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ABSTRACT

A Numerical Method for Fully Nonlinear Aeroelastic Analysis. (May 2007)

Joaquin Ivan Gargoloff, B.S., La Plata National University, Argentina

Chair of Advisory Committee: Dr. Paul Cizmas

This work presents a numerical method for the analysis of fully nonlinear aeroelastic

problems. The aeroelastic model consisted of a Navier-Stokes flow solver, a nonlinear

structural model, and a solution methodology that assured synchronous interaction

between the nonlinear structure and the fluid flow.

The flow around the deforming wing was modeled as unsteady, compressible and

viscous using the Reynolds-averaged Navier-Stokes (RANS) equations. To reduce the

computational time, a three-level multigrid algorithm was implemented and the flow

solver was parallelized. The message-passing interface (MPI) standard libraries were

used for the parallel interprocessor communication.

The computational domain was divided into topologically identical layers that

spanned from the root to past the tip of the wing. A novel mesh deformation algorithm

was developed to deform the mesh as the structure of the wing was being displaced.

The mesh deformation algorithm was able to handle wing tip deformations of up to

60 % of the wing semi-span. Besides being robust, the mesh deforming algorithm was

computationally more efficient than regriding, since deforming an existing mesh was

computationally less expensive than generating a new mesh for each wing position.

Results are presented for the validation and verification of both the flow solver

and the aeroelastic solver. The flow solver was validated using: (1) the flow over

a flat plate, to validate the turbulent model implementation, and (2) the flow over

the NACA 0012 airfoil and over the F-5 wing, to validate the implementation of
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the convective and viscous fluxes, the time integration algorithm, and the boundary

conditions. The aeroelastic solver was validated using: (1) the unsteady F-5 wing

undergoing forced pitch motion, and (2) the Nonlinear Aeroelastic Test Apparatus

(NATA) wing. In addition, aeroelastic results were generated for the Goland wing.

The aeroelastic solver developed herein allows the analysis of aeroelastic phe-

nomena using a fully nonlinear approach. Limit cycle oscillations, which are highly

nonlinear phenomena, were captured by the nonlinearities of the flow solver and the

structural solver. The impact of the nonlinearities was assessed for the Goland wing,

where nonlinear terms changed dramatically the aeroelastic behavior of the wing.
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CHAPTER I

INTRODUCTION

A. Statement of work

The objective of this research was to develop a numerical method for a fully nonlin-

ear aeroelastic analysis. The aeroelastic model consisted of: (1) an unsteady, viscous

aerodynamic model that captures compressible flow effects for transonic flows with

shock/boundary layer interaction, (2) a nonlinear structural model that captures in-

plane, out-of-plane, and torsional couplings, and (3) a solution methodology that

assures synchronous interaction between the nonlinear structure and fluid flow, in-

cluding a consistent geometric interface between the highly-deforming structure and

flow field.

High fidelity aerodynamic models like the Euler or Navier-Stokes equations have

a high computational cost in the order of weeks or months. The computational cost

is affected by the large time scales involved in the aeroelastic simulations, where in

some cases tens of seconds of real time have to be simulated to capture the physics

of the problem. Different approaches are available to reduce the computational cost

of the aeroelastic simulations. The most simple aerodynamic model is the quasi-

steady approach, in which the effective angle of attack depends upon the rates of

displacement and rotations of the airfoil. The transonic small disturbance [1] model

solves the transonic potential flow equations and it has a relatively low computational

cost. Proper Orthogonal Decomposition (POD) can be applied to the Euler or Navier-

Stokes equations and is used to convert the partial differential equations (PDEs) into

a set of ordinary differential equations (ODEs) which are considerably cheaper to

The journal model is AIAA Journal.
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solve.

Parallelization techniques allow a direct reduction of the computational time

by distributing the computational effort among several computers. To achieve sub-

stantial computational time reductions and high parallel efficiencies the loads on the

processors must be balanced. To obtain balanced processor loads the mesh used in

this work was constructed with layers that were topologically identical, thus each

processor was equally loaded and processor communication was kept to a minimum.

As the wing deformed, the computational domain followed the new shape of

the wing. A new mesh could be generated for each wing configuration, but this

approach would be computationally expensive and penalize the turnaround time for

the aeroelastic solver. Instead of generating a new mesh for each wing configuration,

the same original mesh was deformed without changing the mesh connectivity. A

moving mesh algorithm was developed that allowed a robust and efficient strategy to

deform the mesh without penalizing the quality of the mesh.

B. Aeroelastic problem

Aeroelasticity is the discipline concerned with the physical interaction among inertial,

elastic and aerodynamic forces [2]. The aeroelastic phenomena can be visualized as

the result of the interaction between these three forces, as shown in Fig. 1.

The intersection between aerodynamic and elastic forces is the static aeroelas-

ticity discipline. Common static aeroelastic phenomena are divergence, reversal con-

trol, and lift effectiveness. Divergence is a static aeroelastic instability in which the

deformation-dependent aerodynamic forces or loads exceed the elastic restoring ca-

pabilities of the structure. Reversal control is another static aeroelastic instability

in which maneuver loads (roll, pitch, yaw) due to a control input (aileron, elevator,



3

(Divergence, reversal control, lift effectiveness)

Stability and control

(Rigid wing)

Dynamic aeroelasticity

(Flutter and LCO)

Structural vibrations

Aerodynamic forces

(Fluid mechanics)

Elastic forces

(Solid mechanics)

(Dynamics)

Inertial forces

Static aeroelasticity

Fig. 1. Aeroelasticity as an interdisciplinary interaction.

rudder) are lost due to the flexibility of the primary structure. As the control surface

deflects, the flexible primary structure deflects in the opposite direction in such a way

that the total resulting control forces become zero. Lift effectiveness is the change of

lift characteristics due to the flexibility of the structure.

The intersection between the aerodynamic and inertial forces is the stability

and control discipline, or flight mechanics, where the structure is assumed to be

infinitely rigid. The intersection between inertial and structural forces is the structural

dynamics discipline, which deals with structural vibrations.

The intersection between the aerodynamic, structural and inertial forces is the
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dynamic aeroelasticity discipline. In this case the interactions between the flow and

the structure are taken into account, while being influenced by the dynamic charac-

teristics of the wing. Flutter and Limit Cycle Oscillation (LCO) are phenomena that

occur when the aerodynamic loads excite one or more structural modes. The flutter

instability is characterized by a sudden growth in the amplitude of the deformation,

which growths unbounded until ultimately the wing breaks down. The LCO instabil-

ity is characterized by a growing amplitude of the deformations, until a certain limit

is reached, the LCO amplitude. This LCO amplitude is dependent on the structural

parameters and the flow conditions.

While linear aeroelastic models are capable of predicting divergence, control sur-

face reversal, and flutter, they are not capable of predicting the onset of LCO. Figure

2 presents a typical amplitude versus velocity plot. If the velocity of the airplane is

smaller than the flutter velocity VFlutter, the linear analysis predicts a zero deforma-

tion, or given any initial deformation, the deformation will be reduced in time. If the

velocity is equal to or higher than the VFlutter, the linear theory predicts a continuous

growth in the amplitude of the deformations, until ultimately the wing breaks down.

Nonlinear aeroelastic analysis is capable of providing much richer insights into

the aeroelastic phenomena. From Fig. 2 it can be seen that non-zero amplitudes of

deformations can be present even at speeds below the flutter velocity VFlutter. The

plot also shows that for a velocity below VFlutter, if the initial deformations are below a

certain threshold, the deformations will be reduced in time. However, once the initial

deformations grow beyond this threshold, a limit cycle oscillation phenomenon occurs,

in which the wing will continuously oscillate at a certain amplitude and frequency.

The deformations are then finite and confined, but in order to eliminate this LCO

motion the velocity needs to drop considerably below the VFlutter velocity.

The fundamental issues associated with managing nonlinear aeroelastic effects
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Fig. 2. Linear and nonlinear aeroelastic response [3].

are present in configurations of very flexible wings. Active wing technologies, such as

those explored in the Active Aeroelastic Wing (AAW) program, utilize pronounced

twisting and bending to achieve desired aerodynamic loads. Structural nonlinearities

that are inherent in the flexible, high-aspect-ratio wing are exacerbated in envisioned

joined-wing configurations. Nonlinear responses driven by these phenomena are an-

ticipated to be of very large amplitudes.

In recent years, studies of nonlinear fluid-structure interactions have been moti-

vated by evidence that there are adverse aeroelastic responses attributed to system

nonlinearities. For example, limit-cycle oscillations (LCOs) occur in nonlinear aeroe-

lastic systems and remain a persistent problem on fighter aircraft with store configu-

rations. Nonlinear phenomena such as LCOs have been observed on the F16 aircraft

[4, 5]. Such LCOs are unacceptable since aircraft performance, aircraft certification,

mission capability, and human factor issues such as pilot fatigue are adversely affected.

The existence of residual pitch oscillations (RPOs) has also been found during flight



6

tests of the B-2 [6]. The RPO phenomenon is a persistent small amplitude oscillation,

and is linked to the aeroelastic nonlinearities associated with the B-2 airplane.

C. Background

This section presents background information on aerodynamic models typically used

in aeroelastic analysis. This section targets at the aerodynamic models since the focus

of this dissertation is in the aerodynamic modeling of the aeroelastic problem.

Different approaches have been employed to model the aerodynamics of the aeroe-

lastic problem. The unsteady vortex lattice model was used to model the aerodynamic

loads on the wing [7]. Point vortices were placed on the wing and in the wake. The

strength of the discrete vortices was calculated by specifying that the velocity induced

by the vortices had to be equal to the downwash arising from the unsteady motion

of the wing.

Unsteady transonic small disturbance theories were introduced in the 1980s and

solved the three-dimensional potential-flow equations [8, 9]. A more rigorous devel-

opment (CAPTSDv) coupled the inviscid transonic small disturbance theories with

an integral boundary layer model [10]. The outer inviscid flow solution provided

the surface pressure distribution needed to solve the boundary layer equations. The

boundary layer thickness distribution calculated was used to modify the airfoil surface

tangency boundary condition for the inviscid flow solver.

More advanced flow models involve solving the Euler or Navier-Stokes equations

that govern the fluid motion. Among the Euler flow solvers developed there is the

Computational-Structural-Mechanics (CSM) code developed at the University of Col-

orado [11]. The flow was modeled using the Arbitrary Lagrangian-Eulerian (ALE)

conservative formulation of the Euler equations.
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The Euler or Navier-Stokes flow solvers can be divided into structured or un-

structured, depending on the approach taken to discretize the computational domain.

Structured solvers are normally less complex and more efficient than unstructured

solvers. Unstructured solvers have the advantage of being much more flexible for

discretizing the domain, since the unstructured cells have more freedom to adjust to

arbitrary boundaries. Structured Navier-Stokes flow solvers include the Euler/Navier-

Stokes 3D Aero-Elasticity (ENS3DAE) code [12] and the Computational Fluids Lab-

oratory 3-Dimensional (CFL3D) flow solver [13]. Unstructured Navier-Stokes include

the Air Force Air Vehicles Unstructured Solver (AVUS) [14].

The ENS3DAE flow solver was developed at Lockheed Martin [15, 16]. ENS3DAE

solved the three-dimensional compressible flow modeled by the Euler or Reynolds-

averaged Navier-Stokes equations. Central finite differences were used for spatial

discretization with blended second and forth-order dissipation terms. Turbulence

effects were modeled using the Baldwin-Lomax algebraic turbulence model or the

Johnson-King model. The flow solver was parallelized to reduce the computational

time. The solver accepted either single or multiple-block curvilinear structured grids

and required a one-to-one match of grid points at block interfaces.

The CFL3D solver [13] is a Reynolds-averaged thin-layer Navier-Stokes flow

solver for structured grids. The spatial discretization involved a semi-discrete finite-

volume approach. Upwinding-biasing was used for the convective and pressure terms,

while central differencing was used for the shear stress and heat transfer terms. Nu-

merous turbulence models were provided, including zero, one, and two-equation mod-

els. Multiple-block topologies were possible with the use of one-to-one blocking (that

is, nodes from different blocks shared a face having a one-to-one correspondence),

patching, overlapping, and embedding.

The Air Vehicles Unstructured Solver (AVUS) [14], formerly known as Cobalt60,
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is a finite-volume, cell-centered, second-order accurate Euler/Navier-Stokes flow solver.

Second-order accuracy was achieved using linear variation of the solution within each

cell and least squares with QR decomposition to compute the solution gradients.

The turbulence model used was Menter’s two equation Shear-Stress Transport (SST)

model [17]. The grid can be composed of cells of arbitrary type.

D. Flow solver

The flow solver used in this work was developed by Cizmas and Han [18] and is

an unstructured mixed-type grid with a finite-volume discretization. The code is

capable of solving the Euler and Navier-Stokes equations using a two-equation k − ω

SST turbulence model [17]. The mixed-type grid allows an O-grid close to the surface

of the bodies to have better control of the discretization in the boundary layer region.

An unstructured mesh was generated outside of the structured mesh to efficiently fill

the computational domain.

E. Grid generation and grid deformation algorithms

High-fidelity flow solvers for aeroelastic applications require the use of computational

meshes that deform as the structure is being displaced. High-aspect-ratio wings in-

crease the demands on the robustness of the deforming mesh algorithm because these

wings are extremely flexible and attain deformations that are a significant fraction of

the span of the wing. Besides being robust, the mesh deforming algorithm must be

computationally inexpensive to avoid penalizing the turnaround time of the aeroe-

lastic computations. A methodology was developed herein to generate a robust and

efficient grid deformation algorithm for wings with large deformations.
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F. Parallel algorithm

The coupled flow-structure solver was parallelized to reduce the computational time.

The computational domain was divided into topologically identical layers that spanned

from the root to past the tip of the wing. The fact that the layers were topologically

identical simplified the parallel algorithm and increased the parallelization efficiency.

The message-passing interface (MPI) standard libraries were used for the interpro-

cessor communication.

G. Multigrid implementation

To reduce the computational time of the flow solver, a three-level multigrid technique

was implemented in the flow solver code. This technique is based on the solution

of the governing equations on a series of successively coarser grids which reduce the

high-frequency components of the solution error and accelerate the convergence of

the solution on the finer grid. The evolution on the coarser grids is driven by the

residuals on the finer grid, therefore maintaining the overall accuracy of the finer grid.

The correction obtained for the coarse grid is then interpolated to the finer grid using

an interpolation scheme.

H. Original contributions of the present work

• Development of a robust and efficient grid deformation algorithm.

• Update and validation of an unstructured finite-volume flow solver.

• Integration of the flow solver with the structural solver, load calculation, and

grid deformation algorithms.

• Implementation of a parallelization strategy for the flow solver.
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• Implementation of multigrid techniques.

I. Outline of dissertation

Chapter II presents the aerodynamic and structural models of the aeroelastic phe-

nomena. Chapter III describes the numerical methods used to solve the problem.

This chapter includes the mesh generation and deformation algorithms, the imple-

mentation of the flow solver, the parallelization strategy, and the multigrid technique.

Chapter IV presents the results for the validation and verification of the flow solver

and aeroelastic results for the F-5 wing, the Nonlinear Aeroelastic Test Apparatus

(NATA), and the Goland wing. Chapter V presents the conclusions and the suggested

future work.
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CHAPTER II

PHYSICAL MODEL

The first part of this chapter presents the aerodynamic model, which consisted of the

Reynolds-averaged Navier-Stokes equations and a two-equation eddy-viscosity turbu-

lence model. The second part describes the equations of motion for the wing modeled

as a nonlinear beam. The third part describes the coupling of the aerodynamic and

structural models.

A. Aerodynamic model

1. Reynolds-averaged Navier-Stokes equations

The flow around the deforming wing was modeled as unsteady, compressible and vis-

cous using the mass, momentum and energy conservation equations. These equations

are collectively known as the Navier-Stokes equations.

The mass conservation equation states that mass cannot be created nor it can

disappear, and is expressed as [19]

∂

∂t

∫

V

ρ · dV +

∮

S

ρ · (~v · ~n) · dS = 0, (2.1)

where V is the cell control volume, ρ is the flow density, ~v is the velocity of the flow,

~n is the unit normal vector to the cell surface, and S is the area of the face.

The first term of Eq. (2.1) represents the time rate of change of the total mass

inside the cell. The second term represents the mass flow of the fluid through the

surface of the cell.

The linear momentum conservation equation is expressed as [19]
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∂

∂t

∫

V

ρ · ~v · dV +

∮

S

ρ · ~v · (~v · ~n) · dS =

∫

V

ρ · ~g · dV +

∮

S

(−p · ~n + τ · ~n) · dS, (2.2)

where ~g is the body force per unit mass, p is pressure imposed by the fluid on the

boundary, and τ are the shear and normal stresses, resulting from the friction between

the fluid and the boundary surface.

The first term in Eq. (2.2) represent the time variation of linear momentum. The

second term represents the convective momentum flux or the transfer of momentum

across the boundary of the control volume. The third term represents the volume (or

body) forces. The last term represents the surface forces.

The energy conservation equation is expressed as [19]

∂

∂t

∫

V

ρ · E · dV +

∮

S

ρ · E · (~v · ~n) · dS =

∫

V

(ρ · ~g · ~v + qh) · dV + (2.3)

+

∮

S

k · (∇T · ~n) · dS −
∮

S

p · (~v · ~n) · dS +

∮

S

(τ · ~n) · ~n · dS,

where E is the total energy per unit of mass, qh is the heat source, and ~g is the body

force per unit mass.

The first term in Eq. (2.3) represent the time variation of the total energy of the

fluid in the control volume. The second term represents the convective energy flux

or the transfer of energy across the boundary of the control volume. The third term

represents the heat sources and the work done by the body forces. The fourth term

is called the diffusive or dissipative flux, and it represents the diffusion of heat due

to molecular thermal conduction. The last two terms represent the rate of work done

by the pressure as well as the shear and normal stresses on the fluid element.

The total energy E per unit mass is expressed as
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E = e +
|~v|2
2

= e +
u2 + v2 + w2

2
, (2.4)

where e is the internal energy, and u, v, and w are the x-, y-, and z-components of

the velocity vector ~v.

The internal energy e for a calorically perfect gas is expressed as

e = cv · T, (2.5)

where cv is the specific heat at constant volume and T is the temperature of the fluid.

The total enthalpy H per unit mass is expressed as

H = h +
|~v|2
2

= E +
p

ρ
, (2.6)

where h is the internal enthalpy, p is the pressure, and ρ is the density of the fluid.

The internal enthalpy h for a calorically perfect gas is expressed as

h = cp · T, (2.7)

where cp is the specific heat at constant pressure and T is the temperature of the

fluid.

Using the total enthalpy Eq. (2.6), the energy conservation equation Eq. (2.3)

is expressed as

∂

∂t

∫

V

ρ · E · dV +

∮

S

ρ · H · (~v · ~n) · dS =

∫

V

(ρ · ~g · ~v + qh) · dV + (2.8)

+

∮

S

k · (∇T · ~n) · dS +

∮

S

(τ · ~n) · ~n · dS,

where the convective (ρE~v) and pressure (p~v) terms have been gathered into the (ρH)
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term.

The Navier-Stokes equations are complemented with the equation of state for a

perfect gas

P = ρ · R · T, (2.9)

where p is the pressure, ρ is the density, R is the gas constant, and T is the temper-

ature.

Other useful relationships are R = cp − cv relating the gas constant, R, to the

specific heat coefficients at constant pressure and volume. The ratio of specific heat

capacities is γ = cp/cv. With these relationships, the pressure p is expressed in terms

of the total energy E as

p = (γ − 1)ρ

[

E − u2 + v2 + w2

2

]

(2.10)

2. Turbulence model

The turbulence effects were modeled by using the two-equation eddy-viscosity Shear

Stress Transport (SST) model of Menter [17]. The turbulent eddy viscosity µT was

calculated as the ratio between the turbulence kinetic energy k and the specific dis-

sipation of turbulence ω

µT = ρ · k

ω
(2.11)

Two additional equations have to be solved to calculate the values of k and ω.

These equations are the transport equations for the turbulent kinetic energy and the

specific dissipation of turbulence.

The transport equation for the turbulent kinetic energy is expressed in differential
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form as [17]

∂ρk

∂t
+

∂

∂xj

(ρvjk) =
∂

∂xj

[

(µL + σkµT ) · ∂k

∂xj

]

+ τij · Sij − β∗ρωk, (2.12)

where µL is the molecular viscosity, µT is the eddy viscosity, τij are the turbulent

stresses, Sij is the strain-rate tensor, and β∗ = 0.09 is a turbulent model parameter.

The first term in Eq. (2.12) represents the time variation of the turbulent kinetic

energy of the fluid in the control volume. The second term represents the convec-

tive turbulent kinetic energy flux or the transfer of turbulent kinetic energy across the

boundary of the control volume. The third term represents the conservative turbulent

kinetic energy diffusion. The fourth term is the eddy-viscosity production of turbu-

lent kinetic energy. The last term in this equation is the turbulent kinetic energy

dissipation.

The transport equation for the specific dissipation of turbulence is expressed in

differential form as

∂ρω

∂t
+

∂

∂xj

(ρvjω) =
∂

∂xj

[

(µL + σwµT ) · ∂ω

∂xj

]

+
Cwρ

µT

· τij · Sij − βρω2+ (2.13)

+2 (1 − f1) ·
ρσw2

w
· ∂k

∂xj

· ∂ω

∂xj

,

where Cw and β are turbulent model parameters. The function f1 is called the

blending function because it blends the model coefficients of the k − ω model in

boundary layers with the model coefficients of the transformed k − ε model in free-

shear layers and freestream zones.

The first term in Eq. (2.13) represents the time variation of the specific dissipa-

tion of turbulence of the fluid in the control volume. The second term represents the



16

convective specific dissipation of turbulence flux or the transfer of specific dissipation

of turbulence across the boundary of the control volume. The third term represents

the conservative specific dissipation of turbulence diffusion. The fourth term is the

eddy-viscosity production of specific dissipation of turbulence. The fifth term repre-

sents the specific dissipation of turbulence dissipation. The last term in this equation

represents the turbulent cross diffusion.

The blending function f1 is expressed as [17]

f1 = tanh
(

arg4
1

)

(2.14)

The value of arg1 is obtained from the following equation [17]

arg1 = min

[

max

( √
k

0.09ωd
,
500µL

ρωd2

)

,
4ρσk

CDkwd2

]

, (2.15)

where d is the distance from the cell to the nearest wall. CDkw is the positive part

of the cross diffusion term in Eq. (2.13) and is expressed as [17]

CDkw = max

(

2 · ρσw2

w
· ∂k

∂xj

· ∂ω

∂xj

, 10−20

)

(2.16)

The constants for the turbulent model are calculated using the blending function

f1 from Eq. (2.14) and the following blending equation [17]

φ = f1 · φ1 + (1 − f1) · φ2, (2.17)

where φ can be any parameter that needs to be blended, like σk, σω, β, and Cw. The

coefficients for the inner model (k−ω) are given by σk1
= 0.85, σω1

= 0.5, β1 = 0.075,

and Cw1
= 0.533. The coefficients for the outer model (k − ε) are given by σk2

= 1.0,

σω2
= 0.856, β2 = 0.0828, and Cw2

= 0.44.
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B. Structural model

The nonlinear behavior of the cantilever wing was modeled using a nonlinear beam

theory. This theory accounted for bending about multiple axes, as well as torsional

coupling. The nonlinear equations of motion for a cantilever wing were derived from

the equations of motion for flexural-flexural-torsional vibrations. The formulation

followed an approach developed by Crespo da Silva [20]. This approach contained

structural coupling terms and included both quadratic and cubic nonlinearities due

to curvature and inertia.

Figure 3 shows a beam segment of length s. In this figure X-Y -Z are the unde-

formed or reference axes, and ξ-η-ζ are the deformed axes. Figure 3 also shows the

in-plane bending v and the out-of-plane bending w. The torsion φ was taken about

the deformed elastic axis ξ.

Fig. 3. Structural model of the wing [3].
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The beam was assumed to be inextensional lengthwise. This constraint was

expressed mathematically by the following relation

(1 + u′)2 + v′2 + w′2 = 1 (2.18)

This constraint, although artificial, is a valid approximation since the extensional

stiffness of the wing is considerably larger than the in-plane and out-of-plane stiff-

nesses.

The equations of motion for in-plane bending w, out-of-plane bending v, and

torsion φ response were expressed as [3]

mẅ − Iηẅ
′′ + Dηw

IV = G′

w + FAw

mv̈ − meφ̈ − Iζ v̈
′′ + Dζv

IV = G′

v + FAv
(2.19)

Iξφ̈ − mev̈ − Dξφ
′′ = Gφ + M

where m is the mass of the wing per unit length, I is the moment of inertia, D is the

stiffness coefficient, e is the center of gravity offset from the elastic axis. G′

w, G′

v and

Gφ are the structural nonlinear components [3]. FAw
and FAv

are the aerodynamic

forces and M is the aerodynamic moment.

In Eqs. (2.19), the linear terms were written on the left-hand side and the

corresponding nonlinear terms were expressed as G′

w, G′

v, and Gφ. The nonlinear

structural terms were expanded using a Taylor series about the static undeformed

wing configuration. Terms up to third order were retained in the final expression.

Higher order nonlinearities were neglected assuming they would have negligible effect

on the system dynamics. The formulation for the nonlinear components are presented

in the following expressions
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G′

w = {Dξ (φ′ + v′′w′) v′′ −
[

(Dη − Dζ)
(

φv′′ + φ2w′′
)]

′

−w′
(

Dζv
′′2 + Dηw

′′2
)

− Iξ

(

φ̇ + v̇′w′

)

v̇′ −
[

(Iη − Iζ)
(

φv̇′ + φ2ẇ
)]

•

+w′
(

Iζ v̇
′2 + Iηẇ

′2
)

+ λw′}′ (2.20)

G′

v = {−Dξ (φ′ + v′′w′) w′′ −
[

(Dη − Dζ)
(

φ2v′′ − φw′′ − v′w′w′′
)]

′

−v′
(

Dζv
′′2 + Dηw

′′2
)

+ Iξ

(

φ̇ + v̇′w′

)

ẇ′ +
[

(Iη − Iζ)
(

φ2v̇′ − φẇ′ − v′w′ẇ′
)]

•

+v′
(

Iζ v̇
′2 + Iηẇ

′2
)

+ λv′ + w′qb2CM}′ (2.21)

Gφ = Dξ(w
′v′′)′ − (Dη − Dζ)

[

(v′′2 − w′′2)φ − v′′w′′
]

−Iξ(w
′v̇′)• + (Iη − Iζ)

[

(v̇′2 − ẇ′2)φ − v̇′ẇ′
]

(2.22)

where ˙ and • denote time derivatives, and ′ denotes spatial derivatives.

The solution was assumed to be separable in space and time. The variables were

expressed in series form as follows

w(x, t) =
∞

∑

i=1

Wi(x)wi(t), (2.23)

v(x, t) =
∞

∑

j=1

Vj(x)vj(t), (2.24)

φ(x, t) =
∞

∑

k=1

Ak(x)φk(t) (2.25)

In these expressions, the capitalized terms, Ui, Wj and Ak represent the shape

functions derived from a vibrating, nonrotating uniform cantilever beam, and they

were defined as
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Wi(x) = Fi(x) = cosh(
βix

L
) − cos(

βix

L
) − σi

[

sinh(
βix

L
) − sin(

βix

L
)

]

Vj(x) = Fj(x) = cosh(
βjx

L
) − cos(

βjx

L
) − σj

[

sinh(
βjx

L
) − sin(

βjx

L
)

]

Ak(x) =
√

2 sin(
γkx

L
) (2.26)

where β and γ are the roots of the characteristics equations for pure bending and

torsion respectively, and σ is a function of β.

The Fi(s), Fj(s) and Ak(s) in Eq. (2.26) are the shape functions or mode shapes

for in-plane bending, out-of-plane bending and torsion motion respectively.

The root of the characteristic equation for pure bending was defined as

1 + cos(βi) cosh(βi) = 0 (2.27)

The root of the characteristic equation for pure torsion was defined as

sin(γk) = 0 (2.28)

The parameter σi was defined as

σi =
cosh(βi) + cos(βi)

sinh(βi) + sin(βi)
(2.29)

Figure 4 shows the first and second bending and torsion mode shapes.

By using the Galerkin method, the corresponding ordinary differential equations

(ODEs) were obtained from the partial differential equations (2.19). The procedure

was applied to obtain linear mass, damping and stiffness matrices. These matrices

were time invariant and they were computed at the beginning of the algorithm only

once.
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Fig. 4. Modal shape functions for bending and torsion.

The ODEs obtained were expressed in matrix form as follows [3]

[ML]
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w
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ẅ

v̈

φ̈























+ FNL + FA (2.30)

where FNL is the vector of the structural nonlinear terms excluding the inertia terms.

FA is the vector of aerodynamic forces and moments obtained after the application of

Galerkin procedure to the actual physical loads. This procedure interpolates the aero-
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dynamic loads between the modal degrees of freedom. Equation (2.30) was integrated

in time using a Runge-Kutta algorithm.

C. Coupling of the aerodynamic and structural models

The coupling of aerodynamic and structural models was done using a tightly-coupled

solution [21] which allowed the two models to communicate during every time step.

After the structural equations of motion were solved for the incremental deflections,

the wing location and the flow solver grid were updated and a new aerodynamic

solution was obtained at the next time step using these deflections. The structural

model loads lagged the aerodynamic forces by one time step. This time step was

considered to be small enough such that no significant phase lags were introduced.

The aerodynamic loads were generated by integrating the pressure over the wing

surface. The pressure values were obtained from the unsteady flow solver. The

aerodynamic loads were then passed to the structural solver and were used to calculate

the wing deformation. The coordinates of the new position of the wing were passed to

the grid deformation algorithm which updated the grid of the flow solver. The flow

solution was then calculated and the aerodynamic loads generated for a new wing

position.
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CHAPTER III

NUMERICAL METHOD

The first part of this chapter presents the details of the mesh generation algorithm.

The chapter continues with the details of the Reynolds-averaged Navier-Stokes flow

solver implementation, the mesh deformation algorithms, the parallel algorithm im-

plementation, and finalizes with the multigrid technique implementation on the flow

solver.

A. Mesh generation algorithm

This section presents the details of the mesh generation algorithm. The mesh gener-

ation algorithm presented herein was developed to satisfy the following requirements:

(1) allow a good control of the grid size in the boundary layer, (2) allow large wing

deformations without the need to remesh the domain, (3) reduce the computational

time for grid deformation as the wing deforms, and (4) facilitate parallel computa-

tion. As a result of these requirements, the grid generation and deformation algorithm

used: (a) layers of topologically identical elements in the spanwise direction, (b) a

structured O-grid around the wing surface, and (c) an unstructured grid outside of

O-grid mesh that deformed using the spring analogy method.

The topologically identical layers spanned from the root of the wing past the tip

of the wing to the far-field boundary. The topologically identical layers simplified the

mesh deformation algorithm and made the parallelization of the flow solver associated

with this mesh more efficient. Each layer of the mesh had a hybrid configuration. A

structured O-grid was constructed around the wing, to have better control of the mesh

in the viscous region. An unstructured grid was constructed outside the O-grid to fill

the rest of the layer [22]. Figure 5 shows the structured O-grid generated around the
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wing. Note how the size of the elements grow from smaller close to the surface of the

wing to larger at the O-grid boundary. Figure 6 shows the O-grid and unstructured

mesh, with a close up and whole domain views. The figure on the left shows the

smooth transition of the element size in the unstructured mesh. The triangles are of

comparable size to the outer layer of quadrilaterals at the O-grid boundary, and grow

larger away from the wing. Figure 6 on the right shows the whole domain, where the

O-grid is barely visible since it is much smaller than the domain size. Note how the

unstructured mesh covers the domain with relatively few elements that grow in size

as the distance to the wing increases. Figure 7 shows the original undeformed shape

of the mesh. Note the identical topology of the layers of the mesh. This mesh has 16

layers that span from the root of the wing past the tip of the wing. For clarity only

four layers are shown, which are the layers corresponding to the root, the mid-span,

the wing tip, and the far-field boundary sections.

x

y

-0.5 0 0.5 1

-0.2

0

0.2

0.4

Fig. 5. O-grid generated around the wing.
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Fig. 6. O-grid and unstructured mesh, close up and whole domain views.

B. Flow solver

The governing equations (2.1, 2.2, 2.8, 2.12 and 2.13) were solved using a finite

volume method. The computational domain was discretized using an unstructured

mixed mesh. The mesh was deformed according to the wing displacement. Time-

marching was used to calculate the unsteady solution. This section presents the

discretization of the computational domain, the spatial discretization of the governing

equations, including the numerical implementation of the vector fluxes and the second-

order upwind scheme, the time integration, and the implementation of the boundary

conditions.

1. Navier-Stokes equations

The governing equations of the flow, the Navier-Stokes equations (2.1, 2.2, 2.8), were

expressed in vectorial form as [18, 23]
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Fig. 7. Mesh with topologically identical layers.

∂

∂t

∫

V

~Q · dV +

∮

S

(

~Fconv − ~Fvis

)

· ~n · dS =

∫

V

~G · dV , (3.1)

where ~Q is the vector of conservative variables

~Q =

























ρ

ρu

ρv

ρw

ρE

























(3.2)
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~Fconv is the vector of the convective or inviscid fluxes

~Fconv =

























ρV

ρuV + nxp

ρvV + nyp

ρwV + nzp

ρHV

























(3.3)

where V is the contravariant velocity or velocity normal to the surface element V =

nxu + nyv + nzw.

~Fvis is the vector of the viscous fluxes

~Fvis =

























0

nxτxx + nyτxy + nzτxz

nxτyx + nyτyy + nzτyz

nxτzx + nyτzy + nzτzz

nxθx + nyθy + nzθz

























(3.4)

where the terms describing the work of viscous stresses and the heat conduction in

the fluid are expressed as

θx = uτxx + vτxy + wτxz + λ
∂T

∂x

θy = uτyx + vτyy + wτyz + λ
∂T

∂y
(3.5)

θz = uτzx + vτzy + wτzz + λ
∂T

∂z

The thermal conductivity coefficient λ is calculated with

λ = cp ·
µ

Pr
(3.6)
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where Pr is the Prandtl number.

The components of the viscous stresses are

τxx =
2

3
µ

(

2
∂u

∂x
− ∂v

∂y
− ∂w

∂z

)

τyy =
2

3
µ

(

2
∂v

∂y
− ∂w

∂z
− ∂u

∂x

)

τzz =
2

3
µ

(

2
∂w

∂z
− ∂u

∂x
− ∂v

∂y

)

(3.7)

τxy = τyx = µ

(

∂u

∂y
+

∂v

∂x

)

τxz = τzx = µ

(

∂u

∂z
+

∂w

∂x

)

τyz = τzy = µ

(

∂v

∂z
+

∂w

∂y

)

2. Turbulence model

The eddy viscosity was modeled by using the two-equation k−ω Shear Stress Trans-

port (SST) turbulence model of Menter [17]. The time dependent integral form of

these equations was expressed in a vectorial form similar to the Navier-Stokes equa-

tions

∂

∂t

∫

V

~QT · dV +

∮

S

(

~Fconv,T − ~Fvis,T

)

· dS =

∫

V

~GT · dV , (3.8)

where ~QT is the state vector of turbulent conservative variables, ~Fconv,T is the vector

of turbulent convective fluxes, ~Fvis,T is the vector of turbulent viscous fluxes, and ~GT
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is the vector of turbulent source terms. The state vector of turbulent conservative

variables is

~QT =







ρk

ρω






(3.9)

where k is the turbulence kinetic energy and ω is the specific dissipation rate.

3. Spatial discretization

The computational domain was discretized using hexahedra and triangular prisms

cells. The cell-averaged variables were stored at the nodes of the grid, which were the

vertices of the cells. The governing equations were discretized using mesh duals as

control volumes. Two different mesh duals can be used, the median dual mesh and

the centroid dual mesh. The median dual mesh is defined by the surfaces crossing the

cell centroid, the face centroids, and the mid-edge points. The centroid dual mesh

skips the mid-edge points, and is defined by the surfaces crossing the cell centroid

and the face centroids. Figure 8 shows an example of a median dual mesh and a

centroid dual mesh. The median dual mesh was adopted because of its flexibility to

handle unstructured mixed meshes [24]. Figure 9 shows an example of a dual mesh

unstructured mixed grid, where an hexahedral and a prism cells are neighbors and

the median dual mesh is constructed in the corner of these two cells.

Fluxes can be calculated using either an edge-based or a cell-based data structure.

An edge-based data structure takes advantage of the fact that each edge in the mesh

has only one associated face. Consequently, the fluxes through the faces of the mesh

are calculated by looping over the edges. In a cell-based data structure, the fluxes are

calculated by looping over the cells, then looping over each face of the cells. Thus,

in a cell-based data structure, each face is visited twice, one time for each of the
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Median dual mesh Centroid dual mesh

Fig. 8. Median and centroid dual meshes.

two cells that share that face. As a consequence, the number of operations for the

cell-based data structure is about twice than the number of operations for the edge-

based data structure. In this work the edge-based data structure was utilized for the

discretization of the governing equations Eq. (3.1) and Eq. (3.8).

The numerical scheme was node-based because the solution was obtained at the

nodes of the mesh. The control volume averaged flow variable ~Q over the volume Vi

was calculated as

~Qi =

∫

Vi

~Q · dVi

Vi

(3.10)

The surface integral of the convective and viscous fluxes was approximated by a

sum over the faces of each control volume,

∮

S

(

~Fconv − ~Fvis

)

· ~n · dS =
∑

j=k(i)

(

~Fconv − ~Fvis

)

· Sij (3.11)

where k(i) is the set of vertices adjacent to node i, (~Fconv − ~Fvis) is the flux normal to

the dual-mesh cell face, and Sij is the cell face surface area. Both the surface area and

the flux are associated with the dual mesh face that corresponds to the edge (i, j).
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Fig. 9. Median dual mesh for unstructured mixed grids.

Figure 10 shows the dual mesh face associated with the edge (i, j).

The source terms were calculated using the control volume averaged solution and

the derivatives of flow variables at the cell centroid,

~Gi =

∫

Vi

~G · dVi

Vi

(3.12)

The term semi-discrete indicates that the conservative variables were represented

as an average value and the spatial operators, such as the integrations in space, were

approximated by the sum of the contributions over each face. Equation (3.1) may be

rewritten in a semi-discrete form as

∂
(

~Qi · Vi

)

∂t
=

∂ ~Qi

∂t
Vi +

∂Vi

∂t
~Qi = −

∑

j=k(i)

(

~Fconv − ~Fvis

)

· Sij + ~Gi · Vi (3.13)

Equations (3.1) and (3.8) have the same form. Consequently, the spatial dis-

cretization of the turbulence model equation is similar to the discretization of the
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Fig. 10. Dual mesh face associated with the edge (i, j).

Navier-Stokes equations, shown in Eq. (3.13). The Navier-Stokes and the turbulence

model equations were not solved simultaneously, but were staggered, with the tur-

bulence model lagging one time step behind the Navier-Stokes equations. Therefore,

the equations (3.1) and (3.8) were solved alternatively, with each equation using the

variables from the other equation corresponding to the previous time step.

4. Vector fluxes implementation

The convective flux in Eq. (3.13) was calculated using Roe’s flux-difference splitting

scheme [25]. Roe’s approximate Riemann solver is based on the decomposition of the

flux difference over a face of the control volume into a sum of wave contributions.

The convective fluxes were evaluated at the faces of a control volume using the

following expression [19]

~Fc =
1

2

[

~Fc

(

~QR

)

+ ~Fc

(

~QL

)

− |ARoe| ·
(

~QR − ~QL

)]

(3.14)
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where |ARoe| is the Roe matrix. This matrix is identical to the flux Jacobian with

respect to the conservative variables. The flow variables were replaced by the Roe-

averaged variables, which are expressed as [19]

ρ̃ =
√

ρL · ρR

ũ =
uL

√
ρL + uR

√
ρR√

ρL +
√

ρR

ṽ =
vL
√

ρL + vR
√

ρR√
ρL +

√
ρR

w̃ =
wL

√
ρL + wR

√
ρR√

ρL +
√

ρR

(3.15)

H̃ =
HL

√
ρL + HR

√
ρR√

ρL +
√

ρR

c̃ =

√

(γ − 1) ·
(

H̃ − q̃2

2

)

Ṽ = ũ · nx + ṽ · ny + w̃ · nz

q̃2 = ũ2 + ṽ2 + w̃2

The product of |ARoe| and the difference of the left and right states was evaluated

as follows [19]

|ARoe| ·
(

~QR − ~QL

)

= |∆~F1| + |∆~F2,3,4| + |∆~F5| (3.16)
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where

|∆~F1| = |~V − ~c| ·
(

∆p − ρ̃ · c̃ · ∆V

2 · c̃2

)

·

























1

ũ − c̃ · nx

ṽ − c̃ · ny

w̃ − c̃ · nz

H̃ − c̃ · Ṽ

























(3.17)

|∆~F2,3,4| = |~V | ·
(

∆ρ − ∆p

c̃2

)

·

























1

ũ

ṽ

w̃

q̃2/2

























+ (3.18)

+|~V | · ρ̃ ·

























0

∆u − ∆V · nx

∆v − ∆V · ny

∆w − ∆V · nz

ũ · ∆u + ṽ · ∆v + w̃ · ∆w − Ṽ · ∆V

























|∆~F5| = |~V + ~c| ·
(

∆p + ρ̃ · c̃ · ∆V

2 · c̃2

)

·

























1

ũ + c̃ · nx

ṽ + c̃ · ny

w̃ + c̃ · nz

H̃ + c̃ · Ṽ

























(3.19)

To evaluate the viscous flux in Eq. (3.4), the velocity and temperature derivatives

were required at edge midpoints. For this edge-based data structure, the gradients

of a generic variable U at edge midpoints can be computed by averaging the nodal
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values

(∇U)ij =
1

2

[

(∇U)i + (∇U)j

]

(3.20)

The disadvantage of this approach is that decoupling occurs, particularly for

hexahedra and prismatic cells. To prevent decoupling, the directional derivatives

along an edge were taken into account [26]

(∇U)ij = (∇U)ij −
[

(∇U)ij ·
∆~r

|∆~r| −
Uj − Ui

|∆~r|

]

· ∆~r

|∆~r| (3.21)

where ∆~r is the vector that goes from node i to node j.

The same approach as outlined above was also employed for the discretization

of the viscous term of Eq. (3.8).

The least-squares method was used to calculate solution gradients at vertices

of the mesh [24]. The least-squares approach is based upon the use of a first-order

Taylor series approximation for each edge which is incident to the central node i. The

change of the solution of a generic variable U along an edge ij was computed from

(∇Ui) · ~rij = Uj − Ui (3.22)

where ~rij is the vector that goes from node i to node j.

When Eq. (3.22) is applied to the N number of edges incident to node i, the

following over-constrained system of linear equations is obtained



36

































∆xi1 ∆yi1 ∆zi1

∆xi2 ∆yi2 ∆zi2

: : :

∆xij ∆yij ∆zij

: : :

∆xiN ∆yiN ∆ziN













































∂U
∂x

∂U
∂y

∂U
∂z













=

































U1 − Ui

U2 − Ui

:

Uj − Ui

:

UN − Ui

































(3.23)

Equation (3.23) can be expressed as

Ā · ~x = ~b (3.24)

Solving for the gradient vector ~x requires the inversion of the matrix Ā. To

prevent problems with ill-conditioning, particularly on stretched grids, the matrix

Ā can be decomposed into the product of an orthogonal matrix Q̄ and an upper

triangular matrix R̄ [27].

The solution of the gradients was obtained using the following expression

~x = R̄−1 · Q̄T ·~b (3.25)

The entries in the upper triangular matrix R̄ were obtained from [27]

r11 =

√

√

√

√

N
∑

j=1

(∆xij)
2

r12 =
1

r11

·
N

∑

j=1

∆xij · ∆yij

r22 =

√

√

√

√

N
∑

j=1

(∆yij)
2 − r2

12 (3.26)
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r13 =
1

r11

·
N

∑

j=1

∆xij · ∆zij

r23 =
1

r22

·
(

N
∑

j=1

∆yij · ∆zij −
r12

r11

·
N

∑

j=1

∆xij · ∆zij

)

r33 =

√

√

√

√

N
∑

j=1

(∆zij)
2 − (r2

12 + r2
23)

The gradient at node i was calculated with the weighted sum of the edge differ-

ences [27]

∇Ui =
N

∑

j=1

~wij · (Uj − Ui) (3.27)

with the vector of weights ~wij defined as

~wij =













αij,1 − r12

r11

· αij,2 + β · αij,3

αij,2 − r23

r22

· αij,3

αij,3













(3.28)

The terms in Eq. (3.28) were expressed as [27]

αij,1 =
∆xij

r2
11

αij,2 =
1

r2
22

·
(

∆yij −
r12

r11

· ∆xij

)

(3.29)

αij,3 =
1

r2
33

·
(

∆zij −
r23

r22

· ∆yij + β · ∆xij

)
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β =
r12 · r23 − r13 · r22

r11 · r22

5. Second-order upwind scheme

The flow variables had a piecewise linear distribution over all cells. Therefore, the

numerical method was second-order accurate in space [28]. The left and right fluid

states were determined using linear reconstruction. To produce a monotone solution,

a limiter was applied to the linearly reconstructed fluid states.

A piecewise linear redistribution of the cell-averaged flow variables is represented

by [29]

Q (x, y, z) = Q (x0, y0, z0) + ∇Q0 · ~r, (3.30)

where ~r is the vector from point (x0, y0, z0) to any point (x, y, z) in the cell, and ∇Q0

represents the solution gradient in the cell. Using this piecewise linear redistribution

in Eq. (3.30), the left and right fluid states QL and QR are

QL = Qi + 1
2
∇Qi · ∆~r

QR = Qj + 1
2
∇Qj · ∆~r,

(3.31)

where ∆~r = ~rj − ~ri, Qi and Qj are cell-averaged fluid states associated with cells Vi

and Vj, respectively, and ∇Qi and ∇Qj are gradients of Q at the end nodes i and j

of an edge (i, j), respectively. Figure 11 shows an example of reconstructed solution,

where the left and right fluid states QL and QR were obtained from the constant cell

values Qi and Qj augmentated by the gradient contributions ∇Qi and ∇Qj.

To ensure that the linearly reconstructed fluid states produced a monotone so-

lution, a limiter function was introduced into Eq. (3.31) [30]
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Fig. 11. Linear reconstruction of the solution.

QL = Qi + 1
2
α [(1 − η)∇Qi · ∆~r, η (Qj − Qi)]

QR = Qj + 1
2
α [(1 − η)∇Qj · ∆~r, η (Qj − Qi)] ,

(3.32)

where η = 1
3

and the limiter function was

α [a, b] =
[1 + sign (1, ab)] · [(a2 + ε) b + (b2 + ε) a]

2 · (a2 + b2 + 2 · ε) (3.33)

ε is a very small number (in the order of machine zero) that prevents division by zero

in smooth regions of the flow. The limiter reduces the solution accuracy in regions of

large gradients, in order to avoid the generation of new extrema.

6. Time integration

The semi-discrete form Eq. (3.13) of the Navier-Stokes equations Eq. (3.1) and of

the turbulence model equations Eq. (3.8) were expressed for a grid node i as
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∂Qi

∂t
Vi = Ri (3.34)

with

Ri = −
∮

Si

~F · ~n · dS + Ei · Vi −
∂Vi

∂t
Qi (3.35)

where Ri is the residual.

The term ∂Vi

∂t
is the time evolution of the cell volume and relates to the defor-

mation of the grid. This term was calculated using the Geometric Conservation Law

[31] which relates the time derivative of the volume to the motion of the faces of the

cell

∂Vi

∂t
=

∮

Si

~VS · ~n · dS =
∑

j=k(i)

~VS · ~nij · Sij, (3.36)

where ~VS denotes the velocity vector corresponding to the center of the face Sij whose

unitary normal vector is ~nij. The integral was solved using the same edge-based

numerical scheme used to solve the inviscid fluxes.

To obtain the time evolution of the solution, Eq. (3.34) has to be integrated

in time. The turbulence model equations were uncoupled from the Navier-Stokes

equations. The Navier-Stokes equations were solved first, assuming the eddy viscosity

µT equal to the value from the previous time step. Subsequently, the turbulence model

equations were solved, k and ω were advanced in time, and µT was updated. Both sets

of equations were integrated in time using the same explicit, four-stage Runge-Kutta

scheme
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Q
(0)
i = Qn

i

Q
(1)
i = Q

(0)
i + α1 · ∆ti

Vi

· R
(

Q
(0)
i

)

Q
(2)
i = Q

(0)
i + α2 · ∆ti

Vi

· R
(

Q
(1)
i

)

Q
(3)
i = Q

(0)
i + α3 · ∆ti

Vi

· R
(

Q
(2)
i

)

Q
(4)
i = Q

(0)
i + α4 · ∆ti

Vi

· R
(

Q
(3)
i

)

Qn+1
i = Q

(4)
i

(3.37)

where ∆ti is the time step at node i, the superscript is the time-stepping level, and

α1, α2, α3 and α4 are the stage coefficients. The values for these stage coefficients

were α1 = 0.1084, α2 = 0.2602, α3 = 0.5052, and α4 = 1.0.

A global time step was used by all the cells to ensure the time accuracy of the

solution. This global time step was the minimum time step size of all the cells. The

time-step calculation was based strictly on stability considerations for each node [32],

and has the following expression

∆ti = CFL · Vi

(Λx
c + Λy

c + Λz
c)i + 4 · (Λx

v + Λy
v + Λz

v)i

(3.38)

where the CFL number is the Courant-Friedrichs-Levy stability condition for explicit

time integration methods.

The convective spectral radii are expressed as

Λx
c = (|u| + c) · ∆Sx

Λy
c = (|v| + c) · ∆Sy (3.39)

Λz
c = (|w| + c) · ∆Sz
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The viscous spectral radii are expressed as

Λx
v = max

(

4

3 · ρ,
γ

ρ

)

·
(

µL

PrL

+
µT

PrT

)

· (∆Sx)2

Vi

Λy
v = max

(

4

3 · ρ,
γ

ρ

)

·
(

µL

PrL

+
µT

PrT

)

· (∆Sy)2

Vi

(3.40)

Λz
v = max

(

4

3 · ρ,
γ

ρ

)

·
(

µL

PrL

+
µT

PrT

)

· (∆Sz)2

Vi

The variables ∆Ax, ∆Ay and ∆Az represent the projections of the volume Vi on

the y-z-, x-z, and x-y planes. They are defined as

∆Ax =
1

2
·

N
∑

j=1

|nx · ∆Aj|

∆Ay =
1

2
·

N
∑

j=1

|ny · ∆Aj| (3.41)

∆Az =
1

2
·

N
∑

j=1

|nz · ∆Aj|

7. Boundary conditions

Boundary conditions were applied as conditions on the flux at boundary surfaces as

opposed to being applied directly to state variables. This approach, called “weak

condition” [33], avoids singularities at mesh points located at corners. To close the

dual-meshes at boundary points a face-based, as opposed to an edge-based, data

structure is utilized. The boundary face-based data structure and the adjacent edge-

based data structure were used to evaluate the fluxes and gradients of the flow field.

The boundary surface elements were discretized in the same manner as the elements
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of interior grid. The vector normal to the boundary face was found in the same

manner as the normal to a dual mesh face in the interior of the grid.

The tangency flow condition was imposed by requiring that the flux through the

wall be zero, so that ~u · ~n = 0, where ~n is the normal to the boundary dual mesh.

The flux normal to the boundary face is [33]

FBi
=

























0

pi · n̂Bi
· î

pi · n̂Bi
· ĵ

pi · n̂Bi
· k̂

0

























. (3.42)

The value of the pressure in Eq. (3.42) was obtained at the quadrature points.

Figure 12 shows a boundary cell with the interior and boundary faces. The quadrature

points appear marked with an X in the plot.

The expression of the normal flux is valid for both viscous and inviscid flow. In

the viscous flow case, the no-slip boundary condition was applied after each time step,

such that ~u = ~Vwall for moving walls and ~u = 0 for stationary walls.

The inflow/outflow boundary flux was defined in terms of the fluid state at the

boundary node i and was specified as [33]

FBi
=























−F̂ (Q−∞) · n̂Bi
if Ûi · n̂Bi

< −ci

F̂ (Qi, Q−∞) · n̂Bi
if Ûi · n̂Bi

∈ [−ci, ci]

F̂ (Qi) · n̂Bi
if Ûi · n̂Bi

> ci.

(3.43)

where Q−∞ is the freestream value of the state vector, Qi is the boundary cell state

vector, and ci is the local speed of sound.
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Fig. 12. Quadrature points to calculate boundary fluxes.

The flux normal to the boundary face imposed for supersonic inflow (i.e., Ûi ·

n̂Bi
< −ci) was computed using the state vector at upstream infinity. The flux normal

to the boundary face imposed for subsonic inflow and outflow (i.e., Ûi · n̂Bi
∈ [−ci, ci])

was computed using an intermediate state calculated from the conditions at cell i and

upstream infinity. The intermediate state was calculated using Riemann invariants.

The turbulent flow variables, k and ω, were specified at the wall and inlet boundaries,

and extrapolated at the outlet boundary. The value of k was set to zero at walls, since

this region of the flow corresponds to the laminar sublayer which is characterized for

having laminar flow behavior.
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C. Mesh deformation algorithm

This section presents the details of the mesh deformation algorithm that was de-

veloped to deform the mesh as the wing evolved in time. The section presents the

translational and rotational deformations, the details of the computation of the rota-

tion angles, the cubic mapping function used to deform the mesh, and a parametric

study of mesh deformation algorithm to determine the evolution of the mesh quality

as a function of the mesh deformation.

1. Translational deformations

The computational mesh was deformed to allow for the wing displacement. The

mesh connectivity was not modified in this deformation process. The mesh deforma-

tion algorithm was applied in two steps: first a translation, and then a rotation about

the three axes. The O-grid layers were translated, without being deformed, since

the currently used structural model does not account for cross-sectional deformation.

The unstructured grid was deformed in the y- and z-directions using a spring anal-

ogy technique [34]. The nodes of each layer were also translated in the x-direction

according to the spanwise wing deformation. The length of the wing was assumed

constant, using the constraint presented in Eq. (2.18). The magnitude of the trans-

lational deformations were set by the new coordinates of the deformed elastic axis

(Xe.a., Ye.a., Ze.a.), which were calculated by the structural solver.

Figure 13 shows the mesh after the translational deformation. The original un-

deformed mesh is shown in grey color, and the deformed mesh is shown in red. In

this case the tip deformation along the y-axis is 20% of the wing semi-span.
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Fig. 13. Mesh before and after the translational deformations.

2. Rotational deformations

a. Rotation about the x-axis

The first rotation applied to the mesh slice was a rotation about the x-axis, which is

analogous to a torsional deformation. This rotation about the x-axis took place about

the elastic axis. Figure 14 shows a sketch and a picture of the mesh after rotations

about the x-axis. The sketch on the left shows the initial and final positions of the

leading and trailing edges. The picture on the right shows the layer corresponding

to the tip of the wing. Note that even after large angular deformations no negative

volumes are created and the triangles still have a high quality associated.
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Fig. 14. Rotations about the x-axis.

The mesh slice was contained in the y-z plane. The mesh slice was assumed to

already have an initial rotation about the x-axis. Since the mesh slice is contained

initially on the y-z plane, the vector normal to the mesh slice is oriented along the

x-axis. The parameter d is the distance from the leading edge to the elastic axis.

The initial leading edge vector and normal vector have the following components:
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(3.44)
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(3.45)

The final position of the leading edge after a rotation along the x-axis was ob-

tained by rotating the mesh slice the amount (θx − θ0) about the x-axis. The coordi-
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nates of the leading edge were:
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(3.46)

The rotation with respect to the x-axis does not change the normal vector:
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(3.47)

Thus the normal vector still points in the x-axis and the wing slice is still normal

to the x-y plane. Figure 15 shows the mesh before and after the x-axis rotational

deformation. The figure on the left shows a 3D view of the mesh with only transla-

tional deformation. The figure on the right shows the mesh after the x-axis rotational

deformation.

b. Rotation about the y-axis

The second rotation applied to the mesh slice was a rotation about the y-axis, which

is analogous to an in plane bending deformation. This rotation about the y-axis took

place about the elastic axis. Figure 16 shows a sketch and a picture of the mesh

after rotations about the y-axis. The sketch on the left shows the initial and final
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Fig. 15. Mesh before and after the x-axis rotational deformation.

positions of the leading and trailing edges. The picture on the right shows a top view

of the mesh after the rotations about the y-axis. The amplitudes of these rotations

are small because the wing has a high stiffness associated with the in-plane motion.

Nevertheless, it is possible to see the wing in-plane deformation as well as the rotation

of all the layers about the y-axis.

The final position of the leading edge after a rotation along the y-axis was ob-

tained by rotating the mesh slice the amount θy about the y-axis. The coordinates

of the leading edge were:
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Fig. 16. Rotations about the y-axis.
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(3.48)

The expression for the normal vector after a rotation along the y-axis was
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(3.49)

Thus the normal vector is now contained on the x-z plane.
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c. Rotation about the z-axis

The third rotation applied to the mesh slice was a rotation about the z-axis, which

is analogous to an out-of-plane bending deformation. This rotation about the z-axis

took place about the elastic axis. Figure 17 shows a sketch and a picture of the mesh

after rotations about the z-axis. The sketch on the left shows the initial and final

positions of the leading and trailing edges. The picture on the right shows a front

view of the mesh after the rotations about the z-axis. It is clear from this figure how

the layers rotate following the out-of-plane deformations of the wing.

d

Y

X

Elastic axis

z−axis rotation

θ z

normal vector

ZFinal position

Leading edge

Trailing edge

Initial position

X

Y

Z

Fig. 17. Rotations about the z-axis.

The final position of the leading edge after a rotation along the z-axis was ob-

tained by rotating the mesh slice the amount θz about the z-axis. The coordinates of

the leading edge were:
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(3.50)

The expression for the normal vector after a rotation along the z-axis was
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(3.51)

3. Computation of the rotation angles

This section describes how to calculate the rotation angles θx, θy and θz using the

equations (3.46 - 3.51). The data provided by the structural solver comprised the

coordinates of the elastic axis (XE.A., YE.A., ZE.A.), the coordinates of the leading

edge (XL.E., YL.E., ZL.E.), and the components of the vector tangent to the elastic axis

and normal to the wing slice (nx, ny, nz).

From the last row of Eq. (3.51):

nz = −sin (θy)

therefore the θy rotation angle was calculated as
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θy = asin (−nz) (3.52)

Next from the second row of Eq. (3.51):

ny = cos (θy) · sin (θz)

therefore the θz rotation angle was calculated as

θz = asin

[

ny

cos (θy)

]

(3.53)

Finally from the last row of Eq. (3.50):

ZL.E. − ZE.A. = −d · cos (θx) · cos (θy) (3.54)

Taking the second row of Eq. (3.50):

YL.E. − YE.A. = −d · cos (θx) · sin (θy) · sin (θz) + d · sin (θx) · cos (θz) (3.55)

This last equation is nonlinear in θx and could be solved using the Newton’s

method for nonlinear equations. However, rearranging Eq. (3.54) yields:

−d · cos (θx) =
ZL.E. − ZE.A.

cos (θy)
(3.56)

This equation cannot be used to solve for θx since the cos() function cannot distinguish

an angle from its opposite (cos(x) = cos(−x)). However, Eq. (3.56) can be replaced

in Eq. (3.55) to obtain a linear equation in terms of θx:

YL.E. − YE.A. =
ZL.E. − ZE.A.

cos (θy)
· sin (θy) · sin (θz) + d · sin (θx) · cos (θz) (3.57)
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therefore the θx rotation angle was calculated as

θx = asin

[

YL.E. − YE.A.

d · cos (θz)
− ZL.E. − ZE.A.

d
· tan (θy) · tan (θz)

]

(3.58)

Using Eq. (3.58), (3.52), and (3.53) the rotation angles θx, θy, and θz, were

determined from the parameters provided by the structural solver.

4. Cubic mapping function

This section presents the details of the cubic mapping function that was used to

deform the layers of the mesh.

When the mesh was rotated about the y- and z-axes, the nodes between the

leading edge and trailing edge were rotated as a solid line. The nodes between the

leading edge (or trailing edge) and the outer computational domain were deformed

in the x-axis direction such that the layer was as close to being tangential as possible

both at the boundary and at the wing. This was achieved using a cubic mapping

function.

Figure 18 shows a sketch of the cubic mapping function and a picture with the

front view of the mesh after the rotational deformations. The sketch for the mapping

function shows how the nodes between the wing and the outer computational domain

were deformed in the x-axis direction.

As shown in Fig. 18, the parameters needed by the cubic mapping function are

the wing coordinates xw, yw, the boundary coordinates xb, yb, and the angles for the

wing αw and for the boundary αb.

The cubic mapping function was expressed as

X(y) = A + B · y + C · y2 + D · y3 (3.59)
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Fig. 18. Cubic mapping function and front view of rotational deformations.

Equation (3.59) has four unknown coefficients, which were obtained imposing

four boundary conditions. These boundary conditions were:

1. The value of the cubic mapping function at the wing must be equal to the wing

coordinate xw

X(yw) = A + B · yw + C · y2
w + D · y3

w = xw

2. The value of the cubic mapping function at the boundary must be equal to the
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boundary coordinate xb

X(yb) = A + B · yb + C · y2
b + D · y3

b = xb

3. The value of the slope of the cubic mapping function at the wing must be equal

to the wing slope αw

∂X

∂y
(yw) = B + 2 · C · yw + 3 · D · y2

w = αw

4. The value of the slope of the cubic mapping function at the boundary must be

equal to the boundary slope αb

∂X

∂y
(yb) = B + 2 · C · yb + 3 · D · y2

b = αb

Solving this system of equations yields the values of the cubic mapping coefficients

A, B, C, and D. The final expression for the cubic mapping function was:

X(y) = A + B · y + C · y2 + D · y3

Rαy =
tan (αb) − tan (αw)

yb − yw

D =
2

(yb − yw)2 ·
[

tan (αb) + tan (αw)

2
− xb − xw

yb − yw

]

C =
Rαy

2
− 3

2
· D · (yb + yw)

B = tan (αb) − Rαy · yb + 3 · D · yw · yb
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A = xb − B · yb − C · y2
b − D · y3

b

Figure 19 shows the 3D view of the mesh after the rotational deformations.

Only four layers are shown, those corresponding to the wing root, the wing midspan,

the wing tip, and the lateral boundary of the domain. Note how the layers deform

tridimensionally to be as close to perpendicular as possible to both the deforming

surface of the wing and the boundaries of the domain.

Fig. 19. 3D view of rotational deformations.
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5. Parametric study of mesh deformation algorithm

This section presents the results for the parametric study of the mesh deformation

algorithm. Two studies were performed, the first was related to the evolution of the

mesh quality as a function of the mesh deformation. The second study was to test

the limits of the mesh deformation algorithm.

a. Goland wing

The first study performed was to check the quality of the mesh as the wing was

deformed. Cells were stretched or compressed as the mesh followed the deformations

of the wing. Two measures were selected to evaluate the quality of the mesh, based

on the areas and on the angles. The second study performed was to test the limits

of the mesh deforming algorithm. Very large deformations were tested, with a wing

tip displacement of up to 60% of the wing semi-span.

The area quality measure was defined as the ratio of the area of the triangular

face to the sum of the squares of the length of each edge [22]:

Qarea = C · A

L2
12 + L2

23 + L2
31

(3.60)

where A is the area of the triangular face and L12, L23, and L31, are the lengths of

the three edges that form the triangle. C is a constant that is set equal to 2 ·
√

3 so

the formula returns a value of unity for equilateral triangles.

The angle quality measure was defined as the absolute value of the difference

between each internal angle and 60◦. This measure was normalized by an angle of

120◦:

Qangle = 1 − abs (α − 60◦)

120◦
(3.61)
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where α is each of the three internal angles of the triangular face. This formula has

a value of unity for equilateral triangles, which have internal angles equal to 60◦.

The area and angle quality measures were monitored as the wing deformed.

Average and lowest values of the quality measures were calculated. The lowest value

was obtained by comparing the quality of each cell and sorting the lowest value. The

average value was obtained by adding the quality measure of all the cells and dividing

by the number of cells.

Figure 20 shows the variation of the quality measures as the wing deformed. Four

quality measures are plotted, average and lowest, for the area and angle parameters.

The quality measures were calculated for wing tip deformations of up to 60% of the

wing semi-span. The range for the average quality measure is between 92% and 96%.

The range for the lowest quality measure is between 58% and 73%. Note in Fig. 20

that the average quality varies less than 4% even for very large wing tip deformations

of 60% of the wing semi-span. The lowest area quality is more affected than the angle

quality as the mesh deforms.

Figure 21 shows the front and 3D views of the deformed mesh, for a tip defor-

mation equal to 60% of the wing semi-span, illustrating that the mesh deformation

algorithm is robust and can be applied to very large deformations. The red mesh is the

deformed mesh, the gray mesh is the undeformed mesh and is shown for comparison

purposes.

b. F-5 wing

The grid generation and deformation algorithm was also used to model the F-5 wing

[35]. This wing has a span of 0.6476 m, a root chord of 0.6396 m, and a tip chord

of 0.18 m. The cross-section of the wing has a modified NACA 65-A-004.8 airfoil.

Figure 22 shows the undeformed and deformed wing configurations. The deformed
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Fig. 20. Goland wing, quality measure as the wing deforms.

configuration has a wing tip displacement of 20% of the wing semi-span.

D. Parallel algorithm

The flow solver was parallelized to reduce the computational time. The message-

passing interface (MPI) standard libraries were used for the interprocessor commu-

nication. As described in the grid generation section, the computational domain was

divided into topologically identical layers that spanned from the root to past the tip

of the wing. Having topologically identical layers reduced the communication effort
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X

Y

Z

Fig. 21. Front and 3D view of Goland wing with tip deformation equal to 60% of wing

semi-span.

and increased the parallelization efficiency. The grid deformation algorithm was de-

signed in such a way that the connectivity of the grid did not change during wing

deformation.

The grid was divided along the wing span into several sub-grids, and one proces-

sor was allocated for each sub-grid. Each sub-grid could include one or more layers,

depending on the number of processors available. Figure 23 shows the sub-grids and

the communication process. The nodes in the sub-grids were divided in two cate-
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X
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Fig. 22. F-5 wing: Deformed and undeformed meshes.

gories: active and ghost nodes. The active nodes, marked as black circles in Fig.

23, were the nodes where the numerical computation took place. The ghost nodes,

marked as white circles in Fig. 23, were only used to compute the edge-based fluxes

and the solution gradients. Each sub-grid consisted of n layers of active nodes (layers

1 to n) and two layers of ghost nodes, layers 0 and n + 1. As shown in Fig. 23, the

first two layers (0 and 1) of a sub-grid (i) coincided with the last two layers (n and

n + 1) of the previous sub-grid (i − 1).

The state vector at the ghost nodes was updated at each time step by the neigh-

bor processor. The state vector information traveled from active nodes to ghost
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Fig. 23. Schematic view of the parallel implementation. Subindex indicate the sub-grid

number. Active nodes are marked as black circles. Ghost nodes are marked

as white circles. Arrows indicate the communication path.

nodes, as indicated by the arrows in Fig. 23. Only the active nodes of layers 1 and

n were used in the communication process. Each active node from the layers 1 and

n communicated with only one ghost node at each time step, as opposed to commu-

nicating with multiple ghost nodes. This was possible because the grid was designed

to be topologically identical, and each node from a layer was connected to only one

node from a neighbor layer. The fact that each active node from the layers 1 and n

communicated with only one ghost node increased the parallelization efficiency, since

it reduced the communication effort. The processor load was balanced to achieve

the maximum possible parallel speedup. The load balance was achieved by evenly

splitting the total number of layers of the whole grid among the available number of

processors.

Table I summarizes the efficiency of the parallel computation. These results were

obtained for the Heavy Goland Wing at Mach=0.09. The computational grid had 64

slices and each slice had 2316 nodes. The runs up to 16 processors were done on a
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Table I. Efficiency of parallel computation.

Number of Wall time Efficiency Computer

processors [sec] [%]

1 18495 100.00 SGI Altix 3700

2 8963 103.17 SGI Altix 3700

4 4585 100.85 SGI Altix 3700

8 2356 98.13 SGI Altix 3700

16 1244 92.92 SGI Altix 3700

1 9026 100.00 Cray XT3

16 623 90.55 Cray XT3

32 380 74.23 Cray XT3

128-processor (1.3 GHz Intel Itanium) SGI Altix 3700 computer at the Texas A&M

Supercomputing Center. Table I shows a small super-linear speed-up for 2 and 4

processors. The efficiency reduced once the number of processors increased to 8 and

higher. In addition, 16 and 32 processor runs were done on a 2068-processor (2.4-GHz

AMD Opteron) Cray XT3 at the Pittsburgh Supercomputing Center.

E. Multigrid

Parallel algorithms reduce the computational time by dividing the computing effort

into several processors. The number of operations slightly increases due to the pro-

cessor communication, but the overall effect of parallel computation is a reduction

in the computational time. To further reduce the computational time, a multigrid

technique was applied to the flow solver algorithm. The multigrid technique solves

the governing equations on a series of successively coarser grids, accelerating the con-
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vergence of the solution on the finer grid while maintaining the overall accuracy of the

flow solver. Therefore, multigrid methods achieve a reduction in the computational

time by means of reducing the number of iterations necessary to obtain a converged

solution.

This section presents the details of the multigrid implementation in the flow

solver. The section starts with a general introduction to the multigrid methodology.

The section continues with the mesh subdivision algorithm used to generate the dif-

ferent meshes. Then, the interpolation transfer operators are presented, which carry

the information between the different meshes. Following this, the step by step imple-

mentation of the multigrid on the flow solver is described. Finally, a comparison of

the performance of the multigrid solver versus the one-level grid solver is presented.

1. Introduction

The multigrid technique is based on the solution of the governing equations on a

series of successively coarser grids that reduce the high-frequency components of the

solution error and accelerate the convergence of the solution on the finer grid. The

solution on the coarser grid is driven by the residuals of the finer grid, therefore

maintaining the overall accuracy of the finer grid. The correction obtained for the

coarse grid is then interpolated to the finer grid using an interpolation scheme [36].

A simple example was included herein to show the basic idea behind the multigrid

technique [37]. The example consisted of solving iteratively a homogeneous, non-

singular linear system A · u = 0 with the use of different arbitrary initial solutions.

u = 0 is the exact solution which is known, v is the numerical solution, and the error

ε in the approximation v is

ε = u − v = 0 − v = −v (3.62)
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The numerical approach used to solve this problem was the Jacobi method, with

a weighting factor w = 2 / 3. This relaxation scheme is initiated with an arbitrary

initial solution and it relaxes the numerical solution towards the exact solution. Figure

24 shows the initial solutions which consisted of sinusoidal functions with different

frequencies. The initial solutions were sinusoidal functions since any type of solution

can be decomposed into a sum of harmonic functions with different frequencies and

amplitudes. The expression for each initial solution was:

vk = sin (kπx) (3.63)

Figure 25 shows that the error of the numerical solution v decreases with each

relaxation iteration. The interesting fact is that this rate of decrease is larger for the

higher frequency initial solutions (k = 6) than for the lower frequency initial solutions

(k = 1).

If the initial solution is composed of a combination of sinusoidal functions with

different frequencies, the error decreases rapidly in the first few iterations, after which

it decreases much more slowly. This initial decrease corresponds to the quick elimina-

tion of the high-frequency components of the error of the solution. Figure 26 shows

the error history for an initial solution composed of different frequencies. The initial

solution was equal to v = 1/3 · [sin(kπx) + sin(6kπx) + sin(32kπx)].

Relaxation schemes are not effective at reducing the error of the numerical solu-

tion if this error has predominantly smooth components. Assume that a particular

relaxation scheme has been applied until only smooth error components remain. On

a coarse grid, this smooth error behave like an oscillatory error. This suggests that

when relaxation begins to stall, signaling the predominance of smooth error modes,

it is advisable to move to a coarser grid, on which those smooth error modes appear
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Fig. 24. Arbitrary sinusoidal initial solutions.

more oscillatory and the relaxation scheme will be more effective.

2. Multigrid mesh subdivision

The three grids for the multigrid solver were generated using a topological method

called grid refinement. This technique starts from a coarse grid and generates finer

grids by element subdivision. New nodes are inserted at the midpoint of the existing

edges. Every triangular and quadrilateral elements are subdivided into four elements

for the following generation [38]. Figure 27 shows two levels of the multigrid refine-
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Fig. 26. Error history for initial solution

composed of sinusoidal functions

with different frequencies [37].

ment technique. The coarse grid is shown in red, and the finer grid is shown in green.

Note that each triangular and quadrilateral elements of the grid is subdivided into

four new elements.

If the boundaries of the computational domain are non planar it is not sufficient to

place the new nodes at the center of the parent edge as is done with the interior edges.

If the new nodes are placed at the center of the parent edge, a faceted representation

of the original geometry will result. To avoid the faceted representation, the new

node is moved from the center of the parent edge to the true shape of the boundary

of the domain [39]. Figure 28 shows the boundary elements. Note that the new node

is not located at the midpoint of the parent edge, but instead lays on the true shape

of the boundary. Consequently, a better representation of the body is obtained as the

grid is refined.

The location of the new nodes away from the boundary surface was done by

averaging the angles of the edges of the master element, and advancing by a magnitude

equal to the average of the length of the edges of the master element. Figure 29
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Fig. 27. Triangular and quadrilateral element subdivision.

shows how the new nodes were located, once the boundary nodes were set. Two

parameters, αn and Ln, control the location of these nodes away from the boundary.

The parameter αn is the average angle of inclination of the edge, and Ln is the

average distance that the new nodes are to be located. The parameters αn and Ln

were calculated as

αn =
α1 + α2

2
(3.64)

Ln =
L1 + L2

2
(3.65)
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Fig. 28. True shape of boundary is recovered as the grid is refined.

3. Interpolation transfer operators

In the multigrid algorithm, the flow solution obtained on each mesh has to be passed to

the other levels of the mesh. This is accomplished by means of interpolation transfer

operators, which are linear interpolation schemes used to interpolate the solution from

coarser to finer meshes and from finer to coarser meshes. The nodes of the coarse

meshes are also nodes of the finer meshes. The solution at these common nodes is

transferred from one level to the other by injection, and the value remains the same

in both meshes [19]. Four different interpolation schemes were implemented herein

for the mesh. One scheme was applied to the internal quadrilateral cells, another to
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the boundary quadrilateral cells, another one to the triangular cells, and the last one

to the cells between the outer boundary of the O-grid and the first layer of triangles.

These interpolation schemes are presented in the next four subsections.

a. Interpolation schemes for internal quadrilateral cells

The internal quadrilateral cells are the cells that comprise the O-grid located around

the body, excluding the cells located just at the boundary of the O-grid. These

internal quadrilateral cells are surrounded by other quadrilateral cells in all directions.

Figure 30 shows one of the internal quadrilateral cells. The white nodes are common

to the coarse and fine meshes. The black nodes belong only to the fine mesh.
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Fig. 30. Coarse and fine meshes for internal quadrilateral cells.

The value of a parameter at node E of the coarse mesh is obtained from the fine

mesh using the interpolation formula [19]:

Qcoarse
E =

1

4

[

QE +
1

2
(QB + QD + QF + QH) +

1

4
(QA + QC + QG + QI)

]fine

(3.66)

The value of the parameters at nodes E, B and C of the fine mesh are obtained

from the coarse mesh using the interpolation formulas [19]:

Qfine
E = Qcoarse

E

Qfine
B =

1

2
· (QE + QJ)coarse (3.67)

Qfine
C =

1

4
· (QE + QJ + QK + QL)coarse
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b. Interpolation schemes for boundary quadrilateral cells

The boundary quadrilateral cells are the O-grid cells located next to the wall bound-

ary. Figure 31 shows the boundary quadrilateral cells. The white nodes are common

to the coarse and fine meshes. The black nodes belong only to the fine mesh.

A B C

FED

J K

L

Fig. 31. Coarse and fine meshes for boundary quadrilateral cells.

The value of a parameter at node E of the coarse mesh is obtained from the fine

mesh using the interpolation formula:

Qcoarse
E =

1

3
·
[

QE +
1

2
· (QB + QD + QF ) +

1

4
· (QA + QC)

]fine

(3.68)

The value of the parameters at nodes E, B and C of the fine mesh are obtained

from the coarse mesh using the interpolation formulas:

Qfine
E = Qcoarse

E

Qfine
B =

1

2
· (QE + QJ)coarse (3.69)

Qfine
C =

1

4
· (QE + QJ + QK + QL)coarse
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c. Interpolation schemes for triangular cells

The triangular cells are the unstructured cells that comprise the region outside of the

O-grid. Figure 32 shows a group of triangular cells. The white nodes are common to

the coarse and fine meshes. The black nodes belong only to the fine mesh.

B
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E
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L

Fig. 32. Coarse and fine meshes for triangular cells.

The value of a parameter at node E of the coarse mesh is obtained from the fine

mesh using the interpolation formula:

Qcoarse
E =

1

3
·
[

QE +
2

NT

∑

i

Qi

]fine

(3.70)

where NT is the number of nodes that are connected to the node being interpolated

(node E in this case) and the sum index i extends to all the nodes connected to node

E.

The value of the parameters at nodes E, D and F of the fine mesh are obtained

from the coarse mesh using the interpolation formulas:

Qfine
E = Qcoarse

E
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Qfine
D =

1

2
· (QA + QE)coarse (3.71)

Qfine
F =

1

2
· (QC + QE)coarse

d. Interpolation schemes for mixed triangular and quadrilateral cells

The mixed triangular and quadrilateral cells are the cells located at the outer bound-

ary of the O-grid. These cells have contributions from the boundary quadrilateral

cells of the O-grid, and contributions from the first layer of triangular cells. Figure

33 shows a group of mixed triangular and quadrilateral cells. The white nodes are

common to the coarse and fine meshes. The black nodes belong only to the fine mesh.

E
Quadrilateral contributions

Triangular contributions

Fig. 33. Coarse and fine meshes for mixed triangular and quadrilateral cells.

The value of a parameter at node E of the coarse mesh is obtained from the

contributions of the quadrilateral and triangular cells of the mesh. The triangular

contribution is calculated with Eq. (3.70). The boundary quadrilateral contribution
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is calculated with Eq. (3.68).

4. Implementation of multigrid on the flow solver

This section presents a summary of the multigrid implementation in the flow solver.

The flow solver utilizes an explicit time integration algorithm with a four step Runge-

Kutta scheme.

1. Calculate the flow solution for the fine mesh.

d

dt
~Qfine = − 1

Ωfine

~Rfine

where ~Q is the flow state vector, Ω is the cell volume, and ~R is the residual of

the Navier-Stokes equations.

2. Obtain the flow solution for the medium mesh by interpolating the flow solution

from the fine mesh.

~Qmedium = Imedium
fine · ~Qfine

where Imedium
fine is the interpolation transfer operator from the fine mesh to the

medium mesh.

3. Obtain the medium mesh residual by interpolating the residual from the fine

mesh.

~Rmedium = Imedium
fine · ~Rfine

4. Calculate the initial residual ~R
(0)
medium on the medium mesh using the medium

mesh state vector. Only the first stage of the Runge-Kutta scheme is used.

5. Calculate the forcing function for the medium mesh, as the difference between
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the interpolated residual and the calculated residual.

~Fmedium = ~Rmedium − ~R
(0)
medium

6. Calculate the solution update for the medium mesh, using the four stage Runge-

Kutta scheme. The forcing function ~F is added to every stage.

do k = 1, 4 ! number of Runge-Kutta stages

~Q
(k)
medium = ~Q

(0)
medium + αk ·

∆tmedium

Ωmedium

·
[

~R
(k−1)
medium + ~Fmedium

]

end do

7. Obtain the flow solution for the coarse mesh by interpolating the flow solution

from the medium mesh.

~Qcoarse = Icoarse
medium · ~Qmedium

where Icoarse
medium is the interpolation transfer operator from the medium mesh to

the coarse mesh.

8. Obtain the coarse mesh residual by interpolating the residual from the medium

mesh.

~Rcoarse = Icoarse
medium · ~Rmedium

9. Calculate the initial residual ~R
(0)
coarse on the coarse mesh using the coarse mesh

state vector. Only the first stage of the Runge-Kutta scheme is used.

10. Calculate the forcing function for the coarse mesh, as the difference between

the interpolated residual and the calculated residual.

~Fcoarse = ~Rcoarse − ~R(0)
coarse
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11. Calculate the solution update for the coarse mesh, using the four stage Runge-

Kutta scheme. The forcing function ~F is added to every stage.

do k = 1, 4 ! number of Runge-Kutta stages

~Q(k)
coarse = ~Q(0)

coarse + αk ·
∆tcoarse

Ωcoarse

·
[

~R(k−1)
coarse + ~Fcoarse

]

end do

12. Calculate the solution correction on the coarse mesh.

δ ~Qcoarse = ~Q(k)
coarse − ~Q(0)

coarse

13. Interpolate the solution correction to the medium mesh.

δ ~Q
(0)
medium = Imedium

coarse · δ ~Qcoarse

where Imedium
coarse is the interpolation transfer operator from the coarse mesh to the

medium mesh.

14. Add the coarse mesh interpolated correction to the medium mesh solution.

~Q
(k)
medium = ~Q

(k)
medium + δ ~Q

(0)
medium

15. Calculate the solution correction on the medium mesh.

δ ~Qmedium = ~Q
(k)
medium − ~Q

(0)
medium

16. Interpolate the solution correction to the fine mesh.

δ ~Q
(0)
fine = Ifine

medium · δ ~Qmedium

where Ifine
medium is the interpolation transfer operator from the medium mesh to
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the fine mesh.

17. Add the medium mesh interpolated correction to the fine mesh solution.

~Q
(k)
fine = ~Q

(k)
fine + δ ~Q

(0)
fine

5. Multigrid versus one-level grid solvers

This section presents the results generated to verify the multigrid flow solver imple-

mentation.

The test case chosen is the flow over a NACA 0012 airfoil at an angle of attack

of 6.776 degrees. The flow is assumed to be two-dimensional, therefore the mesh has

only two layers of nodes in the transversal dimension. The lateral boundary condition

used is the no-penetration condition. The inlet and outlet boundaries are located at

12 chords away from the airfoil, and the upper and lower boundaries are located at 9

chords away from the airfoil.

The coarse mesh, shown in Fig. 34, has 64 nodes around the airfoil, 16 layers of

nodes for the O-grid around the airfoil, 16 nodes at the inlet and outlet boundaries,

and 20 nodes at the upper and lower boundaries. The medium and fine meshes are

obtained by mesh subdivision. Each quadrilateral and triangular cell is subdivided in

four cells from the coarse to the medium mesh, and again subdivided in four from the

medium to the fine mesh. Therefore, the fine mesh has 256 nodes around the airfoil,

64 layers of nodes for the O-grid around the airfoil, 64 nodes at the inlet and outlet

boundaries, and 80 nodes at the upper and lower boundaries.

Figure 35 shows the leading edge section of the airfoil on the lower right corner,

the O-grid that surrounds the airfoil surface, and the unstructured mesh that covers

the rest of the domain. In this figure the three levels of multigrid meshes are present.

The coarse mesh is plotted in red, the medium mesh in blue, and the fine mesh in
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Fig. 34. Coarse mesh for the NACA 0012 airfoil.

green.

a. Inviscid flow results

In order to verify the multigrid inviscid flow solver, two cases were run and compared.

One case was the original one-level grid flow solver using only the fine mesh, and the

other case was the multigrid flow solver using the three levels of mesh, coarse, medium

and fine. The residuals of the Navier-Stokes equations (3.35), the maximum Mach

number and the integrated lift over the body were compared for the two cases.

Figure 36 shows the maximum value of the residuals, for both the one-level grid
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Fig. 35. Three level multigrid meshes. The coarse mesh is plotted in red, the medium

mesh in blue, and the fine mesh in green.

and multigrid solvers. Four components of the residual were monitored, the density ρ,

the density times the x-axis velocity ρU , the density times the y-axis velocity ρV , and

the density times the total energy ρE. The solvers run for 20,000 iterations using first

order spatial accuracy, and then 40,000 iterations using second order spatial accuracy.

This is the reason for the jump observed in the residuals at 20,000 iterations.

Figure 36 shows that the maximum value of the residuals for the multigrid solver

were reduced much faster than the maximum value of the residuals for the one-level

grid solver. For the one-level grid solver, the density residual slope for the last 10,000

iterations was -1.20901 / 10,000 iterations. For the multigrid solver, the density
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residual slope for the last 10,000 iterations was -2.0059 / 10,000 iterations. This

means that the multigrid solver reduced the residuals 65.9% faster than the one-

level multigrid solver. In addition, it took 33,353 iterations for the one-level grid

density residual to reach a value of 10−9. It took 20,054 iterations for the multigrid

density residual to reach a value of 10−9. The reduction in the number of iterations

corresponded to a factor of 1.663.
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Fig. 36. Maximum residual for one-level grid and multigrid flow solvers.

Figure 37 shows the time history of the maximum value of the Mach number

over all the cells of the domain. The final value of the maximum Mach number was

0.63267272 for the one-level grid solver, and 0.63267379 for the multigrid solver. The
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difference for the maximum value of the Mach number was 1.69 · 10−8%. Figure

38 shows the time history of the integrated lift on the airfoil. The final value of

the integrated lift was 26544.602 for the one-level grid solver, and 26544.708 for the

multigrid solver. The difference for the integrated lift was 3.99 · 10−8%.
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Fig. 37. Maximum Mach number for one-level grid and multigrid flow solvers.

b. Turbulent flow results

In order to verify the multigrid turbulent flow solver, two cases were run and compared

in a similar way as with the inviscid flow solver. One case was the original one-level

grid flow solver using only the fine mesh, and the other case was the multigrid flow
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Fig. 38. Lift on NACA 0012 airfoil for one-level grid and multigrid flow solvers.

solver using the three levels of mesh, coarse, medium and fine. The residuals of the

Navier-Stokes equations (3.35), the maximum Mach number and the integrated lift

over the body were compared for the two cases. The test case chosen was the flow

over a NACA 0012 airfoil at an angle of attack of 6.776 degrees.

Figure 39 shows the maximum value of the residuals, for both the one-level grid

and multigrid solvers. Four components of the residual were monitored, the density

ρ, the density times the x-axis velocity ρU , the density times the y-axis velocity ρV ,

and the density times the total energy ρE. The solvers run for 20,000 iterations using

first order spatial accuracy, and then 40,000 iterations using second order accuracy.
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This is the reason for the jump observed in the residuals at 20,000 iterations.

Figure 39 shows that the maximum value of the residuals for the multigrid solver

were reduced much faster than the maximum value of the residuals for the one-level

grid solver. For the one-level grid solver, the ρU residual slope for the 30,000 -

40,000 iteration segment was -0.84083 / 10,000 iterations. For the multigrid solver,

the ρU residual slope for the 30,000 - 40,000 iteration segment was -1.56493 / 10,000

iterations. This means that the multigrid solver reduced the residuals 86.1% faster

than the one-level multigrid solver. In addition, it took 36,080 iterations for the

one-level grid ρU residual to reach a value of 10−7. It took 14,850 iterations for

the multigrid ρU residual to reach a value of 10−7. The reduction in the number of

iterations corresponded to a factor of 2.429.
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Fig. 39. Maximum residual for one-level grid and multigrid flow solvers.
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To verify the multigrid solver implementation, the converged solution obtained

with both the one-level grid solver and the multigrid solver has to be almost identical.

To calculate the difference between the multigrid and the one-level grid solutions, two

parameters were selected, the pressure coefficient Cp and the wall shear stress τw. The

pressure coefficient is defined as

Cp =
Plocal − P∞

1
2
ρ∞V 2

∞

(3.72)

where Plocal is the local pressure on the airfoil, and P∞, ρ∞, and V∞ are the freestream

pressure, density and velocity respectively.

The wall shear stress τw is defined as

τw = µ
∂V

∂y
(3.73)

where µ is the local kinematic viscosity and ∂V
∂y

is the velocity gradient at the wall.

The parameters Cp and τw were calculated for each node on the surface of the

airfoil. The values of these parameters were compared between the one-level grid

solver and the multigrid solver.

The average and maximum difference values were computed using the following

formulas [40]

φmax = maxiε[1,N ]
|φone−levelgrid

i − φmultigrid
i |

φmax − φmin

(3.74)

φavg =
1

N

N
∑

i=1

|φone−levelgrid
i − φmultigrid

i |
φmax − φmin

(3.75)

where φ is either the Cp or τw variables, and N is the number of nodes around

the airfoil. φmax and φmin were taken as the maximum and minimum values of φ

among all the nodes around the airfoil and between the one-level grid solution and
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Table II. Average and maximum difference between the one-level grid solution and the

multigrid solution.

Variable average maximum

difference difference

Cp 7.137 E-6 4.339 E-5

τw 1.106 E-4 9.928 E-4

the multigrid solution.

The values of the maximum and average difference for the Cp or τw variables

between the one-level grid solution and the multigrid solution are presented in Table

II.

Since the multigrid residuals are reduced much faster than the one-level grid

residuals, the converged multigrid steady state solution is achieved in fewer itera-

tions. This can be shown plotting a certain parameter as a function of the number of

iterations. Figure 40 shows the time history of the maximum value of the Mach num-

ber over all the cells of the domain. The final value of the maximum Mach number

was 0.5967848 for the one-level grid solver, and 0.5967651 for the multigrid solver.

The difference for the maximum value of the Mach number was 3.3 · 10−3%. Figure

41 shows the time history of the integrated lift on the airfoil. The final value of the

integrated lift was 23218.5 for the one-level grid solver, and 23217.9 for the multigrid

solver. The difference for the integrated lift was 2.6 · 10−3%.

The fact that the one-level grid solution is almost identical to the multigrid

solution indicates that the accuracy of the multigrid flow solver is the same as the

accuracy for the one-level grid flow solver, proving that no accuracy loss is associated

with the multigrid technique. This is possible in the multigrid solver because the
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Fig. 40. Maximum Mach number for one-level grid and multigrid flow solvers.

residual of the fine mesh governs the residuals of the medium and coarse meshes, and

therefore the accuracy for the system of meshes is maintained.
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Fig. 41. Lift on NACA 0012 airfoil for one-level grid and multigrid flow solvers.
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CHAPTER IV

RESULTS

This chapter presents the results generated for the validation and verification of the

flow solver, and aeroelastic results for the F-5 wing, the Nonlinear Aeroelastic Test

Apparatus (NATA) wing, and the Goland wing.

The validation results include the turbulent flow over a flat plate. This case was

used to validate the implementation of the turbulence model. A second case used for

the validation of the flow solver was the NACA 0012 airfoil at an angle of attack of

6.776 degrees. This case was used to validate the implementation of the convective

and viscous fluxes, the time integration algorithm, and the boundary conditions. The

numerical results for the NACA airfoil were compared against experimental results.

Four different grids were used in this simulation to verify that the solution was grid

independent. The last validation simulation was for the steady flow over the F-5 wing.

The numerical results for this wing were compared against experimental results and

other numerical results.

The aeroelastic results include the numerical simulation for the F-5 wing under-

going forced pitch motion. These results were compared against other experimen-

tal and numerical results. Aeroelastic results are also presented for the Nonlinear

Aeroelastic Test Apparatus (NATA) wing, including a comparison with experimental

results. The last set of aeroelastic results correspond to the Goland wing aeroelastic

cases, which include a comparison against the quasi-steady aerodynamic model for

low Mach numbers, a study of the influence of the nonlinear structural terms in the

LCO characteristics, and the calculation of the stability boundary for the Goland

wing.
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A. Validation and verification of the flow solver

1. Steady flow over a flat plate

This section presents the numerical results for the simulation of the turbulent steady

flow over a flat plate. This simulation was used to validate the implementation of the

turbulence model in the flow solver. The numerical results were compared against the

analytical turbulent boundary layer solutions for the viscous sublayer and logarithm

law. Two different grids were used to conduct a grid refinement test. The turbulent

effects were modeled using the Shear Stress Transport (SST) model of Menter [17].

The computational domain included the plate region and the freestream region

upstream of the flat plate. Figure 42 shows the fine mesh used for the turbulent

flat plate simulation. The flat plate region extended from x = 0.0 to x = 0.2. The

freestream region extended from x = -0.05 to x = 0.0. The domain extended to y

= 0.02 upwards from the plate. Two different grids were used for grid refinement

analysis. The coarse grid had 41 nodes in the flow direction and 41 nodes in the

transversal direction, and the fine grid had 81 nodes in the flow direction and 81

nodes in the transversal direction.

The flow conditions were Mach number = 0.3, static pressure P0 = 101,325 Pa,

and static temperature T0 = 288.15◦ K. The boundary conditions were set as follows.

Subsonic inlet was set for the inlet boundary, subsonic outlet was set for the outlet

boundary, wall boundary condition for the plate wall, and no penetration condition

at the upper boundary and lower boundary upstream from the plate leading edge.

The initial condition was constant freestream applied to all the cells in the domain.

To properly capture the turbulent effects close to the wall, the grid has to be

refined in the direction transversal to the wall in such a way that the y+ number is

equal to or less than 1. The y+ number is defined as
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Fig. 42. Mesh used for the turbulent flat plate simulation.

y+ =
u∗ · y1

ν
(4.1)

where y1 is the distance from the wall to the first node in the direction transversal to

the flow, and ν = µ/ρ is the dynamic viscosity of the fluid. The friction velocity u∗

is defined as

u∗ =

√

τw

ρ
(4.2)

where τw is the shear stress at the wall and ρ is the density of the fluid.

To validate the implementation of the turbulent model, the velocity profile
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transversal to the flat plate was extracted from the flow field, and the numerical

solution was compared against the analytical turbulent boundary layer solutions for

the viscous sublayer and logarithm law. The velocity profile was extracted at the

middle of the flat plate, for the location x = 0.1.

The viscous sublayer, also known as the laminar sublayer, is the region of the flow

between the wall and the location where y+ = 5.0. In the viscous sublayer, the flow is

not steady, but the velocity fluctuations do not contribute to the total stress because of

the overwhelming effects of the viscosity. This means that turbulence cannot sustain

itself and the flow behaves as if it was laminar. In the viscous sublayer, the velocity

profile is linear [41]:

u+ = y+ (4.3)

where the nondimensional velocity u+ is defined as u+ = u/U , with U being the

freestream velocity.

The inertial sublayer is the region that spans from y+ = 30 to the limit of

the turbulent boundary layer. This is a region of approximately constant turbulent

stresses. The viscous stresses are much smaller than the turbulent stresses as the

distance to the wall increases. This region is called inertial sublayer because of the

absence of local viscous effects. The inertial sublayer velocity profile is logarithmic,

thus this region is also known as the logarithmic law region. The velocity profile is

[41]

u+ =
1

κ
· ln

(

y+
)

+ a (4.4)

where κ = 0.40 is the von Karman constant, and a is a constant equal to 5.0.

There is a third turbulent sublayer, called the buffer layer, which is located
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between the viscous sublayer and the inertial sublayer, from y+ = 5 to y+ = 30.

In this region the viscous and the turbulent effects are equally important, and a

transition takes place from the laminar dominated flow of the viscous sublayer to the

turbulent dominated flow of the inertial sublayer.

Figure 43 shows the numerical results for the turbulent flat plate using a coarse

and a fine grid, and the analytical results for the viscous and inertial sublayers. This

figure shows that the solution is grid converged, since both the coarse and the fine

grid solutions are almost identical. The figure shows an excellent agreement between

the numerical solution and the viscous sublayer solution up to y+ = 5.0, where the

viscous sublayer approximation is no longer valid. The inertial sublayer is relatively

well captured, with the slopes of the numerical and the analytical solution being

similar. The numerical velocity profile reaches a maximum value of u+ = 23.5, which

corresponds to the limit of the turbulent boundary layer.

2. Steady flow over the NACA 0012 airfoil

This section presents the numerical results for the simulation of the turbulent steady

flow over the NACA 0012 airfoil. This simulation was used to verify and validate the

flow solver. The numerical results were compared against experimental results. Four

different grids were used to conduct a grid refinement test.

The airfoil chosen for this numerical simulation was the NACA 0012 airfoil, which

is defined by the following analytical expression:

y(x) = 0.6 ·
(

0.2969 ·
√

x − 0.126 · x − 0.3516 · x2 + 0.2843 · x3 − 0.1015 · x4
)

(4.5)

The NACA 0012 airfoil was rotated to an angle of attack of 6.776 degrees. The

inlet and outlet boundaries were located at 12 chords away from the center of the
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Fig. 43. Turbulent boundary layer for flat plate.

airfoil, and the upper and lower boundaries were located at 9 chords away from the

airfoil. Four different grids were used for this numerical simulation. These grids had

64, 128, 256, and 512 nodes around the airfoil. Other parameters of these grids are

found in Table III.

The flow conditions were Mach number = 0.3, static pressure P0 = 101,325

Pa, and static temperature T0 = 288.15◦ K. The boundary conditions were set as

follows. The flow at the inlet was assumed subsonic, and the values of the stagnation

pressure, stagnation temperature, and flow direction were specified. The flow at the
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Table III. NACA 0012 grid parameters.

Grid number Nodes around Nodes across Maximum value Total number

the airfoil the O-grid of y+ in the airfoil of nodes

1 64 16 0.736 5,562

2 128 32 0.614 15,530

3 256 64 0.567 44,658

4 512 128 0.555 150,222

outlet was assumed subsonic, and the value of the static pressure was specified. Wall

boundary conditions were specified for the airfoil surface. No penetration condition

were imposed at the upper boundary, lower boundary, and the lateral boundaries of

the domain. The initial condition was constant freestream applied to all the cells in

the domain.

Figure 44 shows the pressure coefficient cp results for the four different meshes,

compared against the experimental results. In this figure, the solution with 64 nodes

around the airfoil shows the accuracy limitations of a very coarse grid. The solution

compares relatively well with the experimental results, although the accuracy decays

close to the peaks in the solution. Figure 44 also shows that the solution with 128,

256, and 512 nodes around the airfoil is very accurate. The solution compares very

well with the experimental results, with the accuracy close to the peaks in the solution

depending on the number of nodes around the airfoil.

Table IV compares the numerical and experimental cp values for the peaks at

both the pressure and suction sides.

Figure 44 also shows the grid convergence test performed on the NACA 0012

airfoil simulation. The concept of the grid convergence test is to verify that as the
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Fig. 44. NACA 0012 pressure coefficients.

mesh is refined, the solution becomes independent of the mesh density. While the

solutions obtained with 64, 128 and 256 nodes around the airfoil are clearly different

on Figure 44, the solutions obtained 256 and 512 nodes around the airfoil are almost

indistinguishable, only at the suction peak can these two solutions be told apart.

3. Steady flow over the F-5 wing

This section presents the numerical results for the simulation of the turbulent steady

flow over the F-5 wing. The numerical results were compared against numerical
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Table IV. Pressure and suction side peak comparative.

Grid number Pressure side Error in cp Suction side Error in cp

cp peak vs. experimental cp peak vs. experimental

experimental 1.034 - 2.979 -

1 1.198 15.9 % 2.072 30.4 %

2 1.104 6.8 % 2.648 11.1 %

3 1.065 3.0 % 2.847 4.4 %

4 1.042 0.8 % 2.913 2.2 %

results from Mello and Sankar [42] and experimental data from the National Aerospace

Laboratory at the Netherlands [43]. Three different grids were used to conduct a grid

refinement test.

The F-5 wing has a span of 0.6476 m, a root chord of 0.6396 m, and a tip chord

of 0.18 m. The leading edge angle is 31.9◦ and the trailing edge angle is 5◦. The cross-

section of the F-5 wing has a modified NACA 65-A-004.8 airfoil. The coordinates of

the airfoil are available at [35]. Figure 45 shows the airfoil section for the root of

the wing, as well as the O-grid constructed around the airfoil. Figure 46 shows a

three-dimensional view of the surface of the F-5 wing.

The inlet and outlet boundaries were located at 12 chords away from the center

of the airfoil, and the upper and lower boundaries were located at 9 chords away from

the airfoil. Three different grids were used for this numerical simulation. These grids

had 64, 128, and 256, nodes around the airfoil. Other parameters of these grids are

found in Table V.

The flow conditions were Mach number = 0.6, static pressure P0 = 100,000 Pa,

and static temperature T0 = 288.15◦ K. The boundary conditions were set similarly
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Fig. 45. NACA 65-A-004.8 airfoil and O-grid for the F-5 wing.

to the boundary conditions specified in section 4.1.2.

Figure 47 and 48 show the pressure coefficient cp results for the three different

meshes, compared against numerical results from Mello and Sankar [42] and experi-

mental data from the National Aerospace Laboratory at the Netherlands [43], taken

at sections 2 and 5 of the wing. In these figures, the solution with 64 nodes around

the airfoil shows the accuracy limitations of a coarse grid. The solution compares

relatively well with the experimental results, although the accuracy decays towards

the trailing edge, where the predicted cp is much lower than the experimental results.

Figure 47 and 48 also show that the solution with 128 and 256 nodes around the



100

x

0

0.1

0.2

0.3

0.4

0.5

0.6

y

-0.1

0

0.1

z

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Y

Z

X

Fig. 46. Three-dimensional view of the surface of the F-5 wing.

airfoil is very accurate for the station 2 results, but is less accurate for the station 5

results.

B. Aeroelastic results

1. F-5 wing undergoing forced pitching motion

This section presents the numerical results for the simulation of the aeroelastic forced

pitching motion of the F-5 wing. The numerical results were compared against nu-

merical results from Mello and Sankar [42] and experimental data from the National

Aerospace Laboratory at the Netherlands [43]. Two different grids were used to



101

Table V. F-5 wing grid parameters.

Grid number Nodes around Nodes across Total number

the airfoil the O-grid of nodes

1 64 16 45,160

2 128 32 129,072

3 256 64 322,638
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Fig. 47. Steady F-5 wing, station 2.
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Fig. 48. Steady F-5 wing, station 5.

conduct a grid refinement test.

The F-5 wing geometry was identical to the F-5 wing used for the steady flow

computations. The wing was forced to undergo a pitching motion about the elastic

axis of the wing, which was located at 50 % of the wing root chord. The pitching

motion had a frequency of 20 Hz and an amplitude of 0.11◦ = 0.00192 rad. The inlet

and outlet boundaries were located at 12 chords away from the center of the airfoil,

and the upper and lower boundaries were located at 9 chords away from the airfoil.

Two different grids were used for this numerical simulation, with 64 and 128 nodes

around the airfoil.
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The flow conditions were Mach number = 0.6, static pressure P0 = 100,000 Pa,

and static temperature T0 = 288.15◦ K. The boundary conditions were set similarly

to the boundary conditions specified in section 4.1.2.

The unsteady aeroelastic motion was periodic, therefore the solution was ex-

pected to be periodic too. The first cycles of the solution contained transient com-

ponents, so the solution differed from cycle to cycle. After the transient stage was

passed, the solution became periodic, with the solution of one cycle being almost

identical to the solution of the following cycle. It took the solver 8 cycles to achieve a

periodic solution without transient components. Solving for 8 cycles of motion meant

solving for 0.4 seconds of real time, at a forcing frequency of 20 Hz. Figure 49 shows

the pitching angle as a function of time.

Figures 50 and 51 show the pressure coefficient cp results for the two different

meshes, compared against numerical results from Mello and Sankar [42] and experi-

mental data from the National Aerospace Laboratory at the Netherlands [43]. These

results were taken at section 2 and section 5 of the wing. In these figures, both the

64 and 128 node solutions achieve very good results for the real components of the

cp, and the solution is shown to be grid independent, since both the 64 and 128 node

solutions almost overlap each other. The accuracy drops for the imaginary compo-

nents of the cp, where the 128 node solution is relatively more accurate than the 64

node solution.

2. Aeroelastic results for the NATA wing

The Nonlinear Aeroelastic Test Apparatus (NATA) was developed at Texas A&M

University to experimentally test linear and nonlinear aeroelastic phenomena [44].

The NATA setup uses a NACA 0015 wing section with a wing mount that allows

for pitching and plunging. Figure 52 shows a schematic view of a two-dimensional
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Fig. 49. Pitching angle as a function of time.

aeroelastic wing model with two degrees of freedom.

Each degree of freedom of the NATA wing was supported by its own set of

springs. Plunge motion, which mimics the out-of-plane bending motion of the wing,

was provided by mounting the wing on a sliding carriage. The wing was attached to

a shaft; the shaft was mounted to the plunge carriage via rotational bearings. These

bearings allowed the wing to pitch (rotate), simulating the torsional response of the

wing. The type of response, linear or nonlinear, depended on the shape of the cam.

For the results shown here, the plunge spring was linear and the pitch spring was

nonlinear. Figure 53 shows a schematic view of the NATA wing setup.
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Fig. 50. Unsteady F-5 at Mach = 0.6 and frequency = 20 Hz, real and imaginary

components of pressure coefficients, station 2.

The wing section stands vertically in the wing tunnel, spanning the entire tunnel

from top to bottom. Figure 54 shows an isometric view of the NATA wing setup.

The equations of motion for the NATA wing are [44]

[M ]











ḧ

α̈











+ [C]











ḣ

α̇











+ [K]











h

α











=











−L − Fc

Ma − Mc











(4.6)

where h is the plunge degree of freedom, α is the pitch degree of freedom, [M ] is the

mass matrix, [C] is the damping matrix, [K] is the stiffness matrix, L is the lift on

the airfoil, Ma is the aerodynamic moment, Fc is the Coulomb force, and Mc is the

Coulomb moment. The matrices [M ], [C] and [K] are expressed as [44]

M =







mT mwrcgcosα − mcrcsin(α)

mwrcgcosα − mcrcsin(α) Iα






(4.7)

C =







ch − (mwrcgsinα + mcrccos(α)) α̇

0 cα






(4.8)
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Fig. 51. Unsteady F-5 at Mach = 0.6 and frequency = 20 Hz, real and imaginary

components of pressure coefficients, station 5.

K =







kh 0

0 kα(α)






(4.9)

The nonlinear pitch stiffness kα(α) is a function of the pitch angle α. The ex-

pression for kα(α) is [44]

kα(α) = 8.6031 − 27.67α + 867.15α2 + 376.64α3 − 7294.6α4 (4.10)

The Coulomb plunging force Fc is expressed as:

Fc = −gmtµh

|ḣ|
ḣ

(4.11)

The Coulomb pitching moment Mc is expressed as:

Mc = −g
(

mwr2
cg + mcr

2
c

)

µα

|α̇|
α̇

(4.12)

The structural parameters corresponding to the NATA wing were presented in Ref.

[44].
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Fig. 52. Two-dimensional aeroelastic wing model with two degrees of freedom [44].

Fig. 53. Schematic view of the NATA wing setup [44].

The equations of motion for the NATA wing, Eq. (4.6) were solved in state space

using the state variable X [45]:

X =
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(4.13)

The transformed equations of motion become
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Fig. 54. Isometric view of the NATA wing setup [44].

Ẋ = f(x) (4.14)

where

f(x) =
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(4.15)

Equation (4.14) was solved by using a four-stage Runge-Kutta time integration

algorithm.

The analytical estimation of the system’s linear flutter velocity was VF = 9.5

m/sec [44]. Eight different cases were tested, with freestream velocities ranging from

4.75 m/sec (0.5 VF ) to 14.25 m/sec (1.5 VF ), corresponding to Mach numbers ranging

from 0.01396 to 0.04187 at atmospheric conditions (static pressure P0 = 101,325 Pa,

static temperature T0 = 288.15 K). The boundary conditions were set similarly to
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the boundary conditions specified in section 4.1.2.

The flow solver and the structural solver were loosely coupled. The flow solution

was computed for a given wing position. The aerodynamic loads (lift and moment)

were subsequently used by the structural solver to update the position of the wing,

using Eq. (4.14). After the new position of the wing was calculated, the grid deforma-

tion algorithm deformed the grid, and the flow solver calculated the new aerodynamic

loads.

Figure 55 shows the pitch oscillation amplitude for different velocities. The cases

with V = 0.5VF and V = 0.9VF were stable, and the amplitudes reduced to zero.

The cases with V ≥ VF had a limit cycle oscillation behavior, and the amplitudes of

the cycles increased with the velocity. The results were compared with experimental

data available in Ref. [44]. The numerical results show a good match of the flutter

velocity, with V = 0.9VF being a stable case and V = VF being an unstable case.

The limit cycle oscillation amplitudes compare relatively well with the experimental

data, specially in the 1.1VF to 1.4VF range.

3. Aeroelastic results for the Goland wing

a. Goland wing at low Mach number

The modal amplitudes of the Heavy Goland Wing [1] were compared against results

obtained using a quasi-steady aerodynamic model [46]. This quasi-steady aerody-

namic model had already been integrated with the structural solver and results were

presented in [1].

A freestream velocity of 100 ft/sec was used, in order to satisfy the assumptions

of the quasi-steady model. The corresponding Mach number was 0.09 at atmospheric

conditions, (static pressure P0 = 101,325 Pa, static temperature T0 = 288.15 K). The
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Fig. 55. Pitch amplitudes for NATA wing with Coulomb damping.

boundary conditions were set similarly to the boundary conditions specified in section

4.1.2.

A converged solution was obtained first for the undeformed wing configuration at

the flight conditions described above. Then the wing was perturbed by giving initial

nonzero values to the modal coordinates w, v and φ. w is the in-plane bending,

v is the out-of-plane bending, and φ is the torsion modal coordinate. The initial

perturbation was
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(4.16)

The flow solver and the structural solver were loosely coupled. After the flow

solution was computed for a given wing position, the aerodynamic loads were used

by the structural solver to update the position of the wing. For this new position

of the wing, the grid deformation algorithm deformed the grid, and the flow solver

calculated the new aerodynamic loads.

Figure 56 shows the time history of the first generalized modal deformations. The

results show a good correlation between the Uns3d and quasi-steady flow solvers, for

both the out-of-plane and torsional deformations.

0 1 2 3 4
Time [sec]

-0.050

-0.025

0.000

0.025

0.050

O
ut

-o
f-

pl
an

e 
m

od
al

 a
m

pl
itu

de
, v

 [−
]

Quasi-steady
Uns3d

0 1 2 3 4
Time [sec]

-0.04

-0.02

0.00

0.02

0.04

0.06

T
or

si
on

al
 m

od
al

 a
m

pl
itu

de
, φ

 [−
]

Quasi-steady
Uns3d

Fig. 56. First generalized modal deformations for Heavy Goland Wing at Mach = 0.09.

b. Impact of nonlinear structural model

The importance of properly capturing the nonlinearities associated with the structural

model was assessed in this section by comparing the results obtained using a linear

and a nonlinear structural model.
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The linear structural solver was a subset of the nonlinear structural solver. The

equations of motion for the linear structural solver were obtained from the equations

of motion for the nonlinear structural solver, by eliminating the contributions from

the nonlinear terms G′

w, G′

v and Gφ in Eq. (2.19).

The wing used for this simulation was the Heavy Goland Wing. The static

pressure was P0 = 101,325 Pa, the static temperature was T0 = 288.15 K, and the

Mach number was 0.7. The boundary conditions were set similarly to the boundary

conditions specified in section 4.1.2.

A converged solution was first obtained for the undeformed wing configuration at

the flight conditions described above. Then the wing was perturbed by giving initial

nonzero values to the modal coordinates. The initial perturbation was identical to

that set in Eq. (4.16).

At this particular flight condition, the wing exhibited Limit Cycle Oscillation

(LCO) behavior. After the transient stage, the wing settled into a periodic oscillatory

motion, with a definite amplitude and frequency of motion for each of the three degrees

of freedom of the wing.

Figure 57 shows the out-of-plane bending and torsional modal amplitudes for

the Heavy Goland Wing at Mach = 0.7. Modal amplitudes were smaller when the

nonlinear terms were taken into account. This could indicate that using a linear

structural model is a conservative approach, that is, the true (nonlinear) deformation

is smaller than the deformation predicted by the linear model. This conclusion was

invalidated, however, by results that modeled in-plane deformation, shown in Fig.

58. This was due to the fact that while using a linear structural model, there was no

coupling between the modes. The in-plane deformation was positive and oscillated

about a non-zero equilibrium. When non-linear terms were taken into account, the

deformation was approximately one order of magnitude higher than the deformation of



112

the linear structural model. In addition, the in-plane deformation changed direction.
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Fig. 57. Linear versus non-linear structural model: Out-of-plane and torsional modal

amplitudes.
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Fig. 58. Linear versus non-linear structural model: In-plane modal amplitudes.

This linear versus nonlinear structural model analysis stresses the importance of

properly accounting for the nonlinearities of the system. As shown in Figs. 57 and

58, the response of the numerical simulation can change significantly if the nonlinear

terms are not properly accounted for.



113

c. Stability boundary of Goland wing

This section presents the results obtained for the calculation of the stability boundary

of the Goland wing. The stability boundary is the velocity at which the system goes

from being stable to being unstable. Any disturbance at a velocity smaller than the

stability boundary will be damped due to the internal damping of the structure. On

the other hand, disturbances at a velocity larger than the stability boundary will

increase the aerodynamic loads on the wing and cause a periodical, cyclic motion.

Once the transient stage was passed, the periodical motion settled into an LCO with

a definite amplitude and frequency for each modal coordinate. The frequencies were

approximately independent of the velocity, but the amplitudes of the LCO were highly

correlated with the velocity. As the velocity increased, the transient stage was shorter,

and the LCO motion was established in a shorter time.

The stability boundary of limit-cycle oscillation for the Original Goland Wing

was calculated by computing the time response of the system for different velocities

and standard atmospheric conditions. As the velocity increased, the system became

unstable and the disturbances were amplified. It was found that at a velocity of 332

ft/sec the system was stable, whereas at a velocity of 338 ft/sec the system became

unstable.

The stable cases, with velocities of 300, 325 and 332 ft/sec, showed a damping

of the deformations. This damping decreased as the velocity increased. On the other

hand, velocities of 338 and 350 ft/sec showed an LCO type of motion, where the

amplitudes grew in time up to the LCO amplitude. This LCO amplitude was larger

as the velocity increased.

Figures 59 and 60 show the modal amplitudes for out-of-plane and torsional

deformations at velocities ranging from 300 to 350 ft/sec. The plots on the left
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correspond to the stable cases with velocities less than 332 ft/sec. The unstable case

corresponding to a velocity of 338 ft/sec was added to this plot to show the difference

between the stable and unstable cases. The plots on the right of Figs. 59 and 60 show

the two unstable cases with velocities of 338 ft/sec and 350 ft/sec. They illustrate

how much larger the amplitudes are for the larger velocity case, as well as how much

sooner the transient stage ends as the velocity increases.
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Fig. 59. Modal amplitudes of out-of-plane bending for Original Goland Wing at ve-

locities ranging from 300 ft/sec to 350 ft/sec.
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Fig. 60. Torsional modal amplitudes for Original Goland Wing at velocities ranging

from 300 ft/sec to 350 ft/sec.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

A. Conclusions

Fully nonlinear aeroelastic analysis presents two major challenges: the high compu-

tational cost due to the flow solvers, and the presence of highly deforming structures

that challenge the mesh deformation algorithms.

This dissertation presented a mesh deformation algorithm that was both robust

and computationally efficient. The mesh deformation algorithm was used for aeroe-

lastic applications with highly deforming high-aspect-ratio wings. The results showed

the robustness of this technique for highly flexible wings with deformations of up to

60 % of the wing semi-span.

The coupled flow-structure solver was parallelized to reduce the computational

time. The message-passing interface (MPI) standard libraries were used for the inter-

processor communication. The computational domain was divided into topologically

identical layers that spanned from the root to past the tip of the wing. Dividing the

computational domain into topologically identical layers increased the parallelization

efficiency since it reduced the communication effort.

To further reduce the computational time, a multigrid algorithm was imple-

mented in the flow solver. The multigrid method consisted of solving the governing

equations on a series of coarser meshes, in order to obtain a converged solution in a

reduced number of iterations. The multigrid algorithm was used to compute the flow

about a NACA 0012 airfoil with a three-level multigrid mesh. The flow solution was

computed with both the one-level grid solver and the multigrid solver. The multigrid

solver required fewer iterations than the one-level grid solver to reduce the residuals
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to a certain value. For inviscid flows, the reduction in the number of iterations to

achieve a residual value of 10−9 corresponded to a factor of 1.663. For turbulent flows,

the reduction in the number of iterations to achieve a residual value of 10−7 corre-

sponded to a factor of 2.429. The accuracy of the flow solver was not affected by the

multigrid scheme, since the residuals of the fine mesh determined the overall residual

level of the multigrid scheme. The multigrid method proved to be an efficient tool to

accelerate the convergence of a flow solver without compromising the accuracy of the

solution.

Results were presented for the validation and verification of both the flow solver

and the aeroelastic solver. The flow solver was validated using: (1) the flow over a

flat plate, to validate the implementation of the turbulence model, and (2) the flow

over the NACA 0012 airfoil and over the F-5 wing, to validate the implementation of

the convective and viscous fluxes, the time integration algorithm, and the boundary

conditions. The numerical results for the NACA airfoil were compared against exper-

imental results. Four different grids were used in this simulation to verify that the

solution was grid independent. The numerical results for the F-5 wing were compared

against experimental results and other numerical results.

The aeroelastic solver was validated using: (1) the unsteady F-5 wing undergo-

ing forced pitch motion, and (2) the Nonlinear Aeroelastic Test Apparatus (NATA)

wing. Both F-5 wing and NATA wing results were compared against experimental

results. In addition, aeroelastic results were generated for the Goland wing, including

a comparison against the quasi-steady aerodynamic model for low Mach numbers, a

study of the influence of the nonlinear structural terms in the LCO characteristics,

and the calculation of the stability boundary for the Goland wing.

The aeroelastic solver developed herein allowed the analysis of aeroelastic phe-

nomena using a fully nonlinear approach. Limit cycle oscillations, which are highly
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nonlinear phenomena, were captured by the nonlinearities of the flow solver and the

structural solver. The impact of the nonlinearities was assessed for the Goland wing,

where nonlinear terms changed dramatically the aeroelastic behavior of the wing.

B. Future work

As a continuation of this effort, future work should be directed towards further re-

ducing the computational cost associated with the flow solver. The most effective

path to take would be to implement an implicit time integration scheme. These

implicit schemes are more difficult to implement than the explicit schemes, and are

computationally more costly per iteration, but they have the advantage of being un-

conditionally stable. While the explicit schemes have a limit on the advancing time

step due to stability issues, the implicit schemes lack this limitation, thus they can

advance at much larger time steps, resulting in great overall savings in computational

time.

Additional structural models should be implemented in this aeroelastic applica-

tion in order to better represent the wing structure. More accurate representations of

the wing could be obtained by using plate and shell structural models. These models

could be solved with the finite element method using plate and shell elements.
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