
INDEPENDENT SET PROBLEMS AND ODD-HOLE-PRESERVING GRAPH

REDUCTIONS

A Dissertation

by

JEFFREY S. WARREN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2007

Major Subject: Industrial Engineering



INDEPENDENT SET PROBLEMS AND ODD-HOLE-PRESERVING GRAPH

REDUCTIONS

A Dissertation

by

Jeffrey S. Warren

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Illya V. Hicks
Committee Members, Bryan L. Deuermeyer

Arthur M. Hobbs
Wilbert E. Wilhelm

Head of Department, Brett A. Peters

May 2007

Major Subject: Industrial Engineering



iii

ABSTRACT

Independent Set Problems and Odd-Hole-Preserving Graph Reductions.

(May 2007)

Jeffrey S. Warren, B.S., Abilene Christian University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Illya V. Hicks

Methods are described that implement a branch-and-price decomposition

approach to solve the maximum weight independent set (MWIS) problem. The

approach is first described by Warrier et. al, and herein our contributions to this

research are presented. The decomposition calls for the exact solution of the

MWIS problem on induced subgraphs of the original graph. The focus of our

contribution is the use of chordal graphs as the induced subgraphs in this solution

framework.

Three combinatorial branch-and-bound solvers for the MWIS problem are

described. All use weighted clique covers to generate upper bounds, and all

branch according to the method of Balas and Yu. One extends and speeds up

the method of Babel. A second one modifies a method of Balas and Xue to

produce clique covers that share structural similarities with those produced by

Babel. Each of these improves on its predecessor. A third solver is a hybrid of

the other two. It yields the best known results on some graphs.

The related matter of deciding the imperfection or perfection of a graph

is also addressed. With the advent of the Strong Perfect Graph Theorem, this

problem is reduced to the detection of odd holes and anti-holes or the proof of

their absence. Techniques are provided that, for a given graph, find subgraphs in

polynomial time that contain odd holes whenever they are present in the given



iv

graph. These techniques and some basic structural results on such subgraphs

narrow the search for odd holes.

Results are reported for the performance of the three new solvers for the

MWIS problem that demonstrate that the third, hybrid solver outperforms its

clique-cover-based ancestors and, in some cases, the best current open-source

solver. The techniques for narrowing the search for odd holes are shown to

provide a polynomial-time reduction in the size of the input required to decide

the perfection or imperfection of a graph.



v

To Amy



vi

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Founda-

tion under Grants Nos. DMI-0217265 and DMI-0521209. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the

author and do not necessarily reflect the views of the National Science Founda-

tion.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Independent Set Problems . . . . . . . . . . . . . . . . . . 1
B. Hole Detection . . . . . . . . . . . . . . . . . . . . . . . . . 3
C. Research Objectives . . . . . . . . . . . . . . . . . . . . . . 3

II A BRANCH-AND-PRICE APPROACH FOR THE MWIS
PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B. The Branch-and-Price Formulation . . . . . . . . . . . . . 5
C. Chordal Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 8
D. Chordal Graphs and the Vertex-Set Partition . . . . . . . . 8
E. The MWIS Problem on Chordal Graphs . . . . . . . . . . 9
F. Improving the RMP Formulation . . . . . . . . . . . . . . 10
G. Initial Feasible LP Solutions . . . . . . . . . . . . . . . . . . 11
H. Computational Results . . . . . . . . . . . . . . . . . . . . . 12
I. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

III COMBINATORIAL BRANCH-AND-BOUND APPROACHES
FOR THE MWIS PROBLEM . . . . . . . . . . . . . . . . . . . . . 14

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 14
C. Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . 16

1. Balas and Yu . . . . . . . . . . . . . . . . . . . . . . . . 16
2. Balas and Xue . . . . . . . . . . . . . . . . . . . . . . . 19
3. Babel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

D. Our Analysis and Discoveries . . . . . . . . . . . . . . . . 24
E. New Clique Cover Methods . . . . . . . . . . . . . . . . . 31

1. Method A . . . . . . . . . . . . . . . . . . . . . . . . . 31
2. Method B . . . . . . . . . . . . . . . . . . . . . . . . . . 32

F. Implementation Issues . . . . . . . . . . . . . . . . . . . . . 34
1. The Branch-and-Bound Algorithms . . . . . . . . . . 34
2. Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . 35

G. Computational Results . . . . . . . . . . . . . . . . . . . . . 36



viii

CHAPTER Page

H. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV ODD-HOLE-PRESERVING GRAPH REDUCTIONS . . . . . . . 47

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B. Structures Related to the Presence of Holes . . . . . . . . 47
C. Hole-Preserving Graph Reductions . . . . . . . . . . . . . 48
D. Results for Reduced Graphs . . . . . . . . . . . . . . . . . 50
E. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

V CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A. Independent Set Problems . . . . . . . . . . . . . . . . . . 58
B. Odd-Hole-Preserving Graph Reductions . . . . . . . . . . 59

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



ix

LIST OF TABLES

TABLE Page

I The algorithm of Warrier et al. on DIMACS graphs . . . . . . . . . . 13

II The Balas-Yu algorithm and its variants . . . . . . . . . . . . . . . . . 26

III The Balas-Xue algorithm and its variants . . . . . . . . . . . . . . . . 26

IV The Modified Chordal Variant of the Balas-Yu algorithm . . . . . . 28

V The Modified Chordal Variant of the Balas-Xue algorithm . . . . . . 29

VI Algorithms A and A* on DIMACS graphs . . . . . . . . . . . . . . . 38

VII Algorithms A and A* on weighted random graphs . . . . . . . . . . 38

VIII Algorithm B and the Babel algorithm on weighted random graphs 39

IX The effect of weight distribution on Algorithm B and the Babel
algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

X Algorithms B and AB on DIMACS graphs . . . . . . . . . . . . . . . 40

XI Algorithm AB on weighted random graphs . . . . . . . . . . . . . . 41

XII Algorithm AB and Cliquer on regular graphs . . . . . . . . . . . . . 42

XIII Algorithm AB and Cliquer on random graphs with two dis-
tinct vertex degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

XIV Two sub-problem solvers used within the algorithm of Warrier
et al. on DIMACS graphs . . . . . . . . . . . . . . . . . . . . . . . . . 44

XV Two sub-problem solvers used within the algorithm of Warrier
et al. on 100-vertex random graphs . . . . . . . . . . . . . . . . . . . 46



1

CHAPTER I

INTRODUCTION

A. Independent Set Problems

For a graph G = (V,E), S ⊆ V is an independent set if no vertices in S are adjacent.

The maximum independent set (MIS) problem is to find an independent set of

largest cardinality in a given graph. The maximum weight independent set

(MWIS) problem is to find an independent set of highest total weight in a given

graph according to some weighting of the vertices. Both problems are NP-hard

[1].

Exact solutions to these problems are often desired. Problems from coding

theory, plane tiling, combinatorial auctions and coloring can be expressed as

independent set problems for which one would require or prefer an exact solution

[2]. Two examples follow.

In combinatorial auctions, bidders bid for collections of goods instead of only

for single goods. A simple type of combinatorial auction is one in which a set

G of goods is for sale, each bid bi is made for a subset of goods Gi ⊆ G, and all

bids are made secretly and simultaneously. We are interested in knowing which

bids should be accepted to produce the greatest possible return for the seller. We

do so by modeling the question as a MWIS problem. We form a graph whose

vertices are the sets of goods bid on. Two distinct vertices are adjacent if their

intersection is nonempty. The weight of each vertex Gi is the bid bi made for it.

A maximum weight independent set of this graph indicates the desired choice of

bids.

The journal model is IEEE Transactions on Automatic Control.



2

The minimum coloring problem for a graph G = (V,E) is to find a partition

S1, . . . , Sk of V with each Si an independent set and with k minimum. In [3],

Mehrotra and Trick describe a column-generation method for solving the mini-

mum coloring problem. The column-generating sub-problem they use is a MWIS

problem on G, with weights determined by the dual variables corresponding

to the coverage constraints in the master problem. While improving columns

could be produced without optimally solving the MWIS sub-problem, an exact

sub-problem solution is required for determining the optimality of a best known

solution of the master problem.

Many have worked to solve both the MIS and MWIS problems exactly. Tech-

niques include explicit enumeration of maximal independent sets [4], combinato-

rial branch-and-bound [5, 6, 7, 8, 9, 10, 11, 12, 13], and continuous formulations

under branch-and-bound [14, 15]. We refer the reader to [2] for a discussion of

these lines of research. Further discussion of previous relevant methods can be

found in Chapters II and III.

We will investigate several approaches for obtaining exact solutions. Chap-

ter II discusses our contributions to a branch-and-price method for solving the

MWIS problem first presented in [16]. The research represents a significant ad-

dition to the literature on continuous methods for the MWIS problem.

Chapter III discusses combinatorial branch-and-bound methods for solving

the MWIS problem. The research described there re-evaluates the merits of sev-

eral established combinatorial methods for the MWIS problem, clarifies their sig-

nificance, and improves upon them.



3

B. Hole Detection

For a graph G = (V,E), H ⊆ V is a hole if G[H] is a cycle. A hole is odd or even

as its cardinality is odd or even. A graph is Berge if both it and its complement

contain no odd holes.

Chudnovsky et al. proved in [17] that a graph is perfect if and only if it is

Berge. Perfect graphs are an important class of graphs, not least because several

NP-hard optimization problems are solvable in polynomial time on them. Chud-

novsky and Seymour recently proved in [18] that a graph can be shown to be

Berge in polynomial time. This result, however, leaves open the question of how

difficult it is to find odd holes themselves. The odd hole detection problem is

to decide if a graph has an odd hole. While deciding Berge-ness is in P, it is not

known if the odd hole exclusion problem is in P. In [19] Bienstock showed that

the related problem of deciding if a graph or its complement has an odd hole

containing a vertex specified a priori is NP-complete. No procedure has been

developed that will quickly identify odd holes in a graph. In Chapter IV, we will

investigate methods for simplifying the detection of odd holes.

C. Research Objectives

The MWIS problem can be solved exactly using a linear-programming-based

branch-and-bound algorithm. The linear programs (LPs) at each node in the

branch-and-bound tree can be solved using a decomposition approach to column-

generation that calls for the repeated solution of the MWIS problem on subgraphs

of the original graph (with vertex weightings adjusted from their original values).

We will develop a method to partition the vertex set of a graph to produce the

subgraphs to be used by such a column-generation routine as implemented in



4

[16].

We will develop a combinatorial branch-and-bound algorithm to exactly solve

the MWIS problem. The algorithm will exploit and extend the best techniques

from previous solvers that use clique covers to provide their bounds.

We will investigate the polynomial-time detection of sets U ⊆ V such that

G[U] contains an odd hole if G does. We will analyze the structure of such

induced subgraphs.



5

CHAPTER II

A BRANCH-AND-PRICE APPROACH FOR THE MWIS PROBLEM

A. Introduction

In [16], Warrier et al. describe a branch-and-price decomposition approach to

solving the maximum weight independent set (MWIS) problem. Section B ex-

plains the basic branch-and-price formulation. Further sections in this chapter

will address our contributions to that approach.

The decomposition in [16] calls for the exact solution of the MWIS problem on

induced subgraphs of the original graph. Our contribution centers on the use of

chordal graphs as the induced subgraphs in this solution framework. Section C

introduces chordal graphs, and Section D discusses the detection of induced

subgraphs that are chordal. Section E explains how the MWIS problem can be

solved quickly on chordal graphs, motivating their use as branch-and-price sub-

problems. We discuss in Sections F and G our other contributions to the approach

that are not specific to the choice of decomposition method.

B. The Branch-and-Price Formulation

Consider a graph G = (V,E) and a weight function w : V → R, where V =

{v1, . . . , vn}. A base formulation for an integer program (IP) that solves the MWIS

problem for G rests on defining an integer decision variable xi associated with

vertex vi, where xi = 1 if vi belongs to a chosen independent set, and xi = 0

otherwise. To guarantee that the xi values correspond to an independent set, we

enforce a constraint xi + x j ≤ 1 for every edge viv j ∈ E. The objective function

needed to solve the MWIS problem is
∑n

i=1 w(vi)xi.



6

The decomposition approach of [16] calls for partitioning V as V1 ∪ · · · ∪Vk.

Each Vi for i ∈ {1, . . . , k} induces a subgraph in G having edge set Ei. We define Ê =

E\⋃k
i=1 Ei and V̂ as the set of vertices incident to at least one edge in Ê. We define

Q as the set of all binary |V|-tuples satisfying all edge constraints corresponding

to edges in
⋃k

i=1 Ei. We also define the vector w with elements wi = w(vi). Then

an equivalent IP formulation of the MWIS problem is maximizing w · x over all

x ∈ Q such that xi + x j ≤ 1 for all viv j ∈ Ê. Define the matrix A so that these edge

constraints for edges in Ê are represented by Ax ≤ 1.

Consider each x ∈ Q, the weight vector w, and the matrix A to be partitioned

according to the partition of V:

x =
[
x1 · · · xk

]

w =
[
w1 · · ·wk

]

A = [A1 · · ·Ak] .

Then our objective function is equivalent to
∑k

i=1 wi · xi, and our constraints are

equivalent to
∑k

i=1 Aixi ≤ 1 for all xi ∈ Qi, i ∈ {1, . . . , k}.
The Dantzig-Wolfe decomposition of the linear relaxation of this IP yields a

reduced master problem (RMP) that optimizes over the convex hulls of the Qi:

Max
k∑

i=1

wi ·

|Ri |∑

j=1

λi jxi j



subject to
k∑

i=1

Ai


|Ri |∑

j=i

λi jxi j

 ≤ 1 (2.1)

|Ri |∑

j=1

λi j = 1 ∀i ∈ {1, . . . , k} (2.2)

λi j ≥ 0 ∀i ∈ {1, . . . , k}, j ∈ {1, . . . , |Ri|},



7

where Ri ⊆ Qi is the set of known extreme points of conv(Qi), and the xi j are the

indexed members of Ri. Sub-problem i over Qi is then

Max (wi − Aiπ) · xi

subject to xi ∈ Qi,

where π is a vector of the
∣∣∣Ê

∣∣∣ dual variables corresponding to Constraint 2.1 of

the RMP.

The column-generation process works as follows. We begin by assigning to

each Ri some known extreme points of each conv(Qi) and solving the RMP. The

dual variables π are passed to all sub-problems, which are then optimized. For

each optimal sub-problem solution xi, we compute (wi − Aiπ) · xi − ρi, where ρi

is the dual variable corresponding to the ith equality in Constraint 2.2. If this

quantity is positive, then xi is an improving column and is added to Ri. We then

repeat the process of solving RMP and the sub-problems until no sub-problem

solutions are improving columns for RMP.

This procedure, of course, solves only the linear relaxation of our IP. If the

optimal solution to this linear relaxation has non-integer-valued variables, then

we will proceed with a branch-and-bound approach to find the optimal integer

solution.

If we hope to apply Dantzig-Wolfe decomposition to the given IP formu-

lation of the MWIS problem, we will need a method for solving each of the

sub-problems that the decomposition produces. Our first contribution to this ap-

proach is a method to partition V so that each sub-problem is a MWIS problem

on a chordal graph. Our second is an efficient method to solve every sub-problem

instance, regardless of additional constraints provided by the branch-and-bound

process. The following sections describe these contributions.



8

C. Chordal Graphs

A graph is chordal if all its cycles of length at least four have a chord. Equiv-

alently, a graph is chordal if all its induced cycles are triangles. Clearly, every

induced subgraph of a chordal graph is chordal.

Given a permutation v1, . . . , vn of a graph’s vertices, a successor of vi is any

neighbor v j of vi such that j > i. If vi has any successors in the permutation, then

the successor with the lowest index is called the first successor of vi.

A permutation of a graph’s vertices is a perfect elimination scheme (PES)

if, for every i, the first successor of vi is adjacent to all other successors of vi.

A graph is chordal if and only if it has a PES (see [20]). For a chordal graph

G = (V,E) with PES σ and W ⊆ V, W induces a PES for G[W] in σ.

If, in a general graph G = (V,E), W ⊆ V induces a chordal subgraph, then

G[W] is called a chordal induced subgraph (CIS) of G.

D. Chordal Graphs and the Vertex-Set Partition

To achieve the partition of the vertex set required for the decomposition described

above, we will make use of a method to find a vertex-maximal CIS in a given

graph. A vertex-maximal CIS for the graph G = (V,E) can be found in O(|V|+ |E|)
time using the following algorithm of Balas and Yu [5]. Let L(v) be a sequence

of labels for each vertex v ∈ V. Assign the empty sequence to C and empty

sequences to L(v) for each v ∈ V. Let U ← V and i ← n. For general i, choose a

vertex w ∈ U for which L(w) is lexicographically largest. Let U ← U \ {w}. If w

can be prepended to C so that the resulting sequence is a PES, then do so and

append i to each L(v) for which v ∈ U ∩N(w). Last, decrement i by 1 and repeat

until i = 0. C will then be a PES for a vertex-maximal chordal induced subgraph



9

of G.

Our implementation of the algorithm adds a degree-based tie-breaker to the

original: if vertices tie for the lexicographically largest label among all unnum-

bered vertices in U, then those having the highest degree in G[U] are favored.

Further ties are broken arbitrarily.

To achieve the desired partition of V, we do the following. Let U ← V and

let T be the vertex set of a vertex-maximal CIS in G[U]. Then let U ← U \ T and

repeat, retaining the sets T until U is empty. Then each set in our collection will

induce a chordal subgraph in G.

E. The MWIS Problem on Chordal Graphs

The motivating advantage of our partitioning method is that the MWIS problem

is efficiently solved on chordal graphs. For the chordal graph G = (V,E), a MWIS

can be found in O(|V|+|E|) time using the algorithm of Frank in [21]. We are given

v1, . . . , vn as a PES for G and wi as the weight of vi for all i ∈ {1, . . . , n}. Inspect the

vertices in order from v1 to vn and add to the set T the first one having positive

weight, say vi. Reduce the weight of each of its successors by wi, and find the

next vertex with positive weight. Continue until all vertices have been inspected.

At that point, all vertices in V are either in V \ T with non-positive weight or in

T with positive weight.

Now, inspect the vertices of T in reverse order of their indices. Take the first

and add it to set S. Continue with the other vertices, adding them to S if none

of their successors are in S. When every vertex in T has been inspected, S will

be a maximum weight independent set of G.

Solving the MWIS problem using the Dantzig-Wolfe decomposition requires



10

the application of branch and bound. At each node of the branch-and-bound tree,

we will specify a set of vertices that are excluded from an optimal independent

set and a set of vertices that must be included in an optimal independent set.

This can be enforced in RMP by adding appropriate equality constraints on the

variables corresponding to the included and excluded vertices.

In the sub-problems, we enforce these inclusions and exclusions by modifying

the vertex weights used in Frank’s algorithm. For a graph G = (V,E) with PES

σ, let I ⊆ V be a set of vertices that we must include in the optimal independent

set, and let X ⊆ V be a set of vertices that we must exclude from the optimal

independent set. We assume that I and X are disjoint and that X contains at least

the neighbors of all vertices in I. We can solve the constrained problem by setting

the weight of each excluded vertex to zero and the weight of each included vertex

to one and then applying Frank’s algorithm.

Frank’s algorithm never increases the weight of a vertex, and it never adds

to T (or subsequently S) a vertex of weight zero. Thus, it never adds a vertex in

X to S. Further, the algorithm never reduces the weight of a vertex in I, because

none is ever the successor of a vertex in T. Therefore, it adds every vertex of I to

T; it later adds each one to S because none ever has a successor in T, let alone S.

F. Improving the RMP Formulation

For a clique K of G, with vertices vi1 , . . . , vit ,
∑t

j=1 xi j ≤ 1 is a valid constraint for the

base IP formulation in Section B. We call such a constraint a clique constraint.

Using this constraint in our IP formulation obviates the use of all edge constraints

corresponding to edges having their ends in K. In RMP, each edge constraint (the

individual inequalities of Constraint 2.1) corresponds to an edge having ends in



11

different sets of the partition of V (i.e., an edge belonging to Ê). So, if we can

identify cliques of G that include vertices from different Vi, then we will be able

to replace edge constraints with clique constraints.

We can do this as follows. Begin by assigning to F the set Ê. Choose an

arbitrary edge uv ∈ F, find a maximal clique in G[F] (the graph with vertex set

V̂and edge set F) containing u and v, and then extend it to a maximal clique in

G. Remove from F every edge induced by that clique. Repeat, collecting all these

cliques, until F is empty.

It would suffice to use clique constraints corresponding to the maximal

cliques of G[F] that we find; these would guarantee that every edge constraint of

RMP is enforced. The clique constraints for the maximal cliques of G that we find

are valid, however. They yield a tighter RMP polytope at little cost compared to

the cost of the clique constraints corresponding to maximal cliques of G[F].

G. Initial Feasible LP Solutions

To begin solving the column-generation formulation of the MWIS problem de-

scribed in Section B, we must initialize the sets Ri with some extreme points of

each conv(Qi). To do so, we use a heuristic for the MIS problem and partition

the resulting independent set according to the partition of V.

For every v ∈ V, we find a maximal independent set of G containing v. This

results in some m ≤ n independent sets S1, . . . , Sm; depending on the structure of G

and the behavior of the heuristic, not all independent sets found will necessarily

be unique. Then we compare each independent set to the partition of V: if

Vi ∩ S j 6= ∅ for i ∈ {1, . . . , k} and j ∈ {1, . . . ,m}, we add a vector corresponding to

Vi ∩ S j to Ri.



12

H. Computational Results

Our partitioning method was tested against another method in [16]. The other

method begins with a pre-specified number of parts k and applies the METIS

clustering algorithm [22, 23, 24] to produce k parts for V having cardinalities of

either
⌊

V
k

⌋
or

⌈
V
k

⌉
and such that the number of edges having ends in two parts of

the partition is small. Sub-problems on the resulting subgraphs were solved by

a weighted analog of the algorithm of Carraghan and Pardalos [9].

Table I reports results for the two methods on graphs from the Second DI-

MACS Implementation Challenge [25]; the times are in seconds, and an asterisk

(*) denotes instances in which computer memory was exhausted. These results

are as reported in [16].

The METIS-based method dominates ours. One reason for this is that, for

almost all graphs, METIS leaves a much smaller portion of the graph’s edges in

Ê. So, while our approach may have sub-problems that solve quickly, those sub-

problems do not assume much of the computational cost of solving the overall

problem.

Another reason is that the two approaches produce sub-problems having

different polyhedral structure. If each part Vi induces a chordal graph, then the

convex hull of each Qi is an integer polytope. In [26], Geoffrion demonstrated

that such a decomposition, the optimal objective value of RMP is equal to the

optimal objective value of the linear relaxation of the original problem. The Qi

produced by METIS do not generally have integer convex hulls. The RMP of

a decomposition based on a METIS partition can thus have an optimal objective

value less than that of the original linear relaxation. As a result, the METIS-based

method will fathom more branch-and-bound nodes and produce a smaller tree.



13

Table I. The algorithm of Warrier et al. on DIMACS graphs
Chordal METIS

Graph |V| |E| α(G) Time Nodes
∣∣∣Ê

∣∣∣ Time Nodes
∣∣∣Ê

∣∣∣
brock200 3 200 7,852 15 * >9,000 7,325 2,537.4 3,624 3,463
c-fat200-1 200 18,366 12 158.5 90 16,696 8.9 6 8,999
c-fat200-2 200 16,575 24 261.1 25 15,912 19.2 8 11,406
c-fat200-5 200 8,473 58 * >13 11,201 86.3 33 9,523
hamming8-2 256 1,024 128 0.6 1 846 0.6 1 626
hamming8-4 256 11,776 16 * >3,500 10,650 6.1 1 6,528
johnson8-2-4 28 168 4 1.1 8 113 0.2 8 137
johnson8-4-4 70 560 14 11.5 79 433 0.6 1 240
johnson16-2-4 120 1,680 8 1.7 16 1,243 0.6 1 1,082
keller4 171 5,100 11 * >25,000 4,499 1,812.2 12,523 3,293
p hat300-1 300 33,917 8 * >2,000 31,511 479.4 1,086 16,580

I. Conclusions

We have explained in this chapter how a graph’s vertex set can be partitioned

so that each set in the partition induces a chordal subgraph of the given graph.

The MWIS problem on each of these subgraphs or on one of their own induced

subgraphs can be solved exactly in polynomial time. In [16], Warrier et al. demon-

strate the feasibility of using such a partition on some (but not all) graphs, judging

the performance of their branch-and-price approach to be fair but not excellent

on those graphs under this partition scheme.

We have also demonstrated how the RMP of the branch-and-price method

in [16] can be tightened and reduced in size by constructing clique constraints.

Last, we have given a method for initializing the sets of known extreme points

for use by RMP.



14

CHAPTER III

COMBINATORIAL BRANCH-AND-BOUND APPROACHES FOR THE MWIS

PROBLEM

A. Introduction

Clique covers have been used to provide upper bounds in successful branch-and-

bound solvers for both the MIS and MWIS problems. We describe herein three

branch-and-bound algorithms based on clique covers. The first uses a cover-

creation routine that is procedurally like those in [5] by Balas and Yu and [6] by

Balas and Xue, but whose clique covers borrow structural features from those

created by the algorithm in [27]. The second is a more direct improvement on

Babel’s algorithm that significantly reduces the run time required on integer-

weighted graphs and generalizes to the case of real-valued weights. The third is

a hybrid of the other two; it yields the best known results on some graphs.

The methods and conclusions of the three papers noted above will be impor-

tant to our discussion, so we will explain their work in some detail. Section C

summarizes these previous studies, and Section D contains our analysis of that

strand of research, including some experimental work. Sections E and F describe

our contributions that arose from that analysis, and Section G relates our subse-

quent computational results. Our conclusions from these new computations are

given in Section H. First we will address some preliminary matters.

B. Preliminaries

For basic terminology and an introduction to graph theory, we refer the reader

to [28]. All graphs in this chapter are finite and simple. We assume in this



15

chapter that the vertex and edge sets of a graph named G are named V and E,

respectively. The set of all neighbors in G of a vertex v is denoted NG(v), and its

set of non-neighbors (namely V \NG(v) \ {v}) is denoted N̄G(v); we will dispense

with subscripts when the meaning is clear. We may associate with a graph G a

weight function w : V → R; for our purposes, the weights will be restricted to

the positive reals. For every U ⊆ V, we denote by w(U) the sum of the weights

of its members, with w(∅) = 0. The maximum cardinality of an independent set

of G is denoted α(G). The maximum value of w(S) among all independent sets S

of G is denoted αw(G).

A clique of graph G is a set of vertices K ⊆ V such that all pairs of vertices

in K are adjacent. Cliques of G are independent sets of Ḡ, so the above problems

are equivalent to the maximum clique problem and the maximum weight clique

problem. The size of a maximum clique and the total weight of a maximum

weight clique in G are denoted by ω(G) and ωw(G). For an introduction to all these

problems, we refer the reader to [2], which addresses them as clique problems.

A clique cover of graph G is a collection of cliques K1, . . . ,Kt such that V =
⋃t

i=1 Ki. The least such t for G is denoted φ(G). The complementary notion — an

analogous collection of independent sets — is called a coloring. The minimum

number of sets in a coloring for G is denoted χ(G).

A weighted clique cover of G is a collection of cliques J1, . . . , Js together with

real numbers W1, . . . ,Ws such that for every v ∈ V,

∑

i:v∈Ji
Wi ≥ w(v).

We call the Wi the weights of their respective cliques (not to be confused with

w(Ji), and we call
∑s

i=1 Wi the weight of the weighted clique cover. The least



16

weight of a weighted clique cover of G is denoted φw(G). The complementary

notion — an analogous collection of independent sets and weights — is called

a weighted coloring, and the corresponding minimum weight for G is denoted

χw(G).

Clique covers and weighted clique covers of G provide upper bounds on α(G)

and αw(G). The intersection of any independent set of G and any clique of G is

empty or a singleton, thus in keeping with the above notation, these inequalities

hold:

α(G) ≤ φ(G) ≤ t

αw(G) ≤ φw(G) ≤
s∑

i=1

Wi.

Analogous inequalities hold for colorings and clique numbers

C. Previous Work

1. Balas and Yu

A graph G is perfect if, for each of its induced subgraphs G[H], α(G[H]) =

φ(G[H]). An equivalent condition is that ω(G[H]) = χ(G[H]) for each G[H]. More-

over, the complement of every perfect graph is itself perfect. Perfect graphs are

of particular interest to us because polynomial-time algorithms exist to solve the

MIS and MWIS problems on them.

A graph is chordal if all its cycles of length at least four have a chord. Chordal

graphs (and their complements) are perfect. Every non-empty graph has a chordal

induced subgraph since every graph on three vertices or fewer is chordal.

Based on an algorithm in [29], Balas and Yu developed in [5] a polynomial-

time algorithm to find a vertex-maximal chordal induced subgraph of a given



17

graph; the algorithm simultaneously finds a maximum clique of that subgraph.

They also developed a polynomial-time algorithm to create an optimal coloring

of a chordal graph. Analogous, complementary methods produce optimal clique

covers and MISs of graphs whose complements are chordal.

Most importantly, they devised the following branching strategy that has

been used in many subsequent research efforts:

1. For a graph G and an independent set S ⊆ V, find U ⊆ V for which it is

known that α(G[U]) ≤ |S|.

2. Order the vertices of V \U as x1, . . . , xk.

3. For each i, let Vi = N̄(xi) \ {x j : j < i}, and find a MIS Si in G[Vi].

Either S or one of S1 ∪ {x1}, . . . , Sk ∪ {xk} is a MIS for G. The same method, of

course, can be applied to the problem on each G[Vi]. Repeated application will

yield MIS problems on induced subgraphs of the form G[V \ (I ∪ X)], where I

is a set of forcibly included vertices (from the successive choices of xi in Step 3

above, whereby I is an independent set) and where X is a set of forcibly excluded

vertices (from the successive restrictions of the problem to N̄(xi) \ {x j : j < i} in

Step 3). If an independent set S solves such a problem, then the independent set

I ∪ S may solve the problem at the root node of the branch-and-bound tree. We

will refer to this as the Balas-Yu Branching Scheme.

Balas and Yu put these pieces together as follows. First, find a vertex-maximal

induced subgraph G[T] such that Ḡ[T] is chordal, along with a MIS S of G[T].

Next, since φ(G[T]) = |S|, optimally cover G[T] with cliques K1, . . . ,K|S|. Clearly,

each Ki contains one member of S. Then sequentially add as many vertices v ∈
V \ T as possible (in an arbitrary sequence) to any of these cliques containing



18

only vertices of N(v), yielding cliques K̂1, . . . , K̂|S| (where Ki ⊆ K̂i for each i). If

we let U =
⋃|S|

i=1 K̂i, then K̂1, . . . , K̂|S| is a clique cover of G[U], and we see that

α(G[U]) ≤ φ(G[U]) ≤ |S| (since S ⊆ U, we actually have equality at each step). The

sets S and U thus satisfy the requirements of Step 1 in the Balas-Yu Branching

Scheme, so apply it. We will call this procedure for coloring and branching the

Chordal Method of Balas and Yu.

Balas and Yu deemed the Chordal Method computationally expensive; it

requires O(|V| + |E|) time. They proposed a cheaper method to produce a set U

and an independent set S to which their Branching Scheme would apply. Given

an independent set S in G (in practice, the largest known), find disjoint cliques

K1, . . . ,K|S| and let U =
⋃|S|

i=1 Ki. The method for finding the cliques is the same

as applying the greedy clique-covering extension of the Chordal Method to a

collection of |S| empty sets. The cliques Ki cover G[U], so α(G[U]) ≤ φ(G[U]) ≤ |S|,
and the Balas-Yu Branching Scheme applies. We will call this procedure for

creating a clique cover and branching the Greedy Method of Balas and Yu. This

method also requires O(|V|+|E|) time, but dispenses with finding a vertex-maximal

chordal induced subgraph of Ḡ, resulting in a smaller constant coefficient for

(|V| + |E|).
We call the following overall algorithm the Balas-Yu Algorithm. It corre-

sponds to the variant called TC4 in [5]. The root node of the branch-and-bound

tree corresponds to the MIS problem on G itself. Among all unsolved MIS prob-

lems on the induced subgraphs G[V \ (I ∪ X)], the algorithm chooses one with

|I| maximum. It then decides whether |V \ X| ≤ |S|, in which case the problem is

discarded since it cannot produce an independent set larger than S. Apart from

that case, it applies the Chordal Method to G[V \ (I ∪ X)] if |I| = |S| and applies

the Greedy Method otherwise.



19

The computational results in [5] demonstrate that the Balas-Yu Algorithm

handily outperforms its ablest predecessor, the algorithm in [4] by Bron and

Kerbosch.

2. Balas and Xue

Balas and Xue [6] extended the Balas-Yu Algorithm to the weighted case. Chordal

graphs remain useful in the weighted case, because, again, the complement of

a chordal graph is perfect, and, for a perfect graph G, any H ⊆ V satisfies

αw(G[H]) = φw(G[H]) for all w : V → R. By extending the coloring algorithm

in [5], Balas and Xue developed a polynomial-time algorithm to find an optimal

weighted coloring of a chordal graph. Their simple generalization of the algo-

rithm in [5] to find a vertex-maximal chordal induced subgraph finds a maximum

weight clique of the subgraph while constructing the subgraph. They also gener-

alized to the weighted case both the clique-cover extension procedure in [5] and

the Balas-Yu Branching Scheme. The generalization of the branching scheme is

straightforward: in Step 1, replace “α(G[U]) ≤ |S|” with “αw(G[U]) ≤ w(S)”, and

in Step 3, replace “maximum” with “maximum weight.” We will refer to this as

the Balas-Yu Branching Scheme as well, since the generalization is so straightfor-

ward, and context will make clear which version (weighted or unweighted) we

are referring to.

At each branch-and-bound node, Balas and Xue undertake a process that is

mostly analogous to the Balas-Yu Algorithm. For a graph G with weight function

w, find a vertex-maximal induced subgraph G[T] such that Ḡ[T] is chordal, and

simultaneously find a MWIS S of G[T]. Next, find a weighted clique cover of G[T]

consisting of cliques K1, . . . ,Kt and weights W1, . . . ,Wt such that the sum of all

the weights is φw(G[T]). Greedily add vertices of V \ T to these cliques to create



20

cliques K̂1, . . . , K̂t such that if U =
⋃t

i=1 K̂i, then the sets K̂1, . . . , K̂t and the weights

W1, . . . ,Wt are a weighted clique cover of G[U]. Since the weights are the same

for both weighted clique covers, φw(G[U]) = φw(G[T]), whereby S is a MWIS for

G[U], so apply the Balas-Yu Branching Scheme. We will call this procedure for

weighted coloring and branching the Weighted Chordal Method of Balas and

Xue.

Like Balas and Yu in [5], Balas and Xue in [6] elected to apply this Weighted

Chordal Method to only some nodes of the branch-and-bound tree (their account

seems ambivalent, however; see pages 218–219 of their paper). Although they do

not state explicitly the conditions for applying it, we assume that they are similar

to those in the Balas-Yu Algorithm (probably they chose the obvious weighted

analog). Also, they do not explain their method for branch-set construction for

nodes at which they do not apply the Weighted Chordal Method. For this chapter,

we assume that their procedure is similar to the one below. At each step, it creates

a clique, assigns it a weight, and updates the amount of uncovered weight each

vertex has. It also keeps track of vertices that should not be considered for

membership in the cliques being generated by reason of their being fully covered

already or being uncoverable with the remaining available weight.

1. Take a heaviest known independent set S of G.

2. Let V1 = V, w1 = w, and i = 1.

3. Find a maximal clique Ki of G[Vi].

4. Let Wi = min{wi(v) : v ∈ Ki}.

5. Let wi+1(v) = wi(v) −Wi for v ∈ Ki, and let wi+1(v) = wi(v) otherwise.



21

6. Let Ui = {v ∈ Vi : wi+1(v) = 0}, Zi =
{
v ∈ Vi : wi+1(v) > w(S) −∑i

j=1 W j

}
, and

Vi+1 = Vi \ (Ui ∪ Zi).

7. If Vi+1 is not empty, increment i and go to Step 3.

At the end of this procedure, K1, . . . ,Ki with weights W1, . . . ,Wi form a weighted

clique cover of G[U1 ∪ · · · ∪ Ui]. The Balas-Yu Branching Scheme then applies.

We will call this procedure for weighted coloring and branching the Weighted

Greedy Method.

While the Weighted Greedy Method is not explicitly specified in [6], it is

a straightforward extension of the Greedy Method of Balas and Yu. For G and

a constant w, it would produce a weighted clique cover of G equivalent to the

(unweighted) clique cover produced by the Greedy Method when applied to G

with no weight function, assuming the cliques in Step 3 of the Weighted Greedy

Method are found in the same way as those found in the Greedy Method. Note

that the use of Zi in Step 6 would be superfluous for a constant weight function w.

We have included it in the Weighted Greedy Method since, for a non-constant w,

it provides slightly better covers at little additional cost, and a similar technique

is employed in one of our own methods (see Section 1).

When combined with a problem-selection and fathoming process analogous

to that in [5], these weighted clique cover methods yield the Balas-Xue Algo-

rithm. The computational results in [6] demonstrate that it outperforms its ablest

predecessor, a weighted version of the algorithm in [9].

3. Babel

Babel [27] introduced a new method for generating weighted clique covers for

graphs whose vertex weights are positive integers. Because of the restriction on



22

weights, this method can apply an equivalent definition of weighted clique cover:

a weighted clique cover of weight t for the graph G with integer-valued weight

function w is a collection of cliques K1, . . . ,Kt such that for every v ∈ V,

∣∣∣∣
{
K j : v ∈ K j

}∣∣∣∣ ≥ w(v).

Note that W instances of the same clique according to this definition would

correspond to a clique with weight W in our previous definition of weighted

clique cover.

Given a collection {K1, . . . ,Kt} of cliques in G, the generalized clique degree

(GKD) of a vertex v ∈ V is ∣∣∣∣∣∣∣∣

⋃

u∈N̄(v)

{
K j : u ∈ K j

}
∣∣∣∣∣∣∣∣
.

If those cliques contain only vertices of some U ⊆ V and are a weighted clique

cover for G[U], then a vertex v ∈ V \U with a GKD greater than t − w(v) cannot

be added to enough cliques in the collection for G[U ∪ {v}] to be covered. GKD

of vertices in V \U thus indicates the least number of cliques that must be added

to the collection for it to become a weighted clique cover of G.

GKD is a weighted (and complementary) analog to the quantity called satu-

ration degree in [30]. The method in [27] for generating weighted clique covers,

which we will refer to as the Babel Method, is likewise an analog to the coloring

method in [30].

At every step, the Babel Method maintains a list of cliques. Each step involves

selecting a vertex and adding it to some cliques in the list. At the end of each

step, the cliques are a weighted clique cover of the subgraph induced by the

vertices selected thus far.

Begin each step by choosing a vertex v having maximum GKD among all



23

uncovered vertices, breaking ties by choosing heavier vertices. Assign to W the

weight w(v); this represents the uncovered weight of v. Inspect the cliques in the

list in order. If all members of the clique are neighbors of v, then add v to K and

decrement W. If W = 0, end the current step. If W > 0, inspect the next clique

in the list. If W > 0 after all cliques have been inspected, then add W instances

of the clique {v} to the end of the list and end the current step. Note that since

vertices are selected by GKD, the members of some maximal independent set S

are the first vertices covered.

Babel also noted, however, that some vertices can be eliminated from con-

sideration after covering the graph. For each v ∈ V, let K (v) be the collec-

tion of cliques in the weighted clique cover that contain v or any member of

N̄(v). K (v) is a weighted clique cover for G[{v} ∪ N̄(v)], so if |K (v)| ≤ w(S), then

αw(G[{v} ∪ N̄(v)]) ≤ w(S), and v belongs to no independent set of G heavier than

S. If we let D = {v ∈ V : |mathcalK(v)| ≤ w(S)}, then αw(G −D) > w(S) if and only

if αw(G) > w(S). Thus, instead of branching based on our weighted clique cover,

we can discard it, retain S, and begin again by covering G − D. Babel reports

in [27] that such elimination and re-covering is often advantageous, sometimes

eliminating the need for branching altogether.

When needed, branching is performed as follows. After completing the Babel

Method, index the cliques in the weighted clique cover as K1, . . . ,Kt according to

their order in the list. For each v ∈ V, define r(v) as the greatest j ∈ {1, . . . , t} such

that v ∈ K j. Order the vertices in V as v1, . . . , vn so that r is non-increasing on

the sequence. Let s be greatest in {1, . . . , n} such that r(vs) > w(S). Note, then,

that {vs+1, . . . , vn} is a valid choice for U in the Balas-Yu Branching Scheme. If we

maintain the order v1, . . . , vs for the vertices to be branched on, then branching

yields vertex sets V1, . . . ,Vs. Then for every i ∈ {1, . . . , s}, r(vi) ≥ r(v) for all v ∈ Vi.



24

Since no v ∈ Vi belongs to any clique in the weighted clique cover to which vi also

belongs, we conclude that the weighted clique cover induces a weighted clique

cover of weight r(vi) − w(vi) on G[Vi] and one of weight r(vi) on G[{vi} ∪ Vi]. We

retain r(vi) since it provides these upper bounds on αw(G[Vi]) and αw(G[{vi}∪Vi]).

If we then find an independent set of G with weight at least r(vi) before solving the

sub-problem on G[Vi], we can discard the sub-problem. We call this combination

of the Babel Method with the Balas-Yu Branching Scheme the Babel Algorithm.

Babel reported in [27] significant improvements over the performance of the

Balas-Xue Algorithm in most cases, especially on low-density graphs.

D. Our Analysis and Discoveries

We first note that the Balas-Yu Algorithm seldom applies the Chordal Method. At

the root node of the branch-and-bound tree both the best known independent set

S and the set of forcibly included vertices I are empty. They satisfy the condition

|I| = |S| under which the Chordal Method is applied (see the end of Section 1).

The Chordal Method is otherwise used only at a node rather deep in the branch-

and-bound tree (assuming that a reasonably good clique was found at the root

node) when |I| = |S| > 0 (whereby I is also a best known independent set) and yet

V \ (I ∪ X) is nonempty (whereby any of its vertices could be added to I to form

a new best known independent set). So every time the Chordal Method is used,

the best known independent set is guaranteed to be replaced. Yet in those very

situations, an improving independent set could easily be found without using

the Chordal Method.

Now, if, at the root node, the Chordal Method found a MIS S of G but could

not cover G with |S| cliques, causing the Balas-Yu Algorithm to branch, then the



25

Chordal Method would never again be used. The same would be true if we

were to supplement the Balas-Yu Algorithm by first using a heuristic method

to find some large independent set and happened to find a MIS. So the power

behind the Balas-Yu Algorithm seems to be its Greedy Method and the Balas-Yu

Branching Scheme; the Chordal Method appears to serve primarily as a heuristic.

If our assumptions in Section 2 about the Balas-Xue Algorithm are correct, then

its Weighted Chordal Method would also seem to serve primarily as a heuristic.

This is suggested by some of the results presented in [5] (see their Table 5.1), but

it is clearly demonstrated by an experiment of ours that we now describe.

We implemented the Balas-Xue Algorithm (under the assumptions men-

tioned in Section 2, whereby, for constant weight functions, our implementation

reduces to an implementation of the Balas-Yu Algorithm) and two variants: one

that uses the Weighted Chordal Method at every node of the branch-and-bound

tree and another that likewise uses the Weighted Greedy Method. We call these

adaptations the Chordal Variant and the Greedy Variant. We started the Greedy

Variant by applying a modest greedy heuristic; see Section 1 for details. For con-

stant w, all three implementations reduce to variants of the Balas-Yu Algorithm.

We ran these three algorithms (six, counting the unweighted versions) to solve

the MIS and MWIS problems on several graph instances.

Table II shows results obtained by solving the MIS problem on some graphs

from the Second DIMACS Implementation Challenge [25]; the times are in sec-

onds, and an asterisk (*) denotes instances in which computer memory was ex-

hausted. Table III shows results obtained by solving the MWIS problem on some

uniform random graphs with uniformly distributed vertex weights; see Section G

for details about these graphs. Each line of Table III gives the average times and

numbers of branch-and-bound nodes across a sample of 10 graphs with the same



26

edge probability p. The range of edges in the graphs is given in the column under

|E|.

Table II. The Balas-Yu algorithm and its variants
Balas-Yu Greedy Chordal

Graph |V| |E| α(G) Time Nodes Time Nodes Time Nodes
MANN a9 45 72 16 0.1 477 0.1 507 15.5 62,204
brock200 1 200 5,066 21 * >700,000 705.6 645,467 * >500,000
brock200 2 200 4,024 12 5.1 4,179 4.6 3,915 50.4 65,573
brock200 3 200 7,852 15 35.6 33,014 37.6 35,565 * >300,000
brock200 4 200 6,811 17 60.2 51,178 78.0 72,894 * >400,000
c-fat200-1 200 18,366 12 <0.1 13 <0.1 5 <0.1 12
c-fat200-2 200 16,575 24 <0.1 2 <0.1 1 <0.1 2
c-fat200-5 200 8,473 58 0.1 30 0.1 28 0.2 30
c-fat500-1 500 120,291 14 0.1 11 <0.1 1 0.1 11
c-fat500-2 500 115,611 26 0.2 11 0.1 1 0.1 11
c-fat500-5 500 101,559 64 0.1 3 0.1 1 0.1 3
c-fat500-10 500 78,123 126 0.3 3 0.1 1 0.3 3
hamming8-2 256 1,024 128 28.1 8,691 29.2 8,751 * >400,000
hamming8-4 256 11,776 16 3.1 1,744 2.5 1,505 * >300,000
johnson8-2-4 28 168 4 <0.1 30 <0.1 22 <0.1 76
johnson8-4-4 70 560 14 <0.1 37 <0.1 26 4.0 10,458
johnson16-2-4 120 1,680 8 74.8 218,683 72.0 218,387 * >600,000
keller4 171 5,100 11 7.4 9,516 10.8 13,742 * >400,000
p hat300-1 300 33,917 8 3.1 1,716 3.1 1,719 11.7 12,807
p hat300-2 300 22,922 25 310.5 135,703 345.9 149,974 * >250,000

Table III. The Balas-Xue algorithm and its variants
Balas-Xue Greedy Chordal

|V| p |E| Time Nodes Time Nodes Time Nodes
100 0.5 2,428–2,502 0.2 305.6 0.2 293.8 1.1 2,554.1
100 0.4 1,945–2,039 0.4 644.8 0.4 547.9 4.6 10,066.3
100 0.3 1,445–1,524 1.4 2,303.5 1.4 2,229.0 27.2 54,415.1
100 0.2 953–1,049 5.9 9,410.4 6.2 9,582.9 203.1 335,283.7
100 0.1 455–518 33.0 50,314.3 32.8 47,946.8 * >800,000
200 0.5 9,851–10,052 6.3 4,130.0 6.2 4,022.7 51.4 67,195.2
200 0.4 7,839–8,095 29.0 19,101.0 29.6 19,542.1 * >350,000
200 0.3 5,887–6,055 183.8 117,786.7 193.6 124,208.0 * >400,000
200 0.2 3,939–4,057 * >500,000 * >500,000 * >400,000

We take a brief aside here to note that all three key papers report results from

too few random graphs. Balas and Yu [5] generated only one random graph for

each set of graph-generation parameters. Balas and Xue [6] generated only two

graphs per set, and Babel [27] used those same graph instances. When we applied

our implementations of their algorithms to ten graphs per set of graph-generation



27

parameters, we were unable to replicate the average branch-and-bound tree sizes

that they reported (run times, of course, depend on machine speed). Our basis

for comparison, then, will be our own implementations of the algorithms applied

to the random graphs that we ourselves generated. Our results differ somewhat

from theirs, accordingly.

Balas and Yu implemented something similar to the Greedy Variant (again,

some of the details are not specified in [5]) and found it to be as good as or better

than the Balas-Yu Algorithm for graphs with relatively small MISs but consid-

erably worse for graphs with larger MISs. Our implementation of the Greedy

Variant outperformed our implementation of the Balas-Yu Algorithm slightly in

most cases that pose any challenge. The initial heuristic we employed probably

accounts for the similarity in their performances. Balas and Yu also implemented

the Chordal Variant and noted its long run times (as stated earlier, the reason

they developed the Greedy Method). However, we note that, beyond requiring

long run times, our implementation of the Chordal Variant produces a much

larger branch-and-bound tree than either our implementation of the Balas-Yu Al-

gorithm or the Greedy Variant. Similar results hold for the weighted case, as

seen in Table III.

There are two reasons for this. The first has to do with the independent sets

that the Chordal Method finds in nodes below the root of the branch-and-bound

tree and their effect on the clique covers generated at those nodes. Consider the

MIS problem on G and a sub-problem with inclusion and exclusion sets I and X.

Suppose the largest known independent set of G is S, and |I| < |S|. Upon finding

a vertex-maximal T ⊆ V \ (I ∪ X) such that Ḡ[T] is chordal and finding a MIS

ST of G[T], we are not guaranteed that |I ∪ ST | ≥ |S|, even if ST is also a MIS of

G[V \ (I ∪ X)]. In that case, we would produce a clique cover having only |ST |



28

cliques, even though a clique cover with |S|− |I| cliques would be legitimate to use

for branching. We could, therefore, add any |S| − |I ∪ ST | cliques of G[V \ (I ∪X)]

to our clique cover before branching, reducing the number of children produced

by the current sub-problem and the size of the whole branch-and-bound tree.

An analogous savings can be achieved for the weighted case and the Weighted

Chordal Method.

So, we added this feature to both the Balas-Yu and Balas-Xue Algorithms,

with extra cliques being chosen greedily. The results of this Modified Chordal

Variant are given in Tables IV and V. The times and tree sizes are considerably

improved on the challenging problems, but they still do not approach those for

the Greedy Variant, save on p hat300-2.

Table IV. The Modified Chordal Variant of the Balas-Yu algorithm
Graph |V| |E| α(G) Time Nodes
MANN a9 45 72 16 5.1 20,393
brock200 1 200 5,066 21 * >400,000
brock200 2 200 10,024 12 13.9 24,622
brock200 3 200 7,852 15 90.8 131.625
brock200 4 200 6,811 17 182.5 206,220
c-fat200-1 200 18,366 12 <0.1 12
c-fat200-2 200 16,575 24 <0.1 2
c-fat200-5 200 8,473 58 0.2 30
c-fat500-1 500 120,291 14 0.1 11
c-fat500-2 500 115,611 26 0.1 11
c-fat500-5 500 101,559 64 0.1 3
c-fat500-10 500 78,123 126 0.3 3
hamming8-2 256 1,024 128 2.4 51
hamming8-4 256 11,776 16 58.0 36,021
johnson8-2-4 28 168 4 <0.1 76
johnson8-4-4 70 560 14 0.2 350
johnson16-2-4 120 1,680 8 * >600,000
keller4 171 5,100 11 33.0 50,471
p hat300-1 300 33,917 8 4.4 6,225
p hat300-2 300 22,922 25 153.9 67,045

This under-performance indicates to us a second reason for the inferiority

of the original Chordal Variant: there is a fundamental difference in the quality

of weighted clique covers (and, thus, branch sets) produced by the Chordal and



29

Table V. The Modified Chordal Variant of the Balas-Xue algorithm
|V| p |E| Time Nodes
100 0.5 2,428–2,502 0.3 644.4
100 0.4 1,945–2,039 0.8 1,511.5
100 0.3 1,445–1,524 2.3 3,062.6
100 0.2 953–1,049 11.6 11,186.4
100 0.1 455–518 43.7 21,616.5
200 0.5 9,851–10,052 6.8 8,525.3
200 0.4 7,839–8,095 34.1 35,971.5
200 0.3 5,887–6,055 235.6 171,087.6
200 0.2 3,939–4,057 * >400,000

Greedy Methods. Having now given these methods the same upper bound to

use in constructing a weighted clique cover, the two methods still fare differently.

The Babel Algorithm especially indicates the potential for varying quality

in weighted clique covers. Its clique covers are generally better than those of

any of the above variants of the Balas-Yu and Balas-Xue Algorithms, resulting

in considerably smaller trees for many problem instances; Section G gives some

examples. The Babel Method is not without its weaknesses, however.

One weakness of the Babel Method is the computational expense of produc-

ing its weighted clique covers. A rough analysis of the Babel Method indicates

that its run time is O(W |V|2), where W is the maximum weight in the graph.

Recall that the run time of the Greedy Method is O(|V| + |E|), which is itself

O(|V|2). So a large value of W could (depending on the distribution of weights)

offset any difference between the constant coefficients of these big-O measures.

In practice, we find that the Babel Method almost always takes longer than the

Greedy Method, even for W as low as 2.

This weakness is compounded once a MWIS of G has been found but not

proved maximum. The upper bounds computed for all newly-created sub-problems

will not be used to fathom them. Therefore, covering the vertices that eventually

fall in V \U serves no purpose but exacts considerable cost.



30

Another weakness of the Babel Method is exposed when we do indeed con-

sider large values of W: namely, its lack of scalability with respect to vertex

weights. If the Babel Method constructs q cliques to create a weighted clique

cover for G with weight function w, then it constructs p × q cliques when the

weight function is changed to p × w for some integer p. Since the cost of the

Babel Method dominates the overall computational cost of the Babel Algorithm,

increasing the weight function by a factor of p results in a nearly p-fold increase

in the run time of the Babel Algorithm. Changing the weight function this way

would have no effect on the Balas-Xue algorithm (assuming no increase in com-

puter storage is required to represent the new vertex weights). In general, the

Babel Algorithm fares better against the Balas-Xue Algorithm on graphs with

small vertex weights than on graphs with large vertex weights.

Another weakness of the Babel Method is its inability to accommodate real-

valued weight functions. Obviously, it can accommodate rational vertex weights

by changing them to integer weights, but the multiplication required for this

change incurs the aforementioned cost for large vertex weights.

In the next section, we will demonstrate that the weaknesses of these algo-

rithms can be remedied. We will modify the Greedy Method to more nearly

replicate the weighted clique cover successes of the Babel Method while main-

taining the low cost of the Greedy Method. With a superior data representation,

we will overcome the chief weaknesses of the Babel Method without sacrificing

the high quality of its weighted clique covers.



31

E. New Clique Cover Methods

1. Method A

The Babel Method spends its first steps adding the vertices of a maximal inde-

pendent set to its weighted clique cover. We found that the Weighted Greedy

Method is greatly improved by forcing a heavy independent set to be included

in the subgraph G[U] for which the Weighted Greedy Method finds a weighted

clique cover. We call this approach our Method A. Step 3 forces S ⊆ U1 ∪ · · · ∪Ui

by the end of the procedure.

1. Take a heaviest known independent set S of G.

2. Let V1 = V, K1 = ∅, w1 = w, and i = 1.

3. Find a maximal clique K̂i of G[Vi]. If S∩Ki is empty and S∩Vi is not empty,

ensure that a vertex of S is in K̂i . Otherwise, ensure that Ki ⊆ K̂i.

4. Let Wi = min{wi(v) : v ∈ K̂i}.

5. Let wi+1(v) = wi(v) −Wi for v ∈ K̂i, and let wi+1(v) = wi(v) otherwise.

6. Let Ui = {v ∈ Vi : wi+1(v) = 0}, let Zi =
{
v ∈ Vi : wi+1(v) > w(S) −∑i

j=1 W j

}
, and

let Vi+1 = Vi \ (Ui ∪ Zi).

7. If Vi+1 is not empty, then let Ki+1 = K̂i ∩ Vi+1, increment i and go to Step 3.

At the end of this procedure, K1, . . . ,Ki with weights W1, . . . ,Wi form a weighted

clique cover of G[U1 ∪ · · · ∪Ui].

Of course, for constant w, Method A reduces to a method for generating

clique covers. Its overhead can thus be reduced substantially. Steps 4 and 5 are



32

unnecessary. Every Ui is simply K̂i. Computing Zi is unnecessary. Every Ki is

empty, simplifying the logic of Step 3.

At a branch-and-bound node with forcibly included vertices I and forcibly

excluded vertices X, the heaviest known independent set S in Step 1 is an inde-

pendent set of G[V \ (I ∪X)]. But w(S ∪ I) might fall short of the weight of some

heaviest known independent set SG in G. In that case, we can replace w(S) in

Step 6 with w(SG) − w(I). It is only in this case that we can have S ∩ Vi = ∅ in

Step 3 and thus have cliques K̂i containing no vertex of S.

The upper bound computed for the child sub-problem corresponding to xi ∈
V \ (I∪X∪U) is simply the lesser of the upper bound for the parent sub-problem

and

w(S) + w
({

x j : j ≥ i
})
,

though this could easily be made better by accounting for such x j that are neigh-

bors of xi.

2. Method B

We amended the Babel Method to produce a clique-covering method that more

efficiently accommodates non-constant weight functions and also accommodates

arbitrary real-valued weight functions. We call it Method B. For graphs with

integer vertex weights, it constructs a weighted clique cover that is equivalent to

that produced by the Babel Method.

Method B uses the original definition of weighted clique cover that we gave

in Section B. As a result, we provide this equivalent definition of GKD. Given

a collection {K1, . . . ,Kt} of cliques in G and a set of real weights {W1, . . . ,Wt}, the

GKD of a vertex v ∈ V is the sum of weights corresponding to cliques containing



33

non-neighbors of v. Specifically, if we define

Q(v) =
{
i ∈ {1, . . . , t} : Ki ∩ N̄(v) 6= ∅} ,

the GKD of v is then
∑

i∈Q(v) Wi.

At every step, Method B maintains a list of cliques and a corresponding list

of weights. Each step involves selecting a vertex, adding it to some cliques in our

list, and adjusting their weights, if necessary. At the end of each step, the cliques

and weights are a weighted clique cover of the subgraph induced by the vertices

selected thus far.

Begin each step by choosing a vertex v having maximum GKD among all

uncovered vertices, breaking ties by choosing heavier vertices. Assign to Wv the

weight w(v). Inspect the cliques in the list in order. If all members of a clique K

are neighbors of v, then compare Wv to the weight W of K. If W < Wv, add v to

K, reduce Wv by W, and inspect the next clique in the list. If W = Wv, add v to K

and end the current step. If W > Wv, insert a second instance K̂ of K into the list

after K, add v to K, assign Wv as the weight of K, assign W −Wv as the weight of

K̂, and end the current step. If Wv > 0 after all cliques have been inspected, add

the clique {v} to the end of the list, give it weight Wv, and end the current step.

Let K1, . . . ,Kt be our final list of cliques, and let W1, . . . ,Wt be their weights.

Define s(v) as the greatest j ∈ {1, . . . , t} such that v ∈ S j. Defining r′(v) as

s(v)∑

i=1

Wi,

we note that replacing r(v) with r′(v) in the upper bound computations of the

Babel Method is valid.



34

F. Implementation Issues

1. The Branch-and-Bound Algorithms

Methods A and B are used in two branch-and-bound algorithms that we will call

Algorithms A and B, respectively. In Section G, we compare these algorithms

with their respective ancestors, the Balas-Xue Algorithm and the Babel Algorithm

(but see the note on Algorithm A* in Section G). We also created a hybrid

algorithm that we will call Algorithm AB. It employs Method B in the first three

generations of the branch-and-bound tree (i.e., for sub-problems on G[V \ (I ∪X)]

with |I| ≤ 2) and Method A elsewhere. We will demonstrate in Section G that it

often outperforms both Algorithms A and B. Since it is the best representative of

our new work, we will compare it against the best general algorithm known for

the MWIS problem, the algorithm of Östergård in [11]. The rest of this section

gives further details on the implementation of the three algorithms.

When we choose sub-problems in any of our three algorithms, we select a

sub-problem for which the known upper bound on αw(G) is greatest. At the root

node of the branch-and-bound tree, we assign w(V) as the upper bound for the

problem on G.

The ordering of the vertices in V \ (I ∪ X ∪ U) before branching is already

prescribed for Method B. The choice of order is important for Method A, but we

did not investigate new methods. Based on the combined experiences of other

researchers [9, 12, 15], we ordered those vertices in increasing order of the total

weight of their neighbors.

Babel’s technique of elimination and re-covering noted in Section 3 is used

in Algorithm B and at the root node of Algorithm AB. We also developed a

simplified version of this technique that does not require that the whole graph



35

be covered. We use it in Algorithm AB when Method A is applied, though we

do not use it in Algorithm A to allow a more direct comparison to the Balas-

Xue Algorithm. Consider a graph G with weight function w and heaviest known

independent set S. Suppose we know U ⊆ V such that αw(G[U]) ≤ w(S), and we

apply the Balas-Yu Branching Scheme to V \U, resulting in the sets I1, . . . , Ik and

X1, . . . ,Xk of included and excluded vertices, respectively. If any vertex belongs

to
⋂k

i=1 Xi, then it belongs to no independent set of G heavier than S. Instead

of continuing with this branching, we could replace the graph G with Ĝ = G −
⋂k

i=1 Xi. It can be shown that the Babel Method always produces an empty
⋂k

i=1 Xi

because of its technique of elimination and re-covering. It therefore cannot use

this technique as an enhancement. The same is true of Method B.

2. Heuristics

Our heuristic to find heavy independent sets is a best-in greedy heuristic. The

heuristic uses the function

HG(v) =
w(v)

1 + w(NG(v))

(defined even when w(NG(v)) = 0) to assign a value to each vertex in G and

selects a vertex v̂ that maximizes H. It then removes all neighbors of v̂ from

consideration, computes HG[N̄(v̂)](v) for all v ∈ N̄(v̂), and selects another best vertex.

It continues to pick vertices and compute a new H at every iteration until the

selected vertices form a maximal independent set of G. Note that if w is constant,

then HG(v) is simply 1/d(v), and selecting a vertex that maximizes H is the same

as choosing a vertex of least degree. We use a complementary procedure to find

heavy (and large) cliques (see Sections D and 1). This heuristic is applied to

G to begin our Greedy Variant, as described in Section D. It is also applied in



36

Algorithm A to G[V \ (I ∪ X)] at each branch-and-bound node to provide the

independent set S needed by Method A (see Section 1).

In Algorithms A and AB, before we begin to process the branch-and-bound

tree, we apply this heuristic to several induced subgraphs of G. Letting k be the

lesser of |V| and 10 +
⌊ |V|

50

⌋
, we choose k vertices {v1, . . . , vk} having the highest

values of HG. We then apply the heuristic to each G[{vi} ∪ N̄(vi)] to initialize our

heaviest known independent set. The choice of k is arbitrary, of course, but we

find that this choice is usually much better than k = 1 and that larger values of k

are rarely useful for such a simple initial heuristic. More sophisticated heuristics

would certainly be valuable when solving difficult problems. We do not augment

Algorithm AB with this initial heuristic to allow a more direct comparison with

the Babel Algorithm.

G. Computational Results

All our algorithms were implemented in C and run on a computer with dual

2.2-GHz Athlon processors and 2 GB memory (the code was not specialized for

multiple processors).

To generate a random graph like those that we have used, first specify the

vertex set and a probability p. For each possible edge in the graph, generate a

random deviate r in U[0, 1] and include the edge in the graph if r < p. Then for

each vertex, generate a random deviate in DiscreteU[1, 10] to be the weight of the

vertex.

Instead of comparing Algorithm A to the Balas-Yu and Balas-Xue Algorithms

themselves, we will compare it to improved versions of those algorithms. We

demonstrated already that the Greedy Variant usually surpasses the Balas-Yu



37

and Balas-Xue Algorithms in performance (see Section D). The Greedy Vari-

ant employs the Greedy Method within the branch-and-bound framework of the

Balas-Yu and Balas-Xue Algorithms. If, instead, we use the Greedy Method along

with our initial heuristic, upper bound technique, and problem-selection strategy,

then we should obtain an algorithm that behaves, for the most part, like the Balas-

Yu and Balas-Xue Algorithms (which use the Greedy Method at most nodes), but

that enjoys the benefits of these low-cost improvements. We call the result Algo-

rithm A* (whether applying it to weighted or unweighted graphs). It provides

a good point of comparison with Algorithm A since the only difference between

these two is in their branch-set construction methods.

Algorithm A* is almost always better than the Balas-Xue Algorithm and the

Greedy Variant. The only case we found for which it performs substantially worse

than the Balas-Xue Algorithm is p hat300-2.

The computational results for Algorithms A and A* on the complements of

some DIMACS graphs and some random graphs are given in Tables VI and VII,

respectively. In Table VII, the times and numbers of nodes in each row are again

averages across a sample of ten graphs, and the numbers under |E| are again

ranges. The random graphs of Table VII are the same as those of Tables III and

V in Section D.

Table VI demonstrates that Algorithm A* outperforms Algorithm A only

on johnson16-2-4 among the listed DIMACS graphs. In Table VII, we see that

Algorithm A outperforms Algorithm A* on average for all classes of random

graphs listed. In fact, Algorithm A outperformed Algorithm A* on every random

graph instance except for two instances with p = 0.4.

We compared Algorithm B to the Babel Algorithm on the same random

graphs as above and give the results in Table VIII. (Note that their performance



38

Table VI. Algorithms A and A* on DIMACS graphs
A A*

Graph |V| |E| α(G) Time Nodes Time Nodes
MANN a9 45 72 16 <0.1 119 0.1 507
brock200 1 200 5,066 21 454.0 409,818 * >600,000
brock200 2 200 4,024 12 3.8 3,094 4.7 3,938
brock200 3 200 7,852 15 23.3 21,753 37.8 35,565
brock200 4 200 6,811 17 50.2 41,518 55.7 48,063
c-fat200-1 200 18,366 12 <0.1 5 <0.1 5
c-fat200-2 200 16,575 24 <0.1 1 <0.1 1
c-fat200-5 200 8,473 88 0.1 28 0.1 28
c-fat500-1 500 120,291 14 0.1 1 0.1 1
c-fat500-2 500 115,611 26 0.1 1 0.1 1
c-fat500-5 500 101,559 64 0.2 1 0.2 1
c-fat500-10 500 78,123 126 0.2 1 0.2 1
hamming8-2 256 1,024 128 <0.1 1 29.0 8,759
hamming8-4 256 11,776 16 1.4 771 2.6 1,505
johnson8-2-4 28 168 4 <0.1 22 <0.1 22
johnson8-4-4 70 560 14 <0.1 1 <0.1 26
johnson16-2-4 120 1,680 8 84.5 249,278 71.9 218,387
keller4 171 5,100 11 6.1 7,657 10.8 13,742
p hat300-1 300 33,917 8 2.8 1,522 3.0 1,665
p hat300-2 300 22,922 25 57.3 21,871 344.6 149,761

is almost identical for unweighted graphs, so their results on the DIMACS graphs

are reported further below in Table X, where we compare them to the results of

Algorithm AB.)

Table VIII demonstrates that Algorithm B outperforms the Babel Algorithm

for all classes of random graphs listed. We also note that Algorithm A likewise

outperforms the Babel Algorithm. Algorithm B produces the same number of

branch-and-bound nodes for each problem as the Babel Algorithm, as it was

Table VII. Algorithms A and A* on weighted random graphs
A A*

|V| p |E| Time Nodes Time Nodes
100 0.5 2,428–2,540 0.2 226.2 0.2 260.6
100 0.4 1,928–2,053 0.3 430.0 0.3 521.1
100 0.3 1,445–1,524 0.9 1,290.3 1.3 2,091.8
100 0.2 937–1,049 3.1 4,460.9 5.6 8,789.8
100 0.1 455–518 6.2 2,294.4 32.2 47,147.4
200 0.5 9,851–10,052 5.2 3,254.5 5.7 3,695.5
200 0.4 7,839–8,095 23.0 14,459.8 27.0 17,692.4
200 0.3 5,887–6,055 128.0 76,689.9 180.2 115,288.5
200 0.2 3,939–4,057 1,099.2 610,191.3 1,532.6 798,435.5



39

Table VIII. Algorithm B and the Babel algorithm on weighted random graphs
B Babel

|V| p |E| Time Time Nodes
100 0.5 2,428–2,540 0.1 0.2 74.6
100 0.4 1,928–2,053 0.2 0.4 131.3
100 0.3 1,445–1,524 0.4 1.3 286.0
100 0.2 937–1,049 1.1 4.2 627.8
100 0.1 455–518 1.8 8.5 692.5
200 0.5 9,851–10,052 3.0 7.7 1,021.2
200 0.4 7,839–8,095 10.3 30.4 2,795.1
200 0.3 5,887–6,055 48.1 163.3 10,351.6
200 0.2 3,939–4,057 451.3 1,705.6 72,300.1

designed to do, but takes approximately one-half to one-quarter the time that

the Babel Algorithm does. This reduction factor depends on the distribution of

vertex weights. A great variety of investigations are possible into the relationship

between weight distribution and the difference in performance between these two

algorithm, so we cannot be expansive here. Table IX, however, gives a taste of

such an investigation. It shows the performance of each algorithm on graphs with

vertex weights drawn from the discrete uniform distributions on the intervals

listed. We again solved ten problems per set of parameters.

Table IX. The effect of weight distribution on Algorithm B and the Babel algorithm
B Babel

|V| p |E| Interval Time Time Nodes
100 0.1 455–518 [1, 10] 1.8 8.5 692.5
100 0.1 468–524 [1, 20] 1.5 12.2 397.1
100 0.1 463–540 [11, 20] 9.9 95.1 3,791.9

Having demonstrated that Algorithms A and B are competitive with their

ancestors, we now wish to consider their usefulness with respect to all existing

algorithms. To that end, we will use Algorithm AB, the hybrid described in

Section 1. Deep in the branch-and-bound tree for Algorithm AB, both Methods

A and B can usually cover the induced subgraph G[V \ (I ∪ X)] well enough to



40

avoid branching. By using the faster Method A below the root node, Algorithm

AB saves time over Algorithm B. By using the usually higher-quality covers of

Method B at the root node, it produces a smaller branch-and-bound tree than

Algorithm A. Balancing these trade-offs between speed and cover quality in Al-

gorithm AB results in a faster algorithm overall (but note that, for some graphs,

even its branch-and-bound tree is smaller than those of either Algorithms A and

B). Tables X and XI shows how Algorithm AB performs on the graphs we have

encountered so far.

Table X. Algorithms B and AB on DIMACS graphs
Babel/B AB

Graph |V| |E| α(G) Time Nodes Time Nodes
MANN a9 45 72 16 <0.1 184 0.1 507
brock200 1 200 5,066 21 359.1 201,707 480.4 345,422
brock200 2 200 4,024 12 3.3 2,689 3.0 1,731
brock200 3 200 7,852 15 19.6 16,049 26.5 18,563
brock200 4 200 6,811 17 40.6 29,150 40.5 24,165
c-fat200-1 200 18,366 12 <0.1 1 <0.1 1
c-fat200-2 200 16,575 24 <0.1 1 <0.1 1
c-fat200-5 200 8,473 88 0.1 1 0.1 1
c-fat500-1 500 120,291 14 0.1 1 0.2 1
c-fat500-2 500 115,611 26 0.3 1 0.4 1
c-fat500-5 500 101,559 64 1.3 1 1.4 1
c-fat500-10 500 78,123 126 3.5 1 3.6 1
hamming8-2 256 1,024 128 0.1 1 0.1 1
hamming8-4 256 11,776 16 12.0 1,311 11.6 1,682
johnson8-2-4 28 168 4 <0.1 8 <0.1 8
johnson8-4-4 70 560 14 <0.1 9 <0.1 9
johnson16-2-4 120 1,680 8 49.7 153,168 79.4 183,305
keller4 171 5,100 11 5.1 5,060 6.7 6,217
p hat300-1 300 33,917 8 1.6 883 1.7 885
p hat300-2 300 22,922 25 45.9 3,684 43.6 7,488

We will compare Algorithm AB to Cliquer (see users.tkk.fi/∼pat/cliquer.

html), a freely available implementation of both Östergård’s algorithm in [11]

and an extension of it to the MWIS problem. Cliquer is faster than Algorithm

AB on almost all the random graphs we have encountered so far. But there are

other classes of randomly-generated graphs for which this is not the case.

We developed a random graph-generation process based on degree sequences



41

Table XI. Algorithm AB on weighted random graphs
AB

|V| p |E| Time Nodes
100 0.5 2,428–2,540 0.1 68.8
100 0.4 1,928–2,053 0.2 125.2
100 0.3 1,445–1,524 0.4 290.3
100 0.2 937–1,049 1.0 755.3
100 0.1 455–518 1.6 1,331.2
200 0.5 9,851–10,052 3.0 1,018.7
200 0.4 7,839–8,095 10.4 2,823.8
200 0.3 5,887–6,055 41.0 12,158.8
200 0.2 3,939–4,057 300.1 121,749.5

First specify the vertex set and the degree of each vertex; the number of edges

is thus predetermined. The ends of each edge must be selected, and they are

selected randomly whenever possible. When a random selection is possible, ran-

domly choose a vertex currently adjacent to fewer vertices than its desired degree,

randomly choose another such vertex to which the first is not already adjacent,

and create an edge between the two vertices. A random selection is not possible

if at any point a vertex v requires r additional neighbors to achieve its desired de-

gree, and yet only r other vertices not already adjacent to v require any additional

neighbors at all. In that case, make v adjacent to all r of those vertices.

We compared Algorithm AB and Cliquer on graphs with several types of

degree sequences. An elementary choice is to make all vertex degrees the same,

thus producing a regular graph. For several classes of sparse regular graphs,

Algorithm AB beats Cliquer handily. For others, the opposite is true. Table XII

gives some examples. Each line of the table gives average run times across ten

graphs with the given parameters. All the graphs have vertex weights drawn

from DiscreteU[1, 10].

Table XIII gives results comparing these two algorithms on graphs whose

vertices have one of two degrees. For each pair a, b under the heading “Degree”,



42

Table XII. Algorithm AB and Cliquer on regular graphs
AB Cliquer

|V| Degree Time Time
100 3 0.4 77.2
100 4 0.9 14.2
100 5 2.0 9.0
100 6 2.6 3.1
100 7 3.5 1.8
100 8 2.7 1.1
100 9 2.5 0.9
100 10 2.3 0.3
120 3 1.5 1,953.9
120 4 4.3 514.0
120 5 14.7 267.0
120 6 16.5 116.3
120 7 20.6 48.9
120 8 18.2 26.2
120 9 24.2 15.3
120 10 23.5 7.6
140 3 2.5 >10,000
140 4 30.9 >10,000
140 5 71.1 9,754.2
140 6 70.0 4,655.5
140 7 161.0 946.9
140 8 185.6 527.0
140 9 226.7 262.6
140 10 115.7 191.5

the graphs generated have 80 vertices with degree a and 20 vertices with degree

b. Again, all vertex weights are drawn from DiscreteU[1, 10], and the results on

each line are averages across ten graphs.

We investigated the use of Algorithm AB as a sub-problem solver for the

algorithm of Warrier et al. described in Chapter II. The best results reported in

[16] use (a weighted analog of) the Carraghan-Pardalos Algorithm as the sub-

problem solver and partition the vertex set using METIS. For our investigation,

we used the same METIS-based partition and decomposition, but we substituted

Algorithm AB for the Carraghan-Pardalos Algorithm.

We obtained an implementation of the algorithm described in [16]. This im-

plementation was not the same used to produce the results in [16], so we solved

each problem under consideration using both sub-problem solvers in order to ob-



43

Table XIII. Algorithm AB and Cliquer on random graphs with two distinct vertex
degrees

AB Cliquer
|V| Degrees Time Time
100 5,20 3.4 >1,000
100 5,25 0.8 438.5
100 5,30 0.5 171.0
100 5,35 0.2 8.7
100 5,40 0.1 0.3
100 10,20 >1,000 298.9
100 10,25 388.6 105.7
100 10,30 161.2 73.0
100 10,35 183.2 107.6
100 10,40 38.2 90.2

tain comparable run times. We solved these problems using the same equipment

we used to produce the other results in this chapter.

The results of these tests are presented in Tables XIV and XV. In both tables,

the columns headed by “CP” indicate the performance using the Carraghan-

Pardalos Algorithm as the sub-problem solver, and the columns headed by “AB”

indicate the results when Algorithm AB is the sub-problem solver.

Table XIV compares the performances of the two sub-problem solvers on

DIMACS graphs. The number of branch-and-bound nodes required in each case

is similar, as we should expect; the number of nodes can vary from one technique

to the other only if alternate LP optimizers result in different branching activities.

The time required using Algorithm AB as the sub-problem solver is less than that

required by using the CP Algorithm in each case listed.

Table XV compares the performances of the two sub-problem solvers on ran-

dom graphs. These random graphs are the same ones used to test the algorithm

of Warrier et al. in [16]. Each line of the table gives the average results on five

graphs having the same maximum weight and the same edge probability. As

with the DIMACS graphs, the number of branch-and-bound nodes required in



44

Table XIV. Two sub-problem solvers used within the algorithm of Warrier et al. on
DIMACS graphs

CP AB
Graph |V| |E| α(G)

∣∣∣Ê
∣∣∣ Time Nodes Time Nodes

c-fat200-1 200 18,366 12 16,696 17.6 5 10.2 5
c-fat200-2 200 16,575 24 15,912 16.7 15 10.3 15
c-fat200-5 200 8,473 58 11,201 37.2 32 15.8 32
hamming8-2 256 1,024 128 846 0.8 1 0.2 1
hamming8-4 256 11,776 16 10,650 12.1 1 9.1 1
johnson8-2-4 28 168 4 113 0.2 7 0.1 7
johnson8-4-4 70 560 14 433 1.2 1 0.1 1
johnson16-2-4 120 1,680 8 1,243 1.1 1 0.8 1
keller4 171 5,100 11 4,499 2,411.7 14,123 1,247.6 14,082
p hat300-1 300 33,917 8 31,511 873.1 1,308 511.9 1,360

each case is similar. The time required, however, is less for Algorithm AB than for

the Carraghan-Pardalos Algorithm in every instance, with the former exhibiting

200 times the speed of the latter in some cases.

H. Conclusions

We recognized that what we call the Chordal Method used in [5] to generate

clique covers serves primarily as a heuristic in the overall algorithm. Its inferior-

ity to what we call the Greedy Method of [5] was demonstrated by our experi-

ments in Section D. The branching scheme in [5] and the use of clique covers to

enforce the upper bound required by that branching scheme stand as the chief

contributions of that paper. We found that adapting the Greedy Method to force

heavy independent sets to be covered yields considerable computational savings

at small additional computational cost per subproblem.

This change to the Greedy Method as implemented in Algorithm A performs

better even than the Babel Algorithm in [27]. Better yet is our Algorithm B that

produces the same weighted clique covers that the Babel Algorithm does but is

more computationally efficient.



45

Better than either of these is our hybrid Algorithm AB. It combines the su-

periority of the Babel-style (Dsatur) weighted clique covers at the upper nodes of

the branch-and-bound tree with the speed of Method A at the lower nodes. Algo-

rithm AB outperforms the state-of-the-art algorithm Cliquer on some graphs. We

also demonstrated that Algorithm AB is an apt replacement for the Carraghan-

Pardalos Algorithm as a sub-problem solver for the decomposition approach of

Warrier et al..

Some avenues of research appear to have potential due to these results.

Where other graph structures have been used in addition to weighted (or un-

weighted) clique covers to produce branch sets for use with the Balas-Yu Branch-

ing Scheme, one could seemingly apply our Methods A and B to obtain compu-

tational savings over the original implementations.

Method B first covers the vertices of a maximal independent set. Those

vertices are chosen by GKD, with ties broken by weight. Perhaps a different tie-

breaker that also takes into account vertex degree or the weight of non-neighbors

would produce heavier initially covered independent sets, resulting in better

weighted clique covers.

Algorithm AB is a very crude hybrid. It could be improved by employing a

heuristic that gauges the difficulty of the sub-problem to be solved at the present

branch-and-bound node and applies Method B only if the problem seems difficult

enough to benefit from its higher-quality but more expensive weighted clique

covers.

Given that Algorithm AB’s performance relative to that of Cliquer is sensitive

to graph structure, it seems profitable to test these algorithms on other varieties

of graphs.



46

Table XV. Two sub-problem solvers used within the algorithm of Warrier et al. on
100-vertex random graphs

CP AB
Max Wt p Time Nodes Time Nodes
1 0.50 51.4 718.2 17.1 645.0
1 0.40 105.8 1,339.4 37.5 1,320.8
1 0.30 191.9 1,826.8 50.2 1,982.2
1 0.20 679.1 3,104.2 112.1 3,237.6
1 0.15 1,160.0 2,279.0 87.8 2,040.8
1 0.10 1,532.9 766.6 41.4 741.2
1 0.05 310.5 14.2 1.9 17.0
1 0.01 19.3 1.0 0.1 1.0
20 0.50 27.7 339.4 10.1 387.0
20 0.40 46.0 482.6 14.5 472.8
20 0.30 51.7 331.6 9.5 296.6
20 0.20 164.2 414.2 17.7 435.0
20 0.15 259.1 355.6 16.7 350.2
20 0.10 156.0 25.0 2.3 24.8
20 0.05 136.2 7.8 0.6 7.2
20 0.01 7.2 1.0 0.1 1.0
40 0.50 27.7 339.4 10.1 387.0
40 0.40 46.0 482.6 14.5 472.8
40 0.30 51.7 331.6 9.5 296.6
40 0.20 164.2 414.2 17.7 435.0
40 0.15 259.1 355.6 16.7 350.2
40 0.10 156.0 25.0 2.3 24.8
40 0.05 136.2 7.8 0.6 7.2
40 0.01 7.2 1.0 0.1 1.0
60 0.50 21.6 264.8 6.5 248.8
60 0.40 37.4 375.2 12.0 381.8
60 0.30 82.3 592.0 19.8 608.6
60 0.20 165.5 385.6 14.5 344.0
60 0.15 180.5 188.6 9.4 190.4
60 0.10 286.5 72.8 5.5 71.6
60 0.05 42.8 1.2 0.3 1.2
60 0.01 5.8 1.0 0.1 1.0
100 0.50 25.8 325.6 9.8 369.8
100 0.40 46.7 510.8 16.1 562.0
100 0.30 57.5 369.4 12.5 390.0
100 0.20 178.8 525.4 19.7 530.6
100 0.15 358.6 544.0 24.3 539.0
100 0.10 560.9 164.6 11.1 161.8
100 0.05 142.6 7.6 0.6 7.0
100 0.01 7.0 1.0 0.1 1.0



47

CHAPTER IV

ODD-HOLE-PRESERVING GRAPH REDUCTIONS

A. Introduction

We investigate in Section B some structures in graphs that are related to the

presence of holes in graphs. Section C discusses techniques by which subgraphs

of a given graph can be found such that the subgraphs preserve the presence of

odd holes in the given graph. Section D explores properties of such subgraphs

that can simplify the search for odd holes in them.

B. Structures Related to the Presence of Holes

A graph is biconnected if between every two vertices there exist two independent

paths. A graph G must have a biconnected subgraph to contain a hole (or even

a cycle), and every hole of G belongs to some biconnected subgraph of G.

A clique of G is a set K ⊆ V(G) such that the vertices in K are pair-wise

adjacent. A vertex separator of a connected graph G is a set D ⊆ V(G) such that

G−D is not connected. If G has a separator K that is also a clique, and G−K has

components C1, . . . ,Ck, then no hole in G contains vertices from more than one

Ci. Further, any hole in G is a hole in exactly one G[Ci ∪N(Ci)].

Two distinct vertices u and v of G are twins if N(u) = N(v). For twins u and

v and a hole H containing u but not v, (H \ {u})∪{v} is a hole of G. For a different

hole H containing both u and v, we can easily see that |H| = 4, since u and v must

each have two neighbors in G[H], and these neighbors must also be neighbors of

both u and v in G.

Two adjacent vertices u and v of G are pseudo-twins if N(u)4N(v) = {u, v}



48

Pseudo-twins u and v belong to no common hole, for they induce a triangle with

any one of their common neighbors. As with twins, for a hole H containing u

but not v, H \ {u} ∪ {v} is a hole of G.

For a hole H in G and a vertex v ∈ H, N̄(v) ∩H induces an odd-length path

in G. Therefore, no vertex v in G belongs to a hole in G if N̄(v) induces no edge.

A graph is bipartite if the vertex set can be partitioned into two independent

sets. Bipartite graphs cannot contain odd cycles, let alone odd holes.

C. Hole-Preserving Graph Reductions

While the above structural results are simple and well-known, their systematic

use to simplify the odd hole detection problem is not reported in the literature.

While previous work has used results on sufficient conditions for the presence

of odd holes (concerning jewels, proper wheels, pyramids, etc. — see [18, 31]),

the results in Section B suggest some necessary conditions that have not been

investigated. We determine in this section a constructive approach to using these

results as necessary conditions.

We call a graph reduced if it

1. is biconnected,

2. has no clique separator,

3. has no twins or pseudo-twins,

4. has no vertices whose non-neighbors induce no edge, and

5. is not bipartite.

The following steps for a graph G are called the reduction process. During the

reduction process, we create a collection R of reduced subgraphs of G. We draw



49

these from Q, a collection of subgraphs whose status as reduced or non-reduced

has not yet been determined.

1. Add G to Q.

2. Remove an arbitrary subgraph F from Q.

3. If F is not biconnected, then find its maximal two-connected subgraphs

B1, . . . ,Bk, and add each graph F[Bi] to Q. Go to Step 2.

4. If F has a clique separator whose deletion yields components C1, . . . ,Ck, then

add each graph F[Ci ∪N(Ci)] to Q. Go to Step 2.

5. If F has twins or pseudo-twins u and v, then add F − v to Q. Go to Step 2.

6. If F has a vertex v such that F[N̄(v)] has no edges, then add F − v to Q. Go

to Step 2.

7. If F is bipartite, then go to Step 2.

8. Add F to R.

9. If Q is not empty, go to Step 2.

If G has an odd hole on 2k + 1 vertices, then, by the properties explored in

Section B, some graph in R will have an odd hole of that order after applying

the reduction process to G.

We can find the maximal two-connected subgraphs of G in O(|V| + |E|) time

by an algorithm of Tarjan [32]. We can find all clique separators of G in O(|V|+ |E|)
time by another algorithm of Tarjan [33]. We can determine if u and v are twins

or pseudo-twins in O(|E|) time. We can determine if a vertex v of G = (V,E)

has non-neighbors that induce an edge in O(|E|) time. We can determine if G =



50

(V,E) is bipartite in O(|V| + |E|) time. So each step of the reduction process takes

polynomial time.

The total number of graphs in Q and R increases only when Steps 3 and

4 are successfully applied. In all other cases, a graph in Q is transferred to

R, a single graph in Q is replaced by another graph, or a single graph in Q is

discarded. At each successful application of Step 3 with k ≥ 2, at least
(k
2

)
edges

of H̄ are no longer represented in any graph H[Bi]. Likewise, at each successful

application of Step 4, at least
(k
2

)
edges of H̄ are no longer represented in any

graph H[Ci ∪N(Ci)]. As a result, the number of subgraphs produced by the end

of the reduction procedure and the number of steps required to produce them

are not more than
(|V|

2

)−|E| (noted originally by Gavril in [34] with regard to clique

separators). Thus, the reduction process requires polynomial time to complete.

Its worst-case performance is O(|V|3 + |E| |V|2).

D. Results for Reduced Graphs

The following results about cycles and holes hold for reduced graphs, although

several of these permit weaker hypotheses.

1. Every reduced graph has an odd cycle of at least five vertices.

2. Every vertex in a reduced graph lies on an odd cycle.

3. Every vertex in a reduced graph lies on an odd cycle of at least five vertices.

4. Every edge of a reduced graph belongs to an odd cycle of at least five

vertices.

5. Every vertex of a reduced graph lies on a hole.



51

We prove the theorems below. The first will be proved with both a stronger

conclusion and weaker hypotheses than given above.

Theorem 1 Any graph satisfying Parts 1, 2, and 5 of the definition of reduced graph has

an odd cycle of at least five vertices. Further, every triangle of such a graph contributes

at least two vertices to some odd cycle of at least five vertices.

Proof. Let G be reduced. Since it is non-bipartite, it has an odd cycle C. If

|C| ≥ 5, then we are done. If not, C = {a, b, c} is a triangle, and we may construct

a larger odd cycle as follows.

Since C is a clique, but G is reduced, there exists a vertex d ∈ N̄(a) ∪ N̄(b) ∪
N̄(c). G is biconnected, so there exist two d-C paths P and Q having only d in

common. Without loss of generality, we assume that P and Q end in C at a and

b, respectively. If the length of the path aPdQb is 2k for some positive integer

k ≥ 2, then aPdQba is a cycle of odd length 2k + 1 ≥ 5. If its length is 2k + 1

for some positive integer k, then aPdQbca is a cycle of odd length 2k + 3 ≥ 5.

Otherwise, aPdQb has length two; P and Q are the edges ad and bd, respectively.

But d cannot be a neighbor of all three vertices a, b, and c, so d ∈ N̄(c).

G is reduced, so
∣∣∣N̄(a)

∣∣∣ ≥ 2 because N̄(a) induces an edge. But {b, c, d} ⊆ N(a),

so there exists a vertex e ∈ N̄(a) distinct from all vertices that we have identified

so far. Since G is biconnected, there exist two e-{a, b, c, d} paths, R and S, having

only e in common. R and S have ends in {a, b, c, d}; call them p and q, respectively.

If the sum of the lengths of R and S is odd, and thereby at least three, then a path

T of length two in G[a, b, c, d] from p to q would suffice to produce the cycle we

want, for the length of eRpTqSe would be odd and at least five. But inspection

reveals paths of length two in G[a, b, c, d] between all pairs of its vertices.



52

Suppose now that the sum of the lengths of R and S is even, hence at least

two. A path T of length three in G[a, b, c, d] would suffice to produce the cycle we

want, for the length of eRpTqSe would be odd and at least five. But inspection

reveals length-three (Hamiltonian) paths in G[a, b, c, d] having any pair of ends

except a and b.

So, suppose that {p, q} = {a, b}; without loss of generality, a = p and b = q.

Since e is not adjacent to a, the length of R is at least two, whereby the sum of

the lengths of R and S is at least four (since it is even and at least three). The

length of the cycle eRabSe is odd and at least five.

The second part of our conclusion follows by noting that after we supposed

above that C was a triangle, every cycle that we constructed to satisfy the first

part of the conclusion included at least two vertices of C. ¤

We will prove a stronger version of the second theorem listed above. Parts 2,

3, and 4 of the definition of reduced graph need not hold for the result to follow.

Theorem 2 Every vertex in a biconnected non-bipartite graph belongs to an odd cycle.

Proof. Let G be biconnected and non-bipartite. Since G is non-bipartite, it has

an odd cycle C. If C is G, then the theorem holds; otherwise, let v ∈ V(G) \ C.

Since G is biconnected, there exist v-C paths P and Q having only v in common.

Let P and Q end in p and q on C. For some paths R and S, C is pRqSp. Without

loss of generality, take the length of R to be even and the length of S to be odd.

One of vPpRqQv and vPpSqQv is an odd cycle. ¤

Theorem 3 Let G be reduced, and let C be an odd cycle in G of at least five vertices.

Then every vertex of G lies on an odd cycle of at least five vertices that includes at least



53

three vertices of C.

Proof. The conclusion holds for all vertices in C, so pick v ∈ V(G) \ C. Since G

is biconnected, there exist two v-C paths having only v in common. Choose two

such paths, P and Q, such that the sum of their lengths is maximum among all

such pairs of paths. P and Q end in distinct vertices p and q, respectively, on C.

For some paths R and S, C is pRqSp. Without loss of generality, take the length

of R to be even and the length of S to be odd. If the sum of the lengths of P and

Q is odd (hence at least three), then the length of the cycle vPpRqQv is odd and

at least five. If their sum is even, then the length of the cycle vPpSqQv is odd,

and that length is less than five (i.e., is three) only if P, Q, and S have length one.

Suppose this is the case, and note that p and q are consecutive on C, hence

adjacent. Let C′ = C \ {p, q}. Since G has no clique separator, {p, q} does not

separate v from C′, and there exists a v-C′ path R not including p and q. Its end

in C′ we name r. R is also a v-C path. P and R are independent v-C paths, as are

Q and R, so the maximality of the choice of P and Q requires that R be the edge

vr.

Without loss of generality, r is nearest q on C. Let S and T be paths such

that C is pqSrTp. If the length of S is even, then the length of cycle vrSqpv is odd

and at least five. If the length of S is odd and at least three, then the length of T

is at least three by the minimality of S and is odd because of the odd number of

vertices in C. If the length of S is one, then the length of T is odd and at least

three because the number of vertices in C is odd and at least five. So the length

of the cycle vrTpv is odd and at least five.

The second part of our conclusion follows by noting that every cycle that

we constructed to satisfy the first part of the conclusion included at least three



54

vertices of C. ¤

Theorem 4 Every edge of a reduced graph belongs to an odd cycle of at least five vertices.

Proof. Let G be reduced, and let u, v ∈ V be adjacent. By Theorem 3 there exists

an odd cycle C of at least five vertices in G that contains u. If v ∈ V(C) and u and

v are consecutive on C, then we are done. Suppose v ∈ V(C) and u and v are not

consecutive on C. There exists a u-v path P in C of length 2k for some positive

integer k. The cycle uvPu has odd length 2k + 1. If k ≥ 2, then we are done, so

suppose k = 1. Then P is a path uwv for some w ∈ V(C).

Let C′ = C − {u, v,w}. G has no clique separators, so there exists a w-C′ path

Q in G− {u, v} having end x in C′. There are paths E and O having even and odd

lengths, respectively, such that C is uwvExOu, the placements of u and v being

made without loss of generality. Let the length of E be 2m for some positive

integer m, and let the length of O be 2n + 1 for some non-negative integer n. If Q

has odd length 2r + 1 for some non-negative integer r, then the cycle vuwQxEv

has length

1 + 1 + (2r + 1) + 2m = 2(m + r) + 3,

which is odd and at least five. If Q has even length 2s for some positive integer

s, then the cycle uvwQxOu has length

1 + 1 + 2s + (2n + 1) = 2(n + s) + 3,

which is odd and at least 5.

So assume v /∈ V(C). If v has a neighbor w in V(C) such that u and w are not

consecutive on C, then C contains a u-w path O of odd length 2m + 1 for some



55

positive integer m, and the cycle uvwOu has length

1 + 1 + (2m + 1) = 2m + 3,

which is odd and at least five. So suppose v has no such neighbor in V(C).

G is biconnected, so there exists a v-(C − u) path in G − u; choose a longest

such path P, and let its end in C − u be named w. If P has even length 2k for

some positive integer k, then we note that C contains a u-w path E of even length

2m for some positive integer m, and the cycle uvPwEu has length

1 + 2k + 2m = 2(k + m) + 1,

which is odd and at least five.

So suppose P has odd length 2k + 1 for some non-negative integer k. If k

is positive, then we note that C contains a u-w path O of odd length 2m + 1 for

some non-negative integer m, and the cycle uvPwOu has length

1 + (2k + 1) + (2m + 1) = 2(k + m) + 3,

which is odd and at least five.

So suppose that k = 0, whereby P is the edge vw. Since w ∈ V(C), u and w

are consecutive on C, and are thus adjacent in both C and G. Let C′ = C − {u,w}.
G has no clique separator, so there exists a v-C′ path Q ending in some x in V(C′).

Q is also a v-C path, so its length is one by the maximality of P, whereby Q is

the edge {v, x}. By our assumption, u and x are consecutive on C, so v has no

other neighbors in V(C).

Suppose v has a neighbor v′ in V(G−C). Since G is biconnected, there exists

a v′-C path P′ in G−v. But then vv′P′ is a v-C path longer than P, a contradiction.

So N(v) = {u,w, x}. G has no pseudo-twins, so N(u)4N(v) 6= {u, v}, whereby u has



56

some neighbor y distinct from v, w, and x.

If y ∈ V(C), then we note that it is a vertex of C− u, which is a w-x path that

has odd length at least three. Without loss of generality, y has an even distance

from w and an odd distance from x in C−u. So C−u contains a unique y-w path

E having even length 2m for some positive integer m, and the cycle uvwEyu has

length

1 + 1 + 2m + 1 = 2m + 3,

which is odd and at least five.

So suppose y /∈ V(C). G is biconnected, so there exists a y-(C − u) path Q in

G − u with an end z in C − u. Note that v is not a vertex of Q.

Note that z is a vertex of C − u. Without loss of generality, z has an odd

distance from w and an even distance (possibly zero) from x in C− u. So C− u is

wOzEx for two unique paths E and O having lengths 2m and 2n + 1, respectively,

for some non-negative integers m and n (at least one of which is positive).

If Q has odd length 2k + 1 for some non-negative integer k, then the cycle

uvwOzQyu has length

1 + 1 + (2n + 1) + (2k + 1) + 1 = 2(n + k) + 5,

which is odd and at least five. If Q has even length 2k for some positive integer

k, then the cycle uvxEzQyu has length

1 + 1 + 2m + 2k + 1 = 2(m + k) + 3,

which is odd and at least five. ¤

Theorem 5 Every vertex of a reduced graph lies on a hole.



57

Proof. Let G be reduced, and let v ∈ V(G). N̄(v) induces an edge, so it has a

component D that induces an edge. Let

N(D) =


⋃

d∈D
N(d)

 \D,

noting that N(D) ⊆ N(v): clearly v /∈ N(D), and having a nonempty N̄(v) ∩ N(D)

contradicts the choice of D as a component of N̄(v).

N(D) separates v and D, so N(D) is not a clique. Choose two non-adjacent

vertices w, x ∈ N(D). G[D] is connected, and both w and x have neighbors in D,

so G[D∪{w, x}] is connected. So there exists a shortest x-w path P in G[D∪{w, x}].
Since v has no neighbors in D and hence among the internal vertices of P, vwPxv

is a hole in G. ¤

E. Conclusions

We have explained a method by which a graph may be reduced in polynomial

time to a polynomial number of subgraphs such that, if the original graph con-

tains an odd hole, one of the provided subgraphs contains an odd hole. Thus

the odd-hole detection problem can be decided in polynomial time if and only if

it can be decided in polynomial time on reduced subgraphs.

We have also provided promising results on the abundance of holes and large

odd cycles in such reduced graphs. Further, the proof techniques that we have

demonstrated address the construction of paths and cycles in reduced graphs at

a fundamental level and could be useful in developing new structural results for

reduced graphs.



58

CHAPTER V

CONCLUSIONS

A. Independent Set Problems

The decomposition approach to the MWIS problem of Warrier et al. in [16] is a

novel method. Chapter II demonstrates that it has been advanced by our initial-

ization and RMP-tightening techniques. It can also make use of our partitioning

method that produces chordal subgraphs.

It may be possible to find a partitioning method for this decomposition ap-

proach that performs better than METIS. It would almost certainly need to com-

bine small values of
∣∣∣Ê

∣∣∣ with easily solved sub-problems.

In Chapter III, we recognized that the Chordal Method used in [5] by Balas

and Yu is inferior to their Greedy Method. Their branching scheme, however, has

proved very useful in other work. We found that adapting the Greedy Method

to force heavy independent sets to be covered (as does the Babel Algorithm)

yields considerable computational savings at small additional computational cost

per subproblem. The resulting Algorithm A performs better even than the Babel

Algorithm. Better yet is our Algorithm B that produces the same weighted clique

covers that the Babel Algorithm does but is more computationally efficient. Our

hybrid Algorithm AB outperforms the state-of-the-art algorithm Cliquer on a few

graphs. It is also an apt replacement for the Carraghan-Pardalos Algorithm as a

sub-problem solver for the decomposition approach of Warrier et al..

Method B, our modification of Dsatur, might be improved by a suitable re-

placement for GKD, especially one that imitates the order imposed by GKD when

a tiebreaker is not called for.



59

Algorithm AB could be improved by employing a heuristic that assesses

whether Method A or Method B is appropriate for solving a particular sub-

problem. Given that Algorithm AB’s performance relative to that of Cliquer is

sensitive to graph structure, it seems worthwhile to test both the Babel Algorithm

and Algorithm AB on other varieties of graphs.

B. Odd-Hole-Preserving Graph Reductions

In Chapter IV, we developed an odd-hole reduction process. By applying it, a

graph is reduced in polynomial time to a polynomial number of its subgraphs

such that, if the original graph contains an odd hole, one of the provided sub-

graphs contains an odd hole. Thus the odd-hole detection problem can be decided

in polynomial time if and only if it can be decided in polynomial time on reduced

subgraphs.

We have also provided promising results on the abundance of holes and large

odd cycles in such reduced graphs. Further, the proof techniques that we have

demonstrated address the construction of paths and cycles in reduced graphs at

a fundamental level and could be useful in developing new structural results for

reduced graphs.



60

REFERENCES

[1] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-completeness, New York: W.H. Freeman and Company, 1979.

[2] I.M. Bomze, M. Budinich, P.M. Pardalos, and M. Pelillo, “The maximum

clique problem,” in Handbook of Combinatorial Optimization, D.Z. Du and

P.M. Pardalos, Eds., pp. 1–74. Boston: Kluwer Academic Publishers, 1999.

[3] A. Mehrotra and M.A. Trick, “A column generation approach for graph

coloring,” INFORMS Journal on Computing, vol. 8, no. 4, pp. 344–354, 1996.

[4] C. Bron and J. Kerbosch, “Finding all cliques in an undirected graph,”

Communications of the ACM, vol. 16, no. 9, pp. 575–577, September 1973.

[5] E. Balas and C.S. Yu, “Finding a maximum clique in an arbitrary graph,”

SIAM Journal on Computing, vol. 15, no. 4, pp. 1054–1068, November 1986.

[6] E. Balas and J. Xue, “Minimum weighted coloring of triangulated graphs,

with application to maximum weight vertex packing and clique finding in

arbitrary graphs,” SIAM Journal on Computing, vol. 20, no. 2, pp. 209–221,

April 1991.

[7] E. Balas and J. Xue, “Weighted and unweighted maximum clique algorithms

with upper bounds from fractional coloring,” Algorithmica, vol. 15, pp. 397–

412, 1996.

[8] J.-M. Bourjolly, G. Laporte, and H. Mercure, “A combinatorial column gen-

eration algorithm for the maximum stable set problem,” Operations Research

Letters, vol. 20, pp. 21–29, 1997.



61

[9] R. Carraghan and P.M. Pardalos, “An exact algorithm for the maximum

clique problem,” Operations Research Letters, vol. 9, no. 6, pp. 375–382,

November 1990.

[10] C. Mannino and A. Sassano, “Edge projection and the maximum cardinality

stable set problem,” in Cliques, Coloring and Satisfiability: Second DIMACS

Implementation Challenge, D.S. Johnson and M.A. Trick, Eds., vol. 26 of DI-

MACS Series in Discrete Mathematics and Theoretical Computer Science. Ameri-

can Mathematical Society, 1996.

[11] P.R.J. Östergård, “A fast algorithm for the maximum clique problem,” Dis-

crete Applied Mathematics, vol. 120, pp. 197–207, 2002.

[12] E.C. Sewell, “A branch and bound algorithm for the stability number of a

sparse graph,” INFORMS Journal on Computing, vol. 10, no. 4, pp. 438–447,

1998.

[13] D.R. Wood, “An algorithm for finding a maximum clique in a graph,” Op-

erations Research Letters, vol. 21, pp. 211–217, 1997.

[14] E.R. Barnes, “A branch-and-bound procedure for the largest clique in a

graph,” in Approximation and Complexity in Numerical Optimization: Contin-

uous and Discrete Problems, P.M. Pardalos, Ed., pp. 63–77. Boston: Kluwer

Academic Publishers, 2000.

[15] F. Rossi and S. Smriglio, “A branch-and-cut algorithm for the maximum

cardinality stable set problem,” Operations Research Letters, vol. 28, pp. 63–

74, 2001.

[16] D. Warrier, W.E. Wilhelm, J.S. Warren, and I.V. Hicks, “A branch-and-price



62

approach for the maximum weight independent set problem,” Networks, vol.

46, no. 4, pp. 198–209, 2005.

[17] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, “Progress on

perfect graphs,” Mathematical Programming Series B, vol. 97, pp. 405–422,

2003.

[18] M. Chudnovsky and P. Seymour, “Recognizing Berge graphs,” January 2003,

manuscript, available at citeseer.ist.psu.edu/chudnovsky03recognizing.html.

[19] D. Bienstock, “On the complexity of testing for odd holes and induced odd

paths,” Discrete Mathematics, vol. 90, pp. 85–92, 1991.

[20] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, New York: Aca-

demic Press, 1980.

[21] A. Frank, “Some polynomial algorithms for certain graphs and hyper-

graphs,” in Proceedings of the 5th British Combinatorial Conference, C. St. J. A.

Nash-Williams and J. Sheehan, Eds., Winnipeg, 1975, vol. 15 of Congressum

Numerantium, pp. 211–226, Utilitas Mathematica.

[22] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for

partitioning irregular graphs,” SIAM Journal on Scientific Computing, vol. 20,

pp. 359–392, 1998.

[23] G. Karypis and V. Kumar, “Multilevel algorithms for multi-constraint graph

partitioning,” Tech. Rep. 98-019, Army HPC Research Center, Department

of Computer Science, University of Minnesota, 1998.

[24] G. Karypis and V. Kumar, “Multilevel k-way partitioning scheme for irreg-

ular graphs,” J. Parallel Distrib. Comput., vol. 48, pp. 96–129, 1998.



63

[25] D.S. Johnson and M.A. Trick, Eds., Cliques, Coloring and Satisfiability: Sec-

ond DIMACS Implementation Challenge, vol. 26 of DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, American Mathematical Society,

1996.

[26] A.M. Geoffrion, “Lagrangean relaxation for integer programming,” Mathe-

matical Programming Study, vol. 2, pp. 82–114, 1974.

[27] L. Babel, “A fast algorithm for the maximum weight clique problem,” Com-

puting, vol. 52, pp. 31–38, 1994.

[28] D.B. West, Introduction to Graph Theory, Englewood Cliffs, NJ: Prentice Hall,

second edition, 2001.

[29] D.J. Rose, R.E. Tarjan, and G.S. Lueker, “Algorithmic aspects of vertex elim-

ination on graphs,” SIAM Journal on Computing, vol. 5, pp. 266–283, 1976.

[30] D. Brélaz, “New methods to color the vertices of a graph,” Comm. of the

ACM, vol. 22, no. 4, pp. 251–256, April 1979.

[31] M. Conforti, G. Cornuéjols, and G. Zambelli, “Decomposing Berge graphs

containing no proper wheel, long prism or their complements,” Combinator-

ica, vol. 26, no. 5, pp. 533–558, 2006.

[32] R.E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J. Com-

put., vol. 1, pp. 146–160, 1972.

[33] R.E. Tarjan, “Decomposition by clique separators,” Disc. Math., vol. 55, pp.

221–232, 1985.

[34] F. Gavril, “Algorithms on clique separable graphs,” Disc. Math, vol. 19, pp.

159–165, 1977.



64

VITA

Name: Jeffrey S. Warren

Address: Department of Industrial and Systems Engineering

Texas A&M University, College Station, Texas 77843-3131

E-mail Address: j-warren@tamu.edu

Education: B.S., Mathematics, Abilene Christian University, 1996

M.S., Mathematics, Texas A&M University, 1999


