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ABSTRACT 
 
Mapping Surface Fuels Using LIDAR and Multispectral Data Fusion for Fire Behavior 

Modeling. (December 2006) 

Muge Mutlu, BAR, Cukurova University, Turkey 

Chair of Advisory Committee:  Dr. Sorin C. Popescu 

 
 

Fires have become intense and more frequent in the United States. Improving the 

accuracy of mapping fuel models is essential for fuel management decisions and explicit 

fire behavior prediction for real-time support of suppression tactics and logistics 

decisions.  This study has two main objectives. The first objective is to develop the use 

of LIght Detection and Ranging (LIDAR) remote sensing to assess fuel models in East 

Texas accurately and effectively.  More specific goals include: (1) developing LIDAR 

derived products and the methodology to use them for assessing fuel models; (2) 

investigating the use of several techniques for data fusion of LIDAR and multispectral 

imagery for assessing fuel models; (3) investigating the gain in fuels mapping accuracy 

with LIDAR as opposed to QuickBird imagery alone; and, (4) producing spatially 

explicit digital fuel maps. The second objective is to model fire behavior using 

FARSITE (Fire Area Simulator) and to investigate differences in modeling outputs using 

fuel model maps, which differ in accuracy, in east Texas.   

Estimates of fuel models were compared with in situ data collected over 62 plots.  

Supervised image classification methods provided better accuracy (90.10%) with the 

fusion of airborne LIDAR data and QuickBird data than with QuickBird imagery alone 
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(76.52%).  These two fuel model maps obtained from the first objective were used to see 

the differences in fire growth with fuel model maps of different accuracies.  According 

to our results, LIDAR derived data provides accurate estimates of surface fuel 

parameters efficiently and accurately over extensive areas of forests. This study 

demonstrates the importance of using accurate maps of fuel models derived using new 

LIDAR remote sensing techniques. 
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CHAPTER I 

INTRODUCTION 
 

Fire is a critical issue in many countries such as the United States, Southern 

Europe, Siberia, and Turkey (Falkowski et al., 2005) and fuel distribution is very 

important for defining fire behavior (Chuvieco and Congalton, 1989).  Many forest fires 

occur each year and a huge amount of forest areas are lost in the US.  For example, in 

Texas alone, in 2005 there were a total of 2,043 fires, which burned 51,675.12 hectares 

(127,692 acres).  It has been reported by the Texas Forest Service (2006) that 8,015.2 

hectares (19,806 acres) have burned in Texas already in the first five days of 2006. To 

mitigate fire risks, land managers should identify those areas most in need of fuel 

mitigation efforts.  Managing such risk is difficult since fuel hazards are changing, and 

because fire behavior is affected by many factors, including weather, wind conditions, 

and topography.  To improve ecosystem health, there is a need to use complex fire 

behavior models to support environmental assessments.  Fire managers must provide 

more accurate fire behavior predictions, and there is a need to reflect on some factors 

such as canopy height, dead and live fuel load, and percent of canopy cover because 

these factors are known as fuel types (Pyne et al., 1996).  

Fire managers usually group vegetation communities into fuel types based on 

similar potential fire behavior (Riano et al., 2002).  In addition, fuel models can be used 

to describe fuels (Anderson, 1982). Fire managers usually group vegetation communities  

_______________ 

This thesis follows the style of the journal, Remote Sensing of Environment. 
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into fuel types based on similar potential fire behavior (Riano et al., 2002).  In addition, 

fuel models can be used to describe fuels (Anderson, 1982). Fuel type is an identifiable 

association of fuel elements of a distinctive plant species, form, size, arrangement, or 

other characteristics that will cause a predictable rate of fire spread or difficulty of 

control under specified weather conditions. Fuel model refers to a simulated fuel 

complex (or combination of vegetation types) for which all fuel descriptors required for 

the solution of a mathematical rate of spread model has been specified (Pyne et al., 

1996). 

Fire managers recognize a total of three general types of wildland fire according 

to the vegetation layer: ground, surface, and crown fire.  The fire that grows in organic 

soils, roots, duff, wood, muck, peat and rotten buried is called ground fire (Scott, 2001) 

and this kind of fire grows really slow because roots, duff, muck, peat etc. burn slower 

than brush and grass vegetation types.  A surface fire burns in the surface layer’s dead 

and down limbs, forest needle and leaf litter, short trees, grass, and branch wood (Scott, 

2001).  A crown fire burns in the elevated canopy fuels.  Canopy fuels normally 

consumed in crown fires consist of live and dead foliage.  Assessing crown fire potential 

requires the most accurate estimates of canopy fuel characteristics possible (Scott.  

2001). This study focused on surface fires. 

Remote sensing can support many aspects of fire management and it can be used 

to decrease fire risk and to reduce fire damage.  In recent years, remote sensing 

techniques have been applied to estimate fuel properties such as structure and density 

(Morsdorf, et. al., 2004; Pyne et al., 1996). Airborne LIDAR (Light Detection and 
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Ranging) systems have been used to estimate critical parameters for fire behavior and 

may, potentially, be used to compute and distinguish a range of fuel attributes including 

understory fuel height (Roff et al., 2005, and Means, 2000). Detailed information can be 

extracted from LIDAR remote sensing such as accurate geometric X, Y, and Z position 

of scattering elements which includes measurements of the forest canopy and ground 

surface (Lefsky et al., 2002).  Airborne LIDAR remote sensing is a powerful tool to 

obtain fuel information.  Compared to traditional aerial photography or fieldwork, 

airborne scanning laser systems provide better spatial coverage and enough temporal 

resolution to update fuel maps (Riano et al., 2003). 

The use of airborne LIDAR allows scientists to measure the three-dimensional 

structure of the canopy, and it also allows for more accurate and efficient estimation of 

canopy fuel characteristics over large areas of forests (Andersen et al., 2005).  LIDAR 

sensors are high resolution, active remote sensing tools that use lasers to measure the 

distance between the sensor and the object sensed (Wagner et al., 2004).  This 

technology is useful for obtaining accurate, high resolution measurements of surface 

elevations (Bufton et al., 1991).  In addition, airborne LIDAR data can provide new 

information about the canopy surface and vegetation parameters such as height, stem 

density, crown dimensions, volume and biomass (Naesset and Okland, 2002; Popescu 

and Wynne, 2003; Nelson et al., 2003; Popescu et al., 2004). Operationally, LIDAR 

ranging data are commonly used for precise terrain elevation characterization.   

Important assessments include the potential size, rate, and intensity of a wildland 

fire, which can assist in short and long-term wildland fire planning and resource 
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distribution (Keane et al., 2000). Recent advances in computer software technology have 

allowed development of several spatially explicit fire behavior simulation models, which 

predict the spread and intensity of fire (Andrews and Queen, 1999). Some of this 

software can be used to predict future fire growth and compute possible parameters of 

wildland fires for real-time simulations (Campbell at al., 1995, Richards, 1990). An 

example of such software is FARSITE (Fire Area Simulator), a spatially explicit fire 

growth model developed by Finney (1994). FARSITE is a two-dimensional 

deterministic model for simulating the spatial and temporal spread and behavior of fires 

under conditions of heterogeneous terrain, fuels, and weather (Finney, 1998). This 

software incorporates models for surface fire (Rothermel, 1972), crown fire (Wagner, 

1993), spotting (Albini 1979), fire acceleration, and fuel moisture. FARSITE produces 

maps of fire growth and behavior in vector and raster format (Stratton, 2004). The 

software’s simulator is the useful tool to evaluate fuel treatments. In addition, to 

calculate surface fire spread, FARSITE implements the Rothermel (1972) equations 

(Miller and Yool, 2002). Many wildland fire managers use this software to simulate 

characteristics of prescribed wildfires (Finney 1998, Grupe 1998).  

This study demonstrates the importance of using accurate maps of fuel models 

derived using new LIDAR remote sensing techniques. 
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Objectives 
 

This study has two main objectives.  

(1) The first objective is to develop a methodology to use LIDAR and 

multispectral remote sensing to accurately and effectively assess fuel models in East 

Texas.   The specific objectives: 

• develop LIDAR-derived products and the methodology to use them for 

assessing fuel models; 

• investigate the use of several techniques for data fusion of LIDAR and 

multispectral imagery for assessing fuel models;  

• investigate the accuracy of fuel maps generated using LIDAR as opposed 

to the generation of fuel maps from satellite imagery alone; and  

• produce spatially explicit digital fuel maps.   

(2)  The second objective is to model fire behavior using FARSITE and 

investigate differences in modeling outputs using fuel model maps, which differ in 

accuracy, in east Texas.   

Thesis Organization 
 
         The thesis consists of five chapters. An introduction to the thesis is presented here. 

Chapter II contains a literature review about fuel models and FARSITE studies. Chapter 

III contains an introduction, a discussion on methodology for mapping surface fuel 

models using LIDAR and multispectral data and it includes findings of the study. In 

Chapter IV, FARSITE simulation software was run with two different datasets. This 
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chapter also includes introduction, methodology and results sections. Conclusions of the 

study are presented in Chapter V.  
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CHAPTER II 

LITERATURE REVIEW 
 

There is a limited number of studies in the literature that used airborne scanning 

laser (LIDAR) systems to estimate forest fuels parameters.  Most studies map 

vegetation, then assign fuel models to the vegetation classification. De Vasconcelos and 

others (1998) mapped the Anderson (1982) fuel models in north-central Portugal using 

neural network pattern searching on elevation, land use, and satellite imagery layers. 

They found this method strongly differentiated between grassland and shrubland fuel 

models with accuracies between 33 to 75 percent depending on land cover type. Their 

study emphasized the importance of ground data to train, test, and validate the neural 

networks.  Riano’s (2003) study has demonstrated a semi-automated technique can be 

used to extract forest fuel distribution from LIDAR data in forests dominated by conifer 

and deciduous tree species.  The results demonstrated that LIDAR can provide detailed 

spatial information on forest attributes relevant to fire behavior that may also be used for 

direct input into spatial fire behavior models.  Baath et al. (2002) developed an approach 

to obtain practical information about recent and future forest fuel potentials.  Morsdorf et 

al. (2004) used a k-means clustering algorithm to measure individual tree crown 

dimensions for forest fire risk assessment in Switzerland.  Roberts et al. (1998) used 

AVIRIS (Airborne Visible Infra-Red Imaging Spectrometer) airborne sensor imagery 

and spectral mixture analysis to classify vegetation fraction, cover, and water content 

which were then related to fuel loadings directly sampled on the ground. In Andersen et 

al. (2005) study, regression analysis was used to develop predictive models relating a 
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variety of LIDAR-based metrics to the canopy fuel parameters estimated from inventory 

data collected at plots established within stands of varying condition within Capitol State 

Forest, in western Washington State. Mark et al. (1995) assigned Anderson (1982) fuel 

models to combinations of timber size class, stocking level, crown density, crown 

texture, and vegetation type that were sampled or extrapolated attributes of photo-

interpreted polygons in their timber stand atlases.   

Recently, FARSITE has been used by many fire managers all over the world 

(Finney 1998, Keane et al., 1998).  Falkowski et al.(2005) evaluated the accuracy and 

utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection 

radiometer (ASTER) satellite sensor, and gradient modeling, for mapping fuel layers for 

fire behavior modeling with FARSITE and FLAMMAP.  They mapped the surface fuel 

models (National Forest Fire Laboratory (NFFL) 1–13) using a classification tree based 

upon three gradient layers; potential vegetation type, cover type, and structural stage. 

The final surface fuel model layer had an overall accuracy of 0.632.  Stephens (1997) 

used FARSITE to spatially simulate fire growth and behavior in mixed-conifer forest 

and to investigate how silvicultural and fuels treatments affect potential fire behavior in 

the North Crane Creek watershed of Yosemite National Park.  Keane et al. (2000) used 

FARSITE to spatially model fire behavior on the Gila National Forest, New Mexico.  

They used sampled field data to guide the classification criteria for each category and to 

assess the value of each category to the overall classification and mapping effort in a 

spatial context. They coded all vegetation classifications into Paradox database queries 

that use plant species and canopy cover information along with other relevant site 
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descriptions. The coded plots were then used to assign the FARSITE fuel and crown 

characteristics parameters to each layer to finally create the FARSITE input layers. 

Basically, they developed all the spatial data layers required by FARSITE.  Stratton 

(2004) used FireFamily Plus to evaluate historical weather and calculate seasonal 

severity and percentile reports.  Then they used this information in FARSITE and 

FlamMap to model pre-treatment and post-treatment effects on fire growth, spotting, 

fireline intensity, surface flame length, and the occurrence of crown fire.  Miller and 

Yool (2002) evaluated the sensitivity of FARSITE to the level of detail in the fuels data, 

both spatially and quantitatively, which provided land managers knowledge about the 

effectiveness of detailed fuels mapping in modeling fire spread.  

The current study builds on and extends the research efforts described above by 

integrating LIDAR and multispectral data to develop fuel models.  We employ a unique 

approach to classify fuel models based on LIDAR height bins and optical imagery, and 

we use the various LIDAR-based and scanner-based data layers to set initial conditions 

for fire simulations using FARSITE.  We developed all the spatial data layers, fuel 

model map, canopy cover, DEM, slope and aspect, required by FARSITE using LIDAR 

remote sensing techniques and multispectral data.  In addition, we are looking into more 

fuel models in a large area, covering 4,741.83 ha. Different image processing approaches 

were used to improve the overall accuracy of image classification and our accuracy 

assessment results are higher than results of the other studies.  
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CHAPTER III 

MAPPING SURFACE FUEL MODELS USING LIDAR AND  

MULTISPECTRAL DATA FUSION 
 

Introduction 
 

Surface fuels are greatest concern because they are primary contributors to the 

intensity and spread of fires.  According to Anderson (1982), surface fuels have been 

classified into four groups: grasses, brush, timber, and slash.  Fire behavior can differ if 

there is a direct relationship between the fuel load and its distribution among the fuel 

particle size classes (Anderson, 1982).  A fuel model is a simulated fuel complex for 

which all the fuel loadings, common sizes, and arrangements have been specified for 

solution of a mathematical fire spread model (Reeves, 1988).  A total of thirteen surface 

fuel models are identified for the United Stated, each varying in amount, size, and 

arrangement of the fuel model (Anderson, 1982).  A total of seven fuel models are 

available in our study area: grass fuel models 1 and 2, brush fuel model 4, 5, and 7, and 

timber litter fuel model 8 and 9.  Fig. 1(a), (b), and (c) represents the types of fuel 

models which are available in the study area.  Fuel models are one of the inputs into fire 

simulation software, which help the user reasonably estimate fire behavior (Reeves, 

1988). 
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(a)                                                               (b) 

 
(c) 

Fig. 3. 1. Example of  (a) grass fuel model, (b) brush fuel model, and (c) timber fuel 

model on the study area.  

 

Multispectral image classification is an important technique of remote sensing 

and image analysis.  There are different ways to perform classification such as 

supervised or unsupervised, parametric or nonparametric, and contextual or 

noncontextual (Keuchel et al., 2003).  Maximum Likelihood and Mahalanobis Distance 

that are decision rules methods of supervised image classification were used to 

determine which classifier is more efficient and useful for this study.  In a supervised 

image classification, some of the land-cover types such as forest, urban, water, and 
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agriculture are known (Hodgson et al., 2003).  To classify remotely sensed data 

successfully, supervised classification training sites must be carefully assigned to land-

use and land-cover information (Lunetta et al., 1991; Congalton and Green, 1999). In 

this chapter, two different fuel model maps, one from LIDAR-derived data and the other 

one from multispectral imagery, were obtained and comparisons of results were 

presented.  

The overall aim of this chapter is to develop the use of LIght Detection and 

Ranging (LIDAR) remote sensing to accurately and effectively assess fuel models in 

East Texas.  More specific objectives include: (1) developing LIDAR derived products 

and the methodology to use them for assessing fuel models; (2) investigating the use of 

several techniques for data fusion of LIDAR and multispectral imagery for assessing 

fuel models; (3) investigating the gain in fuels mapping accuracy when using LIDAR as 

opposed to QuickBird imagery alone; and (4) producing spatially explicit digital fuel 

maps. 

Materials and Methods 

Study Area 
 

The study area is centered within the rectangle defined by 95° 24’ 57” W- 30° 

39’ 36” N and 95° 21’ 33” W- 30° 44’ 12” N, covering 4,741.83 ha, in east Texas near 

Huntsville.  Forest stands are in various stages of development which include pine, pine-

hardwood mixed stands, and hardwood stands in the study area.  The study area also 

includes open ground with fuels consisting of grasses and brushes.  Fig. 3.2 represents 

the QuickBird image, a high-resolution satellite owned and operated by DigitalGlobe 
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with 2.5x2.5m resolution. Yellow marks on the image represent the field plot locations 

over the study area.  

 

 

          Fig. 3. 2. Map of Texas indicating the location of our study area and false color composite

 of a QuickBird image, with field plot locations. 
 
 

Data  
 

Three types of data were used in this project: LIDAR data, in-situ data, and 

multispecral QuickBird data. 

LIDAR Data 
 

LIDAR scanning data was provided by M7 Visual Intelligence Inc. in LAS 

format.  The LAS file format is a binary file format that maintains information specific 

to the LIDAR nature of the data while not being overly complex. LIDAR data were 

acquired over an area of 6,474.9 hectare (25 square miles) in leaf off condition during 

March 2004.   M7 Visual Intelligence Inc. uses semi-automated process for processing 
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GPS and LIDAR data that includes built-in measures for quality control and assurance 

throughout each step of the process.  A total of 47 flight lines were collected over the 

study area, with 28 flight lines obtained from East to West and 19 flight lines obtained 

from North to South.   An average of 2.58 points/m2 and a maximum of 39.84 points/m2 

were found.  Fig. 3.3 shows the flight lines over the study area.  This flight line 

arrangement with complete LIDAR coverage from two different directions was designed 

to allow a good penetration of laser shots to the ground for characterizing surface fuels 

and to reduce effects of row direction on pine plantations.  

 

 

Fig. 3.3. Flight lines over the Huntsville area.  
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Ground Inventory Data 
 

In order to assess fuel models and forest inventory parameters and determine the 

accuracy of airborne LIDAR estimates, in-situ data were gathered for this study from 

May 2004 to July 2004. A total of 62 plots including a total of 1005 trees were measured 

in the study area.  Potential plot locations were initially identified using ground 

reconnaissance to ensure adequate sampling of the common fuel types in east Texas.  

This strategy was used due to the difficultly of identifying fuels based solely on 

Quickbird satellite imagery.  After several potential sites were located on the ground, 

random plot locations within these stands were generated in the office. 

 A 404.6 m² (1/10th acre) circular plot with a radius of 11.35 m (37.24ft) was 

established for all forested and non-forested plots, except for the ones located in 

unthinned pine plantations. Because of the uniformity of trees in unthinned plantations, a 

smaller plot size of 40.468 m² (1/100-acre) with a radius of 3.59 m (11.78ft) was used. 

Plots were located in the field by obtaining a distance and direction from an 

identifiable feature on the Quickbird imagery and using a compass to chain in. This 

method was preferred over GPS navigation because of poor GPS satellite reception 

underneath the forest canopy (necessary precautions were taken to prevent plot location 

bias). Once the plot center was established, the coordinates were recorded with a 

GeoExplorerXT. A minimum of 30 positions were collected for each plot and saved to 

the GeoXT so they could be differentially corrected later using Trimble’s Pathfinder 

software. A 3.66 m (12 ft) to 4.88 m (16 ft) antenna had to be used on most forested 

plots in order to receive an adequate GPS signal. 
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All trees were measured and species were identified within the plot boundaries. 

Each tree location was mapped using distance and azimuth from plot center. Tree 

distance was measured to the nearest 3 cm (0.1 ft) using a Haglöf Vertex III Hypsometer 

and azimuth was measured to the nearest degree.  

Fuel models can be quickly estimated by taking a photo series including detailed 

data for each fuel complex shown (Reeves, 1988).  Six digital photographs were taken 

from each plot center, with two photos taken from a general view and four photos taken 

facing north, south, east, and west directions.  Fig. 3.4 (a) represents the location of Plot 

#8 in the study area and fig. 3.4 (b) represents the digital photos that are taken from the 

plot center facing north, south, east, and west.  These photos were then evaluated to 

assess fuel models (Reeves, 1988, and Anderson, 1982). 

 

           

                                (a)                                                               (b) 

        Fig. 3.4. (a) Location of Plot #8 in the study area shown on the QuickBird image, (b) digital 

photos of Plot #8. 
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Each plot’s fuel model type was determined by specialists from Texas Forest 

Service personnel involved with fire behavior and mitigation efforts.  Each of the four 

photographs available for each plot as well as field inventory data were analyzed to 

determine fuel models.  A total of seven fuel models are available in our study area:  

Fuel model 1, Fuel model 2, Fuel model 4, Fuel model 5, Fuel model 7, Fuel model 8, 

and Fuel model 9.  Table 3.1 represents the description of each fuel model type.   

 
 
 
Table 3.1 
Description of fuel models. 
 
Fuel 
Model  Typical Fuel Complex 

Grass and grass-dominated 
1 Short grass (foot) 
2 Timber (grass-understory) 
         Chapparral and shrub fields 
4 Chapparal (6 feet) 
5 Brush (2 feet) 
7 Southern rough 
            Timber litter 
8 Closed timber litter 
9 Hardwood litter 

 

Processing Approach 
 

The overall study steps to derive fuel maps are illustrated in Fig. 3.5. 
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LIDAR Data Multispectral Data
(QuickBird) In-Situ Data

Height Bin Approach Vegetation Height 
(CHM)

Data Fusion Approach

LIDAR Derived Stack Principal Component 
Analysis

Minimum Noise 
Fraction

Supervised Image 
Classification

Fuel Model Maps

Filtering-Majority 
Analysis

Accuracy Assessment

                                            

Height Bins Approach 
 
  The height bin approach was used to generate LIDAR multiband data from 

scanning data.  The height bins approach makes use of the entire LIDAR point cloud.  

LIDAR bins were created by counting the occurrence number of LIDAR points within 

Fig. 3.5. The flowchart of processing approach. 
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each volume unit and normalizing by the total number of points.  The percentage of 

LIDAR hits can be obtained for any height interval.  Fig. 3.6(a) represents 3D 

distribution of laser hits of Plot 9, Fig.3. 6(b) shows the zoom in view of Plot 9, and Fig. 

3.6(c) represents the digital photograph that was taken from the area.  

 

 

          

                                (a)                         (b)                             (c) 

Fig. 3.6. (a) The 3D of laser hits of Plot 9, (b) zoom in view of Plot 9, and (c) the 

digital photograph from the area. 

 

A total of eleven LIDAR height bins were obtained and Fig. 3.7 illustrates the 

output of this process.  The first five height bins are generated for 0.5 m height intervals 

to afford a better characterization of vegetation that defines surface fuels. The upper bins 

are spaced at 3 m and 5 m, band 6 to 10. The last bin is generated from laser hits above 

30 m.   
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   (a)  (b)     (c)        (d)        (e) 

              

  (f)  (g)      (h)        (i)           (j)          (k) 

         Fig. 3.7. Overall view of the eleven Height Bins. (a) Bin 1: 0-0.5 m, (b)Bin 2: 0.5-1.0 m, (c) 

Bin 3: 1.0-1.5 m, (d) Bin 4: 1.5-2.0 m, (e) Bin 5: 2.0-2.5 m, (f) Bin 6: 2.5-5.0 m, (g) Bin 7: 5.0-

10.0 m, (h) Bin 8: 10.0-15.0 m, (i) Bin 9: 15.0-20.0 m, (j) Bin 10: 20.0-25.0 m, (k) Bin 11: 

>30.0 m.                     

 

Data Fusion Approach 
 

Data fusion deals with association, correlation, and combination of information 

and data from one or many sources (Llinas, 2002).  In this study, three different data 

fusion approaches were used: LIDAR-multispectral stack, principal component analysis, 

and minimum noise fraction (MNF).  A new image, LIDAR-QuickBird stack image of 

ten bands, was created by stacking the four bands of the QuickBird image with four 
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LIDAR height bins, one band from the canopy cover model, and one band from the 

canopy cover variance and the resolution of our data is 2.5 m x 2.5 m. Principal 

Component Analysis (PCA) is a helpful statistical technique that is used to produce 

uncorrelated output bands, to segregate noise components, and to reduce the 

dimensionality of data sets (Jensen, 2005).  The MNF transform is used to determine the 

inherent dimensionality of image data, to segregate noise in the data, and to reduce the 

computational requirements for subsequent processing (Boardman and Kruse, 1994).  

The MNF method is similar to PCA that has been used for a long time in multispectral 

image processing.  We investigated both principal components and minimum noise 

fraction to create new fused images. We then applied supervised image classification on 

the new images, examined its effect for improving overall classification accuracy, and 

finally compared results.  The reason we used MNF and PCA methods is to reduce the 

noise, produce uncorrelated output bands, and to reduce the dimensionality of the 

dataset. 

LIDAR-derived Stack 
 

 By using ENVI 4.2 (Research Systems, Inc.) we built a new multiband image.  

This image includes a total of 10 bands and will be subsequently referred to as the 

LIDAR-QuickBird Stack.  As is shown in Fig. 3.8, the first four bands are taken from 

the Quickbird image, the fifth band is LIDAR derived canopy cover, sixth, seventh, 

eighth, and ninth bands are obtained from the first four LIDAR Height Bins (0-0.5, 0.5-

1.0, 1.0-1.5, 1.5-2.0 meters), and the last band is obtained from canopy height model 

variance.  We used only the first four LIDAR bins by assuming they characterize best 
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the vertical structure of surface fuels within a 2m vertical canopy space adjacent to the 

ground.   

 

 

Fig. 3.8. The LIDAR-QuickBird stack image 

 

 

Principal Component Analysis (PCA)  
  

PCA was applied to the LIDAR-QuickBird stack image, which has ten bands.  

We used the first five of the ten PCs for our subsequent image classification. Fig. 3.9 

illustrates the first five PCs.  The PCA transformation is based on the variance and 

covariance of the data set.  
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                          PC 1  PC 2  PC 3     PC 4                    PC 5 

Fig. 3.9. First five PC images. 

 

 

 The variance is a measure of the scatter or spread within one variable of the data 

set, and the covariance is a measure of the scatter between two variables of a data set 

(Smith, 2002).  Eigenvalues, variance, and eigenvector were extracted for each PC.  

Table 3.2 represents the percentage of total variance, eigenvalues, and cumulative 

variance explained by each principal component.  The first principal component 

accounts for 88.97% of variance in the entire LIDAR and multispectral dataset.  In 

addition, the first five components that we used for image classification account for 

approximately 99 percent of the total variance.  It can be concluded that the first five 

principal components can replace the original ten bands of the LIDAR-QuickBird stack 

image, while reducing the size of the data set, redundancy, and noise.   
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Table 3.2 
Calculations of Eigenvalues, percentage of total variance and cumulative variance 
for each PC. 
 
 
 
 
 

 

 

 

 

Minimum Noise Fraction (MNF) 
 

MNF was applied to the LIDAR-QuickBird stack image that has ten bands.  

MNF determines the dimensionality of image data, separates noise in the data, and 

reduces the computational requirements for processing (Boardman and Kruse, 1994). 

The MNF transform has two Principal components transformations (Green et al. 1988). 

The first transformation is based on an estimated noise covariance matrix. This 

transformation rescales and decorrelates any noise in the data. Results obtained from this 

step in transformed data in which the noise has unit variance and no band-to-band 

correlations.  Principal components transformation is the second step that creates new 

bands containing the majority of the information.  By examination of the eigenvalues, 

the inherent dimensionality of an image can be determined (ENVI, 2003). Since PCA 

transformation maximizes the variance, we applied MNF to our data. Instead of 

maximizing the variance, we can use MNF to maximize the signal to noise ratio (SNR) 

PCs Eigenvalue 
% of total 
Variance Cumulative 

PC1 873676.7 88.97 88.97 
PC2 53848.92 5.48 94.46 
PC3 31214.62 3.17 97.63 
PC4 7711.736 0.78 98.42 
PC5 6495.253 0.66 99.08 
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(Canty, M.J,70-71, 2006). Six of the ten MNF bands were stacked, and each band is 

shown in Fig. 3.10.  

 

            

MNF 1        MNF 2             MNF 3           MNF 4            MNF 5           MNF 6          

Fig. 3.10. MNF images. 

 

Eigenvalues, percentage of variance, and cumulative variance were calculated for 

each MNF band as is shown in Table 3.3.  The table shows that the first six MNF bands 

account for approximately 97 percent of the total variance.  As such, we decided to use 

the first six components of the MNF band transformed image for our subsequent 

processing. 

 

Table 3.3 
Calculations of Eigenvalues, percentage of total variance and cumulative variance for each 
MNF. 
 
MNF Eigenvlaue % of total VAR Cumulative 
MNF1 183.95 83.33 83.33
MNF2 17.14 7.76 91.1
MNF3 5.33 2.41 93.52
MNF4 4.01 1.81 95.34
MNF5 3.02 1.36 96.71
MNF6 2.01 0.91 97.62
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Image Processing 
 

The first step in undertaking a supervised classification is to define the areas that 

will be used as training sites for each fuel model class.  Seven initial classes were 

considered and classification accuracy was evaluated using confusion matrix and K-hat 

statistics. The Region of interest (ROI) actually corresponds to our field plots. A plot of 

11-m radius covers approximately 80 pixels, given a 2.5 m spatial resolution for our 

data.  Thus, the 80 pixel-size resulted from collecting a circular shaped ROI over the 

field plot. A total of twenty-three polygons were selected which results in a total of 1840 

pixels for each of the QuickBird image, LIDAR-QuickBird stack image, principal 

component image, and minimum noise fraction image.  Then, ROI separability reports, 

which calculate the spectral separability between chosen ROI pairs for a given input file 

(Jensen, 2005), have been computed for each data set.  The same ROIs chosen over the 

LIDAR-QuickBird stack image were used on the stack of first five PCs and stack of first 

six MNF component images.   

Supervised image classification was performed using parametric decision rules, 

such as the Maximum Likelihood and the Mahalanobis Distance decision rules with the 

multispectral QuickBird image, the LIDAR-QuickBird stack image, the principal  
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component image, and the minimum noise fraction image.  Image classification results 

in a per pixel characterization of fuels. Since we evaluated fuel models on a per plot 

basis, we applied a majority filter to the classified image using a 7x7 window size.  We 

assessed the accuracy of this final map of fuel models for each data set.  The Kappa 

statistic (Khat) derived for each classification verifies if classification results are precise 

(Lillesand and Kiefer, 1994, Jensen, 1996, and Congalton and Green, 1999).     

Results and Discussion  
 
 The results of four classification methods and classification accuracies were 

assessed.  Among all the supervised image classifications that we applied to our images, 

Maximum Likelihood yielded the best results for the multispectral QuickBird image 

with 76.52% overall accuracy and 0.68 kappa coefficient.  Mahalanobis Distance yielded 

the best results for the LIDAR-QuickBird stack image with 87.17% overall accuracy and 

0.83 Kappa Coefficient.  Fig. 3.11(a) represents the result of multispectral QuickBird 

image classification; Fig. 3.11(b) illustrates the result of the LIDAR-QuickBird stack 

image.   
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                  (a)                            (b)  
 

                           
                    (c)                          (d) 
         Fig. 3.11. (a) The classification result of multispectral QuickBird image, (b) the 

classification result of data fusion stack of LIDAR and multispectral imagery, (c) 

the classification result of PC stack image, (d) the classification result of MNF-fused 

stack image, and (e) legend for all classifications.  

 

 

With the PC image, the Mahalanobis Distance classifier provided the best results. 

The accuracy assessment was 62.44% and the Kappa Coefficient was 0.53.  Compared 

to the accuracy of the multispectral QuickBird and LIDAR-QuickBird stack images, the 

F-M # 1 Grass  
F-M # 2 Grass  
F-M # 4 Brush  
F-M # 5 Brush  
F-M # 7 Brush  
F-M # 8 Timber 
F-M # 9 Timber 

 (e) Legend for all classifications 
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PC stack image was less accurate.  Fig. 3.11(c) represents the output of the PC stack 

image.  

As for the MNF image, the Mahalanobis Distance decision rules classification 

yielded the best results of all the supervised image classification decision rules with an 

accuracy assessment of 90.10% and with a Kappa Coefficient of 0.86 for a new MNF-

fused stack image.  Fig. 3.11(d) illustrates the output of this classification process and 

Table 3.4 shows a comparison of results for all supervised image classifications.  

Compared to the multispectral QuickBird image, LIDAR-QuickBird stack, and PC stack 

images accuracy, MNF provided the best result by having the highest accuracy.  

 

Table 3.4  
Comparison of results for all supervised image classifications.  
 

 Overall Accuracy Kappa Coefficient 

Multispectral QuickBird Image 76.52 % 0.68 

LIDAR-QuickBird Stack Image 87.17 % 0.83 

PC stack image 62.44 % 0.53 

MNF stack image 90.10 % 0.86 

 

 

Conclusions are given in Chapter V. 
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CHAPTER IV 

USING LIDAR-DERIVED FUEL MAPS WITH FARSITE FOR FIRE 

BEHAVIOR MODELING 

Introduction 
 

FARSITE is based on spatial data, and thus it is a powerful tool for the fire 

manager. It also has the ability to simulate spatial and temporal changes into the fire 

model. FARSITE is specially designed for forest fire modeling. It allows a user to 

interactively specify the time, duration, and locations of a multiple ignition fire 

simulation (Finney, 1995).  

Fuel model maps, obtained from the previous chapter, were used as inputs for 

FARSITE simulation software in this chapter. We applied supervised image 

classification to determine which classifier is more efficient and useful for two different 

fuel model maps. These fuel model maps include a total of seven fuel models. The first 

fuel model map was obtained by classifying only a high-resolution QuickBird satellite 

image and the second one was obtained by classifying a LIDAR and QuickBird fused 

data set. The results from Chapter III show that LIDAR improves the accuracy of fuel 

mapping by at least 13.5%. 

In order to run FARSITE, spatial data derived from GIS (Geographic 

Information Systems) and/or remote sensing are required and should be imported into 

the program. Airborne LIDAR systems can assist in providing data for the FARSITE 

software (Chuvieco, 1997).  These data layers must be reliable for all lands and 
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ecosystems (Keane et al., 2000). The consistency and accuracy of the input data layers 

are very important for realistic predictions of fire growth (Keane et al., 1998, Finney 

1998). The fuel model map is the key input for the simulation model. Many fire 

managers do not have the fuel maps needed to run the FARSITE model for their area. 

Vegetation layers and databases should quantify fuel information at a high level of detail 

or resolution for FARSITE to work well, but this is not the case for most existing 

vegetation layers and databases (Keane, 2000).   

The main objective of this chapter is to model fire behavior using FARSITE and 

investigate differences in modeling outputs using fuel model maps, which differ in 

accuracy, in east Texas.   

Materials and Methods 
 

Two different fuel model maps obtained from Chapter III were used to see the 

differences in fire growth with fuel model maps of different accuracies (see Fig. 4.1(a) 

and (b)).     



 32

            

       (a)       (b) 
 

Fig. 4.1. (a) The fuel map obtained by classifying a LIDAR and QuickBird fused 

data set, (b) the fuel model map obtained by classifying a QuickBird image.  

 

Data    
  

FARSITE version 4.1 was used in this study. This software requires eight data 

layers including Digital Elevation Model (DEM), slope, aspect, canopy cover, fuel 

models map, weather, wind, and fuel moisture for surface fire simulations (Finney, 

1995).  Two different input data sets were used in this study to generate real-time fire 

simulation outputs.  

Dataset with LIDAR-derived Fuel Map   
 

We developed all the spatial data layers, which are required by FARSITE.  The 

first fuel model map at 2.5 m resolution was derived from LIDAR and is shown in Fig. 
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4.1(a).  Based on Chapter III’s results, a LIDAR-QuickBird stack image of ten bands 

was created by stacking the four bands of the QuickBird image with four LIDAR height 

bins, one band from the canopy cover model, and one band from the canopy cover 

variance (see fig. 3.8.). In addition, the height bin approach was used to generate LIDAR 

multiband data from scanning data (Popescu and Zhao, in review). LIDAR bins were 

created by counting the occurrence of LIDAR points within each volume unit and 

normalizing by the total number of points (Popescu and Zhao, in review.  A 

Mahalonobis distance algorithm in ENVI (ITT Visual Systems, Inc.), image processing 

software, was used to classify the imagery.  A total of seven fuel models are available in 

our study area: grass fuel models 1 and 2, brush fuel model 4, 5, and 7, and timber litter 

fuel model 8 and 9.   

Canopy cover, the horizontal percentage of area covered by tree crowns at the 

stand level, was found using methods developed by Griffin et al. (in review). Their study 

developed the use of airborne laser methods to evaluate various canopy parameters such 

as canopy cover and Leaf Area Index (LAI). To summarize, canopy cover is estimated 

by using LIDAR-derived height bins and calculating the percentage of laser canopy hits 

2m above ground.   

DEM was also obtained from LIDAR.  By using ENVI software, slope and 

aspect were derived from the DEM.  Weather and wind data were downloaded from the 

National Fire and Aviation Managament Web Applications (http://www.fs.fed.us/fire/ 

planning/nist/wims_web_userguide.htm).  
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Dataset with QuickBird-derived Fuel Map  

The second map, shown in Fig. 4.1(b), was derived from QuickBird data at 2.5 m 

resolution.  Based on the report from Chapter III, a maximum likelihood image 

classification was used to classify the multispectral image.  This fuel model map also 

includes seven fuel models.   

The DEM was downloaded from the National Fire and Aviation Managament 

Web Applications (http://www.fs.fed.us/fire/planning/nist/wims_web_userguide.htm). at 

30 meter resolutions, and then converted to 2.5 meter resolution.  The slope and aspect 

data were derived from the DEM, using ENVI.  Weather and wind data were also 

downloaded from the National Fire and Aviation Managament Web Applications 

(http://www.fs.fed.us/fire/planning/nist/wims_web_userguide.htm). Canopy cover and 

fuel moisture were developed based on field data.  A total of 62 plots including a total of 

1005 trees were measured in the study area (see Chapter III for more detailed 

information).  

Fire Simulation 
 

FARSITE requires data input in ASCII file format. The reason for using ASCII 

text files is that these files can be viewed or created with any text editor or word 

processor (Finney, 1995). Since all the data were in the Band Sequential (BSQ) file 

format, the data were saved in ERDAS (Leica Atlanta, Georgia) image processing 

software image file format then converted to ARC GRID format for incorporation into 

the development and implementation of the fire behavior model.  
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A total of 62 plots were measured in the study area and plot center locations were 

used as ignition points with FARSITE simulations.  FARSITE was run 124 times, 62 

times on the dataset with the MNF-fused stack fuel model map and 62 times on the 

dataset with the QuickBird-derived fuel map.  Fig. 4.2 shows a screenshot from the 

FARSITE simulation.  The duration of each simulation was 72 hours beginning at 8:00 

AM and ending at 8:00 AM three days later.  Weather and wind data, which occurred on 

January 14, were used for all runs of FARSITE.   

 

 
 

Fig. 4.2. Screenshot from the fire simulation. 
 

Processing Approach 
 

The overall study steps are shown in Figure 4.3. 
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Fig. 4.3. Flow diagram illustrating the general procedure used to create the FARSITE inputs for both datasets 
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Results and Discussion 
  

Different accuracy maps provided different results depending on fuel model on 

the study area, which were expected. However, the difference is much greater than we 

expected.  The average burn area time for fires in Texas is between 3-5 days (Mark 

Stanford, personal communication, October, 2006). We have decided to run the 

simulation for 72 hours. The comparisons of the burned area results for 72 hours are 

illustrated in Fig. 4.4.  Fig. 4.5 demonstrates the comparison of the fire perimeters 

between the two maps for 72 hours. Based upon the fire simulation results, fuel model 

map derived from LIDAR shows larger fire growth areas than the other fuel model map 

derived from QuickBird imagery.   
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Fig. 4.4. Comparison of burned areas for both fuel model maps. 
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Comparision of Fire Perimeters
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Fig. 4.5. Comparison of fire perimeter results for both fuel model maps. 
  

 

 

The estimated average fire growth areas from LIDAR-derived fuel model map 

and QuickBird derived fuel model map were approximately 174.261 ha (430.593 ac) and 

106.447 ha (263.026 ac), respectively.  Apparently, there is a considerable difference 

between the two outputs.  There are some extreme situations in our results. For instants, 

while 285.17 ha were burned on LIDAR-derived fuel model map on second run, 56.92 

ha were burned on QuickBird-derived fuel model map.  On the forty-third run, the 

burned area is 129.667 ha on the LIDAR-derived fuel model map and 13.723 ha on the 

QuickBird-derived fuel model map. In this case, LIDAR-derived fuel model map shows 

almost ten times larger burned area than the QuickBird-derived fuel model map.  The 

reason for the difference is because maps show different fuel models on the second 



 

 

39

ignition points, Fuel Model #2, grass group, on LIDAR-derived fuel model map and 

Fuel Model #8, timber litter group, on QuickBird-derived fuel model map.  The same 

situation can be seen in Fig. 4.6 for fire perimeters for both models. 

 Cost of fire is one of the biggest issues. Wildfires can have significant local 

economic effects both long-term and short-term. Donovan and Rideout (2003) used the 

Cost plus Net Value Change (C+NVC) model which minimizes the cost of wildfire by 

minimizing the sum of presuppression (expenditures on wildfire management prior to a 

fire season), suppression (direct wildfire suppression expenditures during a fire season), 

and NVC (net wildfire damages). They assume that the cost of fire per a hectare is $100. 

Resources, such as crews, dozer, engine, tractor, cost approximately $3,800.  The sum of 

all costs and damages is minimized. In our case, if we take a look at the results, average 

burned area is 174.26 ha on LIDAR-derived fuel model map. This burned area will cost 

around $87,826 by summing “$3800+$66600+$17426” based on Donovan and 

Rideout’s calculations. In this case, the NVC is $17,426 which was calculated 

multiplying the total burned area with 100. Table 4.1 shows the fire fighting resources 

needed for a 72 hour burn time based on the LIDAR-derived fuel model map.  However, 

the average burned area is 106.44 ha on QuickBird-derived fuel model map and the cost 

of fire is $59,744. Since the average burned area on the QuickBird fuel model map is 

smaller than that on the LIDAR-derived fuel model map, we created another fire fighting 

resources table (Table 4.2) for a 72 hour burn based on the QuickBird-derived fuel 

model map, using fewer fire fighting resources.  Apparently, there is a significant 

difference between these two outputs.   



 

 

40

Table 4.1 
Fire fighting resource characteristics for LIDAR-derived fuel model map. 
 
 
 
 
 
 
 
 

 

 

 

Table 4.2 
Fire fighting resource characteristics for QuickBird-derived fuel model map. 
 

 

 

 

 

 

Conclusions are given in Chapter V. 

 

           

 

 

 

 Resource (equipment) Costs 
Resource Pre Cost/hr Cost / 72 hrs 

Dozer $300 175 $12600
Tractor plow $500 150 $10800
Type I crew $500 125 $9000
Type II crew $600 175 $12600
Engine#1 $400 75 $5400
Engine#2 $900 100 $7200
Engine#3 $600 125 $9000
TOTAL $3800   $66600

Resource (equipment) Costs 
Resource Pre Cost/hr Cost / 72 hrs

Dozer 300 175 12600
Tractor plow 500 150 10800
Type I crew 500 125 9000
Engine#1 400 75 5400
Engine#2 600 125 9000
TOTAL 2300 46800
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CHAPTER V 

CONCLUSIONS 
 

Airborne LIDAR systems can be used for fire detection, location, and mapping 

(Justice et al., 1993), for burned area assessment, and, important to this study, for fuel 

mapping (Keane et al., 1998). Chapter III’s results indicate that LIDAR can be used to 

generate accurate estimates of surface fuels parameters efficiently and accurately over 

extensive areas of forests.  Innovative methods for fusing airborne LIDAR and satellite 

imagery, QuickBird, were developed, which resulted in increased accuracy for 

classification of surface fuels.  The parametric methods Maximum Likelihood and 

Mahalanobis Distance supervised image classifications were effective in this study.  The 

method that we developed by using LIDAR height bins fused with multispectral data has 

great potential for becoming a standard approach for mapping fuels with LIDAR and 

multispectral imagery. PCA did not provide improved results, with an accuracy of 62.44.  

Compared to the multispectral Quickbird image classification, the MNF-fused stack 

image, which has LIDAR-derived components, increased the overall accuracy by 

13.58%. The data fusion approach, combining LIDAR and multispectral QuickBird 

imagery, improves the overall accuracy of image classification of fuels.  

Results from the chapter IV indicate the influence of a more accurate fuel map on 

modeling fire behavior and assessing fire risk.  According to results, LIDAR derived 

products were able to assess fuel models with high accuracy and it provided different 

information about characteristics of fire perimeters and fire growth areas.  For fire 

mitigation purpose, we need to know both fire perimeters and fire growth areas.  Fire 
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growth area results are helpful to determine the cost of fire. Fire perimeter results are 

important because they help in determining an optimal mix of fire fighting resources 

needed to fight fires such as dozer, tractor, crews, helicopter, engines, hourly cost of 

operating the resources, arrival time etc.  Using two different datasets, one derived from 

LIDAR and the other one derived from QuickBird imagery and different data sources, 

provided significantly different outputs. The differences could be attributed to different 

fuel model map, canopy cover, DEM, slope, and aspect.   

The cost of our LIDAR data were around $32,645 and the QuickBird data were   

obtained for an approximate cost of $3,890 for the whole study area, 4741.83 ha.  The 

cost of first fuel model map which includes LIDAR and QuickBird data is $36,535.  The 

cost of second fuel model map which includes only QuickBird data is $3,890. Based on 

this, LIDAR-derived fuel model map is more expensive than QuickBird-derived fuel 

models map. However, if we look at the results LIDAR data will save us thousands of 

dollars.  The cost of LIDAR data for whole study area is a lot less than the cost of 

average burned areas.    

Accurate estimation of fire growth area and the direction of fire growth is 

extremely important information for the fire management process. Knowing this 

essential information will avoid any health risk for local people who live in that vicinity.  

This information will be more useful if it is used by fire management authorities. In case 

of fire, if the fire managers use the QuickBird-derived fuel model map they may not be 

able to send enough sources to fight with the fire and this situation may cause more 

serious problems.  Small errors in fuel model parameters may not be significant for small 
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study area; however for large study areas, small errors could accumulate over the 

duration of the fire simulation leading to large errors in predicted fire sizes.  This study 

will assist fire managers with the mitigation of the harmful effects of wildfire.  Also, it 

gives the power of sound, accurate, and efficient fire behavior modeling technology to 

forest fire fighters.  

Resulting remote sensing methods and mapping products proved to have the 

potential for driving changes in forest resource management practices related to 

mitigating fire hazard that threatens the public, human lives, and environmental health in 

Texas and nationwide. Our results could significantly impact forest policy and forest 

resource management. 
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