
SEISMIC MODELING OF COMPLEX STRATIFIED RESERVOIRS

A Dissertation

by

HUNG-LIANG LAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2007

Major Subject: Geophysics



SEISMIC MODELING OF COMPLEX STRATIFIED RESERVOIRS

A Dissertation

by

HUNG-LIANG LAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Richard L. Gibson
Committee Members, Akhil Datta-Gupta

David W. Sparks
Joel S. Watkins
Mark E. Everett

Head of Department, John H. Spang

May 2007

Major Subject: Geophysics



iii

ABSTRACT

Seismic Modeling of Complex Stratified Reservoirs. (May 2007)

Hung-Liang Lai, B.S., National Cheng-Kung University, Taiwan;

M.S., National Chung-Cheng University, Taiwan

Chair of Advisory Committee: Dr. Richard L. Gibson

Turbidite reservoirs in deep-water depositional systems, such as the oil fields in

the offshore Gulf of Mexico and North Sea, are becoming an important exploration

target in the petroleum industry. Accurate seismic reservoir characterization, how-

ever, is complicated by the heterogeneous of the sand and shale distribution and

also by the lack of resolution when imaging thin channel deposits. Amplitude vari-

ation with offset (AVO) is a very important technique that is widely applied to lo-

cate hydrocarbons. Inaccurate estimates of seismic reflection amplitudes may result

in misleading interpretations because of these problems in application to turbidite

reservoirs. Therefore, an efficient, accurate, and robust method of modeling seismic

responses for such complex reservoirs is crucial and necessary to reduce exploration

risk.

A fast and accurate approach generating synthetic seismograms for such reser-

voir models combines wavefront construction ray tracing with composite reflection

coefficients in a hybrid modeling algorithm. The wavefront construction approach is

a modern, fast implementation of ray tracing that I have extended to model quasi-

shear wave propagation in anisotropic media. Composite reflection coefficients, which

are computed using propagator matrix methods, provide the exact seismic reflection

amplitude for a stratified reservoir model. This is a distinct improvement over con-

ventional AVO analysis based on a model with only two homogeneous half spaces. I

combine the two methods to compute synthetic seismograms for test models of tur-

bidite reservoirs in the Ursa field, Gulf of Mexico, validating the new results against

exact calculations using the discrete wavenumber method. The new method, however,

can also be used to generate synthetic seismograms for the laterally heterogeneous,

complex stratified reservoir models. The results show important frequency depen-

dence that may be useful for exploration.

Because turbidite channel systems often display complex vertical and lateral het-

erogeneity that is difficult to measure directly, stochastic modeling is often used to
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predict the range of possible seismic responses. Though binary models containing

mixtures of sands and shales have been proposed in previous work, log measurements

show that these are not good representations of real seismic properties. Therefore,

I develop a new approach for generating stochastic turbidite models (STM) from a

combination of geological interpretation and well log measurements that are more re-

alistic. Calculations of the composite reflection coefficient and synthetic seismograms

predict direct hydrocarbon indicators associated with such turbidite sequences. The

STMs provide important insights to predict the seismic responses for the complexity

of turbidite reservoirs. Results of AVO responses predict the presence of gas satura-

tion in the sand beds. For example, as the source frequency increases, the uncertainty

in AVO responses for brine and gas sands predict the possibility of false interpretation

in AVO analysis.



v

ACKNOWLEDGMENTS

Special thanks to Dr. Gibson for his guidance, encouragement and support dur-

ing my study at A&M. Whenever I run into problems with research or lose direction,

he is always there to help me out. Also, I would like to thank my committee Dr.

Datta-Gupta, Dr. Sparks, Dr. Watkins, and Dr. Everett.

I gratefully acknowledge support for this work from the National Science Foun-

dation Information Technology Research program under grant number ACI-0081510

and the Department of Energy National Petroleum Technology Office under project

DE-FC26-02NT15342. I would also like to acknowledge contributions from Nancy

Amato, Jyh-Ming Lien, Roger Pearce, and Samuel Rodriguez (Dept. of Computer

Science, Texas A&M University)

I want to thank colleagues in the Seismic Lab at A&M. Koung-Jin helped me a

lot in research and generously left his Linux box for my work. Ravi and Hoa shared

valuable research suggestions with me. Also, I would like to thank Sung Yuh, Costas

Tzimeas, Pablo, Seung, and John. I always remember you guys being nice to me.

Finally, I appreciate the support from my family. They are the strongest backup

and encouraged me to accomplish my Ph.D.



vi

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Overview . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Dissertation Structure . . . . . . . . . . . . . . . . . . 4

II QUASI-SHEAR WAVE RAY TRACING BY WAVEFRONT

CONSTRUCTION IN 3-D, ANISOTROPIC MEDIA . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Wavefront Construction Method . . . . . . . . . . . . . 7

2.2.1 Adaptations for a qS-wave Implementation . . . . 12

2.2.2 Mesh Initialization . . . . . . . . . . . . . . . . . 15

2.2.3 Mesh Interpolation . . . . . . . . . . . . . . . . . 15

2.3 Examples of Wavefront Meshes . . . . . . . . . . . . . . 16

2.3.1 Homogeneous, VTI Model . . . . . . . . . . . . . 16

2.3.2 Homogeneous, Tilted TI Model . . . . . . . . . . 19

2.3.3 Heterogeneous, VTI Model . . . . . . . . . . . . . 21

2.4 Verification and Validation . . . . . . . . . . . . . . . . 21

2.4.1 Traveltimes . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Multivalued Traveltime Fields . . . . . . . . . . . 23

2.4.3 Amplitudes . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Synthetic Seismograms . . . . . . . . . . . . . . . 30

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 35



vii

CHAPTER Page

III RAY TRACING INCLUDING COMPOSITE REFLECTION

COEFFICIENTS IN STRATIFIED MEDIA . . . . . . . . . . . 38

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Ray Tracing by Wavefront Construction in Multi-

region Models . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Propagator Matrix Method . . . . . . . . . . . . 42

3.2.3 Shuey’s Approximation Method . . . . . . . . . . 44

3.2.4 Backus Averaging . . . . . . . . . . . . . . . . . . 45

3.3 Examples of Ray Tracing of Reflection by Wavefront

Construction . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Verification of Traveltimes and Amplitudes . . . . . . . 46

3.4.1 Traveltimes . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Amplitudes . . . . . . . . . . . . . . . . . . . . . 53

3.5 Composite Reflection Coefficient by Propagator Ma-

trix Method . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Simple Interface Model . . . . . . . . . . . . . . . 58

3.5.2 Thin Layer Embedded Model . . . . . . . . . . . 59

3.5.3 Complex Stratified Reservoir Model — Appli-

cation to the Field Data . . . . . . . . . . . . . . 68

3.6 Validation – Synthetic Seismograms . . . . . . . . . . . 73

3.6.1 Complex Stratified Reservoir Model . . . . . . . . 79

3.6.2 Tilted, Complex Stratified Reservoir Model . . . . 80

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 98

IV STOCHASTIC SEISMIC MODELING OF TURBIDITE RESER-

VOIRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 Building of Stochastic Turbidite Models . . . . . 103

4.2.2 Amplitude Variation with Offset . . . . . . . . . . 111

4.2.3 Fluid Substitution . . . . . . . . . . . . . . . . . 118

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3.1 Stochastic Turbidite and Binary Models . . . . . 119

4.3.2 Synthetic Seismograms . . . . . . . . . . . . . . . 120

4.4 Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4.1 Statistical Analysis of Maximum Amplitudes . . . 126

4.4.2 AVO Analysis . . . . . . . . . . . . . . . . . . . . 126



viii

CHAPTER Page

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 132

V CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



ix

LIST OF TABLES

TABLE Page

2.1 Density-normalized constants for the model 2 in units of GPa,

obtained from a realistic earth model. . . . . . . . . . . . . . . . . . 14

2.2 Density-normalized elastic constants for the model 1 in units of

GPa (Adapted from Thomsen, 1986). . . . . . . . . . . . . . . . . . . 19

2.3 Density-normalized constants for the model 3 in units of GPa

(Adapted from Shearer and Chapman, 1989). . . . . . . . . . . . . . 28

2.4 Density-normalized constants for the model 4 in units of GPa

(Adapted from Ben-Menahem et al., 1991). . . . . . . . . . . . . . . 30

3.1 Velocities and densities of the two-region model. . . . . . . . . . . . . 46

3.2 Velocities and densities of two layers in the simple interface model. . 58

4.1 Model parameters of each layer in the tuning model. . . . . . . . . . 113

4.2 Densities and bulk moduli of the two fluids (Murphy, 1984). . . . . . 119



x

LIST OF FIGURES

FIGURE Page

2.1 Illustration of the two quasi-shear wavefronts (arbitrarily named

qSA and qSB) in the presence of shear wave singularities. (a)

Cross-section of two qS-wave slowness surfaces for a VTI model

(see Table 2.1) in a vertical plane. One is slower (qS1); the other

is faster (qS2). (b) Particle motion directions are calculated with

respect to slowness directions. It suggests the reason to choose the

correct wave type (qS1 and qS2) for qSA and qSB wavefronts. (c)

By using particle motion as a criterion to separate two qS-waves,

qSA wavefront is determined. (d) Then, the other wavefront is for

qSB-wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Schematic illustration of the logical geometry of a wavefront mesh

constructed by quadrilateral cells. Each cell is bounded by four

rays’ takeoff angles. Dot and square represent exiting and inter-

polated rays, respectively. Dashed lines is the new boundaries of

the new quadrilateral cells. (Adapted from Gibson, Jr. et al., 2005). . 10

2.3 Schematic illustration of the wavefront propagation and its ray in-

terpolation. (a) An wavefront element is constructed by four rays

(solid lines with arrows) and interpolated rays (dashed lines with

arrows) are inserted if the wavefront curvature exceeds a crite-

rion. (b) Examples of side views show new rays inserted whenever

needed for accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 The trace element of the matrix Dij is plotted against the decli-

nation angle of slowness vectors for two qS-waves in a VTI model

(Table 2.1). D values of two qS-waves are zero in both line and

kiss singularities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 A schematic illustrates the wave types of interpolated rays are

tested to ensure that the correct qS-wave ray is selected to main-

tain a physically meaningful wavefront mesh while a portion of

the wavefront crosses a singularity. . . . . . . . . . . . . . . . . . . . 16



xi

FIGURE Page

2.6 By using particle motion as a criterion to separate two qS-waves,

qSA and qSB waves are distinguished in a VTI model with line

singularities (see Table 2.2). (a) Cross-section of two qS-wave

slowness surfaces for the model in the vertical plane. (b) Cross-

section of two qS-wave wavefronts for the model in the vertical

plane. Note the order of the outer and inner lines in (a) are

exchanged in (b) because the values in (b) is about the reciprocal

in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Side views of two initial qS-wave wavefront meshes at time 0.1

s, generated in the ray coordinate system are shown in (a) and

(b) (the same as the analytic solution, see Figure 2.6 (b)). Side

views of two final meshes showing the results after propagating

the wavefronts to a total time of 1.4 s in an increment of 0.1 s in

the model 1 (see Table 2.2) are shown in (c) and (d). . . . . . . . . . 18

2.8 3D views of the qS-wave raypaths (straight lines) for a portion of

the wavefront at time 1.5 s in a tilted TI model are shown in (a)

and (b), which have takeoff angles between 0◦ to 3◦ in azimuth

and −90◦ to 90◦ in declination. The tilted TI model is generated

by rotating the coordinates 45◦ about the Y- and Z- axes in the

model 1 (see Table 2.2). 3D views of the final wavefront meshes

for two qS-waves after propagating the wavefront to a total time

of 0.8 s in an increment of 0.1 sec through the tilted TI earth

model are shown in (c) and (d). 3D views of the final wavefront

meshes to a total time of 1.5 s are shown in (e) and (f). . . . . . . . 20

2.9 Side views of the qS-wave raypaths (curve lines) in a heteroge-

neous VTI earth model with a linear gradient 0.7 km/s per kilo-

meter are shown in (a) and (b). Due to a strong gradient in

velocity, the raypaths bend dramatically. See the text for more

description. Side views of the final wavefront meshes for two qS-

waves after propagating for a total time of 0.5 s in an increment of

0.1 s in this heterogeneous VTI earth model are shown in (c) and

(d). Side views of the final wavefront meshes after propagating

the wavefront for 1.3 s are shown in (e) and (f). . . . . . . . . . . . . 22



xii

FIGURE Page

2.10 (a) Top view of the source-receiver geometry for verifying two qS-

wave traveltime wavefields, which including the line singularity.

The earth model size is 10x10x10 km3. Source is at (5, 5, 2.5).

6400 receivers are uniformly distributed on the surface. (b) Cross-

section of two qS-wave slowness surfaces for the model 2 (see

Table 2.1) in the vertical plane. Ray spreading diagrams and

their wavefronts at 1 sec in the vertical plane for qSV - and SH-

waves are shown in (c) and (d), respectively. See the text for the

computation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.11 Side views of two qS waves for a vertical slice of wavefronts at 1.2

s and raypaths are shown in (a) and (b), where (a) is identified

as SH wave and (b) is qSV wave. . . . . . . . . . . . . . . . . . . . . 25

2.12 Verification of accuracy for two qS-wave traveltimes. Traveltime

errors with respect to the analytic solutions for SH and qSV

waves are shown in (a) and (b), respectively. 6400 receivers are

uniformly distributed on the surface. The earth model size is

10x10x10 km3. Source is at (5, 5, 2.5). Statistical results of

mean and standard deviation are presented, too. The 2-D plot of

traveltime errors for SH and qSV waves are shown in (c) and (d),

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.13 (a) Source-receiver geometry for mapping a qSV -wave wavefront

with a triplication. (b) Cross-section of two qS-wave slowness

surfaces for the model (see Table 2.3) in the vertical plane. Ray

spreading diagrams and their wavefronts at 1 sec in the vertical

plane for qSV - and SH- waves are shown in (c) and (d), respec-

tively. See the text for the computation. . . . . . . . . . . . . . . . . 27

2.14 Validation of multivalued traveltimes for a qSV -wave wavefront

with a triplication. (a) Comparison of traveltimes between WFC

mapping results and analytic solutions. (b) The maximum error

is less than 1 ms, which was the value we use for the predefined

threshold in the mesh interpolation. . . . . . . . . . . . . . . . . . . 29



xiii

FIGURE Page

2.15 Amplitudes are plotted against the receiver index for SH and

qSV waves are shown in (a) and (b), respectively. Comparing to

qSV wave, SH wave has gradual variation in amplitude because

of the smoother wavefront surface and uniformly distributed rays

(see Figure 2.10c and 2.10d). The 2-D plot of amplitudes for SH

and qSV waves are shown in (c) and (d), respectively. Due to the

concave inward slowness surface (see Figure 2.10b), qSV wave has

relative high amplitudes in a ring shape. . . . . . . . . . . . . . . . . 31

2.16 (a) Source-receiver geometry for generating synthetics seismograms

in the validation with full waveform solutions. (b) Cross-section of

two qS-wave group velocities for an ellipsoidal anisotropic model

(see Table 2.4) in the vertical plane. . . . . . . . . . . . . . . . . . . 32

2.17 qS-wave synthetic seismograms generated by point forces for an el-

lipsoidal anisotropic model (see Table 2.4). Solid traces are the full

waveform solutions obtained by the discrete wavenumber method.

Dashed traces are generated by the WFC method. (a) is the hor-

izontal component of SH wave. (b) is the vertical component of

qSV wave. (c) is the radial component of qSV wave. The root

mean square of residuals with respect to the maximum amplitude

between these two results are 1.1%, 0.52% and 0.31% for horizon-

tal, vertical and radial components, respectively. . . . . . . . . . . . . 33

2.18 qS-wave synthetic seismograms generated by point forces for the

model ( see Table 2.1) with a line singularity. See Figure 2.17

for the same description. (a), (b), and (c) are for the horizon-

tal, vertical, and radial components, respectively. The root mean

square of residuals with respect to the maximum amplitude be-

tween these two results are 2.5%, 2.14% and 1.64% for horizontal,

vertical and radial components, respectively. . . . . . . . . . . . . . . 34



xiv

FIGURE Page

2.19 qS-wave synthetic seismograms generated by point forces for the

model (see Table 2.3). See Figure 2.13 for the source-receiver ge-

ometry, and cross-sections of two qS wavefronts. See Figure 2.17

for the same description. (a), (b), and (c) are for the tangen-

tial, vertical, and radial components, respectively. The root mean

square of residuals with respect to the maximum amplitude be-

tween these two results are 1.4%, 8.52% and 9.69% for tangential,

vertical and radial components, respectively. See the text for the

discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Schematic illustration of the difficulty in the ray interpolation

while the ray tube is reflecting and transmitting in an interface. . . . 41

3.2 A stack of stratified layers embedded in a half space model for

propagator matrix computation. The incident plane wave hits

the top of the stack (Gibson, Jr., 2004). . . . . . . . . . . . . . . . . 44

3.3 Ray tracing of reflection by wavefront construction in a two-region

model with a horizontal surface. (a) A set of initial sparse rays are

traced. (b) After propagating the wavefront through the model,

new rays are adaptively inserted. And the wavefront at 1.6 s

demonstrates the front is partially reflected. . . . . . . . . . . . . . . 47

3.4 Ray tracing of up-dip reflection by wavefront construction in a

two-region model with an up-dip surface. (a) A set of initial sparse

rays are traced. (b) After propagating the wavefront through the

model, new rays are adaptively inserted. And the wavefront at 2

s demonstrates the front is partially reflected. . . . . . . . . . . . . . 48

3.5 Ray tracing of down-dip reflection by wavefront construction in

a two-region model with a down-dip surface. (a) A set of ini-

tial sparse rays are traced. (b) After propagating the wavefront

through the model, new rays are adaptively inserted. And the

wavefront at 1.3 s demonstrates the front is partially reflected. . . . . 49



xv

FIGURE Page

3.6 (a) The top view of the source-receiver geometry for verifying

of traveltimes and amplitudes in the two-region models with a

horizontal and tilted surfaces. The side views of the two-region

model with a horizontal and tilted surface are shown in (b) and

(c), respectively. This model and source-receiver geometry can

verify the mappings of reflection traveltimes and amplitudes in

both up- and down-dip surfaces. . . . . . . . . . . . . . . . . . . . . 50

3.7 Wavefront propagates through a two-region model and reflects in

a horizontal interface with depth 3 km. (a) The side view of the

wavefront at time 1 s before it hits the horizontal interface. (b)

The 3-D view of (a). (c) The side view of the wavefront at time

1.2 s. Partial wavefront is reflected. (d) The 3-D view of (c). (e)

The side view of the wavefront at time 1.9 s after it reflects from

the horizontal interface. (f) The 3-D view of (e). . . . . . . . . . . . 51

3.8 Wavefront propagates through a two-region model and reflects in

a tilted interface. (a) The side view of the wavefront at time 1.1

s before it hits the tilted interface. (b) The 3-D view of (a). (c)

The side view of the wavefront at time 1.4 s. Partial wavefront

is reflected. (d) The 3-D view of (c). (e) The side view of the

wavefront at time 2.3 s after it reflects from the tilted interface.

(f) The 3-D view of (e). . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Verification of reflection traveltimes in a two-region model with a

horizontal interface. (a) Traveltime residuals are plotted against

the receiver indices. The residuals are bounded within 3.5x10−6

s. (b) Traveltime residuals are plotted in 2-D. . . . . . . . . . . . . . 54

3.10 Verification of reflected traveltimes in a two-region model with

a tilted interface. (a) Traveltime residuals are plotted against

the receiver indices. The residuals are bounded within 4.2x10−6

s. (b) Traveltime residuals are plotted in 2-D. The pattern of

the residuals is similar to the shifted 2-D plot in the horizontal

interface model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xvi

FIGURE Page

3.11 Verification of reflection amplitudes in a two-region model with a

horizontal interface. (a) Amplitude residuals are plotted against

the receiver indices. The residuals are less than 4.5x10−4. (b)

Amplitude residuals are plotted in 2-D. . . . . . . . . . . . . . . . . . 56

3.12 Verification of reflection amplitudes in a two-region model with a

tilted interface. (a) Amplitude residuals are plotted against the

receiver indices. The residuals are less than 4x10−4 . (b) Ampli-

tude residuals are plotted in 2-D. The pattern of the residuals is

similar to the shifted 2-D plot in the horizontal interface model. . . . 57

3.13 (a) Comparison of P -wave reflection coefficients obtained from

Sheuy’s two term and three term approximation, Zeoppritz equa-

tion and full waveform synthetic seismograms. (b) While the in-

cident angle is less than 20◦, all these methods have very close

reflection coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.14 Source-receiver geometry for verifying the reflection coefficients of

a thin layer embedded model. . . . . . . . . . . . . . . . . . . . . . . 61

3.15 P -wave reflection coefficient as a function of frequency and inci-

dent angle in a thin layer embedded model. . . . . . . . . . . . . . . 62

3.16 (a) P -wave reflection coefficient of the normal incident angle as a

function of frequency in a thin layer embedded model. Superim-

posed reflection from the top and bottom are totally canceled out

around 47◦. (b) Phase of reflection coefficient is also plotted. . . . . . 63

3.17 (a) Ricker wavelets with the central frequency 10, 20, 40, and 60

Hz. (b) Frequency spectra of Ricker wavelets with the central

frequency 10, 20, 40, and 60 Hz. . . . . . . . . . . . . . . . . . . . . . 65

3.18 Comparison of P - wave reflection coefficients between the propa-

gator matrix method and full waveform synthetic seismograms in

a thin layer embedded model for the Ricker source wavelet with

the central frequency at 10, 20, 40, and 60 Hz are shown in (a),

(b), (c), and (d), respectively. . . . . . . . . . . . . . . . . . . . . . . 66



xvii

FIGURE Page

3.19 Seismic amplitude attribute (thick, red dashed line) is overlapped

on synthetic seismogram in a thin layer embedded model for the

Ricker wavelet with the central frequency at 60 Hz. . . . . . . . . . . 67

3.20 Location map of the Mars-Ursa field. Green represents the areas

affected by salt structures. White represents the areas unaffected

(Meckel et al., 2002). . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.21 Well logs of 28.6 m thick reservoir in Ursa field, Gulf of Mexico.

The reservoir contains the mixture of layers in sand and shale. . . . . 70

3.22 Well logs of 28.6 m thick reservoir in Ursa field, Gulf of Mexico

(continue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.23 (a) Source-receiver geometry for verifying composite reflection co-

efficient of a complex stratified reservoir model. (b) Reservoir

model parameters extracted from well logs were inserted in a half

space model. Dashed lines represent the velocities in the vertical

direction in Backus-averaged results. (c) Elastic impedance for

P - and S waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.24 (a) Verification of reflection traveltimes from the top of the com-

plex stratified reservoir in the Figure 3.23a model. Errors are

bounded within 10−5 s. (b) Verification of reflection amplitudes

from the top of the reservoir. . . . . . . . . . . . . . . . . . . . . . . 74

3.25 (a) Incident angles obtained by the WFC method are plotted

against with the analytic results in the Figure 3.23a model. (b)

Verification of incident angles. . . . . . . . . . . . . . . . . . . . . . . 75

3.26 Composite reflection coefficient as a function of frequency and

incident angle in a complex stratified reservoir model (Figure 3.23). . 76

3.27 (a) Reflection coefficient of the normal incident angle as a function

of frequency in a complex stratified reservoir model. Due to the

complex of layers in the reservoir, reflections from the internal

thin layers are partially canceled out around the incident angle

42◦. (b) Phases of reflection coefficients are also plotted. . . . . . . . 77



xviii

FIGURE Page

3.28 Comparison of P wave reflection coefficients between the propa-

gator matrix method and full waveform synthetic seismograms in

a complex stratified reservoir model (Figure 3.23) for the Ricker

source wavelet with the central frequency at 10, 20, 40, and 60 Hz

are shown in (a), (b), (c), and (d), respectively. . . . . . . . . . . . . 78

3.29 Comparison of synthetic seismograms for the radial component

with the central frequency 10 Hz between the discrete wavenumber

method (black traces) and ray data including composite reflection

coefficient method (dashed red traces). . . . . . . . . . . . . . . . . . 81

3.30 Comparison of synthetic seismograms for the vertical component

with the central frequency 10 Hz between the discrete wavenumber

method (black traces) and ray data including composite reflection

coefficient method (dashed red traces). . . . . . . . . . . . . . . . . . 82

3.31 Zoom-in comparison of synthetic seismograms for the central fre-

quency 10 Hz between the discrete wavenumber method (black

traces) and ray data including composite reflection coefficient method

(dashed red traces). (a) and (b) are for the radial and vertical

component, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.32 Comparison of synthetic seismograms for the radial component

with the central frequency 20 Hz between the discrete wavenumber

method (black traces) and ray data including composite reflection

coefficient method (dashed red traces). . . . . . . . . . . . . . . . . . 84

3.33 Comparison of synthetic seismograms for the vertical component

with the central frequency 20 Hz between the discrete wavenumber

method (black traces) and ray data including composite reflection

coefficient method (dashed red traces). . . . . . . . . . . . . . . . . . 85

3.34 Zoom-in comparison of synthetic seismograms for the central fre-

quency 20 Hz between the discrete wavenumber method (black

traces) and ray data including composite reflection coefficient method

(dashed red traces). (a) and (b) are for the radial and vertical

component, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 86



xix

FIGURE Page

3.35 Comparison of synthetic seismograms for the radial component

with the central frequency 40 Hz between the discrete wavenumber

method (black traces) and ray data including composite reflection

coefficient method (dashed red traces). . . . . . . . . . . . . . . . . . 87

3.36 Comparison of synthetic seismograms for the vertical component

with the central frequency 40 Hz between the discrete wavenumber

method (black traces) and ray data including composite reflection

coefficient method (dashed red traces). . . . . . . . . . . . . . . . . . 88

3.37 Zoom-in comparison of synthetic seismograms for the central fre-

quency 40 Hz between the discrete wavenumber method (black

traces) and ray data including composite reflection coefficient method

(dashed red traces). (a) and (b) are for the radial and vertical

component, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.38 Comparison of synthetic seismograms for the radial component

with the central frequency 60 Hz between the discrete wavenumber

method (black traces) and ray data including composite reflection

coefficient method (dashed red traces). . . . . . . . . . . . . . . . . . 90

3.39 Comparison of synthetic seismograms for the vertical component

with the central frequency 60 Hz between the discrete wavenumber

method (black traces) and ray data including composite reflection

coefficient method (dashed red traces). . . . . . . . . . . . . . . . . . 91

3.40 Zoom-in comparison of synthetic seismograms for the central fre-

quency 60 Hz between the discrete wavenumber method (black

traces) and ray data including composite reflection coefficient method

(dashed red traces). (a) and (b) are for the radial and vertical

component, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.41 Source-receiver geometry for generating synthetic seismograms in

a half space model with a tilted, complex stratified thin reservoir.

The complex thin reservoir has the same internal structure and

properties as in Figure 3.23b. . . . . . . . . . . . . . . . . . . . . . . 93

3.42 (a) Verification of reflection traveltimes from the top of the reser-

voir in the Figure 3.41 model. Errors are bounded within 10−5 s.

(b) Verification of reflection amplitudes from the top of the reservoir. 94



xx

FIGURE Page

3.43 (a) Incident angles obtained by the WFC method are plotted

against with the analytic results in the Figure 3.41 model. (b)

Verification of incident angles. . . . . . . . . . . . . . . . . . . . . . . 95

3.44 Synthetic seismograms in the radial component, generated from

the Figure 3.41 model with the central frequency at 10 Hz. . . . . . . 96

3.45 Synthetic seismograms in the vertical component, generated from

the Figure 3.41 model with the central frequency 10 Hz. . . . . . . . 97

4.1 Binary models constructed from alternating, identical sand and

shale layers is used to represent turbidite reservoir models. (a)

Takahashi et al. (1999) implemented stochastic simulation of

varying sand/shale ratio to evaluate the turbidite reservoirs. (b)

Stovas et al. (2004) used the periodic sand/shale model to present

the complexity of lithology in the turbidite reservoirs. . . . . . . . . . 101

4.2 Using FMS images to distinguish sand/shale beds. . . . . . . . . . . 104

4.3 PDFs and CDFs of bed thickness for sand and shale beds in the

Amazon Fan sites are shown in (a) and (b), respectively. Both

sand and shale bed thickness distributions are complicated and

may not follow a simple power-law behavior. . . . . . . . . . . . . . . 105

4.4 Log-log plots of velocity versus density for each site in the Ama-

zon fans are shown in (a), (b), (c), and (d), respectively. (e)

Log-log plots in global. Statistical data (m, b, r, n) represent

slope, intercept, correlation coefficient, and the number of total

well measurements, respectively. The lines through the data are

the linear regression results. The fitting function in global data

will be the velocity and density transform of turbidites in the

Amazon Fans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 PDFs and CDFs of density distribution measured for the Amazon

Fan sites are shown in (a) and (b), respectively. Sand and shale

density distributions can be fitted to Gaussian functions. Sand

beds have an average density of 1.92. Shale beds have an average

density of 2.01 with a broader distribution. . . . . . . . . . . . . . . 108

4.6 Well logs of reservoirs in Ursa field, Gulf of Mexico. . . . . . . . . . . 109



xxi

FIGURE Page

4.7 Well logs of reservoirs in Ursa field, Gulf of Mexico (continue). . . . . 110

4.8 Log-log plots of velocity versus density of well logs for shale and

brine sand in the Ursa field, Gulf of Mexico, are shown in (a)

and (b), respectively. The density and velocity measurements are

highly correlated in shale beds as well as in sand beds. See Fig.

4.4 for the same description of m, b, and r. . . . . . . . . . . . . . . . 111

4.9 (a) Reflection coefficient variation with incident angle for different

gas sands. (b) AVO gradient versus AVO intercept crossplot for

four possible gas sands (adapted from Castagna et al., 1998). . . . . 112

4.10 A thin layer embedded model to simulate AVO responses while the

gas is charged in the sand reservoir. The thickness to wavelength

ratio (h/λ) 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1 and 2 are considered

to perform seismic modeling. . . . . . . . . . . . . . . . . . . . . . . 114

4.11 Synthetic seismograms in a thin layer embedded model for thick-

ness to wavelength ratio (h/λ) 1/64, 1/32, 1/16, and 1/8 are

shown in (a), (b), (c), and (d), respectively. Synthetic seismo-

grams for brine sand layer model is in solid traces. For gas sand

layer model is in thick, dashed traces. . . . . . . . . . . . . . . . . . 115

4.12 Synthetic seismograms in a thin layer embedded model for thick-

ness to wavelength ratio (h/λ) 1/4, 1/2, 1 and 2 are shown in (a),

(b), (c), and (d), respectively. Synthetic seismograms for brine

sand layer model is in solid traces. For gas sand layer model is in

thick, dashed traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.13 The trajectories of AVO responses for a thin brine or gas sand

layer embedded in a half space model while changing the thickness-

wavlength ratio (h/λ) from 1/64 to 2. The distance of AVO re-

sponse between brine and gas models increases with h/λ value.

This suggests the thin layer reservoirs may produce more explo-

ration risk because of less differences in AVO responses while gas

presents. For h/λ 1/2, 1 and 2, they have very close intercepts

and gradients showing AVO responses overlapped. . . . . . . . . . . . 117

4.14 P and S wave velocity and density as a function of gas percentile

in the two component fluid system in a sand reservoir. . . . . . . . . 120



xxii

FIGURE Page

4.15 (a) Source-receiver geometry for seismic modeling in stochastic

turbidite models. STMs are embedded in a half space. (b) and

(c) Examples of two STMs demonstrate a 30 m thick turbidite

model with a large heterogeneity of layer thicknesses, velocity and

density. Sand and shale beds alternatively appear in the model.

Solid line represents the STM. Dashed line represents the P -wave

velocity at the vertical direction in the Backus-averaged STM. . . . . 121

4.16 Comparison of STM and binary models and after performing fluid

substitution of 80% gas saturation in the sand layers. (a) In the

STM, sand and shale beds alternatively appear with a large het-

erogeneity of layer thicknesses and velocity. (b) In the binary

model, the model has the same thickness distribution, but with

identical sand and shale properties. . . . . . . . . . . . . . . . . . . . 122

4.17 (a) qP -wave phase velocity as a function of angle in a Backus-

averaged model (See Figure 4.15b). Phase velocity in the horizon-

tal direction is about 1.4% faster than in the vertical direction.

(b) qS-wave phase velocity as a function of angle in a Backus-

averaged model for two qS waves. . . . . . . . . . . . . . . . . . . . . 122

4.18 Comparison of P -wave reflections between STMs and binary mod-

els for the three different source central frequencies. All sands in

both model are 100% brine-saturated. Solid traces represent STM

results. Dashed traces show binary model results. . . . . . . . . . . . 124

4.19 After substituting brine by gas in sand beds of STMs and binary

models, we have much stronger reflected energy than the previous

brine sand models. Same gain is applied in both Figure 4.18 and

4.19. Solid traces represent STM results. Dashed traces show

binary model results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.20 Comparison of P -wave reflections between STMs and Backus-

averaged models for the three different source central frequencies.

All sands in both model are 100% brine-saturated. Black solid

traces represent STM results. Red dashed traces show Backus-

averaged STM results. Backus averaging algorithm produces a

good equivalent model while the wavelength is relative long to

the total thickness of layers. . . . . . . . . . . . . . . . . . . . . . . . 127



xxiii

FIGURE Page

4.21 After substituting brine by gas in sand beds of STMs and Backus-

averaged STMs, we have much stronger reflected energy than the

previous brine sand models. Same gain is applied in both Figure

4.20 and 4.21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.22 Comparison of synthetic seismograms from 5 realizations in brine

sand STMs for three different source central frequencies. The

results show the complexity introduced by changes in the vertical

structure of the sand/shale beds. . . . . . . . . . . . . . . . . . . . . 129

4.23 The mean value of maximum amplitude (symbol) of each reflec-

tion and its one standard deviation (error bars) for source fre-

quency at 10, 20, and 40 Hz. While increasing source frequency,

two models show more differences of their means of maximum

amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.24 After 80% gas saturating in the sand beds, we have stronger means

of maximum amplitudes and larger standard deviations in each

frequency panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.25 Maximum amplitudes of the reflections less than 30◦ incident an-

gle are measured for AVO analysis. Binary models have less fluc-

tuation in AVO crossplots than STMs. Also, high source fre-

quency produces more heterogeneity in reflections from the tur-

bidite reservoir models. . . . . . . . . . . . . . . . . . . . . . . . . . 131

A1 Flowchart of the algorithms of quasi-shear wave ray tracing by

wavefront construction. . . . . . . . . . . . . . . . . . . . . . . . . . 144

B1 Flowchart of determining qS1 and qS2 wave types to form a phys-

ically meaningful wavefront mesh in the present of the singularity. . . 146



1

CHAPTER I

INTRODUCTION

1.1 Motivation and Overview

Turbidite reservoirs in deep-water depositional systems such as the oil fields in offshore

Gulf of Mexico and the North Sea are becoming an important exploration target in

the petroleum industry. However, accurate seismic reservoir characterization is com-

plicated not only by the heterogeneity of the sand and shale distribution, but also

by the lack of resolution when imaging thin channel deposits. Amplitude variation

with offset (AVO) is a very important technique that is widely applied to locate hy-

drocarbons, but inaccurate estimate of seismic reflection amplitudes because of these

problems in application to turbidite reservoirs may lead to misleading interpretations.

Therefore, an efficient, accurate, and robust method of modeling seismic responses

for such complex reservoirs is crucial and necessary to reduce exploration risk.

Wavefront construction (WFC) methods not only provide fast and robust tools

for computing ray theoretical traveltimes and amplitudes for multivalued wavefields

(Vinje et al., 1993; Lambaré et al., 1996; Lucio et al., 1996; Vinje et al., 1999; Gibson,

Jr., 1999; Mispel and Williamson, 2001; Mispel, 2001; Kaschwich and Gajewski, 2003;

Rüger, 2004; Lai et al., 2004; Gibson, Jr. et al., 2005), but also have strong potential

to model propagation in complex, multiple layered, 3-D earth models, such as salt

dome structures. They simulate a wavefront propagating through a model using a

mesh that is refined adaptively to ensure accuracy as rays diverge during propagation.

However, an implementation for quasi-shear (qS) waves in anisotropic media can

be very difficult, since the two qS slowness surfaces and wavefronts often intersect

at shear-wave singularities. The shear wave singularities cause difficulties on both

wavefront mesh initiation and interpolation as the wavefront propagates. Though

Mispel (2001) presents WFC modeling for vertically transverse isotropic media, a full

implementation in the general anisotropic media is still not available.

This dissertation follows the style and format of Geophysics.
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AVO is a powerful technique to locate hydrocarbons in the reservoir because

seismic reflection responses change dramatically with offset as fluid saturation changes

in in the pore space (Domenico, 1976; Ostrander, 1984; Murphy, 1984; Rutherford

and Williams, 1989; Castagna et al., 1998; Ross, 2000; Smith and Sondergeld, 2001;

Zillmer, 2006; Wandler et al., 2007). However, conventional AVO analysis considering

P -wave reflection from a simple interface between two welded half spaces is limited

when applying AVO analysis to thin reservoir models. The thin layer tuning effect,

the superposition of reflections from the top and bottom of a relative thin reservoir,

can be included in the AVO modeling (Widess, 1973; Almoghrabi and Lange, 1986;

Juhlin and Young, 1993; Bakke and Ursin, 1998; Liu and Schmitt, 2003), but it is more

difficult to predict the seismic responses when there is strong internal fluctuation of

rock properties in the thin layer, such as in turbidite reservoirs. Therefore, accurate

estimate of amplitude of AVO responses is important and necessary to avoid false

interpretations.

Turbidite reservoirs with strongly heterogeneous rock properties for sand and

shale beds can make accurate and fast seismic modeling for the AVO responses dif-

ficult. Turbidity currents developing channel, levee and sheet-like deposits results

in complex vertical and lateral heterogeneity in turbidite reservoirs. Though binary

models (Takahashi et al., 1999; Stovas et al., 2004; Stovas et al., 2006) containing

the mixtures of sands and shales have been proposed to modeling turbidite reservoirs

in previous work, the models do not produce realistic seismic properties. Hence, an

improved stochastic turbidite model (STM) generated from a combination of geologi-

cal interpretation and well logs is proposed to simulate direct hydrocarbon indicators

associated with turbidite sequences (Lai and Gibson, Jr., 2005). The STMs provide

important insights to predict the seismic responses for the complexity of turbidite

reservoirs.

Wave propagation through multi-layered media including reflection, transmis-

sion and conversion complicates seismic modeling. The propagator matrix method

has been introduced to solve for reflection and transmission coefficients in media with

horizontally stratified isotropic layers (Thomson, 1950; Haskell, 1953; Gilbert and

Backus, 1966). Instead of the direct computation of the plane layer responses, the re-

flectivity method (Kennett and Kerry, 1979; Booth and Crampin, 1983; Müller, 1985)

is also applied to model wave propagation for such layer stacked models. Further-

more, Gibson, Jr. (2004, 2005) suggested the propagator matrix method to quickly
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compute the composite P -wave reflection coefficient for stratified reservoir models.

However, generating the complete synthetic seismograms in complex stratified

reservoir is computationally expensive, especially for the large number of seismo-

grams required for a complete seismic survey model including lateral heterogeneity.

Červený (1989) suggested a hybrid approach which combines ray tracing modeling in

overburden layers with the reflectivity method in a laterally varying thin transition

layer. Here, I would propose a hybrid algorithm combining fast and accurate WFC

ray tracing with the complete solution of composite reflection coefficients in a stack

of complex stratified layers. It can be a powerful tool for seismic modeling in such

complex stratified turbidite reservoir models.

1.2 Objectives

In Chapter II, the objective is to solve the S-wave singularity problem and ensure

that qS wave WFC modeling can correctly separate the two qS waves in both wave

propagation and mapping the ray data. These ray solutions can be verified with the

analytic solutions and used to generate synthetic seismograms. The results for both

qS waves are validated with other independent methods. A full demonstration of qS

wave WFC modeling in general anisotropic media is also one of the objectives.

In Chapter III, the primary goal is to develop a hybrid algorithm combining the

fast WFC ray tracing with composite reflection coefficients to generate full waveform

synthetic seismograms for the complex, stratified reservoir models. This will be ac-

complished using composite reflection coefficients that include all of the influence of

layering in a reservoir on the reflected signal, not simply a single boundary as is done

in conventional analysis. The main task in the WFC part is to implement WFC

reflection modeling. Some modification of WFC in the interface are performed to

achieve this. The ray data of reflection are correctly combined with composite reflec-

tion coefficients obtained by the propagator matrix method to generate full wavefront

synthetic seismograms. The complete seismograms will help us to understand the in-

fluence for the internal fluctuation of rock properties while hydrocarbons charge in

the pore space.

In Chapter IV, STMs are proposed to simulate seismic responses and predict the

uncertainty in AVO analysis for such complex stratified reservoirs. The complex of

vertical and lateral heterogeneity are predicted in a range of possible seismic responses
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by stochastic modeling. Comparison of binary and stochastic turbidite models is dis-

cussed. Full waveform synthetic seismograms and AVO analysis in STMs for different

frequencies are performed to predict AVO responses.

1.3 Dissertation Structure

This will briefly describe the content and provide previews of each chapter. Chapter

I gives a general introduction to the scientific problems related to this dissertation

and a clear review of previous work. I also address the problems that I want to

solve in each chapter. Chapter II includes quasi-shear wave ray tracing by wavefront

construction in 3-D, anisotropic media. A full demonstration of S wave WFC in the

general anisotropic media is shown. A set of verification results for traveltimes and

amplitudes and validation for the synthetic seismograms demonstrate the accuracy

and robustness of S wave WFC. In Chapter III, I extend WFC algorithms for reflection

modeling in multi-region models. Fast ray tracing results are combined with the

composite reflection coefficient in the target reservoir to generate complete synthetic

seismogram for P wave reflection in complex, stratified models. Chapter IV includes

the building of STMs and the usage of the method developed in Chapter III to

generate P wave reflection synthetic seismograms for both STMs and binary models.

The predicted AVO responses are discussed, too. Chapter V concludes the content

of each chapter to form the conclusion of this dissertation.
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CHAPTER II

QUASI-SHEAR WAVE RAY TRACING BY WAVEFRONT

CONSTRUCTION IN 3-D, ANISOTROPIC MEDIA

2.1 Introduction

An accurate knowledge of velocity anisotropy can be very important for interpreting

and processing seismic data. For example, Levin (1979), Alkhalifah and Tsvankin

(1995), Grechka and Tsvankin (1998), and Grechka et al. (2001) described methods

for estimating the moveout velocities in transversely isotropic (TI) media, which can

be difficult to estimate from surface seismic data. Banik (1984) and Winterstein

(1986) showed that neglecting anisotropy can easily lead to substantial misfits of

layer thicknesses when analyzing seismic data. Leslie and Lawton (1999), Grech et

al. (2002), and Hornby et al. (2003) showed that corrections for shale anisotropy are

necessary to obtain accurate subsurface seismic images.

Shear wave anisotropy can be even more difficult to treat in data processing

and interpretation than P -wave anisotropy. Levin (1978, 1979, 1980) pointed out

quasi-SV (qSV ) waves usually do not have hyperbolic traveltime curves and that

moveout velocity varies with distance. Winterstein (1986) concluded that layer thick-

ness obtained from SH-wave data can be significantly thicker than P -wave data in the

presence of anisotropy and the percentage of clay in layers dominates the magnitude

of anisotropy. Measurement of shear wave splitting also provides further information

on earth properties that cannot be obtained from quasi-P (qP ) data. For exam-

ple, shear wave splitting measured from vertical seismic profiles can be interpreted

in terms of crack-induced anisotropy (Crampin, 1985; Shearer and Chapman, 1989;

Douma and Crampin, 1990; Horne et al., 1997; Crampin and Chastin, 2003; Nistala

and McMechan, 2005). Such information regarding crack properties from quasi-S (qS)

wave splitting can provide important insights for understanding reservoir performance

(Ramos-Martinez et al., 2000).

Efficient and accurate numerical modeling to support processing of these wave

propagation phenomena can be more difficult than for qP -wave data. In particular,

S-wave propagation in anisotropic media is complicated by the S-wave singularities,
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where the two qS-wave slowness surfaces cross or touch (Crampin, 1985; Shearer and

Chapman, 1989; Chapman and Shearer, 1989; Coates and Chapman, 1990; Červený,

2001; Vavryčuk, 2001). There are three main types of S-wave singularity: point, kiss

and line, and they can appear in weakly or strongly anisotropic media (Crampin and

Yedlin, 1981; Červený, 2001; Vavryčuk, 2001).

In strongly anisotropic media, triplications can also complicate propagation of

qS-waves, and they have been directly observed in vertical seismic profile field data

(Slater et al., 1993). The magnitude of the Thomsen anisotropy parameter δ controls

the occurrence of off-axis qSV -wave triplications in TI media (Thomsen and Dellinger,

2003), and Vavryčuk (2004) derived other formulas that can identify the conditions

under which triplications develop.

Ray tracing, based on a high frequency approximation to the wave equation, is an

efficient and accurate method to study qS or qP -wave propagation in 3D, anisotropic

media (Červený, 1972; Hanyga, 1982; Shearer and Chapman, 1989; Gajewski and

Pšenčik, 1987; Červený, 2001). Recently developed wavefront construction (WFC)

methods in particular have the potential to be robust and accurate for applications to

isotropic and anisotropic media (Vinje et al., 1993; Lambaré et al., 1996; Lucio et al.,

1996; Vinje et al., 1999; Gibson, Jr., 1999; Mispel and Williamson, 2001; Mispel, 2001;

Kaschwich and Gajewski, 2003; Rüger, 2004; Gibson, Jr. et al., 2005). Though not

the fastest possible approach, WFC approaches can still be more efficient and reliable

than implementations based on shooting methods. The solutions provide results

for computation of synthetic seismograms as well as traveltime fields, which is very

important for many modeling applications. The results allow for fast, approximate

modeling of propagation in 3-D, prior to, for example, more exact modeling using

finite differences. Furthermore, these methods are able to compute multiple arrivals

at the point of the model (Lambaré et al., 1996; Lucio et al., 1996; Vinje et al., 1996),

a result that will be important for many inversion and modeling applications, such

as Kirchhoff migration.

The implementation of WFC for quasi-compressional waves is relatively straight-

forward, and is a fairly natural extension of isotropic algorithms (Gibson, Jr., 1999;

Mispel, 2001; Gibson, Jr. et al., 2005). A WFC approach also has strong poten-

tial to be very useful for qS-wave modeling (Mispel, 2001; Lai et al., 2004), since it

can simplify the modeling of the triplications that are often present even in homo-

geneous models for the same reasons that tracking of multiple arrivals is facilitated
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for qP -wave modeling. However, accurate simulations of qS-wave propagation are

complicated significantly by S-wave singularities (Figure 2.1). The difficulties arise

because the intersections of qS-wavefronts, and slowness surfaces, complicate the au-

tomatic construction of meshes to represent the waves and because the conventional

ray tracing equations are degenerate at singularities. Kiss singularities are particu-

larly difficult, since the waves have identical velocities and non-unique displacement

vectors.

In this chapter, we show how the mesh construction problem can be addressed

using particle motion as the primary criterion for correctly creating meshes that rep-

resent qS wavefronts in anisotropic media with singularities. We also suggest some

simple steps to help reduce problems associated with the stability of the ray equations

and describe how a mesh refinement procedure provides accurate initial meshes even

in the presence of kiss singularities. After summarizing these methods, we present

results from WFC simulations for several models of varying degrees of complexity to

show the correctness of the implementation. Though Mispel (2001) presents results

for vertically transverse isotropic (VTI) media, our new implementation allows for

more general symmetries including those presented here. After a sequence of verifica-

tion/validation tests, we demonstrate the ray data can be accurately estimated by the

mapping algorithm. A validation of multivalued traveltimes for a qSV -wave wavefront

with a triplication caused by intrinsic anisotropy demonstrates accurate modeling of

multivalued arrivals. Finally, a comparison of WFC synthetic seismograms with dis-

crete wavenumber full waveform solutions provides further confirmation of accuracy.

2.2 Wavefront Construction Method

The ray solutions developed from asymptotic ray theory provide the equations for

travel times and amplitudes in general anisotropic media. The calculation of ray

paths and travel times are based on the following set of ordinary differential equations

(Červený, 1972; Gajewski and Pšenčik, 1987; Červený, 2001):

dxi

dτ
= aijkl pl Djk /D

dpi

dτ
= −1

2

danjkl

dxi

pn pl Djk /D, (2.1)
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Fig. 2.1. Illustration of the two quasi-shear wavefronts (arbitrarily named qSA and
qSB) in the presence of shear wave singularities. (a) Cross-section of two qS-wave
slowness surfaces for a VTI model (see Table 2.1) in a vertical plane. One is slower
(qS1); the other is faster (qS2). (b) Particle motion directions are calculated with
respect to slowness directions. It suggests the reason to choose the correct wave
type (qS1 and qS2) for qSA and qSB wavefronts. (c) By using particle motion as a
criterion to separate two qS-waves, qSA wavefront is determined. (d) Then, the other
wavefront is for qSB-wave.
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where xi are spatial coordinates of the ray path, τ is travel time, and the pi are com-

ponents of the slowness vector. The quantities aijkl are the elastic moduli normalized

by the density. D is the trace of the matrix Djk and Djk is denoted as

D11 = (Γ22 − 1)(Γ33 − 1) − Γ2
23,

D22 = (Γ11 − 1)(Γ33 − 1) − Γ2
13,

D33 = (Γ11 − 1)(Γ22 − 1) − Γ2
12,

D12 = D21 = Γ13Γ23 − Γ12(Γ33 − 1),

D13 = D31 = Γ12Γ23 − Γ13(Γ22 − 1),

D23 = D32 = Γ12Γ13 − Γ23(Γ11 − 1),

D = trDjk = D11 +D22 +D33.

(2.2)

Since the term Djk /D can be expressed by gj gk (Gajewski and Pšenčik, 1987), the

equations (2.1) can be written as

dxi

dτ
= aijkl pl gj gk

dpi

dτ
= −1

2

danjkl

dxi

pn pl gj gk, (2.3)

where gj is polarization vector, or displacement vector, and the eigenvector of Christof-

fel matrix Γjk:

Γjk = aijkl pi pl. (2.4)

We use the fifth order Runge-Kutta methods to solve the ray ordinary differential

equations.

Given initial values for xi and pi, the results from these sets of equations provide

a straightforward method for computing an individual ray path, including traveltime.

Amplitude can be computed using finite-difference methods to evaluate the Jacobian

that is related to geometrical spreading. The WFC approach extends this by explicitly

tracking the propagation of a wavefront mesh through the model. This enhances the

calculations in two ways. First, the knowledge of the wavefront geometry allows a

much more effective mapping of multivalued results, since it is easy to identify unique

wavefront elements arriving from a triplication, for example. Second, by adaptively
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Fig. 2.2. Schematic illustration of the logical geometry of a wavefront mesh con-
structed by quadrilateral cells. Each cell is bounded by four rays’ takeoff angles. Dot
and square represent exiting and interpolated rays, respectively. Dashed lines is the
new boundaries of the new quadrilateral cells. (Adapted from Gibson, Jr. et al.,
2005).

interpolating the wavefront mesh, the method can accelerate computations by using

high ray density only where needed for accuracy. There are two primary steps in

the algorithm, defining the initial mesh and then propagating it forward through the

model, interpolating cells as needed to maintain accuracy.

The initial set of rays can be chosen based on some limited set of takeoff angles, or

it can occupy all directions around the source point. Our implementation defines the

wavefront mesh in terms of quadrilateral cells (Gibson, Jr. et al., 2005). Figure 2.2

demonstrates the logical geometry of a wavefront mesh constructed by quadrilateral

cells. Each cell is bounded by the takeoff angles of the four rays, both azimuth φ

and declination ψ. This kind of geometric setting will facilitate the coding task. For

example, it is straightforward to subdivide a quadrilateral cell for 5 new rays and

easy to define the neighboring indices of rays.

After selecting a range of angles and increments in both azimuth and declination

takeoff angles, the initial mesh is easily set up using the Cartesian coordinates of

points on the rays at an initial time dτ . The mesh is then propagated forward an

increment in time dτ by again using points on the rays, but the key step in the WFC

algorithm is the interpolation test that is then applied. Specifically, the paraxial

traveltime error is computed by finite-difference methods using data from three points
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in the mesh cell defining one point as the reference location. By applying a Taylor

series expansion of traveltime on a reference point x′ , the traveltime on a nearby

location x can be written:

τ(x) ≈ τ(x′) + pi(xi − x′i) +
1

2

∂2τ

∂xi∂xj

(xi − x′i)(xj − x′j), (2.5)

where the first derivatives term, pi (slowness vector) are given by pi = ∂τ/∂xi, and

the second derivatives can be computed by

∂2τ

∂xi∂xj

=
pi

γk

(
∂xj

∂γk

)−1

, (2.6)

where the γk are the ray coordinates, which can be taken as the two takeoff angles

(azimuth φ and declination ψ) and the traveltime τ (Červený, 2001). The paraxial

correction, the summation of the first and second order terms of the equation (2.5), is

then computed for the mesh point opposite the reference location. Here, the second

derivatives at a reference point in equation (2.6) are computed by using two nearby

points (one is along azimuth, the other is along declination) to calculate the paraxial

time correction at the diagonal point in a quadrilateral cell. Since all points are on

the same wavefront, this correction should be zero, but if the actual value exceeds a

predefined threshold, the mesh cell is interpolated on the previous wavefront to im-

prove accuracy (Figure 2.3). Additional details on the general algorithm are provided

by Gibson, Jr. et al. (2005).

Amplitude, determined by the geometric spreading and source characteristics,

is also available in the ray method by calculating the transport equation (Červený,

1972; Gajewski and Pšenčik, 1987; Červený, 2001). Amplitude along a ray caused by

a point source in an isotropic medium can be written as follows

A(τ) =

[
ρ(τ0)v(τ0)J(τ0)

ρ(τ)v(τ)J(τ)

]1/2

G(φ0, ψ0) (2.7)

where ρ(τ0), v(τ0) and J(τ0) are calculated at the source, and ρ(τ), v(τ) and J(τ) are

calculated at time τ along a ray. The term [J(τ0)
J(τ)

]1/2 describes the geometric spreading.

G is the source radiation pattern. G(φ0, ψ0) is the amplitude at the source, measured

in the direction specified by takeoff angles (the azimuthal φ0 and declinational ψ0



12

!!d!"

"

!!
!!d!"

"

(a)
Current rays"
#ide-interpolated rays"
$iddle-interpolated rays

(b)

Fig. 2.3. Schematic illustration of the wavefront propagation and its ray interpolation.
(a) An wavefront element is constructed by four rays (solid lines with arrows) and
interpolated rays (dashed lines with arrows) are inserted if the wavefront curvature
exceeds a criterion. (b) Examples of side views show new rays inserted whenever
needed for accuracy.

angles). The function

J(τ) =

∣∣∣∣∂xi

∂γj

∣∣∣∣ (2.8)

is the jacobian of the transformation from the Cartesian coordinates xi to the ray

coordinates γj. The physical meaning of J is that it measures the expansion or

contraction of a ray tube along a ray (Červený, 1972; Červený, 2001). It is important

for implementations that the partial derivatives in J(τ) are the same quantities in

equation (2.6).

2.2.1 Adaptations for a qS-wave Implementation

The algorithm described above is essentially the same for isotropic models or for

qP -wave simulation in anisotropic media, but there are three unique and crucial

problems caused by S-wave singularities for qS-wave calculations. The first issue

is simply complications associated with qS-wave ray tracing in singular directions

and in the vicinity of qS-wave singularities, and it is relevant for conventional ray

methods or for WFC. The other problems are unique to WFC solutions and are

both related to correct mesh definitions. During the initial mesh construction, care

must be taken to correctly associate a unique wave type with the two initial qS-

wave meshes, since wavefronts normally intersect. This is also a challenge during
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Fig. 2.4. The trace element of the matrix Dij is plotted against the declination angle
of slowness vectors for two qS-waves in a VTI model (Table 2.1). D values of two
qS-waves are zero in both line and kiss singularities.

wavefront mesh interpolation at later traveltimes, whenever a portion of wavefront

crosses a singularity. Appendix A presents the flowchart of the algorithms of qS wave

ray tracing by WFC. Below we outline solutions for each of these problems.

qS-wave Ray Tracing

qS-wave ray tracing has difficulties when the singularities are present (Shearer and

Chapman, 1989; Coates and Chapman, 1990; Červený, 2001; Vavryčuk, 2001). Be-

cause of the equality of the two qS-wave slownesses, the Christoffel matrix is degener-

ate and the denominator D in the equations (2.1) becomes zero. The right-hand-side

of the equations then yield infinite values. Figure 2.4 demonstrates the trace element

of the matrix Dij is plotted against the declination angle of slowness vectors for two

qS-waves in a VTI model (Table 2.1). D values of two qS-waves are zero in both line

and kiss singularities. 90◦ suggests the axis of symmetry.

Though singularities are found at points or on a line, the numerical instabilities

can arise in the vicinity of singularities (Shearer and Chapman, 1989; Červený, 2001;

Vavryčuk, 2001). In homogenous models, we have errors in qS-wave ray tracing when
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Table 2.1. Density-normalized constants for the model 2 in units of GPa, obtained
from a realistic earth model.



10.36 2.73 2.83 0 0 0

2.73 10.36 2.83 0 0 0

2.83 2.83 9.51 0 0 0

0 0 0 2.93 0 0

0 0 0 0 2.93 0

0 0 0 0 0 3.81



the takeoff angles are very close to the singularity. In heterogeneous models, such as

those with a gradient in velocity, we find that this problem can generate in erroneous,

sharp bends in ray trajectories when the slowness goes through the singular directions.

We apply a small perturbation of elastic constants in the presence of singularities to

minimize these problems; however, it is still possible to have some inaccurate ray

tracing since the Christoffel matrix is very sensitive to a minor change of anisotropy.

Also, the perturbation of elastic constants introduce an artificial error. In this case,

it is possible to apply the incorrect qS-wave.

However, the problem can be overcome by also computing the polarization vector

of the traced ray whenever the slowness approaches the singular directions. Near a

singularity, we can then compare the predicted particle motion on the point of the ray

to ensure that is similar to the preceding point. The incorrect qS-wave will normally

have a particle motion that is nearly perpendicular, which can be easily detected.

Since the ray tracing algorithm itself is independent of the polarization vector and the

polarization vector of a ray changes gradually along the raypath, we expect that the

two qS rays can be distinguished in the presence of singularities. Because the value of

the denominator D causes the algorithm instability in the vicinity of singularity and

the non-uniqueness of eigenvectors of the Christoffel matrix at the singular directions

(Equation 2.1), it can be used as an indicator to apply the additional check of particle

motion.
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2.2.2 Mesh Initialization

The second problem is the correct initialization of the two qS wavefront meshes in

the presence of shear wave singularities. This arises because the simplest way to

distinguish qS-waves when moving from one slowness vector direction to the next is

to sort them in order of increasing velocity, so that qS1 and qS2, for example, would

be the slower and faster waves. However, because the physical wavefronts intersect

and change order of velocities, the construction of wavefront meshes must instead

assign initial ray velocities and geometries using a criterion other than magnitude of

phase or group velocity (Figure 2.1). Because particle motion vectors will generally

change direction relatively slowly on the wavefront, we can instead use this as the

means of distinguishing the wave type (qS1 and qS2), and in the following text, we

will label the resulting wavefronts qSA and qSB to avoid confusion with the numerical

subscripts that imply velocity sorting. Though the two wavefronts can be recognized

as qSV and SH in the VTI media, in this context, we will still retain the notation of

qSA and qSB waves to help clarify the WFC implementation.

When initializing the qS-wave wavefront meshes, we arbitrarily choose one par-

ticle motion vector as the reference polarization direction for the first slowness vector

direction for qSA and use the other for qSB. Appendix B displays a flow chart illus-

trating the detailed steps for choosing the correct wave type (qS1 or qS2) for the qSA or

qSB waves. We iterate through all directions of interest to select the wave types that

make the polarization directions at all nodes consistent. Our current implementation

of this algorithm uses the conventional ray coordinate system, where the ray param-

eters are the azimuth and declination takeoff angles. Once the two qS-wavefronts

are initialized, they can be propagated through the earth model separately. Note

that special care has to be taken with polarization tests near kiss singularities, where

the particle motion vector can change orientation quickly. Temporarily subdividing

the mesh to ensure that the vector changes slowly from point to point allows these

singularities to be treated correctly.

2.2.3 Mesh Interpolation

The last problem is correctly assigning initial velocities and directions for new rays

when interpolating the wavefront mesh cells that cross singularities, and the solution

is the same as for the mesh initialization. After creating the first wavefront at time
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Fig. 2.5. A schematic illustrates the wave types of interpolated rays are tested to
ensure that the correct qS-wave ray is selected to maintain a physically meaningful
wavefront mesh while a portion of the wavefront crosses a singularity.

τ◦, we propagate it through the earth model at equal increments of time dτ (normally

τ◦ = dτ , though this is not required). Each time a new ray is inserted to maintain

accuracy, the particle motion is tested to ensure that the correct qS-wave ray is

selected to maintain a physically meaningful wavefront mesh (Figure 2.5). This test

can be skipped when the existing rays in a mesh cell are all either qS1 or qS2. Because

field quantities are assumed to vary slowly with direction in the ray approximation,

we can safely assume that the interpolated ray can be chosen on the basis of the

velocities of the existing rays in this case.

2.3 Examples of Wavefront Meshes

A sequence of tests applied to increasingly complex models shows the accuracy and

robustness of the qS-wave WFC implementation. We begin with a homogeneous, VTI

model with a line singularity, then demonstrate that the results are still accurate for

a tilted symmetry axis and for a model with a velocity gradient.

2.3.1 Homogeneous, VTI Model

Figure 2.6 (Table 2.2) shows cross-sections of slowness surfaces and wavefronts for two

qS-waves in the vertical plane of the homogeneous, VTI test model. Two important

and potentially complex aspects of anisotropic wave propagation occur in this model.
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Fig. 2.6. By using particle motion as a criterion to separate two qS-waves, qSA and
qSB waves are distinguished in a VTI model with line singularities (see Table 2.2).
(a) Cross-section of two qS-wave slowness surfaces for the model in the vertical plane.
(b) Cross-section of two qS-wave wavefronts for the model in the vertical plane. Note
the order of the outer and inner lines in (a) are exchanged in (b) because the values
in (b) is about the reciprocal in (a).

One is a line singularity in the direction about 67◦ from the axis of symmetry. The

other is a qSV -wavefront (qSA) with two small on-axis triplications in the horizontal

and vertical direction. The concave outward shape of the slowness surface results in

cusps in the wavefront.

This model tests whether the algorithm can correctly separate the two qS-

wavefronts prior to propagating them and whether it correctly interpolates wavefront

meshes with a triplication as the travel through the earth model. As noted above,

this separation is rather difficult when line singularities are present, though propa-

gating the wavefronts after initialization is not challenging in the homogeneous case.

Figure 2.7 shows the results in side views for the two qS-wavefront meshes at 0.1 s

and after propagating the wavefronts to a total time of 1.4 s in an increment of 0.1 s.

The size of the earth model is 4x4x4 km3. Since the model is homogenous, the final

mesh is the same shape as the initial wavefront, but the non-uniform mesh spacing

is a consequence of the automatic mesh refinement during propagation. As expected

for a VTI medium, the variation in interpolation is independent of azimuth.
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Fig. 2.7. Side views of two initial qS-wave wavefront meshes at time 0.1 s, generated
in the ray coordinate system are shown in (a) and (b) (the same as the analytic
solution, see Figure 2.6 (b)). Side views of two final meshes showing the results after
propagating the wavefronts to a total time of 1.4 s in an increment of 0.1 s in the
model 1 (see Table 2.2) are shown in (c) and (d).

.
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Table 2.2. Density-normalized elastic constants for the model 1 in units of GPa
(Adapted from Thomsen, 1986).



7.80 5.04 5.78 0 0 0

5.04 7.80 5.78 0 0 0

5.78 5.78 8.67 0 0 0

0 0 0 1.73 0 0

0 0 0 0 1.73 0

0 0 0 0 0 1.38



2.3.2 Homogeneous, Tilted TI Model

We use a TI model with a tilted axis of symmetry for the second example. This type

of medium has been recognized as a feature of overthrust areas and causes problems

in conventional imaging methods. (Isaac and Lawton, 1999; Vestrum et al., 1999;

Grechka et al., 2001; Kumar et al., 2004). Thus, in the example we consider the

same elastic moduli as in the previous example, but rotate the coordinates 45◦ about

the y− and z−axes. All components of the tensor elastic moduli are non-zero and it

will help show that our algorithm can handle general anisotropic cases. Specifically,

though the basic material properties are the same, the test will show that we can

automatically take into account singularities located in an arbitrary direction. Figure

2.8a and 2.8b show the ray paths through the model for a portion of the wavefront

at time 1.5 s, which have takeoff angles between 0◦ to 3◦ in azimuth and −90◦ to 90◦

in declination. The size of the earth model is still 4x4x4 km3. Because the rays are

no longer propagating in a symmetry plane, they display dramatic lateral changes in

propagation directions. Figure 2.8c, 2.8d, 2.8e, and 2.8f show the results in 3D views

for the two qS-wavefronts after propagating to a total time of 0.8 and 1.5 s, again

with an increment of 0.1 s. The wavefronts are correctly modeled and are rotated

versions of the previous results (Figure 2.7c and 2.7d).
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Fig. 2.8. 3D views of the qS-wave raypaths (straight lines) for a portion of the
wavefront at time 1.5 s in a tilted TI model are shown in (a) and (b), which have
takeoff angles between 0◦ to 3◦ in azimuth and −90◦ to 90◦ in declination. The tilted
TI model is generated by rotating the coordinates 45◦ about the Y- and Z- axes in
the model 1 (see Table 2.2). 3D views of the final wavefront meshes for two qS-waves
after propagating the wavefront to a total time of 0.8 s in an increment of 0.1 sec
through the tilted TI earth model are shown in (c) and (d). 3D views of the final
wavefront meshes to a total time of 1.5 s are shown in (e) and (f).
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2.3.3 Heterogeneous, VTI Model

Singularities complicate qS-wave ray tracing through an anisotropic model with gra-

dients because wavefronts can cross singularities during propagation, and care must

be taken even after the initial mesh construction step. Our third example shows that

the algorithm correctly handles this case as well. The moduli are the same as the

previous VTI model (see Table 2.2), but a strong gradient of 0.7 km/s per kilometer

is applied to the earth model.

Figure 2.9a and 2.9b show that a set of rays, having takeoff angles between 0◦

to 3◦ in azimuth and −90◦ to 90◦ in declination, bends dramatically because of the

strong gradient in velocity. Note the high ray density in the horizontal direction,

which shows the small local triplication on the qSV wavefront. One qS-wave ray

can consist of both qS1 and qS2 wave types while slowness vector directions cross a

line singularity (see Figure 2.1). This test therefore demonstrates the effectiveness of

the particle motion tracking procedure and the modification of qS-wave ray tracing

described in the Method section. Figure 2.9c, 2.9d, 2.9e and 2.9f show the results in

side views for the two qS-wavefronts after propagating to a total time of 0.5 and 1.3

s. The size of the model is 10x10x10 km3. The wavefronts show some distortion in

shape because of the velocity gradient.

2.4 Verification and Validation

By a sequence of verification and validation tests, we demonstrate the accuracy and

robustness of the mapping algorithm for qS-wave implementation. We began with a

verification test of mapping two qS-wave traveltimes in a homogeneous, VTI model.

Then we show the mapping algorithm can deal with multivalued traveltimes. Also, the

mapped ray data are used to generate synthetic seismograms and compared against

the full waveform solutions.

2.4.1 Traveltimes

First of all, we used a 2-D array of 6400 receivers uniformly distributed on the surface

(see Figure 2.10a) to test the accuracy of mapping two qS-wave traveltimes in the

homogeneous, VTI model (see Table 2.1). The earth model size is 10x10x10 km3.

Source is located at (5, 5, 2.5) (km). Figure 2.10b demonstrates that two qS wave
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Fig. 2.9. Side views of the qS-wave raypaths (curve lines) in a heterogeneous VTI
earth model with a linear gradient 0.7 km/s per kilometer are shown in (a) and (b).
Due to a strong gradient in velocity, the raypaths bend dramatically. See the text
for more description. Side views of the final wavefront meshes for two qS-waves after
propagating for a total time of 0.5 s in an increment of 0.1 s in this heterogeneous
VTI earth model are shown in (c) and (d). Side views of the final wavefront meshes
after propagating the wavefront for 1.3 s are shown in (e) and (f).
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slowness surfaces have a line singularity at around 53◦ away from the axis of symmetry.

This receiver array will include the line singularity to ensure the mapping algorithm

can correctly separate two qS traveltime fields. Figure 2.10c and 2.10d are the ray

spreading diagrams of qSV - and SH-waves, respectively, which display rays integrated

to one second traveltime from the source point, with the initial slowness vector having

a constant angular increment of 5◦ (Ben-Menahem et al., 1991). The wavefront,

which is the locus of points on the rays at 1 s, is also displayed. The qSV -wave

slowness surface is slightly concave inward and causes the ray density higher around

this direction than others.

Figure 2.11a and 2.11b show the side views of two qS waves for a vertical slice of

wavefronts at 1.2 s and raypaths showing new rays are adaptively inserted to ensure

accuracy as rays diverge during propagation. Figure 2.12a and 2.12b demonstrate

the accuracy of traveltimes with a predefined threshold 1 ms during the mesh inter-

polation. The means of traveltime errors for both two qS-waves are less than three

order of magnitude below the predefined threshold. Also, we have better accuracy and

less scattered distribution of traveltimes in the SH wave mapping than the qSV wave

(Figure 2.12a and 2.12b) because the SH wave has a smoother wavefront surface than

the qSV wave. The traveltime errors are the residuals of mapped traveltimes with

respect to the analytic solutions. Two major steps of the WFC algorithms dominate

these errors. While inserting the new rays in the mesh interpolation and mapping ray

data from the mesh, simply averaging the Cartesian Coordinates of the existing rays

for the new ray start points and extrapolation of traveltimes from a nearby ray result

in the errors. Therefore, mapping the traveltimes of a smoother wavefront surface

will be more accurate because of less error is introduced in averaging the Cartesian

Coordinates for the new ray start points. In addition, Figure 2.12c and 2.12d show

the traveltime errors in the 2-D plots for SH and qSV waves, respectively. Generally

speaking, the traveltime errors are azimuthally symmetric and this demonstrates the

mapping algorithm does a systematic job.

2.4.2 Multivalued Traveltime Fields

The preceding tests show that the method correctly identifies wave types during mesh

construction and interpolation, even when singularities and triplications are present

in arbitrary directions. Here we demonstrate the accuracy of computed multivalued
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Fig. 2.10. (a) Top view of the source-receiver geometry for verifying two qS-wave
traveltime wavefields, which including the line singularity. The earth model size is
10x10x10 km3. Source is at (5, 5, 2.5). 6400 receivers are uniformly distributed on
the surface. (b) Cross-section of two qS-wave slowness surfaces for the model 2 (see
Table 2.1) in the vertical plane. Ray spreading diagrams and their wavefronts at 1 sec
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See the text for the computation.
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Fig. 2.11. Side views of two qS waves for a vertical slice of wavefronts at 1.2 s and
raypaths are shown in (a) and (b), where (a) is identified as SH wave and (b) is qSV
wave.

traveltimes by propagating a qSV -wave wavefront through a VTI model that has a

triplication caused by its intrinsic anisotropy. The model 3 (Table 2.3) has strong

anisotropy. For example, the horizontal SH velocities is about 30% larger in the

vertical direction (see Figure 2.13d).

The source-receiver geometry for the validation is shown in Figure 2.13a, and

the cross sections of the two qS-wave slowness surfaces show the complexity of prop-

agation (Figure 2.13b). The qSV -wave slowness surface is concave outward at angles

between 30◦ to 60◦ from the axis of symmetry, causing a distinct off-axis qSV -wave

triplication in the wavefront (Figure 2.13b). Figure 2.13c shows the ray spreading

diagram. The wavefront, which is the locus of points on the rays at 1 s, is also dis-

played. Because the qSV -wave slowness surface is concave outward from P to Q,

the rays, or normals to the slowness surface, form a triplication. The ray amplitudes

in the triplication are expected to much higher than elsewhere in the synthetic seis-

mograms. However, according to previous studies (Thomsen and Dellinger, 2003;

Vavryčuk, 2004), the SH-wave doesn’t have the same behavior and its ray spreading

diagram shows a more even distribution of rays (Figure 2.13d).

The traveltimes computed by the WFC compare very closely to those computed
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Table 2.3. Density-normalized constants for the model 3 in units of GPa (Adapted
from Shearer and Chapman, 1989).



12.60 4.66 4.54 0 0 0

4.66 12.60 4.54 0 0 0

4.54 4.54 12.27 0 0 0

0 0 0 2.18 0 0

0 0 0 0 2.18 0

0 0 0 0 0 3.99



analytically (Figure 2.14). Though we have some slightly larger traveltime errors

in the portion PQ of the wavefront, the maximum error is less than 1 ms, which

was the value we use for the predefined error threshold in the accuracy test of the

mesh interpolation. Except for the caustic cusp, the maximum error is less than one

tenth of the predefined threshold. This shows our WFC algorithm can deal with the

mesh interpolation in a wavefront with cusps and evaluate the multivalued traveltimes

correctly.

2.4.3 Amplitudes

We also generate amplitudes to demonstrate our WFC algorithm can separate two

qS-wave amplitude fields and map them correctly. Again, we used the same source-

receiver geometry and model in Figure 2.10. Because the analytic solutions for am-

plitudes are not available in anisotropic media, we showed the plots of amplitudes

instead of their errors. However, in the later section we will use discrete wavenumber

method to generate full waveform synthetic seismograms for verification of ampli-

tudes. Figure 2.15a and 2.15b show amplitudes are plotted against the receiver index

for SH and qSV waves, respectively. Comparing to qSV wave, SH wave has grad-

ual variation in amplitude because of the smoother wavefront surface and uniformly

distributed rays (see Figure 2.10c and 2.10d). Figure 2.15c and 2.15d demonstrate

the 2-D plot of amplitudes for SH and qSV waves, respectively. Due to the concave

inward slowness surface (Figure 2.10b), qSV wave has relative high amplitudes in a
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Table 2.4. Density-normalized constants for the model 4 in units of GPa (Adapted
from Ben-Menahem et al., 1991).



28.16 21.44 16.24 0 0 0

21.44 28.16 16.24 0 0 0

16.24 16.24 16.16 0 0 0

0 0 0 2.48 0 0

0 0 0 0 2.48 0

0 0 0 0 0 3.36



ring shape.

2.4.4 Synthetic Seismograms

The full waveform solutions obtained by the discrete wavenumber method provide an

independent solution to verify the accuracy of ray theoretical seismograms from the

WFC. This will help confirm the accuracy of amplitude and particle motion results as

well as traveltimes. The following results apply a Ricker wavelet with 10 Hz central

frequency.

The first set of results use an ellipsoidal anisotropic model to generate the syn-

thetic seismograms (Table 2.4). Figure 2.16 compares the source-receiver geometry

and the cross-section of two qS-wave wavefronts, while Figure 2.17 shows the qS-wave

synthetic seismograms generated by vertical and horizontal point forces for qSV and

SH waves, respectively. The solid traces are the full waveform solutions from the

discrete wavenumber method, and the dashed traces indicate the WFC results. The

root mean squares of errors in maximum amplitude between these two sets of seis-

mograms are 1.10%, 0.52% and 0.31% for horizontal, vertical and radial components,

respectively. These small errors show accurate calculations by the WFC.

The second model for generating synthetic seismograms is a VTI model with a

line singularity (Table 2.1). The source-receiver geometry is the same as in Figure

2.16a. Figure 2.10c and 2.10d shows two qS-wave ray spreading diagrams and wave-

fronts for this VTI model. The receiver array will include the line singularity in the
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synthetic seismograms. Figure 2.18 shows qS-wave synthetic seismograms generated

by point forces for the model. The root mean square of residuals with respect to

the maximum amplitude between these two results are 2.50%, 2.14% and 1.64% for

horizontal, vertical and radial components, respectively. Again, they suggest a good

agreement between these two methods.

The final synthetic seismogram test uses the model with strong anisotropy and

a significant triplication (Figure 2.13c and 2.13d). Velocity in the cusp can be about

43% larger than in the horizontal direction. The source-receiver geometry is also

the same as in Figure 2.13a. Again applying vertical and horizontal point forces for

qSV and SH waves, respectively, the WFC and discrete wavenumber results still

compare well (Figure 2.19). The root mean square of residual maximum amplitude

errors, however, increase to 1.40%, 8.52% and 9.69% for tangential, vertical and radial

components, respectively. The SH wave results do still show a good agreement in

amplitude and waveform (Figure 2.19a). In the vertical component (Figure 2.19b),

the arrivals in OP are too weak to be clearly visible, but a close examination shows

that both methods predicted relative weak amplitudes here. Also, there are some
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strong amplitude arrivals beyond caustic cusps, which are not predicted by the WFC

method (see near point P).

However, the errors for the qSV wave are in waveform, not just amplitude, and

this is in part because our current implementation does not apply the KMAH index

that is required for fully correct modeling of waveforms around triplications (Červený,

2001). White (1982) also compared traveltimes and amplitudes of the off-axis qSV -

wave triplication between numerical Fourier inversion method and asymptotic ray

theory. The ray method based on the first-order ordinary differential equation can-

not predict the arrivals beyond the caustic cusps. Geometrical spreading is also

complicated in off-axis qSV -wave propagation, and erroneously large amplitudes are

predicted near cusps. Similar results were found in both vertical and radial compo-

nents of synthetic seismograms (Figure 2.19b and 2.19c). Future modifications of the

code will incorporate the KMAH index factor into the phase of qS-wave arrivals, but

even here the predicted synthetic seismograms are accurate enough to gain important

insights in body wave propagation, and traveltimes are accurate.

2.5 Conclusions

WFC is a powerful simulation method that can provide multivalued ray theoretical

solutions for 3-D models. It has strong potential to model propagation in complex,

multiple layered earth models, such as salt dome structures. Previous work has in-

cluded implementations for isotropic media, and for quasi-compressional wave model-

ing in anisotropic media. Though quasi-shear wave propagation is more complicated,

the WFC still is an attractive modeling approach, and we have shown that particle

motion vectors are an effective criterion for creating initial wavefront meshes and

for guiding wavefront interpolation while propagating wavefronts through an earth

model.

We have demonstrated results for two homogeneous, transversely isotropic mod-

els show that line singularities are correctly handled. Modeling wavefronts through a

heterogeneous, VTI model is also correct. A verification of two qS-wave traveltimes

for a VTI model with a line singularity demonstrates the accuracy and robustness

of propagating wavefronts and mapping algorithms. Ray amplitudes are also shown.

Then, a verification of multivalued traveltimes for a wavefront with a triplication

shows the WFC method is capable to map multivalued arrivals correctly. In addi-
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Fig. 2.19. qS-wave synthetic seismograms generated by point forces for the model (see
Table 2.3). See Figure 2.13 for the source-receiver geometry, and cross-sections of two
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tion, the ray data obtained by WFC are used to generate synthetic seismograms for

these models and compared to the full waveform solutions generated by the discrete

wavenumber method. Except the qSV -wave modeling around triplications, all the

comparisons of synthetic seismograms demonstrate a excellent agreement between

these two methods.

In future extensions of this work, we will use these qS-wave synthetic seismograms

to compare with recorded field data and focus the implementation in multilayered

models.
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CHAPTER III

RAY TRACING INCLUDING COMPOSITE REFLECTION

COEFFICIENTS IN STRATIFIED MEDIA

3.1 Introduction

Amplitude variation with offset (AVO) is a very important technique to locate hydro-

carbons because the reflection amplitude at different angles of incidence changes sig-

nificantly when fluids in a formation change from brine to gas, for example (Domenico,

1976; Ostrander, 1984; Murphy, 1984; Rutherford and Williams, 1989; Castagna et

al., 1998; Ross, 2000; Smith and Sondergeld, 2001; Zillmer, 2006; Wandler et al.,

2007). However, some limitations often lead to false conclusions. Classic AVO anal-

ysis based on the approximation of the Zoeppritz equation is valid only for P -wave

reflection from the interface between two solid half-spaces. Though the thin layer

tuning effect can be included in the AVO modeling (Almoghrabi and Lange, 1986;

Juhlin and Young, 1993; Bakke and Ursin, 1998; Liu and Schmitt, 2003), it is more

difficult to understand the composite reflection by the conventional AVO analysis

when there are many layers in a turbidite reservoir model. Also, the classic AVO

analysis assumes that the reflections of each interface are independent from the oth-

ers generated by other interfaces. Only reflections are considered, and transmissions,

conversions, and multiple waves are all neglected. However, these wavefields may

include useful information to detect hydrocarbon in the rock.

AVO analysis in complex stratified reservoir models, such as turbidite reservoirs

in the Gulf of Mexico, is thus very crucial in petroleum exploration. The turbidite

reservoirs are often composed of a couple of thin sand/shale layers and complex

distributions of velocity and density. Therefore, seismic modeling for a complete

synthetic seismograms in these complex stratified, thin reservoir models is necessary

to accurately predict reflection amplitudes and location of hydrocarbons.

Wave propagation through multi-layered media including reflection, transmis-

sion and conversion complicates seismic modeling. The Thomson-Haskell propagator

matrix (Thomson, 1950; Haskell, 1953) was developed to obtain reflection and trans-

mission coefficients and solve the propagated stress and displacement vector fields
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through horizontally stratified isotropic layers. Gilbert and Backus (1966) implement

the application of the propagator matrix to seismology.

Comparing to direct computation of the plane layer responses in the propagation

matrix method, the reflectivity method (Kennett and Kerry, 1979) obtains reflection

and transmission matrices iteratively by starting at the first layer and increment one

layer for each iteration until we have reach the total stack. Booth and Crampin (1983)

extended the reflectivity methods from horizontal stratified isotropic structures to

stratified anisotropic structures. Also, Müller (1985) demonstrate a tutorial of using

the reflectivity method to generate the complete synthetic seismograms for a point

force in a layer stack model.

Gibson, Jr. (2004, 2005) suggested the use of the propagator matrix method

to quickly compute the composite P -wave reflection coefficient for stratified reservoir

models. Though the internal velocity fluctuations complicate the model and lead

to strong scatterings in amplitude, example calculations show that the fluids still

produce measurable AVO anomalies in the the reflection amplitudes.

However, generating synthetic seismograms for a complex stratified reservoir is

computational expensive, especially for the large volume of seismograms required

to simulate a complete seismic survey. The problem can be solve by a fast hybrid

approach. Červený(1989) introduce a hybrid approach which combines ray tracing

modeling in the thick overburden layer or layers with the reflectivity method in a

laterally varying thin transition layer. Here, I apply the same idea to generate the

complete synthetic seismograms in complex stratified reservoir. This task can be

done by integrating the propagator matrix results with fast seismic modeling using

ray methods known as wavefront construction to implement fast solutions for syn-

thetic seismograms that model the complications in seismic reflection amplitudes that

are caused by complex, stratified reservoir structures. This will be accomplished us-

ing composite reflection coefficients that include all of the influence of layering in a

reservoir on the reflected signal, not simply a single boundary as is done in conven-

tional analysis. The ray tracing will simulate propagation in the geologic layer over

a target layer, while the composite reflection coefficient will model the amplitude of

the signal reflected by the stratified reservoir model. In this chapter, I will integrate

the propagation matrix results (Gibson, Jr., 2004, 2005) with fast seismic modeling

accomplished by ray tracing including composite reflection coefficients in stratified

reservoir models.
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Below I briefly describe the content of this chapter. First I demonstrate the ray

tracing by wavefront construction (WFC) method for reflections in a two-region model

with a horizontal or titled interface. A set of verifications of reflection traveltimes

and amplitudes in a two-region model with a horizontal or titled interface shows that

the WFC method is robust and accurate. Then, I compare the P - wave reflection

coefficients between using the propagator matrix method and full waveform synthetic

seismograms for a couple of different source frequencies in the simple interface, thin

layer embedded and complex stratified models. Finally, I apply the ray tracing includ-

ing composite reflection coefficients method to a complex stratified reservoir models.

The ray data, generated by the WFC method, and composite reflection coefficients,

obtained by the propagator matrix method, are combined together to create synthetic

seismograms for a turbidite reservoir model in Ursa field, Gulf of Mexico. And they

are validated with another independent full waveform synthetic seismograms with

discrete wavenumber full waveform solutions for the central frequency at 10, 20, 40

and 60 Hz. Furthermore, the synthetic seismograms for the model embedded with a

thin, tilted reservoir are presented.

3.2 Methods

3.2.1 Ray Tracing by Wavefront Construction in Multi-region Models

Though the WFC method is efficient and robust, the ray interpolation step can be

very difficult when the ray tube is reflecting or transmitting an interface (Figure 3.1).

The folded wavefront patch makes it impossible to accurately estimate the paraxial

traveltime errors using the normal implementation (see equation 2.5). An additional

check to test whether the ray tube is reflecting and transmitting is applied to ensure

the implementation of the WFC method in the multi-region models.

Considering the WFC implementation in multi-region models, Lee and Gibson,

Jr. (2005) developed a model-based interpolation ray-tracing method in which the

ray interpolation is only performed at the layer interfaces, to simulate the wavefront

propagation in the layered models efficiently and easily. However, this modification

will encounter difficulties when the ray tube transmits through same surface more

than one time. For example, the ray tube may propagate through a salt dome surface

twice.
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Fig. 3.1. Schematic illustration of the difficulty in the ray interpolation while the ray
tube is reflecting and transmitting in an interface.

Therefore, we will not directly apply the model-based interpolation method. In-

stead, we will utilize the same interpolation procedure as was developed for smooth

media (see Chapter II). However, we will never apply interpolation when the ray

tube is reflecting from or transmitting across an interface (Figure 3.1). For reflection,

the reflected points (or time) of the nearby rays of the ray tube are used to check-

ing whether the patch between the current and next step is reflecting. However, for

transmission, we can simply check the region indices of eight points of the piece of the

ray tube to detect this transmission condition. A couple of examples will be shown

in the Examples section.

Furthermore, in order to correctly use composite reflection coefficients that in-

clude the total influence of layering in a reservoir on the reflected signal, the incident

angle information of the rays must be stored properly. However, because the new

rays may be inserted after the time that the nearby rays are reflected, the new rays

have no incident angle information (see the figure on page 47) to exact the magnitude

and phase of composite reflection coefficients. Additional care of interpolating the

incident angle from the nearby rays is necessary to correctly use the composite reflec-

tion coefficients. The verification of incident angles is shown in the figure on page 75.

Since the composite reflection coefficients change gradually with the incident angle,

the small incident angle errors, mostly less than 2◦, suggest the usage of reflection

coefficient is precise enough.

The ray data, which includes traveltime, amplitude, geometric spreading, takeoff

angle, and incident angle at receivers and the Green’s tensor can be used to generate
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synthetic seismograms. The Green’s tensor Gij which is determined by the medium

properties, can be used to calculate the displacement fields at receivers (Ben-Menahem

et al., 1991). The medium’s response ui to an arbitrary point force Fj can be written

as

ui = GijFj, (3.1)

where Gij is proportional to gigj. And gi is the eigenvalue of the Christoffel matrix.

For the explosive source, the derivative of Gij makes Equation 3.1 to be re-written as

ui = −iwGijMjkpk, (3.2)

where Mjk is the moment tensor and pk is the slowness vector. We should be careful

to explain the synthetic seismogram generated by a explosive source because the term

−iw makes the polarity, frequency, and phase changes in the seismograms.

In addition, the Green’s tensor obtained by WFC are all real numbers because the

computation of displacement field (or transmission and reflection coefficient) in the

interface are not included in the WFC modeling. The composite reflection coefficients

computed by the propagator matrix method should be correctly included to form a

complex Green’s tensor for generating synthetic seismograms.

3.2.2 Propagator Matrix Method

The propagator matrix method has been introduced to solve reflection and transmis-

sion coefficients in the horizontally stratified isotropic layers (Thomson, 1950; Haskell,

1953; Gilbert and Backus, 1966). Figure 3.2 shows a stack of stratified layers embed-

ded in a half space model (Gibson, Jr., 2004). A P -wave reflection from the stack

can be computed by the propagator matrix method and produces the exact solution

of a composite reflection coefficient.

Aki and Richard (2002) demonstrate the detail of derivation for the method

in chapters 5 and 7. Also, Gibson (2004) shows the derivation for computing the

reflection from a stack of layers. The differential equations for the motion-stress

vector of the plane waves in homogeneous media can be generalized to a matrix form:

db(z)

dz
= A(z)b(z), (3.3)
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where b(z) is given by

b =



u1

u3

σ13

σ33


. (3.4)

Equation 3.3 can be solved by

b = Fw, (3.5)

where

w =



Pdown

SVdown

Pup

SVup


, (3.6)

which denotes the amplitudes of P - and S-waves for down- and up-going plane waves.

The motion-stress vector b and amplitude vector w are related to produces a four by

four matrix F. Each of w and b is layer dependent. In the upper half space, layer 0,

Equation 3.5 is written as b0 = F0w0, where the amplitude vector field

w0 =



1

0

Pup

SVup


. (3.7)

We assume a unit amplitude of incident P -wave. Similarly, the amplitude vector field

in the lower half space is written as

wn+1 =



Pdown

SVdown

0

0


. (3.8)
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Fig. 3.2. A stack of stratified layers embedded in a half space model for propagator
matrix computation. The incident plane wave hits the top of the stack (Gibson, Jr.,
2004).

Finally, the composite reflection of P -wave in the upper half space is written as

F0w0 = PprodFn+1wn+1, (3.9)

where Pprod is the product of n four by four propagator matrices F. Each layer has its

own in the model. I only compute P -wave reflection from a stack of stratified layers.

3.2.3 Shuey’s Approximation Method

Because I start the comparison of P - wave reflection coefficient in a simple interface

half-space model, I introduce the well known Shuey’s approximation to understand

how it is different from the Zoeppritz equation results.

Shuey (1985) described an approximate solution for the P -wave reflection coeffi-

cient from a single interface between two solid half-space, illustrating how the ampli-

tudes at normal incidence, intermediate, and large angles, providing physical insights

into the P -wave reflection problem. P -wave reflection coefficient as a function of the

incident angle can be written as three term approximation

R(θ) ≈ A+Bsin2(θ) + C(sin2(θ)tan2(θ). (3.10)

A, the normal incidence P -wave reflection coefficient, is denoted as

A =
1

2
(
∆Vp

〈Vp〉
+

∆ρ

〈ρ〉
). (3.11)
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B, which describes the P -wave reflection coefficient in the intermediate angles, is

given by

B =
1

2

∆Vp

〈Vp〉
− 2(

〈Vs〉
〈Vp〉

)2(2
∆Vs

〈Vs〉
+

∆ρ

〈ρ〉
). (3.12)

C, which represents the coefficient while approaching the critical angles, is written as

C =
1

2

∆Vp

〈Vp〉
. (3.13)

∆Vp = Vp2 − Vp1 is the change in compressional velocity and 〈Vp〉 = Vp2+Vp1

2
is the

average in compressional velocity across the interface. ∆Vs = Vs2 − Vs1 is the change

in shear velocity and 〈Vs〉 = Vs2+Vs1

2
is the average in compressional velocity across

the interface. ∆ρ = ρ2 − ρ1 is the change in density and 〈ρ〉 = ρ2+ρ1

2
is the average

in density across the interface. Subscription 1 and 2 are for overlying and underlying

media, respectively.

3.2.4 Backus Averaging

Since the total thickness of the reservoir in seismic modeling is relatively thin, the

well-known Backus averaging (Backus, 1962) will be discussed and its results will be

compared. Backus average algorithm estimates an equivalent homogeneous medium

with the same effect as the complete horizontally layered stack. For wavelength longer

than the total thickness, the medium is can be replaced by a transversely isotropic

medium in this method.

3.3 Examples of Ray Tracing of Reflection by Wavefront Construction

Here I present the ray tracing by the WFC method for reflections in a two-region

model with a horizontal or titled interface. Figure 3.3a shows a set of sparse initial

rays traced through a model with a horizontal surface. Figure 3.3b shows the result

after propagating the wavefront through the model, in which new rays are adaptively

inserted. And the wavefront at 1.6 s shows the front after it is partially reflected.

In order to test the robustness of the algorithms, up-dip (Figure 3.4) and down-dip

(Figure 3.5) interface models are also tested and the results suggest the correctness

of the ray tracing by WFC method for reflections. In the Verification and Validation
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Table 3.1. Velocities and densities of the two-region model.

Vp (km/s) Vs (km/s) ρ (g/cm3)

Top layer 3.0 1.5 2.6

Bottom layer 3.2 1.6 2.7

sections, a sequence of source-receiver geometry and models support the accuracy of

this method.

3.4 Verification of Traveltimes and Amplitudes

A sequence of verifications is applied to demonstrate the accuracy and robustness of

the implementation of reflection in the WFC method. Figure 3.6 shows the top and

side views of the source-receiver geometry and model dimension for verifying travel-

times and amplitudes in the two-region models with a horizontal and tilted surfaces.

Source is located in the surface and 62 by 62 receivers are uniformly distributed.

Table 3.1 gives the velocities and densities of the two-region model.

Figure 3.7 show the wavefront propagates through a two-region model and reflects

in a horizontal interface with depth 3 km. The similar model but with a tilted

interface is also shown in Figure 3.8. All these wavefronts look reasonable, however,

the verification of mapping traveltimes and amplitude will prove the algorithm is

correctly implemented.

3.4.1 Traveltimes

Figure 3.9 presents the the traveltime residuals of reflection in a two-region model

with a horizontal interface. Traveltimes residuals are plotted against the receiver

indices to show the distribution of errors. The statistic results show that the mean

is 8.52x10−7 s, which is about three order less than the predefined threshold 1 ms

for ray interpolation. The standard deviation, 1.02x10−6 s, suggests a very good

distribution of errors. In the 2-D plot of traveltime errors, generally the errors have

very similar values in all azimuthal direction. The peak and trough pattern of errors
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Fig. 3.3. Ray tracing of reflection by wavefront construction in a two-region model
with a horizontal surface. (a) A set of initial sparse rays are traced. (b) After
propagating the wavefront through the model, new rays are adaptively inserted. And
the wavefront at 1.6 s demonstrates the front is partially reflected.
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Fig. 3.4. Ray tracing of up-dip reflection by wavefront construction in a two-region
model with an up-dip surface. (a) A set of initial sparse rays are traced. (b) After
propagating the wavefront through the model, new rays are adaptively inserted. And
the wavefront at 2 s demonstrates the front is partially reflected.
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Fig. 3.5. Ray tracing of down-dip reflection by wavefront construction in a two-region
model with a down-dip surface. (a) A set of initial sparse rays are traced. (b) After
propagating the wavefront through the model, new rays are adaptively inserted. And
the wavefront at 1.3 s demonstrates the front is partially reflected.



50

0 2 4 6 8 10
0

2

4

6

8

10

X Distance (km)

Y 
D

is
ta

nc
e 

(k
m

)

Source @ (5, 5, 0)
Receiver

0 2 4 6 8 10
0

1

2

3

4

5

Distance (km)

D
ep

th
 (k

m
)

0

1

2

3

4

5

D
ep

th
 (k

m
)

(a)

(b)

(c)

Fig. 3.6. (a) The top view of the source-receiver geometry for verifying of traveltimes
and amplitudes in the two-region models with a horizontal and tilted surfaces. The
side views of the two-region model with a horizontal and tilted surface are shown
in (b) and (c), respectively. This model and source-receiver geometry can verify the
mappings of reflection traveltimes and amplitudes in both up- and down-dip surfaces.
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Fig. 3.7. Wavefront propagates through a two-region model and reflects in a horizontal
interface with depth 3 km. (a) The side view of the wavefront at time 1 s before it hits
the horizontal interface. (b) The 3-D view of (a). (c) The side view of the wavefront
at time 1.2 s. Partial wavefront is reflected. (d) The 3-D view of (c). (e) The side
view of the wavefront at time 1.9 s after it reflects from the horizontal interface. (f)
The 3-D view of (e).
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Fig. 3.8. Wavefront propagates through a two-region model and reflects in a tilted
interface. (a) The side view of the wavefront at time 1.1 s before it hits the tilted
interface. (b) The 3-D view of (a). (c) The side view of the wavefront at time 1.4
s. Partial wavefront is reflected. (d) The 3-D view of (c). (e) The side view of the
wavefront at time 2.3 s after it reflects from the tilted interface. (f) The 3-D view of
(e).
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away from the source suggest some receivers use the same central ray (or patch of the

wavefront) for extrapolating the ray data. The closer receivers have smaller errors.

The verification for the a two-region model with a tilted interface is also presented

in Figure 3.10. Both mean of traveltime errors and standard deviation are slightly

larger than the previous model. The 2-D plot of traveltime errors shows a shifted

version in the previous model.

3.4.2 Amplitudes

Verifications of amplitude for both two models are also shown since the analytic

solutions for amplitude are available. We continue the derivation of Equation 2.8

in the Methods section, Chapter II. Considering an amplitude along a ray in an

isotropic, homogeneous medium, it is easy to get | ∂xi

∂γj
| = r2sinθ since the wavefront

is spherical here. If the focal sphere introduced, the J in Equation 2.8 can be written

as a function of distance. Then J(r0) = sinθ at τ0 and J(r) = r2sinθ at τ can

be obtained. Amplitude in Equation 2.7 in an isotropic, homogeneous medium is

expressed as a function of distance.

A(|r|) =
1

|r|
(3.14)

where |r| is the distance from a source point. Though the amplitude is inversely

proportional to distance in isotropic media the computation for analytic solutions

of amplitude is not trivial. The Cartesian coordinates of the receivers’ image with

respect to the tilted surface are computed to get the distance from source to receivers.

Figure 3.11 demonstrates the verification of reflection amplitudes in a two-region

model with a horizontal interface. The residuals are less than 4.5x10−4. The 2-D plot

of amplitude residuals are shown. Also, the verification of of reflection amplitudes

in a two-region model with a tilted interface is performed (Figure 3.12). Again, the

results show a shifted version in the previous model.

3.5 Composite Reflection Coefficient by Propagator Matrix Method

In this section we test and verify the coefficients generated by propagator matrix

method for the simple interface, thin layer embedded, and complex stratified models.

The results are compared against other independent methods to demonstrate the



54

2 3 4 5 6 7 8
X (km)

2

3

4

5

6

7

8

Y 
(k

m
)

-2

-1

0

1

2

3

(10-6 s)

(a)

(b)

0 1000 2000 3000 4000

-3

-2

-1

0

1

2

3

Receiver index

Tr
av

el
tim

e 
re

sid
ua

l (
10

-6
 s

)

Mean = 8.52x10-7

Stdev = 1.02x10-6

Fig. 3.9. Verification of reflection traveltimes in a two-region model with a horizon-
tal interface. (a) Traveltime residuals are plotted against the receiver indices. The
residuals are bounded within 3.5x10−6 s. (b) Traveltime residuals are plotted in 2-D.
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Fig. 3.10. Verification of reflected traveltimes in a two-region model with a tilted
interface. (a) Traveltime residuals are plotted against the receiver indices. The resid-
uals are bounded within 4.2x10−6 s. (b) Traveltime residuals are plotted in 2-D. The
pattern of the residuals is similar to the shifted 2-D plot in the horizontal interface
model.
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Fig. 3.11. Verification of reflection amplitudes in a two-region model with a horizon-
tal interface. (a) Amplitude residuals are plotted against the receiver indices. The
residuals are less than 4.5x10−4. (b) Amplitude residuals are plotted in 2-D.
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Table 3.2. Velocities and densities of two layers in the simple interface model.

Vp (km/s) Vs (km/s) ρ (g/cm3)

Top layer 3.0 1.30 2.38

Bottom layer 2.86 1.27 2.33

accuracy of the propagator matrix method. Because the thin layer, a set of the central

frequency at 10, 20, 40, and 60 Hz are applied to discuss the frequency dependence

of the reflection coefficients.

3.5.1 Simple Interface Model

A simple interface model constructed by two isotropic layers is set for the comparison

of P - wave reflection coefficients obtained by different methods. Table 3.2 gives the

velocities and densities of two layers for this model, which have small contrasts of

material properties.

We use Shuey’s two-term and three-term approximation equations to compute

the P - wave reflection coefficients. The Zeoppritz solution can be obtained by the

propagator matrix method while setting the layer thickness to zero.

Also, we can use full waveform synthetic seismograms to verify the reflection coef-

ficients. The amplitude attributes can be applied to estimate the reflection coefficients

after correcting source and receiver effects and removing the geometric spreading in

the seismograms. Because the source and receivers are in a homogeneous, isotropic

layer, the correction factor for the radiation pattern of the source type is trivial (see

Aki and Richards (2002) Equation 4.29 and Ben-menahem et al. (1991)). Since we

use the vertical point force to generate synthetic seismograms, we have to remove the

factor cos θ, where θ is the angle away from the vertical direction. It is also the takeoff

angle here. For the receiver effect, because we take the vertical component to esti-

mate the total reflection amplitude, we should recover it by multiplying the receiver

correcting factor secφ to the vertical amplitude, where φ is the incident angle at the

receivers. It is the same as θ because the reflector is horizontal. For the geometric

spreading, because the medium is isotropic, amplitude is proportional to the recipro-
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cal of distance and can be easily removed. After these three steps of correction, the

reflection amplitude at the incident point on the interface can be recovered. Then the

normal incident amplitude is normalized to the coefficient obtained by the propagator

matrix method.

Figure 3.13 shows comparisons of the reflection coefficient as a function of inci-

dent angle for Shuey two-term, three-term approximation, Zeoppritz equation and full

waveform synthetic seismograms in the simple interface model. The Zeoppritz results

match full waveform synthetic seismograms very well. This suggests the coefficients

generated by propagator matrix method are in good agreement with the amplitudes

generated by discrete wavenumber method. Also, Figure 3.13a shows that Shuey’s

two-term approximation provides an accurate estimate, especially when the incident

angle within 20◦. The errors become noticeable when the incident angle is larger than

30◦. The two-term approximation is widely applied in AVO analysis. This comparison

suggests why the intercept-gradient plot is limited to the application with small in-

cident angle. However, Shuey’s three-term approximation produces reasonable errors

even when the incident angle goes up to 50 degrees.

3.5.2 Thin Layer Embedded Model

Here we compute reflection coefficients for a thin layer embedded in a half-space

model. In this case, when the layer thickness is close to the characteristic length,

the layer thickness, in a thin layer embedded model, reflections from top and bottom

interfaces interfere and result in a reflected signal that is not only a function of incident

angle but also frequency. Figure 3.14 shows the source-receiver geometry and model

parameters. A thin layer with 30 m thickness is inserted at the depth 1 km.

Figure 3.15 shows the P -wave reflection coefficient as a function of frequency

and incident angle in a thin layer embedded model, and Figure 3.16 shows the P -

wave reflection coefficient and its phase of the normal incident angle as a function of

frequency in a thin layer embedded model. At about 47◦, the superimposed reflections

from top and bottom cancel out. In Figure 3.15, the frequency where this cancellation

occures is moving to higher values as the incident angle increases.

In order to compare the reflection coefficient with the full waveform synthetic

seismogram, the coefficient has to be convolved with the frequency spectrum of a

source wavelet. Ricker wavelets with the central frequency 10, 20, 40, and 60 Hz and
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their frequency spectra are demonstrated in Figure 3.17.

For simplicity, a table with the coefficient computed at 60 frequencies was com-

puted, and values were then interpolated to estimate values at frequencies required

to convolve with the corresponding source function, a Ricker wavelet, with an arbi-

trary frequency. The maximum frequency of the Ricker wavelet is three times the

central frequency. The weighted reflection coefficient, which is the sum of all fre-

quency components of the coefficient multiplied by the Ricker wavelet spectrum, can

be compared with amplitudes of synthetic seismograms generated by the discrete

wavenumber method. The operation of computing weighted reflection coefficient for

a Ricker wavelet is given by

Rw(θ) =

∑60
i=1AiR(fi, θ)∑60

i=1Ai

, (3.15)

where Rw(θ) is the weighted reflection coefficient, Ai is the magnitude of a correspond-

ing frequency in the amplitude spectrum (Figure 3.17b). R(fi, θ) is the reflection

coefficient of a corresponding frequency fi at the incident angle θ in Figure 3.15. For

example, in the 10 Hz case, the reflection coefficient at a certain angle θ is computed

every 0.5 Hz from 0 to 30 Hz. Also, the weighted factor Ai is computed every 0.5

Hz from 0 to 30 Hz in the amplitude spectrum. Then the sum of weighted reflection

coefficients for all frequencies can be used to compare to the amplitude attribute in

the synthetic seismograms.

The reflection coefficients from synthetic seismograms are computed by the same

method described in the previous simple interface model section. This operation

is repeated for the Ricker wavelet with the central frequency at 10, 20, 40, and

60 Hz (Figure 3.18). For the lower frequency at 10 and 20 Hz, the comparison of

coefficient demonstrates the propagator matrix results have a good agreement with

full waveform synthetic seismograms. However, as the frequency increases, there are

some noticeable differences, especially in the 60 Hz case. Figure 3.19 shows the seismic

amplitude attribute (thick, red dashed line) is overlapped on synthetic seismogram

in a thin layer embedded model for the Ricker wavelet with the central frequency at

60 Hz. Due to the thickness to wavelength ratio is high (6/9), the reflections from

the top and bottom start to separated to two wave packs. This results the misfits in

the comparison. A single value, the magnitude of the composite reflection coefficient,

does not provide a valid measure of a single composed of two arrivals.
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3.5.3 Complex Stratified Reservoir Model — Application to the Field

Data

In this section the well logs of a turbidite reservoir in the Ursa field, Gulf of Mexico

will replace the thin layer in the previous model. The application to this complex

stratified reservoir demonstrate the accuracy and robustness of the propagator matrix

method.

Ursa field, Gulf of Mexico

Well logs in the Ursa field, Gulf of Mexico, are chosen to demonstrate the application

to the field data. The Ursa field located in the Mississippi Canyon area of the east-

central Gulf of Mexico (Figure 3.20) has abundant hydrocarbons in the reservoirs in

the deep water. The field has multiple stacked reservoir horizons and several major

reservoir intervals. Here, a 28.6m thick thin reservoir, located depth from 5866m to

5895m, is selected for seismic modeling. Figure 3.21 and 3.22 are the well logs nearby

the 28.6 m reservoir. Also, all of the reservoirs in this well are available in Figure 4.6

and 4.7.

In this candidate reservoir, velocity, density and estimated porosity logs have

strong internal fluctuation because the mixture of sand and shale beds. Shale beds

usually have more condensed grain packing and show relatively lower porosity and

higher density in well logs.

In order to generate the synthetic seismograms covering a wide range of the

incident angle, a source-receiver geometry and model parameters are set up in Figure

3.23. A 28.6 m thick reservoir with the internal rock properties shown in Figure

3.23b and 3.23c is embedded in the half space model. The rock properties of the

half space model are created from the averages of velocities and density from the

non-hydrocarbon reservoir measurements near the candidate reservoir. The reservoir

consists of 95 layers. Each layer is about 0.3 m in thickness.

Figure 3.24a demonstrates the verification of reflection traveltimes from the top

of the complex stratified reservoir in the Figure 3.23a model. Traveltime errors are

bounded within 10−5 s, where the predefined threshold for the ray interpolation is

1 ms. Also, the verification of reflection amplitudes from the top of the reservoir

is presented in Figure 3.24b. Note these amplitudes do not include the reflection

coefficients. Only the geometric spreading is considered in the computation. However,
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(Adapted from Meckel et al, 2002)

Fig. 3.20. Location map of the Mars-Ursa field. Green represents the areas affected
by salt structures. White represents the areas unaffected (Meckel et al., 2002).
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these amplitudes will be multiplied by complex composite reflection coefficients while

generating synthetic seismograms.

Because the ray incident angle information are obtained from the nearest rays,

the verification of incident angles shown in Figure 3.25 demonstrates that the errors of

incident angles are negligible when applying them to get the corresponding reflection

coefficients.

Figure 3.26 shows the composite reflection coefficient as a function of frequency

and incident angle in a complex stratified reservoir model (Figure 3.23). Figure 3.27a

shows composite reflection coefficient at normal incidence as a function of frequency

in a complex stratified reservoir model. The phase is also plotted (Figure 3.27b).

Due to the complexity of layering in the reservoir, a totally destructive amplitude is

not obtained in this complex model, as was observed in a thin layer embedded model

(Figure 3.16). However, a local minimum still suggests the reflections from the top

and bottom interfaces and the internal thin layers are partially canceled out around

the incident angle 42◦. These internal complexity also results in stronger composite

reflections while the frequency goes higher. The frequency dependence in such thin,

complex reservoir leads to the complexity of reflection coefficients.

Again, we repeat the same procedure of comparing the composite reflections

between using the propagator method and full waveform synthetic seismograms in

the previous thin layer embedded model. Figure 3.28 demonstrates comparison of P

wave reflection coefficients between the propagator matrix method and full waveform

synthetic seismograms in a complex stratified reservoir model (Figure 3.23) for the

Ricker source wavelet with the central frequency at 10, 20, 40, and 60 Hz, respectively.

In the low frequency range, 10 and 20 Hz, two methods have very good agreement

and show negligible difference. While the central frequency at 40 Hz, some noticeable

errors are obtained for the incident angle after 30◦. These misfits become larger when

the central frequency goes to 60 Hz.

3.6 Validation – Synthetic Seismograms

Before combining the ray solutions with composite reflection coefficients into a com-

plex Green’s tensor, a table of the magnitude and phase for reflection coefficients are

computed in a range of frequency and incident angle. The coefficients are computed

at 60 frequencies which range from 0 Hz to three times of the source central frequency
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Fig. 3.24. (a) Verification of reflection traveltimes from the top of the complex strat-
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of the Ricker wavelet. The incident angles are considered from 0◦ to 89◦ to cover the

reflection modeling. Also, while generating synthetic seismograms, we carefully in-

terpolate the reflection coefficients from the table of the coefficients and implement

them in the corresponding traces.

3.6.1 Complex Stratified Reservoir Model

After verifying the traveltimes, amplitudes, incident angles and composite reflection

coefficients, the ray data and the complex composite reflection coefficients are applied

to generate synthetic seismograms. The results are compared with the complete

solution synthetics seismogram obtained from the discrete wavenumber method with

the central frequency 10, 20, 40, and 60 Hz. Vertical point force and Ricker wavelet

are applied to generate vertical and radial component seismograms.

Figure 3.29 shows the comparison of synthetic seismograms for the radial com-

ponent with the central frequency at 10 Hz between the discrete wavenumber method

(black traces) and ray method (dashed red traces). Because only PP wave reflection

coefficients are considered, there is no PS wave reflection in the ray results. The

overlapped traces show the PP wave reflections from two methods are well-matched,

not only in the near offset but also in the far offset. Figure 3.30 demonstrates the

comparison result for the vertical component. Still, the comparison of results have a

very good agreement. Here, the zoom-in plots for radial and vertical components in

the near offset shown in Figure 3.31 demonstrate the detail of matched waveforms.

Figures 3.32, 3.33 and 3.34 are the comparison results for the central frequency

at 20 Hz. Figures 3.35, 3.36 and 3.37 are the comparison results for the central

frequency at 40 Hz. Figures 3.38, 3.39 and 3.40 are the comparison results for the

central frequency at 60 Hz. All of them show excellent agreement of the P - wave

reflections, even in the high frequency range. The ray data including composite

reflection coefficients can generate the full solution synthetic seismograms of P - wave

reflection from a complex stratified reservoir model.

At the low source frequency (10 and 20 Hz), the thickness to wavelength ratio

is 1/9. The wavelength is too long to detect the thin layer stack and its internal

fluctuation. Therefore, the waveforms in Figures 3.31 and 3.34 still go smoothly

and show the results similar to the modeling in a simple interface half-space model.

However, while the source frequency goes higher (60 Hz, Figure 3.40), the smaller
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seismic wavelength can differentiate the reflections from top and bottom interfaces

and show the layering of the internal fluctuation in term of the blocky waveforms .

3.6.2 Tilted, Complex Stratified Reservoir Model

Since the reflection coefficient is a function of frequency and incident angle, the hybrid

ray-propagator matrix approach can generate synthetic seismograms for the tilted,

complex stratified reservoir models, which is a typical and very important reservoir

geometry near a salt structure.

Figure 3.41 shows the source-receiver geometry for generating synthetic seismo-

grams in a half space model with a tilted, complex stratified thin reservoir. The thin

layer stack is titled with an angle of 5.7◦. With the same table of coefficient, we just

need to run WFC modeling for the heterogeneous model then generate its synthetic

seismograms quickly. The verification of reflection traveltimes and amplitudes from

the top of the reservoir is shown in Figure 3.42, and the verification of incident angles

is presented in Figure 3.43. They all show that the ray method produces accurate

data for generating synthetic seismograms in the tilted reservoir model. Figure 3.44

demonstrates synthetic seismograms in the radial component, generated from the

Figure 3.41 model with the central frequency at 10 Hz. Figure 3.45 is for the vertical

component. Because the full waveform synthetic seismogram for this tilted model is

not available, only the ray synthetic seismograms are shown.
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Fig. 3.29. Comparison of synthetic seismograms for the radial component with the
central frequency 10 Hz between the discrete wavenumber method (black traces) and
ray data including composite reflection coefficient method (dashed red traces).
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Fig. 3.30. Comparison of synthetic seismograms for the vertical component with the
central frequency 10 Hz between the discrete wavenumber method (black traces) and
ray data including composite reflection coefficient method (dashed red traces).
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Fig. 3.31. Zoom-in comparison of synthetic seismograms for the central frequency 10
Hz between the discrete wavenumber method (black traces) and ray data including
composite reflection coefficient method (dashed red traces). (a) and (b) are for the
radial and vertical component, respectively.
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Fig. 3.32. Comparison of synthetic seismograms for the radial component with the
central frequency 20 Hz between the discrete wavenumber method (black traces) and
ray data including composite reflection coefficient method (dashed red traces).



85

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

2

4

6

8

10
Di

st
an

ce
 (k

m
)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

2

4

6

8

10
Di

st
an

ce
 (k

m
)

fc = 20 Hz 
  Vertical

PP PS

Fig. 3.33. Comparison of synthetic seismograms for the vertical component with the
central frequency 20 Hz between the discrete wavenumber method (black traces) and
ray data including composite reflection coefficient method (dashed red traces).
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Fig. 3.34. Zoom-in comparison of synthetic seismograms for the central frequency 20
Hz between the discrete wavenumber method (black traces) and ray data including
composite reflection coefficient method (dashed red traces). (a) and (b) are for the
radial and vertical component, respectively.
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Fig. 3.35. Comparison of synthetic seismograms for the radial component with the
central frequency 40 Hz between the discrete wavenumber method (black traces) and
ray data including composite reflection coefficient method (dashed red traces).
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Fig. 3.36. Comparison of synthetic seismograms for the vertical component with the
central frequency 40 Hz between the discrete wavenumber method (black traces) and
ray data including composite reflection coefficient method (dashed red traces).
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Fig. 3.37. Zoom-in comparison of synthetic seismograms for the central frequency 40
Hz between the discrete wavenumber method (black traces) and ray data including
composite reflection coefficient method (dashed red traces). (a) and (b) are for the
radial and vertical component, respectively.



90

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

2

4

6

8

10
Di

st
an

ce
 (k

m
)

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s)

0

2

4

6

8

10
Di

st
an

ce
 (k

m
)

fc = 60 Hz 
   Radial

PP PS

Fig. 3.38. Comparison of synthetic seismograms for the radial component with the
central frequency 60 Hz between the discrete wavenumber method (black traces) and
ray data including composite reflection coefficient method (dashed red traces).
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Fig. 3.39. Comparison of synthetic seismograms for the vertical component with the
central frequency 60 Hz between the discrete wavenumber method (black traces) and
ray data including composite reflection coefficient method (dashed red traces).



92

0.6 0.7 0.8 0.9
Time (s)

0

1

2

Di
st

an
ce

 (k
m

)

0.6 0.7 0.8 0.9
Time (s)

0

1

2

Di
st

an
ce

 (k
m

)

0.6 0.7 0.8 0.9
0

1

2
Di

st
an

ce
 (k

m
)

0.6 0.7 0.8 0.9
0

1

2
Di

st
an

ce
 (k

m
)

Radial

Vertical

fc = 60 Hz

(a)

(b)

Fig. 3.40. Zoom-in comparison of synthetic seismograms for the central frequency 60
Hz between the discrete wavenumber method (black traces) and ray data including
composite reflection coefficient method (dashed red traces). (a) and (b) are for the
radial and vertical component, respectively.
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Fig. 3.42. (a) Verification of reflection traveltimes from the top of the reservoir in the
Figure 3.41 model. Errors are bounded within 10−5 s. (b) Verification of reflection
amplitudes from the top of the reservoir.
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3.7 Conclusions

The modified WFC method performs a fast modeling to obtain Ray data in multi-

region models. Modeling of seismic reflections of traveltimes, amplitudes, and ray

incidental angles are shown to be accurate using this approach. On the other hand, the

propagator matrix method generates the full solution of P -wave composite reflection

for a specific frequency and incident angle in a complex, stratified reservoir, and

the reflection coefficients are compared with the results obtained by the discrete

wavenumber method.

The hybrid ray-propagator matrix approach can be a fast and accurate method

to generate full waveform synthetic seismograms in the complex, stratified reservoir

model. The approach implements fast ray tracing in the overburden and the exact so-

lution of P -wave composite reflection coefficients computed by the propagator matrix

method to generate the complete synthetic seismograms for the P -wave reflection.

A set of the central frequency ranges for the source wavelet is applied to valid the

synthetic seismograms with the results generated from discrete wavenumber method.

For all frequency ranges, the comparison results demonstrate the full waveform syn-

thetic seismograms for P - wave reflection can be done by the hybrid approach. More

importantly, the hybrid method can generate complete synthetic seismograms for the

tilted, complex stratified reservoir models.

In future work, extensions of the WFC method can be the converted wave mod-

eling. Then PS wave composite reflection coefficients can be included in the WFC

modeling to generate PS wave reflection synthetic seismograms, which is also impor-

tant information for reservoir characterization.
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CHAPTER IV

STOCHASTIC SEISMIC MODELING OF TURBIDITE RESERVOIRS

4.1 Introduction

Turbidite reservoirs in deep-water depositional systems such as the oil fields in the

offshore Gulf of Mexico and North Sea are becoming an important exploration target

in the petroleum industry. However, they are often not only complicated by the

heterogeneity of sand/shale distribution, but also the thin bed resolution problems.

Hence, if the reservoir heterogeneity and seismic attributes could be more accurately

known, we can reduce exploration risk.

The thickness distribution of sand and shale beds is the most import character-

istic for turbidite reservoir models. The corresponding sand/shale ratio is of great

interest for in petroleum reservoir models and dominates our turbidite reservoir per-

formance. Many statistical analyses of bed thickness distributions in the turbidite

sequences have been done, and the distribution results indicate the bed-thickness

distribution are complex and vary with the different locations (Hiscott et al., 1992;

Rothman et al., 1994; Pirmez et al., 1997; Talling, 2001).

Hiscott et al. (1992) used formation microscanner (FMS) images obtained in

boreholes to estimate the bed thickness distribution in the Izu-Bonin forearc basin.

The bed-thickness distribution follows the a power-law rule with an exponent of about

one. Rothman et al. (1994) demonstrated the agreement of the bed-thickness dis-

tribution between field and borehole (FMS-based) measurements. Both observations

are close to a power-law distribution above a small thickness cutoff. However, Pirmez

et al. (1997) used a combination of FMS images and geophysical well logs to estimate

sandy turbidite successions in the Amazon Fan. The results show bed-thickness dis-

tribution is complex, and may not follow a simple power-law behavior. For example,

in a log-log plot of bed thickness versus the number of beds with thickness greater

than bed thickness, there is a clear change in slope at the thickness of 35 cm.

Because it is difficult to describe the complex heterogeneity of turbidite systems,

some simplified reservoir models have been applied to facilitate such analysis. A

binary medium constructed from alternating, identical sand and shale layers is the
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most common model to represent turbidite reservoirs. Takahashi et al. (1999) demon-

strated the estimation of sand/shale ratio using stochastic simulation and Bayes’ in-

version and discussed the effects in the reflectivity while varying sand thickness and

sand/shale ratio (Figure 4.1a). Stovas et al. (2004) used the periodic sand/shale

model to estimate the net-to-gross and fluid saturation for turbidite reservoirs (Fig-

ure 4.1b). The assumption of the same identical sand units neglects the variation of

velocity and density in the sands in real turbidite sequences, which will likely change

with grain size and clay content, for example. Further more, Stovas et al. (2006)

applied the amplitude variation with offset (AVO) attributes to estimate net-to-gross

and oil saturation in such a stack of thin sand-shale layers model. Though the results

show the random changes in thickness and rock properties of the sand and shale layers

does not have significant variation in AVO attributes, the methods still predict the

net-to-gross and oil saturation in a reasonable agreement with the field data. Alter-

natively, Avseth and Mukerji (2002) classified seismic lithofacies in the deep water

clastic systems from well logs, but it is very difficult to correlate the complicate litho-

facies with sand/shale bed-thickness distributions, the most important characteristic

of turbidite reservoir models. Therefore, an alternating sand/shale turbidite reservoir

model is still an attractive choice.

Therefore, an improved stochastic turbidite model (STM) system was proposed

to generate inputs for seismic simulations (Lai and Gibson, Jr., 2005). The STMs use

observed, continuous bed-thickness distributions and continuous velocity and density

distributions to generate more realistic representations of turbidite sequences. Geo-

logical interpretations provide essential input to identify lithology and to ensure that

statistical measurements are applied to the correct turbidite intervals.

In addition, an important method for identifying hydrocarbons with seismic data

is the analysis of the dependence of seismic wave reflections on the angle of incidence

of the wave on a target rock formation. Because typical seismic data acquisition

locates source and receiver at or near the upper surface of the earth, increasing the

distance or offset between them corresponds to an increase in angle of incidence on

the target. For this reason, the method is known as the study of AVO.

The AVO technique is very powerful for locating hydrocarbons because the am-

plitude of seismic reflections at different angles of incidence changes significantly when

fluids in a formation change from brine to gas, for example. Ostrander (1984) first

proposed this technique to identify amplitude anomalies are caused by gas-saturated



101

(Takahashi et al. 1999)
(a) (b)

(Stovas et al. 2004)

Fig. 4.1. Binary models constructed from alternating, identical sand and shale layers
is used to represent turbidite reservoir models. (a) Takahashi et al. (1999) imple-
mented stochastic simulation of varying sand/shale ratio to evaluate the turbidite
reservoirs. (b) Stovas et al. (2004) used the periodic sand/shale model to present the
complexity of lithology in the turbidite reservoirs.

sands embedded in shale, which exhibit the reflection coefficients increase with offset.

Rutherford and Williams (1989) demonstrated gas-sand reflections can be grouped

into three classes based on AVO characteristics: Class I (high impedance), Class II

(small impedance contrast), and Class III (low impedance) sands. Castagna et al.

(1998) subdivided Class III sands into Class III and IV based on the sign of the

gradient in the AVO crossplot, which is an intercept versus gradient plot for P -wave

reflection coefficient (see Background Theory). Class IV gas sands have a negative in-

tercept and positive gradient but exhibit amplitude decrease with offset. Four classes

of gas sands can be separated from the fully brine-saturated sands and shales in the

AVO crossplots. Further more, the AVO technique is also applied discriminate pore

pressure and fluid saturation changes from time-lapse seismic data (Landro, 2001;

Kvam and Landro, 2005).

Though AVO analysis is powerful, neglecting the tuning effect may cause AVO

responses to be interpreted incorrectly. The tuning effect is the superposition of re-

flections from the top and bottom of a layer when the layer thickness is thin compared

to the seismic wavelength. When such tuning is present, classic AVO analysis, con-

sidering the change of the P -wave reflection with offset, may fail to identify fluid
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contents or lithology variations. Widess (1973) initially discussed the tuning effect

and detectability for a thin bed. Kallweit and Wood (1982) discussed the tuning

effect of thin layers for normal incidence waves in terms of resolution by a wedge

model. Almoghrabi and Lange (1986) and Juhlin and Young (1993) demonstrated

AVO responses including multiple and converted energy of a thin layer embedded in

a homogeneous rock may be significantly different from those of a simple interface.

Liu and Schmitt (2003) demonstrated the exact solution of the reflection amplitude

and AVO responses of a thin layer model for arbitrary incident angles. Therefore,

neglecting thin layer effects may make interpretation for AVO responses misleading.

The importance of the converted shear (S) wave reflection from the top and

bottom of a layer in AVO responses has been recognized. It may exhibit noticeable

amplitude changes in AVO responses; however, its importance is not as well-addressed

as the conventional P -wave reflection. Simmons and Backus (1994) demonstrated

the significant P -wave reflection changes while the converted S-wave inside a thin

reservoir layer is included in AVO analysis. Ramos and Castagna (2001) presented an

integrated AVO analysis of P -wave and converted S-wave (from top of the reservoir)

reflections may help us better identify the fluid content and decrease the uncertainty

associated with velocity and density estimation.

Though these previous contributions address many of the complexities associated

with AVO applications, they do not consider the full composite reflection coefficient

in the complex stratified turbidite reservoirs, which we will do in this chapter. Gib-

son, Jr. (2004; 2005) used the propagator matrix method to compute the composite

reflection coefficients in a stack of stratified layers model and showed the influence of

the internal variation in rock properties for the AVO responses. In Chapter III, the

ray tracing including the composite reflection coefficient method has been proved to

generate accurate waveform synthetic seismograms for P wave reflection in a com-

plex stratified reservoir model. This fast method is utilized to generate synthetic

seismograms for STMs.

Below we first demonstrate how to construct the stochastic seismic models from

the cumulative density functions of bed thickness and density for sand and shale lay-

ers. Velocities and densities are correlated using a simple deterministic relationship.

In order to simulate the turbidite reservoirs in the deep water of Gulf of Mexico,

we construct the transform of velocity-density relationship, based on well log mea-

surements. We also introduce methods of AVO technique in the conventional and
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tuning models and how to perform fluid substitutions by Gassmann’s equation. We

show both binary and STMs. Then we present synthetic seismograms and statistical

analysis of maximum amplitudes to illustrate the influence on variable heterogeneity

in the turbidites on seismic signals. Since the STMs include thin reservoir layers, we

conduct the central frequency at 10, 20 and 40 Hz to demonstrate the effect of the

frequency dependence modeling of AVO analysis in STMs. Backus averaging is also

discussed to demonstrate whether it is possible to replace the complex stratified layers

with a homogeneous, transversely isotropic medium. Finally, we apply Gassmanns

equation to substitute brine by gas in each sand layer and perform AVO analysis on

synthetic seismograms.

4.2 Methods

The following sections summarize the major methods and theoretical concepts that

will be applied in the course of this chapter. How to build STMs, AVO analysis, and

fluid substitution will be introduced.

4.2.1 Building of Stochastic Turbidite Models

Ray tracing modeling that applies composite reflection coefficients was developed in

Chapter III, and it will be used for generating synthetic seismograms for the turbidite

models. This approach generates seismic waveform results in plane-layered media for

P wave reflection. Therefore, the stochastic turbidite reservoir models must produce a

description of the structure in terms of a set of layer thicknesses, along with associated

seismic velocity and density. The models will be composed of alternating sand and

shale layers, though the thickness and properties of each layer are selected from

relevant cumulative distribution functions (CDF). These distribution functions are

estimated from field measurements, as are velocity/density relationships.

Statistical Analysis of Sand/Shale Bed Thicknesses

The thickness distributions of sand and shale intervals is the most important charac-

teristic for the turbidite reservoir models. This information helps us to estimate the

corresponding sand/shale ratio for assessing the potential of the turbidite unit as a

hydrocarbon reservoir.
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Black: shale 
White: sand

Formation MicroScanner (FMS) image

Fig. 4.2. Using FMS images to distinguish sand/shale beds.

In this research, we use the well logs measured in the Amazon Fan by ODP Leg

155, which sampled sand-rich turbidite depositional systems in deep water (Pirmez

et al., 1997). Sites 931B, 936A, 944A, and 946A in Leg 155 are selected.

Construction of the models begins with analysis of FMS logs from each of the

ODP sites, and these images provide a direct measurement of thicknesses of both

sands and shales. In general, each site measures other geologic structures in addition

to the turbidites, so we use prior geologic interpretations to ensure that we take

measurements only from turbidites (Pirmez et al., 1997). The color of the FMS image

indicates the resistivity of the formation, and if the rock has similar mineralogy and is

fluid saturated, the darker tone suggests the finer grain rock. Figure 4.2 shows using

FMS images to distinguish sand/shale beds. Generally, in the ODP data sets, the

sand beds appear in light tones in the FMS images (Hiscott et al., 1992). Based on this

rule, we can distinguish sand/shale beds and measure corresponding thicknesses in the

turbidite portion of each site. We then used these measurements to create the separate

CDFs of bed thickness for sands and shales. Figure 4.3 shows the probability density

function (PDF) and CDF of bed thickness distribution measured for the Amazon Fan

sites. Both sand and shale bed thickness distributions are complicated, and the data

didn’t follow simple analytic forms such as exponential or power-law distributions.
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Fig. 4.3. PDFs and CDFs of bed thickness for sand and shale beds in the Amazon
Fan sites are shown in (a) and (b), respectively. Both sand and shale bed thickness
distributions are complicated and may not follow a simple power-law behavior.

Velocity and Density Transform

Once the sand and shale beds are identified, we can tabulate velocity and density

information from the well log for each site as well. The resulting plots of velocity

versus density show that the values have high correlation coefficients and that there

is a systematic relationship between velocity and density in the turbidite layers, which

includes both sand and shale beds. Figure 4.4 shows the linear regression fitting the

logarithm of compressional velocity to the logarithm of density in the Amazon fans.

Statistical data (m, b, r, n) represent slope, intercept, correlation coefficient, and

the number of total well measurements, respectively. The lines through the data are

the linear regression results. In each site, then high correlation coefficient shows the

clear relationship between parameters. The fitting function in global data will be the

velocity and density transform of turbidites in the Amazon Fans. Combining all data

together for a single regression (Figure 4.4e), we find that the the two parameters can

be related via

log(v) = −0.058 + 1.0058log(ρ). (4.1)
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This expression has the same form as the well known Gardner equation (Sheriff and

Geldart, 1995) and this transform is for both sand and shale beds in the turbidites.

Statistical Analysis of Sand/Shale Density

Since velocity and density are correlated using a simple deterministic transform, only

density information is collected to create the CDF. Tabulated density information

from the well logs for each site in the Amazon fans is used to create the PDF and

CDF of the density distribution (Figure 4.5). Sand and shale density distributions

can be fitted to Gaussian functions. Sand beds have an average density of 1.92. Shale

beds have an average density of 2.01 with a broader distribution.

In order to simulate turbidite reservoirs in the deep water in Gulf of Mexico,

well logs in the Ursa field are chosen to create the STMs. Figure 4.6 and 4.7 demon-

strate well logs in the reservoir intervals distributed from depth 5100m to 5900m.

Considering the dominate frequency at 20 Hz, the thickness to wavelength ratio of

these reservoirs ranges from 1/15 to 1/3. They are relative thin layers and associated

with the strong internal fluctuation in velocity, density and estimated porosity logs

because of the mixture of sand and shale beds.

Here we separate sand and shale measurements and will shift the properties of

sand and shale from the Amazon Fan (Figure 4.5) to the Mississippi Fan, Gulf of

Mexico. Figure 4.8 is the log-log plots of velocity versus density of well logs for both

shale and brine sand in the Ursa field, Gulf of Mexico. Considering Figure 4.4 and

4.8, because these two measurements are highly correlated, it would be incorrect to

randomly select them independently using two different CDFs. A more physically

meaningful approach is to select either density or velocity for the layer at random,

and to then choose the other parameter based on the first one.

Density measurements are used to shift the properties of sand and shale from

Amazon Fan to the Mississippi Fan. The means of density for sand and shale beds in

Figure 4.8 are 2.27 and 2.37 g/cm3, respectively. Therefore, the mean of density for

sand beds in Figure 4.5a are shifted from 1.92 to 2.27. The mean of density in shale

beds are shifted from 2.01 to 2.37. Once density measurements are determined, the

following two formulas are applied to produce the corresponding velocities for sand

and shale beds, respectively.
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Fig. 4.5. PDFs and CDFs of density distribution measured for the Amazon Fan sites
are shown in (a) and (b), respectively. Sand and shale density distributions can be
fitted to Gaussian functions. Sand beds have an average density of 1.92. Shale beds
have an average density of 2.01 with a broader distribution.

Sand : log(v) = −0.47 + 2.56log(ρ) (4.2)

Shale : log(v) = −0.59 + 2.86log(ρ) (4.3)

Building of Stochastic Models - Summary

The model generation begins by specifying a desired total thickness for the turbidite

sequence. We then randomly select a bed thickness and a density value from the

relevant CDFs, alternating sand and shale until the total thickness is obtained. The

velocities are determined by two velocity-density transforms in Equation 4.2 and 4.3.

Examples below use a total thickness value of 30 m. If the last layer generated results

in a total thickness greater than 30 m, then the thickness of the last bed will be

truncated so that the total remains 30 m. Shear wave velocity is not available in the

ODP well logs. Therefore, considering the Amazon Fan is a young depositional system
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Fig. 4.6. Well logs of reservoirs in Ursa field, Gulf of Mexico.
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with relatively poorly consolidated sediments, we arbitrarily used V s = V p/2.2 to

estimate shear wave velocity in the models. In fact, since no converted shear wave is

considered in STMs, the shear wave velocity is not relevant to the results.

4.2.2 Amplitude Variation with Offset

Classic AVO

Shuey (1985) described an approximate solution for the P -wave reflection coefficient

from a single interface between two solid half-space, illustrating how the amplitudes at

normal incidence, intermediate, and large angles, providing physical insights into the

P -wave reflection problem. Considering only the near offset incident angles (about

30◦), Castagna and Smith (1994) proposed Shuey’s approximation to the Zoeppritz

equation can be represented using two parameters, an intercept (A) and gradient (B),

given by

R(θ) ≈ A+Bsin2(θ). (4.4)
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( a ) ( b )

Fig. 4.9. (a) Reflection coefficient variation with incident angle for different gas sands.
(b) AVO gradient versus AVO intercept crossplot for four possible gas sands (adapted
from Castagna et al., 1998).

A is the normal incidence P -wave reflection coefficient. B represents the P -wave

reflection coefficient in the intermediate angles. See Equation 3.11 and 3.12 for the

details of terms.

AVO values for typical categories of reservoirs are often classified into four-

categories in an A versus B crossplot (Castagna et al., 1998). Figure 4.9 shows

the AVO responses four four classes and the possible quadrants for them in A versus

B crossplot. The AVO characteristics of gas sands present different behaviors from

the brine-saturated sands and shales and can be distinguished.

Tuning AVO

Neglecting the tuning effect caused by the thin layer may result in false interpretation

in AVO analysis. Here, we perform a set of variation in reservoir thickness to test the

influence of tuning effect in AVO response. Table 4.1 gives model parameters of each

layer in the tuning model.

The rock properties of the gas sand is computed by the Gassmann equation.
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Table 4.1. Model parameters of each layer in the tuning model.

Vp (km/s) Vs (km/s) ρ (g/cm3)

Half space 3.0 1.49 2.41

Brine sand 2.85 1.41 2.21

(or gas sand) 2.43 1.46 2.08

Figure 4.10 shows the source-receiver geometry and model parameters. The thickness

to wavelength ratio (h/λ) 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1 and 2 are considered to

generate synthetic seismograms. Vertical point force and Ricker wavelet with the

central frequency at 10 Hz are applied.

Figures 4.11 and 4.12 show synthetic seismograms in a thin layer embedded

model for h/λ 1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1 and 2 respectively. The same gain

is applied in all seismograms. Brine sand layer model is in solid traces. And gas sand

layer model is in thick, dashed traces. After fluid substitution with gas, the larger

contrast of elastic impedance causes the stronger amplitudes. The modeling includes

the case from tuned to de-tuned and give us a very basic understand of the tuning

effect after fluid substitution.

P wave reflections from the top and bottom interfaces are canceled out while the

layer is thin. However, while h/λ = 1 and h/λ = 2, P wave reflections from the top

and bottom of the thin layer are not superimposed and show the opposite polarity

in the waveform of the Ricker wavelet. The P wave reflection from the bottom has

smaller amplitude than that from the top because of the geometric spreading. The

P − SV wave amplitude has very slightly change because of the S wave has small

change in velocity after fluid substitution.

A plot of the intercept versus gradient obtained by fitting measured amplitude to

the Shuey equation allows AVO analysis for varying h/λ. Figure 4.13 the trajectories

of AVO responses for a thin brine or gas sand layer embedded in a half space model

while changing h/λ from 1/64 to 2. In the intercept-gradient plot, the distance

between brine and gas sand cases suggest the relative thin layer is harder to detect

and distinguish when hydrocarbons are present in the pore space. This also explains
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Fig. 4.10. A thin layer embedded model to simulate AVO responses while the gas is
charged in the sand reservoir. The thickness to wavelength ratio (h/λ) 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1 and 2 are considered to perform seismic modeling.
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Fig. 4.11. Synthetic seismograms in a thin layer embedded model for thickness to
wavelength ratio (h/λ) 1/64, 1/32, 1/16, and 1/8 are shown in (a), (b), (c), and (d),
respectively. Synthetic seismograms for brine sand layer model is in solid traces. For
gas sand layer model is in thick, dashed traces.
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Fig. 4.12. Synthetic seismograms in a thin layer embedded model for thickness to
wavelength ratio (h/λ) 1/4, 1/2, 1 and 2 are shown in (a), (b), (c), and (d), respec-
tively. Synthetic seismograms for brine sand layer model is in solid traces. For gas
sand layer model is in thick, dashed traces.
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Fig. 4.13. The trajectories of AVO responses for a thin brine or gas sand layer embed-
ded in a half space model while changing the thickness-wavlength ratio (h/λ) from
1/64 to 2. The distance of AVO response between brine and gas models increases with
h/λ value. This suggests the thin layer reservoirs may produce more exploration risk
because of less differences in AVO responses while gas presents. For h/λ 1/2, 1 and
2, they have very close intercepts and gradients showing AVO responses overlapped.
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why exploration risk is higher while applying AVO technique to locate hydrocarbons

for turbidite reservoirs in deep water. The intercept shows the amplitude of the

normal incident. In the intercept-gradient plot, h/λ at 1/2, 1 and 2 have very similar

AVO responses and show the plots overlapped. It suggests that the reflections from

top and bottom interfaces of the reservoir are totally separated and it is hard to

distinguish the thickness difference while only considering the reflection from the top

interface in the intercept-gradient plot.

4.2.3 Fluid Substitution

The Gassmann equation (Gassmann, 1951) has been widely used to predict the vari-

ation of elastic properties in rocks for the fluid substitution in the pore space. The

saturated bulk modulus κ of a porous rock can be written as

κ = κ∗ +

(
1 − κ∗

κs

)2

φ
(

1
κf

− 1
κs

)
+ 1

κs

(
1 − κ∗

κs

) , (4.5)

where κ∗ is the bulk modulus the porous rock frame, κs is the bulk modulus of the

mineral matrix, κf is the bulk modulus of the pore fluid, and φ is porosity.

The shear modulus µ of the rock does not change while the different fluid is

saturated. The density ρ of the saturate rock is express as

ρ = ρ∗ + φρf , (4.6)

where ρ∗ and ρf are the densities of the porous rock frame and fluid, respectively.

The pore fluid can be gas, and brine, or the mixture of them. The bulk modulus of

the fluid κf can be computed by Wood’s equation (Wood, 1941):

1

κf

=
Sw

κw

+
So

κo

+
Sg

κg

, (4.7)

where κw, κo, and κg are the bulk modulus for water, oil and gas, respectively. Sw, So,

and Sg are the saturations for water, oil and gas, respectively. The seismic velocities

after the fluid substitution can be written as

Vp = (κ+
4

3
µ)1/2, (4.8)
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Table 4.2. Densities and bulk moduli of the two fluids (Murphy, 1984).

ρ (g/cm3) κ (GPa)

Grain 2.65 35.0

Water 0.997 2.25

Gas 1.1 0.0008

and

Vs = (
µ

ρ
)1/2, (4.9)

Here, a test of computing velocity and density after fluid substitution in a two-

fluid system is preformed to verify the implementation of the Gassmann equation.

Table 4.2 gives the densities and bulk moduli of the two fluids and grain (quartz).

Figure 4.14 shows P and S wave velocity and density as a function of gas

percentile in the two component fluid system in a sand reservoir with a porosity

φ = 0.224. The result show a good agreement with the plot in Murphy (1984).

4.3 Examples

4.3.1 Stochastic Turbidite and Binary Models

Figure 4.15a shows the source-receiver geometry and model parameter for generating

synthetic seismograms. Figures 4.15b and 4.15c show two STMs with a 30 m thick-

ness in two realizations and Backus averaging results in dashed lines. The STMs is

embedded in the half-space. In each model there is a large heterogeneity of layer

thicknesses, velocity and density. Figure 4.16 shows a comparison of STM and binary

turbidite models and the models after performing fluid substitution. The contrasting

properties of sand and shale beds are evident, showing changes in both density and

velocity inside each model. Solid lines represent the brine sand models. Dashed lines

show values for the model where the brine sands are 80% saturated by gas. Fluid

substitution is only performed in sand layers. In the STM, the average velocity of
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Fig. 4.14. P and S wave velocity and density as a function of gas percentile in the
two component fluid system in a sand reservoir.

sand and shale are 2.7 km/s and 3.0 km/s, respectively. These two velocities are for

identical sand and shale beds in the binary model.

Figure 4.17 demonstrate qP and qS-wave phase velocity as a function of angle in

a Backus-averaged model. qP wave phase velocity in the horizontal direction is about

1.4% faster than in the vertical direction suggests this STM is a weakly anisotropic

medium.

4.3.2 Synthetic Seismograms

We applied the ray tracing including the composite reflection coefficient method to

generate full waveform synthetic seismograms for P -wave reflections. This helps us

interpret the heterogeneity of stochastic models. The first results utilize the left model

in Figure 4.15b to compare synthetic seismograms for different source frequencies.

Both STM and binary models are considered. The source is located on the free surface,

and a Ricker wavelet was applied for 10, 20, and 40 Hz. Eleven receivers spaced at 200

m intervals were located on the surface, and vertical component synthetic seismograms

were generated for them (see Figure 4.15a).
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STM vs. Binary Model

Figure 4.18 shows the P -wave reflections for the three different source central fre-

quencies. At the source frequency of 10 and 20 Hz, the thickness/wavelength ratio is

around 1/9 and 2/9, respectively. The wavelength is too long for the seismic reflec-

tions to be very sensitive to the details of the structure of the thin turbidite reservoir,

and the waveform remains close to that of the input Ricker wavelet. Comparing the

wavelets at all three frequencies, the high frequency energy indicates more detail of

the interior layer structure because it has more changes in waveform for each of the

models. Also, the results after the brine sands are 80% saturated by gas are shown

in Figure 4.19. Same gain is applied in both Figures 4.18 and 4.19.

Comparing the wavelets at all three frequencies, the high frequency energy in-

dicates more detail of the interior layer structure because it has more changes in

waveform for each of the models. Comparing the amplitudes in STMs and binary

models, STMs always have strong amplitudes because of the heterogeneity of ve-

locity and density. Also, because of gas saturation in the sand beds, the models

have stronger contrast properties and show the stronger amplitudes in the synthetic

seismograms.

STM vs. Backus-averaged STM Model

An important question of the application to the field data is whether it is possible

to replace a complex, stratified reservoir by a simple, homogeneous layer using the

Backus Averaging. Here, Backus-averaged STMs are used to generate full waveform

synthetic seismograms and compared to the original STMs’ results.

Figure 4.20 shows the comparison of P -wave reflections between STMs and

Backus-averaged models for the three different source central frequencies. All sands

in both model are 100% brine-saturated. Figure 4.21 shows after substituting brine

by gas in sand beds of STMs and Backus-averaged STMs, we have much stronger

reflected energy than the previous brine sand models. Same gain is applied in both

figures. Black solid traces represent STM results. Red dashed traces show Backus-

averaged STM results. In the lower frequency, the wavelength is too long to be

sensitive to the internal fluctuation in velocity and thickness. In the overlapped

synthetic seismograms, original and Backus-averaged STMs produce the negligible

difference in seismic responses. However, while the source frequency goes higher, the
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internal fluctuation is detectable and causes noticeable difference in the synthetic

seismograms.

We can assess the variability in seismic signals that might be observed for differ-

ent turbidite sequences having the same general statistical properties by superposing

the near offset traces for each frequency (Figure 4.22). The results show the com-

plexity introduced by changes in the vertical structure of the sand/shale beds. These

types of variability might be observed in field settings where different vertical tur-

bidite structures are observed at different positions in the reservoir. More analyses of

amplitudes are discussed in the Analyses section.

4.4 Analyses

4.4.1 Statistical Analysis of Maximum Amplitudes

Though synthetic seismograms provide a general illustration of our stochastic models,

it is difficult to quantitatively assess the variability from these displays. Therefore,

the statistical analysis of seismic attributes may provide a more useful illustration of

the results and uncertainty in seismic signals. We measured the maximum amplitude

for each trace and computed its mean and standard deviation for each model.

Figure 4.23 shows the mean value of maximum amplitude (symbol) of each re-

fection and its one standard deviation (error bars) for source frequency at 10, 20, and

40 Hz. We have larger means of maximum amplitudes and its standard deviations in

STMs than binary models. While increasing source frequency, two models show more

differences of their means of maximum amplitudes. At the same time, the standard

deviation decreases with increasing offset, showing that the vertical velocity struc-

ture has the strongest influence on vertically traveling waves. While gas presents in

the sand layers, we have much stronger means of maximum amplitudes and larger

standard deviations in each frequency panel. Figure 4.24 shows the results after gas

substitution.

4.4.2 AVO Analysis

By taking the maximum amplitudes of the reflection of less than 30◦ incident angle,

removing the geometrical spreading factor, and correcting vector amplitudes, we can

measure conventional AVO intercepts and gradients. Figure 4.25 shows AVO analysis



127

0.
6

0.
7

0.
8

0.
9

Time (s)

0
1

2
Di

st
an

ce
 (k

m
)

0.
6

0.
7

0.
8

0.
9

Time (s)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

fc
 =

 1
0 

Hz
  

   
(h

/!
=1

/9
)

fc
 =

 2
0 

Hz
  

   
(h

/!
=2

/9
)

fc
 =

 4
0 

Hz
  

   
(h

/!
=4

/9
)

Br
in

e 
sa

nd
s

Br
in

e 
sa

nd
s

Br
in

e 
sa

nd
s

F
ig

.
4.

20
.

C
om

p
ar

is
on

of
P

-w
av

e
re

fl
ec

ti
on

s
b
et

w
ee

n
S
T

M
s

an
d

B
ac

k
u
s-

av
er

ag
ed

m
o
d
el

s
fo

r
th

e
th

re
e

d
iff

er
en

t
so

u
rc

e
ce

n
tr

al
fr

eq
u
en

ci
es

.
A

ll
sa

n
d
s

in
b
ot

h
m

o
d
el

ar
e

10
0%

b
ri

n
e-

sa
tu

ra
te

d
.

B
la

ck
so

li
d

tr
ac

es
re

p
re

se
n
t

S
T

M
re

su
lt

s.
R

ed
d
as

h
ed

tr
ac

es
sh

ow
B

ac
k
u
s-

av
er

ag
ed

S
T

M
re

su
lt

s.
B

ac
k
u
s

av
er

ag
in

g
al

go
ri

th
m

p
ro

d
u
ce

s
a

go
o
d

eq
u
iv

al
en

t
m

o
d
el

w
h
il
e

th
e

w
av

el
en

gt
h

is
re

la
ti
ve

lo
n
g

to
th

e
to

ta
l
th

ic
k
n
es

s
of

la
ye

rs
.



128

0.
6

0.
7

0.
8

0.
9

Time (s)

0
1

2
Di

st
an

ce
 (k

m
)

0.
6

0.
7

0.
8

0.
9

Time (s)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

fc
 =

 1
0 

Hz
  

   
(h

/!
=1

/9
)

fc
 =

 2
0 

Hz
  

   
(h

/!
=2

/9
)

fc
 =

 4
0 

Hz
  

   
(h

/!
=4

/9
)

80
%

 g
as

, 2
0%

 b
rin

e 
sa

nd
s

80
%

 g
as

, 2
0%

 b
rin

e 
sa

nd
s

80
%

 g
as

, 2
0%

 b
rin

e 
sa

nd
s

F
ig

.
4.

21
.

A
ft

er
su

b
st

it
u
ti
n
g

b
ri
n
e

b
y

ga
s

in
sa

n
d

b
ed

s
of

S
T

M
s

an
d

B
ac

k
u
s-

av
er

ag
ed

S
T

M
s,

w
e

h
av

e
m

u
ch

st
ro

n
ge

r
re

fl
ec

te
d

en
er

gy
th

an
th

e
p
re

v
io

u
s

b
ri
n
e

sa
n
d

m
o
d
el

s.
S
am

e
ga

in
is

ap
p
li
ed

in
b
ot

h
F
ig

u
re

4.
20

an
d

4.
21

.



129

Br
in

e 
sa

nd
s

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

0
1

2
Di

st
an

ce
 (k

m
)

0.
6

0.
7

0.
8

0.
9

1.
0

Time (s)

Br
in

e 
sa

nd
s

Br
in

e 
sa

nd
s

fc
 =

 1
0 

Hz
  

   
(h

/!
=1

/9
)

fc
 =

 2
0 

Hz
  

   
(h

/!
=2

/9
)

fc
 =

 4
0 

Hz
  

   
(h

/!
=4

/9
)

F
ig

.
4.

22
.

C
om

p
ar

is
on

of
sy

n
th

et
ic

se
is

m
og

ra
m

s
fr

om
5

re
al

iz
at

io
n
s

in
b
ri

n
e

sa
n
d

S
T

M
s

fo
r

th
re

e
d
iff

er
en

t
so

u
rc

e
ce

n
tr

al
fr

eq
u
en

ci
es

.
T

h
e

re
su

lt
s

sh
ow

th
e

co
m

p
le

x
it
y

in
tr

o
d
u
ce

d
b
y

ch
an

ge
s

in
th

e
ve

rt
ic

al
st

ru
ct

u
re

of
th

e
sa

n
d
/s

h
al

e
b
ed

s.



130

0 1 2
0

1

2

3

4

5

6

Distance (km)

M
ea

n 
m

ax
im

um
 a

m
pl

itu
de

fc = 10 Hz

0 1 2 0 1 2Distance (km)

fc = 20 Hz fc = 40 Hz

(a) (b) (c)

Distance (km)
STM: 100 % Brine sand
Binary model: 100 % Brine sand

(h/! = 1/9) (h/! = 2/9) (h/! = 4/9)

Fig. 4.23. The mean value of maximum amplitude (symbol) of each reflection and
its one standard deviation (error bars) for source frequency at 10, 20, and 40 Hz.
While increasing source frequency, two models show more differences of their means
of maximum amplitudes

0 1 2
0

1

2

3

4

5

6

Distance (km)

M
ea

n 
m

ax
im

um
 a

m
pl

itu
de

0 1 2 0 1 2Distance (km)

(a) (b) (c)

Distance (km)
STM: 80% Gas, 20% Brine sand
Binary model: 80% Gas, 20% Brine sand

fc = 10 Hz fc = 20 Hz fc = 40 Hz
(h/! = 1/9) (h/! = 2/9) (h/! = 4/9)

Fig. 4.24. After 80% gas saturating in the sand beds, we have stronger means of
maximum amplitudes and larger standard deviations in each frequency panel.



131

0 2 4 6
0

1

2

3

4

0 2 4 6
Intercept

0 2 4 6
Intercept

G
ra

di
en

t

fc = 10 Hz fc = 40 Hz
(h/! = 1/9) (h/! = 4/9)

Intercept

fc = 20 Hz
(h/! = 2/9)

(a) (b) (c)

STM_brine sand
STM_80% gas, 20% brine sand
Binary model_brine sand
Binary model_80% gas, 20% brine sand

Fig. 4.25. Maximum amplitudes of the reflections less than 30◦ incident angle are
measured for AVO analysis. Binary models have less fluctuation in AVO crossplots
than STMs. Also, high source frequency produces more heterogeneity in reflections
from the turbidite reservoir models.



132

for three different source frequencies. In the AVO crossplots, we can distinguish brine

sand models from gas sand models easily. However, while the source frequency goes

higher (40 Hz case), the widely scattered cloud of AVO responses for brine and gas

sands may have been overlapped and cause the false interpretation for AVO responses.

There are not much noticeable differences between STMs and binary models in the

low frequency. However, binary models always have less fluctuation in AVO responses

than the STMs.

4.5 Conclusions

Stochastic modeling incorporating the geological interpretation and well log mea-

surements provides seismic models of typical turbidite sequences. The new model

generation scheme produces more realistic models than simple binary mixture ap-

proaches.

Synthetic seismograms for models designed to simulate turbidite sequences in

the Gulf of Mexico show how much change in seismic data might be associated with

vertical heterogeneity. The Backus-averaging algorithm provides a good equivalent

model in the the lower frequency and the wavelength is too long to produce the

noticeable difference in seismic responses. However, while the source frequency goes

higher, the internal fluctuation is detectable and causes noticeable difference in the

synthetic seismograms.

Statistical analyses of the maximum amplitudes of the reflections from the simu-

lated turbidite sequences provide clear insights to estimate influence of heterogeneity,

showing that scatter increases at near offsets and for higher frequencies. AVO analysis

also demonstrates the heterogeneity of the turbidite reservoirs and the presence of gas

saturation. Gas-charged sand layers increase the strong contrast of the internal rock

properties of the reservoir and produce more scattered AVO responses in both STMs

and binary model. However, STMs always have wider distribution of uncertainties of

seismic responses than binary models. In the low frequency range, STMs have less

difference from the binary models in the synthetic seismograms. As the frequency

increases, STMs better show the complexity of turbidite reservoirs. Also, the widely

scattered clouds of AVO responses for brine and gas sands predict the possibility of

false interpretation in AVO analysis.
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CHAPTER V

CONCLUSIONS

Though quasi-shear wave propagation is complicated and is a challenging application

in seismic modeling, the WFC still is an attractive modeling approach. We have

shown that particle motion vectors are an effective criterion not only for qS wave

ray tracing, but also for creating initial wavefront meshes and for guiding wavefront

interpolation while propagating wavefronts through an earth model.

Modeling of two qS wave wavefronts through homogeneous, VTI models shows

the that line singularities are correctly handled, as well as in the heterogeneous,

VTI model. A set of verification for traveltimes and amplitudes demonstrates the

accuracy and robustness of WFC algorithms, and multivalued arrivals are correctly

mapped. In addition, the ray data obtained by WFC are used to generate synthetic

seismograms for these models and compared to the full waveform solutions generated

by the discrete wavenumber method. Except for the qSV -wave modeling around

triplications, all the comparisons of synthetic seismograms demonstrate negligible

differences between these two methods. In the future work, the qS wave synthetic

seismograms can be compared with the field data and focus the development of the

WFC method in the multi-region models.

Ray tracing including composite reflection coefficients can be a fast and accurate

method to generate full waveform synthetic seismograms in the complex, stratified

reservoir model. This hybrid method implements fast ray tracing in the overbur-

den and the exact solution of P -wave composite reflection coefficients computed by

the propagator matrix method to generate the complete synthetic seismograms for

the P -wave reflection. Comparison of P -wave reflection synthetic seismograms for a

complex, stratified reservoir model, based on the well logs in Gulf of Mexico, shows a

excellent agreement between this hybrid method and discrete wavenumber method.

More importantly, the hybrid method demonstrates the capability to generate syn-

thetic seismograms for the tilted, complex stratified reservoir models. In the future

work, the hybrid method can include the seismic modeling in the conversion, which

also an important information to locate hydrocarbons.

In addition, seismic turbidite models (STMs) generated from a combination of
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geological interpretation and well log measurements, are created to simulate direct

hydrocarbon indicator associated with turbidite sequences. The hybrid method can

be used to generate complete P -wave reflection synthetic seismograms. Accurately

estimated amplitudes are applied in AVO analysis. STMs provide important insights

to predict the seismic responses for the complexity of turbidite reservoirs. Further-

more, as the source frequency increases, the widely scattered clouds of AVO responses

for brine and gas sands predict the possibility of false interpretation in AVO analysis.
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APPENDIX A

FLOWCHARTS OF QUASI-SHEAR WAVE RAY TRACING BY

WAVEFRONT CONSTRUCTION

Figure A1 demonstrates the algorithms of qS wave ray tracing by wavefront

construction. The extension work of WFC for qS wave modeling is focused on qS wave

ray tracing, mesh initialization and mesh interpolation. See the details in Methods

section, Chapter II. In order to model two qS waves, for simplicity, WFC algorithm

models each wave type wavefront at one time through the earth model.

The WFC starts with setting earth model and ray parameters which include

elastic moduli, mesh construction method, takeoff angles of rays, model geometry

etc.. Then, we use the particle motion of one qS wave as the criterium to separate two

qS wave initial wavefront meshes. See Figure 2.1 of defining two qS wave wavefronts.

We model two qS wavefields sequentially. Finally, the ray information at receivers are

mapped. Visualization of the wavefront meshes at wavefront times are also available.
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Fig. A1. Flowchart of the algorithms of quasi-shear wave ray tracing by wavefront
construction.
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APPENDIX B

FLOWCHARTS OF SEPARATING qSA AND qSB WAVE WAVEFRONT

MESHES

Because physical wavefronts intersect and change order of velocities, the construction

of wavefront meshes must instead assign initial ray velocities and geometries using

a criterion other than magnitude of phase or group velocity (Figure 2.1). Figure

B1 shows the flowchart of determining qS1 and qS2 wave types to form a physically

meaningful wavefront mesh in the present of the singularity. Because the particle

motion vectors will generally change direction relatively slowly on the wavefront, we

can use them as criteria to distinguish qSA and qSB wavefront meshes. At beginning,

we pick qS1 wave displacement vector as a reference. While looping over all mesh

nodes to separate qSA and qSB waves, the inner product of the displacement vectors

on the current node and previous (or reference) node have to be smaller than a

predefined threshold value. The subsection, Mesh Initialization, in Methods section,

Chapter II, explains more details and discussions.
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start

generate qS1 displacement vector u1
of the current node 

and get the previous displacement 
vector v from the reference array

dot : DOTPRODTHRESHOLD
 > (parallel to u1) < (perpendicular to u1)

mesh qSA  : type is qS1
mesh qSB : type is qS2

mesh qSA : type is qS2
mesh qSB : type is qS1

dot = v      u1.
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displacement 

vector
as a reference

generate qS2 displacement vector u2
and push on the reference 

displacement array
push u1 on on the reference 

displacement array

the first node
Yes

No

the last node

end

Yes

No

Fig. B1. Flowchart of determining qS1 and qS2 wave types to form a physically
meaningful wavefront mesh in the present of the singularity.
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