlinear input-output approximation method was then applied to this out-

put data set. As previously stated, one challenge of this method is tuning the adaptive

gain parameters. Extensive efforts to tune the gain matrix could not produce a suit-

able combination of gains even if the grid size was significantly reduced. Either the

gain was too small and the method would not converge, or the gain was too large

and the coefficient estimates would oscillate. Figure 43 on page 94 shows two test
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Fig. 41. Output for Duffing Oscillator with Rigid Body Mode

Fig. 42. Error: Measurements - ERA Output. Duffing Oscillator with Rigid Body

Mode
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cases. For simplicity, the gain matrix in these examples was defined to be an identity

matrix multiplied by a constant value, γ; this simplification was not applied during

the tuning process, but it is included here to more concisely display the results. With

γ = 0.1, most of the coefficients converge, but they converge to values that do not

noticeably change the approximation. On the other hand, a value of 1 for this gain

produces coefficient estimates that are significantly larger, but the estimates oscillate

without showing signs that they will ever converge. It is important to mention that

the maximum basis function order for this simulation was decreased to three which

decreased the number of coefficients to estimate without significantly degrading the

performance.

This result is discouraging because it appears that the nonlinear input-output

approximation algorithm fails for this case. However, there is an underlying cause

for this apparent failure. In adaptive control, it is well known that a controller may

adequately control a system without converging to the true parameters of the system.

The analogy for adaptive estimation is that the estimator may track the output even

if it does not converge to the true system parameters. To converge on the true

parameters, the input signal must be persistently exciting. Persistence of excitation

is a term that describes the richness of the input signal, which usually translates to

the number of distinct frequencies in the signal. For an adaptive controller to estimate

s parameters, the input signal must have at least s/2 distinct frequencies [16].

The duffing oscillator with rigid body mode has to estimate all of the Kg coeffi-

cients. In Chapter V, the dimensions of this matrix were given as the number of basis

function combinations by the number of states. For this example, there are thirty-five

basis function combinations and four states which leads to 140 different parameters

that must be estimated. The initial condition input signal clearly does not contain a

sufficient number of frequencies to estimate the coefficients.
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Fig. 43. Error: Measurements - ERA + GLO-MAP Output. Duffing Oscillator with

Rigid Body Mode
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In fact, this may lead an individual to question the results for the simple duff-

ing oscillator. There were thirteen basis function combinations and two states, so

the initial condition input was not persistently exciting for that example either. The

duffing oscillator example obeyed the phenomenon outlined in the previous paragraph

wherein an estimator may track the output even if the input is not persistently excit-

ing. Unfortunately, it has been shown that the nonlinear input-output approximation

for the duffing oscillator with rigid body mode cannot track the output when given

an input that is not persistently exciting.

It is clear that if the nonlinear approximation algorithm could not estimate this

simple problem then it would not be able to successfully approximate the more com-

plicated problem of the spacecraft with flexible appendage rotating at an unprescribed

rate. Further investigation of this method needs to be performed before the algorithm

can be applied to a problem of this complexity. Suggestions on future research in this

area are given in the following chapter.
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CHAPTER VII

RECOMMENDATIONS

The results from this research were extremely encouraging, so there are several ar-

eas that can be expanded. It has been shown that in order to guarantee coefficient

convergence in the nonlinear input-output approximation method, the input signal

should be persistently exciting. Typical adaptive control literature suggests that to

estimate a set of s linear parameters, the input signal must contain at least s/2 nat-

ural frequencies [16]. To test this hypothesis, the method should be applied to a

simple system, like the duffing oscillator, with persistently exciting input. However,

the Eigen Realization Algorithm, which is the first step of the nonlinear input-output

approximation process, is only valid for systems excited by impulse or initial condi-

tion inputs, so other linear input-output approximation methods would need to be

investigated.

The Observer/Kalman Filter Identification algorithm (OKID) mentioned in the

introduction is a linear mapping that could be substituted for ERA. Both methods

were developed for linear systems and depend on the Markov parameters. However,

OKID contains an observer in addition to a state estimator. The observer gains can

be tuned by the user to create desired observer convergence rates. This algorithm

also takes an arbitrary input time history, which is the most attractive feature for this

research. More information on this identification algorithm can be found in Chapter

VI of Reference [4].

Another available estimation method is the Auto-Regressive Moving-Average

with eXogenous inputs (ARMAX) model. This is an estimation scheme that identifies

the system parameters as a function of both past inputs and outputs where the inputs

come in the form of state inputs and exogenous control inputs [5]. The estimated
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parameters of the system must appear linearly because they are approximated using

a simple least squares routine. The Nonlinear ARMAX, or NARMAX model, is a

modification of this routine that appears to estimate the parameters of a nonlinear

input-output set in a manner similar to the nonlinear input-output approximation

method developed in this work [17]. The author feels that the approximation method

included in this research is significantly more flexible than the NARMAX model, but

combining NARMAX with GLO-MAP may be a worthwhile endeavor.

As previously mentioned, the adaptive estimation algorithm in the nonlinear

approximation requires the estimation of a relatively large parameter set. The obvious

solution to this problem is to excite the system with a known, time-varying controller

that is sufficiently exciting. One less obvious, and perhaps more creative, solution is

to generate the input as a function of artificial states that are augmented to the true

system. These states would be simulated with the true system, and the control on

the true states would be linear combinations of these augmented states. The entire

system, including these fictitious states, would be estimated by the linear parameter

estimation algorithm, so the nonlinear input-output approximation would have full

knowledge of the control structure. In addition, the controls would be linear functions

that appear linearly in the state space model. One final advantage of this scheme is

that the input frequencies can be controlled by the designer. All in all, this promises

to be a clever means of producing persistently exciting motion which would then lead

to successful system identification.

The nonlinear approximation algorithm could also be updated to handle con-

straints. It is well known that a system is governed by kinematic equations, which

are known exactly, and dynamic equations, which contain the uncertainty and nonlin-

earity of the system. If one could separate the kinematic and dynamic motion of the

linearly estimated system, then the adaptive function estimator would only need to
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be employed for the system dynamics. The function estimator could be constrained

to produce zero nonlinear motion in the exact equations, so all of the nonlinearity

would be contained in the dynamic equations which should produce a more realistic

approximation.

One final aspect that can still be explored in this research area is the extraction

of system parameters from the identified model. Parameter identification can mimic

the true system motion quite well, so the estimated system must contain accurate

representations of the true system parameters, like inertia, stiffness, etc. Being able

to extract these constants from the model would open a gauntlet of applications

ranging from parasite detection, to determining flutter characteristics, and even to

nondestructive testing.

Finally, with regard to the rotating flexible structures work, it would be interest-

ing to perform hardware experiments to determine the correlation between the true

motion of a rotational flexible system and the three simulation methods. Specifically,

the differences between the quadratic and nonlinear assumed modes could be evalu-

ated against measurement data. All in all, this research was very rewarding, and it

would be worthwhile to expand this work in the future.
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CHAPTER VIII

CONCLUSIONS

This research began with three main goals: develop a set of nonlinear equations of

motion for the class of rotating spacecraft with flexible appendages, rigorously inves-

tigate the nonlinear input-output approximation method recently developed at Texas

A&M, and apply this approximation technique to the spacecraft model developed

herein. Each of these was extensively evaluated and the results were encouraging.

The higher-order model for the rotational structural dynamics was insightful.

Traditional Assumed Modes uses linear assumed modes which produce a softening

with increased rotation rates. This result is counter-intuitive and indeed incorrect.

Previously developed quadratic assumed modes produce beam stiffening that is more

realistic. The development of the nonlinear assumed modes in this work yields an

even higher fidelity model from which rotational flexible motion can be calculated.

A comparison of linear and nonlinear input-output approximation techniques

revealed that the nonlinear approximation significantly outperforms linear parameter

identification for the class of nonlinear systems. Most real-world systems are governed

by a set of nonlinear equations, so it is reasonable to conclude that the nonlinear

algorithm would be useful in a wide variety of situations.

Finally, the combination of these major research thrusts was successful. The

combined ERA/GLO-MAP approximation estimated the output significantly better

than the ERA-identified model. Results also revealed that the nonlinear estimation

becomes even more superior as the number of degrees-of-freedom in the motion in-

creases. Flexible systems have an infinite number of modes, a large number of which

can be measured, so the new approximation method would be extremely successful

in real-world situations.
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This work has applications in input-output approximation for spacecraft, and this

was the major case to which the research was applied. However, the work could also be

applied to the field of aeroelasticity. Flutter dynamics, especially for fighter aircraft,

could be modeled and estimated using the techniques developed in this research.
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APPENDIX A

VARIABLE DEFINITIONS

Table XII.: Variable Definitions

Variable Definition First Introduced

Roman Letters

AL Linear State Space Matrix Equation 4.9, 5.1

BL Linear State Space Matrix Equation 4.10, 5.1

b Body axes Figure 6

C Rayleigh Damping Matrix Equation 2.10

Cθ Damping coefficient for Rotational eom Equation 3.15

CL Linear State Space Matrix Equation 4.11, 5.1

c Damping Coefficient for Spring-Mass-

Damper

Equation 4.14

DNL Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.55

DL Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.54

DL Linear State Space Matrix Equation 4.12, 5.1

d1, d2 Integer constants, determine the size of

the Hankel matrix

Equation 4.5

E Modulus of Elasticity Equation 2.2

Ej Matrix used in ERA Formulation Equation 4.13
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Table XII.: continued

Variable Definition First Introduced

EF Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.56

EG Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.57

e Error between state vector estimated us-

ing Least Squares and using the GLO-

MAP function estimator

F Third-Order Quadratic Tensor of Nonlin-

ear Terms

Equation 3.34

G Fourth-Order Quadratic Tensor of Nonlin-

ear Terms

Equation 3.35

g Estimated nonlinear function Equation 5.5

H Quadratic Mass Matrix Equation 3.30

H Hankel Matrix Equation 4.5

h Grid Size, distance between grid points in

a given dimension

I Second Moment of Inertia of Bending Sec-

tion

Equation 2.2

i Generic looping variable or subscript

Ĵ Moment of Inertia of Spacecraft

Hub/Appendage Combination

Equation 3.2

Jhub Moment of Inertia of Spacecraft Hub Equation 3.2
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Table XII.: continued

Variable Definition First Introduced

j Generic looping variable or subscript

K Stiffness Matrix Equation 2.6, 2.8, 3.12

Kg Fourier Coefficient Matrix for Nonlinear

Parameter Identification

Equation 5.18

KNL Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.51

KF Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.52

KG Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.53

KL Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.50

k Generic looping variable or subscript

k Spring Stiffness for Spring-Mass-Damper Equation 4.14

L Lagrangean

l Generic looping variable or subscript

M Mass Matrix Equation 2.6, 2.7, 3.9

MNL Coefficient Matrix for Nonlinear Rota-

tional Spacecraft eom

Equation 3.48

m Mass of block in Spring-Mass-Damper Equation 4.14

N Rotation and Flexion Coupling Equation 3.10
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Table XII.: continued

Variable Definition First Introduced

NNL Coefficient Vector for Nonlinear Rota-

tional Spacecraft eom

Equation 3.49

n Number of Assumed Modes included in

the Approximation or Number of states

in estimation

Equation 2.1, 4.8

P Positive definite solution to the Algebraic

Ricatti Equation

Equation 5.18, B.6

p Distance from spacecraft central axis to

differential beam length

Figure 6

Q Matrix for Algebraic Ricatti Equation Equation B.6

q Generalized coordinates for Assumed

Modes method

Equation 2.1

R Radius of Spacecraft Hub Figure 6

r Generic subscript

T Kinetic Energy Equation 2.2

Tflex Kinetic Energy of the Spacecraft Flexible

Appendage

Equation 3.1

Thub Kinetic Energy of the Spacecraft Hub Equation 3.1

TNL Nonlinear Terms of Kinetic Energy,

Quadratic Modes

TL Linear Terms of Kinetic Energy,

Quadratic Modes
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Table XII.: continued

Variable Definition First Introduced

T Transformation Matrix Equation 4.3

t Time

U Singular Value Decomposition, Orthonor-

mal Matrix

Equation 4.6

Un Singular Value Decomposition, Truncated

Orthonormal Matrix

u Longitudinal displacement of generic mass

element

Equation 3.17, 3.23

u Control vector for State Space Realization Equation 4.1

V Singular Value Decomposition, Orthonor-

mal Matrix

Equation 4.6

V n Singular Value Decomposition, Truncated

Orthonormal Matrix

V Potential Energy Equation 2.2

v Rotational Control Torque Equation 3.14

w Weight function vector for GLO-MAP Es-

timation

Equation 5.15, 5.20

X0L Linear State Space Initial Condition Vec-

tor

Equation 4.10

x Distance along transverse axis of flexible

beam

Equation 2.1

x State space state vector Equation 4.1
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Table XII.: continued

Variable Definition First Introduced

x̂ Best Estimate of Hidden State Vector Equation 5.3

xg GLO-MAP estimated state space state

vector

Equation 5.5

y Transverse deflection of flexible beam Equation 2.1

y Output vector for State Space Realization Equation 4.1

yg GLO-MAP estimated state space output

vector

Equation 5.5

z Transformed state vector Equation 4.4

Greek Letters

α Rayleigh damping coefficient Equation 2.10

β Rayleigh damping coefficient Equation 2.10

Γ Convergence Parameter Matrix for Non-

linear Function Estimation

Equation 5.18

γ Constant multiple of Convergence Param-

eter Matrix

δ Substitution operator for index notation

δ Deflection of generic mass element Equation 3.17, 3.27

ε Nonlinear spring constant Equation 4.17

ζ Damping coefficient Equation 2.14

η Transformed generalized coordinates Equation 2.15

Θ Modal or eigenvector matrix Equation 2.11

θ Eigenvector Equation 2.10
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Table XII.: continued

Variable Definition First Introduced

θ̇ Rotation Rate Figure 6

κ Order of a generic basis function Equation 5.23

Λ Eigenvalue matrix Equation 2.11

λ Eigenvalue Equation 2.10

ξ Local Coordinate for Adaptive Function

Estimation

Equation 5.13

ρ Beam Density Equation 2.2

Σ Singular Value Decomposition, Singular

Value Matrix

Equation 4.7

Σn Singular Value Decomposition, Truncated

Singular Value Matrix

Equation 4.8

σ Singular Values Equation 4.8

Φ Basis Function Matrix for GLO-MAP Es-

timation

Equation 5.15, 5.23

φ Space-dependent function for Assumed

Modes method

Equation 2.1

ϕ Basis function for GLO-MAP Estimation Equation 5.23

ψ Quadratic assumed mode for Assumed

Modes method

Equation 3.25

ψ Vector of polynomial combinations from

GLO-MAP polynomial estimation

Equation 5.15

ωn Natural frequency Equation 2.13
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APPENDIX B

DERIVATION OF COEFFICIENT ADAPTATION LAWS FOR NONLINEAR

FUNCTION ESTIMATION

In Chapter V, the nonlinear parameter identification algorithm estimated the

nonlinear function g(xg) using the product of a Fourier coefficient matrix and a

polynomial function estimation. Adaptive estimation was employed to obtain final

values for these coefficients. The estimated control influence matrix Bg was also

adaptively estimated. Adaptation laws were presented in that chapter, and they will

be formally derived here according to Reference [7]. This derivation uses slightly

different notation than the reference, so the reader is urged to use caution when

comparing the two derivations.

First, define the error between the best estimate x̂ and the GLO-MAP estimate

xg of the hidden state vector.

e = x̂− xg (B.1)

Taking a derivative and substituting accordingly gives the following.

ė = ALe+ (Bt − Bg)u+ (Kt −Kg)ψ(xg) + ε (B.2)

In this equation, Bg is the GLO-MAP estimate of the true control influence matrix,

Bt. The unknowns will be consolidated as is typical in adaptive control.

ė = ALe+ B̃u(t) + K̃ψ(xg) + ε (B.3)

To derive the adaptive laws for Bg and Kg , evaluate the following candidate Lyapunov

function

V =
1

2
eTPe+

1

2
Tr(B̃Γ1B̃

T) +
1

2
Tr(K̃Γ2K̃

T) (B.4)
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where P is a positive definite symmetric matrix, and Γ1 and Γ2 are constant matrices

with full rank. After taking the time derivative, the following equation is revealed.

V̇ =
1

2
eT
(
PAL + AT

LP
)︸ ︷︷ ︸

≡−Q

e+ eTP
(
B̃u(t) + K̃ψ(xg) + ε

)
+ (B.5)

+Tr
(
B̃Γ1

˙̃B
)

+ Tr
(
K̃Γ2

˙̃KT
)

The matrix Q is defined to satisfy the algebraic Ricatti equation.

PAL + AT
LP = −Q (B.6)

Substituting this matrix and gathering terms leads to the following equation.

V̇ = − 1

2
eTQe+Tr

(
B̃
[
Γ1

˙̃BT + ueTP
])

+Tr
(
K̃
[
Γ2

˙̃KT +ψ(xg)e
TP
])

+eTPε (B.7)

Set the terms in square braces equal to zero and solve for the adaptation laws. This

combined with the knowledge that Bt and Kt are constants yields adaptation laws

for the unknown constants.

˙̃BT = ḂT
g = −Γ1ue

TP (B.8)

˙̃KT = K̇T
g = −Γ2ψ(xg)e

TP (B.9)

Substituting these equations in to the derivative of the Lyapunov equation produces

a negative definite V̇ .

V̇ = − 1

2
eTQe+ εTPe (B.10)

This function is negative definite if the norm of the error bounds the remaining terms.

For a formal proof of convergence for the adaptation law, see Reference [7].
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