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ABSTRACT 

Rekindling the Flame: Reconstructing a Fire History for Peters Mountain, Giles County, 

Virginia. (May 2007) 

Jennifer Ann Hoss, B.S., Texas A&M University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Charles Lafon 

 

Beginning in the late 1930s, fire exclusion has drastically altered the vegetation 

dynamics of the southern Appalachian Mountains. Extremely low fire frequency has 

allowed for more shade-tolerant species to invade once predominantly open forests and 

has made it almost impossible for fire-dependent species to establish on a site.  One such 

species is the endangered Peters Mountain mallow (Iliamna corei Sherff.) located on 

Peters Mountain in The Nature Conservancy�s Narrows Preserve in Giles County, 

Virginia.  This paper focuses on the fire history and stand dynamics of Peters Mountain 

and how fire exclusion has altered the forest composition.  The historic fire frequency 

and successional changes discovered here may provide an insight into management 

strategies for the mallow.   

Seventy-nine fire scarred cross-sections were taken and aged to determine fire 

history dates and frequencies.  Three 50x20 meter plots were set up on opposing aspects: 

northwest and southeast.  The aspects were chosen at the direction of The Nature 

Conservancy personnel. All trees within were identified, cored and aged to determine 

species composition and the establishment dates of all trees.    Fire history analysis 
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revealed a mean fire interval of 2.48 years, a Weibull median fire interval of 2.18 years 

and a 25 percent scarred class mean fire interval of 12.5 years.   Stand dynamic results 

show that Quercus montana has established on Peters Mountain prior to fire exclusion 

and remains the dominate species on the landscape.  An increased number of fire 

intolerant species (including Acer rubrum, Sassfras albidum, Nyssa sylvatica) have been 

establishing on Peters Mountain during the decades of decreased fire frequency, 

suggesting a shift in forest composition.  Frequent fires are suggested for mallow 

management and oak forest maintenance. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Fire is an important mechanism for maintaining the forests of the southern 

Appalachian Mountains.  Frequent surface fires, both natural and anthropogenic, have 

historically maintained open forests of oak (Quercus L.), chestnut (Castanea P. Mill.), 

and pine (Pinus L.) over much of this area (Van Lear and Waldrop 1989; Delcourt and 

Delcourt 1998; Shumway et al. 2001). Beginning in the mid-20th century, fire control 

efforts reduced the frequency of fire, altering the vegetation dynamics of the southern 

Appalachian Mountains.  Low fire frequency in this area has allowed for more shade-

tolerant species to invade once predominantly open forests and has inhibited the 

establishment of fire-dependent species.  One such species is the Peters Mountain 

mallow (Iliamna corei Sherff.).   

Found only on Peters Mountain in Giles County, Virginia, approximately 50 

individuals of Iliamna corei were first discovered in 1927 on the steep northwest-facing 

slopes of the mountain (Strausbaugh and Core 1932).  The number of individual I. corei 

plants has decreased dramatically, most likely as a result of fire exclusion, reaching 

numbers as low as three individuals in 1989.  Research has indicated Peters Mountain 

mallow requires periodic fire to stimulate germination (Edwards and Allen 2003;  

 

_____________ 
This thesis follows the style of Ecology. 
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Dunscomb and Edwards 2001; Caljouw et al. 1994).   

Currently, the Narrows Preserve, owned by The Nature Conservancy (TNC), 

serves as a protective habitat for the endangered and federally protected Peters Mountain 

mallow.  Prescribed burning on Peters Mountain, started in April 2001 (Dunscomb and 

Edwards 2001), has encouraged the regeneration of I. corei, and currently the population 

is comprised of approximately 50-70 mature plants (The Narrows 2007).  Yet, an 

appropriate fire management strategy for the mountain has yet to be determined.  The 

Nature Conservancy provided funding for this thesis to characterize the fire regime 

under which I. corei was maintained historically.  

1.2 Objectives 

 The objectives of this study are to: (1) reconstruct a fire history for Peters 

Mountain; (2) determine fire seasonality; and (3) establish species composition and age 

structure of the forest in the same area as the mallow to elucidate the influences of fire 

and fire exclusion on forest development and I. corei habitat.   
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CHAPTER II 

LITERATURE REVIEW 

2.1 Disturbance and Succession Theory 

 Disturbance is a short- term physical or biological event that alters the living 

organisms in an ecosystem (Huston 1994; MacDonald 2003).  These disturbance events 

are important mechanisms for ecosystem maintenance, especially for vegetation as they 

are the initiators of succession.   Succession is the gradual replacement of one species by 

another.  Several successional models have been proposed over the years. The first of 

these models was proposed by Henry Cowles and Frederic Clements.  Cowles described 

vegetation cycles as stages that approached equilibrium (Cowles 1911).  The 

Clementsian model proposes successional stages, or seres, of vegetation eventually lead 

to a final climax community (Clements 1916, 3-4).  This climax community is 

considered the normal state of a location and is largely determined by regional climate.   

Since the Clementsian model, the facilitation, tolerance, and inhibition models of 

succession have been proposed (Connell and Slatyer 1977).  The facilitation model 

suggests species that arrive later on a site are only able to do so because the earlier 

species suitably modified the site. The tolerance model suggests all species that could be 

found on at a site tolerate early successional environments, but the early dominants grow 

fastest and are eventually outcompeted by slower growing, more tolerant species which 

then would be considered the late successional species.  In this model, late successional 

species are more tolerant of shade and low resource levels.  The inhibition model 

suggests that later species only occupy a site after all of the early species have died as a 
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result of some type of disturbance.   In this model, early arriving species outcompete late 

arriving species, thus later successional species are those that are long-lived and thrive 

after the early successional species have died.  

 Despite the reason for succession it is clear it occurs and that disturbance is 

critical.  In fact, disturbance is responsible for creating the mosaic of landscape patterns 

in varying states (undisturbed, recently disturbed, or recovering from discovery) (Huston 

1994; Pyne 1982).   Thus it is disturbance that is responsible for many of the landscape 

patterns we observe.   

2.2 Fire Ecology 

 Fire is significant in almost all terrestrial ecosystems (Huston 1994, 413) and is 

the primary type of disturbance with which this thesis is concerned. At its most basic, 

fire occurrence only requires two things: fuel and ignition source (MacDonald 2003).  

However, vegetation type, topography, and climate all influence fire behavior. The 

specific combination of these three elements determines the fire regime that will act 

upon a particular landscape.  A fire regime is simply the historical manner in which fire 

acts upon a landscape.  There are three major characteristics that define any particular 

fire regime: type and intensity, mean size, frequency, and seasonality.   

 Fire intensity is �the rate at which a fire releases heat� and is �determined by the 

amount of heat energy produced,� (Fuller 1991, 40).  The intensity of a fire often is an 

indicator of the length of its flames. Generally, low intensity flames will be shorter in 

stature, while higher intensity flames will be taller.  Flame height and intensity 
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determine the type of fire: low-intensity surface fires, high-intensity crown fires 

(MacDonald 2003).   

 The average size of any given fire is variable based on the conditions present at 

the time of the fire. Vegetation must be flammable and dense enough to carry the flames 

over an area.  The readiness of vegetation to burn may be increased by favorable 

climatic conditions, such as windy, hot, dry weather.  Additionally, the topography of a 

particular area plays a large role in determining the size of a fire.  Without natural breaks 

in topography a fire may be able to burn freely over a landscape. 

 Lastly, fire frequency is how often fire occurs on a particular landscape, usually 

expressed in years.  This too is a function of fuel availability and climate. For example, 

spatially large, high-intensity fires could not occur frequently, even if climatic conditions 

were present, simply because there would be no fuel.  Conversely, low-intensity fires 

may be able to occur on a landscape as frequent as every year or two, because sufficient 

fuel is available. Because climate plays a role in determining the frequency of fires, 

seasonality is often considered when analyzing fire regimes. Fire seasonality is the 

season in which a fire occurs.  Regional climatic patterns such as precipitation or 

drought often dictate the seasonality of most fires for that region (Huston 1994; 

MacDonald 2003).   

2.2.1 Fire and Plants 

Evolutionary traits that plants have adapted to survive and thrive under periodic 

fire suggest the role of fire in forests is long standing (Smith 1986).  Adaptations of 

vegetation found in several spatially distinct fire regions suggest the role of fire as an 
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evolutionary architect (Bond and van Wilgen 1996; Pyne 2001, 18). Serotinous cones, 

hardseededness, thick bark, sprouting ability, flammability, and delayed maturation are 

examples of such evolutionary traits.  Species with some of these types of adaptations 

are generally found in areas where fire frequency is long enough to allow for vegetation 

maturation, but short enough so that the space is not invaded by shade-tolerant species 

between fire intervals.   

Fire is an important mechanism for maintaining both pine and oak forests.  

Several oak species display such fire adapted traits, indicating oak forests are indeed 

maintained by fire (Brose et al. 2001).  These traits include: thick bark, 

compartmentalization of wounds, and sprouting ability.  Additionally, the pine species 

(Pinus pungens Lamb. and Pinus rigida Mill.) often associated with the mixed oak-pine 

forests of the southern Appalachian Mountains also display fire adapted traits such as 

thick, flaky bark, self-pruning, early cone maturation, opening of sealed cones at low 

temperatures, relatively quick decline of resin in sealed cones, and basal sprouting (in P. 

rigida only) (Brose and Waldrop 2006).   

2.3 Historical Fire Regimes in the Southern Appalachian Mountains 

 Fire is an important influence on vegetation, even on the forests of the southern 

Appalachian Mountains.  However, there are not very many dendroecological studies in 

this area (Harmon, 1982; Sutherland et al, 1995; Shumway et al., 2001; Armbrister, 

2002; Shuler and McCain, 2003). These studies, however, have indicated the importance 

of frequent fires in this area for maintenance of oak and pine forests.  Natural and 

anthropogenic fires have played a large role in shaping and maintaining the forest 
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composition and distribution in this area.  Natural fires played a large role in shaping the 

southeastern landscape years before man arrived in the area 20,000 to 35,000 years ago 

(Van Lear and Waldrop 1989).  Lightning strikes coupled with anthropogenically 

undisturbed fuel loads would have allowed this type of fire regime to thrive.   The 

presence of charcoal dating back 3900 calendar years in sediment cores from the 

southern Appalachian Mountains provides evidence of the long history of fire in the 

region (Delcourt and Delcourt 1997).   

Yet decreased fire frequency in this area has led to vegetation change.  A study 

of 43 pine cross-sections in Great Smoky Mountains National Park revealed a fire 

interval of 12.7 years in the era prior to fire exclusion (Harmon 1982).  The fire rotation 

for the same area increased to 10,700 years after 1940.  A study in Maryland, using 19 

fire scarred cross sections revealed a fire interval of 7.6 years for the period of 1616 to 

1959, after which no fire scars were found (Shumway et al. 2001).   Similarly, a West 

Virginia study using 17 fire scarred cross sections with scars from 1846 to 1962 revealed 

a fire interval of 15.5 years (Schuler and McCain 2003).   These studies indicate that fire 

has virtually ceased since the middle of the 20th century.  The following provides a 

review of natural fires, anthropogenic fires and the state of forests in the era of decreased 

fire frequency.   

2.3.1 Natural Fire Regimes 

Long before any anthropogenic fires were introduced into the Southern 

Appalachians, lightning fires played a part in determining the types of vegetation present 

in this area.  While these fires may not have been as spatially extensive, intense, or as 
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frequent as anthropogenic fires (Lafon el al., 2005; Barden and Woods, 1974; Ruffner 

and Abrams, 1998), it is clear that lightning fires occurred and had some effect on 

shaping and maintaining the vegetation of the Southern Appalachians.  Even today, 

lightning accounts for 10 percent of the fires in the United States (Sarvis, 1993b).   

2.3.2 Native American Uses of Fire 

There is substantial evidence that Native Americans did in fact use fire and 

altered the environments immediately surrounding them.  Documented purposes for 

Native American fire include cooking, warmth, hunting, crop management, improving 

vegetation growth and yields, fireproofing, insect collection, pest management, warfare, 

signaling, economics, travel, felling trees, and for clearing (Williams 2002; Delcourt and 

Delcourt 1997).   

Additionally, several studies have found evidence of fire and forest maintenance 

in areas where Native Americans were known to have lived. Delcourt and Delcourt 

(1997) found paleoecological evidence that the dominant oak and chestnut species were 

maintained by frequent and deliberate fires set by Native Americans.  Other studies 

suggest similar results of a periodic, low-intensity, surface fire regime (Ruffner and 

Abrams 2002; Brose et al. 2001) and suggest these frequent fires are needed for oak 

forest maintenance.  The authors however, disagree as to whether Native Americans are 

responsible or merely supplemental to this surface fire regime.  

While it is clear that Native Americans used fire in many ways to alter their 

environment, it is debatable whether or not their use of fire resulted in the structuring 

and maintenance of the North American landscape.  Two sides of this debate exist.  
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William M. Denevan (1992) coined the phrase �the pristine myth,� arguing the 

New World was not wilderness, but instead was a landscape mosaic highly altered and 

manipulated by large (estimated 40 million) Native American populations found in 

Canada, the U.S., Mexico, Central and South America.  In fact, Denevan argued that the 

New World was more pristine in 1750 than in 1492 due to the decrease in Native 

American populations as a result of disease, and thus the abandonment of lands that were 

allowed to revegetate. 

Conversely, there is �the myth of the humanized landscape.�   While proponents 

of the myth acknowledge Native American use of fire for several reasons, they argue 

Native American fires were not ubiquitous across the large mass of land of North 

America and thus were not responsible for forest structure, composition or landscape 

maintenance.  Instead, the myth suggests Native American fires were merely 

supplemental to the natural lightning fire regime and would have had the greatest impact 

on vegetation in localized areas (Vale 1998; Russell 1983).  

2.3.3 European Uses of Fire 

 Early European settlers continued the frequent fire regime maintained by Native 

Americans when they took over the lands in the late 1700s.  Europeans most likely 

continued Native American burning practices to suit similar needs (Brose et al. 2001; 

Delcourt and Delcourt 1997; Williams 1998).  However, during the industrialization era 

(circa 1880) fire frequency increased. Fires caused by railroad construction, timber 

harvesting, coal mining and refining, as well was for agricultural purposes shaped the 

forests of the Appalachian Mountains.  Capital intensive logging not only cleared the 
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forests, but also left the dried remains prone to wildfires (Brose et al. 2001; Williams 

1998).  The introduction of the railroad into forested landscapes also resulted in 

catastrophic anthropogenic fires (Caljouw et al 1994; Schuler and McClain 2003).  By 

the first third of the 1900s fire was seen as a destructive force that needed to be either 

contained or stopped altogether.   

As a result, fire suppression and prevention efforts by the United States 

government since 1940 have increased the fire interval for all forests. During the early 

years of fire exclusion, it was the policy of the U.S. Forest Service to extinguish all fires, 

whether anthropogenic or natural.  However, anthropogenic fires were still a problem for 

the Jefferson National Forest.  Several reasons account for human set fires, including 

accidents, revenge against the Forest Service, pyromania, and economic incentive 

(Sarvis 1993b).    Decades of fire prevention education spearheaded by the Smokey Bear 

campaign starting in 1944 have led to the decline of these anthropogenic fires, though 

they have not been eradicated (Brose et al. 2001; Sarvis 1993b).  Currently it is the 

policy of the Forest Service to suppress all anthropogenic and natural fires.  

Several studies indicate that lightning fires are generally less intense and/or less 

extensive than anthropogenic fires (Barden and Woods 1974; Ruffner and Abrams 

1998), suggesting that anthropogenic fires, first by Native Americans and then by early 

European settlers, were an important factor in maintaining the vegetation of the 

Appalachians.  Records of the Jefferson National Forest, adjacent to the Narrows 

Preserve, reveal some of the largest fires on the landscape in the 20th Century, including 

the 1930 and 1942 fires, are a result of anthropogenic fires, whether accidental or 
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intentional (Sarvis 1993b).  As a result, prescribed burning of national forests lands has 

been considered since the 1950s.    

2.3.4 Forests in the Era of Fire Exclusion 

The effects of over a half century of fire suppression have had tremendous 

repercussions for the vegetation of the area, especially for the pine, pine-hardwood and 

oak forests. The fire interval for Great Smoky Mountains National Park from 1856-1940 

was approximately 10 years for pine forests and 10-40 years for all forests (Harmon 

1982).  This interval increased to 10,700 years in the years following fire exclusion.  

Extremely low fire frequency in this area has allowed for more shade-tolerant species to 

invade once predominantly pine stands. In addition, the low fire frequency had made it 

almost impossible for pine to establish on a site as an early successional species after a 

fire disturbance.   

While pine may still remain the dominant overstory species in several sites, few 

if any pine species occupy the midstory and understory.  This may indicate that old 

growth pine stands will be replaced with more shade-tolerant, fire-intolerant species 

(Welch et al. 1999; Williams and Johnson 1990; Waldrop and Brose 1999).  The same is 

true for oak species that rely on open, fire-maintained conditions and on sprouting after a 

fire for regeneration  (Abrams 1992; Barden and Woods 1976; Harrod and White 1999).   

The fire-oak hypothesis suggests that oak forests thrive under a frequent fire regime 

(Abrams 1992).  These oak forests may soon be replaced by fire-intolerant hardwoods 

such as Nyssa sylvatica, Acer rubrum L., Sassafrass albidum, and Betula lenta L. in the 



    

  

12

current era of fire suppression (Ross et al. 1982; Williams and Johnson 1990; Shumway 

et al. 2001). 

While fire suppression is not the answer, natural fires may not be enough.  

Lightning fires alone may not be extensive enough or produce the intensity needed to 

reduce existing forest canopy and generate pine or oak establishment (Barden and 

Woods, 1976; Lafon, et al, 2005).  This reinforces the usefulness of anthropogenic fires.   
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CHAPTER III 

METHODS 

3.1 Study Area 

 The Narrows Preserve is located on Peters Mountain in Giles County, Virginia, 

situated in the Ridge and Valley physiographic province of the Appalachian Mountains 

(see Figure 3.1). 

 

Figure 3.1: Location of Peters Mountain.  

3.1.1 Climate 

The Southern Appalachian Mountains are classified as a humid subtropical 

climate (Cfa) (Christopherson 2006) or a humid continental climate (Bailey 1995).  

These climates are generally moist year round with a pronounced winter dry period.   

Generally, average annual precipitation for Southern Appalachia is between 762 and 
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1778 millimeters, with the highest average precipitation rates (1270-1778 millimeters) 

occurring in the west along the Appalachian Plateau and to the east along the tops of the 

Blue Ridge Mountains (Climate Atlas of the United States 2000).    

 Average annual precipitation for Narrows, VA ranges from 63.5 to 101.6 

millimeters in the driest and wettest months and average monthly temperatures range 

from 0û C to 22.2û C in the coldest and hottest months (Intellicast 2007).   

3.1.2 Physiography 

 The Ridge and Valley region is comprised mostly of sedimentary rocks that have 

been folded, faulted and eroded to form long, parallel ridges and valleys (Shankman and 

James 2002).  Limestone and shale erode to form the valleys, while sandstones and 

conglomerates form the ridges.   

 These geological foundations create the basis for differing types of soils and the 

resulting soil moisture gradient, which has been demonstrated to influence vegetation 

distribution (Whittaker 1956).  Mesic sites generally have the greatest number of tress 

species while xeric sites have the least number of tree species.   

 The soils found on Peters Mountain are mostly composed of udept inceptisols, 

specifically Lehew, Wallen and Berks soils (Swecker et al. 1985).  These are highly 

weathered forest soils that occur on steeper slopes with sandstone bedrock. Lehew and 

Wallen soils occur on 35 to 65 percent slopes and are very stony with rapid permeability 

and runoff rates.  Lehew and Wallen soils are poor crop and pasture soils, but have high 

potential for tree production.  Berks soils occur on 30 to 80 percent slopes with rock 

outcrops.  The soil is moderately permeable with very rapid runoff rates and low soil 
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moisture capacity.  Like Lehew and Wallen soils, Berks soil is also unsuitable for 

farming practices yet has high potential for tree productivity.  

3.1.3 Vegetation   

The southern Appalachian forests are mostly composed of oak forest species 

(Braun 1950, 231-233; Whittaker 1956, 49-50).  The southern Virginia forests in the 

Ridge and Valley region have a high number of species due to the complexity of the 

terrain caused by the ridges and valleys.  Generally, Q. montana, Q. alba, A. rubrum, 

Oxydendrum arboreum L., Quercus rubra L., Liriodendron tulipifera L., Q. velutina, 

Carya spp., N. sylvatica, Pinus virginiana and Robinia pseudoacacia L. species are 

common throughout the region.   

The vegetation found on the dry southeast facing slopes of the Narrows Preserve 

is mostly oak.  Strausbaugh and Core (1932) reported that I. corei inhabited open, pine-

hardwood woodlands on Peters Mountain, with Q. montana, Q. rubra, Q. alba, and Q. 

coccinea being the species with the highest importance values (Strausbaugh and Core 

1932; Adams and Stephenson 1983).   

An increase in tree cover is seen by comparing an aerial photo of Peters 

Mountain taken in the 1930s (Figure 3.2) to field observations in 2005 (Figure 3.3).  The 

photo displays more open forest conditions while forest conditions observed in 2005 are 

generally more closed, with numerous smaller trees comprising the forest.  Additionally, 

the aerial photo shows evidence of a thin and clearer forest on the southeast-facing 

slopes of the mountain.  It is possible that this clearing was a result of logging as this 

aspect of the mountain is much less steep and more easily accessible than the northwest-
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facing aspect.  During the peak of the industrial timber boom (circa 1910), large portions 

of forested lands in the Southern Appalachian Mountains were cleared for logging, 

including Giles county (Sarvis 1993a).    

 

 

Figure 3.2: Aerial photo of Peters Mountain taken in the 1930s, courtesy of Jesse 

Overcash, United States Forest Service. 
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Figure 3.3: Photograph of forest conditions on Peters Mountain, taken by J. Hoss, 2005. 

3.2 Field Methods  

A chain saw was used to obtain fire scarred cross-sections from both living and 

dead pine trees (Figures 3.4 and 3.5). Complete cross sections were taken from the dead 

pines with multiple fire-scars, and partial cross-sections were taken from fire-scarred 

living pines to preserve the live trees.  Global Positioning System (GPS) points were 

taken at each sample for creation of a map displaying the spatial extent of all fire-scarred 

samples found on the mountain (See Figure 3.6) 
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Figure 3.4: Photo of a live fire scarred sample taken from Peters Mountain, taken by 

J.Hoss, 2005. 
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Figure 3.5: Photo of a dead fire scarred sample taken from Peters Mountain, taken by J. 

Hoss, 2005. 
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Figure 3.6: Location of the 79 fire scarred samples taken from Peters Mountain. 
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Forest age-structure and species composition were characterized by using three 

20 x 50m plots on the northwest and southeast facing slopes of Peters Mountain (Figure 

3.7).  The northwest- and southeast-facing plots were located on opposing aspects near 

the mallow to characterize forest conditions in the area immediately surrounding the 

mallow. The third plot was situated farther down-slope on the southeast facing slope of 

the mountain to characterize the forest and fire conditions of the Narrows Preserve as a 

whole since the majority of the preserve is located on this aspect. 

Within each plot, all trees with diameter at breast height (DBH) of at least 5.0 cm 

were cored using an increment borer. Two cores were taken from opposite sides of each 

tree at the base of the stem. All sapling (DBH < 5.0 cm, height ≥ 50 cm) and overstory 

trees found in the plot were tallied and identified to species.  Seedlings (height < 50 cm) 

were identified and tallied in a 10 x 20 m subplot nested in the center of the larger plot.   
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Figure 3.7:  Approximate location of the three 20 x 50 m plots. 
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3.3 Lab Methods 

 In the lab, cross-sections were reassembled and increment cores glued to wooden 

mounts. All sample surfaces were sanded using progressively finer sandpaper (40 to 400 

grit), enabling the cellular structure of the wood to be visible under 20-30X 

magnification.  Tree-ring patterns from both the cross-sections and the cores were 

crossdated according to standard dendrochronological techniques outlined in Stokes and 

Smiley (1968) and Yamaguchi (1991).  Each sample was visually crossdated using 

skeleton plots or the listing method. Skeleton plotting was done on living cores used for 

the master chronology and listing of significant rings (narrow, wide, locally absent, 

missing or containing a prominent false ring) was done for all cross sections. After 

measuring each cross-section and selected increment cores, the crossdating results were 

tested for accuracy using COFECHA software (Grissino-Mayer 2001a, Holmes 1986).  

 Fire dates were recorded and archived using FHX2 software (Grissino-Mayer, 

2001b), and the seasonality of each fire was recorded and categorized by noting the 

position of the fire scar within the annual ring (Baisan and Swetnam, 1990): early 

earlywood, middle earlywood, late earlywood, latewood, dormant, and undetermined. 

Master fire charts representing temporal patterns of past fire occurrences were created 

using FHX2 software. Estimates of the Weibull Median Fire Interval, Upper and Lower 

Exceedance Intervals, and Maximum Hazard Interval were also determined using this 

software (Grissino-Mayer 1999).   
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The age structure of the forest was characterized by creating histograms depicting 

various age classes of each tree species.  Basal area and density were calculated to 

determine the species composition of each plot.  The combination of age structure data 

and fire history was used to infer patterns of past tree establishment with respect to 

change in the fire regime and to elucidate successional trajectories of the stands.  
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CHAPTER IV 

RESULTS 

4.1 Master Chronology 

 A master chronology was created using cores and cross sections from 19 living 

and dead pine trees to accurately cross date all samples obtained. The interseries 

correlation of the master is 0.628 with an average mean sensitivity of 0.375.  The master 

series dates back to 1857 and the last year measured was 2004.  (See Appendix A for 

entire COFECHA output).   

4.2 Fire History  

 Seventy-one out of the 79 fire scarred samples taken from Peters Mountain were 

used for fire history analysis.  Three of the samples were lost or destroyed in transit from 

Peters Mountain. Five of the samples were undatable, most likely because they were 

older than the master chronology.   

A visual representation of all fire scars is displayed below (See Figure 4.1). Each 

horizontal line represents a fire scarred sample and each vertical dash represents a fire 

event. The bottom x-axis is a composite fire history chart displaying all fires that 

occurred during the time period. The fire history chart shows incidence of fires from 

1867 to 1976.  The fires that scarred the most trees on Peters Mountain occurred in 1896, 

1910, 1922, 1942 and 1954.   

A total of 45 fires were recorded for the period of 1867-1976 (Table 1, Appendix 

A).  No fires were recorded after 1976.  Analysis of the fire intervals for 1867-1976 

revealed that the mean fire interval was 2.48 years, a median fire interval of 2.00 years, a 
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Weibull median interval of 2.18 years and lower and upper exceedance intervals of 0.73 

years and 4.51 years, respectively.  Additionally, seasonality results show that 93.5 

percent (101 scars) of fires with determinable seasonality occurred during the dormant 

season, 1.9 percent (2 scars) occurred during the middle earlywood, and 4.6 percent (5 

scars) occurred during the latewood of the growing season.  Fifty-four fire scars had an 

undeterminable season.   

 Further analysis showed that seven fires (1867, 1871, 1886, 1896, 1910, 1922, 

and 1942) encompassed 25 percent of samples (See Table 2, Appendix A). The 25-

percent scarred class analysis is a standard dendroecological practice that selects the 

fires that presumably were the most severe and/or extensive.  In this study, such an 

analysis is important because of the high frequency of small fires in the study area. The 

25 percent scarred class analysis may better represent the frequency of the large fires 

that encompassed the entire study area.  Analysis of the fires within the 25 percent 

scarred class revealed a mean fire interval of 12.50 years, a median fire interval of 13.00 

years, a Weibull median interval of 12.32 years and lower and upper exceedance 

intervals of 6.90 years and 18.15 years, respectively. 

 The GPS points taken at each fire scarred sample were used to create maps to 

demonstrate spatial extent of each fire (See Maps in Appendix B).  While most of the 

fires are spatially clustered, it is clear that some of the scars were spatially disjunct, 

indicating that at least some of the fires were quite large in extent.
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4.3 Age Structure and Size-Class Distribution 

Quercus Montana, the dominant species, established during the period from 1860 

to 1980 on most of the sites.   Age class distribution results for Peters Mountain site A 

(PMA) (Figure 4.2) show Q. montana establishment starting in 1866.  It is possible, and 

very likely, there are much older Q. montana trees on the site.  Eight Q. montana trees 

with DBH of 26.0 to 42.9 cm were not cored because of heart rot and thus were not 

included in the age structure anaylsis. Figure 4.2 also shows a peak in establishment in 

the late 1950s, immediately after fire cessation displayed in the fire history chart.  The 

�other oak� category established in this pulse are comprised of Q. rubra, Q. coccinea and 

Q. velutina.   

 

PMA Age-Class Distribution
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Figure 4.2: Age-Class Distribution of Site A 

Results for PMB (Figure 4.3) show a establishment of other hardwoods (A. 

rubrum, O. arboreum, and C. glabra) during the decade of 1950.  A large establishment 
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period of P. virginiana can be seen during the 1960s and 1970s; although there is 

evidence of this species establishing on the mountain since the late 1800s.   Similar to 

PMA, there is also a Q. montana establishment in the 1940s to 1960s. There are fewer 

older Q. montana individuals on this site than site A.  Only one core of Q. montana was 

not obtained due to rot, although it was 53.0 cm in diameter and likely very old.  One P. 

viginiana sample was also excluded due to rot.  

 

PMB Age-Class Distribution
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Figure 4.3:  Age-Class Distribution of Site B 

 Site C (Figure 4.4) shows most establishment of all trees occurred after 1920.  

Nyssa sylvatica, A. rubrum and O. arboreum are the �other hardwood� species that 

established the most between 1920 and 1990.  The only Q. montana individuals found 

on the site established between 1920 and 1950 and only one rotten sample (37.2 cm 

DBH) was excluded.  However, one of each of the following was not included due to 

rot: P. pungens, N. sylvatica and A. rubrum. 
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PMC Age-Class Distribution
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Figure 4.4: Age-Class Distribution of Site C  

Quercus montana had the highest basal area in all three plots with 18.5, 20.3 and 

8.0 m^2/ha for plots A, B and C, respectively.  Plot PMA, located on the northwest facing 

slope of the mountain is composed primarily of oak species, while plots PMB and PMC 

on the opposing slope are more mixed with different species of oaks, other hardwoods 

and some pines (Table 4.1). 

 Seedling and sapling data reveal Q. montana and Q. rubra are the most 

numerous seedlings and saplings on site PMA.  While Q. montana had a large number of 

seedlings and saplings on site PMB, Sassafras albidum is the most numerous seedling 

type on the site and second most numerous sapling type.  Sassafras albidum is also the 

dominant seedling on PMC.   Acer rubrum seedlings and saplings on PMC are 

comparable to S. albidum.  
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Table 4.1:  Abundance of each tree species in the tree, sapling, and seedling size classes. 

 
Species 

Tree basal area 
(m2/ha) 

Tree density 
(stems/ha) 

Sapling density 
(stems/ha) 

Seedling density 
(stems/ha) 

  PMA   
Acer rubrum 
Acer saccharum 
Castanea dentata 
Carya glabra 
Carya tomentosa 
Nyssa  sylvatica 
Pinus virginiana 
Pinus serotina 
Quercus coccinea 
Quercus montana 
Quercus rubra 
Quercus velutina 
Sassafras albidum 
Total 

0.1 
 
 
 
 
 
0.5 
 
0.1 
18.5 
7.9 
1.3 
 
28.3 

20 
 
 
 
 
 
10 
 
10 
390 
320 
50 
 
800 

120 
10 
10 
120 
10 
60 
100 
60 
20 
320 
350 
90 
260 
1530 

 
 
 
100 
 
200 
50 
 
 
1500 
800 
200 
150 
3000 

  PMB   
Acer pensylvanicum 
Acer rubrum 
Carya glabra 
Carya tomentosa 
Fraxinus americana 
Gleditsia triacanthos 
Oxydendrum arboreum 
Pinus pungens 
Pinus virginiana 
Pinus serotina 
Quercus alba 
Quercus coccinea 
Quercus montana 
Quercus rubra 
Quercus velutina 
Sassafras albidum 
Ulmus spp. 
Total 

 
0.2 
0.1 
 
 
 
0.6 
2.0 
1.5 
 
 
1.8 
20.3 
0.5 
1.1 
 
 
28.1 

 
60 
20 
 
 
 
40 
70 
110 
 
 
30 
350 
40 
40 
 
 
760 

10 
400 
230 
40 
20 
70 
90 
 
70 
70 
110 
260 
2080 
280 
600 
1060 
 
5390 

 
100 
150 
100 
100 
150 
 
50 
 
950 
 
100 
6200 
500 
1300 
27,550 
50 
37,300 

  PMC   
Acer pensylvanicum 
Acer rubrum 
Castanea dentata 
Nyssa sylvatica 
Oxydendrum arboreum 
Pinus pungens 
Pinus rigida 
Quercus coccinea 
Quercus montana 
Quercus rubra 
Quercus velutina 
Sassafras albidum 
Total 

 
1.7 
 
2.8 
3.8 
1.6 
3.5 
4.3 
8.0 
 
3.4 
 
29.0 

 
110 
 
270 
170 
40 
80 
80 
110 
 
80 
 
940 

10 
710 
90 
130 
30 
 
 
30 
 
 
 
1100 
2100 

 
2650 
50 
200 
150 
 
 
700 
50 
50 
 
2400 
6250 
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The size class analysis reveals there are several small and fewer large trees 

(Figures 4.5 � 4.7).   The largest tree species found on site A is Q. montana followed by 

other oaks and hardwoods.  The pine species are found only in the smallest DBH class.   

Similarly, Q. montana is the largest species on sites B and C.  However, the 

largest DBH class for both sites is by far is the smallest class.  For site B, this is 

composed of Q. montana, Q. coccinea, Q. velutina, Q. rubra,  A. rubrum, O. arboreum, 

C. glabra, P. pungens and P. virginiana.  For site C, this is composed of Q. montana, Q. 

coccinea, Q. velutina, N. sylvatica, A. rubrum, O. arboreum. 
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Figure 4.5: Size-Class Distribution of Site A 
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PMB DBH-Class Distribution
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Figure 4.6: Size-Class Distribution for Site B 
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Figure 4.7: Size-Class Distribution of Site C 
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CHAPTER V 

DISCUSSION 

 
5.1 Fire History 
 
 It is clear from the fire history analysis that fires occurred frequently on Peters 

Mountain.  The Weibull mean fire interval of 2.18 years indicates that Peters Mountain 

was historically dominated by a frequent low-intensity fire regime.  These results are 

generally in line with the results of the few studies that have been conducted in the 

southern Appalachian Mountains and is evidence to support the fire-oak hypothesis 

presented by Abrams (1992).  Results from these studies indicated a fire interval ranging 

from 7.6 to 15.5 years (Harmon 1982; Shumway et al. 2001, Schuler and McCain 2003).   

All of these studies were done using 43 or less samples.  As a result, the fire interval for 

Peters Mountain is understandably more frequent (2.18 years) because the sample size 

was nearly double.  A large sample size is necessary in order to ensure most of the fires 

that occurred on the landscape are included in the fire history analysis.  It is specifically 

important for Peters Mountain since so many of the scars occurred on only one or two 

samples.   

Analysis of the 25 percent scarred class revealed that larger fires occurred on an 

interval of approximately 12 years. The 25 percent scarred class analysis is important 

because it reveals how often larger fires occurred.  For Peters Mountain these larger fires 

were in the years of 1867, 1871, 1886, 1896, 1910, 1922, and 1942.  These fires covered 

large areas of Peters Mountain (see Maps 2, 3, 7, 11, 18, 26, 36 in Appendix B) and 



    

  

36

crossed the ridge from the northwest to the southeast facing aspect indicating the ridge 

did not serve as a fire break.  

The maps suggest varying spatial extent of all fires on the mountain.  This 

indicates that most fires were small and spatially localized, which was not surprising 

since oak forests generally thrive under a frequent fire regime. Yet, several fire scarred 

samples containing the same fire scar are far apart indicating large fires occurred on the 

mountain.   

 Seasonality results indicate that most fires occurred during the dormant season, 

which is fall or spring.  Winter burns were probably uncommon because the cooler 

temperatures inhibit drying and limit fire activity (Lafon et al. 2005).  While the ignition 

source of any of these fires cannot be determined from fire scars, it is likely that both 

anthropogenic and natural fires occurred.  The 1942 fire on Peters Mountain was, 

spatially, the largest fire on the landscape that this study revealed and there is 

documented evidence of anthropogenic fires being set in the same year in the adjacent 

Jefferson National Forest (Sarvis 1993b).  Further, because of the spatial extent of 

several of the fires, they are most likely anthropogenic since these types of fires seem to 

be larger and more intense (Lafon el al. 2005, Barden and Woods 1974, Ruffner and 

Abrams 1998). While lightning fires can be large, it is less likely.  A lightning fire 

occurred in 2004 (Judy Dunscomb, The Nature Conservancy, personal communication, 

2005). 
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5.2 Age Structure and Size-Class Distribution  
 
 Age structure and size-class distribution results suggest that while Q. montana  is 

the dominant and oldest species on the mountain, the forest is progressing into a later 

successional forest of fire-intolerant hardwoods such as S. albidum, A. rubrum, and N. 

sylvatica.  Succession is responsible for these species establishing only after the 

cessation of the main disturbance type.  The increase in these hardwoods coincides with 

the decrease in fire frequency following the last fire in the 1950s.  Further, the last pulse 

of establishment of both pines and chestnut oaks across the mountain follows the largest 

fires in 1922, 1942 and 1954.   

 Seedling and sapling data reveal oaks are establishing on Peters Mountain, with 

chestnut oak stems per hectare being in the top three on all sites.  However, the number 

of sassafras establishing on the mountain, especially on the southeast aspect, is 

overshadowing the oaks.  Sassafras seedlings have reached 27,550 stems/ha on site B 

alone. Additionally, red maple establishment on the same aspect is increasing.  This 

successional trajectory towards a forest with fire intolerant species, suggests indeed, fires 

were more frequent in the past and that these fires maintained open oak forests. 

5.2.1 Site A 

 Age structure analysis revealed that Q. montana has been establishing itself on 

the site from 1870 to the present. It is possible there were older Q. montana individuals, 

however heart rot prevented gathering of information for these age classes.  Their size 

indicates that these trees were quite old and it is possible they were established before 

any of the samples we were able to obtain. However, basal area was calculated for these 
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larger individuals revealing they are the dominant and largest species on the site. This 

indicates the northwest slope was probably not cleared in recent history.  Additionally, 

the 1930 aerial photo shows this aspect as having a uniform forest. 

 Few other species exist on this site.  It is likely this is because most of the fires 

occurred on this aspect of the mountain.  The few pines that did establish on PMA came 

after the 1922 fire.  Additionally, other less fire tolerant oaks and hardwoods did not 

establish on the site until after the 1950s, after the largest fire on the mountain. This 

suggests the historical oak forest on this aspect was indeed maintained by fire (Abrams 

1992).   

 Size class results support this as well, as Q. montana is the largest species with 

the most stems per hectare.  The smallest species on the site include such fire intolerant 

species as A. rubrum and Q. coccinea.   

 Seedling and sapling data reveal that Q. montana can in fact establish on a site in 

the absence of fire, however, the abundance of other fire intolerant species establishing 

on the site suggest a shift in forest composition.  

5.2.2 Site B 

 Similar to site A, Q. montana has established on this site early in the 1800s. Only 

one Q. montana could not be obtained due to heart rot.  Again, its size (53.0 cm DBH) 

indicates it would be old.  A large gap occurs between 1860 and 1920 where no Q. 

montana established.  It is possible this is due to logging or clearing for pasture that 

occurred during this period and the oldest trees on this site could be remnants of a forest 
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that existed prior to logging and/or clearing.  The aerial photo from 1930 indicates that 

this site, unlike site A, was much clearer than it is today.   

In the absence of Q. montana during this time there is an establishment in the 

1890s and 1930s of pines and other oaks on this site during the era prior to fire control 

efforts.  The other hardwoods found on this site (A. rubrum, C. glabra, O. arboreum) 

established and continued to flourish after 1940.  This is likely a result of fire exclusion.   

 Site B contains 17 species compared to site A, with 13.  The increase in species 

is likely a result of aspect, topography and the high amount of disturbance from both fire 

and logging/agricultural clearing.  The northwest aspect is much steeper and rockier. 

Thus, site A may remain dominated by Chestnut Oak for a longer period of time as fire 

intolerant species encroachment may be slower.  As a result oak forests may become 

restricted to the most extreme sites while more favorable sites are overtaken by fire-

intolerant species (Abrams 1992).  

5.2.3 Site C 

 Age structure results reveal Q. montana establishment was much later, beginning 

in the 1900s.  In fact, all other species found on this site did not establish until after that 

time as well. This too is likely a result of logging/agricultural clearing on this site since it 

is the lowest in elevation as well as the most accessible. Similarly, logging may be 

responsible for the large diversity of species found on this site as invasion by early 

successional species took over after the end of the logging era.   

 Similar to the other sites Q. montana is the largest and most dominant on the site; 

however, the remaining species are more evenly distributed in size class.  Again this 
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may be an effect of logging.  This even sized distribution has resulted in a more dense 

forest on this side of the mountain.  

 Seedling and sapling data show the most species establishing on the site are A. 

rubrum, A. pensylvanicum, and S. albidum; all fire intolerant species.  Fire tolerant oaks 

and pines are establishing on this site but in far fewer numbers, indicating a shift in 

forest composition.   
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CHAPTER VI 

CONCLUSION 

 
Since the last major fire on Peters Mountain (1954), the forest surrounding the 

mallow has markedly changed. While Q. montana is still the dominant species, there has 

been an obvious increase in S. albidum, A. rubrum, N. sylvatica, and other fire-intolerant 

species on the southeast aspect of the mountain. While the fire frequency prior to 1867 

on Peters Mountain is unknown, the age structure and DBH graphs indicate that oaks 

thrived on the mountain.  Natural, Native American and early European fires were 

common and may have supported the maintenance of this oak-dominated ecosystem.  

The lack of fire has created a much more closed forest than a frequent, low intensity fire 

regime would allow, leading to the decline of the oaks, and also of the Peters Mountain 

mallow.  When the mallow was first discovered in 1927, Strausbaugh and Core describe 

an open mixed oak forest that was evidenced by the 1930s aerial photo.  These clear 

conditions conducive to mallow maintenance and oak dominance were a result of a 

highly disturbed landscape as evidenced by the high fire frequency and the 

logging/clearing that took place on the mountain.   

In conclusion, it is clear that fires occurred frequently on Peters Mountain.  The 

last fire occurred on Peters Mountain in 1976, indicating a fire free period of 30 years, 

much higher than the historical mean fire interval.  The fire history results reported here 

are not inconsistent with findings in surrounding areas.  Historical evidence of both 

natural and anthropogenic fires occurring on this site show that indeed fire should be 
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reintroduced on Peters Mountain at the maximum interval of 12.5 years (25 percent 

scarred class mean fire interval).  
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Table 1.  Statistical analysis of all fires from 1867-1976 
 
Total Intervals   :       44 
Mean Fire Interval  :     2.48 
Median Fire Interval  :     2.00 
Weibull Modal Interval :     1.35 
Weibull Median Interval :     2.18 
Fire Frequency  :     0.46 
Standard Deviation  :     1.87 
Coefficient of Variation :     0.76 
Skewness   :     2.03 
Kurtosis   :     4.37 
Scale parameter  :     2.78 
Shape parameter  :     1.51 
Minimum Fire Interval :     1.00 
Maximum Fire Interval :     9.00 
Lower Exceedance Interval :     0.73 
Upper Exceedance Interval :     4.51 
Maximum Hazard Interval :     2.36 
 
Table 2.  Statistical analysis of the 25 percent scarred class from 1867-1976 
 
Total Intervals   : 6 
Mean Fire Interval  : 12.50 
Median Fire Interval  :  13.00 
Weibull Modal Interval : 12.03 
Weibull Median Interval : 12.32 
Fire Frequency  : 0.08 
Standard Deviation  : 5.36 
Coefficient of Variation : 0.43 
Skewness   : -0.25 
Kurtosis   : -0.94 
Scale parameter  : 14.02 
Shape parameter  : 2.84 
Minimum Fire Interval : 4.00 
Maximum Fire Interval : 20.00 
Lower Exceedance Interval : 6.90 
Upper Exceedance Interval : 18.15 
Maximum Hazard Interval : 22.95 
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Table 3. Summary Information on Seasonality of Fires, 1867 - 2005 
 
Total number of fires for site   : 162 
Number and percentage with season  : 108 66.7% 
Number and percentage undetermined :  54 33.3% 
Number and percentage of D fires    : 101 93.5% 
Number and percentage of E fires  :   0  0.0% 
Number and percentage of M fires  :   2 1.9% 
Number and percentage of L fires  :   0 0.0% 
Number and percentage of A fires  :   5 4.6% 
Number and percentage DE fires  : 101 93.5% 
Number and percentage MLA fires  :   7 6.5% 
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APPENDIX B 

Maps of fire scarred samples 

 
 

 
 
Map 1.  Location of the 71 samples used for fire analysis.  
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Map 2.  Location of samples with 1867 fire scar. 



    

  

66

  

 
 
Map 3.  Location of samples with 1871 fire scar.  
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Map 4.  Location of samples with 1876 fire scar.
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Map 5.  Location of samples with 1879 fire scar.  
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Map 6.  Location of samples with 1885 fire scar.
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Map 7.  Location of samples with 1886 fire scar.
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Map 8.  Location of samples with 1889 fire scar.  
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Map 9.  Location of samples with 1891 fire scar.  
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Map 10.  Location of samples with 1893 fire scar.  
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Map 11.  Location of samples with 1896 fire scar.  
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Map 12.  Location of samples with 1897 fire scar.  
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Map 13.  Location of samples with 1898 fire scar. 
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Map 14.  Location of samples with 1900 fire scar.  
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Map 15.  Location of samples with 1903 fire scar.   
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Map 16.  Location of samples with 1907 fire scar.   
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Map 17.  Location of samples with 1910 fire scar.  
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Map 18.  Location of samples with 1911 fire scar.   
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Map 19.  Location of samples with 1912 fire scar.  
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 Map 20.  Location of samples with 1913 fire scar.  
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Map 21.  Location of samples with 1914 fire scar.  
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Map 22.  Location of samples with 1916 fire scar.  
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.Map 23.  Location of samples with 1917 fire scar. 
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Map 24.  Location of samples with 1918 fire scar. 
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Map 25.  Location of samples with 1921 fire scar.
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Map 26.  Location of samples with 1922 fire scar.
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Map 27.  Location of samples with 1925 fire scar.
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Map 28.  Location of samples with 1926 fire scar.
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Map 29.  Location of samples with 1928 fire scar. 
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Map 30.  Location of samples with 1930 fire scar.



    

  

94

 

 
 
Map 31.  Location of samples with 1932 fire scar.
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Map 32.  Location of samples with 1934 fire scar.
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Map 33.  Location of samples with 1937 fire scar.
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Map 34.  Location of samples with 1939 fire scar.
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Map 35.  Location of samples with 1940 fire scar.
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Map 36.  Location of samples with 1942 fire scar.
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Map 37.  Location of samples with 1943 fire scar.
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Map 38.  Location of samples with 1944 fire scar.
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Map 39.  Location of samples with 1945 fire scar.
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Map 40.  Location of samples with 1954 fire scar.
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Map 41.  Location of samples with 1956 fire scar. 
 



    

  

105

 
 
Map 42.  Location of samples with 1965 fire scar. 
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Map 43.  Location of samples with 1969 fire scar. 
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Map 44.  Location of samples with 1972 fire scar.
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Map 45.  Location of samples with 1975 fire scar.
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Map 46.  Location of samples with 1976 fire scar.
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