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ABSTRACT 

 

Compact Harsh Environment Energy Conversion Systems. 

(May 2007) 

Shehab Ahmed, B.S., Alexandria University, Egypt; 

M.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Hamid Toliyat 

 

The quest for energy is leading the industry into drilling deeper wells.  Typically, a 

temperature gradient of 1˚C/150 ft can be expected, with bottom hole temperatures 

reaching beyond 200˚C in many areas of the world.  Moreover, the increased recovery 

benefits and cost reductions possible with the use of horizontal and multilateral wells has 

triggered a need for higher power energy conversion systems in bottom hole assemblies, 

such as rotary steerable tools and downhole tractors.  The concepts developed 

throughout this work address some of these new needs.   

This research investigated improvements, novel solutions and considerations that 

will lead to significant advantages in terms of reliability, extended temperature 

operation, increased power capability and reduced size and cost of compact harsh 

environment energy conversion systems.  Improvements to both the electromechanical 

subsystem and the power electronic subsystem are introduced.   

Air gap viscous losses were shown to a have a significant effect on the optimal 

design of submersible PM (permanent magnet) machines, and a design procedure to 



iv 

account for this loss component in the design was developed.   The application of a dual 

winding exterior rotor PM machine in a downhole environment enabled a significant 

increase in the application’s torque capability, provided protection against generator 

winding over voltage, and reduced parts count.  Comprehensive switching device 

qualification, testing, and simulation lead to a simple failure mitigation technique for the 

operation of the most suitable devices at elevated temperature.  A flying capacitor 

multilevel inverter was then successfully constructed and temperature tested.  A novel 

motor drive concept suited for elevated temperature oil filled environment applications 

concluded the research.  
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CHAPTER I 

 

INTRODUCTION 

 
1.1 Introduction 

 
Well logging, the automotive industry, nuclear power, industrial processing plants 

and space exploration are just a few examples of applications that are highly dependent 

on the existence of compact harsh environment energy conversion systems.  State of the 

art power components are limited to a maximum operating temperature of 150˚C.  There 

is significant research effort today focusing on dielectric and insulating materials and the 

development and characterization of high-temperature components.  This dissertation 

will take this effort a step forward by approaching the topic from a system point of view.  

Compact harsh environment energy conversion systems will be the main focus of the 

work.   

The unique needs of the well logging industry place stringent demands on the power 

conversion systems.  The quest for energy is leading the industry into drilling deeper 

wells.  Typically, a temperature gradient of 1˚C/150 ft can be expected, with bottom hole 

temperatures reaching beyond 200˚C in many areas of the world today.  With the current 

prices of energy, running a rig similar to that shown in Fig. 1.1 can easily fall in the six 

digit zone.  This has placed even more stringent needs on the energy conversion systems 

used in such environments.  Moreover, the increased recovery benefits and cost 

reductions possible with the use of horizontal and multilateral wells has triggered a need  

for higher power energy conversion systems in bottom hole assemblies. 

 
___________ 
This dissertation follows the style of IEEE Transactions on Industry Applications. 
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Electrical machine technologies are now very common in today’s industry.  Early 

market entries relied mainly on hydraulic energy conversion systems, but the latest 

power electronic systems have demonstrated superior performance and reliability.  The 

concepts developed throughout this work were developed to address some of these new 

needs. 

 

 

Fig. 1.1.  Typical offshore oil rig.  

A typical arrangement of horizontals and multilaterals is shown in Fig. 1.2.  It is 

evident here that a means of drilling such wells and conveying logging tools in such 

wells would be needed.  An illustration of a down hole tractor tool still 

underdevelopment is shown in Fig. 1.3.  Such a tool provides very demanding traction 

requirements on the motor drive system which is magnified by the compact nature and 

the harsh environment of the application.  It is also evident that power delivery to the 

downhole tools will also have its effect on the electrical performance of the system.  

These issues will be addressed in this dissertation in detail along with other aspects. 
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Fig. 1.2.  Offshore field of multilateral and horizontal wells. 

 

Fig. 1.3.  Prototype wireline open hole tractor tool. 

1.2 Components of a Compact Harsh Environment Energy Conversion System 

 

1.2.1  Electromechanical Subsystem 

Motors, generators and brakes are generally referred to in this dissertation as being a 

part of the electromechanical subsystem.  The design optimization of these components 

needs to be closely tied to a good understanding of the operating conditions that they 

will be exposed to.  Without such an understanding, designs optimized for operation 

under normal ambient operating conditions, will suffer in the compact harsh 

environments addressed by this dissertation.  This will be clearly demonstrated in several 

chapters of the dissertation.   
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The design and optimization of electric machines will be addressed using methods 

common to machine designers and readily reported in literature.  It will then be shown 

that such methods will produce results that are not optimal in nature and that 

environmental conditions need to be taken into consideration for a successful 

implementation.   

The proper choice of machine topology will also be seen as a major contributor the 

improved performance of electromechanical systems in compact harsh environments.  

Such machine topology options may not be apparent at first as suitable candidates to the 

solution, but an understanding of the environment and how it affects the machine 

topology did prove to be of great benefit. 

It will also be shown that the specific nature of compact harsh environments may 

give rise to means of electromechanical energy conversion that would be completely 

irrelevant to conventional surface applications.  However, their use in compact harsh 

environments can bring massive benefits on both the operational and business sides.   

Although an understanding of the insulation systems and material properties as they 

apply to the design of electromechanical devices for compact harsh environments was 

crucial to the successful implementation of such systems, it is not the main focus of the 

dissertation.  Whereas the main focus of the dissertation as it relates to the 

electromechanical subsystem is to devise novel means of machine design analysis and 

optimization, to assess the feasibility of novel applications of machine topologies, and to 

introduce novel driving and control mechanisms for electrical machines suitable for 

operation in such environments. 
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1.2.2  Power Electronics Subsystem 

The power electronics subsystem is another crucial component of the harsh 

environment energy conversion system.  Both DC/DC and DC/AC converters were part 

of the current research.  Introducing novel converter topologies was not the objective of 

the dissertation, however, the application aspects and novel solutions to the limitations 

of current converter topologies was the main objective here.  The harsh environmental 

conditions and limited space available for the electronic components make the design of 

a reliable power electronics subsystem a challenge.  The limited temperature capability 

of commercial power devices and the difficult and sometimes impossible integration of 

proper cooling means are only two of the challenges.  Power electronic device 

manufactures are currently focusing their efforts on solving what the automotive 

industry is addressing, which is, electronic modules for 125˚C operation.  What is 

required by the high tier oil well logging and drilling market is an order of magnitude 

more, and operation between 175˚C and 200˚C can be seen as common. 

In order to deal with such requirements, comprehensive qualification and testing is 

carried out.  A portion of the dissertation will be dedicated to demonstrating the 

procedures and techniques used in qualifying devices for elevated temperature operation.  

The limitations faced are then outlined and equivalent circuit modeling of the major 

issues and the proposed solutions will be provided.  Because the requirements of the new 

bottom hole assemblies are orders of magnitude different in power than previous work 

presented in literature and carried out in industry, there was a need to design a custom 

power module.  The logic behind the design process and the tradeoffs are linked to the 

environmental conditions faced by the assembly.   
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Building upon the results of device qualification and custom power module 

construction, a look at the system from a different perspective is needed.  It is shown that 

the power delivery method will have a large impact on the topologies of choice in the 

power electronics subsystem.  This is dictated by the nature of the application and how it 

is affected by the presence of long resistive cables between the surface supply system 

architecture and the bottom hole assemblies.  The conflicting nature between the 

compact packaging requirements, complex topologies, and thermal considerations are 

then demonstrated and the research provides a successful account of dealing with such 

constraints.   

1.3 Objective of the Research 

The objective of this work is to present novel solutions to many of the challenges 

faced in the development of compact harsh environment energy conversion systems.  

Today’s systems have been limited in their power capability and thus performance.  This 

is due to the absence of suitable switching devices, the migration of conventional design 

techniques to the downhole industry without significant consideration of the new 

environment, inheritance of previous designs, and a concentration on the improvement 

of conventional methods instead of devising methods that would benefit from the 

operating environment. 

The specific goals of the present research are to alleviate the limitations of the 

existing compact harsh environment energy conversion systems by providing: 

• A comprehensive study of the effect of the operating environment on the 

electrical machines used in bottom hole assemblies and the development of a 
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new electrical machine design procedure that considers these environmental 

aspects. 

• Design optimization of an external rotor permanent magnet actuator, and the 

development of a dual three phase winding permanent magnet machine that 

utilizes the coupling between the two sets of windings to the application’s 

advantage.   

• An investigation of the application limitations of power semiconductor devices in 

compact harsh environments.  The mitigation of failure modes of the switching 

unit using a simple novel application consideration that is verified using 

simplified equivalent circuits and experimentally. 

• A study of the effect of power delivery to bottom hole tools on the feasible 

topologies for harsh environment high power applications, and the successful 

implementation of the proposed solution. 

• Combine the understanding of the limitations of the electromechanical energy 

conversion subsystem and the power electronic subsystem into an appreciation of 

what novel ideas can bring to the table.  This is demonstrated through the 

development of a novel motor drive solution that offers the advantages of 

extended temperature operation, compactness, low cost, and high reliability. 

1.4 Dissertation Outline 

A brief introduction and overview of the dissertation have been provided in the 

preceding sections.  The work should be viewed as a comprehensive study of the needs 

of energy conversion systems in compact harsh environments.  To that end, each chapter 
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will tackle a specific aspect and present recommendations and novel solutions to the 

aspect at hand. 

In chapter II, the migration of conventional design techniques to the downhole 

industry without significant consideration of the new environment is addressed as it 

pertains to the design of electrical machines.  The specific case of the three phase 

permanent magnet synchronous machine is used, however, the study is applicable to any 

machine topology.  The chapter introduces the problems associated with the operation of 

high speed motors submersed in a viscous fluid.  A new loss component that is found to 

have a significant effect on the machine design is studied in detail and a design 

procedure to help take that loss component into consideration is proposed. 

Chapter III demonstrates how the application considerations and the nature of the 

connected load are a main consideration in a successful design of a dual voltage exterior 

rotor PM actuator.  The physical coupling between the two sets of windings was used in 

favor of the application.  Although such a machine topology is common in large 

machines typical of generating stations and rail road cars, it was found to be the ideal 

candidate for the system at hand. 

Chapter IV begins with an investigation into the power electronic subsystem of the 

energy conversion chain.  A demonstration of the rigorous work needed to design high 

temperature power conversion systems is presented.  A novel simple mitigation 

technique to the main failure mode exhibited during the development and its explanation 

using simplified equivalent circuits is provided.  Finally, a custom high temperature 

power module is designed and successful prototype testing and comparison with 

simulation results is provided. 
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Chapter V builds on the testing and qualification results presented in chapter IV.  

However, it takes this a step further by investigating the effects that the nature of the 

application has on the topology selection.  Multilevel power conversion is found to be 

the ideal candidate for high power down hole energy conversion systems.  The 

successful implementation of the three level flying capacitor multilevel inverter is 

demonstrated.  The advantages of using a Mosfet multilevel inverter due to limitations 

on capacitor technology are then shown. 

Chapter VI demonstrates the advantages of novel ideas and the benefits that may 

bring to the design of compact harsh environment energy conversion systems.  A novel 

three phase brushless PM motor drive system that has little or no electronics is 

presented.  The advantages this brings in terms of reduced cost, high reliability, extended 

temperature operation, lower wire count, and lower product development cost are 

illustrated. 

Chapter VII presents a review of the main ideas presented in the work.  It also 

provides recommendations for future work in the different subsystems presented in 

throughout this research.   

1.5 Conclusion 

Finally, it is safe to say that the research proposed as the subject of this dissertation 

will provide an essential contribution to current research in the field of compact harsh 

environment energy conversion systems.  A comprehensive study of the previous 

literature presented in the area has been thoroughly carried out.  The significance of the 

research in solving current practical industry needs has been stressed.  A need for future 
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research in this area can highly benefit from the recommendations and conclusions made 

in this work.  The work can be seen as divided into three main areas: 

1. Electromechanical subsystems 

2. Power electronic subsystems 

3. A novel energy conversion system development that combines the 

understanding of the first two subsystems and an appreciation of the 

operating environment. 
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CHAPTER II 

A NEW CONSIDERATION IN THE DESIGN OPTIMIZATION OF 

 
SUBMERSIBLE ELECTRIC MOTORS 

 

2.1 Introduction 

PM synchronous servo motors are in widespread industrial use today, performing as 

the main drive system in highly demanding applications such as welding, machine 

tending, material handling, grinding, submersible pumps and conveyance tools.  A drive 

cycle can characterize the demands on a servo motor in an industrial application.  The 

drive cycle usually consists of an acceleration, a part with constant speed, and a 

retardation and standstill portion.  The drive cycle usually has a low intermittence, i.e. 

the motor has to supply high torque during the cycle, but only during a small fraction of 

the total cycle time.  The losses are large when the motor is producing high torque, but 

as they are produced under a fraction of a drive cycle, the average losses will be lower.  

The thermal time constant of a motor is much longer than the cycle time of a drive cycle.  

By sizing the motor considering the thermal demands instead of the peak torque during 

the cycle, a smaller and less expensive motor can accomplish the desired task. 

The inertia of the motor is very important in all servo drives, as during the 

acceleration, the motor not only has to supply torque to accelerate the load, but also has 

to supply torque to accelerate itself.  What is important is the ratio between the motor 

inertia and the load inertia.  If the motor inertia is negligible compared to the load 

inertia, the benefit of reducing the motor inertia is small, as most of the motor torque 

anyway is used to accelerate the load.  On the other hand, if the motor and load inertia 
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are of comparable sizes, reducing the motor inertia gives the benefit of less torque 

requirement for the same acceleration. 

When optimizing an electric machine, there are different criteria of the optimum to 

choose from, for example minimum weight, minimum cost, maximum torque etc.  For 

every criteria of optimum there must be a set of constraints like minimum permissible 

torque, maximum allowable volume etc.  Here, the criterion of the optimum has been 

chosen to be the minimization of the losses of a machine capable of performing a 

specific task.  The total loss is the objective function of the optimization along with the 

demands of the drive cycle, together with some geometric conditions as constraints. 

A procedure has been written that calculates the performance of the machine.  Input to 

the routine is a vector with variables describing the geometry of the machine.  The 

output of the procedure is the value of the objective function, total losses in this case, 

and the values of the set constraints.  The design optimization procedure is based on 

non-linear constrained optimization using sequential quadratic programming.  There are 

upper and lower bounds on the optimization variables.  The material properties are 

constants for every program run. 

 

 

Fig. 2.1.  The sequence of the calculations. 



13 

As the optimization strategy is to minimize the losses of a machine capable of giving a 

desired torque during a drive cycle, the calculations of the performance of a specific 

design has to start with calculation of the necessary torque given the drive system 

specifications.  Figure 2.1 shows the sequence of the calculations and their dependence.  

The calculations are have been derived from available literature [1].   

The conventional approach to machine design optimization has been described 

above.  Its use is not seen as a contribution to the current state of the art, but is a 

necessary introduction to what will be presented in this chapter.  The main objective of 

this chapter is to address how the migration of conventional design techniques to the 

downhole industry without significant consideration of the new environment will not 

produce an optimal design.  This is demonstrated through the example of electrical 

machine design optimization.  The specific case of the three phase permanent magnet 

synchronous machine is used, however, the study is applicable to any machine topology.  

The chapter introduces the problems associated with the operation of high speed motors 

submersed in a viscous fluid.  A new loss component that is found to have a significant 

effect on the machine design is studied in detail and a design procedure to help take that 

loss component into consideration is proposed.  Thus, the chapter is divided into two 

main sections.  The first will present the conventional method of machine design 

optimization and the application of that on a three phase PMSM.  The second section 

demonstrates the ineffectiveness of blindly using the same technique without 

considering the additional loss component due to the presence of the viscous loss in the 

air gap.  The chapter concludes with a proposed design procedure that builds upon the 
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conventional design methods, and expands that to the optimal design of electrical 

machines submersed in a viscous fluid. 

2.2 Conventional Analytical Design of a PMSM 

2.2.1 Parameterization of the Geometry 

Parameterization of the geometry of Fig. 2.2 as shown in Table 2.1 was first 

performed.  The rest of the dimensions can be derived from those used in the 

parameterization.  Because of the application’s space constraint, the machine’s diameter 

was kept constant. Several assumptions will be made in the design procedure and when 

possible, will be verified using finite element analysis.   

 

Table 2.1.  Machine design parameters. 

Parameter 

Number 

Symbol Description 

1 lge effective gap length 

2 rmy External rotor radius 

3 lstack Stack length 

4 lm Height of magnet 

5 htw Height of tooth wedge 

6 wt Width of tooth 

7 ht Height of tooth 

8 dc Depth of stator core 

9 ws Width of slot 
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Fig. 2.2.  Machine design parameters. 

2.2.2 Calculation of the Flux 

When calculating the flux, there is always a tradeoff between model complexity and 

computing time.  The classical way of dealing with the nonlinear permeability of the iron 

is to assume that the iron is infinitely permeable and that all the MMF is consumed in the 

airgap.  To avoid that the optimization yields a design with infinitely small tooth and 

stator yoke, a maximum flux density in the iron is introduced as a constraint.  The 

maximum flux density is the choice of the designer.  This is the kind of model used to 

formulate the design software.  Due to the fact that an accurate finite element (FE) 

design package will use the obtained results in order to fine tune them, it was found 

adequate to use such an approach.  A more complex model is the Magnetic Equivalent 

Circuit (MEC).  The model consists of an arbitrary number of nonlinear and linear 

reluctances, and accuracy, complexity, and computing time are determined by the 
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number of elements.  In the model at hand, it is also easy to change the pole and slot 

numbers.  This can aid in determining the optimal tradeoff between rotor yoke thickness 

(flux density) and inertia for various designs.  The flux density in the magnets is 

assumed to be uniform.  

The equations used to define the analytical model of the machine, are ones presented 

in previous literature [1].  A myriad of approximations and assumptions have been 

incorporated in them in order to simplify the model.  However, as previously stated, they 

do give a good quick general guide to the designer.  The average flux density in the air 

gap is calculated from (2.1) as follows: 
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where,  

lm  is the magnet height , 

lge  is the effective gap width, 

Br  is the magnet residual flux density. 

The maximum flux density in the stator tooth above a magnet is calculated from (2.2) as 

follows: 

( )

t

ts
got

w

ww
BB

+
=ˆ                       (2.2) 

where, 

ws is the slot width 

wt  is the tooth width. 
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If each magnet spans an angle of 2α, the root mean square value of the fundamental 

sinusoidal space component of the airgap flux density as derived from a Fourier series is 

given by (2.3) 

)sin(
22

1 α
π

gog BB = ,                      (2.3) 

with a maximum value given by (2.4) 

gg BB 11 2ˆ = .                        (2.4) 

As mentioned earlier, the flux in the stator yoke should be calculated using an 

iterative technique based on theory from the machine’s magnetic equivalent circuit.  

However our current implementation uses (2.4) and (2.5) to provide an approximate 

value of this physical quantity based on [2]. 
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where, 

rsi  is the stator inner radius 

lstack  is the active length of the machine      

dc  is the depth of the stator core 

ki  is a factor depending on the iron material used 

ϕc  is the core flux. 
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2.2.3 Calculation of the Necessary Torque and Current 

The calculation of the necessary torque has a lot of safety, thermal and compensation 

factors, which of course could all be included into one.  It is beneficial though to have 

control over what compensates what and to what degree, and that is best done by adding 

a factor for each requirement.  The torque calculation can easily be extended for a more 

complicated drive cycle, with for example a number of different torque levels during the 

acceleration (and braking) cycle.  Torque linearity is not considered in the model and no 

measures are taken to assure that the assumption of no armature reaction is violated.  

This will be checked in the future work using FEM.  The required torque and peak 

ampere turns are calculated from (2.7) and (2.8) 

gstackmy BAlrT 1

2 ˆπ=             (2.7) 
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where, torque is basically expressed as the product of the electrical and mechanical 

loading of the machine multiplied by the rotor volume, and (2.8) gives the relation 

between the peak ampere turns and the motor’s electrical loading. Where, 

rmy is the rotor outer radius 

Â  is a representative of the machine’s electric loading 

IN ˆ  is the machine’s peak ampere turns 

p is the machine’s number of poles. 

2.2.4 Calculation of the Copper Losses 

The copper length of half a coil is shown in (2.9) where, lec is the length of the end 

turns.  The current density in the copper is calculated from (2.10) 
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where, 

RMSslotNI __  is the rms ampere turns 

slotA   is the slot area 

fillk   is the copper fill factor. 

An approximate formula for the calculation of the slot area is shown in (2.11) 
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where, 

Q   is the number of slots 

sor   is the stator outer radius 

sir   is the stator inner radius. 

The copper volume is then given by (2.12) and the total copper loss by (2.13). 
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where, 

cuρ   is the resistivity of copper in Ωm 

cuj   is the current density in A/m2. 
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2.2.5 Calculation of the Iron Losses 

The machine’s iron loss is calculated from (2.14).  The coefficients kh and ke are the 

classical eddy and hysteresis loss coefficients which can be calculated at various 

frequencies and flux densities from curve fitting of manufacturer data sheets.  The 

obtained design’s maximum flux density is used in the equation to calculate the loss.  

This is accomplished by calculating the weight of the iron in the machine from (2.15) 

and (2.16) and finding the total loss of the machine from the obtained per unit weight 

loss curves.  The details of the calculation are given in the Appendix. 
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2.2.6 Design Constraints 

The constraints are the relations that must not be violated.  Examples of geometrical 

constraints are: 

• The rotor outer radius plus the airgap must not be larger than the stator inner 

radius 

• The magnet angle times the number of poles must not be larger than 2π 

• The airgap should be set between certain limits in order to prevent unrealistic 

results 

• The maximum allowable flux densities in the various machine parts should be 

taken into consideration, depending on the material being used 
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• The number of slots and teeth multiplied by the slot and tooth pitches should 

equal 2π. 

Other constraints are the demagnetization and thermal constraints previously touched 

upon.  As previously stated such constraints were not adequately represented in the 

current model.  It should be noted that, the addition of such constraints is highly 

dependant on experimental results in order to corroborate the theory. 

The materials that were investigated were Hiperco 50, M – 19 (0.025”), and M – 19 

(0.01”) thick.  Manufacturer data sheets were obtained in order to model the material 

losses at various flux densities and frequencies of excitation.  Hiperco 50 is a high grade 

expensive material usually used for high performance applications ranging from 

submersible equipment to space exploration vehicles.  M –19 steels, are a more common 

silicon steel, well known to the motor manufacturing industry, highly applicable for 

medium performance applications.  The allowable operating flux density of Hiperco is 

higher than that of M-19, in the optimization it was set to 1.6 T, and 1.2 T for M-19.  

These settings can be varied and are currently dependant on the designer’s choice.   

2.2.7 Sample Outputs 

This section provides some sample results obtained from the machine optimization 

routine.  Two different pole/slot combinations and three different lamination materials 

were investigated.  The algorithm was run at various load points for every lamination 

material.  Thus, three different machines were designed for every lamination material.  

This quick means of comparison between machine properties at various load points 

enables a designer to pursue further optimization only for the most promising design.     
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Comparison of 6 Pole 15 Slot Designs
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Fig. 2.3.  Comparison of 6 pole 15 slot designs with different lamination. 

The application of the design procedure on a six pole machine is shown in Fig. 2.3 

and the application to an 8 pole 21 slot design is shown in Fig. 2.4.  These two sets of 

data are for a machine with the same diameter and length.  It is clear from a study of the 

two sets of results that the six pole machine is a more suitable candidate for the 

application at hand since the efficiency for all the designs exceeds that of the eight pole 

design for every load condition and for the three different lamination material choices. 

 

Comparison of 8 Pole 21 Slot Designs
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Fig. 2.4.  Comparison of 8 pole 21 slot designs with different lamination  
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2.3 Analytical Design of a PMSM Including the Effects of Viscous Drag Losses 

2.3.1 Motivation for the Study 

Due to the nature of oil well logging and drilling applications, the tool pieces are 

usually submersed in oil in order to prevent the tool from overheating by acting as a 

medium of conduction for the heat to the external surface of the tool and to prevent the 

build up of any air bubbles and the collapse of the tool under the high pressures found in 

the wells.  Lubrication of the gearbox and bearings is another use of this oil.  Testing of 

the prototype motor while submerged in oil, however, didn’t truly comply with the 

simulations or with the testing in air.  The prototype motor was rated for 400 W of 

output power at 10000 rpm, however, its efficiency at the same load point was reduced 

significantly when submerged in oil.  This prompted an investigation into the effect of 

oil in the motor’s air gap on the machine’s losses.  Thus, besides the presence of a 

myriad of electromagnetic aspects when a novel motor design is put in question, there 

comes the added effect of oil shear or viscous losses.   

2.3.2 The Analytical Approach 

A review of fluid dynamics theory [3][4], indicated that this type of loss can be 

calculated and is found to be dependant on the airgap thickness, temperature, and in turn 

the fluid viscosity and other geometric factors.  Table 2.2 shows a comparison between 

the theoretical laminar flow calculations and experimental results.  It can be seen that the 

theoretical results are indeed quite low indicating a high degree of turbulent fluid losses.  

Please note that the results were obtained at a temperature of 40 deg C measured with a 

thermocouple glued to the end turns of the winding. 
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Table 2.2.  Comparison of theoretical and experimental results on the effect of oil shear losses. 

Speed 

(rpm) 

Theoretical 

(W) 

Experimental 

Rough (W) 

Experimental 

Smooth (W) 

1000 0.54 4.5 4 

5000 13.6 16 10 

7500 30.5 58 27 

 

Fig. 2.5 shows a plot of the analytically calculated power loss due to oil shear effect at 

various temperatures.  This was calculated using (2.17), where, ρ is the specific gravity, 

ν is the fluid viscosity at the ambient temperature, d is the rotor outer diameter, N is the 

rotor speed, L is the stack length, and c is the air gap length.  It is apparent that this loss 

is highest at lower temperatures due to the high viscosity of the oil, however, as 

previously stated, the theoretical values provide very low values when compared with 

the experimental ones.  Thus, it was seen that further study of this phenomenon is 

needed in order to better understand the difference between the analytical and 

experimental results. 

15233 10cLNdPv πνρ=        (2.17) 
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Fig. 2.5.  Theoretical effect of oil shear loss. 
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2.3.3 Utilization of Computational Fluid Dynamics Simulation Tools 

This discussion presented in this section was triggered by the results reached in the 

previous section involving the analytical calculation of the fluid viscous or friction loss.  

The aim of this section is the calculation of the frictional losses occurring due to the 

lubricating oil in the air gap between the stator and the rotor in an electrical motor.  The 

impacts of the operating temperature and the gap thickness on the power losses are 

studied. Comparisons between the analytical and numerical solutions are also made. 

Two different motor geometries are used in the study. The first geometry M1 has a rotor 

diameter that is 0.6422 times larger than the second geometry M2. 

 

 

                                          

Fig. 2.6. Simple geometry of the problem. 

 

 

The problem involves the simplified geometry of Fig. 2.6. Lubricating oil is present in 

between the stator and the rotor. The oil, due to its viscosity presents a resistance to the 

motion of the rotor. The goal is to estimate the power losses due to this resistance. 

The transition Reynolds number for the oil filling the gap was calculated from (2.18) 

as 18,413 [3] 
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where R is the transition Reynolds number, k is the ratio of the inner and outer 

diameters, ρ is the density and µ is the dynamic viscosity of the fluid.  The viscosity of 

the oil to be used in the application drops approximately 200 times as the temperature is 

increased from 20 °C to 200 °C.  The Reynolds number of the flow at 200 °C is 3.8 x 

106.  This requires remarkable changes in the numerical modeling, as the flow is no 

longer laminar.  The standard k-ε model is employed in Fluent to solve the turbulent 

flow with all other parameters remaining the same. 

Since an analytical solution for the turbulent flow does not exist, we need to estimate 

the optimum grid size and the convergence criterion necessary for solving the flow.  This 

is done by taking different grid sizes and comparing the results at various convergence 

criteria.  Four different grids are taken into consideration.  The base case of 0.0086 mm x 

0.0086 mm is called 1 x 1.  This size of 0.0086 mm was taken so that the first cell placed 

in the domain falls within a y+ range of 30 – 120 as required for the standard wall 

treatment.  A grid size of 2 x 1 means that the grid has been refined two times in the x-

direction with the y-interval remaining the same as 0.0086 mm.  The simulation was 

carried out for the two concentric cylinders case.  From this exercise, we can conclude 

that all the grids converge to give a shear stress between 60 Pa and 70 Pa.  So it was 

concluded that the 1 x 1 grid was fine enough if a convergence criterion of 10-6 is used. 

Therefore, this was the grid used in all the following turbulent study cases. 

A comparison between the laminar flow results and CFD results is shown in Fig. 2.7 

for the two concentric cylinders case.  It is evident that as the flow becomes turbulent at 
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200°C, the difference between the two methods becomes apparent.  Thus, the absence of 

an analytical approach to accurately model turbulence was the main motivation to the 

use of CFD [5],[6]. 
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Fig. 2.7.  Comparison of the analytical and CFD viscous loss calculations for an 8” long stack at two 
different temperatures. 

 
 
 

2.3.3.1 Effect of Stator Slots 

The effect of the slot width on the power loss is also studied. Fig. 2.8 shows the 

power losses for a gap width of 0.017 inch for simulation models with the slot and 

without the slot. The power loss increases by an average value of 14 % in the presence 

of the slot at the higher speeds.  This can be explained by the presence of eddies in the 

slot, which results in increasing velocity gradients at the wall, which thereby increases 

the shear stress leading to an increased power loss. 

2.3.3.2 Effect of Air Gap Width 

The slotted model was solved for different air gap sizes. Gap thickness was varied by 
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changing the rotor radius keeping the stator radius fixed. Gap widths of 0.017, 0.02, 

0.04, 0.06 and 0.08 inches were used.  The power losses for the M1 motor for these gap 

widths are shown in Fig. 2.9. We can see that the power loss increases approximately 35 

times as the speed increases from 2000 rpm to 8000 rpm for the same gap thickness. And 

the power loss drops by a factor of two as the gap width increases from 0.017 in to 0.08 

in. 
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Fig. 2.8.  Effect of the stator slots on the viscous power loss at 200°C. 
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Fig. 2.9.  Effect of the air gap width on the viscous power loss at 200°C. 

 

2.3.3.3 Effect of Temperature 

The effect of temperature on the power loss was also investigated.  Even though the 

energy equation is not solved in the model, temperature comes into play in the fluid 

properties as mentioned earlier.  The model was solved for a range of temperatures with 

an air gap width of 0.04 inch and the results are presented in Fig. 2.10. 

 

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200 250 300

Temperature (C )

V
is

co
u

s 
L

o
ss

 (
W

) W
W

2000

4000

6000

8000

 

Fig. 2.10.  Effect of temperature on the viscous power loss at 200°C. 
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2.3.3.4 Effect of Machine Geometry 

The analysis of viscous loss in the previous subsections was done using one stator 

and rotor geometry.  In order to assess the effect of the machine geometry on the viscous 

loss, a comparison with a different machine geometry was done.  The new machine, 

called M2 (M1 will be used for the first geometry) has a rotor diameter that is 0.6422 

times smaller than the M1 rotor.  Fig. 2.11 shows the power losses for the two motors for 

an air gap width of 0.017”. We can see that the highest power losses for the M2 model 

occurring at a temperature of 20 °C are still less than the M1 loss at 100 °C. The first and 

the most influencing parameter in this reduction of power loss is the rotor radius.  Which 

is a parameter that conflicts with the torque production capability of the machine from 

an electromagnetic point of view.  The rotor of the M2 motor is 0.6442 times smaller 

than that of the M1 model as mentioned above.  And as we have seen earlier from (2.17), 

the power loss is proportional to the rotor diameter cubed.  Although we mentioned that 

the analytical equations don’t truly apply, they do however give a good indication of the 

proportionalities.  This clearly explains the nearly 400 % (0.64423 = 0.2673; 1/0.2673 = 

3.741) reduction in the power losses in the M2 model as compared to the M1 model. 

Another factor in reducing the power losses is the number of slots. The number of slots 

was changed from 39 to 12 in the simulation model between M1 and M2.  The effect of 

the stator slotting was seen in an earlier section to affect the value of viscous power loss 

by upto 14%.  Hence all these effects combine to give less viscous power loss in the M2 

model as compared to the M1 model. 
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Fig. 2.11.  Effect of machine geometry on viscous power loss at two temperatures. 

 

2.3.3.5 Machine Design Procedure Considering Viscous Power Losses 

In the previous sections, an attempt to familiarize the reader with a submersible 

machine’s viscous losses was made.  It is now clear that this loss component is 

conflicting in nature with the electromagnetic optimization of the machine in air, and 

that an accurate estimation of this loss component would require the use of CFD 

software.  This section will present a design procedure that should be used in the design 

and optimization of motors submersed in viscous fluids.  The efficiency plots of Fig. 

2.12 will be used to support the formulation of the design procedure.  Maintaining the 

same outside dimensions and load, two machines with two different air gaps (0.017’ and 

0.04’) were optimized.  Fig. 2.12 shows that a very minor difference, approximately 1-

2%, is expected when the machines are running with no viscous fluid in the air gap.  The 

CFD results of Fig. 2.9 were then included in the calculation of the machine 

performance, and demonstrate the expected drop in efficiency at higher speeds.  The 

reduction in efficiency for the machine with a 0.04’ air gap is, however, less than the 
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0.017’ air gap machine.  This is an expected outcome after assessing the results of the 

previous sections.  A point will however be reached when the increase in the air gap will 

not provide a favorable solution to the machine design problem.  This is due to the 

dominance of the electromagnetic losses when that point is reached.  This leads us to the 

need for an iterative motor design procedure.  A sample flow chart demonstrating what 

was concluded from the previous discussion is shown in Fig. 2.13.  The machine 

optimization algorithm presented at the beginning of this chapter is only a step in the 

complete procedure.  After the machine performance is calculated, including the effect 

of viscous losses obtained from CFD, the designer needs to check the efficiency at the 

higher speed range and follow the logic used to describe Fig. 2.12 until a suitable 

geometry is retained.   
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Fig. 2.12.  Simulation results of Motor 1 in air and in oil for different air gaps. 
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Fig. 2.13.  Iterative machine design including the effect of viscous losses. 

2.4 Conclusion 

The influence of the operating environment plays an important role in the design of 

electrical machines.  This fact was illustrated in the work at hand by investigating the 

design of a permanent magnet synchronous machine submersed in a viscous fluid.  The 

work was prompted by a significant difference between an experimental setup tested in 

air and one tested in oil.  After compiling the results of current literature into a machine 

design optimization algorithm, analytical and CFD analysis of the submersible machine 

was also presented.  The need to use CFD for the estimation of the viscous loss 

component was demonstrated by the inadequacy of the analytical solutions in the 

presence of the turbulent flow properties of the fluid present in the air gap.  Different 
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factors that affect the viscous loss component were analyzed in detail.  An iterative 

machine design procedure is then presented as a complement to the conventional 

optimization methods.  This can possibly trigger further research into coupled field 

analysis and optimization of electrical machines [7],[8]. 
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CHAPTER III 

APPLICATION OF A DUAL VOLTAGE EXTERIOR ROTOR PM 

 

 ACTUATOR IN COMPACT HARSH ENVIRONMENTS 

 

3.1 Introduction 

Permanent magnet actuators are the natural electromechanical energy conversion 

choice for compact demanding applications.  This is evident in their widespread use in 

automotive applications, engine-generator applications, aircraft applications, military 

applications, and oil well exploration applications.  Their use in motoring, generation, 

and braking modes has been documented extensively in literature.  

The environmental and loading conditions and their effect on permanent magnet 

machines have also seen a fair review in literature.  It has been shown that application 

considerations and the nature of the connected load are a main input in the design of 

electrical machines for demanding applications.  These factors were utilized in the 

design of a dual voltage exterior rotor permanent magnet (PM) actuator.  The actuator is 

used in an oil well exploration application for a rotary steerable drilling tool.  Dual 

voltage PM actuator applications, however, have seen wide application in other 

industries.  The pending use of 42 V dc power for automotive and other vehicle 

electrical systems will require dual-voltage 42V/14V systems for the transition period 

[9].  In engine-generator applications, the output of a second winding can provide battery 

charging, field excitation, second load voltage ie. 480V/208V ac service.  A 24 V 

rectified output dc power is in need in aircraft applications where the main winding is 

providing the 400 Hz, 208 V power.  Compact dual voltage power supplies can also 

prove beneficial in military applications providing great flexibility especially in mobile 
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applications.  The advantage of such an approach over the use of a dedicated dc/dc 

converter is the increased reliability of an electromechanical device.   

The dual voltage PM actuator under investigation is used in a rotary steerable drilling 

tool Fig. 3.1 to help maintain the control electronics geostationary inside a rotating drill 

string.    It also serves as the power source of the control electronics.  The improvement 

of the existing actuator assembly was carried out on different phases.  The different 

phases of the actuator improvement were concluded with the design of a dual winding 

PM actuator.  The mutual coupling between the two sets of windings was used in favor 

of the application.  Analytical and finite element (FE) analysis of the actuator and its 

various improvements will be presented in this work.  A dynamic model of the dual 

winding exterior rotor PM actuator will also be developed.  The advantage of utilizing 

the mutual coupling between the sets of windings for the application at hand will then 

build upon the understanding of the dynamic model.  Experimental results corroborating 

the presented theory will demonstrate the effectiveness of the design. 

3.2 Application Considerations 

The effectiveness of a certain machine design is highly dependant on the 

consideration of the end application.  This proved to be especially true in the application 

at hand.  The control electronics in Fig. 3.1 is shown supported with bearings on either 

side.  This is typical of rotary steerable drilling tools used in oil well drilling.  The reason 

for that is the need to keep this control unit geostationary with respect to the rotating 

drill string.  If the unit is kept geostationary, it will enable the driller to control the 

direction of the bit and hence, the well profile.  This is achieved by utilizing the on board 

accelerometers.  This can provide huge returns and enable more efficient extraction of 
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the oil.  Hence, the first function of the actuator at hand is to provide the braking torque 

required to keep the control electronics geostationary against the rotation of the string.  

The second function of the actuator at hand is to generate electrical power for the control 

unit. 

 

 

Fig. 3.1.  Basic layout of a rotary steerable drilling tool. 

 

 

 
Fig. 3.2.  Original layout of the dual voltage actuator with the generator winding (left) and electromagnetic 

brake winding (right). 

 
 
 

It is now obvious that from the physical layout of the application, one would need to 

use an exterior rotor PM actuator.  The terminals of the generator will thus be connected 

directly to the control unit without a need for brushes or slip rings.   

The sequence of operation is such that initially, the control unit will rotate with the 

rotating drill string, and inertia, viscous air gap losses, and friction will be opposing this 

motion.  This relative motion between the drill string that contains the PM rotor and the 

control unit will provide terminal voltage at the generator output.  After a lower limit for 

this output voltage is exceeded, the control electronics is started and can control the 
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drive electronics that will provide the control logic to keep the unit geostationary.  This 

is done by using the other winding as an electromagnetic brake.  Thus, there exists a 

need to have the generator electrical constant as high as possible to enable low speed 

operation of the tool.  The second winding is operated only as a brake, which is done by 

shorting its terminals with different duty cycles.  Moreover, at the higher relative speeds 

and loads, the generator output voltage was seen to produce over voltage failures in the 

downhole power supply.  While such problems may easily be resolved in a standard 

application, the nature of downhole applications requires significant derating of 

electronic modules due to the excessive temperatures experienced by the electronics.  

Thus, simply using a higher voltage rated device was not an option.   

So, a need to “vary” the terminal voltage of the generator was needed at higher 

speeds and loads.  Although achieving field weakening using complex electronics or 

control maybe a possibility, a simple and rugged means of achieving this goal was 

needed.  This was done by using the mutual coupling in the dual winding machine in 

favor of the application at hand.  This will be presented in detail in a later section.  A 

need to increase the amount of braking torque delivered by the actuator was also 

addressed.  This would provide the advantage of being able to achieve higher speeds 

under higher flow rates or loading conditions.  These needs were to be achieved while 

maintaining the exact same assembly volume.  The current assembly shown in Fig. 3.2 is 

composed of two separate machines.  It should be noted here that only the stator (inner) 

winding is shown since the magnets are part of the tool body.  The permanent magnet 

assembly will not be addressed with any design improvements in this work.  Its length is 

equal to the combined length of the two PM actuators. 
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3.3 Analysis and Testing of the Existing Actuator 

The current design was a legacy undocumented design that was treated as a black 

box.  Thus, an analysis of the current design and testing was required to establish a basis 

for the improvement.  The lamination design was traced as shown in Fig. 3.3 and used in 

the analytical and FE analysis.   

 

 
Fig. 3.3.  Actuator lamination design. 

 

 

 

The laminations of both windings, the generator and brake, are identical; however, 

they had different winding layouts and properties due to the difference in current 

carrying capacity and machine constants.  One apparent point seen from Fig. 3.3 is the 

presence of a large air gap.  This is very typical of submersible applications, and will be 

addressed in an ongoing work by the authors.   

Both an analytical analysis of the machine based on [10] [11] and a FE analysis were 

carried out.  It should be noted that the actual magnet housing is composed of segmented 

magnets as shown in the last figure of page 41.  This was one of the reasons a FE 

approach was coupled to the analytical analysis.  Such a magnet topology was easily 

modeled using FE software, whereas the development of an analytical model for this 
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architecture would have been needed.  The back emf of the brake winding at 2000 rpm is 

shown in Fig. 3.4.  This matched very well with the machine’s terminal voltage constant 

of 67 Vpk/1000 rpm.  The corresponding machine torque is also shown in Fig. 3.5 using 

the analytical calculations and Fig. 3.6 using FE analysis.  It should be noted that the 

differences between the analytical and FE results were not investigated in detail, since 

relative improvement and the effect of the mutual inductances are the main objectives of 

the work at hand. A flux density plot from the FE analysis is shown in Fig. 3.7. 

Experimental results were then conducted to compare the mathematical analysis with 

the actual machine as shown in Fig. 3.8.  A comparison of the analytical and FE results 

with Fig. 3.8 shows that a significant difference in the performance of the actual brake 

winding and the simulations exists.  Five more prototypes were tested to aid the analysis 

and help provide insight into the difference in torque.  The result of this testing, Fig. 3.9, 

does in fact show the significant effect of manufacturing on the machine’s performance.  

Thus, the modeling was found to be sufficient for the work at hand.  

 

 
Fig. 3.4.  Brake winding back emf vs rotor position at 2000 rpm. 
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Fig. 3.5.  Brake winding torque vs rotor position at 2000 rpm from an analytical model of the machine. 
 
 

 

 
Fig. 3.6.  Brake winding torque vs rotor position at 2000 rpm using FE analysis. 

 
 

 

 
Fig. 3.7.  Brake winding flux plot using FE analysis. 
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Fig. 3.8.  Brake winding experimental results for different short circuit duty cycles. 
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Fig. 3.9.  Effect of manufacturing on the brake winding demonstrated through the testing of five 

prototypes. 
 

 
 

A similar analysis was conducted on the generator winding, and both analysis and 

experimental results were compliant.    

3.4 Design and Testing of the Initial Improvement 

The initial improvement of the actuator will not take into consideration the need to 

“vary” the generator terminal voltage, but will concentrate on improving the brake 
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winding.  This decision was driven by project needs, and was seen as an intermediate 

solution.  Because the lamination was to remain fixed, finding a suitable winding layout 

was the first task.  Winding factors were calculated for several configurations, and Fig. 

3.10 shows the winding factors for the winding layout used.   

 

 

 
Fig. 3.10.  Winding factors of the improved brake winding. 

 
 

 

It is understood from the application needs that the machine is to operate in the 

presence of significant mechanical vibration, thus, torque pulsation is not a major 

concern.  Unskewing the stator stack was investigated as a means of increasing the 

machine’s torque.  The effect of skew on several machine parameters will thus be 
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investigated using simulations.  Fig. 3.11 shows the effect of a skew on the tooth flux 

density.  It can be seen that unskewing the stator does flatten the top of the tooth flux 

density.  Correspondingly, the effect of unskewing the winding on the machine’s 

terminal voltage is shown in Fig. 3.12.  The machine’s torque was then calculated and 

plotted in Fig. 3.13.  It is apparent from the calculations that unskewing the winding, will 

provide an increase in the braking torque capability of the machine.  The corresponding 

FE analysis was carried out, and the back emf and torque waveforms are shown in Figs. 

3.14 and 3.15.  The increase in torque pulsation is can be seen from the analytical and 

FE results. 

 
 

 
 

Fig. 3.11.  Effect of skew on the tooth flux density (red) skew = 0 slots, (blue) skew = 1 slot. 
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Fig. 3.12.  Effect of skew = 0 on the machine’s back emf at 2000 rpm. 
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Fig. 3.13.  Effect of skew on the machine’s torque (red) skew = 1 slot, and (blue) skew = 0 slot at 2000 

rpm. 
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Fig. 3.14.  FE analysis of the effect of skew = 0 slots on the machine’s back emf at 2000 rpm. 

 
 
 

 
Fig. 3.15.  FE analysis showing the effect of skew = 0 on the brake winding torque at 2000 rpm. 
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A prototype was then constructed to validate the modeling (Fig. 3.16) and 

experimental testing was conducted with the results shown in Fig. 3.17.  Unlike the 

original brake winding, and increase in torque pulsation can be seen in Fig. 3.17.  The 

relative increase in torque is in accordance with both the analytical and FE simulations.   

                                  

 
Fig. 3.16.  Prototype of brake winding with skew = 0. 
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Fig. 3.17.  Experimental results of improved brake winding torque at various short circuit duty cycles. 
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3.5 A Dual Winding PM Actuator 

It was found that the optimal solution to the problem at hand may be solved using a 

dual winding PM machine.  A look at Fig. 3.2 will help point this out.  If one were to 

construct a single winding stack that can utilize the complete volume, it would have 

many advantages.  The main advantage is the elimination of the two inner end windings 

of both machines.  Because both machines have a relatively short stack, the end 

windings occupy a significant amount of space, which can be better utilized if a single 

stack is used.  The use of a single stack will also reduce the component count, and 

installation time of the assembly.  It will also improve reliability by providing a better 

means of wiring the assembly.  Moreover, it can provide a simple means of “varying” or 

controlling the generator winding output voltage without the need for complex field 

weakening control systems or electronics.  This will become evident in the discussions 

presented in this section. 

 

3.5.1 Arrangement of the Machine’s Windings 

The arrangement of the two stator windings and permanent magnet field (represented 

here as a field winding) is shown schematically in Fig. 3.18.  The three phase system 

ABC is displaced with respect to the abc system by ζ electrical degrees [12].  The 

machine inductances will be presented in terms of ζ whenever that is applicable to 

investigate the influence of this displacement angle on the performance of the PM 

actuator.  To simplify the analysis, the effect of saturation is neglected and the two 

windings are assumed to have an equal number of turns. 
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Fig. 3.18.  Winding arrangement schematic of a dual winding PM actuator with an arbitrary angle, ζ, 

between the two windings. 
 

 

 

3.5.2 Dynamic Model of the Machine 

This section approaches and studies the nonlinear analysis of the dual winding PM 

actuator and develops the nonlinear machine model. 

Using Kirchoff’s second law, one obtains the voltage equations of the stator circuits 

(3.1). 

xxx ripv −= ϕ                        (3.1) 

where, x = a, b, c; A, B, C.  The flux linkages in (3.1) can be written in matrix form as 

seen in (3.2). 

[ ] [ ][ ]xyxx iL ,=ϕ                                                         (3.2) 

where, x = a, b, c; A, B, C and y = a, b, c; A, B, C.  The terms on the diagonal of the 

inductance matrix are the self inductances and the off-diagonals are the mutual 

inductances.  Equations (3.1) and (3.2) can thus be written in matrix form as shown in 

(3.3), where Ө is the rotor position, and ex is the back emf component generated by the 
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permanent magnet rotor.  The first term of (3.3) represents the ohmic voltage drop in the 

six windings.  The second term represents the transformer voltage component, and the 

last two terms represent the rotational voltage components [13]. 
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An expansion of the third term of (3.3) is shown in (3.4) – (3.9). 
  





++= accabbaaaar L

d

d
iL

d

d
iL

d

d
iv

θθθ
ω  





+++ aCCaBBaAA L

d

d
iL

d

d
iL

d

d
i

θθθ
                                   (3.4) 

  





++= bccbbbbaabr L

d

d
iL

d

d
iL

d

d
iv

θθθ
ω  





+++ bCCbBBbAA L

d

d
iL

d

d
iL

d

d
i

θθθ
                   (3.5) 

  





++= ccccbbcaacr L

d

d
iL

d

d
iL

d

d
iv

θθθ
ω  





+++ cCCcBBcAA L

d

d
iL

d

d
iL

d

d
i

θθθ
                    (3.6) 

  



51 




++= AccAbbAaaAr L

d

d
iL

d

d
iL

d

d
iv

θθθ
ω  





+++ ACCABBAAA L

d

d
iL

d

d
iL

d

d
i

θθθ
                                 (3.7) 

  





++= BccBbbBaaBr L

d

d
iL

d

d
iL

d

d
iv

θθθ
ω  





+++ BCCBBBBAA L

d

d
iL

d

d
iL

d

d
i

θθθ
                   (3.8) 

  




++= CccCbbCaaCr L

d

d
iL

d

d
iL

d

d
iv

θθθ
ω  





+++ CCCCBBCAA L

d

d
iL

d

d
iL

d

d
i

θθθ
                   (3.9) 

 
An understanding of the value of the inductances in (3.4) – (3.9) was derived in 

detail in [13].  We will only use the results reached by the previous work to help us 

develop the dynamic model of the machine.  It is assumed that the stator winding is 

sinusoidally distributed.  Thus, the self inductances for the stator windings can be written 

as shown in (3.10). 

 ( )xaaaaxx LLL θ2cos20 +=                                                                (3.10) 

where x = a, b, c; A, B, C, 0θωθ += ta , o1200 −+= θωθ tb
, o1200 ++= θωθ tc

, ξθθ −= aA , 

ξθθ −= bB , ξθθ −= cC , ( ) 20 qd
l

aa PPL +∝ , ( ) 22 qd
l

aa PPL −∝ .  For surface mount 

permanent magnet machines, Laa2 = 0.  This is the ideal case, and will simplify the 

discussions in the following sections.  Thus, all the position dependent terms of the self 

inductances are zero.  The mutual inductances of (3.11) can also be reduced to (3.12).  

The mutual inductance between the two sets of windings can also be reduced to a set of 

three mutual inductance values as shown in (3.13) – (3.15).  Similar to the self 

inductances, the position dependent terms equal zero.  Thus, all terms of (3.4) – (3.9) are 

reduced to zero.  The mutual inductance proportionalities shown in (3.16) – (3.18) are 
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crucial terms for the work at hand.  The objective is to utilize these mutual inductances 

to “vary” or reduce the output dc voltage of the dc winding when the brake winding is at 

higher speeds and loads while maintaining the higher terminal voltage at lower speeds to 

enable a wider operating speed range for the tool.   

 ABaccacbbcbaab LLLLLLL ======  

       0abACCACBBCBA LLLLLL −======                        (3.11) 

  

( ) 40 qd
l

ab PPL +∝                       (3.12) 

  

0aACccCBbbBAaaA LLLLLLL −======                   (3.13) 

  

0aBAccACbbCBaaB LLLLLLL −======                                   (3.14) 

  

0aCBccBAbbACaaC LLLLLLL −======                            (3.15) 

  

( ) ( )( ) 2cos0 ξqd
l

aA PPL +−∝                                        (3.16) 

  

( ) ( ) ( )( ) 4sin3cos0 ξξ ++∝ qd
l

aB PPL                                       (3.17) 

  

( ) ( ) ( )( ) 4sin3cos0 ξξ −+∝ qd
l

aC PPL                                       (3.18) 

 
The general form for the value of inductance is given by (3.19).  One can thus come 

to the conclusion that if i1 = i2 = i3 then, (3.20) can be reduced to the proportionality in 

(3.21) 

 iL φ=                    (3.19) 

 
332211 iiiLLL cAbAaA φφφ ++=++                (3.20) 

 321 φφφ ++∝++ l
cAbAaA LLL                  (3.21) 

An observation of (3.22) – (3.24) does in fact show that the currents in (3.20) are all 

equal to iA, thus, it is safe to conclude that (3.21) will hold true.  Using (3.16) – (3.18) as 
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values for the inductances in (3.21), one can see the apparent effect of phase 

displacement ξ on the terminal quantities.  It is also clear that the sum of the inductances 

does give an indication of amount of coupling due to the mutual inductances between the 

two winding sets.  Thus, it is termed as the coupling factor in Fig. 3.19.  Similar 

relationships can be derived for the inductances, and hence flux, caused by the other 

phase currents. The top plot of Fig. 3.19 shows a plot of the absolute value of the 

variation of the mutual inductances of (3.16) – (3.18) with the phase displacement, ξ.  

The bottom plot of Fig. 3.19 is the sum of the three values plotted against the same 

variable as shown in (3.21).  It can be seen that mutual coupling is most significant at 

integer multiples of 3π± , and least at integer multiples of 6π± .  Thus, for the 

application at hand, the two sets of windings will be placed in phase with one another.  

This is one value of ξ that will provide maximum coupling as shown in Fig. 3.19.   
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Fig. 3.19.  Effect of phase displacement, ξ, on the mutual coupling between the dc and brake windings. 
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The transformer voltage terms of equation three can be written as shown in (3.19) – 

(3.24). 
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The preceding equations were used to develop the dynamic model of the machine.  

The model shown in Fig. 3.20 has been developed and simulated in PSIM.  Since it is a 

time domain circuit model, this was found to be a very suitable platform for such a 

machine.  
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Fig. 3.20.  Simulation model of a dual winding PM actuator. 

 

 

 

 
Fig. 3.21.  Brake winding terminal voltages and generator winding rectified voltage (red) for 0 % braking. 
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Fig. 3.22.  Brake winding terminal voltage and generator winding rectified voltage (red) for 95 % braking. 
 
 
 

The developed model was derived based on [13] and its effectiveness was verified by 

comparing the results of [13] to a separate model of the machine architecture discussed 

in that work.  Two operating conditions of the dual winding permanent magnet actuator 

have been simulated.  The effect of a lower braking torque on the terminal voltage of the 

brake winding and the dc output is shown in Fig. 3.21.  Full braking torque is simulated 

in Fig. 3.22, and the corresponding effect on the brake winding and dc output is shown.  

It can be seen that at full braking torque, the value of the dc output is decreased due to 

the coupling between the two sets of windings.  Thus, the utilization of the coupling 

between the two sets of windings, can produce the desired effect of reducing the output 
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dc voltage, or field weakening at higher speeds and loads.  It is important to note that for 

the application at hand, higher speeds only occur in the presence of higher braking loads. 

3.5.3 Rotor Reference Frame Equivalent Circuit Model 

The previous section has addressed the machine model and the dynamics of the 

system at hand using an abc reference frame.  Assumptions were made to simplify the 

model and help emphasize the main ideas.  If a more detailed dynamic model and 

analysis is required, an abc frame model would prove to be difficult to analyze and time 

consuming to solve.  When the appropriate rotating reference frame transformation is 

applied to the winding variables, the resulting equations are much easier to deal with 

[14].  For the dual winding, or six phase machine under consideration, this involves 

referring the winding variables (abc, ABC) to the common d-q reference frame of the 

permanent magnet rotor.  The required transformation is of the form shown in (3.28).  

For the sake of simplicity, we will only consider balanced operation of the machine.   

Thus, (3.28) can be expanded into the terms shown in (3.29) – (3.31).  

( ) fKf rr θ=           (3.28) 
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The resultant rotor reference frame equations are similar to those for a pair of three 

phase permanent magnet synchronous machines with common magnetizing inductances 

except for some additional terms associated with the stator winding mutual leakage 
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inductances [14].   

 

 

Fig. 3.23.  d-q equivalent circuit model of the dual winding machine. 
 
 
 

The system of equations used to develop the equivalent circuit of Fig. 3.23 is similar 

to that presented in [14] except that a permanent magnet rotor is used instead of the field 

windings.  Thus, the system of equations will not be derived here in detail, but will be 

presented in the Appendix.  The prime quantities are referred to the abc windings.  The 

mutual leakage coupling between the stator windings is represented by dqL± .  Since the 

equations were reduced to those of two separate three phase machines with a common 

magnetizing inductance and mutual leakage inductances, it is reasonable to investigate 

the steady state phasor diagram of a single machine and extend the results to the dual 

winding machine. 
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Fig. 3.24.  Phasor diagram for normal operating conditions. 

 

 

Fig. 3.25.  Phasor diagram for operation with shorted terminals. 

 

Under normal operation, Fig. 3.24, if λp is the flux per pole in the machine under no 

load, then the generated voltage Ea must lag λp by 90˚.  Since the power factor is lagging, 

the phase current Ia lags the terminal phase voltage Va.  As the phase current passes 

through the armature winding, its magneto motive force (mmf) produces flux λar which 

is in phase with Ia.  The effective flux per pole λe in the machine is the algebraic sum of 

the two fluxes.  Under the shorted terminal condition, similar logic can be used, but 

considering Va = 0.  This implies that the voltage drop across the machine’s reactance 
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will balance the machines effective generated voltage.  It should be noted here that with 

the higher values of current, the armature reaction has a more significant effect, which 

reduces or weakens the effective generated voltage as seen in Fig. 3.25 with respect to 

that in Fig. 3.24. 

The rotor reference frame equations have been derived based on [14] and are similar 

to those for a pair of three phase permanent magnet synchronous machines with a 

common magnetizing inductance except for some additional terms associated with the 

stator winding mutual leakage inductances.   

The voltage equations of the dual winding actuator, or six phase PM machine in the 

rotor reference frame for a balanced set of windings are: 
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and 

( ) ( )32coscos πξξ ++= aBaAlm LLL  

( )32cos πξ −+ aCL                     (3.40) 

( ) ( )32sinsin πξξ ++= aBaAldq LLL  

( )32sin πξ −+ aCL         (3.41) 
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The effective number of turns of the abc and ABC windings are N1 and N2 respectively.  

The prime quantities are referred to the abc windings. 

3.5.4 Experimental Results 

The prototype machine constructed to demonstrate the presented theory is shown in 

Fig. 3.26.  The new machine, however, achieved another purpose.  The combination of 

the two windings into one stack enabled the elimination of two end windings shown in 

Fig. 3.2.  The extra volume was utilized in increasing the length of the new machine, 
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thus, improving the braking capability of the tool while maintaining the same actuator 

volume.  This was seen as another significant advantage in the use of the dual winding 

machine over the existing solution.  Experimental results on the new machine are shown 

in Figs. 3.27 and 3.28.  The effect of the coupling between the two sets of windings on 

the dc output in the presence of various levels of braking is shown in Fig. 3.29.  It can be 

seen that the lower braking duty cycles do not adversely affect the output dc voltage, 

thus maintaining a high terminal voltage at lower speeds which widens the operating 

range of the tool.  At higher speeds and loads, higher braking torque is applied and a 

significant reduction in output dc voltage is observed.  It is also seen that even at higher 

braking loads in the lower speed range, the tool operation is not aversely affected, since 

the bottom threshold of power supply operation was exceeded.  This may allow for new 

operating techniques of the tool.   

 
 

 
Fig. 3.26.  Prototype dual winding stator. 
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Fig. 3.27.  Brake winding current (10 A/div). 
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Fig. 3.28.  Braking winding torque at various braking duty cycles. 
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Fig. 3.29.  Dc output voltage at various brake winding duty cycles over the speed range. 
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3.6 Conclusion 

This work has demonstrated the effective utilization of application considerations 

and the nature of the connected load in the design and application of electrical machines 

for demanding applications.  It is apparent that the application at hand is unique in its 

utilization of PM machines.  The work at hand utilized the available volume and 

produced a significantly improved actuator.  The different phases of the actuator 

improvement were discussed.  This was concluded with the design of a dual winding or 

six phase PM actuator.  The coupling between the two sets of windings was used in 

favor of the application.  A dynamic model of the dual winding exterior rotor PM 

actuator was developed along with a d-q steady state one.  The advantage of utilizing the 

coupling between the sets of windings for the application at hand was demonstrated 

using the dynamic model.  Experimental results corroborating the presented theory and 

simulations demonstrated the effectiveness of the presented theory.  The utilization of a 

dual winding machine for the application at hand also produced significant 

improvements in the braking torque capability of the brake winding.  This was mainly 

due to the ability to eliminate two sets of end windings and effectively utilize the 

original actuator volume.   
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CHAPTER IV 
 

APPLICATION CONSIDERATIONS IN HARSH ENVIRONMENT POWER 

 

 ELECTRONIC ENERGY CONVERSION SYSTEMS 

 

4.1 Introduction 

 

Thermal constraints on the power electronic subsystems have placed a severe 

limitation on the development of next generation power electronic systems for use in 

compact harsh environments.  The need for remote actuators, point-of-use power 

supplies, and distributed high power control systems in the automotive, aerospace, well 

logging, and industrial control environments is on the rise due to the advantages gained 

on the reliability, serviceability, power distribution trends etc.  The ability to operate 

power electronic systems without the need for active cooling is seen as a critical 

technology, and is the subject of the work at hand.  The current work will start by 

assessing the basic device choices and their applicability for operation at elevated 

temperatures.  Experimental results will then be conducted to verify the conclusions 

made.  The interaction of the selected devices under different operating conditions is 

also assessed.  Comprehensive power loss studies are conducted using simulation and 

experimental verification.  A simple novel solution to one of the failure modes noticed 

from the device interaction is presented.  To enable the operation at higher power, a 

custom power module is designed based on extensive thermal and thermo-mechanical 

considerations.  Simulation results corroborated by experimental results on the 

developed power module conclude the work at hand.  It is found that some silicon 

devices, passive components, packaging techniques and materials typically used at room 

temperature can be used up to 200˚C.   
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4.2   Power Device Selection and Testing 

The type of switching device to use is one question that needed an answer in the 

early stages of this work.  The choice was really between the use of an IGBT or a Mosfet 

for the application at hand, knowing that the power electronic subsystem was required to 

operate with no active cooling at an ambient temperature of 200˚C.   Currents upto 12 

Arms needed to be switched, and voltage levels upto 1000 V were the target.  Although 

the main selections were between silicon devices, the advent of silicon carbide devices 

prompted the extension of the study at hand to include this device technology. 

  Studies [15][16] have demonstrated the successful use of Mosfets at elevated 

temperatures.  The evolution of Mosfet parameters with temperature support this fact.  

The most significant change is the increase of the drain-source on resistance with 

increasing temperatures.  Moreover, a decrease in gate-source threshold voltage, and an 

increase in leakage current can also be seen as effects of elevated temperature.  One 

favorable effect is actually the increase in breakdown voltage in a Mosfet with the 

temperature increase [15].  For the IGBT, a noticeable increase in reverse recovery, 

leakage current, and stored charge are the main phenomena appearing as the temperature 

increases.  Perhaps the most significant phenomenon is the increase in stored charge 

which in turn increases the switching time of the IGBT.  This increase in switching time 

causes excessive losses in the IGBT, and eventual failure of the device.  Thus, the results 

of the current research [17][18] illustrated the promising use of Mosfets at elevated 

temperatures.  However, the work at hand will verify this conclusion by conducting 

extensive testing on both device technologies.  So, it can be concluded that based on 

results of current research, it is possible to use silicon for applications up to 200˚C, 
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before there is a need to switch to wider bandgap semiconductor materials, such as 

GaAs, and SiC, or SOI.  Because wide bandgap devices produces a smaller 

concentration of intrinsic carries than silicon at elevated temperatures [18], the device 

operating range can be extended.  GaAs extends the operating range to about 300˚C.  

Defect density and the development of metallization and interconnect schemes are 

holding back the commercial development of SiC devices.  The isolating layer in silicon 

on insulator technology eliminates the ability to use the backside of the device for 

grounding, a critical design feature of many power transistors.  From the preceding 

discussion it was seen that consideration of SiC would be a benefit to the study at hand. 

A need for power diodes is also seen as an important consideration in the device 

selection process.  Unlike its switching counterpart, the SiC schottky diode has 

commercially demonstrated compelling system benefits in the last years.  Its superior 

performance made this task a much simpler one than that of the switching device.  

However, silicon schottky devices were also tested to support the study.  This is mainly 

due to the high forward voltage drop of SiC schottky diodes. 

4.2.1 Description of the Qualification Tests 

Various qualification tests need to be carried out on the switching devices before 

their acceptance for use in a harsh environment application.  Among the tests to be 

carried out are : 

• Static Rdson measured at known current and voltage;   

• Dynamic or switched Rdson test at a known current, voltage, frequency, and duty 

cycle; 

• Off state leakage current at a known voltage; 
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• Body diode static Vf measured at a set of input currents; 

• Vceon over various Vge voltages and temperatures for IGBTs. 

These engineering tests will be used to determine the suitability of this device type 

for motor drive and other high power control circuits.  Typically, a characterization 

sweep is performed prior to a steady state test temperature test.  Another characterization 

sweep is performed following the steady state temperature test.  The characterization 

sweep set points are: 150, 160, 170, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 

230, 225, 220, 215, 210, 205, 200, 195, 190, 185, 180, 170, 160, and 150°C with 2 hour 

dwells.  The steady state temperature test will be conducted at 230°C for 200 hours.  

Chamber Air temperature is controlled in close proximity to the two heat sinks.  

 

 

 

 

Fig. 4.1.  Static Rdson setup 
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The remaining portion of this section will be devoted to the description of the basic 

setups and measurements needed to perform the various tests.  The experimental setup 

related to the static Rdson measurement is shown in Fig. 4.1, and the calculation of Rdson 

is as shown in (4.1).  Fig. 4.2 details the setup and measurement needs for the dynamic 

Rdson measurement.  In this case, one would need to measure the minimum amplitude 

over the measure zone after the switching loss has decayed to a minimum. 

( )( )6502#DVMVVR dcdsondson −+=          (4.1) 

 

 

(a) 

 

(b) 

Fig. 4.2.  Dynamic Rdson measurement setup (a) and principle (b) 
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Fig. 4.3.  Diode Vf drop experimental setup 

 

 

 

 

Fig. 4.4.  Vceon for different Vge at various temperatures for the IGBT 

 

 

 

Fig. 4.3 demonstrates the setup used to measure the forward voltage drop on the 

diode.  The power supply current is controlled in order to measure the forward voltage 

drop corresponding to various load currents and different temperatures.  Fig. 4.4 then 
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demonstrates the tests related to IGBT testing.  A regulated power supply is used to 

either not supply the gate, and thus, leakage current measurements are taken.  Vce 

voltage measurements are then taken for various gate voltages controlled by the supply. 

4.2.2 System Impact of Si vs SiC  

4.2.2.1 Silicon Carbide Technology and Impacts 

The emergence of silicon carbide SiC based power semiconductor switches with 

their many apparent application benefits compared to silicon based switches has resulted 

in substantial improvements in the performance of power electronic conversion systems.  

The promises that SiC brings are compactness, light weight, higher efficiency, higher 

voltages, higher temperature operation etc.  The obvious push of the automotive market 

for the success of these devices is thus justified.  Although the defect density problems 

the technology has been facing seem to be managed at the time of writing this 

dissertation, many packaging and topology issues are still not fully solved.  This has 

hindered the widespread commercial use of such devices, although, it may be possible to 

purchase low quantities from some vendors at a premium price. 

It is a common understanding that the temperature limit for most silicon devices is 

150˚C, therefore, keeping the junction temperature under this limit is important for the 

reliable operation of the devices.  Even if such a precaution is followed, the variation of 

electrical characteristics with temperature may prove to be a major reliability concern.  

In many cases the need for effective thermal design will have to tied to the electrical 

design.  There are three standard options for cooling the devices in most applications, 

namely, natural air, forced air, or water-cooled heat sinks.  Most cooling options 

however, are not feasible for oil well logging applications, the main driver for the work 
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at hand.  The power rating of the converter determines the type and size of the heat sink.  

A heatsink typically occupies one-third of the total volume for a power converter and 

usually weighs more than the converter itself.  This is of major concern in compact harsh 

environments.  These considerations have prompted the consideration of SiC for the 

application at hand.  Testing results for both silicon and SiC will be presented in the 

following subsections. 

4.2.2.2 Switching Device Test Results – SiC Case 

In this and upcoming sections, the qualification tests described above will be carried 

out on different devices.  It is important to note here that only the most significant tests 

results will be presented and described.  Throughout the course of this work, 

approximately 40 power devices have been qualified.  These devices range between, 

silicon Mosfets, silicon igbts, and SiC JFETS.  It should be noted here that all testing 

was carried out approximately one year before this dissertation was written. 
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Fig. 4.5.  SiC 1500 V Cascode Power Mosfet Static Rdson at 650 V/ 1A versus temperature 
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This section presents the results performed on a SiC JFET.  It is noted here that this 

was the only device available for purchase at the time of the study.  Even though 

literature today may have a myriad of studies on applications of SiC technologies, it is 

still not possible to purchase from other vendors even at significantly high prices.  The 

device at hand is rated for 1.5kV and 3A.  It may be worth noting here that during the 

course of this study, a quote for a 1.5kV and 12 A device was approximately $10,000 per 

device.   
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Fig. 4.6.  SiC 1500 V Cascode Power Mosfet Static Rdson at 650 V/ 1A versus time 

 

 

It was mentioned earlier that a sweep will be performed on the device at various 

temperatures then a steady state test will be carried out.  The results from the Rdson sweep 

test is shown in Fig. 4.5.  It can be seen that a 7 ohm on resistance can be seen using the 

device at hand.  This will result in very significant power losses at such elevated 

temperatures.  The steady state tests results of Fig. 4.6 demonstrate that this was infact a 
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major concern, and that the device failed qualification under the test conditions 

described in the figure’s caption. 
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Fig. 4.7.  SiC 1500 V Cascode Power Mosfet Dynamic Rdson 650 V/1A vs temperature 

 

 

5

6

7

8

9

10

0 5 10 15 20 25

Accrued Time (Hours)

S
w

it
c
h
e
d
 R

d
s
o
n
 (

O
h
m

s
)

 

Fig. 4.8.  SiC 1500 V Cascode Power Mosfet Dynamic Rdson 650 V/1A vs time 
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A similar set of tests, a sweep followed by a steady state test was conducted on 

another sample of the device.  Fig. 4.7 verifies the results previously obtained for the on 

resistance, and Fig. 4.8 reiterates the conclusion reached by the previous static Rdson 

tests.  The device failed and was not found to be a suitable candidate.  Further testing 

was carried out to help reach a conclusive decision.  Fig. 4.9 presents the test results for 

the internal body diode.  It will be seen in an upcoming section of the work at hand that 

very similar results were exhibited by the SiC schottky diode.  The performance of the 

diode was very favorable, even though the device testing was not so far. 
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Fig. 4.9.  SiC 1500 V Cascode Power Mosfet Body Diode Vf vs temperature 
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Fig. 4.10.  SiC 1500 V Cascode Power Mosfet Leakage Current vs. temperature at 650 V 

 

 

Static leakage tests were also conducted on the device.  Compared with many of the 

tested devices, the device leakage is quite stable, and at first would indicate the superior 

behavior of the device.  This test is then followed by a steady state test whose results are 

presented in 4.11, and similar to the previous case, the device failure was exhibited. 
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Fig. 4.11.  SiC 1500 V Cascode Power Mosfet Leakage Current vs. time at 230˚C 

 

 

 

The previous results were communicated to the device manufacturer and since then, 

the manufacturer had been working on the improvement of the devices, and has reported 

favorable results.  However, this was not investigate further, as the technology seemed 

too young for adoption and it was very difficult to get parts from other manufacturers.  

Very similar results were seen in other literature [19] for SiC device batches tested in the 

same time frame. 

4.2.2.3 Switching Device Test Results – Si Case 

Both silicon IGBTs and Mosfets were tested for this part of the study.  Although our 

previous discussion and literature [15][16] did indicate the favorable performance of the 

FETS over the IGBT devices, the presence of significant freewheeling current in a motor 

drive application and the absence of Mosfets with fast freewheeling diodes prompted the 

need to carry out the qualifications.  Approximately 12 IGBT devices were tested in a 
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similar fashion to that described for the SiC device in the previous section.  Even though 

devices were rated for 1000 V, most didn’t survive the leakage test at elevated 

temperatures with full voltage impressed on them.   
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Fig. 4.12.  Static leakage current test on the best performing IGBT versus temperature 

 

 

 

Fig. 4.12 shows the leakage tests results for the best performing IGBT.  A 

comparison with leakage tests results obtained for the SiC device shows orders of 

magnitude difference in performance.  In fact for the same test conditions faced by the 

SiC device, all the tested IGBTs failed. 

A similar approach to that of the IGBT results presentation will be taken for the 

presentation of the Mosfet test results.  The testing of approximately 25 devices was 

carried out.  The chronological order of the tests was reversed after the experience 

gained for the testing of the IGBT devices.  Static leakage test results on the best 

performing device are shown in Fig. 4.13.  A comparison of these test results with those 
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of the SiC device did provide significant anticipation and excitement about the 

upcoming test results. 
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Fig. 4.13.  Static leakage current test on the best performing Mosfet versus temperature 
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Fig. 4.14.  Static leakage vs accrued time at 210˚C for different Vgs 
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A steady state test was then performed after the first temperature sweep as shown in 

Fig. 4.14.  The test was conducted for different values of Vgs.  The apparent significance 

of this parameter at elevated temperatures is seen.  Thus, this is a gate drive design 

consideration that will aid in the successful operation of the device. 
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Fig. 4.15.  Static Rdson vs accrued time at different temperatures 

 

 

 

Compared with the 7 ohm on resistance exhibited by the SiC device at temperature, 

Fig. 4.15 demonstrates the superior performance of the device at hand.  This was seen to 

be a major area of concern for high current applications that are targeted by this study.  

After the validation of the test results performed on the current Mosfet using several 

samples of the device.  It was concluded that this would be the most suitable device for 

the application at hand.  This confirms what literature and our previous discussion has 

concluded about the possible use of silicon power devices at elevated temperatures. The 

next task was the selection of a suitable power diode. 
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4.2.2.4 Diode Test Results 

Although the choice of a power diode may have sounded trivial from the discussions 

in the previous sections, however, it will become apparent why the testing of some low 

voltage schottky diodes was conducted.  A similar approach to that used for the previous 

devices is taken here.  The best performing schottky diode experimental results are 

presented in Fig. 4.16.  The results for different bias voltages are provided.  It can be 

concluded that the leakage behavior of all the silicon schottky devices tested was not 

acceptable.   
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Fig. 4.16.  Leakage current experimental results of the best performing schottky device 

 

 

 

The next diode technology tested as the SiC high voltage schottky diode.  The lowest 

voltage rated device in this family of devices is 300 V, however, for our testing, the 1200 

V rated device was used for testing.  Leakage current testing at full voltage on the diode 

revealed its superior performance across the temperature range as shown in Fig. 4.17.  
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The diode’s forward characteristics were also tested and the results presented in Fig. 

4.18 provide a smooth extension to the information available in the device datasheet.  No 

surprising parameter changes were seen when the datasheet information was extended.  

It is worthy to note however, the inflection point seen in Fig. 4.18.   
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Fig. 4.17.  Leakage current of the SiC diode at full voltage versus temperature 
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Fig. 4.18.  SiC diode forward characteristics 
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This inflection point is perhaps even better demonstrated using Fig. 4.19.  It can be 

seen from Fig. 4.19 that under certain values of current, the SiC diode has a negative 

temperature coefficient.  Above that point, a positive temperature coefficient is seen.  

This characteristic is crucial when the devices are paralleled.  The ease of paralleling 

Mosfets is due to their inherent positive temperature coefficient.  Thus, in order to 

effectively utilize this characteristic, one would have to take this into consideration.  

Paralleling the diodes should allow each diode to carry this threshold value of current at 

the higher load points to prevent thermal failure of the module. 
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Fig. 4.19.  Experimental results demonstrating the SiC diode paralleling considerations 

 

 

 

4.2.3 Basic Switching Unit 

The successful testing of the silicon Mosfet and the SiC diode presented in the 

previous sections will now have to be taken to the next step in the process of developing 
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compact harsh environment power electronic subsystems.  These subsystems will be the 

enabling technology behind many motor drives and power supplies.  Although several 

dc-dc power supplies have been designed and tested throughout this work, the discussion 

at hand will concentrate mainly on the motor drive application.  Because of the presence 

of significant amount of freewheeling current in any motor drive application, the effect 

of the selected Mosfet’s body diode was examined.  This will be detailed in the next 

subsection.  However, it was found that the chosen Mosfet has a very snappy body 

diode.  The performance of the body diode is very poor and unacceptable in any hard 

switching motor drive application.  Thus, the basic switching unit chosen was one 

common in many literature where Mosfet applications in hard switching motor drives 

are addressed [20].  An anti-parallel blocking is placed in series with the Mosfet channel, 

whereas a parallel freewheeling diode is placed across the combination.  This can be 

seen in Fig. 4.20, where the Mosfet and its parasitic body diode are shown in a dotted 

box.   

 

 

 

Fig. 4.20.  Basic Mosfet and diode switching unit for the motor drive application 
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4.2.3.1 The Mosfet’s Performance in the Basic Switching Unit 

Although comprehensive testing has been carried out on the devices selected, the 

tests done thus far would not help quantify the system’s switching losses, nor would they 

help in understanding what would happen when the devices are grouped together in the 

basic switching unit.  It is the objective of this section to carry out this analysis before a 

complete motor drive system based on the selected devices can be design and tested 

successfully.   

 

Fig. 4.21.  Schematic of the experimental and simulation setups used in the Mosfet loss analysis 

 

 

 

The schematic diagram shown in Fig. 4.21 was used to carry out a comprehensive 

analysis of the effect of using the selected devices in various dc-dc and dc-ac topologies.  
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The circuit in Fig. 4.21 was both simulated and built.  Simulations with actual device 

parameters were used to ensure that the simulations are as close to reality as possible.  

Terminals A, B, C, D and E of the circuit could be connected to any of the subcircuits 

shown on the right in Fig. 4.21.  The logic behind each of the subcircuits shown will 

become clear in the next section and this section will only be presenting the results and 

verifying the simulation results with those from the experimental setup.  To prevent 

duplicating the labels of the waveforms, the same colors were used throughout the 

presented loss analysis.  Table 4.1 shows the legend that can be used with all the 

simulation and experimental results. 

 
 

Table 4.1.  Waveforms legend for all figures of this section 

Simulation Scope Signal Description 

Red Red Vds of bottom FET 

Blue Blue IFET of bottom FET 

X Green X ILOAD 

Brown Light Green Power in bottom FET 

 

 
 

The testing and simulation conditions were made identical in all the following cases 

in order to help verify the simulation environment.  As previously mentioned, the choice 

of subcircuit to add to the experimental and simulation setup was based on information 

that will be presented in the next section.  Thus, in this section the testing conditions and 

the main observations from the simulation and experimental results will be provided.  In 

the next section, the choice of some of the subcircuits will be explained and possible 

reference to the results of this section will be needed. 
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Fig. 4.22.  Experimental results with FETs alone 

 

 

 

The experimental results of Fig. 4.22, and the simulation results of Fig. 4.23 depict 

the performance of the FETs alone.  No external subcircuits were connected in this case, 

short circuits were placed instead.  The input dc link voltage in this case was 40 V.  The 

experimental results and the simulations both show a current spike of approximately 4 A 

after the fall of Vds.  Some ripple is also apparent after the initial current spike.  A peak 

power loss of about 20 W is seen.  The power plateaus at the peak current then some 

ripple in power is observed.  It can be seen from the results that the performance of the 

devices at hand in this circuit topology is very unacceptable.  This verifies that the 

hardswitching operation of the devices at hand is not a good design alternative.   
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Fig. 4.23.  Simulation results with FETs alone 

 

 

 

It should be noted here that the reader needs to refer to the current, voltage and 

power scales on the left hand side of the simulation results.  A comparison of the values 

with those from the experimental will show very close agreement.  This is noted here the 

maximum values of the y-axis do change between the figures to adapt themselves to the 

values of the simulation.   
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Fig. 4.24.  Experimental results with the blocking and parallel diodes 

 

 

 

 

Fig. 4.25.  Simulation results with the blocking and parallel diodes 

 

 

 

The experimental and simulation results of Figs. 4.24 and 4.25 are for the case when 

the two diodes of the basic switching unit are used.  A smaller current spike at turn-on of 

0.8-1.5 A is seen.  Less current ripple than the FET alone case is seen, although 

parasitics add some in the experimental results.  A peak power of about 20 W is seen 
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which is like the FET only case.  Significantly less power loss occurs after the peak 

current and bus voltage is also 40 V. 

                                               

  Fig. 4.26.  Experimental results with the blocking diode across a capacitor and the parallel diode 

 

 

 

 

Fig. 4.27.  Simulation results with the blocking diode across a capacitor and the parallel diode 

 

The experimental and simulation results of Figs. 4.26 and 4.27 are for the case when 

an extra capacitor is placed across the antiparallel blocking diode.  The results are almost 

identical to those with the diodes only.  A peak power of 20 W is seen.  Extra ripple 
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current is however seen in the experimental results which does affect the power loss.  

The bus voltage is also 40 V in this case. 

 

                                                                                                                               

Fig. 4.28.  Experimental results with an inductive turn on snubber 

 

 

 

Fig. 4.29.  Simulation results with an inductive turn on snubber 

 

The experimental and simulation results of Figs. 4.28 and 4.29 are for the case when 

and inductive turn on snubber is added to the circuit.  A 0.5 A current spike is observed 

when Vds drops.  A large delayed current spike well after Vds is seen.  Peak power is 

down to 10 W instead of 20 W.  The power loss peaks, drops, then rises slightly with the 
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delayed current spike.  A 3.4uH snubber inductance was used here, and the bus voltage 

was also kept at 40 V. 

 

 

Fig. 4.30.  Experimental results with diodes but at a higher voltage 

 

 

 

Fig. 4.31.  Simulation results with diodes but at a higher voltage 

 

The experimental and simulation results of Figs. 4.30 and 4.31 are for the case when 

only the two diodes of the basic switching unit are present.  In this case, however, a bus 

voltage of 200 V was used to test the possibility of using the configuration at higher 
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voltages.  Here a peak power loss of 300 - 400 W is observed.  The power plateaus after 

the initial current spike until Vds drops. 

4.2.3.2 Addressing the Challenges and Failure Mode 

After the comprehensive testing carried out on the individual switching devices, and 

then the on the basic switching unit, a complete three phase permanent magnet 

synchronous machine motor drive was built.  However, it was clearly obvious that there 

is a failure mode of significant importance that was not revealed by the loss analysis of 

the devices in the previous sections.  This became apparent when the high voltage SiC 

diodes used in the anti parallel blocking mode in the basic switching unit started failing.  

Theoretically, these devices should have a very low voltage drop across them.  When the 

Mosfet is on, the voltage across the devices should correspond to the forward drop seen 

by the current flowing in the device, which is a few volts.  When the switch is off, the 

input bus voltage should be seen across the Mosfet terminals.  This is what can be 

understood from the topology and what would be seen using most simulations of such a 

topology using ideal components.   
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Fig. 4.32.  Experimental results of switch Vgs (black) and blocking diode voltage (red) 
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Fig. 4.33.  Simulation results of switch Vgs (black) and blocking diode voltage (red) 

 

 

 

Figs. 4.32 and 4.33 however, reveal a different behavior.  This behavior was 

responsible for the many failures exhibited by the converter when running in a dc-ac 
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configuration.  Experimental results at a reduced voltage are shown in Fig. 4.32 and 

simulation results at a higher voltage are shown in Fig. 4.33.  The red traces in both 

figures are the voltage across the blocking diode and the black trace is the voltage across 

the accompanying switching device.  Thus it became clear that the voltage across the 

anti parallel blocking diode is no longer a low voltage.  Other diodes were tested in place 

of the SiC schottky and the behavior was different.  This prompted an investigation into 

an understanding of this phenomenon.  Because we have verified the validity our 

simulation engine and models using the previous loss analysis and the presence of the 

blocking diode overvoltage in this section, simulations will be used to examine this 

phenomenon further.  Fig. 4.33 shows that this phenomenon occurs during the deadtime 

placed between the switches in a phase leg in one half cycle of the current.  Fig. 4.34 

shows the current flow in the components of the basic switching unit.  This will help 

explain the flow of current and demonstrate why it was mentioned that this phenomenon 

occurs during the deadtime.  The experimental setup used is a phase leg of a six switch 

motor drive or dc-ac inverter.  The current at the anode of the bottom switch unit is the 

green trace, the blue trace is the current at the anode of the anti parallel diode of the top 

switching unit, and the red trace is the current into the parallel diode of the top switching 

unit.  Load current flows through the bottom switch (green) when it is on.  At turn off, 

free wheeling current needs to flow in the circuit, and although the parallel diode is 

placed in the circuit for that purpose, the nature of the components is seen to have a 

significant effect on this.  The negative value of the blue trace indicates that the parasitic 

body diode in the Mosfet is actually conducting for a significant portion of the deadtime.  

It should be noted here that a significant amount of voltage is present across the blocking 
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diode.  The reason for the presence of this voltage will be presented in an upcoming 

discussion. 
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Fig. 4.34.  Current flow in bottom fet (green) top fet (blue) top parallel diode (red) 
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Fig. 4.35.  Power loss in antiparallel blocking diode 
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Thus, with a significant amount of voltage present across the blocking diode, and the 

current seen flowing in the parasitic body diode during the deadtime until the diode’s 

junction is charged and ready for blocking the voltage, a significant amount of power 

loss can be expected in this diode.  The instantaneous power loss of the anti parallel 

blocking diode is seen from the simulation results of Fig. 4.35.  This phenomenon was a 

significant drawback at this time, and solution was needed to enable the proper operation 

of the converters. 

4.2.3.2.1 Failure Mode Equivalent Circuits 

Many attempts to understand the phenomenon and hand were not successful.  Partial 

success was seen by a significant increase in gate resistances.  However, the increase of 

this parameter caused a significant increase in the Mosfet loss, which was very 

undesirable.  In addition it put a limit on the switching frequency that was not 

acceptable.  For the half bridge dc-ac inverter case, it was seen that this failure mode 

occurs during the deadtime of the negative half cycle for the top switching element and 

the opposite half cycle for the bottom switch.   
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Fig. 4.36.  Simplified equivalent circuit of failure mode 
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Fig. 4.37.  I(leg) (blue) and leg voltage with low (brown) and high values (red) for the diode capacitance 

 

 

 

A simplified equivalent circuit based on one understanding of the failure mode at 

hand is shown in Fig. 4.36.  The corresponding simulation results are then shown in Fig. 

4.37.  The equivalent circuit was derived from an understanding of the equivalent 

circuits of a mostfet and diode.  The equivalent circuits of both devices suggest that each 

of the devices has an output capacitance.  These output capacitances when combined in 

the circuit topology of the basic switching unit and under the specific current flow 

conditions seen by the switching unit will act as a capacitive divider for the input 

current.  The value of these output capacitances for the selected devices is orders of 

magnitude different.  From (4.2) it can be seen that current flow into this capacitive 

divider will cause a much faster build up of voltage across the small capacitance.  The 

ratio of the output capacitances is approximately 50 : 1 for the selected devices.  Thus, 

this would explain the unexpected voltage across the blocking diode during the deadtime 

of one half cycle.  The red and brown traces in Fig. 4.37 show what happens to the 
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voltage across the blocking diode as the capacitor ratios are changed from 50:1 to 3:1.  

The blue trace resembles the current in the body diode of the Mosfet.   

∫= dti
C

V cc
1

            (4.2) 

Although the simple equivalent circuit of Fig. 4.36 sets the base for the 

understanding of the failure mode.  A more detailed equivalent circuit was derived as 

shown in Fig. 4.38.  The corresponding simulation results are seen in Fig. 4.39.  This 

equivalent circuit demonstrates the pickup of the current by the parallel diode after the 

blocking diode’s output capacitance is charged.  The green trace resembles the Mosfet’s 

body diode current, and the blue trace resembles the parallel diode current.  The red and 

light blue traces are the voltages across the top switch at two different ratios of the 

capacitive divider.  The similarity between these results and those previously presented 

confirm the current understanding of the failure mode at hand.  The next section will 

present a simple attempt to mitigate the problem at hand, and will demonstrate the 

effectiveness of the technique.   
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Fig. 4.38.  More realistic equivalent circuit of failure mode 

 



100

Time/nSecs 5nSecs/div

15 20 25 30 35 40 45 50 55

A

Y2

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V

Y1

0

100

200

300

400

500

 

Fig. 4.39.  I(leg) (green), I (diode) (blue), FET Voltage (light blue – small cap, red – big cap), leg voltage 
(light brown) 

 

 

 

4.2.3.2.2 Passive Mitigation of the Failure Mode 

The previous sections have presented the symptoms of the failure mode and 

companion equivalent circuits to explain them.  In this section, a simple passive 

technique to mitigate the failure mode will be presented.  The successful use of the 

technique has proved invaluable for the development at hand.  The success of the 

development was hinged upon finding a solution to this failure mode. 

It was shown that the capacitive divider seen by the current coming into the basic 

switching unit was the reason for the unexpected voltage across the blocking diode.  A 

simple solution to this problem is placing a small capacitor in parallel with the blocking 

diode to prevent this from occurring.  This capacitor will alter the capacitive divider 
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when needed most.  The voltage across the switching device and the corresponding 

blocking diode are shown in Fig. 4.40.  Comparing this with the results shown in Fig. 

4.33 shows the significant reduction in voltage across the blocking diode. 
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Fig. 4.40.  Simulation results of switch Vgs (green) and blocking diode voltage (red) with external 
capacitor 

 

 

 

The corresponding current waveforms are shown in Fig. 4.41.  A comparison with 

Fig. 4.34 shows that the Mosfet’s parasitic body diode does not conduct any noticeable 

current in this case.  This will have a direct effect on the blocking diode’s power loss as 

seen by the green trace of Fig. 4.42.  The power loss in the device in the case with of no 

external capacitance is also shown in Fig. 4.42 for comparison.    
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Fig. 4.41.  Current flow in bottom fet (green) top fet (blue) top parallel diode (red) 
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Fig. 4.42.  Power loss in the blocking diode without the parallel capacitor (red) with it (green) 

 

 

 

It is probably clear now why the specific subciruit blocks use for simulation and 

experimented with during he calculation of the Mosfet losses were chosen.  It was seen 
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from the analysis of the results in Figs. 4.24 and 4.26 that the addition of the capacitor 

does not add any significant amount of loss to the Mosfet.  The simple passive 

mitigation used enabled the successful operation of the selected devices and wasn’t seen 

to add any significant drawback.  This was illustrated using comprehensive experimental 

and simulation results. 

4.3 Design and Testing of a Custom High Temperature Power Module 

The device selection and quantification of the device losses through experiments and 

simulation was presented in the previous sections.  It was also seen through the analysis 

of the losses that derated operation of the devices would be needed to maintain the 

thermal integrity of the device.  The actual motor drive application which is the target of 

this study, will however, require a significantly higher current and power value than 

what a single device can offer.  Thus, in this section a discussion of the approach used to 

design and test a custom power module will be presented. 

 

 

Table 4.2.  Main range of materials used in the module construction with some thermal properties  

 

 

 

 

 

 

 

 

 

 

Materials 
Density 
Kg/m3 

Specific Heat 
J/Kg-K 

Thermal Conductivity 
W/m-K 

Silicon 2381 700 150 

Silicon Carbide 3250 750 250 

Aluminium Nitride 3260 740 170 

AlSiC 3000 850 180 

Thermal Grease 2100 1675 0.8 

Kovar 8300 439 17.3 

Beryllium Copper 8250 419 106.3 

Alumina 3726 880 25 

Polyimide 1420 1090 0.2 

Bakelite 1650 1235 0.15 

Aluminium 2719 870 202.4 

Steel 8030 502.48 16.27 

Air 1.255 1006.43 0.0242 

Pb50Sn50 Solder 8890 213 46 
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The design of the power module to be discussed in this section will use the tested 

components and the results of the previous sections to guarantee a successful 

implementation.  Many of the techniques used in the design of the power module were 

derived from [21].  In [21] a comprehensive study of the design of integrated power 

modules for elevated temperature has been presented.  The main materials used 

throughout the design are shown in Table 4.2 along with some of the significant thermal 

properties.  The details of the construction and the materials used and the techniques 

implemented in the work at hand will not be detailed in this dissertation as many 

proprietary techniques were involved.  However, the approach used in the design and the 

tests carried out will be presented. 

4.3.1 Simulation Results 

It was shown in [21] that the successful design of a power module will rely on 

extensive thermal simulations which are then to be verified experimentally.  This was 

the approach used in the work at hand.  Fluent was also used as was the case for the 

previous study on viscous losses.  Although analytical calculations were a possibility, 

the effect of proximity of the devices and their different arrangement would have been 

very difficult to estimate analytically.  The input to the thermal simulation was the die 

size and the expected electrical losses in each die, and the material properties to be used 

in the module.  The arrangement of devices was guided by many packaging constraints, 

but was flexible to a certain degree that recommendations from the thermal design were 

taken into consideration.   
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Fig. 4.43.  Thermal simulation results for full multilevel inverter phase leg in one leg (left) and half (right) 

 

 

The analysis of losses presented in the previous sections and past experience have 

shown that a 25˚C temperature rise would be the acceptable limit of temperature rise at 

full power delivered from the module.  The topology and the rated power dictate the 

number of die in the module.  It will be seen in the next chapter that the objective is to 

build a multilevel inverter.  Thus, four basic switching units are needed per phase leg.  

This can be done using all the devices of a phase leg in one module, or each phase leg 

can be composed of two or even four modules if necessary.  The case of four modules 

would mean that each basic switching unit is placed in one module.  With two power 

modules, two switching units are placed in each module.  This decision was taken based 

on the simulation results of Fig. 4.43.  It can be seen that with the full multilevel inverter 

phase leg in the module, temperature rise in excess of 25˚C above and ambient of 175˚C 

is seen.  This was seen as an unacceptable risk, and the two switching units per module 

solution was seen as the way forward.  The thermal simulation results in this case are 

also shown in Fig. 4.43 with a 26˚C temperature rise above ambient.  It is clear from Fig. 



106

4.43 that the significant forward voltage of the SiC diodes at elevated temperature along 

with the small die size contribute to its higher temperature compared with the Mosfet 

die.  It was also important that the losses of one device not affect the temperature rise of 

a neighboring one.  Thus, placement of the devices was an iterative process, however it 

was still guided by the packaging needs of the application. 

4.3.2 Experimental Results 

Comprehensive analytical, electrical, thermal and mechanical experiments were 

carried out on the developed module to ensure its reliable operation.  A half bridge dc-ac 

converter was designed to test the module’s electrical performance.  Thermal imaging 

was used to verify that the design criteria have been met.  Mechanical integrity was also 

tested using MIL STD 883 E shock tests on the module.   
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Fig. 4.44.  Theoretical and experimental module losses at various values of current 
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Device loss models based on [22][23] were developed to estimate the efficiency of 

the module under full load operation.  This was then compared with experimental results 

for different values of load current and bus voltage.  It can be seen that the models 

provide a good estimate of the module losses under different operating conditions.   

 

 

 

    

Fig. 4.45.  Thermal image and the corresponding module used for the test 

 

 

 

 

       

Fig. 4.46.  Experimental setup used for mechanical (left) and burn in tests (right) 
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Thermal imaging was carried out on the module during full load operation.  This 

was part of the experimental setup used to measure the system losses shown in Fig. 4.44.  

The results of the thermal imaging shown in Fig. 4.45 demonstrate that a temperature 

rise of 25 ˚C is experience by the hottest point in the module at full load operation when 

the ambient temperature is 25˚C.  Burn in tests and mechanical integrity tests were then 

performed on the module.  The systems used are shown in Fig. 4.46.    Shock tests were 

conducted on all three axes.  This was important to ensure the integrity of the wire 

bonds, and other mechanical components in the power module.  The developed module 

successfully passed the tests and was then tested in a three phase motor drive at 230˚C 

ambient and proved to be a success in this test was well. 

4.4 Conclusion 

The stringent needs of the oil well logging industry on the power electronic 

conversion systems used was the main driver for the work at hand.  Because of the 

compact nature of such systems, the ability to operate without the need for active cooling 

is seen as a critical technology.  This can only be achieved using a combination of good 

device selection, topology design, and material selection.  The current work started by 

assessment of the basic device choices and their application at elevated temperature.  

The interaction of the selected devices in the basic switching unit is then studied and a 

mitigation technique for the experienced failure mode was presented.  This was justified 

with experimental and simulation results.   

To enable the operation at higher power, a custom power module is designed based 

on extensive thermal simulations.  Simulation results corroborated by experimental 

results on the developed module conclude the chapter.  It was shown that some silicon 
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devices accompanied by proper design and packaging can withstand operation at 

temperature upto 200˚C. 
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CHAPTER V 

MULTILEVEL POWER CONVERTERS – AN ENABLING TECHNOLOGY  

 

FOR HARSH ENVIRONMENT POWER CONVERSION 
 

5.1  Introduction 

Long resistive cables used in the operation of remote instrumentation impose 

fundamental limits on the amount of power delivered and create difficulties in voltage 

regulation at the remote-end (voltage at the end of the cable).  This type of power 

delivery is used in many engineering systems such as in the operation of underwater 

remotely-operated vehicles, in oil well logging and drilling, in mining, and in highly 

distributed power systems (air craft, submarines etc.).  Previous research [24][25][26] 

has dealt with such phenomena in detail, but the objective of this section is to illustrate 

what impact this has on the remote end, and it can be dealt with. 

 

 

 

 

Fig. 5.1.  Typical setup of a well logging application 
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An illustration of a typical oil well logging application is shown in Fig. 5.1.  Power 

delivered to the downhole tools is sent from the truck, then up the rig, and down the 

hole.  The depth of today’s wells can reach 36,000 feet. 
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Fig. 5.2.  Simplified distribution system model. 

 
 
 
 

Consider the simplified model of a distributed power system shown in Fig. 5.2, with 

the cable used for power delivery to the remote-end represented by a lumped model with 

resistance Rc, inductance L and capacitance C.  The power transmitted to the remote-end 

at steady state is given by (5.1) where VL and IL represent the values of the local-end 

voltage and current, and VR and IR represent the remote-end voltage and current 

respectively. 
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As can be seen from this expression, the power delivered to the remote-end is 

maximized when the remote end voltage is half the local-end voltage maximum.  Thus, 

2maxLR VV = , which is equivalent to a resistive load having the load-end resistance 
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matching the cable resistance.  With this substitution, the maximum power delivered to 

the remote end is as shown in (5.2).  

c

L
remote

R

V
P

4

2
max,

max_ =            (5.2) 

Thus, it can be seen that as more power is required at the remote end, a 

corresponding increase in voltage is needed to enable maximum power delivery.  The 

increased power requirements of downhole tools such as tractors and some drilling tools 

has thus prompted an investigation into means of accomplishing this.  Based on the 

results from the previous chapter, there does not exist a switching device that can be 

produced commercially today that can withstand voltages greater than 800 V at elevated 

temperatures.  Thus, the objective of this chapter is to demonstrate the effectiveness of 

the multilevel converter topologies in next generation harsh environment power 

conversion systems at the remote end of a dc transmission line where voltage levels 

beyond 1000 V are needed. 

 

5.2 Multilevel Power Conversion Solutions for Compact Harsh Environments 

A need for both dc-dc and dc-ac power conversion systems exists for compact harsh 

environment applications.  During the progress of the work at hand, both applications 

have been addressed and tested at elevated temperatures to determine the feasibility of 

their use.  The neutral point clamped multilevel dc-dc converter shown in Fig. 5.3 was 

used for the dc-dc converter study.  Fig. 5.4 shows the experimental and simulation 

results obtained during the progress of this development.  The converter was tested with 

a 1 KW load at 185˚C for 130 hours.  Test results were very successful, and will be 

detailed in an upcoming work by the author.  The devices tested in a previous chapter 
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were utilized and the efficiency of the multilevel dc-dc converter phase leg was in the 

96% efficiency range (only include the phase leg not the transformer what comes after 

it).   

 

 

Fig. 5.3.  Simplified schematic of the prototype multilevel dc-dc converter. 
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Fig. 5.4.  Experimental and simulation results of a prototype NPC multilevel dc-dc converter. 

 

 

Similar testing was conducted on a single phase half bridge multilevel dc-ac inverter.  

The final target application was a three phase PMSM motor drive.  Experimental results 
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of Fig. 5.5 show the apparent need for active middle point balancing.  The details of the 

successful implementation of the motor drive is presented in the next sections. 

 

 

 

(a)  Experimental results at no load. 

 

(b)  Experimental results at 50% load. 

Fig. 5.5.  Experimental results at no load (a) and load (b) showing the effect of not using middle point 
voltage balancing. 
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5.2.1 Topology Selection for a Compact Harsh Environment PMSM Drive 

An understanding of the multilevel inverter topologies, the results of the device 

qualification of previous chapters, packaging considerations, and an understanding of the 

power delivery system are used in this section to make an informed choice on the most 

suitable multilevel inverter topology for the motor drive at hand.  The available power 

delivery system provides a floating voltage on two power terminals, and a ground 

connection.  Due to packaging constraints, the use of the isolated H-bridge multilevel 

inverter was ruled out.  This topology would have required excessive real estate in this 

case, and the nature of the application would immediately eliminate this.  A study of the 

switching states of the NPC inverter and the flying capacitor inverter also revealed 

another consideration.  It is common practice to utilize the converter zero states to 

control the middle point voltage.  It was seen that the extra redundancy available with 

the flying capacitor inverter shown in Fig. 5.6 would prove beneficial from a thermal 

point of view.  The presence of redundant states would help in the thermal performance 

of the converter.  One of the possible recommendations in literature regarding this issue 

is given in [27], where a parallel device was placed in parallel with the each of the two 

inner switches and alternate use of the devices was shown to be beneficial from a 

thermal point of view.   
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Fig. 5.6.  Switching patterns for different voltage levels for the flying capacitor inverter (a) and NPC (b). 

 

 

Moreover, the need for more active devices for the NPC case would mean these 

devices may need to be placed in the developed power module.  The available real estate 

of the power module did not make that a possible solution.  Moreover, the addition of 

the clamping diodes outside the power module placed severe restrictions on the 

packaging, heat sinking, leakage inductances of the associated wiring.  Thus, a decision 

to utilize the flying capacitor multilevel inverter was made.  A simplified schematic of 

the developed converter is shown in Fig. 5.7.  It can be seen that less wiring connections 

are required between each of the phase legs than the NPC case.  Space restrictions and 

the advantage of eliminating as many inter-phase connections as possible also favored 

the flying capacitor inverter. 
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Fig. 5.7.  Simplified schematic of the three phase flying capacitor multilevel inverter prototype. 

 

 

5.2.2 Algebraic SVPWM 

The objective of this section will not be the presentation of new modulation 

algorithm.  This was not seen to be within the scope of the current work.  However, an 

assessment of many of the modulation algorithms published in literature has been made 

[28][29][30][31][32].  The algebraic space vector pwm method presented in [28] was 

used as the means of control for the converter at hand.  One advantage is the simple 

implementation that requires no trigonometric calculations and a very minor number of 

calculations.  This provides an advantage in an elevated temperature application where 

computational capability is inversely proportional to how high the ambient temperature 

is.  The algebraic SVPWM method lends itself well to implementation on an FPGA or 

even using discrete logic.  However, in the prototype at hand, a DSP implementation will 

be used to illustrate the concept and test the power electronic related aspects.   

Considering that each phase has four different switching states, the three level 

inverter of Fig. 5.7 has 64 (43) possible switching states.  The switching states can 

classified into four groups.  The Z group corresponds to the ten configurations 
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generating zero voltage vectors.  The S group corresponds to vectors producing an 

amplitude of E/3.  The M group corresponds to vectors producing an amplitude of 

3/3E , and the L group vectors have a magnitude of 2E/3.  To assure a low harmonic 

distortion of the output voltages, only the three inverter voltage vectors closer to the 

reference voltage are used in a switching period.  With this in mind, the hexagon shown 

in Fig. 5.8 is divided into twenty-four triangles.   

Capacitor or middle point voltage control was seen as a necessity from the initial test 

results.  The load is directly connected to the DC bus in the P and N states and no 

capacitor voltage control takes place.  The capacitor is however charged in the A state 

and discharged in the B state of Fig. 5.9.  Thus, proper choice of these states would 

enable control of the flying capacitor voltage. 

 

 

 

Fig. 5.8.  Voltage space vectors of a three level inverter. 
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P           A         B                 N 

Fig. 5.9.  Inverter switching states (P, A, B, N) and the relevant capacitor current control paths. 

 

 

The details of the derivation of the algorithm are detailed in [28] so a reiteration of the 

derivation will not be necessary, however, the results and how they fit in an algorithm 

will be presented in the remainder of this section.  The algorithm inputs are ( )kvan
* , 

( )kvbn
* , and ( )kvcn

* .  The following steps illustrate to space vector PWM algorithm 

within a given sector. 

1. The reference voltages are ordered with ( ) ( ) ( )kvkvkv nnn
*

3
*

2
*

1 >>  based on 

(5.3). 
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2. If ( ) ( )( )( )Ekvkv nn ≥− *
3
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1  then the voltage vector is in the overmodulation region 

and (5.4) and (5.5) apply. 
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6. Else region vector in region 3 and (5.9) applies.  
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The algebraic SVPWM algorithm has been outlined in this section based on the 

research carried out in [28].  The fast execution times and simple instructions required, 

made it an ideal candidate for the implementation at hand.  Simulations were carried out 
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to verify the implementation.  The condition simulated  in Fig. 5.10 was for a reference 

line voltage of 220 V/60 Hz with an R-L load of 11 ohm and 22 mH, a bus voltage of 

1kV, 15 uF capacitor, and a PWM frequency of 10 KHz.  It is clear that the capacitor 

voltage is properly balanced. 

 

 

 

Fig. 5.10.  Simulation results of the SVPWM showing phase A flying capacitor voltage Vdc = 1kV. 

 

 

5.3 Limitations of a Compact Harsh Environment Implementation 

The same devices that have been qualified in a previous chapter were to be used in 

the current prototype.  It was mentioned earlier that no device does exist commercially to 

operate above 800 V in a motor drive application with ambient temperatures above 

175˚C.  Thus, the use of multilevel converters was seen as the enabling technology that 

will permit delivery of higher powers to down hole tools.  An experimental prototype 
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was used to verify that this can in fact be achieved.  To main limitations surfaced as the 

work progressed. 

The main limitation is that of the basic switching unit and the harmful overvoltages 

experienced by the series blocking diodes shown in Fig. 5.11.  This is the same 

phenomenon described earlier, however, for the multilevel inverter case, the diode 

overvoltages were reaching the bus voltage and many failures occurred during the 

testing.  During the operation with a two level inverter in a previous chapter, the over 

voltages would reach the bus voltage but since the bus voltage was lower than the diode 

rating, failures weren’t common, but abnormal converter behavior was the issue.  In the 

multilevel inverter case, the overvoltage was hindering the progress and burning the 

converter. 

 

 

 

         Time/uSecs 500nSecs/div

323.5 324 324.5 325 325.5 326

V

-400

-200

0

200

400

600

 

Fig. 5.11.  Basic switching unit (left) simulation results of the blocking diode overvoltage problem (right). 

 

 

The overvoltage failure mode of the series blocking diode was solved in a similar 

fashion to what was presented in a previous chapter.  A modification of the capacitive 



124

divider using an external capacitor in parallel with the blocking diode, enabled the 

successful operation of the converter. 
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Fig. 5.12.  Experimental results showing the effect of temperature on high voltage ceramic capacitors 

 

 

The effect of temperature on capacitor values was the second main challenge.  The 

only high voltage capacitor technology that will survive extreme temperature and is 

available at a commercial scale is the multilayer ceramic capacitor.  Fig. 5.12 show 

illustrates how half the capacitance value is lost at the needed temperature range.  This 

was very conflicting with the stringent packaging requirements.  However, because of 

our use of Mosfets, the increase in switching frequency was possible and enabled the 

operation at the required power levels and a feasible packaging solution. 
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5.4 Experimental Results 
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Fig. 5.13.  Performance of the prototype inverter under sudden load changes, load current (top) and device 
and bus voltage (bottom). 

 
 

 

Experimental results conducted on the prototype motor drive are shown in Figs. 5.13 

and 5.14.  Resistive dividers were connected to the flying capacitors in all the phases to 

allow the initial charging of the capacitors to a suitable value.  The motor drive would 
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only start if the capacitors are charged.  In Fig. 5.13, the effect of a sudden load on the 

inverter is shown.  It is clear that switch voltages do not exceed their rated voltage even 

under such severe operating conditions.  The complete motor drive was then temperature 

tested to assess the feasibility of its elevated temperature operation.  This is shown by 

the results of Fig. 5.14.  Further testing is currently being conducted to optimize the 

drive performance.   

After the successful implementation and testing of the converter, it is perhaps 

important to demonstrate why the compact harsh environment designs are a challenge.  

This is clear by looking at Fig. 5.15.  The complete assembly of Fig. 5.15 fits inside a 

pressure housing with a 
8

3
3 OD, and an ID depending on pressure rating.  This layout at 

hand packages two flying capacitor multilevel inverter motor drive along with all the 

associated passive components and control boards. 
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Fig. 5.14.  Motor drive efficiency vs temperature 
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Fig. 5.15.  Layout showing a tool with two multilevel inverters; each black heat sink is for one phase leg. 

 

 

5.5 Conclusion 

This chapter started by illustrated how long resistive cables used in the operation of 

remote instrumentation impose fundamental limits on the amount of power delivered.  

This type of power delivery is used in many engineering systems such as in the operation 

of underwater remotely-operated vehicles, in oil well logging and drilling, in mining, 

and in highly distributed power systems (air craft, submarines etc.).  The specific 

application at hand is the oil well logging application.  The chapter built on the 

knowledge and testing results of previous chapters, and illustrated the need for using 

multilevel power converters to deliver higher power to down hole tools.  During the 

progress of the work, both dc-dc and dc-ac converters were developed and tested.  The 

major discussion presented in the chapter is related to the development of a multilevel 

PMSM motor drive.  A verified SVPWM algorithm from literature was used, and 

simulation and experimental results verified its potential.  The series blocking diode 

overvoltage failure mode and the capacitor packaging constraints were seen as the main 

challenges to a high temperature compact application.  The passive mitigation technique 

previously proposed also proved successful in the multilevel inverter case where voltage 

values across the diode reached full bus voltage during the deadtime and was the cause 

of significant failures.  The use of Mosfet devices enabled the increase of the switching 
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frequency to a limit that enabled the successful packaging of the flying capacitors and 

the operation at the rated power levels even with the limited capacitance value seen at 

elevated temperature. 
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CHAPTER VI 

EXTENDED TEMPERATURE HIGH RELIABILITY MOTOR DRIVE  

 

SYSTEMS FOR HARSH ENVIRONMENT APPLICATIONS 

 

6.1 Introduction 

The previous chapters have addressed two main topics, namely, the 

electromechanical subsystem and the power electronic subsystem of a harsh 

environment energy conversion system.  The previous work has built upon many of the 

conventional approaches providing some novel solutions to the hurdles faced during the 

development.  In this chapter a different approach will be taken.  A completely new look 

at the problem of designing a motor drive system for a harsh environment will be 

addressed.  A novel method for brushless motor commutation and control will be 

presented in this chapter.  This task is most commonly accomplished using an electronic 

motor drive.  One of the main contributors to the development costs of an 

electromechanical project can be the development of the motor drive.  This is especially 

true in downhole tool development where the harsh environmental conditions limit the 

application of commercially available electronics.  Thus, it is the objective of this novel 

principle to reduce or eliminate the need for power conversion electronics used in 

brushless motor commutation and control for operation under elevated temperatures. 

6.2 Prior Art 

Electric motors are the main means by which electrical energy is changed into 

mechanical energy.  In industrial applications, electric motors range in size and power 

rating.  There are several different types of motors in industrial use today, however, they 

can be grouped into two main categories, namely, brush and brushless.  Brushless 
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motors are in general made of a stator with a stator winding, and a rotor.  The rotor can 

be made up of only laminations, as is the case with switched reluctance and synchronous 

reluctance motors. It can be made of a shaft with magnets mounted in different 

configurations as in brushless dc motors, or permanent magnet synchronous motors.  

The rotor can also be laminated and can have winding(s) as in induction motors and 

some synchronous motors.  Or in the general case, the rotor can be a combination of all 

the above technologies.  One thing all these technologies have in common is the need for 

an input voltage with variable magnitude and frequency to control them.  Typically, a 

three phase inverter is used for this task, and electronic commutation of a dc voltage is 

used to provide the variable voltage and frequency.  In an ideal case, the use of a brushed 

dc motor would have eliminated the need to use an inverter in many applications, 

especially ones that already have a provision for a variable dc voltage.  In other cases, 

one would only need a variable dc voltage to control the motor, which would cut down 

the amount of electronics, and thus increase the efficiency and reduce the cost.  The use 

of brushed dc motors, however, has many problems.  The problems include “wear of the 

brush and rotor contact during use, arcing, resistance and heating at the brush-contact 

interface, and burning of the brush during temperature extremes.”  Moreover, in 

downhole applications, the use of brushed dc motors is simply not possible because of 

the difficulty in placing the motor in air and applying a rotating seal that can withstand 

full differential pressure and motor torque.  Placing the motor in oil will also not be 

possible because the brushes and the commutator segments on the rotor need to be in  

contact in order to conduct electric current.  The presence of an oil film between these 

two contacts, prevents proper conduction of current, thus, inhibits torque production.  
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The following literature is what I have found that relates to the work at hand.  This 

literature was all found during a literature search conducted upon finding this to be an 

idea that can be of value.  McGaughey and Tanh M. Bui [33] present methods of 

mechanical commutation of brushless dc motors.  Pengov [34] then presents a very 

similar solution applied to switched reluctance motors.  Theoretically, the solutions are 

applicable to any brushless motor with varying degrees of suitability or performance 

limitations for each type of brushless motor.  

McGaughey and Tanh M. Bui [35]  have both tried to address the drawbacks of 

using brushes in their work.  Pengov [34], however, has limited his work to the 

elimination of the complex electronics associated with driving a switched reluctance 

motor.  The proposed solution, in its current form, will deal with some of the issues 

associated with the use of brushes especially as it relates to downhole applications.  It 

will also aims at reducing or eliminating down hole power electronics in certain cases.  

However, it will be an objective to attempt to completely eliminate the problems with 

using brushes as this work progresses, and more experimental data is collected on this 

issue. 

6.3 Summary of the Principle 

The proposed solution consists of an apparatus that can be mounted in the vicinity of 

a brushless motor in order to provide the necessary commutation signals to control the 

motor.  The apparatus consists of a magnetic coupling between a motor shaft and a 

rotating ring.  Mounted on that ring are two conducting segments placed 180˚ apart.  

Two conducting strips on either side of the ring are each connected to a certain 

conducting segment.  Brushes pushing against this rotating ring are then used to provide 
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the required commutation, and deliver the required power to the motor.  The brushes are 

connected to both the input power supply and to the motor.  The rotating ring and brush 

assembly can be located in air and are coupled to the motor shaft through the magnetic 

coupling.  In another implementation, the brushes and ring assembly can be located in a 

container placed in the vicinity of the motor.  The container should be able to withstand 

full pressure and would have feed-throughs to connect the assembly with the power 

supply on one side and the motor on the other.  Thus, the proposed solution can be seen 

as an improvement on what the prior art has presented that is especially suitable for 

operation in a downhole environment.   

6.4 Detailed Description of the Principle 

In order to appreciate the proposed solution, it would be essential to quickly go 

through the theory of operation of brushed dc motors.  Fig. 6.1 shows a simplified 

drawing illustrating the operating principles of a dc motor and the main functions of its 

components.  This simplified drawing shows two brushes b1 and b2 connected to a 

current source supplying current ia.  The brushes are placed against commutator 

segments s1 and s2.  The figure also shows a winding connected to s1 and s2 and placed in 

a magnetic field created by permanent magnets.  In its current position, current will pass 

from the current source into b1 and s1 into side 1 of the coil and back through side 1’ and 

s2 and b2.  Due to current passing in a conductor placed in a magnetic field, a force will 

develop on the conductor.  Each side of the turn will then have a force developed that is 

opposing the other in direction.  The presence of two forces on either side of the turn 

will then produce torque, which will in turn cause the rotor to rotate. 
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Figure 6.1.  Simplistic view of a brushed dc motor. 

 

 

 

 

 

Figure 6.2.  Principle of operation of brushed dc motors. 

 

 

 

In Fig. 6.2, the rotation of the motor to a new state is illustrated, whereas, positive 

current flowing in side 1 on the left creates a torque that rotates the rotor, and thus, side 
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1’ on the right is now carrying the positive current.  Thus, the brushes act as a means to 

flip the current in the proper winding. 
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Figure 6.3.  Production of alternating current in an R-L circuit. 

 

 

 

Fig. 6.3 shows an example of the application of brushes to produce an alternating 

current in an R-L load.  From Fig. 6.3 and a presentation of torque production of a 

brushless dc motor shown in Fig. 6.4, we will be able to come to a complete 

understanding of the proposed solution.  Figure 6.3 shows two semicircular segments 

with a small insulating layer between them.  The top of each of the segments is 

conducting, and brushes are placed in a certain pattern around the segments.  The 

equivalent circuit of the system is then shown on the right where an R-L load and a 

power source are connected in a certain configuration due to the brushes and their 

contact with the segment conducting surfaces.  If the semicircular segments were rotated 

as shown on the drawing, another equivalent circuit will be created.  The means of 

rotation of the segments in this case is not significant to the explanation.  Because this is 

a simple R-L load, the rotation will need to be applied using an external means.   
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Figure 6.4  Current flow in a 3 phase brushless dc motor winding. 

 

 

 

In figure 6.4, the current flow diagrams required for torque production in a brushless 

dc motor are presented.  It can be seen that at each moment in time current will be 

flowing between two terminals or in two phases.  If current were to flow in this pattern, 

torque would be produced in the motor and rotation would occur.  This is conventionally 

accomplished using an electronic inverter as shown in Fig. 6.5 where hall sensors would 

indicate the beginning and end of each of the six sectors shown in Fig.  6.4 and a 

controller would send the proper signals to the IGBT driver to connect the appropriate 

phases to the DC rail, thus, forcing current into the phases.   
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Fig. 6.5.  Conventional electronic commutation using an inverter. 

 

 

 

The proposed solution will aim at eliminating the need for the electronic three phase 

inverter.  This is possible in applications requiring a constant speed, or where speed can 

be varied by merely changing the input dc voltage.  The apparatus in one of its forms is 

shown in Fig. 6.6.  The apparatus can be placed in a container that can withstand full 

downhole pressure and placed next to the motor on the accessory shaft side as shown in 

Fig. 6.7, or the apparatus can be designed to be part of the air section of the downhole 

tool.  It consists of a magnet assembly that produces a magnetic coupling with magnets 

that may have been previously used for hall sensing.  The magnet is mounted on shaft 

that is allowed to rotate using a bearing.  On the shaft is a ring with various conducting 

patterns on it.  Two conducting segments placed 180˚ apart are each connected to two 

conducting strips.  Each of the strips is connected to a corresponding power supply input 

terminal through brushes.  A number of other brushes depending on the number of 

phases and poles of the motor are arranged around the shaft, as shown in Fig. 6.6.  At 

any instant in time, two brushes are connected to the two conducting segments, thus, 

connecting the power supply terminals to the motor.  Current flow in the motor produces 

torque which rotates the motor shaft, which in turn rotates the commutation assembly 
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which is magnetically coupled to the motor shaft.  Very little power will be lost in this 

process as the lossy components would be the bearing losses, torque produced by 

brushes rubbing against the conducting segments, and the electrical losses in the brushes.   

 

 

 

Figure 6.6.  Apparatus used for motor commutation 
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Figure 6.7.  Final assembly including commutation apparatus. 

 

 

 

 

Figure 6.8.  Thought process used. 

 

 

 

Thus, from the information presented thus far one can relate the thought process to 

Fig. 6.8.  Technology trends have helped migrate many application away from the use of 

the conventional brushed dc motor.  Power electronics and DSP technologies have made 

motor drive systems based on these technologies very feasible.  For a very unique 

application such as a harsh down hole environment, a different though process proved 

beneficial.  A combination of current and older technologies along with a unique 

combination method have proved to be very beneficial for the application at hand.  The 

next sections will deal with the progress of the prototypes developed to prove the 
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concept.  Some testing results, and some limitations of the current approach will be 

provided along with some recommendations for future developments that can help 

mitigate some of the hurdles faced. 

6.5 Commutator Design Considerations 

 

 

 

 

Fig. 6.9.  Short-circuited winding element in dc machine commutation. 

 

 

 

It is important to provide a quick review of commutation in a conventional dc 

machine before commutation in the proposed solution is discussed.  Rotating in the 

magnetic field, the winding element of the dc machine changes from one armature path 

to another thus changing its current from +ia to –ia (or vice versa).  During the time 

reversal the conductors of the winding element lie in the neutral zone and the winding 

element is short circuited.  This explains the presence of alternating current in the motor 

windings as was previous discussed.  Fig. 6.9 shows schematically a winding element of 

a lap winding with its connections to the commutator bars.  It is assumed that the width 
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of the brush is equal to the width of the commutator bar.  In this case, the brush can 

short-circuit only one winding element.  In Fig. 6.9 the short circuit of the winding 

element begins when brush edge a leaves bar 2.  b is the leading brush edge, and a is the 

trailing brush edge. 

At the beginning of the short circuit period Tc (t = 0), the current in the winding 

element is +ia; the brush is then on bar 2 only.  At the end of the time Tc (t = Tc), the 

current in the winding element is –ia; the brush is then on bar 1 only.  At intermediate 

times, the brush lies on both bar 1 and bar 2. 

If there are no further influences on the short-circuited winding element, the change-over 

of the current from +ia to –ia is determined by the magnitude of the contact areas of the 

brush with the commutator bars 1 and 2 (areas A1 and A2 in Fig. 6.9), ie., the current in 

the short circuited winding element is at any time given by (6.1).  This equation 

corresponds to a straight line and is called the linear commutation case.  This does not 

happen in practice due to effects like the self induced emf, and the emf due to the 

armature flux. [36].  Accelerated and delayed commutation are the two other ends of the 

spectrum.  These are illustrated in Fig. 6.10.  The current flowing through the contact 

area A2 at the end of the commutation period must be as small as possible for an 

acceptable commutation performance.   
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The instant of time shortly before the commutation period is finished, tTt c ∆−=  

will thus need to be considered.  For this instant of time, A2 becomes equal to 2A∆ .  

Since the times and the areas of Fig. 6.9 are proportional, (6.2) can be derived from (6.1) 
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after a substitution of tTt c ∆−= .  The current which flows through 2A∆  at 

tTt c ∆−= is ai∆ .  If ai∆ can be made equal to zero at tTt c ∆−= , then 

no current flows through the contact area A2 at this time, the current density at the 

trailing edge of the brush is zero at the end of the commutation period.  Thus, if the 

current in the short circuited winding element reaches its end value –ia shortly before the 

commutation period is over, then this condition is satisfied.  This corresponds to the 

accelerated commutation case in Fig. 6.10.   
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Fig. 6.10.  Illustration of the different types of commutation. 

 

 

Other factors that affect commutation are the brush material, the commutator 

material, the finish on the commutator material, brush pressure, coefficient of friction 

between the brush and commutator, etc.  These were all factors that need to be 

thouroughly investigated before good commutation can occur.  Consideration of these 
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factor is the reason more than one prototype commutator was built for the proposed 

solution as shown in Fig. 6.11..   

 

 

 

       

Fig. 6.11.  First commutator prototype (left) latest prototype (right). 

 

 

 

Although very similar in nature to the commutation in brushed dc motor.  Current 

doesn’t actually change directions in the proposed mechanical commutator, however, 

full load current is interrupted by the commutator action.  Considerations such as 

coefficient of friction have also been of significant effect on the prototype built during 

the progress of this work.  The brushes were seeing a significant change in coefficient of 

friction with the first prototype due to them sliding on copper then plastic sections.  This 

was improved drastically in the second prototype that was built and tested to 2000 rpm.  

Although many of the secondary issues that affect commutation were taken into 

consideration, the commutation its self did cause some arcing.  This was however, 

mitigated using a freewheeling diode as showing in Fig. 6.12.  It is apparent, however 

that this solution will limit the direction of rotation to only one direction, because in the 

reverse direction the diodes will short circuit the power supply.  This was seen 

acceptable for our current implementation.  However, at higher voltages, arcing was still 
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present.  This will be a topic of further research, and the next section will suggest a 

possible solution. 

 

 

 

Fig. 6.12.  Mitigation of the arcing using a freewheeling diode. 

 

 

6.6 Soft Commutation 

As illustrated in the previous section, the commutation in the proposed apparatus is 

similar in nature to that of a dc machine.  The disconnection of load current from the 

winding is illustrated in Fig. 6.13 as it occurs in the proposed solution.  Here phase C 

current will be disconnected in this mode of rotation, and thus, sparking will occur.  This 

was mitigated to a large degree by the addition of a freewheeling diode in Fig. 6.12.  

 

 

 

Fig. 6.13.  Current commutation in the proposed system. 
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In this section, an introduction to a different solution that may enable extended brush life 

operation and suppression of arcing at higher operating voltages and currents.  A similar 

approach was presented in [37] for the conventional brushed dc machine.  Although our 

apparatus is different, a similar solution can be applied.  The principle of soft 

commutation in PWM converters has been known and studied by many researchers.  The 

application of this principle to the system at hand may however, prove beneficial.  This 

will be a topic of future work but will be touched upon in this section. No experimental 

results will be provided here since further research and a good review of the different 

soft switching techniques in PWM converters needs to be carried out first. 

 

 

 

Fig. 6.14.  Basic principle of soft commutation. 

 

 

The basic principle of soft commutation as it is envisioned to apply to the apparatus 

at hand is illustrated in Fig. 6.14.  The attenuation circuit shown in the figures may 

incorporate a feature of feeding the coil’s magnetically stored energy back to the dc 

supply.  It may also be designed to simply drain the energy.  The complexity will dictate 
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the functionality received from the circuit.  A diode connected in series as part of the 

attenuation circuit branch prevents unwanted current flow.  Fig. 6.14(a) shows the 

normal operating condition.  When the coil is about to be commutated, Fig. 6.14(b) SW1 

is on.  Because of the diode, there is no current flowing in this branch of the circuit.  

When SW2 is opened Fig. 6.14(c), the residual current in the coil does not need to force 

through the gap of SW2 by means of a spark.  It seeks the path through the attenuation 

circuit whose functionality is best described as a variable impedance.  The initial 

impedance after SW2’s opening should be low to reduce the potential difference across 

SW2.  The impedance value changes after the attenuation of the initial current.  Finally, 

when the current is drained, Fig. 6.14(d), SW1 is opened with a small potential 

difference across it [37].  The best implementation for such a principle in the application 

at hand is still under investigation and will be a topic of further study.  The objective will 

however, be to reduce the amount of active components used in such a circuit. 

6.7 Brush Assembly 

The first prototype was made from automotive parts bought commercially.  Brush 

material, pressure, width, etc were not variables that were controlled for the work at 

hand.  The first prototype of the brush assembly is shown in Fig. 6.15.  The concept was 

proved and a more suitable implementation was needed.  In the next prototype, 

electrographite brushes were used.  These brushes are made of carbon that has been 

converted into graphite by baking at temperatures above 2500˚C (4532˚F).  This 

temperature volatilizes impurities and produces a material of homogeneous structure, 

low in friction and non-abrasive.  Their operating temperature range is not as wide as the 

graphite grades, but is fairly wide and they will withstand heavier electrical loads 
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without burning; they thus have a high overload capacity.  These brushes are typically 

used from 24 V upwards [38].  Typical brush pressures on the commutator in an 

aerospace application have been recorded in literature as between 4 and 8 PSI [38].  This 

was used in the application at hand. 

 

 

                    

Fig. 6.15  First brush holder prototype (left) latest prototype (right). 

 

 

 

6.8 Magnetic Coupling 

Another component of the system is the magnetic coupling.  The first vision, was to 

create a magnetic coupling that can withstand full torque and thus be able to place the 

motor in the air section of the tool.  A magnetic coupling suitable for such an application 

was designed based on [39] and the experimental results are shown in Fig. 6.16.  Two 

different yoke materials were used with different flux densities and testing results show 

that it is possible to build such a device.  However, it was quickly realized that if such a 

device were used to couple the air and the oil sections of the tool, no space would be 

remaining for the needed wiring connections.  Thus, this principle was abandoned, and 
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the proposed solution, which is the topic of the work at hand, is shown in the simplified 

diagram of Fig. 6.17.  It is clear from this figure that the apparatus can be placed in the 

vicinity of the motor while the motor is kept in the oil section of the tool.  Wires can still 

be routed to the air section of the tool with no effect on the spacing available in a 

negative fashion.  Infact, with the apparatus at hand, the number of wires needed to run a 

motor that is placed in oil is reduced to just the two dc lines.  This is a significant 

contribution of the work at hand.  Running a similar motor using the conventional 

methods would require three high voltage wires, one chassis wire, and nine resolver 

wires.  With wiring and harness problems being the main contributor to the failures of 

many systems extending to the space shuttles, this contribution was seen as a significant 

one. 
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Fig. 6.16  Initial magnetic coupling concept, test results (left) and test setup (right). 
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Fig. 6.17  Schematic illustration of the proposed system. 

 

 

 

 

    

Fig. 6.18  Components of the magnet coupling of the second prototype 

 

 

A model of the actual magnetic coupling using the developed prototype is shown in 

Fig. 6.18.  The ceramic pressure barrier is not shown in this figure.  The magnetic 

coupling design followed the same design procedure as in [39] and the result was an 

eight pole design rated for a brake away torque of 2 lb in.   
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6.9 System Progress and Experimental Results 

 

 

 

Fig. 6.19  Stages of the development. 

 

 

The stages of the development starting from the initial concept until the writing of 

the this work are shown in Fig. 6.19.  The first proof of concept was very encouraging.  

The actual prototype is shown in Fig. 6.20.  Although no magnetic coupling, bearings, 

proper commutator, etc were used, the concept was illustrated.  Current and voltage 

waveforms are shown in Fig. 6.21. 
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Fig. 6.20 First prototype of the commutator installed on the torque side of the motor  

 

 

 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

C
u

rr
e
n

t 
(A

)

-50

-40

-30

-20

-10

0

10

20

30

40

V
o

lt
a

g
e

 (
V

)

 

Fig. 6.21  Line current (left) and voltage (right) waveforms 

 

 

 

A look Fig. 6.21 shows that the current is very peaky and that besides the expected 

current humps typical of a BLDC motor’s current, there is sometimes a spike due to the 

arcing of the commutator.  The lack of bearings and proper alignment was the main 

cause of this.  These effects were drastically reduced in the second prototype built and 

shown in Fig. 6.22.  Proper bearing support and a magnetic coupling were implemented 

in this prototype.  It was installed on the resolver side of the motor after removing the 

resolver.  Speeds upto 2000 rpm were achieved, and detailed characterization is 
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currently under way.  Increasing the machine’s load however, revealed the negative 

effects of sparking, however, the freewheeling diode addition mitigated that in one 

direction.  Bidirectional operation is a topic of future work and can make use of the soft 

commutation principles described above. 

 

 

      

Fig. 6.22  Second prototype of the commutator installed on the resolver side of the motor 

 

 

6.10 Conclusion and Recommendations 

A novel system for brushless motor commutation and control was presented in this 

chapter.  This task is most commonly accomplished using an electronic motor drive.  

One of the main contributors to the development costs of an electromechanical project 

can be the development of the motor drive.  This is especially true in downhole tool 

development where the harsh environmental conditions limit the application of 

commercially available electronics.  This was clearly demonstrated in the first section of 

the dissertation.  The objective of this novel principle is to reduce or eliminate the need 

for power conversion electronics and control electronics used in brushless motor 
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commutation and control for operation under elevated temperatures.  Which will in turn 

reduce project development time and costs. 

The work at hand presented a novel solution that can be of great value in the 

development of downhole tools.  It would be an ideal candidate for a project where a 

monocable (single conductor) operation is a big market entry barrier, and emphasis is 

placed on extreme temperature and compactness.  It would also be an ideal candidate for 

projects aimed at multiconductor cables where the project team has decided to use 

induction motors with a maximum efficiency of 65% in some cases to eliminate the need 

for an electronic controller down hole.  The proposed solution would in such a case 

increase the system efficiency allowing the tool to meet full specifications.  The 

technical challenges were illustrated and possible solutions paths for future development 

were outlined.   
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

7.1  Dissertation Conclusions 

In conclusion, it is safe to say that the research proposed as the subject of this 

dissertation provided an essential contribution to current research in the field of compact 

harsh environment energy conversion systems.  A comprehensive study of the previous 

literature presented in the area has been thoroughly carried out.  The significance of the 

research in solving current practical industry needs has been stressed.  A need for future 

research in this area can highly benefit from the recommendations and conclusions made 

in this work.  The work can be seen as divided into three main areas: 

1.  Electromechanical subsystems 

2.  Power electronic subsystems 

3. A novel energy conversion system development that benefits from the 

understanding of the first two subsystems and an appreciation of the 

operating environment. 

In chapter II, the influence of the operating environment is shown to play an 

important role in the design of electrical machines.  This fact was illustrated in this work 

by investigating the design of a permanent magnet synchronous machine submersed in a 

viscous fluid.  The work was prompted by a significant difference between an 

experimental setup tested in air and one tested in oil.  After compiling the results of 

current literature into a machine design optimization algorithm, analytical and CFD 

analysis of the submersible machine was also presented.  The need to use CFD for the 

estimation of the viscous loss component was demonstrated by the inadequacy of the 



154

analytical solutions in the presence of the turbulent flow properties of the fluid present in 

the air gap.  Different factors that affect the viscous loss component were analyzed in 

detail.  An iterative machine design procedure is then presented as a complement to the 

conventional optimization methods.   

Chapter III demonstrated the effective utilization of application considerations and 

the nature of the connected load in the design and application of electrical machines for 

demanding applications.  It is apparent that the application at hand was unique in its 

utilization of PM machines.  The work at hand utilized the available volume and 

produced a significantly improved actuator.  The different phases of the actuator 

improvement were discussed.  This was concluded with the design of a dual winding or 

six phase PM actuator.  The coupling between the two sets of windings was used in 

favor of the application.  A dynamic model of the dual winding exterior rotor PM 

actuator was developed along with a d-q steady state one.  The advantage of utilizing the 

coupling between the sets of windings for the application was demonstrated using the 

dynamic model.  Experimental results corroborating the presented theory and 

simulations demonstrated the effectiveness of the presented theory.  The utilization of a 

dual winding machine for the application produced significant improvements in the 

braking torque capability of the brake winding.  This was mainly due to the ability to 

eliminate two sets of end windings and effectively utilize the original actuator volume. 

The second part of the dissertation starts on chapter IV.  An investigation into 

compact harsh environment power electronic systems is presented.  The stringent needs 

of the oil well logging industry on the power electronic conversion systems used was the 

main driver for the work at hand.  Because of the compact nature of such systems, the 
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ability to operate without the need for active cooling is seen as a critical technology.  

This can only be achieved using a combination of good device selection, topology 

design, and material selection.  The research started by assessment of the basic device 

choices and their application at elevated temperature.  The interaction of the selected 

devices in the basic switching unit is then studied and a mitigation technique for the 

experienced failure mode was presented.  This was justified with experimental and 

simulation results.  To enable the operation at higher power, a custom power module is 

designed based on extensive thermal simulations.   

Chapter V built on the knowledge and testing results of chapter IV, and illustrated 

the need for using multilevel power converters to deliver higher power to down hole 

tools.  During the progress of the work, both dc-dc and dc-ac converters were developed 

and tested.  The major discussion presented in the chapter is related to the development 

of a multilevel PMSM motor drive.  A verified SVPWM algorithm from literature was 

used, and simulation and experimental results verified its potential.  The series blocking 

diode overvoltage failure mode and the capacitor packaging constraints were seen as the 

main challenges to a high temperature compact application.  The passive mitigation 

technique previously proposed also proved successful in the multilevel inverter case 

where voltage values across the diode reached full bus voltage during the deadtime and 

was the cause of significant failures.  The use of Mosfet devices enabled the increase of 

the switching frequency to a limit that enabled the successful packaging of the flying 

capacitors and the operation at the rated power levels even with the limited capacitance 

value seen at elevated temperature. 
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In chapter VI, a novel system for brushless motor commutation and control was 

presented.  The objective of this novel principle is to reduce or eliminate the need for 

power conversion electronics and control electronics used in brushless motor 

commutation and control for operation under elevated temperatures.  Although such 

environments would benefit from the simplicity of using a conventional dc motor, the 

challenges faced would inhibit this.  The thought process involved and all the system’s 

components were presented.  Simulation and experimental results were used to verify the 

presented theory.  A prototype mechanical commutator was built and tested with success 

upto 2000 rpm.  The technical challenges faced were illustrated and possible solutions 

paths were introduced. 

7.2  Recommendations for Future Work 

The dissertation addressed challenges and novel solutions of many of the main 

components in a harsh environment energy conversion system.  This section will provide 

a set of recommendations for future work in the different areas addressed.   

The work in chapter II can trigger further research into coupled field analysis and 

optimization of electrical machines.  It was shown that analytical solutions may not 

prove adequate due to the properties of the fluid in the air gap.  Although it may be 

difficult to derive a general closed form equation for such flow, the derivation of an 

empirical formula for the simple geometries featured in motor design may be possible.   

Dual winding machines have long been used in many high power applications like 

railroad traction and power generation.  However, the novel use of the six phase or dual 

winding machine presented in chapter III may trigger other novel uses of such machines.  
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Areas such as automotive and aerospace are possible candidates.  The compact nature of 

such systems may prompt the need for such machines.   

Chapter IV presented a very active area of research that is of great interest to the 

automotive and aerospace industries.  Qualification of new devices outside the realm of 

manufacturer specification is a continuous research and development need.  SiC 

technology tested as part of this work may not be the current state of the art.  Feedback 

from our study alone has prompted some manufacturers to improve their devices.  Thus, 

further testing is needed for late market entries.  A systematic means of derating power 

components would also be of great benefit.  This would help in designing predictive 

maintenance systems that would be used to replace such components before a costly 

failure in the field. 

The implementation of the algebraic SVPWM in chapter V was carried out on a 

DSP.  A digital logic implementation would be of benefit.  The extension of the 

algorithm to more than three levels is also an area of interest.  The current device rating 

of 800 V prevents safe, reliable operation of the downhole power system beyond about 

1.1 kV.  A higher level extension of the algorithm combined with an FPGA 

implementation can provide a much more reliable system for elevated temperatures.   

The novel solution for an elevated temperature motor drive system presented in 

chapter VI requires comprehensive testing at elevated temperatures and higher voltages.  

This was limited because all the parts of the prototype were made of printed plastic.  The 

operation at higher voltages and currents requires novel means of suppressing arcs 

occurring due to the current interruption.  The current solution of using free wheeling 

diodes, although acceptable, does not provide bidirectional operation.   
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APPENDIX A 

 
IRON LOSS CALCULATION METHOD 

 
Calculation of the lamination material core loss is one the of the considerations in a 

new motor design.  The eddy and hysteresis coefficients are required in the calculation 

of the iron loss.  These coefficients are obtained here from curve fitting of several 

manufacturer data points.  The following set of equations, provide a detailed step by step 

method for calculating the iron losses of a lamination material.  The calculations, 

however, do not include the effect of voltage harmonics produced by the PWM inverter 

switching, however, provide a reasonable approximation of the losses.  The calculations 

were implemented in Mathcad.  

Iron loss calculation constants: 

 3
19 639.7 cmgmM =ρ  

 2

452.6
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Let core volume/10 = A 
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Hysteresis losses per pound: 

 
lb

W
ABfP

x
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Eddy Current losses per pound: 
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Total Iron Loss: 
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