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ABSTRACT 

 

Penetration of Buoyancy Driven Current Due to  

a Wind Forced River Plume. (December 2006) 

Seong-Ho Baek, B.S., Naval Academy, Republic of Korea; 

M.S., Advanced Institute of Military Science and Technology, Republic of Korea   

Chair of Advisory Committee: Dr. Robert D. Hetland 

 

The long term response of a plume associated with freshwater penetration into 

ambient, ocean water under upwelling favorable winds is studied using the Regional 

Ocean Modeling System (ROMS) in an idealized domain. Three different cases were 

examined, including a shore perpendicular source and shore parallel source with steady 

winds, and a shore perpendicular source with oscillating alongshore winds. 

Freshwater flux is used to define plume penetration. Alongshore penetration of 

buoyant currents is proportional to freshwater input and inversely proportional to 

upwelling wind stress strength. Strong wind more quickly prevents fresh water’s 

penetration.    

Under upwelling favorable winds, the plume is advected offshore by Ekman 

transport as well as upcoast by the mean flow. This causes the bulge to detach from the 

coast and move to upcoast and offshore with a 45 degree angle. The path of the bulge is 

roughly linear, and is independent of wind strength. The bulge speed has a linear 

relationship with the wind stress strength, and it matches the expected speed based on 

Ekman theory.  

Sinusoidal wind leads to sequential upwelling and downwelling events. The plume 

has an asymmetric response to upwelling and downwelling and fresh water flux is 



 

 

iv 
changed immediately by wind. During downwelling, the downcoast fresh water transport 

is greatest, while it is reduced during upwelling. Background mean flow in the 

downcoast direction substantially increases alongshore freshwater transport.  
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1 
CHAPTER I 

 
 
 

INTRODUCTION 
 
 
 

1. Motivation 
 

       River plumes have recently been the subject of much study due to coastal 

environmental pollution problems related with the coastal ecosystem. Sewage, industrial 

waste and excess fertilizer is transported from the land to continental selves by rivers. It 

may cause serious damage to the coastal ecosystem through eutrophication. For example, 

seasonal hypoxia on the Texas-Louisiana continental shelf is associated with excess 

nutrients from and a stratification caused by the Mississippi and Atchafalaya Rivers 

(Rabalais et al., 1996).   

       River water inflow to the coastal ocean leads to strong stratification that 

prevents oxygen supply by suppressing mixing between the surface and bottom layers. 

In addition, organic matter from high production in the surface layer due to the excess 

nutrients in the river may cause high oxygen consumption in lower layer, as organic 

material falls down from the surface layers. Low dissolved oxygen levels may lead to a 

loss of aquatic habitat (Rabalais et al., 1996).  

  In the northwestern Gulf of Mexico, hypoxia is generated only during summer 

season. During the nonsummer season, the wind blows down coast and drives river 

water to the south along the coast. But in the summer season, the wind changes to 

upcoast and river water is trapped from spreading along the coast, creating a freshwater 
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pool (Morey et al., 2005). This pooling of fresh water creates conditions that favor 

hypoxia because of strong stratification over the shelf during summer. Thus, to 

understand the mechanism of hypoxia over the Texas-Louisiana shelf, we need to first 

understand Texas-Louisiana shelf circulation pattern and the distribution of fresh water 

over the shelf. 

       The Texas-Louisiana shelf, in northwestern Gulf of Mexico, is strongly affected 

by river discharge. This area receives one of the largest discharges of fresh water through 

the Mississippi-Atchafalaya River system (Dunn, 1996). Roughly 53% of the total 

Mississippi River flux discharges onto the Texas-Louisiana continental shelf (Dinnel and 

Wiseman, 1986). The Texas-Louisiana shelf’s circulation is influenced by various 

factors: wind, tide, river discharge, loop current eddies detached from the eastern Gulf of 

Mexico loop current and so on. It has been found that wind is the most important factor 

in determining circulation on the inner Texas-Louisiana shelf when hypoxia is found 

(Cochrane and Kelly, 1986; Wang, 1996; Cho, 1996).   

       Seasonally changing wind direction leads to specific circumstances in Texas-

Louisiana shelf. Cochrane and Kelly’s (1986) first comprehensive description of the 

seasonal circulation scheme based on the M/V GUS III 1963-1965 hydrographic data 

show that during nonsummer season, from September to June, cyclonic circulation is 

dominant pattern in mid self region and during summer season, July to August, 

anticyclonic circulation is dominant (Figure 1). Near shore flow of the Texas-Louisiana 

shelf is a typical example of the wind driven coastal jet (Cochrane and Kelly, 1986) and 

the Texas-Louisiana inner-shelf currents are strongly coherent with the alongshore wind 

component (Cochrane & Kelly, 1986 and Wang, 1996).  
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       During the nonsummer season, the wind direction is downcoast and drives the 

alongshore current on the inner shelf. Here, downcoast is defined as the direction of 

westward shelf wave propagation. The alongshore current distributes Mississippi-

Atchafalaya river water downstream near the south Texas coastal region. Downcoast 

near shore flow is strongly affected by 2 factors. It is driven by downcoast along shelf 

wind and enhanced by Mississippi-Atchafalaya River water discharge. 

       During summer season from July to August, the wind direction is changed to 

counter direction and average wind has an upcoast component. Upcoast is against the 

direction of shelf wave propagation, or eastward. This leads to an anticyclonic 

circulation in the mid shelf as the nearshore flow is halted or reversed by the wind (Li et 

al., 1996; Li et al., 1997; Cho et al., 1998). The mean flow prohibits downcoast 

spreading of river water and made fresh water pool in the Texas-Louisiana shelf. So, to 

understand generation mechanism of freshwater pool in the Texas-Louisiana shelf 

related with plume, it is necessary to study the reaction of plume and resulting buoyancy 

driven current under the upwelling conditions.  

 
 
 

2. Previous studies 
 

       Previous numerical studies have typically divided the plume into two parts; 

bulge and alongshore current. The bulge, the anticyclonic turning flow is generated by 

large scale river water discharge into the shelf with saltier and denser sea water in the 

Northern Hemisphere (Garvine, 1987). Alongshore current, the baroclinic boundary 

current propagates in a narrow zone along the coast as a coastal Kelvin-wave (Wiseman 

et al., 1976; Chao and Boicourt, 1986; Wiseman and Dinnel, 1988; Oey and Mellor, 
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1993; Brooks, 1994; Chapman and Lentz, 1994). 

       Garvine (1995) suggests classification of river plumes based on the Kelvin. The 

Kelvin number is defined as the ratio of the externally specified width of the flow (for 

example, the width of an estuary mouth, to the baroclinic Rossby radius 

deformation; Hg ' /f where 'g is reduced gravity, H is the mean buoyant layer depth 

and f is Coriolis parameter is used as indicator for measuring the importance of 

rotational effect to categorize river plumes. He classified by two limiting cases, K<<1 or 

small-scale discharge and K>>1 or large scale discharge.   

       Yankovsky and Chapman (1997) also adopt plume classification criterion with 

the vertical structure. They sorted river plumes as 3 types, surface-advected, bottom-

advected and intermediated plume. In the surface-advected plume case, the plume does 

not interact with the bottom. In the bottom-advected plume case, the plume is trapped in 

a particular depth because the lateral density gradients within the front create a vertical 

shear. The flow adjusts by moving offshore until the flow is zero at the bottom. Thermal 

wind shear at the front thus determines critical limit of the plume’s further offshore 

movement. In the intermediated plume case, the plume has mixed character of before 

two cases. Characters of each types of plume are determined by grouping of non-

dimensional parameters, Burger number: S and the Rossby number: Ro (Influence of 

stratification can be measured by the Burger number and rotation effect can be measured 

through the Rossby number). Generation condition of surface-advected plume is 

2
1

)2( RoS >  where fLvRofLhgS io /,/' == , 'g is reduced gravity based on the 

inflow density anomaly, oh is the inflow depth, iv is the inflow velocity, f is the Coriolis 

parameter and L is the inflow width. Bottom-advected plume case is based on small S 
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(ambient water and inflowing water have similar densities). Intermediate plume case is 

produced in between both conditions. In addition, they show that inflow velocity level 

can not give any effect to establishment of intermediate and surface-advected plume 

under the large density difference condition. 

       As the freshwater inflow volume increases, river plume’s inflow velocity into 

the surrounded salty water also increases. Oey and Mellor (1993) and Chapman and 

Lentz (1994) investigate these intrusion velocities. Whitehead and Chapman (1986), 

Chao and Boicourt (1986), Chao (1988) mention that intrusion velocities shrink due to 

bottom friction. The buoyancy driven gravity current can flow several hundreds of 

kilometers distance range from the source along the coast until it dissipates and 

completely mixes with the ambient water (Munchow and Garvine, 1993).  

       From generation to dispersion of plume under the upwelling favorable wind 

condition has been studied by observation (Fong et al., 1997; Hickey et al., 1998; Rennie 

et al., 1999; Johnson et al., 2001; Sanders and Garvine, 2001; Hallock and Marmorino, 

2002; Johnson et al., 2003; Houghton et al., 2004) and several modeling studies 

concerned with upwelling favorable winds to characterize the response of plumes (Chao, 

1988; Kourafalou et al., 1996; Xing and Davies, 1999; Austin and Lentz, 2002; Berdeal 

et al., 2002; Whitney and Garvine, 2005).  

       Hetland (2005) studied water mass structure of sinusoidal wind forced river 

plumes by using an idealized numerical model with fresh water discharging from an 

estuary into a continental shelf. He suggested that the plume can be divided into two 

different dynamical regions and those are presented by the difference of dominant 

mixing. In the near-field advective shear mixing is dominant but in the far-field wind 
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mixing is prevailing. In the near-field strong mixing occurs and strongest wind mixing 

take place under the upwelling wind condition. The changing plume position is reflected 

in the wind stress forcing cycle. The plume loses contact with the coast as it is blown to 

the offshore by the upcoast (upwelling) wind stress and the plume is shifted downcoast 

during down coast (downwelling) wind.  

       Lentz (2004) describes the response of a plume to upwelling-favorable winds as 

developing of a two-dimensional theory that includes entrainment. Fong and Gayer 

(2001) focus on river plume’s offshore spreading under the upwelling-favorable 

condition through model simulation in a three-dimensional rectangular domain. They 

show that the plume is advected offshore by the cross-shore Ekman transport and the 

plume become wider and thinner by the cross-shore Ekman currents and they suggest 

that in modifying the shape of the plume, the advective processes are important. 

 
 
 

3. Goal of this study 
 

       Most previous idealized studies focused on short term plume response and do 

not deal with long term plume response associated with penetration problem. There are a 

few notable exceptions like Garvine (1999), Yankovsky and Chapman (1997).  

       The main question is how far fresh water can penetrate downcoast under 

upwelling favorable wind conditions and what factors affect this penetration?  

       The penetration problem without wind forcing was studied by Garvine (1999) 

through an ideal model study. He show plume’s penetration is affected by inflowing 

source and shelf bottom slope. Increased shelf bottom slope shortens the alongshore 

penetration. However, penetration of wind forced plume was not considered by Garvine.  
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       Fong (2001) studied the response of a river plume during an upwelling wind 

event. He focused on offshore advection of a plume due to the Ekman transport in a 

short-term model run, but not considered relationship with penetration. 

       Hetland (2005) discusses the plume’s movement in response to changing wind 

stress. During upwelling, the plume loses contact with the coast and during downwelling, 

the plume is pressed against the coast, developing a strong coastal current. But reaction 

to mean flow and sinusoidal wind with mean flow and alongshore freshwater flux 

variation are not studied.     

       Better understanding of plume penetration along the coast can help to predict 

the pathways of fresh water and the along shore penetration of river waters. Additionally, 

understanding the river water expansion processes into the ambient salty water can help 

us to understand the coastal ocean circulation through improving of the knowledge of the 

wind forced river plume and correlation with the resulting buoyancy driven current. 

     So, the aim of this study is to describe the fresh water penetration in ambient 

saltier water under upwelling favorable-wind and to investigate relationship with the 

plume detaching from the coast through the numerical model in an ideal case.  
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CHAPTER II 

 
 
 

NUMERICAL SETUP 
 
 
 
1. ROMS (model) 
 

       The Regional Ocean Model System version 2.1 (ROMS, Haidvogel et al., 2000) 

is used for the simulations presented below. ROMS is based on the S-coordinate Rutgers 

University Model (SCRUM) described by Song and Haidvogel (1994). ROMS solves 

hydrostatic, Boussinesq, primitive equation with potential temperature, salinity, an 

equation of state. ROMS can be configured to include point sources of buoyant.  

The model uses a split-explit time-stepping scheme to solve the momentum 

equations. In the vertical, the discretized coordinate system uses stretched terrain-

following coordinates. Vertical equations are solved implicitly using a tridiagonal 

method. Horizontal grid uses orthogonal curvilinear coordinates on a staggered Arakawa 

C-grid. (Haidvogel and Beckmann, 1999). ROMS has a number of choices for advection 

scheme and vertical mixing parameterization through the modular code design. 

 
 
 

2. Shore perpendicular source 
 

Numerical configuration setup generally follows Hetland’s (2005) idealized 

river plumes model study focused on relating plume structure to vertical mixing.  

A rectangular domain consists of an unvarying shelf slope, straight coast line, 

and an estuary perpendicular to the coastline where river water is introduced into the 

domain. Whole domain size is about 300km length north to south and 219km width west 
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to east. Straight coast line runs across from north to south on the west side of domain. An 

estuary is embedded within the coastline. The estuary is 27km length, 11km width and 

round shape bottom with 10m maximum depth. So, domain size of the coastal ocean is 

about 300km alongshore, and 192km cross-shore. Only the western boundary is closed 

by land. Other boundaries are applied open boundary condition. An Orlanski radiation 

condition is used for extrapolating the interior solution at the boundaries.  A sponge 

layer, a region of increased horizontal viscosity near the open boundaries, is used to 

suppress computational noise related with the radiation (Palma and Matano, 1998). To 

relax model data towards the idealized background state, a nudging term is added to 

equations of tracers by adaptive nudging technique. When the waves are directed inward 

at the boundary, the boundary is active and for outward fluxes the boundary is passive 

(Marchesiello et al., 2001). Nudging is specified to be larger when the boundary is active. 

For barotropic flow boundary conditions, a Flather (1976) condition is used.  

       Bottom slope from cost to offshore the minimum depth is 3m at the coast and 

depth of continental shelf is uniformly increase to offshore with 1/2000 linear rate. The 

maximum depth is about 97m in the eastern edge of domain (Figure 2). Depth at the 

coast is selected as shallower depth than maximum depth of estuary, so there is a cut in 

the shelf bathymetry due to the estuary.  

A rounded cross-channel estuarine topography gives more robust numerical 

solutions than rectangular flat bottom estuary. In a rectangular, flat-bottomed estuary, the 

along-channel salinity structure is affected by numerical noise, in which there are grid-

scale oscillations in the bottom salinity along-channel. The grid-scale noise creates 

artificial unmixing generated by numerical over and under shoots, since the saltier water 
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stays on the bottom, but the fresher water rises (Hetland, 2005). By changing estuary 

bottom shape from a square type to a round type this numerical noise is suppressed. 

The numerical grid is focused around the point of estuarine outflow. Higher 

resolution is specified alongshore coast and near the estuarine river water outflow region 

than any other area (Figure 2). On contrast near boundaries resolution is much coarser. It 

can give us more precise observation of plume motion and increase domain size and 

reduce grid scale noise at the boundaries.  

Initially the model is assumed to have a flat surface, no flow and uniform 

salinity of 32 psu through whole domain. Vertical temperature stratification analytically 

stabilized 20ºC in 10m homogeneous mixed layer and exponentially decreasing in 

depths, and initial condition in bottom layer is 5ºC. The whole domain is rotating 

uniformly with 1410 −−= sf . Second order horizontal mixing is used in both momentum 

and tracer. Fourth-order Akima horizontal, vertical advection applied for tracer and 

Mellor/Yamada level-2.5 closure applied for vertical turbulence mixing (Mellor and 

Yamada, 1982). 

Between 1000 and 7000 m
 3

s
 –1 

fresh water ( 0=ρ ) flux are introduced into the 

model domain on westward end of the estuary and spatially uniform along shore wind 

with amplitude of 0.1 to 0.5x10
 -4

 m
2
 s

 -2 
forced the domain as surface momentum stress 

(Figure 3). Forces, fresh water and wind, are applied through ramps with the hyperbolic 

tangential function. Those are increase from 0 to the final steady value. Fresh water’s 

ramping time scale is 4days and that of wind is 3days. Therefore freshwater inflow 

begins at the start point and increase the volume after 4 days. 4 days later the volume 

maintains certain amount. Wind starts to blow from 2
nd

 day toward the north and linearly 
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increase until 5

th
 day than maintain steady force (Figure 4). The model is integrated from 

between 1 to 2 months. 

 
 
 

3. Shore parallel source 
 

The shore parallel source runs introduce fresh water into an estuary that is 

parallel to the coast instead of perpendicular as described in the previous section. This 

model’s setup is generally same with the shore perpendicular source model except to 

change to the domain. Freshwater inflow is introduced from the northern estuary, and 

upwelling wind is again applied through whole domain (Figure 5). 

East and south boundaries of the domain are open sea with unvarying shelf slope 

but north and west are surrounded by land with straight coastline. Estuary located in the 

west corner of north coast. It has 12m maximum depth, 10km length, 9km width and 

rounded bottom (Figure 6).  

The numerical grid is formatted in a similar way as the shore perpendicular 

source model. Resolution concentrated near the estuary and along the coast (Figure 6). 

The domain length is 320km, width is 218 km with linear bottom slopes to the north and 

west of 1/2000. Minimum depth is same with the previous, 3m at the coast, but the 

maximum depth is limited as 30m for numerical integration speed. This does not 

strongly affect the solution because the alongshore current is trapped on the surface layer 

due to the density difference and flow along the coast so, deeper layer water will not 

interact with the alongshore current (Figure 6). Surface layer temperature initialized with 

mixed layer temperature and set up as 20ºC and exponentially decreasing in depths, at 

the bottom layer it is 10ºC. 
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The fresh water flux is initially zero, and increases to 5000 m

 3
s

 –1 
during 6 days 

then is kept uniform. Wind stress also begins at zero. The wind increases from 4
 th

 day to 

0.1x10
 -4

 m
2
 s

 -2
 amplitude until the 7

 th
 day, after which it maintains the same stress 

(Figure 7). The model test period is much longer than shore perpendicular source case. 

This simulation lasted 12 months. The shore perpendicular cases each lasted 2 months. 
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CHAPTER III 

 
 
 

RESULTS 
 
 
 
1. Shore perpendicular results 
 

The no forcing case shows a bulge and alongshore current as discussed 

previously. As freshwater leaves the estuary, it turns anticyclonically forming a bulge 

south of the estuary mouth then flows to the south along the coast as a coastal Kelvin-

wave (Figure 8). Define the “downcoast” direction as south here in the direction of 

Kelvin wave propagation. Both the bulge and the jet are general features of steady state 

coastal plumes in ideal model observed in many other studies (Garvine, 1987; Wiseman 

et al., 1976; Wiseman and Dinnel, 1988; Oey and Mellor, 1993; Chapman and Lentz, 

1994). However, under the upwelling favorable wind conditions, the features of the 

plume are much different.  

Upwelling winds causes the ambient surface currents flow to upcoast, as a 

coastally trapped jet, and to offshore due to Ekman transport. The plume is affected by 

both. Upwelling favorable wind leads the plume to detach from the coast and to move to 

offshore. Both processes prevent downcoast freshwater penetration into the ambient 

salty water. 

I will discuss plume detachment in more detail later, here I will focus on plume 

penetration. Initially, fresh water directly flows into the shelf through the estuary located 

on the west coast then the plume is established in salty water with anticyclonically 

turning flow and an alongshore current under zero wind conditions. After 2 days, a 
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northward upcoast upwelling favorable wind is applied throughout the domain and the 

plume starts to move to offshore. The alongshore current’s progress to the south is 

arrested by the wind.  

10 days later the bulge is move more to the northeast and detaches from the coast. 

When this happens, the alongshore current cannot flow to the south at all. After the bulge 

detaches from the coast, a new, second bulge forms. Thus, the inflow is separated into 

two parts, one part continuous to supply for the original bulge and the other part seeds 

the newly formed second bulge (see Figure 9).  

As the bulge detaches more from the coast, Returning flow, alongshore current 

return to the recirculation zone of plume, become strong and form small cyclonic 

rotation. These aspects happen within 1 month run under 3000 13 −
sm  fresh water source 

and 224101.0 −−× sm  wind stress applied condition. 

After 1.5 month, cyclonic returning flow suddenly reacts with the second bulge 

and quickly merges with the bulge. The second bulge causes fluctuation and distorts 

original bulge. Eventually the whole plume is dissipated. Figure 10 shows the time 

sequence described here. 

Freshwater flux is used to define plume penetration. Plume extension can be 

estimated through observation of alongshore boundary between freshwater and ambient 

salty water and the boundary can be described by freshwater flux. So, alongshore 

freshwater flux variation is used to present plume penetration ratio.  

Definition of freshwater flux is.  

vdxdz
S

SS
Q

o

o
f ∫∫

−
=                                           (1) 
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where, oS  is the ambient salty water salinity ( 32=ρ ), S is alongshore current 

salinity, v is averaged speed of alongshore current cross section dxdz and fQ  is 

averaged fresh water flux.  

Freshwater flux is a good metric for measuring plume penetration quantitatively 

and qualitatively because in this model no other freshwater source exists than estuary 

and it seems to fit well with other aspects of the plume, such as surface salinity. 

Additionally, it presents movement of both waters, fresh and saltier, by included vector 

velocity of flow.  

In this study, the front is defined as the southern boundary between fresh water 

and ambient salty water.  

Variation of front position can be presented by alongshore zero freshwater 

transport flux.  

Where southward fresh water volume transport exists, the plume flows to the 

south, and when the fresh water flux value is positive, 0)( 3 >xQ , there is northward 

volume. At the front, freshwater flux becomes zero (Figure 11). 

In Figure 12, near the estuary and far from the estuary, freshwater fluxes are 

positive values and mid distance from the estuary freshwater flux is negative. The first 

zero point, the turning point of flux from positive value to negative value, is the 

boundary between the bulge and alongshore current. Before the zero crossing point, near 

by the estuary, flux has positive value by alongshore current returning flow to 

recirculation zone of plume but after the zero crossing point the plume flows to the south. 

The second zero crossing point, the turning point of flux value change negative to 

positive, defines the fresh water penetration distance.  
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The second zero crossing point changes location in time. As shown in figure 12, 

the distance between estuary and the crossing point becomes smaller in time. At the 

beginning, before wind blows, the front moves to the south because of the southward 

flowing alongshore current. But after the wind starts to blow, the front moves to the 

north until it is near the estuary. That means, as fresh water is pushed up to near by the 

estuary, as northward freshwater alongshore volume transport becomes dominant. This 

shows northward mean flow generated by upwelling wind is enhanced in time. 

Alongshore penetration of buoyant currents is proportional to freshwater input 

and inversely proportional to upwelling wind stress strength. As increasing freshwater 

inflow fronts are more moves to the south but as increasing wind stress fronts are located 

more north. Thus, lots of freshwater inflow causes the freshwater to penetrate further 

into the salty water, but strong upwelling wind prevents fresh water penetration into salty 

water. This is shown by examining the movement of the front in time. Front speeds are 

calculated by plotting of along-shore zero flux points in the time verse along shore 

distance (Figure 13). 

Strong wind lead faster movement of surface water so, it is expected that strong 

wind has positive relationship with the front moving speed. However, front moving 

speed decrease exponentially by increasing wind stress and eventually converge to the 

zero. This is because strong winds allow less fresh water penetration into the salty water 

at the early stage, so there is less reduction in the penetration distance with increasing 

wind stress. Eventually, under the strongest wind condition, the fresh water almost 

cannot penetrate at all into ambient salty water so, front moving speed become nearly 

zero. That means strong wind quickly prevents fresh water’s penetration by faster set up 
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of the strong front near by the estuary than weak wind (Figure 14, Table 1).  

 
 
 

2. Shore parallel results 
 

       As mentioned above, the plume has two parts; the bulge and alongshore current. 

Shore perpendicular results show bulge is important in determining the plume structure 

under upwelling wind condition because much of the freshwater is stored in the bulge. 

When a front moves northward, the plume is detached from the coast and bulge moves 

offshore.   

 Now, we examine quantitatively and qualitatively how the bulge affects the 

solution by comparing with the shore perpendicular source. 

  Shore parallel source model set up is similar to previous plume model, except 

that the domain includes north wall and north estuary (Figure 6). However, one of 

different arrangements with this plume model is adjusting the inflow ramping time scale 

in order to reduce bigger spurious salt flux. Artificial ‘unmixing’ creates a pool of salty 

water along the sea floor, as well as a spurious source of fresh water near the surface. 

Spurious salt estimated follow based on Hetland (2005). 
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volume also can be calculated same way, except that spuriously high values of salinity 

are clipped to the original background value. The clipped fresh water volume is always 

larger or at least same as, the fresh water volume, ffclip vv ≥ . So, the percent of spurious 

fresh water formation is given by ( ) 1/ −ffclip vv . 

 To reduce this spurious salt flux, round shape estuary bottom was used and fresh 

water flow into the domain through the ramp with the hyperbolic tangential function like 

previous plume model and ramping period is in tuned. Longer ramping time scale 

generates smaller spurious error (Figure 15). 6 days time scale which is 2 days longer 

than shore perpendicular model is adjusted and other conditions are same.  

 No forcing case alongshore current dose not form a bulge, and only flows to the 

south like Kelvin wave. In time, the model generates a stable alongshore current. With 

upwelling favorable wind, the whole fresh water flow is offshore along the northern 

coastline, without significant southward penetration, and front is very stable in time. 

Nevertheless, it’s position various wind strength.  

 Before the wind blows, the current flows to the south along the coastline like a 

Kelvin wave. After wind stress is applied, the current is pushed up to the north without 

further penetrating to the south and all fresh water flows to offshore and along the 

northern coast. As the wind stress increase the front withdraws more to the north. It is 

the same phenomenon that was discussed above with the shore perpendicular source in 

the alongshore current portion of the plume south of the bulge. The present model is 

different because, after wind force becomes stable, the current also no more pushed up to 

the north and the front become stable (Figure 16). This phenomenon is same under the 

various wind strength. In figure 17 we can see the front is stable during and entire 12 
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month simulations. 

 Movement front strongly related with the movement of bulge. Shore parallel 

source model result show that front stability and movement strongly related with the 

plume stability and movement accompanied with detachment. 

 Shore perpendicular source case front is located much closer distance from the 

estuary than shore parallel source case because shore perpendicular source case much 

smaller portion of freshwater transport to the south than shore parallel source case as big 

portion of freshwater is trapped in bulge. 

 
 
 

3. Motion of bulge centroid 
 

 As preceded work it is need to choose a tracking method of bulge to find out 

detachment rate of the bulge from the coast and its moving path. The no wind forced 

plume case some of portions of inflowing fresh water are transported through alongshore 

current and other large portions of fresh water remain in the bulge. The bulge grows in 

time. The wind forced plume, however, the bulge is grows faster than the no wind case 

by inflowing fresh water plus along shore current returning flow to the bulge. So, it is 

not a good method to estimate detachment of the bulge by the distance or fresh water 

flux variance between the coast boundaries of the bulge neared coast. Because fresh 

water cover most around coast area, it is not easy to recognize boundary of bulge. So, 

bulge center tracking is proper way to find out detaching rate from the coast and moving 

pattern than bulge boundary tracking.  

 Highest surface point of plume is well present center of plume.  

 Horner-devine et. al. (appeared) defined the bulge centre as zero-crossing in 
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velocity profile but in this study, it is defined other approach. Boundaries are discerned 

sharp changing point of salinity and surface height. Based on boundary, the middle point 

of bulge is chosen as the center of the plume but to simplify tracking work 

uncomplicated define is used.  

 Based on boundary define, to concern the lowest salinity point as a bulge center 

is not proper because fresh river water flows along a rim of the plume respectably center 

salinity is higher than boundary. However, to select the highest surface point of plume as 

the center of the plume is well match the middle point of the bulge. That is reasonable 

define stand on geostrophic balance. Center of anticyclonic bulge has highest surface 

height than any others (Figure 18). 

 When the bulge detaching from the coast it behaves like a slab and move to 

upcoast and offshore with 45 degree angle.  

 Groundwork of definition, bulge moving patterns are observed. Before a wind 

blow, a plume generated by inflow and after applied the wind stress the plume shapes 

modified by the wind. At early stage bulge moving path drawn on bulge center positions 

show a parabolic curve than change to linear line in time (Figure 19). The duration from 

start to turning points, spending time to change path from parabolic curve to linear line, 

depend on the strength of wind stress. Under the strong wind, the time duration is shorter 

than weak wind case. Eventually bulge move to the northeast with almost 45 degree 

angle (Figure 19). Because the mean flow driven by upwelling wind make bulge move to 

upcoast and simultaneously Ekman transport move bulge to offshore combined both 

movements move the bulge to northeast with almost 45 degree angle.  

 Addition to, When the bulge detaching from the coast it behave like a slab 



 

 

21 
because the plume move on Ekman transport layer without changing of thickness. 

 Nevertheless of various wind strength, all flow are same path. Linear plume 

moving path is independent of the wind stress strength and all flows move to same way. 

It is clearly showing in Table 2. All lines presented path have very similar values 1. It 

means path angle is 45 degree.  

 Simulated the bulge moving speed is linear and well match the expected speed. 

Simulated the bulge moving speeds are calculated through distance from the estuary to 

center of the plume. Calculation of the expected rate, moving speed, is based on Ekman 

theory. The plume stay on the upper layer and move by the Ekman transport because the 

Ekman balance is main component of alongshore momentum (Fong et al., 1997). Under 

the spatially uniform wind stress condition through whole model domain, the integral of 

continuity equation over upper layer give =uh constant. It makes imagine that without 

change of thickness plume detach from the coast and move to offshore with some speed 

by Ekman balance. 
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 Hetland’s (2005) calculations of critical depths, equation (4) are very similar with 

Fong and Geyer’s (2001) estimation, equation (5). Even though each other study deal 

with different dimensional model. They show plume thickness only affected by wind 

stress, initial condition and cRi , critical Bulk Richardson number and critical depth, the 

plume thickness at the seaward front, used to calculate plume’s spreading offshore speed 

in Fong and Geyer (2001) because plume is keep up constant thickness and width during 

moving offshore. In this study plume thickness is not much changed and the width is 

maintained generally 3 times bigger size than deformation radius. Therefore, plume 

thickness at the seaward front is can be said critical depth in this study too and at that 

depth have maximum 2
N  value.  

 Those expected speed is based on fixed thickness of plume. Both are very similar 

value but have a litter gap. Calculated depth through model has small variation of 

thickness. Generally, under weak wind model calculation plume detaching speed is 

smaller than expected speed but under strong wind condition it show counter result. That 

means in the strong wind condition simulated depth is deeper than critical depth and it 

lead smaller detaching speed of model result than expected speed (Table 3). Because 
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strong wind enhance shear mixing through strong wind more stirring in the upper layer 

Ekman flow (Hetland 2005).  

  Results of above plume moving speed calculation show us that linear plume 

moving speed nevertheless various wind stress and simulated detaching speeds (thin 

line) from the coast are very similar with expected detaching speeds (thick line) 

calculated from equation (3) (Figure 20).  

  Bulge moving speed has linear relationship with the wind stress strength. 

  Plume moving speed has linear relationship with the wind stress. That means as 

increase wind stress plume’s moving speed also linearly increase (Figure 21).  

  Result of combine movement of front and plume against wind stress present to 

us that strong wind allows small budge of front through faster moving of plume to 

northeast. It lead rapid prevent fresh water penetration. Weak wind let the front move to 

longer distance through slower plume movement and its permit more penetration of 

fresh water to ambient water by time-consuming prevent fresh water. Consequently, 

plume’s movement causes to withdraw of front to the north and detachment rate of 

plume coherent with alongshore front movement (Figure 22). 

 
 
 

4. Sinusoidal wind 
 

 Above model results show reaction of plume to wind. How much response to 

wind and what about affect of ambient water flow and relationship with the alongshore 

fresh water flux? To get answer the question it is need to apply blowing direction 

changing wind in time and ambient water flow. To present critical changing wind 

direction sinusoidal function is selected and for steady ambient water mean flow is 
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applied. To compare with the result of plume model, it is tested in same domain, 

configuration and input parameters.   

  3000 m
 3

s
 –1 

fresh water ( 0=ρ ) flux are uniformly forced in through the estuary 

like plume model and sinusoidal along shore wind with amplitude of 0.5x10
 -4

 m
2
 s

 -2  

forced as surface momentum stress. Both forces time-series applied with a ramp to 

reduce generation of high frequency oscillations. Fresh water flux forced with the 

hyperbolic tangential function. It is increase from 0 to the 3000 m
 3

s
 –1

 during 4days then 

maintains volume. Sinusoidal wind has about 6.6 days cycle (Figure 23). Addition to, 

southward mean flow 0.05 1−
ms  added.  

  When 0.05 1−
ms  southward mean flow only applied model domain plume is 

restricted by mean flow without extend to north and offshore in time. Plume shape also 

is changed from a circular to an ellipse by push to the coast and along shore current flow 

also increase (Figure 24). 

 The plume moves onshore and offshore in response to changing wind direction. 

Sinusoidal wind leads upwelling and downwelling as changing of wind direction by 

Ekman transport and the plume show asymmetric response. 

 During downwelling transport is become greatest and during upwelling it is 

become so litter. During upwelling plume detached from the coast and along shore flow 

become weak and for downwelling period plume pushed to the coast and along shore 

flow enhanced (Figure 25). 

 Background mean flow substantially increases alongshore freshwater transport. 

In sinusoidal wind with southward mean flow, mean flow is work as subsidiary force to 

boost or reduce upwelling and downwelling. For the duration of downwelling, plume is 
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more pushed to the coast and form strong alongshore current. Mean flow make enhance 

all. However, during upwelling event, plume is less detached from the coast than 

sinusoidal wind only forced case and southward alongshore flow is not much decrease 

like sinusoidal wind only case. It is due to reduce of wind effect by counter flowing 

mean flow (Figure 26). It is presented clearly by figure 27 and 28. 

 4 case of different force model result included static state plume case (Figure 29, 

30) suggest calculating alongshore fresh water flux by case to understand relationship 

with the wind.  

 Fresh water fluxes are calculated based on Hetland (2005) at the 80km distance 

across shore line from the estuary. Figure 31 present averaged fresh water flux under 

different forcing and no forcing case.  

 Both sinusoidal wind case and sinusoidal wind with mean flow case have same 

cycle 6 days. It is shorter than wind stress cycle 6.6 days. 

 The plume has an asymmetric response to upwelling and downwelling and fresh 

water flux is changed immediately by wind. So, alongshore transport may be modified 

by order one under the wind stress. 

 Downwelling transport is great. Especially, wind with mean flow case northward 

transport decrease to almost zero. Therefore freshwater penetration prevent by upwelling 

favorable wind. It is concur with the plume model result. In sinusoidal wind with mean 

flow case fresh water flux is higher value than no mean flow sinusoidal wind case. It 

means flow work as enhance force to alongshore fresh water flux.  
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CHAPTER IV 

 
 
 

DISCUSSION 
 
 
 

Hypoxia on the Texas-Louisiana continental shelf in the northwestern Gulf of 

Mexico is associated with a strong stratification caused by the Mississippi and 

Atchafalaya Rivers and seasonal changing wind. It is generated only during summer 

season because the Texas-Louisiana shelf circulation pattern is changed during summer 

season due to changing wind direction.  

During the nonsummer season, the wind direction is downcoast and drives the 

alongshore current on the inner shelf. The alongshore current distributes Mississippi-

Atchafalaya river water downstream near the south Texas coastal region. However, 

during the summer season, the wind direction is changed to upcoast, leading to an 

anticyclonic circulation in the mid shelf. The mean flow driven by the wind prohibits 

downcoast spreading of surface trapped fresh water, creating a freshwater pool over the 

Texas-Louisiana shelf. This fresh water pool creates conditions to hypoxia by creating of 

strong stratification over the shelf during summer season. Strong stratification prevents 

oxygen supply by suppressing mixing between the surface and bottom layers. Loss 

dissolved oxygen in the lower layer of the water column causes loss of aquatic habitat 

(Rabalais et al., 1996). 

This study of the reaction of plume and resulting buoyancy driven current under 

the upwelling conditions through a simplified rectangular ideal model helps us to 

understand the generation mechanisms that cause the summer-time freshwater pool to be 
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formed over the Texas-Louisiana shelf. 

The shore perpendicular model with a narrow estuary demonstrates how a thin 

plume moves offshore through Ekman layer transport under upwelling wind. This 

response helps us to understand the relationship freshwater penetration rate into ambient 

salty water with movement of the plume consisted with a bulge and current. This 

configuration has a large Burger number ( fLHgS /'= ) and large Rossby number 

( fLvRo /= ), so, it can be classified as a surface-advection or intermediate plume 

(Yankovsky and Chapman, 1997).  

Because the channels of the Mississippi River are narrow, and the discharge is 

large, the Mississippi River has a large S and Ro. The flow out of Southwest pass, the 

largest distributor in the Mississippi delta, forms an anticyclonic bulge and alongshore 

flow. This plume spread offshore with little contact to the bottom, because buoyant 

freshwater remains in the surface without mixing with the ambient salty water. Thus, the 

Mississippi River Delta outflow generates a surface-advected or intermediate plume with 

large S and Ro. 

Because the mouth of Atchafalaya bay is large, the Atchafalaya River is 

characterized by small S and Ro. Atchafalaya River also flows into the shelf 

perpendicularly, with flow along the coast turning anticyclonicly. Near the mouth, the 

plume covers the whole water column, and is in continuous contact with the bottom. Its 

behavior is controlled by advection in bottom boundary layer. This plume can be 

classified as bottom-advected plume with small S and Ro. 

The shore perpendicular source model may be compare with the Mississippi 

River and Atchafalaya River outflows. The shelf geometry determines the plume 
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characteristics when the buoyant inflow properties are same. For both rivers, the 

geometry is very different. Atchafalaya River has much wider estuary than the 

Mississippi River. The Atchafalaya river plume is not match the ideal model presented 

here, since it is a bottom-advected plume. However, the Mississippi River plume has 

many of the same characteristics as the idealized models previously presented.  

During nonsummer season, Mississippi River flows to west (Li et al., 1997). In 

the summer season, however, the Mississippi river water cannot penetrate to the west, 

since the shifted winds push the river water to the east. In the summer season, however, 

the Mississippi river water cannot penetrate to the west, since the shifted winds push the 

river water to the east. A front west of the delta area and eventually, river water cannot 

penetrate further to the west at all.  

It is expect that the frontal position representing the westward boundary of the 

plume will change in time, because alongshore penetration of buoyant currents is 

proportional to freshwater input and inversely proportional to upwelling wind stress 

strength, both of which change in time. Lots of river water discharge causes the river 

water to penetrate further to the west, but strong upcoast wind prevents river extension to 

the west and pushes the front to the east. 

When strong wind blowing summer, fresh water pool is created in early stage in 

summer because strong wind can quickly prevents river water penetration by faster set 

up of the strong front near the estuary than weak wind. 

Blocked river water creates fresh water pool in the east side of the Mississippi 

delta and extends to east along shore and offshore and mid Gulf of Mexico by mid scale 

anticyclonic eddy in Northern Gulf of Mexico (Morey et al., 2005). 
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CHAPTER V 

 
 
 

CONCLUSION 
 
 
 

During summer season, upcoast wind prohibits downcoast spreading of river 

water and made fresh water pool in the Texas-Louisiana shelf. To understand generation 

mechanism we studied the reaction of plume and resulting buoyancy driven current 

under the upwelling conditions with an ideal model, focusing on the penetration rate of 

fresh water downcoast under upwelling favorable wind conditions.  

This study demonstrates that alongshore penetration of buoyant currents is 

proportional to freshwater input and inversely proportional to upwelling wind stress 

strength. Large freshwater inflow causes freshwater to penetrate further into the salty 

water, but strong upwelling wind counteracts this. Under the strongest wind conditions, 

used in this study, the fresh water cannot penetrate at all into ambient salty water. Strong 

wind quickly prevents fresh water’s penetration, through a fast set up of a strong front 

near the estuary mouth.  

The shore perpendicular source case front location is much closer to the estuary 

than shore parallel source case because as large portion of freshwater is stored in a bulge, 

causing the alongshore current freshwater transportation volume to be reduced. The 

shore parallel source case doses not have such a bulge. 

The highest surface point of plume is a good proxy for determining the center of 

the plume. To find out the detachment rate of the bulge from the coast and its path, 

selecting the bulge center is important. The highest surface point of plume well matches 
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the bulge’s middle point, and it is also reasonable based on a geostrophic balance of the 

flow around the bulge. Thus, the center of the anticyclonic bulge is defined as the 

highest sea surface height. 

When the bulge detaches from the coast, it behaves like a slab, and moving 

upcoast and offshore with a 45 degree angle. Because the plume moves as an Ekman 

layer, without change of thickness, the bulge behaves like a slab. The mean flow, a 

coastal jet flowing upcoast, is driven by upwelling wind, and moves the bulge upcoast at 

it is simultaneously advected to the offshore by Ekman transport. These processes 

combine to move the bulge northeast with a 45 angle to the coast.  

All tracks of the bulge follow the same path, despite different wind strengths. The 

path of the bulge is linear, and is independent of strength of wind.  

Bulge moving speed has a linear relationship with the wind stress strength. As the 

wind stress increases, the bulge moving speed increases linearly. The simulated bulge 

moving speed well matches the expected speed. The simulated bulge moving speeds are 

calculated through the time rate of change of the distance from the estuary mouth to 

plume center. The expected moving speed is calculated by an equation based on Ekman 

transport, as the Ekman balance is the main component of the alongshore momentum 

balance.  

The front and the plume movement are coherent and have an inverse relationship. 

As the wind stress increases, the plume advection speed increase linearly, but the 

alongshore fresh water penetration exponentially decreases.  

The plume has an asymmetric response to upwelling and downwelling and fresh 

water flux is changed immediately by wind. So, alongshore transport may be modified 
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by order one under the wind stress. 

During downwelling, the along-shore fresh water transport becomes greatest and 

during upwelling it is reduced. During upwelling, the plume detaches from the coast and 

along shore flow becomes weak. Background mean flow can substantially increases 

alongshore freshwater transport.  

Mean flow can enhance or reduce the effects of upwelling and downwelling. For 

the duration of downwelling, a strong alongshore current is formed that enhances the 

response of the plume to the wind. However, during upwelling, the mean flow can 

reduce the effect of the wind effect by an upcoast flow. In the sinusoidal wind with mean 

flow case, the fresh water flux is higher value than the no mean flow sinusoidal wind 

case. This shows that means flow can enhance alongshore fresh water flux. 
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APPENDIX A 

 

 

Figure 1. Monthly mean fields of surface geopotential anomaly. (Cochrane and Kelly, 

1986). It suggests the general annual circulation pattern of the Texas-Louisiana shelf 

current.  
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(a) 

 
             (b) 

 

Figure 2. Plume model bottom topography. Rounded cross-channel estuarine is cut in 

through the shelf bathymetry has 1/2000 decline gentle slop. High resolution is 

specified alongshore coast and near the estuarine river water outflow region. 
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Figure 3. Schematic of a shore perpendicular source model. 
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Figure 4. Model forcing. Fresh water flux(Q) and wind stress )/( oρτ , are applied by 

ramp with time-scale to prevent sudden forcing in the domain. Because it cause 

generate high frequency oscillations. Fresh water ramping time scale is 4 day and 

wind stress is 3 day. 
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Figure 5. Schematic of shore parallel source model. 
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(a) 

 
           (b) 

 

Figure 6. Shore parallel source model bottom topography. North wall and East wall 

connected 1/2000 gentle slop. Rounded cross-channel estuarine located in North wall. 

Maximum depth is limited as 30m. Higher resolution is specified alongshore coast and 

near the estuarine river water outflow region. 
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Figure 7. Model forcing. Fresh water flux(Q) and wind stress( oρτ / ), are applied by 

ramp with time-scale to prevent sudden forcing in the domain. Because it cause 

generate high frequency oscillations. Fresh water flux ramping time scale is 6 day and 

wind stress is 3 day. 
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Figure 8. 4 time step figures of no wind forcing case. 4 time step figures show variation 

of plume in time under no extraordinary forcing. Fresh water turns anticyclonic and 

flow to south.     
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Figure 9. Upwelling wind case 3 time step bulge figures. Inflow is separated as two parts 

and supply to different bulge. One to original bulge and the other to second bulge 

newly formed. Small cyclonic rotation is formed by alongshore current returning flow 

in time. 
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Figure 10. 4 time step figures of upcoast wind case. 4 time step figures show variation of 

plume in time pass under the upwelling favorable wind. It becomes unstable after 

formed new bulge and cyclonic rotation flow, 26 day figure showing, and dissipates at 

60 day.     
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Figure 11. Schematic of alongshore south freshwater flux. 

 

 

 

 

 

 

 

 

 

 

 

 

freshwater flux Q  

wind 

τ  

0)( 1 <xQ

0)( 2 =xQ

0)( 3 >xQ



 

 

47 
 

 
 

Figure 12. Fresh water flux variation. Front, flux zero point, is move northward in time. 

Fresh water flux Q = 3000 sm /3 and wind stress 22 /1.0/ smo =ρτ .  
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Figure 13. Front moving speed. It is based on wind stress and fresh water input flux. A 

strong wind more quickly prevents fresh water penetration by a faster set up of the 

front than a weak wind.  
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Table 1. Front moving speed 

 

 
 

Figure 14. Front moving speed vs wind stress. A front moving speed exponentially 

decreases by the increase of wind stress. 

 

 

 

 

 

 

 flux )/( 3 sm  

)/10(/ 224
smo

−ρτ  Q:1000 Q:3000 Q:5000 Q:7000 

0.1 -1.7414 -8.7771 -10.843 -11.369 

0.2 0 1.1829 -3.4171 -1.38 

0.3 -1.1829 -3.3646 0.7229 1.4129 

0.4 0 -0.7229 -3.0229 1.3143 

0.5   0 1.7829 
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Figure 15. Spurious error. Longer ramping time scale generates smaller spurious error. 
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Figure 16. 4 time step figures of shore parallel source. 4 time step figures show stable 

front during 12 months.  
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Figure 17. Fresh water flux variation. Front, flux zero point, is move northward as time 

pass. Fresh water flux Q = 3000 sm /3 and wind stress 22 /1.0/ smo =ρτ .  
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Figure 18. 4 time step figures of plume center. 4 time steps of plume movement figures 

for 1month. 45 degree northeast moving pattern is clearly presented by center of bulge 

path. 
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Figure 19. Movement of plume centroid. Points presented bulge center’s daily position 

and fitted line show moving pattern. 

 

 

Inflow Q: 5000 )/( 3 sm  

o
ρτ /  slope mean error 

time range 

(day) 

0.1 1.0608 0.322 40 

0.2 0.80147 0.003 20 

0.3 1.068 0.001 16 

0.4 0.71315 0.2795 12 

0.5 0.9502 0.0003 10 

Table 2. Moving speed 
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Figure 20. Simulated detaching speed (thin fitted line) vs. Ekman transport speed  

(thick line).  

 

 

 

Inflow Q: 5000 )/( 3 sm  

oρτ /  Simulated speed  Expected speed 

0.1 1.294 1.44 

0.2 2.4896 2.496 

0.3 3.3965 3.3035 

0.4 4.5912 4.4047 

0.5 5.9066 5.3227 

Table 3. Compare speed 
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Figure 21. Plume moving speed vs. wind stress. 
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Figure 22. 4 time step figures plume & front. 4 time step figures show surface level 

during 1 month. Black line present front, flux () is 0. As highest surface, the plume 

center, advected to offshore front move to the north and approached estuary. 

Detachment rate of plume coherent with alongshore front movement. 
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Figure 23. Forcing included sinusoidal wind. Fresh water flux ramping time scale is 4 

day and wind period is 6.7 days. 
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Figure 24. 4 time step figures of mean flow added case.  
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Figure 25. 4 time step figures of sinusoidal wind case. 
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Figure 26. 4 time step figures of sinusoidal wind with mean flow. 
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Figure 27. Downwelling of wind and wind with mean flow. 
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Figure 28. Upwelling of wind and wind with mean flow. 
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Figure 29. 4 time step figures of 4 difference case during downwelling. 
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Figure 30. 4 time step figures of 4 difference case during upwelling. 
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Figure 31. Fresh water flux at 80km from the estuary  

black dot: inflow fresh water flux 3000 m
 3

/s
 
, 

green line: steady state  

yellow line: 0.05m/s southward mean flow  

blue line: sinusoidal wind 

red line: sinusoidal wind + southward mean flow  

dot line: running mean.  
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