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ABSTRACT

Generalized Finite Element Method for Helmholtz Equation. (May 2007)

Realino Hidajat, B.S., Parahyangan Catholic University;

M.S., University of Nebraska - Lincoln

Chair of Advisory Committee: Dr. T. Strouboulis

This dissertation presents the Generalized Finite Element Method (GFEM) for the scalar

Helmholtz equation, which describes the time harmonic acoustic wave propagation problem.

We introduce several handbook functions for the Helmholtz equation, namely the plane-

wave, wave-band, and Vekua functions, and we use these handbook functions to enrich the

Finite Element space via the Partition of Unity Method to create the GFEM space. The

enrichment of the approximation space by these handbook functions reduces the pollution

effect due to wave number and we are able to obtain a highly accurate solution with a

much smaller number of degrees-of-freedom compared with the classical Finite Element

Method. The q-convergence of the handbook functions is investigated, where q is the order

of the handbook function, and it is shown that asymptotically the handbook functions

exhibit the same rate of exponential convergence. Hence we can conclude that the selection

of the handbook functions from an admissible set should be dictated only by the ease of

implementation and computational costs.

Another issue addressed in this dissertation is the error coming from the artificial trun-

cation boundary condition, which is necessary to model the Helmholtz problem set in the

unbounded domain. We observe that for high q, the most significant component of the error

is the one due to the artificial truncation boundary condition. Here we propose a method

to assess this error by performing an additional computation on the extended domain using

GFEM with high q.



iv

To Saudah Safrina Sinaga and Amelie Indira Hidajat



v

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to Dr. Theofanis

Strouboulis for his continuous guidance, support and encouragement. His passion for re-

search and tireless effort should be a model for everyone. He taught me to never give up

and to always strive for the best in spite of the situation. For this I will forever be grateful.

I would like to thank Dr. J. Junkins, Dr. J. Pasciak, and Dr. Y. Efendiev for serving on

my advisory committee. Their comments and suggestions, not only during the preliminary

examination and the dissertation defense but especially during my visit to their respective

offices, are priceless.

I would like to express my gratitude also to Professor Ivo Babuška for his advice and
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CHAPTER I

INTRODUCTION

1.1 Motivation and background

The multiple scattering problem, which is governed by the Helmholtz equation, is of great

interest due to its range of applications such as analysis of sonar signature from a group of

underwater objects, analysis of shear wave propagation in composites, and electromagnetic

wave scattering, to name a few. In this dissertation we will focus on the scattering of acoustic

waves which is governed by the scalar Helmholtz equation, and we note that the extension to

the elastic wave propagation problem (vector Helmholtz equation), coupled acoustic fluid -

elastic solid problems, and Maxwell equation (coupled vector Helmholtz equation) is rather

straightforward, although it is evident that the associated issues of high-dimensionality are

not implied to be trivial. For an excellent monogram on the Finite Element Method for the

acoustic wave propagation problem we refer to Ihlenburg [1].

The analysis of the computational methods to solve the Helmholtz equation has been

an intense endeavor and a lot of progress have been made in this field. Some inherent issues

that are still actively investigated are:

1. The effect of the pollution. The pollution is defined as the difference between

the approximate numerical solution and its best approximation, and it is related

to the dispersion, where the numerical wave number differs from the original wave

number. This pollution restricts the element size of the computational mesh which

makes it necessary to use a very fine mesh for problems with large wave number.

The analysis of the pollution in the context of h and hp finite element method was

This dissertation follows the style of Computer Methods in Applied Mechanics and Engineering.
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done by Babuška and Ihlenburg [2, 3]. Deraemaeker, Babuška, and Bouillard [4] pre-

sented a general approach for assessing the pollution of various approximations of the

Helmholtz equations, and Babuška and Saunter [5] addressed the important question:

Is the pollution avoidable by special design of the approximation method in one and

higher dimensions?

2. The effect of the truncation of the domain. To properly analyze the scattering

problem in a finite computational domain, appropriate conditions must be applied at

the truncation boundary to simulate the actual physics of the problem; namely that

the scattered wave will not be reflected back to the domain. Several methods are

available, such as the absorbing boundary conditions [6–9], infinite element methods

[10–12], and the perfectly-matched layer [13]. The research in this field is still an

ongoing endeavor with the goal of minimizing the spurious waves and reducing some

geometric restrictions on the boundary.

3. The robustness issue. Several methods have been proposed to alleviate the pol-

lution problem by introducing wave-like functions into the approximation methods.

Example of these methods are the Partition of Unity Method of Babuška and CO-

workers [14–19] and of Laghrouche, Bettess, and co-workers [20–22], Discontinuous

Enrichment Method of Farhat and co-workers [23, 24], Variational Theory of Com-

plex Rays of Ladevèze, Rouch, and Riou [25–27]. The question that have not been

addressed satisfactorily by the methods above is the robustness with respect to the

integration of the stiffness matrix, the round-off error, and the mesh perturbations.

For example, some methods introduce special integration techniques that can work

only on the rectangular domains.
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Let us start by looking at the scalar Helmholtz problem in 1D (one dimensional) setting:

Find u = u(x), such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−d
2u

dx2
(x) − k2u(x) = ex, x ∈ Ω = (0, 1)

u(0) = 0,

du

dx
(1) − iku(1) = 0

(1.1)

where k is the wave number. Here we have homogeneous Dirichlet boundary condition on

the left node and the Sommerfeld radiation boundary condition on the right node. Note

that for one-dimensional case, the Sommerfeld radiation boundary condition is exact; there

is no spurious wave reflected from the boundary as in the higher-dimensional case. In this

Model Problem we highlight in this dissertation only the capability of the GFEM in solving

the Helmholtz problem with very high wave number and leave out the issue of the truncation

boundary condition.

Figure 1.1 reports the H1 seminorm of the approximate solutions uh(x) of the 1D Model

Problem (1.1): √∫ 1
0 |e′h(x)|2√∫ 1

0 |u′EX(x)|2
× 100% (1.2)

for various k, where uEX(x) is the exact solution of (1.1) and eh(x) = uEX(x) − uh(x) is

the error in the Finite Element/GFEM solution. Here the solutions uh(x) are obtained by

using the Finite Element Method with p = 1, .., 4 and by using the GFEM with p = 1 and

the handbook functions:

{
sin
(
k(x− xi)

)
, cos

(
k(x− xi)

)}
(1.3)

where xi is the coordinate of node i. The benefit of introducing trigonometric functions

(1.3) into the approximation space is obvious from the results plotted in Figure 1.1. We
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Figure 1.1. Relative error in H1-seminorm for the solution of (1.1) using 50 uniform elements
computed using Finite Element Method with p = 1, 2, 3, 4 and the GFEM with p = 1.

can see that we are able to get the solution with relative error ≈ 1% up to k ≈ 250, while

the for the Finite Element Method, using p = 4 the same relative error can be obtained

only until k ≈ 150.

Now let us look at the pollution effect. Figures 1.2 and 1.3 show the convergence in

H1-seminorm computed using Finite Element with p = 2, GFEM with p = 1, their best

approximation for k = 50 and k = 100 respectively. From both figures we can see that the

pollution, which is the difference between the Finite Element/GFEM graph and its best

approximation graph, disappears as the element size is reduced. Moreover, the pollution in

GFEM is much less that the pollution in Finite Element for the same number of elements,

and by comparing Figures 1.2 and 1.3 we can see how the pollution is worse for higher wave

number k.

The idea of enriching the approximation space can be traced back to the work on the

Partition of Unity Method of Babuška, Caloz, and Osborn [14], and Babuška and Melenk
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(see Melenk’s M.Sc. and Ph.D. theses [15, 16] and in the papers stemming from these theses

[17–19]). Let us also note that Oden and Duarte were the first to employ the Partition

of Unity Method in a meshless setting in the context of the hp-cloud method [28, 29].

The Generalized Finite Element Method, which is an extension of the Partition of Unity

Method, was first proposed in the works of Strouboulis, Copps, and Babuška [30–33], and

also Strouboulis, Zhang, and Babuška [34–36] for solving coercive elliptic problems (e.g. the

Laplace equation, the equation of heat conduction, etc) in problems with complex domains

using enrichment by handbook functions. The mathematical aspects of the Generalized

Finite Element Methods, including the method proposed here, were addressed in the work

of Babuška, Banerjee, and Osborn [37–39] where many more references can be found. Let

us also mention the work on the eXtended Finite Element Method (XFEM) by Belytschko

and co-workers [40, 41] which has similar ingredients, and also the work by Duarte and

co-workers [42].

The utilization of wave-related functions to enrich the approximation space for solving

the Helmholtz equation was introduced in the Ph.D. thesis of Melenk [16], where the the-

oretical aspects of the Partition of Unity method for the Helmholtz are addressed. Other

important works that utilized the plane-wave functions were contributed by Laghrouche,

Bettess and co-workers [20–22], by Ortiz [43], and by Astley and Gamallo [44]. The three-

dimensional version of the method was addressed by Perrey-Debain, Laghrouche, et. al.

in [45]. Let us also mention the related works by Farhat and co-workers [23, 24] on the

Discontinuous Enrichment Method (DEM) which also employs enrichment by plane-wave

functions using a formulation based on the Discontinuous Galerkin with Lagrange Multi-

pliers, and also the work of Ladevèze, Rouch, and Riou [25–27] on the variational theory of

complex rays (VTCR) which also uses enrichments of the approximation by local solutions

of the wave equation.

We note that all the proposed method that utilized wave-like solution mentioned above
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are capable of reducing the pollution effect. This can be concluded from their ability to

obtain accurate solution (e.g. solutions with error 1% or better in relative value of the

H1-seminorm of the error) while using meshes with mesh size h of one or several wave-

lengths λ = 2π/k. The major difference among the methods are the formulation to include

the special or handbook functions and the variation of the wave solution employed. We

also note that the main issue dominating all the method above is the integration of the

stiffness matrix. The introduction of wave-like solution, especially the ones with high-

wave number k, requires the integration of the highly-oscillatory functions for the stiffness

matrices. Some semi-analytical integration methods are available, e.g. [22, 46, 47], but

they impose geometrical limit on the domain of interest. The Generalized Finite Element

Method, on the other hand, has an adaptive integration scheme that is more robust and is

capable of doing integrations on complex domains [30, 32].

1.2 Research objectives

We can summarize the goal of this research as follows:

1. To provide a highly-accurate computational method for the Helmholtz equation with

high wave number k on the domain with complex geometries. The flexibility of the

Generalized Finite Element Method to include any functions into the approximation

space enables us to analyze the various Helmholtz handbook functions, and we will

look at their q-convergence properties.

2. To analyze the pollution and its relation with h, p, and q parameters of the Generalized

Finite Element.

3. To show the robustness of the method with respect to mesh types, mesh perturbations,

quadrature error and round-off error.
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4. To provide the analysis of the error from the artifical truncation boundary condition,

and integrating it with the analysis of interior approximation for Helmholtz equation.

5. To propose a posteriori error estimate for both the interior approximation and the

error coming from artificial truncation boundary condition.

1.3 Outline of the dissertation

Following this Introduction, we will give a review of the Generalized Finite Element Method

in Chapter II. Here we will also analyze the GFEM for Helmholtz equation using plane-

wave functions and show its robustness with respect to mesh perturbations, quadrature

error, and round-off error. We continue by presenting the wave-band functions in Chapter

III and comparing its performance with the plane-wave functions in the Partition of Unity

settings on the rectangular domain. For this setting, a semi-analytical integration method

for the computation of the stiffness matrix is available and thus we are able to analyze the

high-order Gauss Legendre integration performance used in the general GFEM setting.

In Chapter IV we will use the GFEM for the analysis of the multiple scattering problem.

Here we will introduce the Vekua handbook function and compare the performance of the

three handbook functions. The analysis of the error coming from the artificial truncation

boundary condition will be done in Chapter V, where we will also give a method to assess

that error. We will close this dissertation by giving the summary, discuss the open problems

and suggest the directions of future research in Chapter VI.
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CHAPTER II

GENERALIZED FINITE ELEMENT METHOD USING PLANE-WAVE
HANDBOOK FUNCTION∗

2.1 Review of the Generalized FEM

The Generalized Finite Element Method (GFEM) is a direct extension of the standard finite

element method, which makes it possible to get accurate solution of the problems defined

in complex domains. The GFEM is based on the Partition of Unity Method (PUM) which

was developed by Babuška and Melenk [15–18] and Duarte and Oden [48]. The design and

implementation of GFEM was studied by Strouboulis, Copps, and Babuška [30–32]. For

the history of GFEM aspects, such as PUM, adaptive integration, etc, see the references in

[31].

Definition 1 (Partition of Unity)

Let d ∈ N, Ω ⊂ R
d be an open set, {Ωh

i }N(h)
i=1 , h > 0, be a family of coverings of Ω satisfying

an overlapping condition:

∃M ∈ N, ∀h > 0, ∀x ∈ Ω, card{i|x ∈ Ωh
i } ≤M. (2.1)

Let {φhi }N(h)
i=1 ⊂ W 1,∞(Rd) be a family of partitions of unity subordinate to the coverings

{Ωh
i }N(h)
i=1 satisfying

suppφhi ⊂ closure(Ωh
i );

N(h)∑
i=1

φhi ≡ 1, on Ω, (2.2)

‖φhi ‖L∞(Ω) ≤ C∞; ‖∇φhi ‖L∞(Ω) ≤
CG

diam(Ωh
i )
, (2.3)

∗This chapter is reprinted with permission from “The generalized finite element method for Helmholtz equa-

tion: Theory, computation, and open problems” by T. Strouboulis, I. Babuška and R. Hidajat, Comp. Meth.

Appl. Mech. Engrg. 195 (2006) 4711-4731 c© 2006 Elsevier B.V.
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for some C∞, CG > 0 independent of h.

Let V h,p
i ⊂ H1(Ω

⋂
Ωh
i ) be a two parameter family of functions spaces, and define V h,p

as

V h,p =

⎧⎨⎩v =
N(h)∑
i=1

φhi v
h,p
i

∣∣∣vh,pi ∈ V h,p
i

⎫⎬⎭ ⊂ H1(Ω). (2.4)

Then we have:

Theorem 1 (Approximation property of the Partition of Unity)

Let Ω, {Ωh
i }, {φhi }, and {V h,p

i } be given as above. Let u ∈ Hk(Ω), k ≤ 1, and suppose

that for fixed h, p, the function u can be approximated locally by functions in V h,p
i , i.e., for

each i, there is vh,pi ∈ V h,p
i such that

‖u− vh,pi ‖L2(Ω Ωh
i ) ≤ ε1(i, h, p)‖u‖Hk(Ω Ωh

i ), (2.5)

‖∇(u− vh,pi )‖L2(Ω Ωh
i ) ≤ ε2(i, h, p)‖u‖Hk(Ω Ωh

i ). (2.6)

Then there is vh,p ∈ V h,p such that

‖u− vh,p‖L2(Ω) ≤MC∞ max
i=1,...,N(h)

ε1(i, h, p)‖u‖Hk (Ω), (2.7)

‖∇(u− vh,p)‖L2(Ω) ≤
√

2M max
i

(
CG

ε1(i, h, p)
diam(Ω

⋂
Ωh
i )

+ C∞ε2(i, h, p)
)
‖u‖Hk(Ω). (2.8)

where C∞, CG are the constants in Definition 1.

The Partition of Unity of Babuška and Melenk seeks the solution of the following discrete

problem:

Find uPUM ∈ Sqh such that:

B(uPUM, v) = L(v) ∀ v ∈ Sqh (2.9)
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where B(·, ·),L(·) are the bilinear and linear forms obtained from the standard variational

formulation, and Sqh is the Partition of Unity space determined by the mesh ∆h, and the

degree q of the special or handbook functions employed at each mesh vertex, namely:

Sqh =

{
v
∣∣∣v =

nnodes∑
i=1

φhi

(
q∑
j=1

a
(i)
j W

(i)
j

)}
(2.10)

Here {φhi }nnodes
i=1 is the Partition of Unity functions, and

{
W

(i)
j

}q
j=1

are the special or hand-

book function employed in the i-th vertex, and we define:

V h,p
i =

{
vh,pi

∣∣∣vh,pi =
q∑
j=1

a
(i)
j W

(i)
j

}
(2.11)

as the local approximation space.

This idea is extended to the Generalized Finite Element Method, where the approxima-

tion space consists of the Finite Element space and the Partition of Unity space described

above. Here the discrete problem is:

Find uGFEM ∈ Sqh,p such that:

B(uGFEM, v) = L(v) ∀ v ∈ Sqh,p (2.12)

where Sqh,p is the Generalized Finite Element space determined by the mesh ∆h, the degree

p of the finite element basis on ∆h, and the degree q of the special or handbook functions

employed at each mesh vertex, namely:

Sk,qh,p =

{
v
∣∣∣v =

nfem∑
k=1

bkNk +
nnodes∑
i=1

φhi

(
q∑
j=1

a
(i)
j W

(i)
j

)}
(2.13)

where Nk denote the standard finite element basis function defined over the mesh ∆h.

2.2 Generalized FEM formulation for Helmholtz equation

In this section we outline the basic results for the Helmholtz problem with Robin bound-

ary conditions in a finite domain. For more details and proofs the reader should consult

Chapter 8 in the Ph.D. dissertation of Melenk [16].



12

Ω

Γ1Γ2

Figure 2.1. Example of a domain Ω with interior boundary Γ1, and outer boundary Γ2.

Definition 2 (Helmholtz model problem)

Let Ω ⊂ R
2, be a bounded domain, with boundary ∂Ω = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅, as shown in

Figure 2.1. We will be interested in the solution u, of the boundary-value problem:

−∆u− k2u = f in Ω (2.14a)

∂u

∂n
= g1 on Γ1 (2.14b)

∂u

∂n
− iku = g2 on Γ2 (2.14c)

Although all the facts mentioned below hold also for Ω ⊂ R
n, for simplicity and practical

issues related with the numerical implementations we are focusing on the two dimensional

case, Ω ⊂ R
2.

Definition 3 (Weak formulation of Helmholtz problem)

Find u ∈ H1(Ω) such that:

B(u, v) = L(v) ∀ v ∈ H1(Ω) (2.15a)

where:

B(u, v) =
∫

Ω
∇u∇v̄ dΩ − k2

∫
Ω
u v̄ dΩ + ik

∮
Γ2

u v̄ ds (2.15b)
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L(v) =
∫

Ω
f v̄ dΩ +

2∑
i=1

∮
Γi

gi v̄ ds, (2.15c)

where H1(Ω) is the space of functions with square-integrable derivatives over Ω.

Let:

|||u||| def=
√

‖∇u‖2
L2(Ω)

+ k2‖u‖2
L2(Ω)

(2.16)

We have:

Theorem 2 (Existence and Uniqueness)

Let f ∈ H−1(Ω), gi ∈ H−1/2(Γi), i = 1, 2. Then, there exists a unique solution of the

Helmholtz problem which satisfies:

|||u||| ≤ C(Ω, k)

(
‖f‖H−1(Ω) +

2∑
i=1

‖gi‖H−1/2(Γi)

)
(2.17)

Here C(Ω, k) indicates the dependence of C on the domain Ω and the wave-number k.

Proof. It is sufficient to consider the case with Γ1 = ∅. Uniqueness (resp. existence) follows

if we can show that:∫
Ω
∇u · ∇v̄ dΩ − k2

∫
Ω
u v̄ dΩ ± ik

∮
Γ2

u v̄ dΓ = 0 (2.18)

with plus (resp. minus) sign in front of the boundary term implies that u = 0. Choosing

v = u and considering the imaginary part it follows that u = 0 on Γ2. Thus, u ∈ H1
0 (Ω),

and we have ∫
Ω
∇u · ∇v̄ dΩ − k2

∫
Ω
u v̄ dΩ = 0 ∀ v ∈ H1(Ω) (2.19)

which means that u satisfies the Helmholtz equation with f = 0, and homogeneous boundary

conditions on ∂Ω, from which it follows (see p. 117 in Melenk [16]) that u is identically equal

to zero. For the proof of (2.17) see pp. 118-121 in Melenk [16].
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Remark 1: In the case that Ω is convex, C does not depend on k.

In what follows we will assume that Ω is an annulus and we will let f = 0.

Let ∆h be a uniform mesh of squares of size h covering the domain Ω, as is, e.g., shown in

Figure 2.2(a). Let φ∆h
i , i = 1, ...,nnodes, be the classical piecewise bilinear ”hat” functions

associated with the nodes located at the vertices of the squares, and let

ω∆h
i

def= supp φ∆h
i =

{
x ∈ Ω | φ∆h

i (x) > 0
}

(2.20)

be the support of φ∆h
i which consists of the four squares which share the node. Then

{φ∆h
i }nnodes

i=1 is a Lipschitz partition of unity subordinate to the cover {ω∆h
i }nnodes

i=1 satisfying:

nnodes∑
i=i

φ∆h
i ≡ 1 on Ω, ‖φ∆h

i ‖L∞(R2) ≤ 1, ‖∇φ∆h
i ‖L∞(R2) ≤

C

h
(2.21)

h∆

1

4

3

2

1
N (1)

3

N (2)
4

N (3)
1

N (4)
2

(a) (b)

Figure 2.2. (a) Example of a Cartesian mesh ∆h used in the formulation of the Generalized Finite
Element Method over an annular domain Ω. (b) A typical exploded view of the hat function φ∆h

i

over its support.
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We will construct the space of Generalized Finite Element solutions by combining the

following discrete spaces of functions on the mesh ∆h:

a) The standard bi-p (tensor product) finite element space:

Sp∆h
=
{
v ∈ C0(Ω)

∣∣∣ v|τ • Fτ ∈ Q̃p
}

(2.22)

where Q̃p is the space of bi-p (tensor product) polynomial functions of degree p defined

over τ̂ (see p. 97 in Szabó and Babuška [49]), and Fτ : τ̂ = (−1, 1)2 �−→ 1, is the affine

transformation

x = Fτ (x̂) = xτmid +
h

2
x̂ (2.23)

mapping τ̂ = (−1, 1)2 into the square τ of size h, centered at xτmid.

b) The partition of unity space:

W k;q
∆h

=

{
v =

nnodes∑
i=1

φ∆h
i vi

∣∣∣∣ vi ∈W k;q
loc (ω∆h

i )

}
(2.24)

where

W k;q
loc = span

{
wk = exp

(
ik

(
x cos

2πn
q

+ y sin
2πn
q

))
, n = 0, ..., q − 1

}
(2.25)

is the local space of linear combinations of plane waves traveling in the directions(
cos 2πn

q , sin 2πn
q

)
, n = 0, ..., q − 1. Figure 2.3 depicts the employed wave directions

for q = 1, 3, 5, 7, 9, and 11, in a typical patch ω∆h
i .

Definition 4 (Generalized Finite Element solution)

Find

up,qh =
nfem∑
k=1

bkNk +
nnodes∑
i=1

φ∆h
i

⎛⎝ q∑
j=1

a
(i)
j W

(i)
j

⎞⎠ ∈ Sk;qh,p (2.26)
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q = 1 q = 3 q = 5

i

q = 7 q = 9 q = 11

Figure 2.3. Examples of the employed wave directions in a typical patch ω∆h
i .

such that

B(up,qh , v) = L(v) ∀v ∈ Sk;qh,p (2.27)

where Nk denotes a standard FE bi-p basis functions on ∆h, nfem is the total number of

degrees of freedom for the bi-p FE basis functions, and W
(i)
j , j = 1, ..., q are the employed

plane-wave functions in the patch ω∆h
i .

The stability and quasi-optimality of the Generalized FEM is established from the fol-

lowing results which were formulated and proven in Melenk [16].

Theorem 3 (Stability and Quasi-optimality)

Let Ω be a star-shaped domain with smooth boundary, and let S be discrete approximation

spaces satisfying

inf
χ∈S

(
||v − χ||L2(Ω) + h||∇(v − χ)||L2(Ω)

)
≤ C(Ω) h2

(
|v|H2(Ω) + (1 + k)|||v|||

)
(2.28)

for all v ∈ H2(Ω), with C independent of v and h. Then there exist C1, C2, C3 > 0, depending

only on Ω, such that under the assumption:

(1 + k2)h < C1 (2.29)
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we have

inf
u∈S

sup
v∈S

�B(u, v)
|||u||| |||v||| ≥

C2

1 + k
(2.30)

and

|||u− up,qh ||| ≤ C3 inf
χ∈S

|||u− χ||| (2.31)

Proof. See pp. 122-123 in Melenk [16].

We also have:

Lemma 1 (Approximation Property of Generalized FEM space)

The Generalized Finite Element Space

Sk;qh,p
def= Sp∆h

⊕W k;q
∆h

(2.32)

satisfies (2.28).

Proof. The proof follows from p. 138 in Melenk [16].

It follows that Theorem 3 is applicable in the Generalized FEM.

Remark 2: At present, we cannot say a-priori what is sufficiently small h, and what is the

value of C3.

Remark 3: The constant C3 in (2.31) is related to the pollution due to the wave number,

which is directly related to the numerical dispersion. The main effect is that the wave

number of the Galerkin solution is different from the wave number of the exact solution.

The pollution in the solution up,qh of the Helmholtz equation can be measured by dividing

its error |||u− up,qh ||| by the corresponding error in the best approximation inf
χ∈Sk;q

h,p

|||u− χ|||.

The deviation of this ratio from one measures the pollution with respect to the ||| · ||| norm.
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Similarly, the pollution can be measured in other norms, e.g. the ‖ · ‖L2 norm, etc., and

also in any output F(u) of interest.

Remark 4: In the one-dimensional case and for finite element approximation using poly-

nomial shape functions of degree p, Babuška and Ihlenburg [50, 51] have proven that

||∇(u− up,0h )||L2(Ω)

inf
χ∈Sh,p

||∇(u− χ)||L2(Ω)
≈ C1 + C2k

(
kh

p

)p
(2.33)

where we let Sh,p = Sk;0h,p. The term C2k
(
kh
p

)p reflects the pollution due to the wave number.

To understand its effect let

h =
p

k

(tol
C1

) 1
p (2.34)

where tol is a desired error tolerance. Then for the error in the best approximation we have

inf
χ∈Sh,p

||∇(u− χ)||L2(Ω) ≈ tol (2.35)

for any k, while for the same choices of h and p, for the error in the Galerkin solution to

the Helmholtz problem up,0h , we have

||∇(u− up,0h )||L2(Ω) ≈ tol
(

1 +
C2

C1
k

)
(2.36)

which diverges to infinity linearly with k.

Equation (2.31) relates the error in the Generalized FEM, |||u − up,qh |||, with the error

in the best approximation inf
χ∈Sk;q

h,p

|||u − χ|||. Various statements can be made about the

convergence of the error in best approximation depending on the regularity of the solution.
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In this paper we will address only the case of analytic solutions for which we have:

Theorem 4 (h and p and q convergence)

Let the solution u of the Helmholtz problem (2.15) be analytic on Ω̄ = Ω ∪ ∂Ω. Then,

1. For fixed h we have:

inf
χ∈Sk;q

h,p

|||u− χ||| ≤ C(h) e−(αq+βp) (2.37)

where α, β also depend on h.

2. For fixed p and q we have:

inf
χ∈Sk;q

h,p

|||u− χ||| ≤ C(p, q) h−p (2.38)

The main results needed for the proof are given in sections 8.4.-8.6. of Melenk [16].

Remark 5: When (1+k2)h is sufficiently small, Theorem 4 also characterizes |||u−up,qh |||,

the error in the Generalized FEM solution up,qh . When this assumption does not hold, the

error in up,qh can be rather large, e.g. the relative error |||u − up,qh |||/|||u|||, can be 100% or

larger.

Remark 6: Following a similar approach as in [4, 5], it is also possible to characterize the

dependence of the pollution on p and q in a similar form as in (2.33).

The aim of the computation is to obtain reliable information for outputs of interest.

For example, we may be interested in small error measured in the H1-seminorm ‖∇(u −

up,qh )‖L2(Ω), or in small error in the pressure at a point |u(x̄) − up,qh (x̄)|, the value of an

integral of the pressure, or in general F(u) −F(up,q∆h), where F is an output functional.
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The implementation consists of the following stages:

1. Forming the discrete GFEM (Generalized FEM) equations:

KU = F (2.39)

In practice, the coefficients in K and F are replaced by approximate values evalu-

ated by numerical quadrature, and hence we must address the effect of the error in

the numerical integrations. More precisely, let up,qh,∗ be the discrete GFEM solution

obtained using the perturbed system K∗U∗ = F∗, where K∗,F∗ are, respectively,

the perturbed stiffness matrix and load vector obtained using numerical quadrature.

Then, using the triangle inequality we have:

∣∣|||u− up,qh ||| − |||up,qh − up,qh,∗|||
∣∣ ≤ |||u− up,qh,∗||| ≤ |||u− up,qh ||| + |||up,qh − up,qh,∗||| (2.40)

The term |||up,qh − up,qh,∗||| measures the effect of the numerical integration errors, and

can affect the convergence of the method.

2. Solving the discrete GFEM equations by a linear equation solver. We employ Gauss

elimination with partial pivoting, and hence we must also address the effect of the

roundoff error.

3. A posteriori analysis of the error in an output F(up,qh ). Here we will use a rather

straightforward extrapolation approach to estimate the error in any output of interest,

by employing:

F(u) −F(up,qh )
F(u)

≈ F(up,q+sh ) −F(up,qh )

F(up,q+sh )
(2.41)

Using sufficiently high s we can obtain a reliable estimator for any computed output

F(up,qh ).
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2.3 p- and q-convergence of the Generalized FEM using plane-wave basis func-
tions

In what follows we will present and analyze the computational GFEM results obtained

by solving the problem of a scattering of a plane wave by a rigid circular cylinder, which

is depicted in Figure 2.4, using the (h, p, q)-version of the Generalized FEM. Employing

cylindrical coordinates (r, θ), the boundary value problem for the scattered pressure u(r, θ)

reads:

∇2u+ k2u = 0, r > a (2.42a)

∂u

∂r
= − ∂

∂r
(uinc), r = a (2.42b)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0 (2.42c)

where:

uinc(r, θ) = P0 e
ikr cos θ (2.43)

is the pressure field for the incident plane wave. Using separation of variables (see, e.g.,

p. 412 in Jones [52]) we obtain the scattered field in the form:

u(r, θ) = −P0

∞∑
n=0

εni
n J

′
n(ka)Hn(kr)
H ′
n(ka)

cos(nθ) (2.44)

where ε0 = 1, εn = 2, n �= 0, Hn(z) is the cylindrical Hankel function of the first kind, and

Jn(z) is the cylindrical Bessel function of the first kind. Using

g1 = − ∂

∂n
(uinc) on Γ1 = Γs (2.45)

in the Neumann boundary condition (2.14b), and

g2 =
∂u

∂n
− iku on Γ2 (2.46)
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in Robin boundary condition (2.14c), we have completed the definition of our model example

in the finite annular domain Ω bounded by Γ1 and Γ2.

uinc

Ω

truncation boundary

scatterer

R

a

y

x
r

rigid
θ

u

Figure 2.4. Notations used in the definition of the model example of scattering of a plane wave by
a rigid circular scatterer.

In our computations we employed the following data:

• Radius of scatterer, a = 1

• Amplitude of incident wave, P0 = 1

• Radius of truncation boundary R = 2

• Wave number, k = 20.

and we plot the countours of the real and imaginary parts of the scattered field using the

data above on Figure 2.5.

In all the computations below the convergence of the Generalized FEM solution up,qh ,

will be obtained by increasing p and q on the Cartesian meshes shown in Figure 2.6.

In all the results below, unless explicitly stated, the error due to evaluation of K and

F by numerical integration is negligible. Here we employed the 40 × 40 Gauss-Legendre
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REAL PART OF THE SCATTERED WAVE
 Min = -.117E+01 ;  Max = 0.117E+01 

-0.75 -0.50 -0.25  0.00  0.25  0.50  0.75

IMAGINARY PART OF THE SCATTERED WAVE
 Min = -.115E+01 ;  Max = 0.115E+01 

-0.75 -0.50 -0.25  0.00  0.25  0.50  0.75

Figure 2.5. Contours of the real and imaginary parts of the scattered field of the rigid scattering
model example for k = 20.

integration rule in the squares not intersecting the boundary, while in the squares which

intersect the boundary we employed the 13 × 13 Gauss-Legendre rule in the subelements

obtained after subdividing the elements uniformly 9 times and using blending function

transformation in the subelements adjacent to the boundary. To compute the load vec-

tor and stiffness matrix contributions of the boundary terms we used, piecewise, the 40

point Gauss-Legendre integration rule. These choices practically eliminate the numerical
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Mesh A Mesh B Mesh C

(a) (b) (c)

Figure 2.6. The Cartesian meshes used in the computations: (a) Mesh A, h = 0.75 (b) Mesh B,
h = 0.375 (c) Mesh C, h = 0.1875.

integration error for ka = 20, and for the range of accuracy sought in the computations.

Table 2.1. The values of the percent relative error in the GFEM solution: ‖∇(u − up,0
h )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% (first line), the best approximation: ‖∇(u−Ap,q,∗
h u)‖L2(Ω)/‖∇u‖L2(Ω) × 100%

(second line), and their ratio ‖∇(u− up,0
h )‖L2(Ω)/‖∇(u−Ap,q,∗

h u)‖L2(Ω) (third line in parenthesis).

p = 1 p = 2 p = 3 p = 4 p = 5
Mesh A 99.9008 101.8291 128.9875 117.2884 103.2724
h = 0.75 99.1295 96.8871 89.3488 74.9621 56.8233

(1.0078) (1.0510) (1.4437) (1.5647) (1.8174)

Mesh B 127.2886 160.2546 120.5563 46.4416 12.6999
h = 0.375 96.2143 83.4217 54.4879 27.0861 10.6751

(1.3230) (1.9210) (2.2126) (1.7146) (1.1897)

Mesh C 185.3955 109.1867 14.8250 2.7381 0.5046
h = 0.1875 81.0208 36.7081 11.4461 2.6833 0.5047

(2.2883) (2.9746) (1.2952) (1.0204) (0.9980)

In Table 2.1 we report the percent relative error ‖∇(u−up,0h )‖L2(Ω)/‖∇u‖L2(Ω) × 100%,

the corresponding percent relative error in the best approximation ‖∇(u −Ap,q,∗
h u)‖L2(Ω)/

‖∇u‖L2(Ω) × 100%, where Ap,q,∗
h u denotes the best approximation of u which was com-

puted using numerical integration and is defined below, and the value of their ratio ‖∇(u−

up,0h )‖L2(Ω)/‖∇(u−Ap,q,∗
h u)‖L2(Ω) which measures the pollution, for Mesh A, B, and C, and

for p = 1, ..., 5. We will say that the pollution in the H1-seminorm of the error is negligible
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if:

‖∇(u− up,0h )‖L2(Ω)

‖∇(u−Ap,q,∗
h u)‖L2(Ω)

− 1 < ε (2.47)

for sufficiently small ε > 0. In the results below we see that when the error is small, the

ratio ‖∇(u− uph)‖L2(Ω)/‖∇(u−Ap,q,∗
h u)‖L2(Ω) may be below one. This is due to the errors

in the employed numerical integrations of the right-hand side of the discrete problem for

Ap,q,∗
h u , and this only happens for rather small error and when the pollution is negligible.

Remark 7: Let us also note that for rectangular elements it is also possible to evaluate all

integrals analytically following Bettess et. al [22, 46]. Nevertheless this may not be the case

for elements intersecting the boundary where we need to employ numerical integration.

Let us now elaborate on the computation of the best approximation Ap,q,∗
h u. Let Ap,q

h u

be the best approximation of u in the H1-seminorm defined by the discrete variational

problem:

Definition 5 (Best Approximation)

Find Ap,q
h u ∈ Sk;qh,p such that:∫

Ω
∇ (Ap,q

h u
) · ∇v̄ dΩ =

∫
Ω
∇u · ∇v̄ dΩ ∀ v ∈ Sk;qh,p (2.48)

where u is given by (2.44).

This leads to the system of linear equations

KBA UBA = FBA (2.49)

where KBA consists of the Laplacian part of K used in the discrete system of Helmholtz

GFEM equations. The right hand side FBA is not computed when setting up the dis-

crete Helmholtz GFEM equations, and its evaluation requires the numerical integration of

integrals of the type ∫
Ω
∇u · ∇Nk dΩ,

∫
Ω
∇u · ∇

(
φ∆h
i W

(i)
j

)
dΩ (2.50)
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respectively, for the FE degrees of freedom, and the plane-wave degrees of freedom in each

patch ω∆h
i . These numerical integration errors for the employed numerical quadrature in the

evaluation of these terms are not negligible and are responsible for the paradoxical behavior

of the H1-seminorm of the error in the Helmholtz GFEM solution up,qh being smaller that

the corresponding value of the H1-seminorm of the error in the best approximation Ap,q,∗
h u,

when the relative error is very small, when up,qh and Ap,q
h u should be practically identical. For

this reason we employed the star in Ap,q,∗
h u to underline the effect of numerical integration.

In Theorem 3 above we have stated that for sufficiently small (1 + k2)h, the Helmholtz

GFEM solution up,qh converges like the best approximation Ap,q
h u, namely there exists a C

such that

‖∇(u− up,qh )‖L2(Ω) ≤ C‖∇(u−Ap,q
h u)‖L2(Ω) (2.51)

Nevertheless, the present theory does not indicate what is sufficiently small (1 + k2)h. We

will now give some results which indicate when (1 + k2)h is sufficiently small in the setting

of our model example.

In Table 2.1 we give the values of the percent relative error in the GFEM solution:

‖∇(u − up,0h )‖L2(Ω)/‖∇u‖L2(Ω) × 100%, the best approximation: ‖∇(u−Ap,q,∗
h u)‖L2(Ω)/

‖∇u‖L2(Ω) × 100%, and their ratio ‖∇(u− up,0h )‖L2(Ω)/‖∇(u−Ap,q,∗
h u)‖L2(Ω) for Mesh A,

B, and C, for p = 1, ..., 5, and q = 0. We can see that in the preasymptotic range, when

(1+k2)h is not sufficiently small, the error can grow with decreasing h and increasing p; for

example the error ‖∇(u − up,0h )‖L2(Ω) grows when h is halved from Mesh A to Mesh B for

p = 1, 2, and for Mesh A, as p is increased from p = 1 to p = 3, and for Mesh B for p = 1

to p = 2. On the other hand, the error in the best approximation ‖∇(u − Ap,q,∗
h u)‖L2(Ω)

decreases monotonically when h is halved and p is increased.

From Table 2.1 it is clearly visible that the pollution effect is smaller for higher order

elements, which is in complete agreement with the analysis of Ihlenburg and Babuška [50].
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It is clear that the generic statement ”for (1+ k2)h sufficiently small” is not precise enough

and more work is needed for coming up with more precise assumptions.

Let us now consider the case of fixed h where the convergence is obtained by increasing

p and q. Table 2.2 gives the percent relative error in the GFEM solution ‖∇(u−up,qh )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% for p = 1, ..., 5, and q = 1, ..., 17, the corresponding percent relative

error in the best approximation ‖∇(u − Ap,q,∗
h u)‖L2(Ω)/‖∇u‖L2(Ω) × 100% and the value

of their ratio ‖∇(u− up,qh )‖L2(Ω)/‖∇(u−Ap,q,∗
h u)‖L2(Ω) for Mesh A.
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Figure 2.7. q-convergence of the GFEM and best approximation for Mesh A, for p = 1.

Note that in Mesh A for p = 1 (resp. p = 2) the pollution is significant up to q = 17

(resp. q = 11) and is responsible for the non-monotonic convergence of the GFEM solution.

This is because h of Mesh A is not ”sufficiently small”. However for p ≥ 3, the same h is

sufficiently small and the asymptotic characteristics are achieved for q ≥ 9 for p = 3 and

q ≥ 7 for p = 4, 5, and the error in the GFEM Helmholtz solution up,qh is very close to the

error in the best approximation Ap,q
h u. This is visible in Figures 2.7 and 2.8 where we

give the convergence of the relative error in the GFEM best approximation and the relative
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Table 2.2. The values of the percent relative error in the GFEM solution: ‖∇(u − up,q
h )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% (first line), the best approximation: ‖∇(u−Ap,q,∗
h u)‖L2(Ω)/‖∇u‖L2(Ω) × 100%

(second line), and their ratio: ‖∇(u − up,q
h )‖L2(Ω)/‖∇(u−Ap,q,∗

h u)‖L2(Ω) (third line in parenthesis)
for Mesh A.

q p = 1 p = 2 p = 3 p = 4 p = 5

88.8956 92.7851 86.4943 96.5746 71.1913
1 67.7462 65.8201 59.6792 50.0543 38.6725

(1.3122) (1.4097) (1.4493) (1.9294) (1.8409)
87.1527 87.7538 88.3337 80.0862 53.7899

3 51.6927 49.9326 45.1638 37.5849 27.3563
(1.6860) (1.7574) (1.9558) (2.1308) (1.9663)

75.0909 73.6314 72.0024 45.3358 24.6598
5 29.4483 28.5353 26.0802 21.0737 13.6805

(2.5500) (2.5804) (2.7608) (2.1513) (1.8026)

24.0910 22.1618 73.2851 4.4048 2.6819
7 6.1581 5.8758 4.8816 3.6280 2.4309

(3.9121) (3.7717) (15.0120) (1.2141) (1.1033)

13.4984 3.8457 1.9349 1.4073 0.9041
9 2.2310 2.0874 1.7118 1.3216 0.8691

(6.0502) (1.8423) (1.1303) (1.0648) (1.0403)

2.0035 6.0432 0.8395 0.5113 0.3122
11 1.0542 0.9945 0.7800 0.4934 0.3020

(1.9005) (6.0766) (1.0763) (1.0363) (1.0338)

4.8809 0.4536 0.3410 0.2211 0.1409
13 0.4320 0.3936 0.3213 0.2137 0.1376

(11.2980) (1.1524) (1.0613) (1.0346) (1.0240)

0.2800 0.1334 0.1020 0.0758 0.0466
15 0.1329 0.1226 0.0981 0.0740 0.0460

(2.1068) (1.0881) (1.0398) (1.0243) (1.0130)

0.0624 0.0506 0.0359 0.0267 0.0171
17 0.0454 0.0431 0.0351 0.0264 0.0176

(1.3744) (1.1740) (1.0228) (1.0114) (0.9716)

error in the Helmholtz GFEM solution versus q for p = 1 and p = 5. We can clearly see

that what h is sufficiently small depends on the employed p.
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Figure 2.8. q-convergence of the GFEM and best approximation for Mesh A, for p = 5.

Figure 2.9 gives the q convergence of the GFEM best approximation and the GFEM

Helmholtz solution for Mesh A for p = 1, ..., 5 and q = 0, 1, ..., 17. Here we employed the

square root of the total number of degrees of freedom
√
NDOF in the horizontal axis. We

note that we practically have exponential convergence with

‖∇(u− up,q∆h)‖ ≈ C e−γ
√
NDOF (2.52)

with γ ≈ 0.5. This follows from Theorem 3 and 4 which state that, for sufficiently small h,

we have exponential convergence with q. Note that
√
NDOF is proportional with q.

In Table 2.3 we give the percent relative error in the GFEM solution: ‖∇(u−up,qh )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% , the best approximation: ‖∇(u−Ap,q,∗
h u)‖L2(Ω)/‖∇u‖L2(Ω) × 100%,

and their ratio: ‖∇(u − up,qh )‖L2(Ω)/‖∇(u − Ap,q,∗
h u)‖L2(Ω) for Mesh B, where we obtained

the convergence by increasing p and q. We note here that the pollution is much smaller

compared with the similar p and q on Mesh A. Note also that for p = 4, 5, and q = 11, 13,

the best approximation Ap,q,∗
h u is polluted by the error in the numerical integration of its
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Table 2.3. The values of the percent relative error in the GFEM solution: ‖∇(u − up,q
h )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% (first line), the best approximation: ‖∇(u−Ap,q,∗
h u)‖L2(Ω)/‖∇u‖L2(Ω) × 100%

(second line), and their ratio: ‖∇(u − up,q
h )‖L2(Ω)/‖∇(u−Ap,q,∗

h u)‖L2(Ω) (third line in parenthesis)
for Mesh B.

q p = 1 p = 2 p = 3 p = 4 p = 5

96.8689 88.0763 67.5157 24.3475 6.2752
1 60.7625 50.2974 29.9357 13.8615 5.1855

(1.5942) (1.7511) (2.2554) (1.7565) (1.2101)
64.3227 44.7225 22.5949 7.5591 2.2876

3 22.7306 19.4872 12.2103 5.5327 2.0518
(2.8298) (2.2950) (1.8505) (1.3663) (1.1149)

4.3863 3.0911 1.7218 0.7393 0.2498
5 3.4416 2.8093 1.6559 0.7305 0.2524

(1.2745) (1.1003) (1.0398) (1.0120) (0.9897)

0.8669 0.6043 0.3044 0.1129 0.0416
7 0.8270 0.5916 0.3018 0.1124 0.0421

(1.0482) (1.0215) (1.0086) (1.0044) (0.9881)

0.1394 0.1048 0.0625 0.0227 0.0087
9 0.1381 0.1041 0.0622 0.0230 0.0094

(1.0094) (1.0067) (1.0048) (0.9870) (0.9255)

0.0215 0.0174 0.0108 0.0019 0.0019
11 0.0214 0.0174 0.0108 0.0053 0.0049

(1.0047) (1.0000) (1.0000) (0.3585) (0.3878)

0.0032 0.0029 0.0019 0.0009 0.0004
13 0.0033 0.0030 0.0024 0.0043 0.0144

(0.9697) (0.9667) (0.7917) (0.2093) (0.0278)

right hand side and we are getting the paradoxical behavior that we mentioned earlier. This

happens well after the pollution has ended and when we practically have up,qh ≈ Ap,q
h u. This

can be clearly seen in Figure 2.10.

In Figure 2.11 we show the q-convergence for p = 1, ..., 5 on Mesh C. The results here

are practically exact for q = 7 and q = 9. Comparing Figures 2.10 and 2.11 we see the

dependence of the exponential rate of convergence γ on h.
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Figure 2.9. q-convergence of the GFEM solution up,q
h versus the corresponding convergence of the

best approximation Ap,q,∗
h u for Mesh A, for p = 1, ..., 5 and q = 0, 1, ..., 17. Note the dependence of

the pre-asymptotic range on p.

From the above results we see that the most effective way to employ the Generalized

FEM for the Helmholtz is to use a coarse mesh, with h = αλ = α2π/k, with α ∈ (1, 2.5)

e.g. about 1 or 2 wave length per element, to fix p = 2 or 3, and to obtain convergence by

increasing q. This is analogous with the p-convergence employed by the commercial code

StressCheck and other p-version codes.

Above we answered what is sufficiently small h in the setting of our model example.

Now, comparing Tables 2.2 and 2.3 we also see the effect of the numerical integration on

the convergence of the best approximation with h.

From Theorems 3 and 4, we expect that for sufficiently small h, we get exponential

convergence with p and q, namely

‖∇(u− up,qh )‖L2(Ω) ≈ Ce−(αq+βp) (2.53)

with C, α, and β depend on h. Let us now analyze the computed results and address the
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Figure 2.10. q-convergence of the GFEM solution up,q
h versus the corresponding convergence of the

best approximation Ap,q,∗
h u for Mesh B, for p = 1, ..., 5 and q = 0, 1, ..., 13. Note the paradoxical

behavior of the best approximation which is due to numerical integration error in the right-hand
side of the discrete equations.

exponential rates of the GFEM in our model example. Figures 2.12, 2.13, and 2.14 graph the

convergence of the relative error versus q for Mesh A, B, and C, respectively. As expected,

for sufficiently small h, we get a linear relationship with p and q, namely

log

(
‖∇(u− up,qh )‖L2(Ω)

‖∇u‖L2(Ω)

)
≈ log

(
C

‖∇u‖L2(Ω)

)
− (αq + βp) (2.54)

In Figure 2.12 we see oscillations which indicate pre-asymptotic behavior, while most of

the results in Mesh B for q ≥ 5, and Mesh C for q ≥ 3 are in the asymptotic range. Com-

paring asymptotic range in these Figures it is clear that the rate of exponential convergence

increases as h is refined, for example for Mesh A we have α ≈ 0.5, for Mesh B α ≈ 0.75,

and for Mesh C α ≈ 1. The improvement in the exponential rates α as h is decreased can

be explained by noting that, as the mesh is refined, the solution becomes smoother locally

with respect to the mesh.
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Figure 2.11. q-convergence of the GFEM solution up,q
h for Mesh C, for p = 1, ..., 5, and q = 0, 1, ..., 9.

Comparing this Figure with Figure 2.10 we see the dependence of the exponential rate of convergence
γ with h.
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Figure 2.12. q-convergence of the relative error of the GFEM solution up,q
h for Mesh A versus q, for

p = 1, ..., 5.
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Figure 2.13. q-convergence of the relative error of the GFEM solution up,q
h for Mesh B versus q, for

p = 1, ..., 5.
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Figure 2.14. q-convergence of the relative error of the GFEM solution up,q
h for Mesh C versus q, for

p = 1, ..., 5.
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Let us once more underline that here we are mainly interested in the exponential con-

vergence with q, and we use p to limit the extent of the pre-asymptotic range.

2.4 A posteriori estimation using extrapolation

As we have seen above, a main open problem in the solution of the Helmholtz equation by

the p-version of the Generalized FEM is when the pollution ends, or equivalently what is

sufficiently small h. Although at this moment we cannot answer this question theoretically,

we may detect the end of the pollution in a simple a posteriori way. Further, having detected

the end of the pollution, in the asymptotic range we can employ extrapolation to obtain

reliable error estimators.

Let us give an example of how we can detect the end of the pollution and how we can

use q-extrapolation for estimating the error in a computed quantity of interest F(up,qh ) by

extrapolation. Let us underline that before applying any extrapolation we need to make

sure that the values employed in the approximation are in the asymptotic range. This can

be determined by employing a graph of the value of the computed output F(up,qh ) versus

q or equivalently versus
√
NDOF . Let us, for example, employ the H1-seminorm of the

solution as the quantity of interest, namely F(u) = ‖∇u‖L2(Ω).

In Figure 2.15 (resp. Figure 2.16) we plotted F(up,qh ) = ‖∇up,qh ‖L2(Ω) versus
√
NDOF

for p = 1, ..., 5, and q = 0, 1, ...17, for Mesh A (resp. q = 0, 1, ..., 13 for Mesh B). From both

Figures it is rather easy to detect the end of the pollution and the extent of the asymptotic

range for which we expect the extrapolation to give good results. We can now employ the

simple extrapolation proposed in (2.41) above to obtain the estimator

Es‖∇up,q
h ‖L2(Ω)

=
‖∇up,q+sh ‖L2(Ω) − ‖∇up,qh ‖L2(Ω)

‖∇up,q+sh ‖L2(Ω)

(2.55)

for the relative error in ‖∇up,qh ‖L2(Ω). We see that by employing q = 11, s = 6 for Mesh A

(as reported in Table 2.4), and q = 7, s = 6 for Mesh B (as reported in Table 2.5), we
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get effectivities between 0.67 and 1.67. It is also possible to employ a more sophisticated

extrapolation to extract higher order accuracy, as, e.g. in p. 69 of Babuška and Szabó [49].

Table 2.4. Exact and estimated relative error and its effectivity index for the relative error in
‖∇up,11

h ‖L2(Ω), computed on Mesh A.

p
‖∇u‖L2(Ω) − ‖∇up,11h ‖L2(Ω)

‖∇u‖L2(Ω)

‖∇up,17h ‖L2(Ω) − ‖∇up,11h ‖L2(Ω)

‖∇up,17h ‖L2(Ω)

θ

1 0.0386 % 0.0379 % 0.9819
2 0.1753 % 0.1748 % 0.9971
3 0.0105 % 0.0105 % 1.0000
4 0.0009 % 0.0006 % 0.6667
5 0.0008 % 0.0010 % 1.2500
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Figure 2.15. Graph of the output F(up,q
h ) = ‖∇up,q

h ‖L2(Ω) versus
√
NDOF for Mesh A. From this

graph we can detect where the pollution has practically ended and the asymptotic range for which
we can employ the extrapolation with good results.

Let us underline that this q-extrapolation approach can be used for the a posteriori

estimation of the error in any quantity of interest and does not require any extra coding.
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Table 2.5. Exact and estimated relative error and its effectivity index for the relative error in
‖∇up,7

h ‖L2(Ω), computed on Mesh B.

p
‖∇u‖L2(Ω) − ‖∇up,7h ‖L2(Ω)

‖∇u‖L2(Ω)

‖∇up,13h ‖L2(Ω) − ‖∇up,7h ‖L2(Ω)

‖∇up,13h ‖L2(Ω)

θ

1 0.0085 % 0.0084 % 0.9882
2 0.0057 % 0.0056 % 0.9825
3 0.0005 % 0.0008 % 1.6000
4 0.0001 % 0.0001 % 1.0000
5 0.00003% 0.00005 % 1.6667
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Figure 2.16. Graph of the output F(up,q
h ) = ‖∇up,q

h ‖L2(Ω) versus
√
NDOF for Mesh B.

Comparing the results of our a posteriori approach for detecting the end of the pollution

and for estimating the error, we see that we get a robust method with respect to the mesh

size h. We see that the character of the graphs and the effectivity indices are practically

the same for both meshes.
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2.5 The effects of perturbation of the mesh

Theoretically, perturbation of the mesh could influence both the approximability and sta-

bility of the method, through the constant C in Theorem 4. To get the idea how much this

influence can be we employed a couple of sample computations.

Figure 2.17. Perturbed Mesh B and Mesh C.
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Figure 2.18. Convergence curves for perturbed and unperturbed Mesh B.

To check the sensitivity of the GFEM solution of the Helmholtz problem up,qh with

respect to perturbations of the mesh, we employed the perturbed Mesh B and Mesh C
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Figure 2.19. Convergence curves for perturbed and unperturbed Mesh C.

shown in Figure 2.17, and in Figures 2.18 and 2.19 we compare the convergence of the

relative error for the unperturbed and perturbed meshes. From these graphs it is clear that

the convergence of the GFEM solution is not sensitive with respect to perturbations of the

nodes of the mesh.

2.6 The effects of roundoff error

The theoretical performance of the method was established under the assumption that there

is neither roundoff nor quadrature error. Next we wanted to get an idea of how much the

roundoff error can influence the results.

To study the effect of the roundoff error in the convergence of the Generalized FEM

solution up,qh , we employed as our model example, the Helmholtz equation on the unit
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square Ω = (0, 1) × (0, 1) with Robin boundary conditions:

−∆u+ k2u = 0 in Ω (2.56a)

∂u

∂n
+ iku = g on ∂Ω (2.56b)

where we chose g such that the exact solution is the plane wave

u(x, y) = eik(x cos θ+y sin θ), θ =
π

16
(2.57)

For this example there already exist results by Melenk [16] for p = 0, q = 1, ..., 19 on

uniform N × N meshes of squares for N =1, 2, 4, and 8.

Tables 2.6 - 2.9 compare the results for the relative error ‖∇(u− up,qh )‖L2(Ω)/‖∇u‖L2(Ω)

computed using p = 1 and q = 1, 3, ..., 19, on the 2 × 2 mesh for k = 1, 2, 4, 8, 16, 32, and 64,

using Double Precision in the Windows machine (Table 2.6), the Linux machine (Table 2.7),

and the results computed using Quadruple Precision in the Unix machine (Table 2.9). The

results by Melenk are available in his Ph.D. thesis and is reproduced in Table 2.8. Similar

results using 4 × 4 are given in Tables 2.10 - 2.13.

Table 2.6. Convergence using 2 × 2 mesh, using Double Precision in Windows machine. The results
below the horizontal lines are polluted by the roundoff in Double Precision.

q k=1.0 k=2.0 k=4.0 k=8.0 k=16.0 k=32.0 k=64.0

1 0.551E-02 0.112E-01 0.236E-01 0.557E-01 0.168E+00 0.614E+00 0.106E+01
3 0.729E-06 0.226E-04 0.625E-03 0.906E-02 0.149E+00 0.618E+00 0.106E+01
5 0.189E-06 0.214E-07 0.689E-06 0.214E-03 0.311E-01 0.730E+00 0.106E+01
7 0.223E-06 0.547E-07 0.138E-07 0.969E-06 0.176E-02 0.283E+00 0.107E+01
9 0.997E-07 0.130E-06 0.184E-07 0.111E-07 0.295E-04 0.874E-01 0.120E+01
11 0.265E-06 0.646E-07 0.108E-06 0.424E-07 0.102E-06 0.985E-02 0.107E+01
13 0.104E-05 0.828E-07 0.105E-06 0.297E-06 0.630E-08 0.177E-03 0.201E+00
15 0.426E-06 0.165E-06 0.654E-07 0.605E-07 0.323E-07 0.698E-06 0.384E-02
17 0.798E-06 0.123E-06 0.168E-06 0.106E-06 0.324E-07 0.843E-08 0.559E-02
19 0.225E-06 0.130E-06 0.120E-06 0.367E-07 0.194E-06 0.709E-08 0.790E-02



41

Table 2.7. Convergence using 2 × 2 mesh, using Double Precision in Linux machine.

q k=1.0 k=2.0 k=4.0 k=8.0 k=16.0 k=32.0 k=64.0

1 0.551E-02 0.112E-01 0.236E-01 0.557E-01 0.168E+00 0.614E+00 0.106E+01
3 0.729E-06 0.226E-04 0.625E-03 0.906E-02 0.149E+00 0.618E+00 0.106E+01
5 0.860E-07 0.201E-07 0.689E-06 0.214E-03 0.311E-01 0.730E+00 0.106E+01
7 0.219E-06 0.589E-07 0.852E-07 0.969E-06 0.176E-02 0.283E+00 0.107E+01
9 0.266E-06 0.552E-07 0.742E-07 0.271E-07 0.295E-04 0.874E-01 0.120E+01
11 0.243E-06 0.124E-06 0.308E-06 0.717E-07 0.102E-06 0.985E-02 0.107E+01
13 0.411E-06 0.121E-06 0.224E-06 0.120E-06 0.702E-08 0.177E-03 0.201E+00
15 0.122E-06 0.785E-07 0.852E-07 0.108E-06 0.256E-07 0.698E-06 0.384E-02
17 0.302E-06 0.203E-06 0.132E-06 0.186E-06 0.741E-07 0.843E-08 0.559E-02
19 0.356E-06 0.668E-07 0.114E-06 0.592E-07 0.476E-07 0.556E-08 0.790E-02

Table 2.8. Convergence using 2 × 2 mesh, results from Babuška and Melenk

q k=1.0 k=2.0 k=4.0 k=8.0 k=16.0 k=32.0 k=64.0
1 0.551E-02 0.112E-01 0.236E-01 0.557E-01 0.168E+00 0.614E+00 0.106E+01
3 0.729E-06 0.226E-04 0.625E-03 0.906E-02 0.149E+00 0.618E+00 0.106E+01
5 0.188E-05 0.832E-07 0.689E-06 0.214E-03 0.311E-01 0.730E+00 0.106E+01
7 0.213E-06 0.420E-07 0.140E-07 0.969E-06 0.176E-02 0.283E+00 0.107E+01
9 0.211E-06 0.110E-06 0.281E-07 0.128E-07 0.295E-04 0.874E-01 0.120E+01
11 0.347E-06 0.668E-07 0.470E-07 0.501E-07 0.101E-06 0.985E-02 0.107E+01
13 0.164E-06 0.250E-06 0.191E-06 0.237E-07 0.132E-07 0.177E-03 0.201E+00
15 0.806E-06 0.121E-06 0.115E-05 0.152E-06 0.761E-07 0.698E-06 0.384E-02
17 0.731E-06 0.373E-06 0.980E-07 0.460E-07 0.330E-07 0.843E-08 0.559E-02
19 0.156E-06 0.782E-07 0.995E-06 0.134E-05 0.668E-06 0.158E-01 0.790E-02
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Table 2.9. Convergence using 2 × 2 mesh, using Quadruple Precision in Unix machine.

q k=1.0 k=2.0 k=4.0 k=8.0 k=16.0 k=32.0 k=64.0

1 0.551E-02 0.112E-01 0.236E-01 0.557E-01 0.168E+00 0.614E+00 0.106E+01
3 0.729E-06 0.226E-04 0.625E-03 0.906E-02 0.149E+00 0.618E+00 0.106E+01
5 0.290E-11 0.146E-08 0.689E-06 0.214E-03 0.311E-01 0.730E+00 0.106E+01
7 0.396E-15 0.161E-13 0.132E-09 0.969E-06 0.176E-02 0.283E+00 0.107E+01
9 0.834E-15 0.255E-15 0.497E-14 0.520E-09 0.295E-04 0.874E-01 0.120E+01
11 0.293E-14 0.219E-14 0.291E-15 0.979E-13 0.102E-06 0.985E-02 0.107E+01
13 0.172E-13 0.945E-15 0.241E-15 0.260E-16 0.908E-10 0.177E-03 0.201E+00
15 0.632E-14 0.502E-15 0.717E-15 0.230E-15 0.821E-14 0.698E-06 0.384E-02
17 0.146E-14 0.396E-15 0.234E-15 0.191E-15 0.468E-17 0.843E-08 0.559E-02
19 0.962E-15 0.376E-15 0.620E-15 0.218E-15 0.196E-15 0.338E-09 0.790E-02

Table 2.10. Convergence using 4 × 4 mesh, using Double Precision in Windows machine. The
results below the horizontal lines are polluted by the roundoff in Double Precision.

q k=1.0 k=2.0 k=4.0 k=8.0 k=16.0 k=32.0 k=64.0

1 0.275E-02 0.552E-02 0.112E-01 0.236E-01 0.565E-01 0.182E+00 0.691E+00
3 0.919E-07 0.242E-05 0.734E-04 0.181E-02 0.177E-01 0.567E+00 0.704E+00
5 0.986E-07 0.856E-07 0.559E-07 0.198E-04 0.237E-02 0.693E-01 0.732E+00
7 0.151E-06 0.580E-06 0.862E-07 0.259E-07 0.562E-04 0.379E-01 0.823E+00
9 0.298E-06 0.724E-06 0.392E-06 0.571E-07 0.649E-06 0.834E-03 0.164E+00
11 0.165E-06 0.311E-06 0.134E-06 0.178E-06 0.844E-08 0.791E-04 0.417E-01
13 0.321E-06 0.837E-06 0.257E-06 0.130E-06 0.421E-07 0.143E-05 0.464E-02
15 0.357E-05 0.863E-06 0.564E-06 0.185E-06 0.228E-06 0.338E-08 0.137E-03
17 0.167E-06 0.387E-06 0.164E-06 0.199E-06 0.596E-06 0.464E-07 0.217E-04
19 0.172E-06 0.919E-06 0.435E-06 0.239E-06 0.117E-06 0.177E-06 0.175E-04
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Table 2.11. Convergence using 4 × 4 mesh, using Double Precision in Linux machine.

q k=1.0 k=2.0 k=4.0 k=8.0 k=16.0 k=32.0 k=64.0

1 0.275E-02 0.552E-02 0.112E-01 0.236E-01 0.565E-01 0.182E+00 0.691E+00
3 0.919E-07 0.242E-05 0.735E-04 0.181E-02 0.177E-01 0.567E+00 0.704E+00
5 0.986E-07 0.584E-07 0.559E-07 0.198E-04 0.237E-02 0.692E-01 0.732E+00
7 0.907E-07 0.460E-06 0.243E-06 0.259E-07 0.562E-04 0.379E-01 0.823E+00
9 0.488E-06 0.484E-06 0.116E-06 0.120E-06 0.649E-06 0.834E-03 0.164E+00
11 0.662E-06 0.581E-06 0.213E-06 0.116E-06 0.266E-07 0.791E-04 0.417E-01
13 0.124E-06 0.651E-06 0.240E-05 0.132E-06 0.144E-06 0.143E-05 0.464E-02
15 0.191E-06 0.710E-06 0.205E-06 0.228E-06 0.132E-06 0.348E-08 0.137E-03
17 0.619E-06 0.454E-06 0.164E-06 0.308E-06 0.165E-06 0.592E-07 0.217E-04
19 0.358E-06 0.383E-06 0.455E-06 0.386E-06 0.126E-06 0.777E-07 0.175E-04

Table 2.12. Convergence using 4 × 4 mesh, results from Babuška and Melenk

q k=1.0 k=2.0 k=4.0 k=8.0 k=16.0 k=32.0 k=64.0
1 0.275E-02 0.552E-02 0.112E-01 0.236E-01 0.565E-01 0.182E+00 0.691E+00
3 0.781E-07 0.242E-05 0.735E-04 0.181E-02 0.177E-01 0.567E+00 0.704E+00
5 0.530E-07 0.488E-06 0.559E-07 0.198E-04 0.237E-02 0.692E-01 0.732E+00
7 0.121E-06 0.393E-06 0.105E-06 0.259E-07 0.562E-04 0.379E-01 0.823E+00
9 0.520E-06 0.718E-06 0.308E-06 0.583E-07 0.649E-06 0.834E-03 0.164E+00
11 0.733E-06 0.755E-06 0.246E-06 0.567E-06 0.178E-07 0.791E-04 0.417E-01
13 0.294E-06 0.103E-05 0.282E-06 0.365E-06 0.647E-07 0.143E-05 0.464E-02
15 0.355E-06 0.929E-06 0.591E-06 0.164E-06 0.119E-06 0.350E-08 0.137E-03
17 0.535E-06 0.109E-05 0.162E-06 0.735E-06 0.269E-06 0.185E-06 0.217E-04
19 0.917E-06 0.718E-06 0.402E-06 0.180E-06 0.125E-06 0.572E-07 0.175E-04
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Table 2.13. Convergence using 4 × 4 mesh, using Quadruple Precision in Unix machine.

q k=1.0 k=2.0 k=4.0 k=8.0 k=16.0 k=32.0 k=64.0

1 0.275E-02 0.552E-02 0.112E-01 0.236E-01 0.565E-01 0.182E+00 0.691E+00
3 0.767E-07 0.242E-05 0.735E-04 0.181E-02 0.177E-01 0.567E+00 0.704E+00
5 0.232E-12 0.117E-09 0.559E-07 0.198E-04 0.237E-02 0.692E-01 0.732E+00
7 0.234E-15 0.597E-15 0.451E-11 0.258E-07 0.562E-04 0.379E-01 0.823E+00
9 0.391E-15 0.166E-14 0.973E-16 0.110E-10 0.649E-06 0.834E-03 0.164E+00
11 0.301E-14 0.302E-14 0.306E-15 0.163E-14 0.154E-08 0.791E-04 0.417E-01
13 0.669E-14 0.355E-15 0.462E-15 0.191E-15 0.832E-12 0.143E-05 0.464E-02
15 0.199E-14 0.827E-15 0.259E-14 0.311E-15 0.788E-16 0.322E-08 0.137E-03
17 0.125E-14 0.120E-14 0.128E-14 0.114E-14 0.739E-16 0.467E-10 0.217E-04
19 0.605E-14 0.830E-14 0.719E-15 0.127E-14 0.140E-15 0.183E-11 0.175E-04

Figures 2.20, 2.21, 2.22, and 2.23 give the convergence graphs for k = 1, 16, 32, and 64.

Note that for low k the convergence is limited by the machine precision. This is because

the employed wave functions are linearly dependent at the limit of zero wave number k = 0.

Note also that as the wave number k is increased there is small difference due to the machine

precision. For example, for k = 64, all results practically coincide and the accuracy of

the approximation is limited not by the roundoff but by the numerical integration error.

Nevertheless, for exact integration, the exponential convergence can always be maintained

to smaller relative error by quadruple precision. Similarly, if we had the capability to

employ octuple precision we could maintain the exponential convergence to even higher

accuracy. All double precision computations (Linux, Windows, Melenk) give practically

identical results until the roundoff error becomes significant.

Let us, once more, underline that the difference in the computed results are due to the

roundoff effect in the employed direct solver. It is also interesting to note that the various

double precision computation give different results, the difference becomes visible when we

reach the limit of accuracy below the horizontal line in the columns.

Remark 8: Let us also note that the conditioning of the Partition of Unity Method using
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Figure 2.20. Comparison of results of Babuška, Windows machine, Linux machine, and Quadruple
Precision for k = 1. Here we label only the graphs computed using quadruple precision.
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Figure 2.21. Comparison of results of Babuška, Windows machine, Linux machine, and Quadruple
Precision for k = 16.
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Figure 2.22. Comparison of results of Babuška, Windows machine, Linux machine, and Quadruple
Precision for k = 32. Note that there is practically only small difference between the results computed
in double and quadruple precision.

systems of plane waves has been addressed in the paper by Laghrouche, Bettess, and Astley,

where it was concluded that “it is possible to determine ‘safe’ regions in the q − k domain

for which the condition number stays within acceptable limits on an element by element

basis ..”. For more details see [53].

Remark 9: We have shown the exponential q-convergence of the GFEM for meshes of

squares. Similar results can be obtained for other mesh types. Let us, for example, consider

the GFEM solution of the rigid scattering model problem. using the meshes shown in Fig-

ure 2.24. We see from Figure 2.25 that the robust q-exponential convergence characteristics

of the method are realized on all three meshes. Let us also recall that we perturbed the

GFEM-III mesh and the perturbations had no effect on the convergence. We expect this

robust behavior to the perturbations of the nodes for the other meshes as well.



47

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  10  20  30  40  50  60  70

R
el

at
iv

e 
er

ro
r 

in
 H

1 
se

m
in

or
m

 (
in

 p
er

ce
nt

)

1x1 mesh, windows
1x1 mesh, linux

1x1 mesh, babuska
1x1 mesh, quadruple
2x2 mesh, windows

2x2 mesh, linux
2x2 mesh, babuska

2x2 mesh, quadruple
4x4 mesh, windows

4x4 mesh, linux
4x4 mesh, babuska

4x4 mesh, quadruple
8x8 mesh, windows

8x8 mesh, linux
8x8 mesh, babuska

NDOF

integration error
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GFEM-I GFEM-II GFEM-III

Figure 2.24. Example of various GFEM meshes. The bold lines indicate the boundary of the domain.
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CHAPTER III

ANALYSIS OF PLANE-WAVE AND WAVE-BAND HANDBOOK
FUNCTIONS IN RECTANGULAR DOMAIN USING PARTITION OF

UNITY METHOD∗

3.1 Introduction

In this Chapter we will apply the (pure) PUM for solving the Helmholtz equation. Recall

the Partition of Unity Space:

W k;q
∆h

=

{
v =

nnodes∑
i=1

φ∆h
i vi

∣∣∣∣ vi ∈W k;q
loc (ω∆h

i )

}
(3.1)

where W k;q
loc is the local space of:

a) Plane-wave basis functions:

W k;q
loc = span

{
exp
(
ik

(
x cos

2πn
q

+ y sin
2πn
q

))
, n = 0, ..., q − 1

}
, (3.2)

which includes all linear combinations of plane waves traveling in the directions(
cos 2πn

q , sin 2πn
q

)
, n = 0, ..., q − 1.

b) Wave-band basis functions:

W k;q
loc = span

{∫ θn+1

θn

e(ik(x cos θ+y sin θ))dθ
∣∣ n = 0, ..., q − 1, θn =

2πn− π

q

}
,

(3.3)

which includes all linear combinations of wave bands obtained by superposition of

all the plane waves traveling in the directions (cos θn, sin θn) to (cos θn+1, sin θn+1),

n = 0, ..., q − 1, θn = (2πn − π)/q.

Example of both basis functions are given in Figure 3.1.

∗This chapter is reprinted with permission from “Partition of unity method for Helmholtz equation: q-

convergence for plane-wave and wave-band local bases” by T. Strouboulis and R. Hidajat, Applications of

Mathematics. 51 (2) (2006) 181-204 c© 2006 Mathematical Institute of the Academy of Sciences of the Czech

Republic
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q = 2 q = 4 q = 6

q = 2 q = 4 q = 6

Figure 3.1. Examples of the employed local basis functions. The top row depicts the plane-wave
basis, while the bottom row depicts the wave-band basis, for q = 2,4, and 6, respectively.

The main objective of this chapter is to introduce the wave-band handbook functions.

Both the plane-wave and wave-band functions are similar in terms of the availability of a

semi-analytical integration method for the evaluation of the stiffness matrix in the Partition

of Unity settings. We will also show the behavior of the pollution in this setting.

3.2 Numerical integration

In Chapter II we used Gauss Legendre numerical integration to evaluate all integrals. Here,

in the case of plane waves we will employ a semi-analytical scheme which follows from

[22, 46].

Noting that a plane-wave function W (m)
j (x) = exp(ikx · ej) satisfies:

∇W (j)
m = ikemW (j)

m (3.4)

we write the typical element of the stiffness matrix:∫
τ
∇
(
φ∆h
r W (r)

m

)
· ∇
(
φ∆h
s W (s)

n

)
− k2

(
φ∆h
r W (r)

m

)(
φ∆h
s W (s)

s

)
dτ (3.5)
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into the form:∫
τ
exp(ik(em + en) · x)

[(
∇φ∆h

r + ikemφ∆h
r

)
·
(
∇φ∆h

s + ikenφ∆h
s

)
− k2φ∆h

r φ∆h
s dτ

]
(3.6)

Next we employ the Filon integration rule (see page 151 of [54]) to evaluate (3.6). Recall

that Filon’s rule is used to integrate highly-oscillatory integrals in the form:∫ b

a
f(t) cos kt dt and

∫ b

a
f(t) sin kt dt (3.7)

by subdividing the interval [a, b] into 2N subintervals of equal length and approximating

f(t) by a parabola obtained by interpolating f(t) at mesh points. For rectangular element

τ , the integral (3.6) can be written as iterated integral in the x and y directions. Further

φ∆h
r (x, y) = φ∆h

r (x)φ∆h
r (y) and thus (3.6) can be split into two 1-D integrals. For example,

we have

∂

∂x
φ∆h
r (x, y)

∂

∂x
φ∆h
s (x, y) =

∂

∂x
φ∆h
r (x)

∂

∂x
φ∆h
s (x)φ∆h

r (y)φ∆h
s (y) = F (x)G(y) (3.8)

which, after multiplication with exp(ik(em + en) · x) can be written as:∫
I
cos(ω1x)F (x)dx

∫
J

cos(ω2y)G(y)dy −
∫
I
sin(ω1x)F (x)dx

∫
J

sin(ω2y)G(y)dy

+i
∫
I
sin(ω1x)F (x)dx

∫
J

cos(ω2y)G(y)dy + i

∫
I
cos(ω1x)F (x)dx

∫
J

sin(ω2y)G(y)dy (3.9)

with ω1 = k(cos θm + cos θn) and ω2 = k(sin θm + sin θn), and each one of the 1-D integrals

can be evaluated by Filon’s rule.

We performed some computational experiments with τ = (0, 1)× (0, 1) and k = 20, and

computed the stiffness matrix using 40 × 40 Gauss Legendre Quadrature and Filon’s rule

with 2 subintervals on x and y coordinate. Analyzing the results for q = 2, 4, 6, ..., 40 we

found that for k = 20 both quadratures give identical results up to the roundoff error, while

Filon’s rule is always more economical as shown in Figure 3.2.

In the case of wave-band functions, we use (40 × 40)2 Gauss integration rule; more

precisely we use the 40 × 40 Gauss rule over τ and the 40 point Gauss rule in each band,
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for example:∫
τ
k2

(
φ∆h
r

∫ θr2

θr1

eik(x cos θ+y sin θ)dθ

)(
φ∆h
s

∫ θs2

θs1

eik(x cos θ+y sin θ)dθ

)
dτ (3.10)

is computed by:

40∑
i=1

40∑
j=1

k2

(
φ̂∆h
r (ξi, ξj)

(
40∑
m=1

exp(ik(x(ξi) cos θ(ξm) + y(ξj) sin θ(ξm)))
1
2
(θr2 − θr1)wm

))
(
φ̂∆h
s (ξi, ξj)

(
40∑
n=1

exp(ik(x(ξi) cos θ(ξn) + y(ξj) sin θ(ξn)))
1
2
(θs2 − θs1)wn

))
|J |wiwj

(3.11)

where ξi and wi are the Gauss Legendre points and weights respectively, and φ̂∆h
s is the

piecewise bilinear ”hat” function in the master domain (1, 1)× (−1, 1). A more economical

semi-analytical approach for evaluating the integrals in the case of wave-band functions has

been proposed by Ladevèze and Rouch [47].
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3.3 Discussion of the computed results

3.3.1 Plane wave on rectangular domain

As our first example, we took the Helmholtz equation on the unit square Ω = (0, 1)× (0, 1)

with Robin boundary conditions:

−∆u+ k2u = 0 in Ω (3.12a)

∂u

∂n
+ iku = g on ∂Ω (3.12b)

where we chose g such that the exact solution is the plane wave

u(x, y) = eik(x cos θ+y sin θ), θ =
π

16
(3.13)

Here we let k = 20 and we employed uniform N × N meshes of squares for N = 1, 2, 4,

and 8 denoted respectively as mesh A, mesh B, Mesh C, and mesh D. Table 3.1 summarizes

the data for the employed meshes: their mesh size h and the respective Number of Waves

Per Element (NWPE): h/λ = hk/2π.

Table 3.1. Meshes utilized in the analysis: N is the number of elements in the x and y direction, h
is the uniform mesh size, and NWPE is the Number of Waves Per Element.

N h NWPE

Mesh A 1 1.0 3.18
Mesh B 2 0.5 1.59
Mesh C 4 0.25 0.80
Mesh D 8 0.125 0.40

Figure 3.3 plots the percent relative error in the H1-seminorm with respect to the square

root of the total number of degrees of freedom
√
NDOF in the horizontal axis. Here we

can see that asymptotically in both cases we obtain exponential convergence:

‖∇(u− uqh)‖ ≈ C e−γ
√
NDOF (3.14)
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where C depends on h. It is noteworthy that in the pre-asymptotic range the PUM with

plane-wave functions delivers much better accuracy than the PUM with wave-band func-

tions, especially as the mesh is refined.
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Figure 3.3. q-convergence of the PUM using plane-wave and wave-band functions for Mesh A, B, C,
and D.

Tables 3.2 and 3.3 give the values of the percent relative error in the best approximation:

‖∇(u−Aq
hu)‖L2(Ω)/ ‖∇u‖L2(Ω) × 100%, where Aq

hu ∈ Sqh is such that:∫
Ω
∇ (Aq

hu
) · ∇v̄ dΩ =

∫
Ω
∇u · ∇v̄ dΩ ∀ v ∈ Sqh (3.15)

where u is the analytical solution given by (3.13). Tables 3.2 and 3.3 also give the value of

the pollution ratio πSq
h
(u) in each case. The deviation of πSq

h
(u) from the value one is the

measure of the pollution.



55

Table 3.2. The values of the percent relative error in the best approximation: ‖∇(u−Aq
hu)‖L2(Ω)/

‖∇u‖L2(Ω) × 100% using the plane-wave and wave-band functions for Mesh A and Mesh B. The
number inside the bracket is the pollution ratio πSq

h
(u), namely the ratio between the percent

relative error of the PUM and the best approximation.

q Mesh A Mesh B
plane bands plane bands

2 .4804E+2 .8673E+2 .1991E+2 .8047E+2
(1.2656) (1.0123) (1.2848) (1.0461)

4 .4804E+2 .8312E+2 .1982E+2 .7108E+2
(1.2733) (1.0367) (1.2911) (1.1456)

6 .4784E+2 .7096E+2 .1805E+2 .4562E+2
(1.2837) (1.1598) (1.5014) (1.4796)

8 .4625E+2 .5731E+2 .7638E+1 .3248E+2
(1.3328) (1.3551) (1.8657) (1.5727)

10 .3085E+2 .3296E+2 .4529E+1 .9547E+1
(2.1812) (1.6811) (2.6496) (2.0383)

12 .1435E+2 .2343E+2 .2794E+1 .3684E+1
(1.6432) (1.4063) (2.6249) (2.2801)

14 .5856E+1 .1316E+2 .7339E+0 .1618E+1
(2.1209) (1.8404) (1.5043) (2.7466)

16 .1770E+1 .5150E+1 .1674E+0 .8736E+0
(3.7616) (3.1204) (1.3202) (1.5545)

18 .3616E+0 .1392E+1 .3489E-1 .1903E+0
(1.1258) (4.3197) (4.4855) (2.2648)

20 .3653E-1 .3663E+0 .7387E-2 .3766E-1
(1.0151) (2.3713) (1.0700) (1.2690)

22 .2615E-2 .1123E+0 .5557E-3 .5128E-2
(1.0134) (3.3856) (1.1110) (1.0429)

24 .1375E-3 .3232E-1 .2834E-4 .7461E-3
(1.0058) (1.9706) (1.0296) (1.0288)

26 .1024E-1 .1354E-3
(1.5303) (1.0258)

28 .2311E-2
(1.1255)

30 .6362E-3
(1.0544)

32 .1157E-3
(1.0225)
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Table 3.3. The values of the percent relative error in the best approximation: ‖∇(u−Aq
hu)‖L2(Ω)/

‖∇u‖L2(Ω) × 100% using the plane-wave and wave-band functions for Mesh C and Mesh D. The
number inside the bracket is the pollution ratio πSq

h
(u), namely the ratio between the percent

relative error of the PUM and the best approximation.

q Mesh C Mesh D
plane bands plane bands

2 .6740E+1 .6768E+2 .2899E+1 .3725E+2
(1.1723) (1.1674) (1.0617) (1.7044)

4 .6499E+1 .4382E+2 .1530E+1 .1980E+2
(1.2267) (1.5224) (1.0333) (1.2924)

6 .2898E+1 .2084E+2 .5649E+0 .5031E+1
(1.0849) (1.5763) (1.0110) (1.1175)

8 .1963E+1 .7755E+1 .2036E+0 .1276E+1
(1.0413) (2.0812) (1.0025) (1.0219)

10 .6265E+0 .1680E+1 .4171E-1 .1460E+0
(1.0817) (1.0589) (1.0012) (1.0034)

12 .1832E+0 .4780E+0 .6085E-2 .2551E-1
(1.0153) (1.0201) (1.0015) (1.0027)

14 .4013E-1 .1173E+0 .1033E-2 .3496E-2
(1.0125) (1.0119) (1.0010) (1.0014)

16 .7176E-2 .1890E-1 .9904E-4 .4094E-3
(1.0111) (1.0064) (1.0026) (1.0007)

18 .1099E-2 .4635E-2 .4858E-4
(1.0055) (1.0080) (1.0016)

20 .1132E-3 .6812E-3
(1.0133) (1.0060)

22 .6593E-4
(1.0102)

Figure 3.4 (resp. Figure 3.5) shows the graph of the percent relative error in the PUM

solution and the best approximation for plane-wave (resp. wave-bands) PUM space. We

can see from both figures that for sufficiently high q depending on h, the solution converges
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exponentially as:

‖∇(u− uqh)‖ ≈ C1 e
−βq (3.16)

with the same rate β ≈ 1. Note also that as the mesh is refined, the effect of the pollution

is practically negligible almost starting from q = 2.
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Figure 3.4. q-convergence of the PUM and best approximation for Mesh A, B, C, and D computed
using plane-wave functions.

In summary, it seems that for the problem with the exact solution given by (3.13) the

PUM using plane-wave functions performs better than the PUM using wave-band functions

especially for small h and high q. For large h and low q the PUM using bands has smaller

pollution ratio. The better performance of the PUM using plane-wave functions can be

partially explained from the fact that the exact solution is also a plane wave.

3.3.2 Rigid scattering problem

We obtained our second example by employing the analytical solution of scattering of a plane

wave by a rigid circular cylinder, which is depicted in Figure 3.6. Employing cylindrical
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Figure 3.5. q-convergence of the PUM and best approximation for Mesh A, B, C, and D computed
using wave-bands functions.

coordinates (r, θ), the boundary value problem for the scattered pressure u(r, θ) reads:

∇2u+ k2u = 0, r > a (3.17a)

∂u

∂r
= − ∂

∂r
(uinc), r = a (3.17b)

lim
r→∞

√
r

(
∂u

∂r
− iku

)
= 0 (3.17c)

where:

uinc(r, θ) = P0 e
ikr cos θ (3.18)

is the pressure field for the incident plane wave. Using separation of variables (see, e.g.,

p. 412 in Jones [52]) we obtain:

u(r, θ) = −P0

∞∑
n=0

εni
n J

′
n(ka)Hn(kr)
H ′
n(ka)

cos(nθ) (3.19)



59

where ε0 = 1, εn = 2, n �= 0, Hn(z) is the cylindrical Hankel function of the first kind, and

Jn(z) is the cylindrical Bessel function of the first kind. We set our example problem in

square domains Ωi, i = 1, 2, adjacent to the scatterer and employed (3.19) to obtain g on

∂Ωi.

uinc

Ω

scatterer

a

y

x

rigid
u

r

θ

Ω 12

Figure 3.6. Notations used in the definition of the model example of scattering of a plane wave by
a rigid circular scatterer and the problem domains Ωi.

In our computations we employed k = 20, and the domains Ω1 = (−2,−1)× (−0.5, 0.5)

and Ω2 = (−5,−1) × (−2, 2). As in the previous example, we employed uniform meshes of

squares obtained from nested refinements of the domains Ωi. We report the values of the

percent relative error in the best approximation and the value of the pollution ratio πSq
h
(u)

in Tables 3.4 and 3.5 for computations performed on Ω1.

Figure 3.7 reports the convergence of the H1-seminorm of the error with increasing q

using domain Ω1. Note that for this example the PUM with wave-band functions gives better

accuracy in the pre-asymptotic range as compared with the PUM with plane-wave functions.

Asymptotically, both choices give almost identical accuracies converging exponentially with

respect to
√
NDOF .
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Table 3.4. The values of the percent relative error in the best approximation: ‖∇(u−Aq
hu)‖L2(Ω)/

‖∇u‖L2(Ω) × 100% using the plane-wave and wave-band functions for domain Ω1 on Mesh A and
Mesh B. The number inside the bracket is the pollution ratio πSq

h
(u), namely the ratio between the

percent relative error of the PUM and the best approximation.

q Mesh A Mesh B
plane bands plane bands

2 .7258E+2 .3489E+2 .4037E+2 .1520E+2
(1.1730) (1.0957) (1.2527) (1.0579)

4 .7246E+2 .2851E+2 .3968E+2 .1198E+2
(1.1736) (1.2936) (1.2679) (1.4349)

6 .7114E+2 .1110E+2 .2613E+2 .5189E+1
(1.2003) (1.3802) (1.9644) (2.6768)

8 .6081E+2 .8525E+1 .7795E+1 .5413E+1
(1.2263) (1.9132) (1.3765) (1.9656)

10 .3556E+2 .8341E+1 .4654E+1 .4028E+1
(2.3332) (1.7995) (1.0765) (1.8841)

12 .1477E+2 .6529E+1 .2303E+1 .1845E+1
(1.7258) (1.5944) (2.1806) (8.0000)

14 .3811E+1 .3451E+1 .5460E+0 .3458E+0
(1.9234) (2.8708) (2.0751) (1.5058)

16 .1175E+1 .1771E+1 .1805E+0 .1500E+0
(3.9566) (2.4032) (1.0820) (1.4767)

18 .5348E+0 .6593E+0 .5723E-1 .4223E-1
(1.1887) (4.6519) (10.666) (1.0992)

20 .8084E-1 .1250E+0 .1443E-1 .9467E-2
(1.0143) (3.4384) (1.0804) (1.1049)

22 .2748E-1 .2894E-1 .4479E-2 .2362E-2
(1.0124) (1.5463) (1.0554) (1.0868)

24 .7721E-2 .2005E-1 .1527E-2 .9474E-3
(1.0060) (1.1546) (1.0308) (1.0278)

26 .2357E-2 .9657E-2 .5843E-3 .3069E-3
(1.0076) (1.3410) (1.0199) (1.0713)

28 .7026E-3 .4007E-2 .2269E-3
(1.0080) (1.0177) (1.0220)

30 .3876E-3 .1582E-2
(0.5575) (1.0076)
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Table 3.5. The values of the percent relative error in the best approximation: ‖∇(u−Aq
hu)‖L2(Ω)/

‖∇u‖L2(Ω) × 100% using the plane-wave and wave-band functions for domain Ω1 on Mesh C and
Mesh D. The number inside the bracket is the pollution ratio πSq

h
(u), namely the ratio between the

percent relative error of the PUM and the best approximation.

q Mesh C Mesh D
plane bands plane bands

2 .2386E+2 .1101E+2 .1146E+2 .8322E+1
(1.2871) (1.0836) (1.1536) (1.4215)

4 .2123E+2 .5751E+1 .4728E+1 .3786E+1
(1.4932) (1.7736) (1.0992) (1.6302)

6 .5917E+1 .2284E+1 .1185E+1 .6250E+0
(1.1256) (1.5639) (1.0118) (1.1162)

8 .1913E+1 .1836E+1 .2475E+0 .2463E+0
(1.0538) (14.336) (1.0016) (1.0154)

10 .5796E+0 .6442E+0 .3747E-1 .5907E-1
(1.0851) (1.1956) (1.0011) (1.0242)

12 .1561E+0 .1067E+0 .5026E-2 .7836E-2
(1.0167) (1.0309) (1.0012) (1.0046)

14 .2860E-1 .2460E-1 .7434E-3 .7177E-3
(1.0157) (1.0171) (1.0019) (1.0022)

16 .5533E-2 .7578E-2 .7716E-4 .1250E-3
(1.0074) (1.0227) (0.9999) (1.0008)

18 .1418E-2 .1072E-2
(1.0085) (1.0075)

20 .2430E-3 .1942E-3
(1.0325) (1.0051)

Figure 3.8 (resp. Figure 3.9) plots the percent relative error in the PUM solution versus

the corresponding error in the best approximation for the plane-wave basis (resp. wave-

band basis) using domain Ω1. Once more we see that we get exponential convergence with

respect to q, for sufficiently high q depending on h with rate β ≈ 1.
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Figure 3.7. q-convergence of the PUM using plane-wave and wave-band functions for domain Ω1

using Mesh A, B, C, and D.
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Figure 3.8. q-convergence of the PUM and best approximation for domain Ω1 using Mesh A, B, C,
and D computed using plane-wave functions.
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Figure 3.9. q-convergence of the PUM and best approximation for domain Ω1 using Mesh A, B, C,
and D computed using wave-bands functions.
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Figure 3.10. q-convergence of the PUM and best approximation for domain Ω2 using uniform 2 × 2
mesh computed using plane-wave and wave-bands functions.
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Figure 3.11. q-convergence of the PUM and best approximation for domain Ω2 using uniform 2 × 2
and 4 × 4 mesh computed using plane-wave and wave-bands functions.

In Figure 3.10 we plot the result of computation on the domain Ω2 using uniform 2× 2

mesh, such that the number of waves per element NWPE ≈ 6.37, while in Figure 3.11 we

also include the results for the 4×4 mesh for which NWPE ≈ 3.18. Note that the pollution

is significant for both bases and for almost the entire range of q for both meshes, and that

the rate of exponential convergence improves as the mesh is refined.

From the above results we see that for ”smooth” solutions, the PUM with wave-band

functions perform better than plane-wave functions while stability is the same for both

bases. Theoretical understanding is not available although the smoothness of the solution

obviously plays a role. The problem relates to the approximation properties of the basis

functions employed on the circle of the Fourier symbol of the equation.
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3.3.3 A posteriori error estimation by q-extrapolation

The exponential rate of convergence of the PUM solution with respect to q enables us to

use a simple a posteriori error estimation by extrapolation as outlined in [49]. Another

approach for a posteriori estimation of PUM can be found in [55].

Assuming that the quantity of interest converges exponentially exactly like (3.16) we

have:

log
F(u) −F(uqh)

F(u) −F(uq−2
h )

≈ log
e−βq

e−β(q−2)
= −2β (3.20)

which gives us the capability to estimate the exact quantity of interest F(u) by solving the

linear equation :

F̃(u) −F(uqh)

F̃(u) −F(uq−2
h )

=
F̃(u) −F(uq−2

h )

F̃(u) −F(uq−4
h )

(3.21)

and hence

F̃(u) =
−F2(uq−2

h ) + F(uqh)F(uq−4
h )

F(uqh) + F(uq−4
h ) − 2F(uq−2

h )
(3.22)

where F̃(u) is the q-extrapolated estimate for F(u).

Table 3.6. The extrapolated estimate F̃(u) for Mesh A, B, C, and D using both the plane-wave and
wave-band basis functions.

Mesh plane-wave basis wave-band basis
A 1.088107 1.088061

B 1.088040 1.088040

C 1.088040 1.088044

D 1.088040 1.088039

As an example, consider the rigid scattering problem and let us employ the modulus

of the solution on the surface of the scatterer coinciding with the domain boundary as the

quantity of interest, namely F(u) = |u(−a, 0)|. Table 3.6 gives the extrapolated estimate
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F̃(u) computed using the plane-wave and wave-band basis functions following the formula

given in (3.22).
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Figure 3.12. Graph of the output F(uq
h) = |uq

h(−a, 0)| on Mesh A, B, C, and D using plane-wave
basis functions.

Figure 3.12 (resp. Figure 3.13) graphs of the output F(uqh) for the plane-wave (resp.

wave-bands) PUM basis versus q. From both figures we can see that the finer mesh reach

the asymptotic range faster than the coarser one.

Using the same values of q as in Figures 3.12 and 3.13, we report the exact and estimated

quantity of interest for F(uq−4
h ) in Table 3.7. We can see that we get very good effectivity

indices for all the meshes and for both types of basis functions.
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Figure 3.13. Graph of the output F(uq
h) = |uq

h(−a, 0)| on Mesh A, B, C, and D using wave-band
basis functions.

Table 3.7. Exact and estimated value of the quantity of interest and its effectivity index for Mesh
A, B, C, and D computed using PUM with the plane-wave and wave-band functions.

Mesh special function
|F(u) −F(uq−4

h )|
F(u)

|F̃(u) −F(uq−4
h )|

F̃(u)
θ

A plane-waves 0.0669 % 0.0607 % 0.9073
wave-bands 0.0493 % 0.0473 % 0.9594

B plane-waves 0.0014 % 0.0014 % 1.0000
wave-bands 0.0031 % 0.0083 % 2.6774

C plane-waves 0.0051 % 0.0051 % 1.0000
wave-bands 0.0004 % 0.0007 % 1.7500

D plane-waves 0.0009 % 0.0009 % 1.0000
wave-bands 0.0027 % 0.0026 % 0.9630
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CHAPTER IV

APPLICATIONS OF THE GENERALIZED FINITE ELEMENT METHOD
TO THE MULTIPLE SCATTERING PROBLEM

In this section, we will generalize the model problem with one scatterer to the multiple-

scattering problem as follows:

Helmholtz problem with Robin boundary condition

−∆u− k2u = 0 in Ω (4.1a)

∂u

∂n
= −∂uinc

∂n
on Γj, j = 1, ...,nsca (4.1b)

∂u

∂n
− iku = g2 on Γ0 (4.1c)

Here Ω is the domain enclosed by Γ0, minus the domain enclosed by Γj, j = 1, ...,nsca;

Γ0 is the exterior boundary and Γj, j = 1, 2, ... are the boundaries of the scatterers as

shown in Figure 4.1, uinc is an analytical expression for the incident wave field, and g2 a

given function. Here g2 is determined from a known analytical solution of scattering of uinc

by one or several circular scatterers.

In this chapter, the main objective is to illustrate the robust exponential convergence

characteristics of the GFEM which are also visible for more complex geometries and for

various choices of handbook functions as expected by the theory.
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Ω

Γ2

Γ0

Γ1

Γ3

Figure 4.1. Example of a domain Ω that includes three scatterers with boundaries Γ1, Γ2, Γ3,
enclosed by an artificial boundary Γ0.

4.1 Families of handbook functions for Helmholtz equation

The Generalized Finite Element Method offers a high flexibility in the selection of the hand-

book functions employed in the approximation. For example, for the Helmholtz problem we

may employ various families of functions which can be used to obtain a convergent series

expansion of homogeneous solutions of the Helmholtz equation in the interior of the domain

or near the boundary:

4.1.1 Interior handbook functions

Examples of interior handbook functions are:

1. Plane-wave functions:

W k;q
loc = span

{
exp

(
ik

(
x̄ cos

2πn
q

+ ȳ sin
2πn
q

))
, n = 0, ..., q − 1

}
(4.2)

which is the span of plane waves traveling in the directions
(
cos 2πn

q , sin 2πn
q

)
, n =

0, ..., q − 1, where x̄ = x − xi, ȳ = y − yi. We plot the countour of the real part of

plane-wave handbook functions with k = 20 on a patch ω∆h
i = (−0.5, 0.5)×(−0.5, 0.5)

for q = 3 in Figure 4.2.
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Figure 4.2. Contour plot of the real part of plane-wave handbook functions with k = 20 on a patch
ω∆h

i = (−0.5, 0.5)× (−0.5, 0.5) for q = 3.

2. Wave-band functions:

W k;q
loc = span

{∫ θn+1

θn

e(ik(x̄ cos θ+ȳ sin θ))dθ , n = 0, ..., q − 1, θn =
2πn− π

q

}
(4.3)

which includes all linear combinations of wave bands obtained by superposition of

all the plane waves traveling in the directions (cos θn, sin θn) to (cos θn+1, sin θn+1),

n = 0, ..., q − 1, θn = 2πn−π
q . We plot the countour of the real part of wave-bands

handbook functions with k = 20 on a patch ω∆h
i = (−0.5, 0.5) × (−0.5, 0.5) for q = 3

in Figure 4.3.

Figure 4.3. Contour plot of the real part of wave-bands handbook functions with k = 20 on a patch
ω∆h

i = (−0.5, 0.5)× (−0.5, 0.5) for q = 3.

3. Vekua functions:

W k;q
loc = span

{
einψJn(kr) , n = 0, ..., q

}
(4.4)

where r =
√
x̄2 + ȳ2 and ψ = tan−1(ȳ/x̄). We plot the countour of the real part of

Vekua functions with k = 20 on a patch ω∆h
i = (−0.5, 0.5) × (−0.5, 0.5) for q = 3 in
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Figure 4.4.

Figure 4.4. Contour plot of the real part of Vekua handbook functions with k = 20 on a patch
ω∆h

i = (−0.5, 0.5)× (−0.5, 0.5) for q = 3.

4.1.2 Boundary handbook functions

Near the boundary we can employ families of handbook functions which take into account

the geometry of the boundary and the imposed boundary condition. For example, for the

circular scatterer, the separation of variable in the polar coordinates gives:

u(r, θ) =
∞∑
n=0

Hn(kr)(An cos(nθ) +Bn sin(nθ)) (4.5)

where r =
√
x2
s + y2

s and ψ = tan−1(ys/xs), and (xs, ys) is the center of the scatterer, and

hence we may employ as the handbook functions:

W k;q
loc = span

{
Hn(kr) cos(nθ) , n = 0, ..., q − 1

}
⊕
{
Hn(kr) sin(nθ) , n = 1, ..., q − 1

}
(4.6)

which we plotted in Figure 4.5 for the functions around the largest circular scatterer.

In the case of an elliptical scatterer with major axis 2a and minor axis 2b we have (see
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(a) (b) (c)

Figure 4.5. Contours of the real part of the circular scatterer functions: a) H0(kr), b) H1(kr) cos(θ),
and c) H2(kr) cos(2θ) for a polar coordinate system around the largest circular scatterer.

Jones [52]):

u(s, t) = −2
∞∑
n=0

(−i)nbncen(t, h)cen(ψ, h)Mc(4)n (s, h)

−2
∞∑
n=1

(−i)ncnsen(t, h)sen(ψ, h)Ms(4)n (s, h) (4.7)

where (s, t) are the elliptic cylinder coordinates with x = l cosh s cos t, y = l sinh s sin t,

l2 = s2 + t2, and h = 1
4k

2l2. ψ is the angle of the incident plane wave, and the solution is

described using Mathieu functions, where cen and sen are the n-th Mathieu function of the

first kind, and Mcn and Msn are the n-th modified Mathieu function of the first kind, and

here

W k;q
loc = span

{
cen(t, h)Mc(4)n (s, h) , n = 0, ..., q

}
⊕
{
sen(t, h)Ms(4)n (s, h) , n = 1, ..., q

}
(4.8)

Curvilinear scatterers with more general geometry may be approximated locally as cir-

cular or elliptical and the above handbook functions can be used in the neighborhood of

the approximation of the boundary.
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4.2 Application to problem with three circular scatterers

Let us analyze the effect of the choice of handbook functions by comparing their performance

in an example of scattering of a plane wave by three circular scatterers with wave number

k = 20, the incident wave uinc = eikx, a plane wave in the x-direction, and the truncation

radius R = 2.5. We will refer to this example as Model Problem II.

REAL PART OF SCATTERED WAVE
 Min = -.208E+01 ;  Max = 0.204E+01 

-0.75 -0.50 -0.25  0.00  0.25  0.50  0.75

R=1.0

R=0.5

R=0.4

IMAGINARY PART OF SCATTERED WAVE
 Min = -.183E+01 ;  Max = 0.205E+01 

-0.75 -0.50 -0.25  0.00  0.25  0.50  0.75

R=1.0

R=0.5

R=0.4

Figure 4.6. Contours of the real and imaginary parts of the scattered field of Model Problem II for
k = 20 and truncation radius R = 2.5.
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Once more we will employ the Helmholtz problem with Robin boundary condition ex-

actly as it was used in Chapter II. Following [56] we determined an analytical solution for

this problem by employing a collocation method using a large number of terms to achieve

very high accuracy. We start by expanding the scattered wave for cylinder j:

usca
j =

∞∑
n=−∞

Bj
n Hn(k|x − xj|) einθj (4.9)

and the exciting wave field for scatterer j, which is the wave fields near scatterer j if that

particular scatterer is not present:

uexc
j = uinc +

nscat∑
m=1,m	=j

usca
m =

∞∑
n=−∞

Ajn Jn(k|x − xj |) einθj (4.10)

By applying the rigid boundary conditions on each scatterer:

∂

∂n
uexc
j = − ∂

∂n
usca
j (4.11)

on (4.10) we can write down the coefficients Ajn in terms of Bj
n. Using collocation points

on the surface of the scatterers, we can solve for the coefficients Bj
n necessary to describe

the unknown scattered field. Using this solution, we computed the function g2 in the Robin

boundary condition (4.1c) as in the single scatterer case.

Mesh A Mesh B Mesh C

(a) (b) (c)

Figure 4.7. Cartesian meshes used in the computation of Model Problem II: (a) Mesh A, h = 0.75
(b) Mesh B, h = 0.375 (c) Mesh C, h = 0.1875.

We employed the GFEM for solving Model Problem II using, once more, k = 20. The

contour plots of the real and imaginary parts are given in Figure 4.6 and we use the meshes
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depicted in Figure 4.7 along with the plane-wave handbook functions to enrich the approx-

imation space. Tables 4.1 to 4.3 and Figures 4.8 to 4.10 report the relative error in the

GFEM solution: ‖∇(u− up,qh )‖L2(Ω)/ ‖∇u‖L2(Ω) x 100%.

Table 4.1. The values of the percent relative error in the GFEM solution: ‖∇(u − up,q
h )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% for Mesh A. The number between parentheses is the number of degrees-of-
freedom.

p q = 0 q = 1 q = 3 q = 5 q = 7 q = 9 q = 11 q = 13 q = 15

1 100.9069 89.9330 83.6337 72.6151 48.7010 43.6616 24.2990 58.6649 11.5272
(69) (207) (483) (759) (1035) (1311) (1587) (1863) (2139)

2 123.0157 93.7137 79.2374 76.9477 46.1729 37.0732 16.1596 12.8196 5.3477
(238) (376) (652) (928) (1204) (1480) (1756) (2032) (2308)

3 117.7788 85.1494 84.7698 70.2853 37.1585 26.3079 6.8508 4.6243 3.3525
(507) (645) (921) (1197) (1473) (1749) (2025) (2301) (2577)

4 134.5831 96.9113 79.1913 66.3792 17.7999 6.8464 4.8491 3.6131 2.7103
(876) (1014) (1290) (1566) (1842) (2118) (2394) (2670) (2946)

5 167.0997 86.1170 70.2640 45.3099 9.1474 4.9322 3.6698 2.7621 2.1531
(1345) (1483) (1759) (2035) (2311) (2587) (2863) (3139) (3145)

We can see that similarly as in Model Problem I (the scattering of plane wave by circular

rigid scatterer in Section 2.3), we have the exponential q-convergence for all the meshes and

for various p. We note that for Mesh A for p = 1 and p = 2, the asymptotic rate for

q-convergence has not been reached (see Figure 4.8) which signals that the pollution effect

still dominates the results, while for p = 3 to p = 5 the exponential rate of convergence is

observed with α ≈ 1/6. The behavior for p = 1 and p = 2 was also observed on Model

Problem I and it shows that the mesh size h is not sufficiently small and the employed qs

are not high enough to eliminate the pollution effect.

The q-convergence are also observed for Mesh B and Mesh C, where we have for Mesh

B the rate α ≈ 1/3 and for Mesh C the rate is α ≈ 2/3. Note that α increases as the mesh

is refined because the solution becomes smoother relative to the mesh. From Figure 4.10
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Table 4.2. The values of the percent relative error in the GFEM solution: ‖∇(u − up,q
h )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% for Mesh B. The number between parentheses is the number of degrees-of-
freedom.

p q = 0 q = 1 q = 3 q = 5 q = 7 q = 9 q = 11 q = 13 q = 15

1 100.4822 93.4730 63.1929 8.1342 1.9420 1.1004 0.5914 0.2730 0.1385
(188) (564) (1316) (2068) (2820) (3572) (4324) (5076) (5828)

2 176.9614 93.9628 54.3340 5.6670 1.5557 0.9529 0.5318 0.2417 0.1187
(679) (1055) (1807) (2559) (3311) (4063) (4815) (5567) (6319)

3 163.4074 79.0044 38.7852 2.8590 1.0096 0.6615 0.3995 0.1959 0.0983
(1472) (1848) (2600) (3352) (4104) (4856) (5608) (6360) (7112)

4 64.8655 39.5697 12.1532 1.2631 0.5669 0.3808 0.2513 0.1420 0.0760
(2567) (2943) (3695) (4447) (5199) (5951) (6703) (7455) (8207)

5 15.6809 8.3114 2.7103 0.5096 0.3031 0.1941 0.1355 0.0889 0.0537
(3964) (4340) (5092) (5844) (6596) (7348) (8100) (8854) (9604)

Table 4.3. The values of the percent relative error in the GFEM solution: ‖∇(u − up,q
h )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% for Mesh C. The number between parentheses is the number of degrees-of-
freedom.

p q = 0 q = 1 q = 3 q = 5 q = 7 q = 9 q = 11

1 149.3867 92.9073 12.7460 0.4005 0.0588 0.0120 0.0034
(605) (1815) (4235) (6655) (9075) (11495) (13915)

2 131.6172 67.8087 2.8034 0.2093 0.0394 0.0092 0.0027
(2248) (3548) (5878) (8298) (10718) (13138) (15558)

3 20.1521 10.8710 0.6482 0.1135 0.0193 0.0059 0.0017
(4927) (6137) (8557) (10977) (13397) (15817) (18237)

4 2.9177 1.3949 0.1402 0.0245 0.0092 0.0029 0.0009
(8642) (9852) (12272) (14692) (17112) (19532) (21952)

5 0.5246 0.2420 0.0262 0.0058 0.0028 0.0012 0.0009
(13393) (14603) (17023) (19443) (21863) (24283) (26702))

we can see that for p = 5 between q = 9 and q = 11 the asymptotic rate of convergence

could not be sustained. This is most likely due to the roundoff errors.

Let us also report corresponding results computed using the wave-band handbook func-
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Figure 4.8. q-convergence of the relative error of the GFEM solution up,q
h for Mesh A versus q, for

p = 1, ..., 5 using plane-wave handbook functions. Note that for this mesh the pollution is clearly
visible for p = 1 and 2.
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Figure 4.9. q-convergence of the relative error of the GFEM solution up,q
h for Mesh B versus q, for

p = 1, ..., 5 using plane-wave handbook functions.
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Figure 4.10. q-convergence of the relative error of the GFEM solution up,q
h for Mesh C versus q, for

p = 1, ..., 5 using plane-wave handbook functions.

tions given in (4.3). Here we report the computations on Mesh B using p = 1, .., 5 and

various q and we tabulate the results in Table 4.4.

Table 4.4. The values of the percent relative error in the GFEM solution: ‖∇(u − up,q
h )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% for Mesh B using wave-bands handbook functions. The number between
parentheses is the number of degrees-of-freedom.

p q = 0 q = 1 q = 3 q = 5 q = 7 q = 9 q = 11 q = 13 q = 15

1 100.4822 108.1900 183.4246 16.4246 3.4544 1.2504 0.6922 0.3253 0.1623
(188) (564) (1316) (2068) (2820) (3572) (4324) (5076) (5828)

2 176.9614 188.1957 149.0925 9.8767 2.4494 1.0440 0.6104 0.2933 0.1329
(679) (1055) (1807) (2559) (3311) (4063) (4815) (5567) (6319)

3 163.4074 154.4796 75.6858 6.2727 1.5354 0.7402 0.4543 0.2362 0.1117
(1472) (1848) (2600) (3352) (4104) (4856) (5608) (6360) (7112)

4 64.8655 47.4905 15.2265 2.2152 0.7400 0.4177 0.2822 0.1640 0.0886
(2567) (2943) (3695) (4447) (5199) (5951) (6703) (7455) (8207)

5 15.6809 13.5976 4.7863 0.9758 0.3393 0.2128 0.1478 0.1002 0.0604
(3964) (4340) (5092) (5844) (6596) (7348) (8100) (8854) (9604)
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Figure 4.11. q-convergence of the relative error of the GFEM solution up,q
h for Mesh B versus q, for

p = 1, ..., 5 using wave-bands handbook functions.

Figure 4.11 plots the q-convergence of relative error of the GFEM solution for Mesh B

using the wave-band handbook functions for p = 1, ..., 5. Once more the rate of convergence

α ≈ 1/3 is achieved, similarly with the computations performed using plane-wave handbook

functions. This can be seen clearly in Figure 4.12 where we plot q-convergence for both

choices of handbook functions; notice that for after the pollution has ended for high enough

q, the graphs practically overlap.

Finally we repeat the computations on Mesh B using the Vekua handbook functions de-

fined in (4.4), and we tabulate the results in Table 4.5. Figure 4.13 shows the q-convergence,

and once more we observe that the rate of convergence is α ≈ 1/3 From Figure 4.14 we can

see that, after the pollution has ended, the convergence curves using Vekua and plane-wave

handbook functions are almost indistinguishable.

These results clearly show that the GFEM using various interior handbook functions

have similar convergence and accuracy. It follows that the selection should be dictated by
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Figure 4.12. q-convergence of the relative error of the GFEM solution up,q
h for Mesh B versus q,

for p = 1, ..., 5; comparison of plane-wave and wave-bands handbook functions. Note that after
the pollution has ended the asymptotic behavior of the error is very similar for the two choices of
handbook functions.

Table 4.5. The values of the percent relative error in the GFEM solution: ‖∇(u − up,q
h )‖L2(Ω)/

‖∇u‖L2(Ω) × 100% for Mesh B using Vekua handbook functions. The number between parentheses
is the number of degrees-of-freedom.

p q = 0 q = 1 q = 3 q = 5 q = 7 q = 9 q = 11 q = 13 q = 15

1 100.4822 224.1210 140.5306 5.9537 1.7802 0.9159 0.4661 0.2138 0.1110
(188) (752) (1504) (2256) (3008) (3760) (4512) (5264) (6016)

2 176.9614 189.6900 56.4671 4.9769 1.4127 0.7948 0.4175 0.1861 0.0952
(679) (1243) (1995) (2747) (3499) (4251) (5003) (5755) (6507)

3 163.4074 123.9561 22.8366 3.3877 0.9320 0.5769 0.3264 0.1557 0.0780
(1472) (2036) (2788) (3540) (4292) (5044) (5796) (6548) (7300)

4 64.8655 35.0798 3.9431 1.0781 0.5196 0.3472 0.2206 0.1174 0.0584
(2567) (3131) (3883) (4635) (5387) (6139) (3894) (7673) (5395)

5 15.6809 6.5875 1.4530 0.4584 0.2597 0.1786 0.1208 0.0760 0.0438
(3964) (4528) (5280) (6032) (6784) (7536) (8288) (9040) (9792)
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Figure 4.13. q-convergence of the relative error of the GFEM solution up,q
h for Mesh B versus q, for

p = 1, ..., 5 using Vekua handbook functions.

factors other than accuracy such as the ease of implementation, and the computational

cost. For example, the computation of stiffness matrices for the GFEM using the wave-

band handbook functions requires the evaluation of 4-dimensional integrals by numerical

integration, which is very costly. Although several semi-analytical integration methods are

proposed, e.g. by Ladevèze, Rouch, and Riou [25–27], they require the use of rectangular

integration domain and hence are not applicable in the more general setting of the method

considered here.

Figure 4.15 compares the computational cost of the plane-wave and the Vekua handbook

functions using Mesh B and p = 3. The figure plots the total time taken to integrate,

assemble and solve the stiffness matrix for various q, using a Dell computer with Intel Xeon

3.2 GHz and 3.0 GB RAM. We can see that the plane-wave and Vekua handbook functions

take an almost identical processing time, while the wave-band handbook functions perform

poorly in this category. However, we note that the computation of Bessel functions in Vekua
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Figure 4.14. q-convergence of the relative error of the GFEM solution up,q
h for Mesh B versus q, for

p = 1, ..., 5; comparison of plane-wave and Vekua handbook functions. Note that the main differences
of the convergence results for the plane-wave and Vekua functions are in the pre-asymptotic range.
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handbook function is slightly more expensive than the computation of the trigonometric

function for the plane waves and it is not as readily available. Hence, among the three

families of interior handbook functions addressed here, the plane-wave handbook functions

are preferable.

Remark 10: To underline the flexibility of the GFEM with respect to the mesh type we

report computations for Model Problem II performed on the series of meshes that conform

to one of the scatterers, as shown in Figure 4.16.

Mesh A Mesh B Mesh C

(a) (b) (c)

Figure 4.16. The semi-conforming meshes used in Model Problem II computations to highlight the
GFEM flexibility with respect to mesh types.

Figure 4.17 depicts the q-convergence graphs for p = 1, 2. One more we see convergence

characteristics of the method reported earlier, namely for Mesh A, the asymptotic rate of

convergence has not been reached for q ≤ 17, and the rate of convergence improves as the

mesh is refined.
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85

CHAPTER V

ANALYSIS OF SOMMERFELD AND BAYLISS-TURKEL BOUNDARY
CONDITIONS

5.1 Formulation of the absorbing boundary conditions

In Chapters II, III, and IV we employed the Helmholtz problem with the Robin condition:

∂u

∂n
− iku = g2 on Γ0 (5.1)

where Γ0 is the outer boundary of Ω, and g2 is obtained by evaluating the left-hand side

for a known exact solution. The objective was to analyze the error coming from the GFEM

approximation of u over the finite domain Ω without having to address the error due to an

artificial truncation boundary condition. We will now address the more realistic case where

the GFEM computation is done using an artificial truncation boundary condition on Γ0.

Below we will always assume that Γ0 = {x ∈ R
2
∣∣|x − x0| = R} is a circle of radius R with

R sufficiently big to encompass the scatterers of interest.

The simplest possible artificial truncation boundary is obtained by letting g2 = 0 to

obtain the Sommerfeld boundary condition on Γ0. Other truncation boundary conditions

may be obtained in various ways; see e.g. Keller and Givoli [8] and Grote and Keller [9].

Here we will employ the boundary conditions proposed by Bayliss, Gunzburger, and Turkel

[6, 7] which are often used in practice.

We have:

1. Sommerfeld condition applied at truncation boundary (SOM):

∂u

∂r
− iku = 0 on Γ0 (5.2)
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2. Bayliss-Turkel 1 (BT1):

∂u

∂r
−
(
ik − 1

2R

)
u = 0 on Γ0 (5.3)

3. Bayliss-Turkel 2 (BT2):

∂u

∂r
− 1

2
(
ik − 1/R

)(− 2k2 − 3ik
R

+
3

4R2
+

1
R2

∂

∂θ2

)
u = 0 on Γ0 (5.4)

The artificial truncation boundary introduces additional error in the computation, which

depends on: 1) Its formulation; 2) Radius of the truncation boundary; 3) Wave number

k. We will first analyze the error due to the three types of boundary conditions for Model

Problem I, for which we can obtain exact solution of the Helmholtz problem with boundary

condition (5.2), (5.3), or (5.4). Using separation of variables, we have:

uR,BCEX (r, θ) =
∞∑
n=0

(
H(1)
n (kr) + FnH

(2)
n (kr)

)
An cos(nθ) (5.5)

where uR,BCEX denotes the exact solution of the Helmholtz Model Problem I with truncation

radius R and (4.1c) replaced by BC = SOM, BT1, or BT2. The coefficients Fn, An are

given in Table 5.1.

The error due to the artificial boundary condition in the quantity F(u) is measured by:

eF =

∣∣∣∣∣∣∣∣∣F(u∞EX − uR,BCEX

)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣F(u∞EX

)∣∣∣∣∣∣∣∣∣ (5.6)

where u∞EX denotes the exact solution for the problem set in the infinite domain, and |||·|||

is the norm employed to measure the error. Figures 5.1 - 5.3 show the convergence of eF

in the case that F(u) = u(−1, 0), and |||·||| is the modulus, namely:

eu(−1.0) =

∣∣∣(u∞EX − uR,BCEX

)
(−1, 0)

∣∣∣∣∣u∞EX(−1, 0)
∣∣ × 100% (5.7)

versus R for the Sommerfeld, Bayliss-Turkel 1, and Bayliss-Turkel 2 boundary conditions for

k = 10, 20, and 30. It can be clearly seen that asymptotically we have algebraic convergence,
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Table 5.1. Analytical expression of Fn and An corresponding to boundary condition BC on Γ0.

BC Condition on r = R Fn

SOM
∂u

∂r
− iku = 0 −H

(1)′
n (kR) − iH

(1)
n (kR)

H
(2)′
n (kR) − iH

(2)
n (kR)

BT1
∂u

∂r
−
(
ik − 1

2R

)
u = 0 −kH

(1)′
n (kR) − (ik − 1

2R)H(1)
n (kR)

kH
(2)′
n (kR) − (ik − 1

2R)H(2)
n (kR)

BT2
∂u

∂r
− C1

(
C2 +

1
R2

∂

∂θ2

)
u = 0 −kH

(1)′
n (kR) − C1(C2 + n2

R2 )H(1)
n (kR)

kH
(2)′
n (kR) − C1(C2 + n2

R2 )H(2)
n (kR)

with C1 =
1

2
(
ik − 1/R

) ; An = −εnin J ′
n(ka)

H
(1)′
n (ka) + FnH

(2)′
n (ka)

C2 = −2k2 − 3ik
R

+
3

4R2

namely

|eu(−1.0)| ≈ CRβ (5.8)

where β = 2 for Sommerfeld and Bayliss-Turkel 1, and β = 4 for Bayliss-Turkel 2, never-

theless the asymptotic behavior may be reached for R > R̄(k), where R̄(k) can be rather

big for the Sommerfeld and Bayliss-Turkel 1 boundary conditions.

Let us introduce an estimator for eF , namely:

EF (d) =

∣∣∣∣∣∣∣∣∣F(uR+d,BT2
EX − uR,BCEX

)∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣F(uR+d,BT2
EX

)∣∣∣∣∣∣∣∣∣ (5.9)

where uR+d,BT2
EX is the exact solution for an extended domain where Γ0 is replaced by

Γ̄0 = {x ∈ R
2
∣∣|x− x0| = R+ d} computed using Bayliss-Turkel 2 boundary condition. Let
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Figure 5.1. Plot of eu(−1.0) for k = 10, 20, 30 using the Sommerfeld boundary condition on Γ0.
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Figure 5.2. Plot of eu(−1.0) for k = 10, 20, 30 using Bayliss-Turkel 1 boundary condition on Γ0.

us now analyze the effectivity of this estimator for F(u) = u(−1, 0). In this case we have:

Eu(−1,0)(d) =

∣∣∣(uR+d,BT2
EX − uR,BCEX

)
(−1, 0)

∣∣∣∣∣∣uR+d,BT2
EX (−1, 0)

∣∣∣ × 100% (5.10)
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Figure 5.3. Plot of eu(−1.0) for k = 10, 20, 30 using Bayliss-Turkel 2 boundary condition on Γ0.

and in Figures 5.4-5.6 we plotted the effectivity index

θEX
u(−1,0) =

Eu(−1,0)(d)
eu(−1,0)

=

∣∣∣(uR+d,BT2
EX − uR,BCEX

)
(−1, 0)

∣∣∣ / ∣∣∣uR+d,BT2
EX (−1, 0)

∣∣∣∣∣∣(u∞EX − uR,BCEX

)
(−1, 0)

∣∣∣ / ∣∣∣u∞EX(−1, 0)
∣∣∣ (5.11)

respectively for BC = SOM, BT1, BT2 versus d/R using k = 20. We see that the effectivity

index is close to one in all the cases and converges to one as d/R is increased.

In practice we have to employ a computed approximation of uR,BCEX , namely uR,BCh;p,q and

we will denote by eh;p,q
F , Eh;p,q

F (d), θh;p,q
F the corresponding relative error, its estimator and

its effectivity index. Hence for the case F(u) = u(−1, 0) we have:

θh;p,q
u(−1,0) =

Eu(−1,0)(d)
eu(−1,0)

=

∣∣∣(uR+d,BT2
h;p,q − uR,BCh;p,q

)
(−1, 0)

∣∣∣ / ∣∣∣uR+d,BT2
h;p,q (−1, 0)

∣∣∣∣∣∣(u∞EX − uR,BCh;p,q

)
(−1, 0)

∣∣∣ / ∣∣∣u∞EX(−1, 0)
∣∣∣ (5.12)

Table 5.2 compares the effectivity indices θEX
u(−1,0) and θh;p,q

u(−1,0) corresponding to uR,BCEX

and uR,BCh;p,q respectively for d/R = 1.00, 1.25 and R = 1.5, 2.5 with BC = SOM, BT1,

BT2. The computations for uR,BCh;p,q use p = 3, plane-wave handbook functions with q = 13 ,

h = 0.3125 for R = 1.5 and h = 0.375 for R = 2.5. The (h; p, q) parameters for computations
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of uR+d,BT2
h;p,q is reported on Table 5.2 where again we use the plane-wave handbook functions.

We see that with the exception of one case for which the error is very small at the right lowest

corner of the table, the other numbers are rather close. The implicit assumption in the above

approach is that the error to the (h; p, q) GFEM approximation is negligible relative to the

error due to the employed artificial boundary condition. When this assumption is satisfied

we expect to get a reliable estimator for the error in the artificial truncation boundary

condition.

Figures 5.7 and 5.8 compare the q-convergence graphs for the errors eh;p,q
u(−1,0) and its

estimate Eh;p,q
u(−1,0)(d) (denoted by BC Error and BC Estimator respectively in the Figures)

for R = 1.5 and R = 2.5 respectively using p = 3 and q = 1, 3, ..., 11. To obtain the

estimated error, we use the extended domain computed solution uR+d,BT2
h;p,q where d/R = 1,

p = 3, and q = 13 and 9 for R = 1.5 and 2.5 respectively. As a reference we also plotted

the q-convergence of the error eh;p,q
u(−1,0) computed using the Robin boundary condition (5.1)
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Table 5.2. Comparison of θEX
u(−1,0) (first and fourth lines), θh;p,q

u(−1,0) (second and fifth lines), and the

(h; p, q) parameters used in the computation of uR+d,BT2
h;p,q (third and sixth lines) for R = 1.5, 2.5 and

d/R = 1, 1.25. For uR+d,BT2
h;p,q we employed p = 3, q = 13, and h = 0.3125 and 0.375 for R = 1.5 and

2.5. All GFEM computation uses plane-wave handbook functions.

R = 1.5 R = 2.5
SOM BT1 BT2 SOM BT1 BT2

d

R
= 1.00

θEX
u(−1,0) 1.01018 1.00506 1.04581 0.99971 0.99348 0.96981

θh;p,q
u(−1,0) 1.00357 1.00934 1.16091 1.01345 1.00628 0.92590

(h; p, q) (h = 0.4375; p = 3, q = 13) (h = 0.34375; p = 3, q = 9)

d

R
= 1.25

θEX
u(−1,0) 0.99910 1.00305 1.06435 1.00207 0.99506 0.94266

θh;p,q
u(−1,0) 0.99290 1.00880 1.21631 0.87082 1.15106 3.46019

(h; p, q) (h = 0.4375; p = 3, q = 13) (h = 0.40625; p = 3, q = 9)

with g2 obtained from u∞EX. From Figure 5.7 we can see that the exponential convergence

of the GFEM, which is visible in the curve labeled Robin, is not achieved when SOM,

BT1, or BT2 is employed. This is because the error coming from the truncation boundary

condition dominates asymptotically. We also see that the BT2 gives the smallest error

among the three artificial truncation boundary conditions employed. By using a larger

truncation radius, as shown in Figure 5.8, the error due to the BT2 boundary condition

becomes negligible and we can obtain the exponential convergence of the error for the entire

range of q employed. From both Figures we can observe that the error and its estimator

are very close and this can be confirmed from Table 5.3 which reports the effectivity index

θh;p,q = Eh;p,q
u(−1,0)(d)/e

h;p,q
u(−1,0) for R = 1.5 and 2.5.

5.2 Application to multiple scattering problem

Let us show that the above estimator Eh;p,q
F (d) for the error eh;p,q

F in the artificial boundary

condition is also effective when used in more complex model problems. Let us first address

the problem of three circular scatterers for which we have available u∞EX by employing the

collocation method discussed earlier and hence we can also set up the computations using
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Figure 5.7. q-convergence of the relative error in the quantity of interest eh;p,q
u(−1,0) and its estimator

Eh;p,q
u(−1,0)(d) computed using d/R = 1, with the truncation radius R = 1.5. The difference between

the curve for the Robin and the curves for the SOM, BT1, BT2 boundary conditions is the error
due to the artificial boundary condition.

Table 5.3. Table of the effectivity index θh;p,q = Eh;p,q
u(−1,0)(d)/e

h;p,q
u(−1,0) for R = 1.5 and R = 2.5 for

q = 1, ..., 11.

q
R = 1.5 R = 2.5

SOM BT1 BT2 SOM BT1 BT2

1 0.9993 1.0464 0.9994 0.9999 0.9999 0.9999
3 0.9883 1.0178 0.9831 0.9999 0.9999 0.9999
5 0.9978 1.0099 0.9487 1.0005 1.0005 1.0003
7 1.0034 1.0093 1.1779 1.0069 1.0417 1.0032
9 1.0036 1.0093 1.1568 1.0122 1.0100 1.2059
11 1.0036 1.0093 1.1619 1.0133 1.0388 1.1042

the Robin boundary condition (5.1).

Figures 5.10-5.12 show the convergence of the relative errors F(u) at the points A, B,

and C shown in Figure 5.9 for the Sommerfeld, Bayliss-Turkel 1, Bayliss-Turkel 2, and Robin

boundary conditions, where F(u) = u(A), u(B), and u(C) respectively. We can see that on
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AB
C

Ω

Figure 5.9. Location of output points, the domain Ω with truncation radius R = 2.5 and the
employed mesh.

point A (Figure 5.10), error due to the Bayliss-Turkel 2 boundary condition is negligible

up to q = 13 which is sufficient to compute u(A) with relative error 0.4 %. For q ≥ 15 the

error due to the BT2 condition stops the exponential convergence however this does not

matter because high accuracy has already been achieved. This is not the case with SOM

and BT1 boundary conditions which completely destroy the exponential convergence and
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high accuracy of the GFEM.
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Figure 5.11. q-convergence of eh;p,q
u(B) using Sommerfeld, Bayliss-Turkel 1, Bayliss-Turkel 2 and Robin

boundary conditions. The error coming from the truncation boundary condition dominates the
solution.
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From Figure 5.11 we can see that for point B the error due to the artificial boundary

condition is the dominant part of the error for all three boundary conditions employed and

that by using BT2 we can reach 0.4 % accuracy before it stops converging.
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Figure 5.12. q-convergence of eh;p,q
u(C) using Sommerfeld, Bayliss-Turkel 1, Bayliss-Turkel 2 and Robin

boundary conditions. Here we can see that the q-convergence has not reached its asymptotic range,
and the error curves for BT2 and Robin practically coincide.

From Figure 5.12 we conclude that on point C the asymptotic range of GFEM has not

been reached and the error from the GFEM approximation in Ω dominates. This explain

why the error obtained using all four boundary conditions, SOM, BT1, BT2 and Robin are

rather close. The results for BT2 coincide with those for Robin and only 1.5 % is achieved

for q = 15.

Figures 5.13, 5.14, and 5.15 compare the q-convergence graphs for the errors eh;p,q
u(x) and

its estimate Eh;p,q
u(x) (d) for R = 1.5 respectively for x = A,B,C using p = 3 and q = 1, 3, ..., 15.

To obtain the estimated error, we use uR+d,BT2
h;p,q where d/R = 1, p = 3, and q = 9. Again

we can see that the estimator follows closely the error with the exception of the case where



97

F = u(A) using Bayliss-Turkel 2. Here the estimator diverges asymptotically from the

error; most likely because the estimated error is rather small. These results are confirmed

in Table 5.4 which reports the effectivity index θh;p,q
F for the points A, B, and C using SOM,

BT1 and BT2.
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Figure 5.13. q-convergence of the error eh;p,q
u(A) and its estimator Eh;p,q

u(A) (d) computed using d/R = 1,
with the truncation radius R = 2.5.

Table 5.4. Table of the effectivity index θh;p,q on points A, B, and C.

q
A B C

SOM BT1 BT2 SOM BT1 BT2 SOM BT1 BT2

1 0.9854 0.9852 0.9874 0.9998 0.9997 0.9997 0.9779 0.9779 0.9780
3 0.9808 0.9825 0.9831 1.0003 1.0003 1.0003 0.9905 0.9904 0.9876
5 0.8836 0.9427 0.9487 1.0075 1.0078 1.0226 1.0581 1.0886 1.1043
7 0.8510 1.1448 0.7648 1.0088 1.0090 1.0401 0.7609 0.8862 1.1699
9 0.9960 1.0855 0.4207 1.0097 1.0101 1.1087 1.0945 1.1249 1.1096
11 1.0503 1.0991 0.7722 1.0097 1.0100 1.0976 0.6939 0.7027 0.5563
13 1.0927 1.1359 4.0522 1.0100 1.0104 1.1568 0.4318 0.3830 0.7318
15 1.1067 1.1483 5.9860 1.0100 1.0105 1.1560 0.6149 1.4423 1.6660
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Figure 5.15. q-convergence of the error eh;p,q
u(C) and its estimator Eh;p,q

u(C) (d) computed using d/R = 1,
with the truncation radius R = 2.5.

Finally, let us illustrate the analogous computations for Model Problem III which is

obtained from Model Problem II by replacing the circular scatterers by squares. Although
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we do not have a proof of exponential convergence in this case we conjectured that for a

high k, e.g. k = 20 employed here the reentrant corners do not influence the convergence

and we expect similar results as in the case of circular scatterers.

Figure 5.16 gives an example of the solution computed using p = 3 and q = 9 on the

domain and mesh shown in Figure 5.17.

REAL PART OF SCATTERED WAVE
 Min = -.193E+01 ;  Max = 0.196E+01 

-0.75 -0.50 -0.25  0.00  0.25  0.50  0.75

IMAGINARY PART OF SCATTERED WAVE
 Min = -.196E+01 ;  Max = 0.216E+01 

-0.75 -0.50 -0.25  0.00  0.25  0.50  0.75

Figure 5.16. Contours of the real and imaginary parts of the scattered field of Model Problem III
for k = 20, computed using the domain and mesh pictured in 5.17 with p = 3 and q = 9.

In this case we are lacking an exact solution and we show only the convergence of the
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A
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C
Ω

Figure 5.17. Location of output points,the domain Ω with truncation radius R = 2.5 and the
employed mesh.

estimated error Eh;p,q
u(x) (d) for x = A,B,C in Figures 5.18, 5.19, and 5.20. Our estimator

predicts that using the GFEM with BT2, acceptable accuracy is reached for all points.
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Figure 5.18. q-convergence of the estimator Eh;p,q
u(A) (d) computed using d/R = 1, with the truncation

radius R = 2.5.

Figures 5.21 plots the contours of the real part of approximate solution computed using

h = 0.375, q = 9 and p = 3 with truncation radius R = 2.5 for Sommerfeld, Bayliss-

Turkel 1, and Bayliss-Turkel 2 boundary conditions along with the real part of approximate

solution computed using h = 0.34375, q = 9 and p = 3 with truncation radius R = 5.0 and
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Figure 5.19. q-convergence of the estimator Eh;p,q
u(B) (d) computed using d/R = 1, with the truncation

radius R = 2.5.
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Figure 5.20. q-convergence of the estimator Eh;p,q
u(C) (d) computed using d/R = 1, with the truncation

radius R = 2.5.

Bayliss-Turkel 2 boundary condition. We can observe that the contours of Bayliss-Turkel 2

with R = 2.5 and R = 5.0 are identical and while the contours of Sommerfeld and Bayliss-
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Turkel 1 are identical to each other, their difference with the Bayliss-Turkel 2 contours

can be seen. Based on this observation we can conclude using BT2 with truncation radius

R = 2.5 is sufficient to ensure that the error from truncation boundary condition does not

dominate.

ZOOM
WINDOW

R = 5.0R = 2.5

REAL PART OF APPROXIMATE SOLUTION

-0.75 -0.50 -0.25  0.00  0.25  0.50  0.75
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Figure 5.21. (a) The zoom window; Contour plots of the real part of approximate solution computed
using h = 0.375, q = 9 and p = 3 with truncation radius R = 2.5 for (b) Sommerfeld, (c) Bayliss-
Turkel 1, (d) Bayliss-Turkel 2 boundary conditions; and (e) the real part of approximate solution
computed using h = 0.34375, q = 9 and p = 3 with truncation radius R = 5.0 and Bayliss-Turkel 2
boundary condition.



103

CHAPTER VI

CONCLUSION AND OPEN PROBLEMS

We can summarize the conclusions, which are based on theoretical understanding and on

computations complementing what is possible to say by the theory, as follows:

1. The pollution effect for the Helmholtz equation cannot be avoided. It is increasing

with k and decreasing with increasing p and q. We can, however, detect the pollution

by using an a posteriori error estimation.

2. We have exponential rate of convergence with respect to wave directions. This is

predicted by the theory and holds in a large range of practical accuracy, as it can be

seen from our numerical experiments.

3. The numerical integrations influence the accuracy of the solution. Integration error

can be detected by a posteriori estimation.

4. Round-off error must be analyzed together with the numerical integration error be-

cause both errors have similar character. To analyze the influence of round-off error

only by the condition number is not correct.

5. The various interior handbook functions give an almost identical performance in solv-

ing the Helmholtz equation. The selection of the local bases is thus determined by

other factors such as the ease of the implementation or the computational cost.

6. Currently the handbook function with the simplest implementation is the plane-wave

handbook functions; the wave-band handbook functions require the integration on θ-

direction which can be very expensive, while the Vekua functions require the computa-
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tion of Bessel function which is more costly than the computation of the trigonometric

function.

7. The error from the truncation absorbing boundary condition is coupled with the error

from interior approximation. By introducing an additional computation using an

extended domain we can get a reliable estimator of the error due to the artificial

boundary condition.

We would also like to mention some of the open problems:

1. Characterization of the pollution effect. The theory that we have is valid only for

sufficiently small h.

2. Theoretical analysis of the influence of the integration error is not available, as well

as determination of largest tolerance in the adaptive integration leading to the goal

of the analysis.

3. The round-off analysis, along with theory and practice of the construction of the shape

function which lead to the good conditioning number, and possibly for preconditioning

and effective iterative solver are open.

4. Investigation of various partition of unity function. For this work we are using a

standard hat-function as our partition of unity function. We can for example use

smoother functions as proposed by Oden, Duarte, and Zienkiewicz [57].

5. Analysis of optimal combinations between interior handbook functions and the func-

tions from boundary.

6. Formulation and implementation of infinite elements on the truncation boundary

which can be attractive due to the capability of using p-adaptivity. Here we would
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like to mention the work of Safjan and Newman which proposes the use of infinite ele-

ment using basis function with local support to obtain artificial truncation boundary

conditions with very small error [58, 59].
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variationnelle des rayon complexes, Ph.D. dissertation, ENS de Cachan, 2004.

[28] A. Duarte, The hp cloud method, Ph.D. dissertation, University of Texas at Austin,

Austin, TX, 1996.

[29] C.A. Duarte and J.T. Oden, An hp adaptive method using clouds, Comput. Methods

Appl. Mech. Engrg. 139 (1996) 237–262.
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[33] T. Strouboulis, K. Copps and I. Babuška, The generalized finite element method,

Comput. Methods Appl. Mech. Engrg. 190 (2001) 4081–4193.

[34] L. Zhang, Generalized finite element method for multiscale analysis, Ph.D. dissertation,

Texas A&M University, College Station, TX, 2003.
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[36] T. Strouboulis, L. Zhang and I. Babuška, p-version of the Generalized FEM using

mesh-based handbooks with applications to multiscale problems, Int. J. Numer. Meth.

Engrg. 60 (2004) 1639–1672.



110
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[50] F. Ihlenburg and I. Babuška, Finite element solution to the Helmholtz equation with

high wave number - part II: The hp-version of the FEM, SIAM J. Numer. Anal. 34 (1)

(1997) 315–358.
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