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ABSTRACT 

 

Cognitive Analysis of Students’ Errors and Misconceptions in Variables, 

Equations, and Functions. (December 2006) 

Xiaobao Li, Dipl., Chuzhou Teacher College; 
          M.S., Nanjing Normal University 

 
Co-Chairs of Advisory Committee: Dr. Gerald Kulm 

                                                      Dr. Yeping Li 
 

 The fundamental goal of this study is to explore why so many students have 

difficulty learning mathematics. To achieve this goal, this study focuses on why so many 

students keep making the same errors over a long period of time. To explore such issues, 

three basic algebra concepts - variable, equation, and function – are used to analyze 

students’ errors, possible buggy algorithms, and the conceptual basis of these errors: 

misconceptions. Through the research on these three basic concepts, it is expected that a 

more general principle of understanding and the corresponding learning difficulties can 

be illustrated by the case studies.  

           Although students’ errors varied to a great extent, certain types of errors related to 

students’ misconceptions occurred frequently and repeatedly after one year of additional 

instruction. Thus, it is possible to identify students’ misconceptions through working on 

students’ systematic errors. The causes of students’ robust misconceptions were explored 

by comparing high-achieving and low-achieving students’ understanding of these three 

concepts at the object (structural) or process (operational) levels. In addition, high-
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achieving students were found to prefer using object (structural) thinking to solve 

problems even if the problems could be solved through both algebra and arithmetic 

approaches. It was also found that the relationship between students’ misconception and 

object-process thinking explained why some misconceptions were particularly difficult 

to change. Students’ understanding of concepts at either of two stages (process and 

object) interacted with either of two aspects (correct conception and misconception). 

When students had understood a concept as a process with misconception, such 

misconception was particularly hard to change. 

          In addition, other concerns, such as rethinking the misconception of the “equal 

sign,” the influence of prior experience on students’ learning, misconceptions and 

recycling curriculum, and developing teachers’ initial subject knowledge were also 

discussed. The findings of this study demonstrated that the fundamental reason of 

misconception of “equal sign” was the misunderstanding of either side of equation as a 

process rather than as an object. Due to the existence of robust misconceptions as stated 

in this study, the use of recycling curriculum may have negative effect on students’ 

understanding of mathematics.  
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1. INTRODUCTION 

 

1.1 The Evolution of Research Questions 

 When I was a middle school mathematics teacher in China, many students in my 

class struggled with learning mathematics. They had nearly identical family backgrounds, 

and they an adequate time learning mathematics. My teaching quality was good by any 

reasonable standard, in terms of evaluations and feedback from my students, colleagues, 

and experts outside the school. However, after one semester, one year, or even after two 

years, these low-achieving students made essentially no improvement, in spite of the fact 

that I paid special attention to their learning. They were still not good at solving even 

simple problems or understanding certain fundamental concepts. When I discussed this 

phenomenon with my colleagues, I found it was a common situation. The explanations 

from different teachers were surprisingly consistent. One explanation was that some 

students were born with a certain innate ability in math while others lacked such innate 

abilities. Another explanation was that the problem results from the abstractness of 

mathematics. I was not satisfied with such responses because they only described 

phenomena through introducing more complicated concepts and myths to be answered. 

For example, if abstractness was the cause of learning difficulties, how did the 

abstractness cause the difficulties?  

 

_____________________ 
This dissertation follows the style of Journal for Research in Mathematics Education. 
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 Several years later, I discovered another explanation during my graduate study in 

mathematics education in China. That is, those low-achieving students only memorized a 

few facts, formulas, and algorithms, without deep understanding of them. The lack of 

understanding prevented them from applying mathematics knowledge to new contexts in 

a flexible way. This explanation was better than the previous ones but still led to other 

issues. For example, what did “understanding mathematics” mean? I knew what 

memorizing a formula meant; that is, I could write it down without referring to any 

books or notes. However, how could I know whether I understood a formula?  

When I continued my study and research in the U.S., I read more articles and 

found that I was not alone in my concerns. I also realized that the more important 

problem was how to improve mathematics understanding. Hibert and Carpenter (1992) 

define understanding as connections. So understanding a new concept means to 

construct a relationship between the new concept and the old conceptual network. Hibert 

and Carpenter also proposed  ways to facilitate understanding through: reflecting and 

communicating, working on proper problems, or communicating with partners. The 

following comments about understanding clearly show the importance and difficulties of 

promoting students’ understanding:  

One of the most widely accepted ideas within the mathematics education 

community is the idea that students should understand mathematics. The goal of 

many research and implementation efforts in mathematics education has been to 

promote learning with understanding. But achieving this goal has been like 

searching for the Holy Grail. There is a persistent belief in the merits of the goal, 
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but designing school learning environments that successfully promote 

understanding has been difficult (p. 65). 

         In past studies about mathematics understanding, the direct approach was often 

used. That is, researchers mainly focused on what understanding means and how to 

improve it. If researchers can know and describe the mechanism of students’ 

understanding in a detailed and characterized way, for example, like knowing how to 

make a sandwich, it will be extremely easy for teachers and researchers to design 

effective instruction to improve students’ understanding, just like making a sandwich 

using a recipe. However, many phenomena in this world are extremely complicated and 

thus hard to explain based on current tools and knowledge; it is even harder to explore 

human learning and understanding issues compared to other issues, because we need to 

use the brain to explore “brain activities.”  Educational researchers are very careful to 

select important topics, whose solutions can contribute to the field. However, another 

standard for selecting a topic is equally important; that is, it is possible to solve the 

chosen topic using current tools and knowledge (Schoenfeld, 1999).  

 Based on the above considerations, this study narrows the topics little by little 

(see Figure 1.1). In a mathematics proof, it is sometimes impossible to prove a problem 

directly; however, it is relatively easy to use “proof by contradiction.” If the reasons that 

students misunderstand mathematics concepts can be well understood, it should be 

easiedr to improve students’ understanding. Students’ errors are the “symptom” of 

misunderstanding. Among many different types of errors, systematic errors occur to 

many students over a long time period and it is relatively easy and thus possible to 
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research with current knowledge and tools. The cause of systematic errors may relate to 

student’ procedure knowledge, conceptual knowledge, or links between these two types 

of knowledge. In this study, I will focus primarily  on systematic errors due to flawed 

conceptual knowledge (misconceptions). 

 

                                                                              

                                                                                         

 

 

 

                                         

 

 

 

 

 

 
          
                      Figure 1.1. Flow chart for the evolution of the research topic.  

                        

                                                                         

1.2 Rationality and Feasibility of the Dissertation 

 Mathematics is important for both individual and country. “For students, it opens  

Understanding 
robust 

misconceptions 
Conceptual 

based 
systematic 

errors 

Why 
students keep 
making same 

errors? 

Why students 
misunderstand? 

How to improve 
understanding 
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doors to careers. For citizens, it enables informed decisions, for nations, it provides 

knowledge to compete in a technological economy” (National Research Council [NRC], 

1989, p. 1). However, the NRC reported little good news of mathematics education in 

U.S. in 1989: three of every four Americans gave up studying mathematics before 

completing career or job prerequisites. Most students leave school without sufficient 

preparation in mathematics to cope with the demands of the current job or for further 

academic advancement. Efforts to improve students’ learning has continued through 

designing high quality curriculum or improving teaching quality, However, as of 2003, 

the situation of students’ inadequate mathematics preparation had not improved. 

“Despite massive effort, relatively little is accomplished by remediation programs. No 

one—not educators, mathematicians, or researchers--knows how to reverse a consistent 

early pattern of low achievement and failure” (Ball, 2003, p.13).  Although the 

improvement of mathematics learning is an extremely complex activity which requires 

coordinated efforts from multiple resources, good research support is particularly 

important. For example, one main reason for giving up on learning mathematics is 

learning difficulty. The use of the “equal sign” is a basic topic in elementary 

mathematics; nevertheless, researchers found that even college students had trouble 

understanding and using the equal sign (Barcellos, 2005). Thus, it is understandable why 

so many students give up learning mathematics if they keep making mistakes. However, 

there is little research about why students keep making such errors, even with “good” 

teaching in term of reasonable standards. Why are students’ misconceptions of such a 
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“simple” concept so robust, or resistant to change, over so many years? Is it because of 

characteristics of mathematics? As Poincare (1952, also cited by Sfard, 1991) stated: 

 One…. fact astonishes us, or rather would astonish us if we were not too much 

accustomed to it. How does it happen that there are people who do not 

understand mathematics? If the science invokes only the rules of logic, those 

accepted by all well-formed minds …. how does it happen that there are so many 

people who are entirely impervious to it? (Poincare, 1952, p.49) 

  As stated at the beginning, the research on students’ systematic errors can 

provide a good lens to see why students have difficulty learning mathematics. 

Examining students’ wrong answers provides one way to demonstrate students’ 

understanding of a concept. On the other hand, students’ correct answers may not 

necessarily indicate a good conceptual understanding of related knowledge because 

students could have solved the problem correctly by just memorizing procedures or 

definitions without true understanding. Besides, students’ correct answers are generally 

uniform, which does not provide an appropriate research setting. “Research on students’ 

errors makes it possible to identify specific deficits in the way students’ knowledge is 

connected so that instruction can be designed to address the specific connections 

students lack or to point out why certain connections are inappropriate” (Hiebert & 

Carpenter, 1992, p. 89). 

 Past research on students’ errors regarding subtraction and addition has produced 

powerful results. For example, “buggy” theory (Brown & Burton, 1978) can predict 

about 50% of students’ errors even before students actually do the calculation (Resnick, 
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et al., 1989). Other studies (Chi, 2005; Slotta & Chi, 2006 ) in the science education field 

also provide necessary research methods and theoretical frameworks about robust 

misconceptions and conceptual change, which offer clues for researching errors and 

misconceptions in mathematics education.  

 

1.3 The Purpose of the Dissertation 

The final goal of this study is to explore why so many students fail to learn 

mathematics and why mathematics is so difficult for many students. In order to reach 

this goal, this study focuses on the nature of students’ learning basic concepts by 

analyzing their errors in solving well-designed problems used to assess those concepts. 

The causes of students’ errors are complicated; for example, students’ errors may be due 

to carelessness, no understanding at all, confusing different concepts or failing to 

transition from object-oriented thinking to process-oriented thinking. Thus, this study 

focuses on errors made frequently by many students over long periods of time; that is, 

why many students keep making the same errors despite “good teaching.”  

Resnick (1982) attributed students’ learning difficulties to concepts learning: 

“Difficulties in learning are often a result of failure to understand the concepts on which 

procedures are based” (p. 136).  In order to explore such fundamental issues, three basic 

algebra concepts: variable, equation, and function were chosen to analyze students’ 

errors, possible buggy algorithms, and the conceptual basis of these errors and buggy 

algorithms. Through focusing the research on these three fundamental concepts, it is 
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expected that more general principles of understanding and learning difficulties can be 

illustrated by these cases.  

This study examines two areas of inquiry. First, it recognizes differences between 

students’ procedural errors, bugs, and misconceptions in the domain of algebra. Then, 

students’ errors in solving problems related to variables, equations, and functions are 

reported and analyzed in detail.  

Second, this study investigates the conceptual basis of students’ errors. Past 

studies focused more on students’ errors caused by correctly using buggy algorithms or 

incorrectly selecting algorithms in elementary arithmetic (Brown & Burton, 1978; 

Brown & VanLehn, 1982) and in elementary algebra (Matz, 1982; Sleeman, 1982). 

There are not enough studies about where buggy algorithms originate.  

Compared to learning other subjects, students’ misconceptions about 

mathematics particularly affect further learning, due to the hierarchy of mathematics 

knowledge structure; therefore, it is necessary to change students’ early misconceptions, 

especially robust misconceptions. Thus, this study also explores why some 

misconceptions are particularly robust to change based on cognitive theory (Chi, 2005) 

and theory of nature of mathematics knowledge (Sfard, 1991, Sfard & Linchevski, 1994). 

Students’ strategies in solutions and predicate words in students’ verbal responses are 

coded to indicate whether students understand a concept as an object or a process (I will 

elaborate these two terms later). High and low level students’ ontological differences in 

understanding these concepts were compared to verify the existence of understanding of 

a concept as object or process.     
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1.4 Statement of the Problem 

 Even very basic mathematics concepts or operations, like whole number addition 

and subtraction, may involve extremely complicated cognitive processes. Because 

teachers are already very familiar with those basic concepts or operations, they tend to 

ignore or underestimate their complexity and thus take a naïve approach to teaching 

mathematics concepts or operations (Schoenfeld, 1985). In the mathematics educational 

field, research on students’ misconceptions is not well documented, especially compared 

with that of the science education field. Thus, in this study, three problems were 

investigated. First, past error analysis in the mathematics education field focused more 

on procedural analysis and less on misconception analysis. Although the analysis of 

procedural errors explains what and how students make errors in mathematics, it tells 

little about the origins of these bugs and procedural errors. Second, students’ errors and 

misconceptions about variable, equation, and function, which are fundamental concepts 

in the learning of algebra, especially lack of systematic research.  Finally, existing 

research on misconceptions in students’ mathematics learning pays little attention to why 

some misconceptions are particularly robust to change and to how they could be changed.  

 

1.5 Research Questions 

 Based on the Project Improving Mathematics Teacher Practice and Students 

Learning through Professional Development (IMTPSL) database, this study investigates 

the following questions: 
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1. What are students’ error patterns in solving problems related to variable, 

equation, and function during a pretest and posttest of algebra knowledge? What 

misconceptions of variable, equation and function underlie those errors?  

2. How do students change their understanding of variable, equation, and function 

after instruction? Are those misconceptions robust to change?  

3. What ontological differences are demonstrated by high and low ability students 

in solving problems related to concepts?  

 

1.6 Operational Definitions 

Concept (mathematics): A theoretical construct of a mathematics idea (Sfard, 1991). 

Conception (mathematics): The whole cluster of internal representations and   

associations evoked by the Concept, the subjective “universe of human 

knowledge” (Sfard, 1991). 

Misconception:  Misconceptions (1) are strongly held, stable cognitive structures; (2) 

 differ from expert conceptions; (3) affect in a fundamental sense how students 

 understand natural scientific explanations; and (4) must be overcome, avoided, or 

 eliminated for students to achieve expert understanding (Hammer, 1996, p. 99). 

Concept as object: A static structure, existing somewhere in space and time. It also  

means being able to recognize the idea “ at a glance” and to manipulate it as a 

whole, without going into details. It is also called structural conception, and is 

characterized as static, instantaneous, and integrative (Sfard, 1991, p.5). 

Concept as a process: A potential rather than actual entity, which comes into existence  
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upon request in a sequence of actions. It is also called operational conception and 

is characterized as dynamic, sequential, and detailed.  

Variable: A general purpose term in mathematics for an entity which takes various  

values in any particular context. The domain of the variable may be limited to a 

particular set of numbers or algebraic quantities (Schoenfeld & Arcavi, 1988, p. 

422).  

Equation: Used to model a change or situation.  

Ontological attribute: An attribute that a category member may  

plausibly have (Chi, 1997; Chi & Roscoe, 2002) but not characteristically nor 

necessarily have. An entity, such as a bit of glass, can be colored even though it 

is colorless (Sommers, 1971), whereas an event, such as a baseball game, cannot 

be colorless (Chi, 2005, p. 164).  

Low achieving student: Student whose total score is below ten percent during  

posttest. 

High achieving student: Student whose total score is above top ten percent during 

posttest. 

  

1.7 Significance of the Dissertation 

The knowledge of teaching mathematics has been emphasized and studied by 

many researchers. However, the knowledge of students’ learning of certain specific 

mathematics knowledge, such as variable, equation and function, is not well-documented.  

For example, variable is a fundamental concept and is especially important for students’ 
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transition from arithmetic to algebra, but few studies focus on it (Graham & Thomas, 

2000; Schoenfeld & Arcavi, 1988).  Without adequate knowledge about students’ 

learning of basic mathematics concepts or operations, the teacher may underestimate the 

complexity of the learning. For example, during students’ learning of variable, equation, 

and functions, especially at the middle school level, it is still not clear what errors and 

how often students tend to make them, where the errors are from, and how the errors 

could be remediated. Not being cognizant of students’ misconceptions in these concepts 

could hinder teachers in using proper strategies to help students.  As Brown and Burton 

(1978 ) pointed out “one of the greatest talents of teachers is their ability to synthesize an 

accurate ‘picture,’ or model, of a student’s misconceptions from the meager evidence 

inherent in his errors” (p.155-156). As a result, detailed information about students’ 

misconceptions in learning variable, equation, and function provided by this study can 

contribute to teachers’ classroom instruction.  

Students’ superficial understanding of important mathematics concepts prevents 

them from applying proper algorithms or strategies (Schoenfeld, 1986). Moreover, 

improper application of algorithms may reinforce students’ misconceptions (Woodward 

& Howard, 1994). Because the teaching strategies for correcting misconceptions and 

“buggy algorithms” are different, it is important and useful to distinguish between them. 

This study provides a method to distinguish misconceptions from “buggy algorithms” or 

errors. It is important to identify students’ misconception since “a student need no longer 

be evaluated solely on the number of errors appearing on his test, but rather on the 

fundamental misconceptions which he harbors” (Brown & Burton, 1978, p.156).  
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Learning issues were recognized by Schoenfeld (1999) as one of the six 

fundamental problems in the 21st century that need to be addressed for the education 

field. He pointed out, that “The central question here is: Is it possible to build robust 

theories of learning--theories that provide rigorous and detailed characterizations of how 

people come to understand things, and develop increased capacities to do the things they 

want or need to do?” (p.6). It is a challenging task for educational researchers since 

learning is a mental activity hidden from direct observation. By analyzing students’ 

errors regarding variable, equation, and function, this study may provide a general 

principle of learning and understanding. “Theoreticians have long recognized that 

important insights into the nature of cognitive skills and its acquisition can be gained by 

examining errors” (Payne & Squibb, 1990, p. 445).  
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2. REVIEW OF LITERATURE 

 

 Although there are many causes of students’ difficulties in learning mathematics, 

the lack of enough support from research fields for teaching and learning is an important 

one. If research could characterize students’ learning difficulties, it would be possible to 

design effective instructions to help students’ learning. The research on students’ errors 

and misconceptions is a way to provide such support for both teachers and students. As 

Booth (1988) pointed out, “one way of trying to find out what makes algebra difficult is 

to identify the kinds of errors students commonly make in algebra and then to investigate 

the reasons for these errors” (p. 20). In this section, I will review the literature from three 

aspects: (1) Students’ errors: the different interpretations of error resources are identified. 

In addition, errors, bugs, and misconceptions are also differentiated; (2) Conception 

research: the research on preconception, misconceptions, and conceptual change is 

reviewed to show the influence on students’ learning. The theories about why some 

misconceptions are particularly robust to change is also reviewed; (3) Misconceptions in 

mathematics: students’ errors in three algebra topics--variable, expression and function--

will be addressed. The research on students’ understanding of these three concepts at the 

object and process level are discussed.  

 

2.1 Research on Students’ Errors 

 This section begins by reviewing the most-used research method on errors, 

specifically, classifying students’ errors based on the steps of solving problems or the 
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sources of difficulties in solving problems.  After that, “buggy algorithm” theory is 

reviewed in explaining sources of errors.  This theory maintains that students correctly 

follow wrong algorithms, which is contrary to many teachers’ views that students 

wrongly follow an algorithm. Then, the review focuses on where the bugs originate, 

which is believed to relate to misconceptions or links between conceptual and procedural 

knowledge.  Finally, I compare and differentiate errors, bugs, and misconceptions in 

terms of past research. 

 

2.1.1 Categories of errors 

        One of the main methods used to analyze students’ errors is to classify them into 

certain categorizations based on an analysis of students’ behaviors. Through using a 

cognitive information-processing model and considering the specialties of mathematics, 

Radatz (1979) classified the errors in terms of (1) language difficulties. Mathematics is 

like a “foreign language” for students who need to know and understand mathematical 

concepts, symbols, and vocabulary. Misunderstanding the semantics of mathematics 

language may cause students’ errors at the beginning of problem solving; (2) difficulties 

in processing iconic and visual representation of mathematical knowledge; (3) 

deficiency in requisite skills, facts, and concepts; for example, students may forget or be 

unable to recall related information in solving problems; (4) incorrect associations or 

rigidity; that is, negative transfer caused by decoding and encoding information; and (5) 

application of irrelevant rules or strategies. Other researchers (Newman, 1977; Watson, 

1980) have also used the classifying method but based theirs on the model of problem 
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solving. Watson used Newman’s (1977) model of the sequence of steps in problem 

solving: reading and comprehension, transformation, process skills, and encoding, to 

identify students’ possible errors. He thought that students’ errors may be due to 

deficiency in one or several of the above steps. In order to verify those hypotheses about 

students’ errors, Watson designed both word and computation problems to compare 

errors made by two groups of students, with lesser and greater abilities. He found that 

most initial errors made by the more able group were at the stage of reading and 

comprehension. However, the less able group students made many more errors when 

applying and selecting mathematics processes. The above classification method was 

simply used to describe students’ errors, but lacked detailed analysis of why students 

were unable to perform well in some steps. For example, why did students not select 

correct mathematics processes or operations? What strategies effectively helped students 

make correct decisions? Why did students have special difficulty in understanding 

mathematics language?  

 Being aware of the shortcomings of classification methods, Ashlock (2002) not 

only categorized students’ errors in computation, geometry, and algebra, but also tried to 

attribute errors to overgeneralizing or overspecializing.  For example, given the equation, 

2y = 20 + y, some students may overgeneralize the equation as 23=20+3.  Clearly, those 

students applied the learned rules of arithmetic fields (old and familiar situations) to 

algebra fields (new and unfamiliar situations).  An example of overspecializing is that 

students may restrict the fraction addition or subtraction only to fractions with the same 

denominators. The overgeneralizing or overspecializing partly explains why students 
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make certain mistakes; however, the remaining problem is determining why students 

overgeneralize or overspecialize. Matz (1982) provided an explanation of why students 

tend to make misgeneralizations in high school algebra. He said, “errors are the results 

of reasonable, though unsuccessful, attempts to adapt previously acquired knowledge to 

new situation” (p. 25-26). For example, many students made such errors as ba + = a  

+ b . Matz maintained one of the causes was “linearity” which was “a way of working 

with a decomposable object by treating each of its parts independently” (p. 29). He 

thought it was human nature to treat most mathematics operations as “linearity” because 

their past experiences were compatible with the above hypothesis of “linearity.”   

 

2.1.2 Buggy algorithms 

In addition to attributing students’ errors to misgeneralization, other researchers 

have attributed them to buggy algorithms. What are bugs? Where do bugs originate? The 

following subsection reviews these questions. 

What is a bug? Some researchers have tried to explain and diagnose students’ 

errors in the domain of arithmetic through focusing on certain faulty algorithms (or bugs) 

frequently held by students. Their main assumption is that student’ errors are caused by 

following faulty algorithms rather than wrongly following a correct one or the lack of 

necessary knowledge (Brown & Burton, 1978; Young & O’Shea, 1981).Thus, a main 

way to analyze students’ errors is to identify students’ faulty algorithms. Brown and 

Burton (1978) found that students were very good at following certain procedures but 

they often followed wrong procedures. By analyzing students’ errors in subtraction and 
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addition, they referred to a computer term “bug” to describe students’ faulty algorthims. 

For example, students were found to have the following “buggy algorithms” during the 

subtraction process: (1) students subtract the smaller digit in each column from the larger 

digit without considering which is on top; (2) whenever the top digit in a column is 0, 

the student writes the bottom digit in the answer. Many similar bugs existed in the 

students’ solutions in whole addition and subtraction problems. VanLehn (1980) offered 

a detailed description about these bugs: 

Once we look beyond what kinds of exercises the student misses and look at the 

actual answers given, we find in many cases that these answers can be precisely 

predicated by computing the answers to the given problems using a procedure 

which is a small perturbation in the fine structure of the correct procedure. Such 

perturbations serve as a precise description of the errors. We call them “bugs” 

(p.7). 

Moreover, those bugs may interact with each other. In order to diagnosis students’ bugs 

in solving problems, Brown and Burton (1978) designed a computer program, “Buggy,” 

to simulate students’ behaviors. Many students’ errors could be predicted by “Buggy.”  

Attributing students’ errors to “bugs” and interactions between “bugs,” it is easier for 

teachers to predict students’ possible errors, thus assisting them helping students. This 

method makes great progress compared to classification methods for researching 

students’ errors.  

Where do bugs originate? “Bug” theory provides a good explanation of students’ 

errors in subtraction. However, it is more important to know where the bugs are from 
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than to know how to describe errors by using bugs (Payne & Squibb, 1990; Resnick & 

Omanson, 1987). “We know they (bugs) are inventions by children-----because no one 

teaches incorrect procedures. But what is the process of invention and on what specific 

knowledge ---or lack of it---are bugs based?” (Resnick & Omanson, 1987, p.44). 

In order to explain where bugs originate, VanLehn (1990) differentiated 

systematic errors and slips. For VanLehn, systematic errors meant consistent application 

of faulty methods, algorithms, or rules, which usually happened to novices. Slips were 

typically due to carelessness and happened to both experts and novices. “Bugs” partially 

explain students’ systematic errors; however, many questions remained “mysteries” as 

pointed out by VanLehn (1990, p.16): 

Why are there so many different bugs? What caused them? What caused them to 

migrate or disappear? Why do certain bugs migrate only into certain other bugs? 

Often a student has more than one bug at a time ---- why do certain bugs almost 

always occur together? Do cooccurring bugs have the same cause? Most 

important, how is the educational process involved in the development of bugs?  

     The main explanation of bug source is the repair theory proposed by Brown and 

VanLehn (1980). They identified four types of impasses: decision impasse, reference 

impasse, primitive impasse, and critic impasse. According to their theory, an impasse 

occurs when students are unable to perform an action. Thus, when students reach an 

impasse in solving a problem, they frequently skip or repair it in order to continue 

execution of the procedure. For example, Always-Borrow-Left is a bug found in many 

students’ subtraction operation. Students with that bug always borrow from the left-most 
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column. Because students initially learned subtraction of two-digit numbers, they tend to 

interpret “borrow from the left-adjacent column” as from the leftmost column, which is 

the same process for two-digit number subtraction. “Procedures that lead to bugs are the 

results of generalization of examples rather than, say memorization of verbal or written 

recipes. Evidence for this claim comes from the fact that this and many other bugs 

depend on accidental, visual characteristic of the examples” (VanLehn, 1980, p.27). 

Therefore, when students face three-digit number subtraction, they may have the 

problem of determining from which column they should borrow.  At this time, students 

may reach an impasse; they try to fix the problem by using flawed strategies. As a result, 

errors are produced. Accepting repair theory, Young and O’Shea (1981) suggested that 

students’ subtraction bugs appeared when students forgot or had not learned relative 

algorithms.  

The above explanations of bug sources were recognized as superficial because 

these researchers were only aware of the surface structure of procedures without 

considering mathematical principles involved in subtraction, or the conception of place 

value (Resnick & Omanson, 1987). Silver (1986) further commented on the above 

studies of the source of “bugs” as more descriptive than explanatory:  

 In recent years, the analysis of systematic procedural flaws, or “bugs,” has 

received increased attention. The seminal work of Brown and Burton (1978) on 

multidigit column subtraction errors suggests that a pure view of procedural bugs 

can be productive. Nevertheless, neither their analysis nor other analysis inspired 

by their work has explained the basis for a large percentage of the errors that 



 21

 
 

children make, nor has it directly addressed the remediation of the errors, with 

reference to the total knowledge base-----both conceptual and procedural-----that 

the child possesses or with reference to the total curriculum that is being taught. 

(p. 187). 

In summary. Though the theory (or the method) of buggy algorithm reflects 

substantial progress in exploring students’ errors, it does not provide the underlying 

reasons of why students invent bugs. Repair theory which attempts to explain bug source 

is also superficial in that the conceptual basis of students’ bugs and errors is still unclear.  

 

2.1.3 The conceptual basis of students’ bugs and errors: Misconceptions  

        What is the conceptual basis of students’ bugs and errors? Research on the nature of 

mathematics knowledge provides a clue to explore this issue. Hiebert and Lefevre (1986) 

differentiated between conceptual and procedural knowledge in the domain of 

mathematics. They defined procedural knowledge as rules, algorithms, formal language 

of mathematics or procedures used to solve mathematical tasks.  Conceptual knowledge 

was thought of as connections among information, a network of mathematics facts and 

propositions. They argued:  

The result is that students’ mathematical behavior often consists of looking at 

surface features of problems and recalling and applying memorized symbol 

manipulation rules. Mathematically unreasonable answers often produced, and 

performance is low across a range of problems, even on those directly instructed 

and frequently practiced (p. 200). 
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Based on such classifications of mathematics knowledge, students’ bugs had a 

conceptual source.  Silver (1986, p. 187) stated, “systematic bugs in procedures can 

often be traced to flaws in conceptual knowledge or to the lack of conceptual/procedural 

knowledge linkages.” An example of research on the conceptual basis of bugs can be 

found in Resnick et al.’s (1989) study. In their study, the researchers tried to identify 

students’ three wrong rules (bugs) in subtraction: whole-number-rule, fraction-rule and 

zero-rule in comparing decimal fractions. The whole-number-rule was that the larger 

string means large value (this is true for positive whole numbers). The student with the 

fraction-rule bug tended to think the short string meant larger. Zero-rule was associated 

with the misunderstanding of “0” for decimal fraction. As misconception was usually 

hidden from direct observation, the identification of misconception was mainly based on 

reasonable inferences by using well designed instruments. The tasks in Resnick et al.’s 

study were well designed and administered to students in three countries. The frequency 

of students’ errors related to each rule was recorded. Then students’ responses were 

analyzed to determine students’ conceptual bases of wrong rules. For example, the 

whole-number-rule bug was thought of as “confusion about the zero’s place holder 

function” (p. 21). Resnick et al.’s study highlights one way to explore misconceptions 

underlying students’ bugs. Their study also showed that it is important to pay attention to 

the deeper causes of students’ errors or bugs. 
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2.1.4 Errors, bugs, and misconceptions: The similarities and differences  

          The terms of errors, bugs, and misconceptions form the foundation of this study, 

although they are often used inconsistently or incorrectly in different studies. Therefore, 

it is necessary to delineate the differences among them. Young & O’Shea (1981) 

provided an excellent and clear interpretation of errors and faulty algorithms (bugs): 

“The ambiguity of problems highlights the need to distinguish carefully between, on the 

one hand, errors, i.e. actual wrongly answered problems, and on the other, faulty 

algorithms (or “bugs”), i.e., flaws in the program that generates the answers” (p. 156). 

On the other hand, misconceptions were students’ naïve explanations of concepts which 

were stable, robust, and resistant to instruction (Anderson & Smith, 1987, also cited by 

Chi, 2005). This view is consistent with that of Hammer (1996) who thought students’ 

misconceptions: 

1. are strongly held, stable cognitive structures; 

2. differ from expert understanding; 

3. affect in a fundamental sense how students understand natural phenomena and 

scientific explanations; and  

4. must be overcome, avoided, or eliminated for students to achieve expert 

understanding (p. 99). 

In this study, I accept those four properties as basic characteristics of misconceptions. 

Regarding the relationship between “bugs” and “misconceptions”, it is reasonable to 

assume that misconceptions are one of the deep reasons underlying bugs (Resnick & 

Omanson, 1987; Silver, 1986). Another difference between bugs and misconceptions is 
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that misconceptions are more stable cognitive structures across different problem 

contexts, while bugs, on the other hand, tend to change or migrate across different 

problem contexts. Bugs are not as stable as misconceptions.  Silver (1986) analyzed a 

case in Erlwanger’s study (1973) where a student correctly answered problems such as 

“0.2 + 0.4 =?” and “2.0 + 4.0 =?” but answered the problem “0.2 + 4.0 =?” with the 

wrong answer, 0.6. Silver commented, “What can be said about Benny’s procedural bug? 

It is interesting that Benny’s procedural bug appears to have conceptual aspects. If his 

conceptual knowledge of place value and the decimal point were flawed, then it might 

provide the needed support for the procedural error” (p. 187). What follows is another 

example used to illustrate the subtle differences among errors, bugs, and misconceptions. 

Falkner, Levi, and Carpenter (1999) found that all sixth-grade students incorrectly fill 

the box in “8 + 4 = □+ 5” with 12 or 17. Such wrong answers clearly indicate that 

children have a partial understanding of equality and the equals sign (Falkner, et al , 

1999). According to the explanations of errors, bugs, and misconceptions in this study, 

12 or 17 is thought of as an error. Since the correct algorithm for this problem normally 

involves the sum of 8 and 4, then subtracting 5 from 12; the faulty algorithm therefore is 

that students only conduct the first step and get the definite value “12.” Another faulty 

algorithm in this problem is to add all the numbers and get “17.” Underlying all these 

faulty algorithms may be students’ misconceptions of the equal sign, that is, interpreting 

“=” as “to do something.” Another probable misconception is that they only understand 

“8 + 4” as a computation process without understanding “8 + 4” as a sum, an object. In 

later sections, this issue will be explored in detail.  
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        In Summary. The above review documents the main efforts to identify the causes 

of students’ errors. Misconceptions are one of the main causes of students’ bugs and 

errors. Without a sound understanding of basic mathematics concepts, it is almost 

impossible for students to develop advanced thinking and succeed in further 

mathematics learning. In the following section, the importance and function of correct 

conceptions will be reviewed.  

  

2.2 Research on Student Conception 

In this section, at first, the importance of conceptual research is highlighted. Then 

I focus on the influence of preconception and misconception on students’ learning and 

the necessity of conceptual change. Last, I also review why some misconceptions are 

particularly robust to change. 

 

2.2.1 The importance of conceptual research  

 Most researchers hold the common assumption that students possess some 

informal knowledge before formal school learning or learning new content. As Confrey 

(1990) stated: 

Researchers in this tradition are united in (a) their rejection of the tabula rasa 

assumption that students enter instruction with no preconceptions about a topic 

before it is taught, and (b) their belief that these naïve ideas cannot easily be 

ignored or replaced through direct instruction or lecture (Gilbert, Osborne, & 

Fensham, 1982, p.5).  
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The research of the effects of earlier knowledge on students’ learning has received more 

attention. Shulman (1999) emphasized that learning is a dual process, with forces both 

internal and external to the individual interacting with each other. He further argued that 

it was the learning already present in the learner, rather than the teaching, that had 

primary influence on new learning. Ausubel (1968) commented “If I had to reduce all of 

educational psychology to just one principle, I would say this: The most important single 

factor influencing learning is what the learner already knows. Ascertain this and teach 

him accordingly” (also cited by Shulman, 1999). There are three research approaches to 

students’ conceptions: Piagetian approaches (Piaget, 1970) with a focus on the 

development of conceptions over time; the application of the philosophy of science on 

education research with a focus on students’ perception, misconception, and conceptual 

change; and research on systematic errors (Confrey, 1990). In the following two 

subsections, I mainly focus on the effects of misconceptions on systematic errors and 

why some misconceptions are robust to change.  

 

2.2.2 Preconception, misconception, and conceptual change  

 Preconception is usually recognized as the prior knowledge held by students 

which influences students’ learning (Bruner, 1960). Chi and Roscoe (2002) referred to 

“preconception” as naïve knowledge which could be easily revised and removed, while 

“misconception” was naïve knowledge that was robust to change. In order to be 

consistent, I use Chi’s definition of preconception and misconception, which are also 

consistent with Hammer’s, as mentioned earlier in this study.  
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  Regarding the influence of preconception and misconception on students’ 

learning, some researchers have attributed students’ learning difficulties to lack of 

necessary proficiency or knowledge (Anderson, 2002; Haverty, 1999). In contrast, other 

researchers have claimed that “earlier learning constrains later learning” (McNeil & 

Alibali, 2005, p. 884).     

        As pointed out before, students enter classrooms with different conceptions due 

to life experience or prior instruction. An important task for teachers is to identify 

students’ misconceptions in order to correct them. The process of correcting students’ 

misconceptions is called “conceptual change” (Chi, 2005; Chi & Roscoe, 2002).  

       Since misconceptions usually resist change, “any theory of learning must explain 

not only how people change, but also why people resist change” (McNeil & Alibali, 

2005). Slota et al. proposed an explanation of why people resist change in the science 

education field. They assumed that concepts are associated with ontological categories. 

Since students already classify certain concepts according to their ontological attributes, 

they must revise or modify their categorization of the concept ontology. If their initial 

categories are not ontologically different from the actual classification, the process of 

change is not difficult. Otherwise, the revision process will be more difficult. By 

examining a science concept like current, Slotta et al. (1995) thought students initially 

classify current as a material substance which is something like water. The actual 

category of current is a process of interaction. As a result, there is an ontological 

difference between students’ initial conception of current and its actual attributes. Thus, 



 28

 
 

it is usually much harder to change students’ misconception of current during formal 

schooling.  

        Students’ difficulties of conceptual change may occur in the domain of 

mathematics. McNeil & Alibali (2005) explored the change difficulties by looking at 

students’ prior knowledge and found that  “the patterns with which people initially gain 

experience become entrenched, and learning difficulties arise when to-be-learned 

information overlaps with, but does not map directly onto, entrenched patterns” (p. 884). 

They found that there were three operational patterns that may hinder students’ 

understanding complex equations, that is, “perform all operations”; 

“operations=answers”; and “understanding equal sign as total.”  

 

2.2.3 Robustness of misconception: Toward the framework 

 In this study, I will employ Chi’s framework (2005) of robust misconception 

analysis. According to Chi, students’ ontological knowledge and the actual ontological 

categories may or may not correspond. Many robust misconceptions are caused by a 

mismatch between students’ conception and reality at the ontological level. The process 

of correcting students’ misconceptions is called “conceptual change” (Chi, 2005; Chi & 

Roscoe, 2002). Therefore, “robust misconceptions are mis-categorizations across 

ontological boundaries in that a member of one ontological category is misrepresented as 

a member of another ontological category” (Chi, 2005, p. 164).  

With regard to mathematics, Sfard (1991) pointed out mathematics concepts 

could be conceived in two fundamental ways: structurally and operationally which 
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respectively results in “objects” and “process.” She distinguished those two conceptions 

in the following way: 

There is a deep ontological gap between operational and structural  

conceptions….Seeing a mathematical entity as an object means being capable of 

referring to it as if it was a real thing—a static structure, existing somewhere in 

space and time. It also means being able to reorganize the idea “at a glance” and 

to manipulate it as a whole, without going into details….. In contrast, interpreting 

a notion as a process implies regarding it as a potential rather than actual entity, 

which comes into existence upon request in a sequence of actions. Thus, whereas 

the structural conception is static, instantaneous, and integrative, the operational 

is dynamic, sequential, and detailed. (p. 4)  

In another article, Sfard & Linchevski (1994) maintained that students need to 

transition from process to object in order to understand concepts. She specified three 

stages in the transition: interiorization, condensation, and reification. Therefore, Sfard’s 

theory about understanding concepts is startlingly consistent with Chi’s (2002, 2005). 

This is why I could reasonably use Chi’s framework to explore why some students’ 

misconceptions in mathematics are usually robust to change. The transition of process to 

object is also consistent with Piaget’s theory of “reflective abstraction” (Simon, Heinz, 

& Kinzel,  

2004) which has two phases: “a projection phase in which the actions at one level 

become the objects of reflection at the next and a reflection phase in which a 

reorganization takes place” (p. 313, 2004).  
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 In this study, I assume that students’ robust misconceptions in mathematics are 

also caused by mis-categorizations across object and process. However, to be able to 

understand mathematics concepts as object does not mean there is no misconception. It 

means that such a misconception will be easy to correct since it has no ontological 

difference from reality (the correct conception).  “Alternative conceptions within an 

ontological category should be less entrenched and robust, meaning that they should be 

more readily resolved through learning, than misconceptions across ontological 

categories” (p. 164). Sfard (1991) expressed a similar perspective: 

The problem will seem less puzzling if we remind ourselves that reification is an 

ontological shift, a qualitative jump. Such conceptual upheaval is always a rather 

complex phenomenon, especially when it is accompanied by subtle alternations 

of meanings and applications…… The difficulties arising when a process is 

converted into an object are, in a sense, like those experienced during transition 

from one scientific paradigm to another; (p. 30)  

 In Summary. In this section, the negative effects of preconception and 

misconception on students’ learning are reviewed. The theoretical explanations of why 

some misconceptions are robust to change are also provided. Thus, teachers need to 

identify students’ preconceptions or misconceptions to help them learn mathematics 

effectively and efficiently. Ignoring students’ misconceptions may have negative effects 

on students’ new learning and will also reinforce original misconceptions. In the 

following section, the research on students’ conceptions or misconceptions about three 

fundamental concepts will be reviewed.  
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                      2.3 Research on Variable, Equation and Function  

          The learning of algebra has received more attention at the middle school level 

where the transition from arithmetic to algebra occurs. Compared with the goal of 

arithmetic, which is to find the answer, the focus of algebra is to find the general method 

and use algebraic symbols to express these in a general form (Booth, 1988). The reasons 

for difficulties during the transition were investigated from the viewpoints of cognitive 

development (Hart, 1981), the use of algebra notations (Booth, 1984, 1988, Herscovics, 

1989; MacGregor and Stracey, 1997), and understanding of fundamental concepts like 

variable and function (Usiskin, 1988).  

         In the next three subsections, I start with misconceptions about variables, 

equations, and functions. Then, I review several methods of researching the nature of 

mathematical knowledge, which are related to mathematics learning difficulties and 

understanding. Sfard pointed out the dual nature of knowledge, object and process, 

which is consistent with my framework. Last, I will elaborate what it means to 

understand variable, equation, and function as object or process. 

 

2.3.1 What does it mean to understand or misunderstand variable, equation, and 

function?  

I begin with equations and equal signs. The misconceptions, the strategies to 

change them, and the robustness of the change will be reviewed. Then I continue with 

variables and functions. The developmental trajectories, the relationship between 

variable and function and common misconceptions will be reviewed. 
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Equations and equal signs. The misconception of the equal sign as “to do 

something” is well documented and studied (Behr, Erlwanger, & Nichols, 1980; Falkner, 

Levi, & Carpenter, 1999; Kieran, 1981; Stacey & MacGregor, 1997).  One of the most 

cited articles about the equal sign and equation is Falkner, Levi and Carpenter’s (1999) 

study. They asked teachers from grade 2 to grade 6 to give their students the following 

problem: 

                                         8 + 4 =  + 5 

Surprisingly, most students solved this problem with the wrong answer of 12 or 17. 

Especially, all 145 sixth-graders were wrong. Among the sixth-graders, about 84% of 

them answered this problem with 12 while 14% answered 17. Those wrong answers 

clearly showed that students had no problem with computation. Thus, it was inferred that 

misunderstanding of the “=” as “to do something” was the cause of the students’ uniform 

errors.  

Behr, Erlwanger, and Nichols’s (1980) study confirmed that students’ 

misconception of the equal sign was the cause of the above students’ errors. However, 

they mentioned another possibility of students’ misconception of “2 + 4”, that is, 

students tended to understand “2 + 4” as something to be done even without “equal sign”. 

Students knew the addends represented numbers but were unwilling to accept “2 + 4” 

was another name for 6. 

  Regarding how to change students’ misconception of “equal sign,” Falkner et al. 

(1999) used several ways to develop students’ understanding of equal signs, for example, 

through story problems and discussions of true or false problems such as 4 + 5 =9, 12- 5 
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= 9,  7= 3 + 4, 8 + 2 = 10 + 4, 7 + 4 = 15 – 4, and 8=8 (p. 234). One student 

acknowledged that 3 + 4 =7 was true but thought 7 = 3 + 4 was false. To that student, it 

was wrong to write an equation backwards. Some students were uncomfortable with 8 = 

8.  Although they thought eight equals eight, they thought it was wrong to write in that 

way. After one and one-half years, of the16 sixth-graders who participated in the pilot 

study for the same problem 8 + 4 =  + 5, 14 of them correctly answered 7. The 

researchers then believed the instruction was effective and the students had gained a 

sound understanding of the equal sign, which laid a strong foundation for their later 

algebra study. However, the problem here was whether the correct solutions really 

showed students’ solid understanding of equal signs. These students might have simply 

learned how to solve this type of problem. So it is much better to know whether students 

can answer problems related to equal signs in novel contexts.  

   Kieran (1981) found that even students who received an appropriate instructional 

method, which emphasized “equal sign” as a relationship, were still unable to accept the 

correct conception of “equal sign.” Such misconceptions persisted at the high school and 

college levels (Clement, Lochhead, & Monk, 1981). The following solutions of 

equations demonstrated high school students’ misconceptions about equal signs (Kieran, 

1981, p.323): 

             Solve for x :  
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              And              
4
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Clement(1982, p.7, also cited by Kieran) showed that even college students still use 

equal sign as a link between steps. They found the derivative of a function:  
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           As Falkner et al. (1999) pointed out, the correct understanding of “equal sign” 

lays a strong foundation for learning algebra because one important and fundamental 

algebra concept related to equal sign is “equation.”  Matz (1982) commented that 

equation was not a complete new concept but only an extension of the existing concept 

of arithmetic equity. Thus, equation provides researchers with good opportunities to 

investigate critical and fundamental learning issues: for example, how does students’ 

prior knowledge affect their later learning of related advanced knowledge? What 

adjustments will be needed for students to learn new concepts based on their prior 

knowledge? What special difficulties will occur to students in such adjustments?  

           McNeil and Alibali (2005) found that the degree of students’ adherence to the 

operational pattern of “equal sign” was strongly correlated with whether they can 

generate a correct strategy to solve equations. They found that students’ entrenched 
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conceptions of operational patterns constrained the learning of equation. Students’ 

misconceptions and errors of solving equation have been documented in many studies 

across different grade levels. Their research approach is to identify the underlying bugs 

behind students’ errors of solving equations (Matz, 1982; Payne & Squibb, 1990; 

Sleeman, 1984).  The key is what specific traits equations caused difficulties for solving 

equations for students?  Sleeman found that if there were multiple Xs in equations, 

students were often unable to solve them correctly. They may attempt to guess values for 

the Xs. Morevoer, they might give different values for the Xs. For example, for equation 

3 * X + 2 * X = 12, one student gave 2 to the first X and 4 to the second X. Her solution 

in her worksheet follows: 

                    3 * 2 + 2 + 4 =12 

                          X = 2 

                          X = 4   (Sleeman, 1984, p. 398) 

Sleeman called such a faulty algorithm a manipulative mal-rule, which “is a variant on a 

correct rule which has one sub-stage either omitted or replaced by an inappropriate or 

incorrect operation” (p. 403). He listed the students’ mal-rules in detail in solving 

equations. However, he found that it was not enough to use manipulative mal-rules to 

explain the following typical wrong answer in solving this equation. The answers did not 

reflect “mal-rules” and were unreasonable. 
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 According to the interviews conducted by the author, the first student explained he tried 

to move the 3 x∗  term to left side. The second student replaced the * operator by the + 

operator which exposed this students’ profound misunderstanding of algebra. Sleeman 

called it a parsing mal-rule. In a word, manipulative mal-rules are due to incompletely or 

wrongly executing procedures, but parsing mal-rules relate to misconceptions of algebra 

notations.  

           Another interesting finding by Sleeman (1984) was that students might solve the 

equations correctly but fail to point out the interviewer’s wrong solutions, that is, the 

student was able to solve the following equation: 

                 2 * x + 3 = 9 

                  2 * x = 9-3 

But the student could not explain why the following solution was wrong: 

              X = 9-3 +2 

The above situations demonstrate that even though students could solve the equations 

correctly, they might not know the rationales behind these solutions. Assigning different 

values to the Xs in the same equations demonstrates their misconception of variables. 

They just strictly followed the correct procedures without understanding them.  
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  Variables and functions.  The development of algebra was related to the 

changing meaning of variable over time. Harper (1979, 1987) pointed out that there were 

three stages in the development of function. The first stage is the period before 

Diophantus when there was no symbol to represent unknown; during the second stage 

(3rd-16th centuries), a letter was used only for unknown quantities; in the 1500s, the third 

stage, a letter was used to represent given as well as unknown quantities. Only after the 

establishing of variable as the above meanings, the concept of function appeared and 

algebra could be used to solve general problems. Harper (1979) thought the use of 

variable to distinguish “unknown” number from given number indicated the demarcation 

line between two distinct domains of mathematics: one in terms of the known or 

unknown quantities and the other in terms of variable and constant quantities.  An 

example was used by Sierpinska (1992) to illustrate such an ontological difference: 

Two companies rent photocopiers. The first takes $300 for the location of the 

machine per month and $0.04 for each copy. The second takes $250 for the 

location and 0.06 per copy. 1. For what number of copies per month would the 

price be the same? 2. If you are a bigger user of photographers which company is 

preferable? (p. 36) 

For the first problem, students only need to think this problem in terms of equation and 

unknown. That is, they need to write an equation like 300 + 0.04x = 250 + 0.06x. In this 

equation, x is only an unknown, representing a special value. However, for the second 

problem, students need to think it in terms of function and variable. That is, they need to 



 38

 
 

write two functions, for the first case, the function is y = 300 + 0.04x; for the second, the 

function is y= 250 + 0.06x. Here, x is a variable, representing a range of value. Therefore, 

it is important to have a correct understanding of variables in order to master functions. 

The misconceptions of variables are often the main obstacles to understanding functions. 

 Understanding and misunderstanding of variable. The invention of variable 

indicates the appearance of modern mathematics (Rajararnam, 1957). At the beginning, 

variable was closely related to the concept of function. “Related numbers that change 

together, like x and y in the above equation, are called variables. When one variable 

depends on another for its value, we say that it is a function of other” (Upton, 1936, p. 

239. as also cited by Philipp, 1999, p. 157). Variables and constants were distinguished 

during the first half of the twentieth century. Constant represented only one value but the 

variable could represent many values. A typical example was given by Osborne (1909) 

to illustrate such a distinction. The equation 222 ayx =+  was usually used to represent a 

circle, where x and y represented coordinates of the points in the circle. Since the radius 

is certain, “a” is a constant. In the latter half of the twentieth century, variable in the 

textbooks was separated from the function.  

 Usiskin (1988) provided detailed explanations of variable meanings. According to 

Usiskin, based on the views of algebra, there are four possible meanings of variables. (1) 

If algebra is viewed as generalized arithmetic, then variables were thought of as pattern 

generalizers. For example, the commutative characteristic of addition can described as a 

+ b = b + a; (2) If algebra is viewed as the procedures for solving problems, variable is 
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viewed as unknown, which is clearly related with equation; (3) If algebra is viewed as 

the study of relationship, the variable is understood as argument (i.e. “stands for a 

domain value of a function” (p. 10) or parameter (“Stands for a number on which other 

numbers depend” p. 10). (4) If algebra is thought of as study of structure, then variable is 

thought of as an arbitrary symbol. The first three cases relate to school algebra.  

Schoenfeld and Arcavi (1989) investigated mathematicians, mathematics educators, 

and computer scientists for their understandings of the concept of variable by asking 

them to choose one word from this list: “symbol, placeholder, pronoun, parameter, 

argument, pointer, name, identifier, empty space, void, reference, instance” (p. 151). 

They found that even the experts described this fundamental concept in different ways. 

Furthermore, they examined different literatures for their explanations of variable. They 

listed ten different definitions which typically showed the complexity of such a 

fundamental concept. The core and common thing across these explanations was the 

recognition that the use and understanding of variable was related to problem contexts. 

For example, Philipp (1999, p. 160) used several examples to illustrate the usages of 

letters: 

         1. Labels    f, y in 3f=1y (3 feet in 1 yard) 

         2. Constants   π, e, c  

         3. Unknowns  x  in 195 =−x 1 

         4. Generalized numbers ba, in abba +=+  

         5. Varying quantities yx, in 29 −= xy  
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          6. Parameters              bm, in bmxy +=  

          7. Abstract symbols   xe,  in xxe =∗  

With regard to students’ possible misconceptions of variable, students may 

misunderstand variable as a label. Clement (1982) found that many students had 

difficulties in using algebraic expression to represent a relationship in this problem: “A 

university has six times as many students as professors. If S is the number of students at 

the university and P is the number of professors at the university, then write an equation 

expressing a relationship between S and P.” Clement (1982) found that 37 percent of 

first-year college engineering majors and 57 percent of social science students at the 

college level answered by 6S=P rather than S=6P. Such reverse errors may result from 

misunderstanding variables as labels, that is, some students misunderstand S as 

“students” and P as “professor”.  Another misconception of variable by students is that 

different letters mean different values (Booth, 1988; Stephens, 2005). For example, 

many students thought nphnmh ++=++  was never true because “m” was different 

from “n” (Stephens, 2005).  

 

2.3.2 Understanding the difficulties of algebra concepts: Perspectives based on the 

dual nature of mathematics knowledge 

 In this subsection, I review the research on the nature of mathematical knowledge. 

I begin from several philosophical perspectives about mathematics and mathematics 

education. Then I will review the dichotomy method concerning properties of 
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mathematics knowledge. At last, Sfard’s view of the dual nature of mathematical 

knowledge is reviewed.   

 Philosophical views of mathematics. The understanding of the nature of 

mathematics knowledge contributes to a deep understanding of learning difficulties of 

mathematics. Ernest (1991) introduced several different views of mathematics 

knowledge from philosophical perspectives. Absolutists maintain that mathematics 

knowledge consisted of certain and unchallengeable truths. However, such a view of 

mathematics knowledge cannot explain some contractions at the beginning of the 

twentieth century. Social constructivism holds another view which has already had 

strong effects on current mathematics education. The main points are as follows (Ernest, 

1991, p.42): 

(i) The basis of mathematical knowledge is linguistic knowledge, conventions 

and rules, and language is a social construction. 

(ii) Interpersonal social process is required to turn an individual’s subjective 

mathematical knowledge, after publication, into accepted objective mathematical 

knowledge. 

 (iii) Objective itself is understood to be social. 

Such views of mathematical knowledge are echoed by current mathematics education 

principles which advocate cooperative learning, communication, explanations, and 

justifications (National Council of Teachers of Mathematics [NCTM], 2000). Because 

philosophical views of mathematics knowledge mainly provide general points about how 
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to teach and learn mathematics, it is necessary to have a more detailed analysis of 

mathematics knowledge.  

       Dichotomy method for mathematics knowledge. The typical method used to 

research mathematics knowledge is to divide knowledge into conceptual knowledge and 

procedural knowledge (Hiebert & Lefevre, 1986), declarative and procedural knowledge 

(Anderson, 1976), or abstract and algorithmic knowledge. This is a dichotomy method to 

analyze mathematical knowledge. However, the drawback for the dichotomy method is 

that it is not easy to state the relationship clearly between those two types of knowledge. 

“The types of knowledge themselves are difficult to define; the core of each is easy to 

describe, but the outside edges are hard to pin down” (Hiebert & Lefevre, 1986, p.3).  

  Duality nature of mathematics knowledge. Sfard (1991) proposed another 

method to research mathematics knowledge: the dual nature of mathematics knowledge. 

She emphasized the fundamental difference between the duality and dichotomy methods. 

“Let me stress once more: unlike ‘conceptual’ and ‘procedural’, or ‘algorithmic’ and 

‘abstract’, the terms ‘operational’ and ‘structural’ refer to inseparable, though 

dramatically different, facets of the same thing. Thus, we are dealing here with duality 

rather than dichotomy” (p. 9).  

       Most mathematics concepts embody such duality. The mathematics concept 

“number” will be discussed in detail to show the meaning of process and object. When 

children study the concept of “number,” they start from “counting” which is natural and 

relatively easy for them.  Sfard (1991) found that humans took over three thousand years 

to develop and recognize the concept of “number.” “Number” over a long period of time 
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was developed in the context of a measuring process. “Fraction” was thought of as the 

“ratio of two integers” to describe a measuring process and is thus hard for students to 

comprehend. The development of mathematics is basically consistent with and could be 

reflected by that of individual psychology. In Carpenter et al.’s (1980) study, the 

researchers found that 50% of 13-year-old students in their study were unable to 

represent a division problem by a fraction. For them, a fraction like 7/4 was not an 

acceptable final result but a computation process. Sfard (1991) also pointed out the 

finding of irrational numbers was due to the discovery that “in certain squares, the usual 

procedure for finding the length of the diagonal cannot be described in terms of integers 

and their ratios” (p. 12). After a long time, mathematicians broadened the number set to 

include irrational numbers.  The concepts of “negative number” and “complex number” 

were the products of solving equations of the third and fourth orders. Jourdain (1956, p. 

27 as also cited by Sfard, 1991) clearly showed that negative number was a type of 

process at first: 

Let a-b be c. To get c from a we carry out the operation of taking away b. This 

operation, which is the fulfillment of the order: “Subtract b” is a “negative 

number”. Mathematicians call it a “number” and denote it by “-b” simply 

because of analogy: the same rules for calculation hold for “negative numbers” 

and “positive numbers”.   

From this development of “number”, Sfard thought there were two stages: the 

operational and the structural. “To sum up, the history of numbers has been presented 

here as a long chain of transitions from operational to structural conceptions: again and 



 44

 
 

again, processes performed on the already accepted abstract objects have been converted 

into compact wholes” (p. 14).  

           The duality nature of mathematics knowledge can be found in most mathematics 

concepts. In the following section, the variable, equation, and function will be explored 

at the process and object levels based on past studies.  

 

2.3.3. What does understanding variable, equation, or function as process and 

object mean? 

         About variable. As the historical development of algebra revealed, variable was 

first used to represent unknown quantities and then to represent both given and unknown. 

In school algebra, the variable usually means something with multiple or varying value, 

which is a little different from an unknown in that the unknown is usually a fixed value 

but humans do not know what it is.  In school algebra, Weinberg (2005) maintained that 

to understand variable as a process usually means to substitute it with a specific value; 

for example, students tend to refer to a specific number when they use variables to 

represent a relationship. To understand a variable as an object is to understand it as a 

placeholder or a given number. In this study, Weinberg’s understanding of variable as 

object or process will be used. Another standard about students’ understanding of 

variable as object is to see whether students can operate on or with variables. That is, if 

students can understand the variable as an object, they should be able to operate on or 

with it. The variable becomes the object of reflection or operation at a higher level by 

students. Students who understand variable as a process are usually uncomfortable or 
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unable to operate with or on variables. For example, they may simplify an algebraic 

expression “T+1” into “T1”. They do not think that “T+1” is an acceptable or final 

answer. Students at the middle school level should have the ability to reach object-

oriented thinking about the concept of variable.  

          About equation. Schoenfeld (1987) provided a good example about 

understanding an equation. If students have difficulty in making a judgment about 

whether two expressions are equal without computation, such as (235+ □) + (679-122) = 

235 + 679, students may understand “equation” as a process, that is, the arithmetic 

approach of computation. On the other hand, students with object-oriented thinking tend 

to use the property of equation to figure out the unknown value or make a judgment 

about the equality without referring to computation.    

 With regard to understanding “equation” as object, Kieran (1992, p. 393) thought 

that “Algebraic equations are structural representations that involve a non-arithmetic 

perspective on both the use of the equal sign and the nature of the operations that are 

depicted.”  That is, students should understand that the equal sign “is precisely that of 

respecting the symmetric and transitive character of equality” (Vergnaud, 1984, 1986, 

also cited by Kieran, 1992, p. 393). “Structural representation,” “symmetric and 

transitive character” means “understanding equation as object,” which should become 

the goal of school algebra and understood at the middle school level.  

 About function.  Kieran (1992, p.391) thought “The early concept of function as 

an input-output procedural notion was soon replaced by more structural conceptions. …. 

Bourbaki, who defined function as a relation between two sets” As a result, if students 
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only recognized a function as a way of computation or relationship between dependent 

and independent variable, then they only understand it as a process. Initially, such 

understanding of function is compatible with the human cognitive level and is also 

consistent with the historical development of the function concept; thus, it is acceptable 

at the very early stage.   

 If students understand a function as a set of ordered pairs, they understand a 

function as object. For high school or university students, to understand a function as an 

object means to understand the definition of a set of ordered pairs without referring to 

variables. They should be able to operate on or with functions, for example, the 

composition of functions or derivative of functions. According to Sfard (1991), if 

students can use a graph correctly to represent a function, to identify linear or nonlinear 

functions, it means that they also understood function as an object, or at least, these 

students had object-oriented thinking of mathematics concepts. However, the ability to 

understand a function as an object does not mean that students have no misconceptions 

about the function. They may have certain misconceptions but have no ontological 

difference from experts’ conceptions of the function. Therefore, such misconceptions are 

not robust to change. For example, in this study, high achieving students interpret graphs 

or/and linearity well but are still unable to use symbolic representation of functions to 

solve the problem. For middle school students, they are required to use a graph to 

interpret or represent a function and to understand linear and nonlinear relationships by 

NCTM (2000). In this study, students’ understanding of functions as object means to be 

able to use a graph to explain or represent functions or to understand linear or nonlinear 



 47

 
 

functions. In a word, they are able to explain or solve the problems about functions by 

using the properties of function without referring to the beginning definition of functions: 

the input-output process.  

 

2.4 The Shortage of Error and Misconceptions Research on Algebraic Concepts: 

Variable, Equation, and Function 

 Misconceptions are widely studied in science education. There were over 6000 

studies about misconception or alternative conceptions of science concepts (Chi, 2005). 

However, recent studies of error and misconception analysis in mathematics education 

are rare (Barcellos, 2005). This is mainly because mathematics education emphasizes the 

logical relationship between concepts over the concept itself (Dubinsky, 1995 also cited 

by Simon, Tzur, Heinz, & Kinzel, 2004). As Thompson (1985) pointed out, “Little 

attention has been given to the issue of the development of mathematical objects in 

people’s thinking” (p. 232). Specifically for algebra, there is little firm evidence to 

support students’ errors caused by their mental representations or misconceptions (Payne 

& Squibb, 1990).  Much less known is information about students’ errors on specific and   

fundamental mathematics concepts, especially variable, equation, and function. The 

concept of variable, which is a foundation of advanced mathematics and a basis for the 

transition from numbers to algebra, is overlooked by most researchers and even 

textbooks (Graham & Thomas, 2000; Schoenfeld & Arcavi, 1988). McNeill and Alibali 

(2005) found that the mechanisms underlying children’s difficulties with equations and 

the ultimate emergence of correct strategies were not well documented.  Likewise, 
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although research on function has been conducted by some researchers (Sfard, 1992; 

Dubinsky & Harel, 1992), few studies about functions at the middle school level were 

conducted. Given that middle school students are in the critical stage of transition from 

arithmetic to algebra, it is important to know the difficulties, the errors or 

misconceptions that middle school students harbor. 

      Students’ robust change in understanding the “equal sign” has been studied for a 

long time and very good results have been published (Falkner, et al, 1999; McNeill and 

Alibali, 2005; Knuth, Stephens, McNeil, & Alibali, 2006). However, those researchers 

all thought students’ misconception of “equal sign” as “to do something” was the 

mainsource of errors. One piece of evidence was that many students fill in “12” in the 

equation 8 + 4 =  + 5. Furthermore, those studies documented the robust changing of 

misconception about the “equal sign,” but they did not explore why students are resistant 

to changing their misconceptions. It is too simple to attribute students’ robust 

misconceptions to teachers or teaching methods. Very few studies (of which I am aware) 

tried to figure out the causes of the wrong answer “12” from other perspectives. It is 

doubtful that the misconception of “=” as “to do something” is the main cause. This is 

because many students still calculated 8 + 4 and obtained results even if there is no 

“equal sign.” For example, while students may understand the algebra expression “8 + 

4” as a process rather than an object, such an alternative understanding of “8+4” may 

cause the errors. These students are unable to use an expression to represent a 

“quantitative number.” There are very few studies about this possible error source. In 
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this study, understanding the misconception of “=” based on object and process is 

explored. 
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3. METHODOLOGY 

 

 The data for this study is from a funded project: Improving Mathematics Teacher 

Practice and Students Learning through Professional Development (IMTPSL), which is a 

5-year longitudinal study. Researchers at the University of Delaware and Texas A&M 

University, working in partnership with Project 2061 of the American Association for 

the Advancement of Science (AAAS), are investigating the interactions of teaching 

practices, selected curriculum materials, and professional development to understand the 

ways they can be optimized to improve student learning. Key lessons were carefully 

selected and videotaped by the project researchers. Students took pretests and posttests 

during three cohort school years (2003-04, 2004-05, and 2005-06). 

 

3.1 Participants 

For the three cohort years’ (2003-2004, 2004-2005, and 2005-2006) data, only 

students’ 2004-05 algebra pre- and posttest data were used in this study. Students from 

two states, Texas and Delaware, participated in the pretest in Fall 2004 (N = 456) and 

the posttest of Spring 2005 (N = 502). A total of 317 (171 grade 7 students and 146 

grade 6 students) students participated in both the pre and posttests. Both the teachers 

and students had a choice to participate in the project or not. As a result, the sample was 

based on the convenience principle.  
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3.2 Instrumentation 

3.2.1 Test items 

 The development of test items by the project IMTPSL. The algebra test was 

developed by researchers at AAAS in collaboration with researchers at Texas A&M 

University and the University of Delaware. The algebra test includes seven multiple-

choice items and nine short-response items. The test content was aligned with the 

Principles and Standards for School Mathematics (NCTM, 2000) guidelines for 

objectives of middle school algebra.  Three mathematics constructs, that is, change 

(function), variable, and equation were developed by project researchers; the main test 

contents for each construct were also developed (see Appendix 1for assessment map). 

The project researchers also specified how each test item was related to these three target 

constructs (see Appendix 2). All items were carefully developed through piloting and 

field-testing by the researchers of project IMTPSL. Pre and posttests with identical 

contents were administered during each school year with the pretest in the fall and 

posttest in spring, for each cohort.  

  The reliability and effectiveness of test items. The researchers of the project 

employed Confirmatory Factor Analysis method to evaluate whether the chosen algebra 

items adequately assessed the three concepts: change (function), variables, and equality 

and equations. The data was from students’ achievement as measured by the algebra test 

of seventh and eighth graders in Delaware (N=339) and Texas (N=574) in fall 2003. The 

graders were strictly trained by AAAS researchers and their scoring reliability was tested 
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by AAAS. According to project researchers, the test items adequately measure the 

constructs (Capraro, et al, 2004). 

 

3.2.2 Task analysis 

 Since the goal of this study is to analyze students’ misconceptions of function, 

variable, and equation, it is clearly important to evaluate whether these test items aligned 

well with intended concepts. In above reliability and effectiveness tests, the project 

researchers used quantitative methods to evaluate whether the items adequately 

measured students’ understanding of the three concepts. In this section, each item is 

analyzed qualitatively via the framework of mathematics and science alignment 

developed by AAAS (Kulm, 2004). According to AAAS, analysis of a task involves 

three main categories: (1) groundwork, (2) content analysis, and (3) likely effectiveness. 

Each category contains several indicators. For groundwork, five indicators are used: (a) 

task completeness, (b) task clarification, (c) candidate goals, (d) goal clarification, and (e) 

potential alignment. For content analysis, two indicators are used: (a) necessary and (b) 

sufficiency. For likely effectiveness, four indicators are used: (a) comprehensibility, (b) 

clear expectations, (c) context, and (d) test wiseness (for detailed information, please 

refer to http://msmp.tamu.edu/project_papers/AERA). 

  The second category “Content analysis” was provided by the project researchers 

(Kulm, 2004). The third category “likely effectiveness” is also important. Simple and 

accurate English language was used in test items. For example, most items employed 

everyday life contexts such as raising a flag (Q11), cell phone plan (Q13), bricks and 
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stones (or pine and apple trees) (Q8), and the changed value of a used car (Q15) (see 

Appendix 4 for test items). U.S. middle school students should be familiar with these 

contexts. Since the project assessment experts and researchers carefully designed the 

algebra items over time as I mentioned earlier, it was reasonable to assume that these 

items well qualify for the standards of content analysis and likely effectiveness. 

 Regarding the first category “groundwork”, I developed indicator b, “task 

clarification,” which is directly related to my study and is not provided by the project 

researchers. The other indicators of groundwork such as the detailed scoring rubric 

(indicator a), the learning goals (indicators c, d), and the potential alignment (indicator e) 

have been carefully considered and provided by the researchers.    

 According to AAAS, task clarification means: “Identify requisite concepts, skills 

needed for response, possible misconceptions, and multiple solution strategies” (Kulm, 

2004, p. 2). Because the “multiple solution strategies” has already been offered by the 

project in the form of scoring rubrics, I will focus on (1) the concepts, (2) the skills 

(procedures), and (3) the possible misconceptions to analyze each item. Since the goal of 

this study is to identify students’ misconceptions underlying their errors, I will also 

justify why students’ wrong responses can expose their misconceptions. What follows 

are the detailed task classifications. I begin with the general description and then 

continue with the analysis of each item in depth.   

        Q1 to Q7 (see Appendix 4) are multiple-choice problems.  Multiple-choice 

problems do not require students to show their solution process. It provides students, 

especially those who are not adept at representing their ideas by using mathematical 
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symbols and formulas, the opportunity to demonstrate their understanding. Therefore, to 

include multiple-choice items improves the validity and reliability of the instrument. The 

shortcoming of such a form is that students may guess the answer without real 

understanding. 

 Q8 to Q16 (see Appendix 4) are short-response problems. In answering problems, 

students not only provide answers but also need to justify their answers by using 

everyday or mathematics language or other representations. Therefore, the strength or 

weakness of students’ conceptual understanding of certain concepts can be identified 

from these problems. Students’ misconceptions, which are the focus of this study, can 

also be found by analyzing students’ responses. 

 Q1 (see Appendix 4) is a multiple-choice and one step problem. This item is used 

to examine students’ understanding of “equation” and “equal sign.” Past research 

showed that students were comfortable with the form, 8+=12, because they viewed the 

right side of an equation as a definite result (Carpenter, Franke, & Levi, 2003). In this 

problem, the task of computation is trivial but students need to understand the “equal 

sign” as the relationship of equality. Carpenter et al. (2003) divided students’ 

understanding or difficulties with equations into four levels: (1) able to solve a problem 

like 8 + 4 = □ + 5; (2) able to accept the form of an equation, like 8= 5+3, as true; (3) 

able to understand the “equal sign” as relationship and (4) able to compare the 

mathematical expressions on each side of an equation without actual calculation. Thus, 

students are expected to have at least a level 2 understanding of equation to solve this 

problem. If students really understand the semantic meaning of “equation” or “equal 
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sign,” the process (skill) of solving this problem will become very simple: a basic 

computational task for a seventh or eighth grader. Even if students calculate incorrectly, 

they should have the ability to find their error by substituting the wrong answer in the 

equation, if they have sound conceptual understanding of equation or equal sign. As a 

result, it is reasonable to assume that students do not have a solid understanding of 

equation or equal sign if they do not choose a correct answer; at least, the meaning of 

“equal” is not apparent to them.  

  Q2 (see Appendix 4) can be used to assess students’ ability in translating word 

problems into symbolic representations. Students are required to use an equation to 

represent the relationship as stated, using the everyday language in the problem. The 

possible errors and misconceptions have been documented in past studies: that is, 

misunderstanding a letter as representing things rather than a quantitative number 

(Clement, 1982; Sims-Knight & Kaput, 1983). The requisite skills for solving this item 

include: (1) able to understand x  representing the number of trading cards that Mary has; 

(2) able to use algebra expressions to represent the number of trading cards that Julie has; 

and (3)able to uncover the mathematics meaning of “they have 36 trading cards in all.” 

The strategies used most often by students are either to replace the key English word 

sequentially with mathematical symbols or use key words blindly (MacGregor & Stacey, 

1993). When students see the key word “in all,” they tend to just add some or all items 

without considering actual relationships among them. For this item, students may also 

have difficulty adding two algebra expressions, which may make no sense for them. This 

is because students are used to adding two definite numbers and getting a definite result 
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from their arithmetic training. Students who choose the answer 3 x =36 may indicate 

such a cognitive obstacle of adding two algebra expressions.  

 Q3 (see Appendix 4) is used to assess students’ understanding of variables. In 

this item, students are expected to understand variable as a “given number” which 

indicates an ontological difference compared with the meaning of variable in Q2. 

Students tend to misunderstand variable as a “label” or represent a “thing” rather than 

“the number of a thing.” Such a misconception is believed to be related to students’ prior 

experiences. For example, students in elementary level use letters such as “f” to label 

“foot” and “i” to label “inch”, thus, they usually write the relationship between foot and 

inch as “1f=12I”. In this item, if students are unable to use and understand “n”  as 

representing “the number of Girl Scouts,” it is difficult for them to write an algebra 

expression representing the “the number of rows.” Another possible cognitive obstacle is 

that students are more familiar with “multiplication” with given numbers. That is, it is 

relative easy for them to know the number of rows and the number of girls in each row 

to calculate the total. However, students may have difficulty operating on letters. This 

item is designed as “low” level complexity according to the project assessment 

specialists. It is a one-step problem. 

       Q4 (see Appendix 4) is about the characteristics of variable. According to Booth 

(1988), students who understand algebra as “generalized number” can understand a 

variable representing a “generalized number.” If students are able to select the correct 

answer B, “order doesn’t matter when adding two numbers,” they are headed in the right 

direction transitioning from arithmetic to algebra thinking. This is a one-step problem. 
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     Q5 (see Appendix 4) is used to assess students’ understanding of a pattern 

implicated in the table. Students met similar problems at the elementary level, so this 

problem is relatively simple for them. It is low level complexity as claimed by project 

assessment specialists. Students who were familiar with the arithmetic approach should 

be able to solve this problem. 

 Q6 and Q7 (see Appendix 4) require that students understand function as the 

relationship between dependent and independent variables. Q7 is more complicated and 

confusing compared to Q6 in that this function has an intercept 5 but students are more 

familiar with the function whose graph crosses (0, 0), the original point. Moreover, 

students need to find the value change of y corresponding to the change of x for the 

function y=2x +5 but for Q6, students only need to point out the change between x and y.  

Finally, the possible cognitive obstacle is due to the prior experience of “addition.” 

Students at the elementary level tend to think of “addition” as “more.” Because there is a 

table in Q 7 to assist students, it is more likely for students to make a correct choice 

based on table value without considering the symbolic form of the function. In fact, the 

preliminary examination of students’ answers showed that many students indeed just 

worked from the table. If students could look at the symbolic form of the functions in 

both items to make a choice, these students employed object-oriented thinking. On the 

other hand, if students used table values to find the pattern, they utilized process-

oriented thinking.  

 Q8 (see Appendix 4): Apple trees/pine trees and stones/bricks. There are 

minor differences in this problem between administering the pre and posttest instruments, 
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but the main structures are the same. The only change is to use apple/pine trees to 

replace stones/bricks. There are four sub-problems labeled as A, B, C, and D. For A, 

students need no more than counting skills. For B, students are expected to find a pattern 

based on the pictures.  

    For 8C, students are asked to find the value of n for which the number of stones 

equals the number of bricks (or the number of pine trees equals the number of apple 

trees). This one is harder than both A and B. There are two approaches  solving this 

problem. One is to list the values of the apple/pine trees with n=1, 2, 3, in the form of a 

table. Then the values of apple/pine trees were compared to find the value of n. Or 

students may simply guess and check their answers using the formulas to see whether 

they are equal. Both of these are arithmetic approaches without using the algebra 

formulas provided at the beginning of the problem. An algebra approach to solving the 

equation is nnn ×=× 8 . It is interesting to see why so many students did not use these 

formulas to find the solutions but chose to use arithmetic approach, or put another way, 

why did students totally ignore this information of algebra formulas? Why was the 

activation of the algebra approach so hard for some students?  

   For 8D, the level of complexity is “high” as assigned by the project researchers. 

First, students need to understand the mathematical meaning of “quick.” Second, 

students should be able to distinguish “quick” and “more.” Similar to 8C, there are two 

ways to solve the problem. One is to use the table values, which is an arithmetic 

approach. Another is an algebra approach. Each time the number of rows (n) increases 

by 1, the number of bricks (pine trees) increases by 8, while the number of stones (apple 
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trees) increases by 22 )1( −− nn 12 −= n . As a result, when 2n-1 > 8 (n is equal to or 

greater than 5), the stones increase quicker. The possible misconception is that “ more 

means quicker.” Such a misconception may cause this bug: using nn 82 >  to determine 

when the number of stones will increase more quickly than that of the bricks, or using 

the table values to find the same amount.  

 Q9 (see Appendix 4): Tachi and Bill Problem is similar to the famous 

“professor-students-problem” (Clement, 1982). For this problem, students using syntax 

translations may produce the reverse error, T+1=B. The deeper reason for such errors is 

related to students’ misunderstanding of equation and variables (Clement, 1982). 

MacGregor and Stacey (1993) hold a similar position that students’ errors were more 

likely related to semantic, rather than syntax, translations. Compared to the multiple-

choice problems (e.g., Q2 and 3), students must write an equation by themselves, which 

caused particular difficulties for students in that they were not good at operating on  

“generalized numbers.”  It is hard for them to use an algebra expression to represent a 

number. This is a one-step problem and should be challenging for students. The main 

difficulty will be the understanding of variable and operating on or with the variable 

rather than understanding the relationship between Tachi’s and Bill’s ages. 

 Q10 (see Appendix 4), a=b-2,  is used to assess students’ understanding of 

function and equation and a “middle” level complexity was assigned to this item by the 

project specialists. Students are required to find a pair of values. This problem involves 

only simple computational skills. It is a “function machine” where the students input a 
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number and get an output number. This problem assesses student’s primary knowledge 

of function as an input-output process.  

 Q11 (see Appendix 4): Small boy raises a flag. For this problem, students need 

to learn how to model a real life situation by using mathematics symbolism, a graph. It is 

important for students to know how to represent a function by using a graph which 

indicates students’ understanding of a function as an object. Thus, it is extremely 

difficult for students to draw or choose a correct graph. Students need to think of the 

“function” as a mental object without considering the “input-output” process. Students’ 

errors in this problem will be interfered with by their real life experiences. Students are 

so familiar with raising a flag that when they deal with this problem, the activated part of 

their knowledge structure would be the life situation rather than the function and graph 

which is relatively new for them. This situation is more likely to happen to students with 

no deep understanding of graph and function. The requisite skills for solving this 

problem are students’ understanding of linear function and viewing a function as an 

object.  

  Q12 (see Appendix 4), missing number problem, is similar to Q5 and 9. The 

additional work of this problem is for students to find a pattern and to use this pattern to 

find the missing number. The skills to solve this problem concern finding the pattern. 

This is a typical input and output function machine problem, and students who only 

understand function as a process should be able to solve this problem. 

 Q13 (see Appendix 4), car value, is used to assess students’ understanding of the 

linearity of a function. If students only focus on one variable or using input-output 
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process, they may make a wrong judgment. This problem was rated as middle level 

complexity by the project assessment specialists. Students who understand a linear 

relationship of function very well are able to answer this problem. The possible 

misconception is that students misunderstand “linearity” as “constant ratio” rather than 

the “constant difference over equal time”.   

           Q14 (see Appendix 4), Stell’s phone plan,  will not be used in this study. 

          Q15 (see Appendix 4), name a variable, asks students to find a variable. Variable 

is an elusive but fundamental concept for them. Students need to know that a variable 

can represent many different values. An example of variable has been provided for 

students in this problem. This item is rated as “low” level by the project assessment 

specialists. Students need to understand variable as “placeholder” rather than only 

“specific numbers” or as a “label” for something. 

         Q16 (see Appendix 4,: find the value of y, is a little different from the common 

equation in that the left side of this equation is a number and the right side is an algebra 

expression. Students who can understand the transitivity of equations should be able to 

solve it. There are several different strategies for solving this problem. One is arithmetic 

approach: guess and check. Another is the algebra approach: do the same operations on 

both sides or use change side and change sign. The difficulty is understanding the 

structure of “3+4y.” For example, some students understood “3+4y” as 3+4+y or (3+4)* 

y. The understanding of “y” presents another trouble for some students. For example, 

students thought of “y” as representing “ y× ,” the combination of operation sign and 

variable. 
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3.3 Data Coding 

3.3.1 Data coding for the multiple choice items  

Each student’s answers for the multiple choice items were graded by the project 

trained graders. Available data includes how many students chose A, B, C, or D. The 

frequency of each choice was recorded and compared from pretest to posttest to see 

whether students’ errors had changed in general, if necessary. 

 

3.3.2 Data coding for misconceptions and errors 

        The development of rubrics for coding students’ errors. As mentioned earlier, 

the project assessment experts had developed a scoring rubric, which provides detailed 

categories for rating various answers. Trained graders completed the scoring of students’ 

answers. Part of the wrong answers were simply classified by graders in terms of the 

scoring rubric. These classifications may act as a reference for coding the students’ 

errors in this study.    

          To analyze students’ errors and misconceptions, I developed a new rubric (see 

Appendix 1). The creation of this rubric was mainly drawn from the pilot analysis of 

students’ answers. One hundred students’ answers were randomly selected from the 

pretest, and were recorded and classified.  A rubric was developed according to the error 

types. For a reliability check, another graduate student independently selected one 

hundred students’ test sheets and created a rubric by using the same procedure described 

above. Finally, the two rubrics were compared for inconsistency. Except for a few, most 

items were consistently classified. For example, students’ responses to 8D “which will 
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increase more quickly, the number of stones or the number of bricks?” (See Figure 3.1 

and Figure 3.2) 

 

 

 

 

 

 

                        Figure 3.1. Student 1 response to 8D. 

 

 

 

 

 

 

           
                        Figure 3.2. Student 2 response to 8D. 

 

 

Initially, there were different opinions about whether it was necessary to use two 

categories. These answers represent two misconceptions that students may have.  One 

misconception is that the border is always larger than the inside; the other misconception 

is that more means quicker. At last, the two coders reached an agreement that two 
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categories should be used to code the above answers. Although the main goal of this 

problem is to assess students’ understanding of “faster” through using mathematics 

symbols and formula, the misconception of the relationship between surrounding and 

inside parts deserves to be carefully analyzed. Other inconsistent items were negotiated 

in the same manner to reach final agreement. 

           Coding of misconceptions. According to the rubric, each student’ errors in pre 

and posttests were recorded. According to each category, the frequency of students’ 

errors in pre and posttest was compared to see whether there was significant change. In 

addition to this quantitative analysis, the misconceptions underlying students’ errors 

were identified and justified through qualitative analysis.  

       Students’ misconceptions underlying students’ errors are usually not observable, 

so the identification of misconceptions is mainly based on two categories which are 

developed from the literature of this study 

(1) This type of error should be found consistently in different problems or 

contexts. 

(2) This type of error should appear consistently in different items across pre and 

posttests and across grade levels. As mentioned earlier, misconceptions of 

mathematics knowledge are held by many people over a long time. It is 

expected that errors caused by misconceptions should not occur haphazardly.  

Possible error sources, other than misconceptions, should be either eliminated or at least 

identified. The task analysis earlier showed that all the test items are one-step problems, 

which should be solved by recalling the corresponding concept knowledge. The 
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execution of the procedure may become a possible error source even for a one-step 

problem. However, since the problems in this study mainly asked students to justify their 

answers, little procedural knowledge is needed. Thus, it is possible to determine a 

difference between errors due to misconception or execution of a procedure.  

      First, the most frequent errors of different problems were identified in terms of the 

error coding. Then, the misconceptions behind the most frequent errors were analyzed. 

At last, such misconceptions were also verified by looking for the same types of errors in 

other problems. For example, many students make a mistake in Q9 (see Appendix 4) by 

writing an answer like Tachi’s age = one year more than Bill. The frequency of such 

errors is high. So the possible misconception is that students understand “equal sign” as 

“association.” The same type of error was also often found in Q16 (see Appendix 4), 

where students usually wrote running equations, like 4+4 = 16+3 = 19. If the same type 

of error occurs frequently in different problems, the misconception behind them is 

identified. The assessment map and the form detailing how the test item relates to 

variable, equation, and function has been provided by the researchers of the project (see 

Appendix 1 and 2).  

 

 3.3.3 Coding of understanding of algebra concepts as object or process                              

         The feasibility of coding students’ understanding as process or object.  The 

most important and challenging task is to not only identify misconceptions held by 

students but to seek how to change students’ misconceptions. Most misconceptions were 

not only resistant to change but were also reinforced by improper instruction (Kilpartick, 
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Swafford, & Findell, 2001). Knowing why students’ misconceptions resist change is a 

prerequisite to altering students’ misconceptions. As mentioned earlier, one of the 

particular difficulties of learning mathematics concepts is to transition from an 

understanding of concepts as process to object. One way to explore the mechanism of 

misconceptions caused by the transition from process to object is to compare experts’ 

and novice’s (or high achieving and low achieving students’) differences in their 

understanding of concepts. Slotta, Chi, and Joram (1995) developed a method to find 

whether students understood a concept as a process or an object. Their rationale is “if 

novices have classified a concept as a material substance, their explanations should 

contain verbal predicates that correspond to the ontological attribute of that category” 

(Slotta et al, 1995, p.378).  In the most recent article about students’ misconceptions, 

Slotta and Chi  (2006)  employed the same method and  gave an example to show how 

this method works: 

For example, if a subject said, “The current comes down the wire and gets used 

up by the first bulb, so very little of it makes its way to the second bulb, then 

these four (underlined) predicates were taken as evidence that subjects 

conceptualized current as a substance-like entity with attribute of (1) “moving,” 

(2)“can be consumed,” (3) “can be quantified,” and (4) “moves” (Slotta & Chi, 

2006, p.6). 

For this study, I will refer to their method to code students’ verbal explanations. 

Concepts as objects are characterized by static, instantaneous, and integrative words 

while concepts as process are characterized by dynamic, sequential, and detailed words. 
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However, mathematics differs from science or other subjects in that there is a symbol 

system, the special “mathematics language.” Therefore, students’ responses in science 

may mainly use verbal representation. In contrast, students in mathematics may mainly 

use mathematics language--notations and symbols. As a result, when I code students’ 

understanding of a mathematical concept as a process or an object, I mainly focus on the 

strategies students used, such as arithmetic or algebra approaches. Generally, a student 

who understands a concept as object tends to use the algebra approach to solve a 

problem which can be solved through either an algebra or arithmetic means. This is 

because the algebra approaches usually involve only a few steps.  On the other hand, 

students with process thinking tend to use arithmetic approaches due their inability to 

use algebra thinking. At the same time, students’ verbal explanations will also be 

analyzed to improve the validity of the analysis.  

       The selected problems used in object and process analysis. Only open-

endedproblems are chosen to analyze the difference between the high and low achieving 

students’ understandings of mathematics concepts. The problems will be chosen 

according to three categories: (1) can be solved using multiple strategies; (2) directly 

reflect students’ understanding of concepts; and (3) have proper complexity level. What 

follows are the detailed elaborations: 

As to category 1, elementary students use arithmetic approaches to solve 

problems but students at the middle school level use either algebra or arithmetic 

approach. Different strategies reflect students’ different level of understanding. As a 
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result, only short-response problems will be used in analyzing students’ object-like and 

process-like understanding.    

 As to category 2, students’ understanding of concepts can be reflected in their 

problem solving. If a problem requires several steps to be solved, students’ errors may 

occurr in either of these steps.  The task analysis earlier showed that the short-response 

problems (see Appendix 4, Q8-16) meet this category because students just need one or 

two steps in solving these problems.   

As to category 3, the complexity of the problem should not be so high that very 

few students can answer it, or so low that almost everyone can solve it correctly. There 

will be no way to do error analysis if there is no response or if all responses are correct. 

In a word, students’ solutions should vary enough to enable the qualitative analysis. The 

task analysis earlier shows that the short-response problems meet this standard.  Based 

on the above three categories, Q8 C and D, Q9, Q10, Q11, Q12, Q14, Q15, and Q16 ( ee 

Appendix 4) will be used.  

  Rubric of understanding of variable, equation, and function as object or 

process.  Students with process-like understanding usually demonstrate little algebraic 

thinking and their goal of solving problems is to get the “answer,” usually a specific 

number. For example, these students tend to write the answer as “T1” instead of “T + 1” 

to represent “one more than T.” This is because they are unable to see “T+1” 

representing an object, a final result. They cannot accept that there may still be operation 

signs in the final result. In contrast, students with object-like understanding tend to use 

an algebra approach to solve problems. Table 3.1 and Table 3.2 comprise the rubric for 
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judging students’ understandings of variable, equation, and function as objects or 

processes. The possible consequent strategies for each case are also provided based on 

the earlier literature review. The understanding level used in this rubric is consistent with 

middle school students’ cognitive capabilities in terms of NCTM (2000) standards and 

American Association for the Advancement of Science (AAAS) (1993) benchmarks.  

 

 

Table 3.1 
Viewing concept as process     
                      
 Process (operational) Possible strategies  

Variable  Changing numbers 1. Referring to or listing specific numbers 

Function Computational process like function 

machine, the input-output process 

1. Using tables to list possible pairs or 

solution 

Equation   Interpreting “=” as “to do something” 

or associations 

1. Referring to number facts 

2. Guessing or counting 

3. Changing side and sign 

4. Using running equations 
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Table 3.2 
Viewing concept as object 
 
 Object (structural) Possible strategies in solving problem 

Function 1. Able to represent                           

function by using graph or 

symbolic method; 

2. Able to  identify linear or 

nonlinear relationship.  

   

1. Using the algebra formula to 

solve problems  

2. Using the characters of function, 

such as slope or linearity to 

answer problem 

Equation 1. Understanding “=” as a symbol 

of identity;  

2. Understanding the transitivity 

and symmetry of equation 

1. Able to add or multiply same 

number to the equation 

2. Able to judge whether the 

equation is true without actual 

calculation 

 

Variable 1. Understanding variable as a 

placeholder 

2. Understanding variable as a 

given number or generalized 

number 

  1. Able to solve the problem     

without referring to specific 

numbers  
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  Some examples of coding students’ object-like or process-like understanding.                

Question 9 is the Tachi and Bill problem. Students’ responses for this problem varied a 

great deal.  Among the approximately 400 answers from the pretest, there were about 

180 different responses. Below are some responses: 

 

 

 

 

 

 

 

 

            Figure 3.3. Student 1 response to Q9. 

 

 

Student 1 in Figure 3.3 referred to more than one pair of numbers. Such an 

answer was coded as process-like thinking because this student used arithmetic strategy. 

That is, this student still thought of a variable as a changing number rather than as a 

“generalized number” or “given number.” In other words, this student is still unable to 

operate on or with variables. In contrast, those students whose answers were 

T=B+1demonstrated their object-like understanding of variable. This is because they can 

 



 72

 
 

operate on or with variables in that they write the correct equation without referring to 

specific numbers 

Q10, a = b-2: This problem only needs process-like thinking of function to solve 

it since it only needs input and output process. It is expected that both high and low 

achieving students would do well on it.  

Q11: This problem asks students to select a graph to model a real life situation. 

Student with process-like thinking of function as input and output process will have 

extremely difficulty because (1) there is no specific pairs of numbers for those students 

to figure out the relationship that tables of values usually provide; (2) the mathematics 

meaning was negatively and strongly interfered with by the real life situation.  If 

students chose wrong answers B or D, those students were coded as process-like 

understanding of function since they are unable to find a proper graph to represent the 

relationship. Even if students chose the correct answers, A or C, their response will be 

coded to see whether they really understand the function as an object. The predicate 

words will be “steadily” or “linearity” or other similar words for choosing answer A, or 

“pause” or “break” for choosing answer C. If their responses had such predicate words, 

it means that these students used the properties of function to answer the problems. 

            The following two students’ (Student 2 and 3) responses showed their 

understanding of functions as object (See Figure 3.4 and Figure 3.5). When students use 

these words, it means students consider the situation from the characteristics of function 

without referring to input-output process. 
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                       Figure 3.4. Student 2 response to Q11. 

            

 

 

 

                 Figure 3.5:  Student 3 response to Q11.                 
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Student 4: response to Q11 

 

              
                         Figure 3.6: Student 4 response to Q 11.       

 

 

For Student 4 (See Figure 3.6), the response showed clearly that this student understood 

the meaning of vertical and horizontal lines. However, he used “gradually” to describe 

the movement of   the flag. This student was not aware that the graph is linearity and the 

flag should grow “steadily”  but not necessary “gradually.” On the other hand, the use of 

“gradually” also demonstrates that this student was aware of the relationship between 

height and time.  

  Q16 C: This problem involved two functions which were initially represented by 

two tables. Students’ strategies were coded in terms of algebra or arithmetic approach. If 

students used symbolic representation to solve the problem, it is thought students  
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understood the function as an object.. If students just used the table, it is thought that  

students understood the function as a process.  
 
          Q16 D: In the task analysis, an algebra solution has been demonstrated.   
 
 
3.3.4 The reliability of coding data   

 The reliability of data coding is important for this type of study. After developing 

a reliable coding rubric, the coding of students’ responses followed the rubric strictly. 

The researcher completed all data coding. The coding sheet was developed according to 

the rubric (see Appendix 1). Every student was labeled using the first letter of their first 

and last names. Every student’s code was put into a corresponding category if this 

student made a mistake. Thus, the check of the coding would be more effective. The 

third coder, who is an education major but talented at mathematics, was invited by the 

author to code part of teh test items. First, the coder was trained by the author. The 

effectiveness of training was tested. The trained coder was tested by coding Q8 (C) and 

Q8 (D) from ten students. The training process continued until the coder consistently 

coded above 90% correctly. Then the third author independently and randomly selected 

10% of all students but just coded Q8 (C ), Q8 (D), and Q9. For Q8 (C), the reliability is 

above 95% and 90% for Q8 (D) and Q9. I selected Q8 (C), ( D) and Q9 to be tested 

because these items are difficult to code due to the variety and complexity of students’ 

responses.  

3.4 Procedure and Data Analysis 

Misconceptions were usually were caused by outside of school knowledge (life 

experience) or prior instruction. For example, because students normally use “part of  the 
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whole” as definition and pattern blocks to learn fractions, they may have a 

misconception that all fractions are less than 1. Misconceptions usually produce 

systematic errors, which appear among different students and across different problems, 

consistently before and after instruction. I used such characteristics of misconceptions to 

identify the misconceptions.  

 

3.4.1 For research question 1: Error patterns and misconceptions 

            Students’ errors for the multiple choice and open-ended items were categorized. 

The frequency of each category of errors was reported. Students’ misconceptions 

underlying systematic errors contexts were explored in terms of the standards developed 

earlier in this section.  

 

3.4.2 For question 2: Robust misconceptions 

The number of errors in the pretest and posttest related to the same 

misconceptions was tested to see whether there is any change after one year by using a 

statistical test for the difference between two proportions (Ott & Longnecker, 2001). If 

the misconception is robust, it is expected that the frequency of errors related to that 

misconception should not decrease greatly or should increase.  

 

3.4.3 For question 3: Ontological differences 

            Students understanding of variable, equation, and function as process or object 

will be coded in terms of Table 3.1 and Table 3.2.  It is expected that both low and high 



 77

 
 

ability students would show a significant difference in “Understanding a concept as an 

object”.  Excerpted explanations from low and high ability students from these two 

groups are provided.   
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                                                    4. RESULTS 

 

 The results of this study are reported in three sections: (1) Students’ error 

patterns in the selected short response problems (Q8, Q9, Q11, Q13, Q15, and Q16) in 

the pre and post tests; (2) Possible misconceptions underlying these errors. The 

robustness of these misconceptions will be analyzed; and (3) Comparison between the 

high and low achieving students in understanding the three fundamental algebra 

concepts (variable, equation, function) at the ontological level: object-oriented and 

process-oriented thinking. The ontological differences between the two groups of 

students were used to support the explanations in the prior section, that is, students’ 

robust misconceptions are due to the transition from process thinking to object thinking. 

 

4.1 Results of the Quantitative Analysis 

           In this subsection, I report students’ error patterns reflected in each short-response 

problem (Q 8 (C), Q8 (D), Q9, Q11, Q13, Q15, Q16; see Appendix 4 for the items). 

Error types and frequencies are described first. Examples related to each error type will 

then be provided to justify the categorization of errors.  

 

4.1.1 Tachi and Bill Problem (Q9) 

           This problem assesses students’ abilities to translate a word problem into a 

symbolic algebra expression. It is generally assumed that this ability largely depends 

upon students’ recognition of the relationship expressed in everyday language form. 
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Students’ wrong answers varied widely in this problem. Wrong answers numbered 

approximately 180 (N=456, total) in the pretest and 110 (N=506) in the posttest for this 

problem (for detailed error results, see Appendix 7). It was hard to explain every error 

and find the misconceptions for each one. The most often used errors were coded and 

classified in terms of possible misconceptions. Students’ most frequent errors were 

reverse errors, which is consistent with previous studies (Clement Lochhead, & Monk, 

1981). Except for reverse errors, this study also uncovered other students’ errors which 

directly supports the claim that some students misunderstood variables as “labels” or 

“specific numbers.” The classification of students’ errors in this study reports students’ 

possible misunderstanding of variables and equations in detail. The results for this 

problem are reported in two ways. One is in terms of which forms did students use in 

expressing the relationships: algebra expressions, equations, or inequalities. Another is 

from students’ possible misconceptions related to variables and equations.  Table 4.1 

shows the first result: 
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Table 4.1 
Percentage of error types related to forms: Expressions, equations, or inequities 
 

Pretest (N= 456  ) Posttest (N=506  )             

Error Type                  Frequency Percent 

 

Frequency Percent 

 1.Using expressions         35 7%  23 4.6% 

 2.Using inequalities         11 2%  6 1.2% 

3.Using everyday 
language             

22 4.8%  7 1.4% 

4.Reversed equations        54 11.8%  220 43.8% 

5. Other wrong 
equations                    

136 29.8%  85 16.9% 

6. No response                  76 16.7%  42 8.36% 

7. Total incorrect 
percent                            

334 73.24%  383 76.29% 

                 

 

 

         This problem clearly required students to “write an equation to compare Tachi’s 

age to Bill’s age.” In Table 4.1 above, students’ error types 1, 2, and 3 reflect students’ 

misunderstanding of the equation form. In the pretest, about 14% of students (sum of 

errors 1, 2, and 3) did not know what an equation looked like. These students used 

algebra expressions (7%), inequalities (2%) or just everyday language (4.8%) to stand 

for an equation expressing the relationship between Tachi’s age and Bill’s age. The 

situation improved in the posttest where only about 7% of students (sum of errors 1, 2, 

and 3) did not use equations to express the relationship. Error types 4 and 5 reflect that 

students already know the equation form though they still made some mistakes. For 
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example, some students wrote a reversed equation such as writing T+1=B (wrong 

answer) as B-1=T (wrong answer). The percentage of students using reversed equations 

in pre and post tests increased from 11.84% to 43.82% which means students made some 

progress in understanding equation forms. As mentioned earlier, in the pretest, there 

were about 180 different answers for this simple problem and there were 110 different 

students’ responses in the posttest. What cognitive difficulties did these students 

encounter in solving this problem? Why did these students have such varied answers for 

this simple, one-step problem? Were there common misconceptions underlying these 

errors? In order to explore the potential cognitive obstacles and miscomputations, a new 

category of students’ responses were used. The previous studies revealed that students’ 

errors on this type of question may stem from a misunderstanding of variable and 

equation. Thus, students’ errors were categorized as shown in Table 4.2. The category 

“Others” includes: using everyday language, algebra expressions without simplifying T-

B, or T-1 into TB or T-1. If the students wrote an algebra expression but wrongly 

simplified it into the form of T1, it was coded as “simplify algebra express as T1.” 

“Others” also includes responses that were not classified into any categories. For 

example, some students’ answers were B+B=B or L=1xB. It is unfeasible to code them 

in terms of cognitive obstacles. 
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Table 4.2 
Error types related to understanding of variable and equation 
 

Pretest    (N = 456)     Posttest  (N = 506) Error type                                        

Frequent Percent  Frequent Percent 

1. Refer to specific values             38     8.3%  27 5.3% 

2. Variables as labels                    19 4.1%  10 2% 

3. Simplifying algebra express 
as T1                                          

22   4.8%  16             3.2% 

4. Using “=” as association           12 2.6%  2    4% 

5. Using special letters                  17 3.7%  19 3.8% 

6. T/B=1 or T over B                    15 3.3%  2 0.4% 

7. T- B = Difference                     9 2%  19 3.75 

8. Reversed equations                   54 11.8%      220 43.5% 

9.  no response                                76 16.67%  42 8.3% 

10. Others *                                     96    21%  35 7% 

 

 

 

         From Table 4.2, except for the reversed errors, the most frequent errors in both pre 

and posttest were errors 1, 2, 3, and 5: students referring to variables as specific numbers, 

using variables as labels, “simplifying” an algebra expression into a “combination form” 

like T1 or using special letters. What follows are some students’ typical responses and 

the analysis of possible misconceptions.  
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             Students assign specific values to  variables or use specific values to substitute 

for variables. Their responses showed that they clearly understood the relationship 

between Tachi’s age and Bill’s age, that is, Tachi is one year older than Bill (see part of 

the students’ responses in Table 4.3).  However, those students had difficulty operating 

on or with letters.  As “repair theory” claims, when students had an “obstacle” which 

they did not know how to pass, they usually found an old strategy to tackle the new 

situation. In this problem, students needed to represent a number by using variable and 

algebra expressions. For them, the arithmetic approach was a natural one because they 

had worked with numeric values for long time. Thus, a “bug algorithm” was invented by 

students: using a specific value to substitute for the variable. Those students could not 

understand or accept a letter used as a “place holder.” 

 

 

 Table 4.3  
Students’ error related to specific value  
 

Student Answer 

1 B= 13, T= 14 

2 T= 6, B = 5, T=B * 6=s 

3 T=2, B=1 

4 T=11, B=10 
            T          B 
1           11        10 
2           12        11 
 3           13         12 

                                      



 84

 
 

                                                                                 

The response from student 5 (see Figure 4.1) provided some clues about why these 

students used specific values, although the use of T and B to represent ages was clearly 

emphasized in this question. Student 5 said he (she) could not work on this problem 

because he (she) did not know Bill’s age. For him, the variable is no meaning if it had 

not been assigned or related to some specific numbers. 

 

 

Student 5 

 

          
                         Figure 4.1. Student response related to errors using specific values. 

  

 

  Students are still in the transition process from arithmetic to algebra thinking. 

One typical difficulty is to use a letter to represent “generalized numbers” and operate on 

these letters. They are not sure what the result of the operation of variables should be. 

For example, one student used “one” rather than “1” in his equation, that is, T-B = One. 

This student might assume that the result of an operation on letters should also be letters. 

To write an equation for a real situation, students must reach the level that they are able 
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to represent quantities by using letters and to operate on these letters. It is not easy for 

students who are familiar with and good at using specific numbers to make this 

transition. 

 Students misunderstand variables as labels.   Some students were believed to 

misunderstand letters as labels. Students’ reversed errors in the famous Students-and 

Professor Problems (Clement, Lochhead, & Monk, 1982) were interpreted as revealing 

students’naïve conceptions. In that problem, students used “p” to represent professors 

rather than the number of professors. However, this conclusion is mainly based on the 

assumption that if college students clearly understand the meaning of “p” and “s,” the 

number of students with reversed errors should not be so high. In this study, except for 

the reversed errors made by students in pretest and posttest, some students’ errors in 

misunderstanding of variables as “labels” are more clearly and directly illustrated in 

Figure 4.2. 
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Student 1:  

 

Student 2: 

 

        
                        Figure 4.2. Student’s misunderstanding variables as labels. 

                      

 

           Student 1 used “A” to represent age instead of T and B. He tried to use two As to 

represent both Tachi and Bill’s age. His using of “a” as a representation of “answer” 

more clearly showed that this student only understood a “letter” as a label. Student 2 

added the units behind each letter. This representation reflects that this studen 

misunderstood “T” as “Tachi” and “B” as “Bill.” As a result, “T age” means “Tachi’s 

age” while “B age” means “Bill’s age.” Other students’ responses in Table 4.4 support 

this judgment: 
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 Table 4.4 
  More examples of students’ misunderstanding a variable as a “label” 
 
Student  Answer 

3 

4 

5 

6 

7 

T is 365 days old than B 

T is 1 year ahead of B 

T= exactly one year older than B 

T + B = Tachi + Bill 

B = T + 1Y B= Bill’s age,  T = Tachil’s age, Y= Years 

 

 

 

 Students’ errors of “variables as labels” are believed to be related to students’ 

prior experiences such as using “f” to represent “foot” and “p” to represent “pound.” In 

our study, the reversed errors (that is, students write the equation as T+1= B or B-1=T or 

T=B-1 rather than the correct answer T=B+1 or T-1=B) are still the most frequent errors 

found in both pre and posttests. Moreover, the reversed errors increased greatly in the  
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posttest. Rosnick (1981) conducted a study using the same problem but a different  

design by asking students to choose correct answers for the question “what does the 

letter p stand for?” (p. 314). Over 40% of 152 students did not pick the correct answer 

“the number of professors.”  In this study, students’ responses to Q15 “Maria and 

Jinko’s donut sales,” which asked students to name a variable, also support this finding 

(see Table on pages 91-92). In that problem, 50% of the students did not answer 

correctly with “the number of donut sales” or other correct answers. 

      Students using other letters. Although the problem had clearly stated that “T” 

stands for Tachil’s age and “B” stands for Bill’s age, students used many other letters in 

their answers. The most often used letters are mainly x, y, A, B, or N. Table 4.5 shows 

some examples:   
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 Table 4.5 
 Using special letters as variables  
 
Student      Answer 

1 

2 

3 

4 

5 

T1 + B = N 

X = X, you don’t have any data to compare 

T + N =1 

2004-y + 2004-y=-1y,  

Y=TX+13; Y=BX+ 11 

 

 

 

   It is not easy to know why students introduced new letters. Students might be 

more comfortable using familiar letters. They may think only certain letters could be 

used to represent variables. That is, these students misunderstood the variable as 

represented by special letters. It is similar to many students assuming only x and y can 

be unknowns; thus, it is hard to accept other letters as unknowns.  

 Students misunderstanding “equal sign” as an association. Some students’ 

answers showed that they were unable to know “equal sign” means precisely an 

equivalence. They tended to understand “equal sign” as “is.” Table 4.6 shows students’ 

understanding of “equal sign” as an association.  
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Table 4.6 
Example of students’ answers in understanding “equal sign” as association 
 
Student      Answer 

1 

2     

3 

4 

5 

6 

T-B = answer  

T-B= Age between  

Tx1xB= 369 days older  

T-B = 1 year older  

T-B = how many years apart  

T- B = Age difference 

               

 

 

These typical answers show that students knew that they should add  an “equal sign” 

between the two parts. Their answers also indicate that they understood the result of T- 

B means the age difference. Such errors might stem from teachers misusing the “equal 

sign” in classroom practice.  

 

4.1.2 Maria and Jinko’s donut sales (Q15) 

               The analysis of Q15 was used here because this problem is related to Q9 in a 

test of students’ understanding of variable. Students were asked to write another variable 
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by providing the example, “The number of donuts Maria sells is a variable.” Students’ 

error type and frequency are reported in Table 4.7: 

 

 

Table 4.7 
Students’ error types in Q15  
 

Pretest (N = 456)              Posttest (N = 502 )        

Error type Frequency percentage

 

Frequency percentage

1. Five times as many as 

Maria                               

(5xK, 25K, K= J * 5) 

27  5.95%        24  4.78% 

2. Jinko’s donuts, donuts     18  3.94%        18 3.46% 

3. Jinko sells five times as 

many as Maria                 

37  8.11%        38  7.57% 
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Table 4.7 (Continued) 

Pretest (N = 456)              Posttest (N = 502 )        

Error type Frequency percentage

 

Frequency percentage

4. Five times as many as 

Maria                               

(5xK, 25K, K= J * 5) 

27  5.95%        24  4.78% 

5. Jinko’s donuts, donuts     18  3.94%        18 3.46% 

6. Jinko sells five times as 

many as Maria                 

37  8.11%        38  7.57% 

7. 25 cents, price, or   

       constant number             

44 9.46%        73 14.54% 

8. Others /don’t know          15  3.29%         15 2.98% 

9. No response                     81  17.77%      77  15.34% 

Total incorrect answers         222 40.41%        245 48.67% 

 

 

Students’ responses for this problem were consistent with the findings of other studies. 

In this study, 40.41% of students in the pretest and 48.67% in the posttest answered 

either incorrectly or with no response. The most frequent error was to use a constant 

number as a variable (9.46% in pretest and 14.54% in posttest) which is a similar pattern 

seen in the Tachi and Bill Problem, in which students tended to assign specific numbers 

to variables. Some students also misunderstood the variable as a concrete item, such as 
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donuts, which appeared frequently in Q9 where the variable was understood as a person 

or a label. 

 

4.1.3 Small boy raises a flag problem (Q11) 

         Raising a flag is a real life situation with which most students are quite familiar. 

This problem asks students to choose a graph representing the change of the height of 

raising a flag over time. There are four different graphs provided by the problem and two 

of them are correct. Students needed to explain why they chose a certain graph in terms 

of their understanding of the graph used to model the situation. According to the project 

scoring rubrics, only students who showed evidence of correct understanding could 

receive full credit. Two explanations were acceptable: (1) the height is steadily rising 

over time (corresponding to choice A); or (2) the flag will pause during some time 

(corresponding to choice C). As mentioned before, being able to use a graph to represent 

the relationship between two variables indicates a student’s understanding of  a function 

as an object rather than an input and output process. Some students chose a correct 

answer but they were unable to justify their choice.  

 This study addressed students’ explanations of why they chose certain answers. 

Students’ wrong explanations are classified into three categories and the possible 

misconceptions underlying these errors are analyzed below: 

(1) Students did not find the mathematical meaning behind this life situation. They just 

mainly described the real life situation about raising a flag. For example, “the flag is 

going up”; “the flagpole goes up only”, “the flag goes up straightly” or “the flag is 
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staying horizontally”. Based on this information, the students may choose graph B 

or D which looks like a static flag (D) or rising flag (C). The vertical line was 

thought of as “flagpole” and the horizontal line as “ground.” Students may 

understand the real life picture of the flag rising as the graph of the change of height 

of the flag over time. Thus, the students who chose B or D may not be aware of 

another variable: time. They simply understand “change” as the position of the flag 

over the ground without thinking of it as height (the distance above the ground) over 

time. 

(2) Students used unrelated information. For example, this small boy is too small and 

has to pause for some time. Such explanations have something in common with the 

first one. The difference is, the key words such as “stop” or “pause” in students’ 

explanations reflected students’ consideration of time. In this case, students might 

choose a correct answer A or C.  

(3) The students provided somewhat related but inaccurate information such as the 

speed of the flag. The main key words they used were “gradually” or “slowly” 

instead of “steadily.” Such responses indicated that these students realized the height 

of the flag changed over time but they did not accurately state the relationship 

between the two variables. The expected clear and complete explanation for this 

problem should include key words like “steady growth” or “linear change.” At this 

situation, students might also choose a correct answer A or C. Table 4.8 shows 

detailed information about students’ errors: 

 
 



 95

 
 

Table 4.8 
Students’ types of errors in “small boy raises a flag”  
 

Pretest    (N=456)  Posttest (N=506)  

Error Type Frequent      Percent    Frequent    Percent 

1. Describing a life pictures 

   (such as: flag goes straight up) 

201 34.87%  217 35.26% 

2. Using irrelevant information 

(Such as: small boy is too small) 

59 12.9%  68 13.54% 

3. Describing the flag’s speed  

    (Such as gradually or slowly) 

27 5.92%  29 5.78% 

4.  Other/I don’t know  30 6.58%  29 5.78% 

5.  No response 68 17.11%  36 7.11% 

 

 

 

        The most frequent error made by students is Error 1: “Describing a life picture of 

flag.” The next frequent ones are Error 2: “Using other irrelevant information” and 

Error 3 “Describing the flag’s speed.”. What follows is the detailed analysis: 

           Describing a life picture of flag. Many students (34.87% in the pretest and 

35.26% in the posttest) chose answer B or D and explained the graph directly based on 

their real life experience. As a result, they only considered the variable of “height” 

without considering the independent variable “time”. It is worth-noting that the 

“vertical” line is obviously consistent with the real life situation “flag pole” or “the way 
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the flag goes.” Therefore, many students just thought of the vertical line as the flag pole 

and the horizontal line as the ground. That is why so many students chose B.  

         Numerous articles have documented the effects of prior experience and informal 

knowledge on students’ learning (Davis & Vinner, 1986). Students’ responses to this 

problem clearly indicate that students were influenced by their prior knowledge. 

34.87% of students’ errors were related to their understanding of real life experience in 

the pretest and 35.62% in the posttest. They exactly described how to raise a flag 

(Graph B) or what the flag looked like when it was raised (Graph D) without paying 

attention to the mathematical meaning. In other words, those students confused a graph 

the with the real life pictures.                                                        

One possible reason behind these errors is that students are frequently asked 

to generate table values (Swan, 1982). Another explanation was provided by Davis and 

Vinner (1986, p. 284): 

       The error is a retrieval or choice error, quite akin to reaching for an old  

telephone directory instead of a new one. Thus the presentation by a student of an 

old (and incorrect) idea cannot be taken as evidence that the students does not 

know the correct idea. In many cases the student knows both, but has retrieved 

the old idea. 

        Graph is a new concept which is a contrast to common sense about the 

relationship between two things for middle school students. Flag-raising is a situation 

with which students are well acquainted. When the problem comes to them, it is easier 

and more natural for many students to retrieve their familiar life knowledge to explain 
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what happened. The following answers provide evidence for the above claims. Both 

Student 1 and 2 in Figure 4.3 emphasized the direction of raising a flag while Student 3 

referred to the position that the flag stands to explain why that graph was chosen. 

Because this kind of error happens often, teachers should be aware of the influence of 

students’ prior knowledge and experiences on new learning.  

 

Student 1: 

  
          This student confused the height of a flag in real life and the height of a flag 

represented by a graph. The student only considered the dependent variable without 

considering time: the independent variable.  

Student 2:  

 
        This student chose graph D. This graph looks like a static flag when it reaches 

the highest point and stays horizontally. This type of response showed that students 

did not understand the meaning of the problem. 

Student 3: 

 
 
  

                        Figure 4.3. Typical responses based on students’ life experiences. 
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 Using irrelevant information.  Most problems afford adequate information for 

students. Some information is necessary and important for solving a problem while other 

information is useless or can be replaced. The ability to grasp important information 

demonstrates students’ understanding of mathematical concepts. High-achieving 

students or experts can quickly identify important information and mathematical 

meaning from a problem. In contrast, low-achieving students may have trouble 

distinguishing useful information from irrelevant information. Regarding this problem, 

many students paid attention to totally irrelevant information such as “small boy.” Based 

on this irrelevant information, it was hard for students to give a reasonable mathematical 

explanation. Student 4 (see Figure 4.4) answered correctly with “A,” but he did not 

provide enough explanation about why he chose “A.” He talked about how the muscles 

of this small boy might affect the graph selection. This student’s further suggestion, 

“next time may I suggest that you specify how small the boy really is,” more clearly 

states that such information about “how small” was very important for him to choose his  

answer. 
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                       Figure 4.4.  Students’ answer based on irrelevant information. 

  

 

 

        Describing the flag’s speed .  According to the project scoring rubric, it is 

evaluated as an incomplete explanation if students were unable to provide evidence of 

understanding: (1) the height changed over time, and (2) the change is steady. Students 

should recognize that graph A reflects a linear relationship between height and time, 

which means the speed of raising this flag is constant although the height of the flag is 

changing over time.  Students need to show such understanding of graph A by using key 

words like “steadily” rather than “gradually” or “slowly.” For C, students need to 

mention that the small boy stopped pulling the flag for a while during which the height 

of flag did not increase, and then the small boy raised it steadily again. Only a few 

students (10.01%) used “steadily” to explain why they chose graph A or C.  

One student chose C and gave the following explanation (see Figure 4.5): 
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Student 5  

 

                
                          Figure 4.5. Students’ interpretation of the meaning of graph. 
 

 

 

 This student correctly understands the horizontal line on the graph as “time.” He 

also clearly shows his understanding of what the vertical and horizontal lines mean. This 

explanation demonstrated students’ awareness of mathematical meanings and the ideas 

behind life pictures. This student was able to use an accurate mathematics language-

graph to describe and represent a life situation. Another student used more formal 

mathematics language to explain why he selected graph A (see Figure 4.6): 
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                   Figure 4.6. Using formal mathematics language to explain graph. 
                    

 

         This student realized and understood that graph A represented a linear relationship 

between height and time. He also gave correct explanations of what “linear” means  

regarding this problem, that is, “the boy was raising the flag at a constant rate.”       

          

4.1.3 Value of car not linear (Q13) 

         This problem is to assess students’ understandings of a linear relationship. Most 

students are very familiar with the real life situation between a car’s value and its age. 

Similar to the last problem, it is valuable to see whether students can find the 

mathematical meaning behind the real life situation, and whether they can retrieve 

correct mathematics knowledge to explain this problem.  If the students correctly 

retrieve correct mathematics knowledge, it is important to know whether they have a 

sound understanding of such knowledge.  

          The ability to use property of function to solve problems is an indication of 

understanding function as an object. On the other hand, finding a pattern in terms of 

table values only requires process-oriented thinking. According to the project assessment 
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experts, students need to show the understanding of linearity as a constant change in 

order to be given a full score. If students only saw a regular pattern without clearly 

stating whether there was a constant difference and what the constant difference meant, 

these responses were considered to be incomplete.  

          Students’ wrong or incomplete explanations of this problem were classified into 

the following categories and the frequencies of errors were reported in Table 4.9: 

(1) The students only described what the real situation looks like without considering  

 the mathematics meaning behind such a real situation. For example, the car will 

 become cheaper if it was used too long.  

(2) Misunderstanding “linearity” as a constant ratio rather than “a constant difference” 

over equal intervals. Many students found the car value decreased by ½ comparing 

with that of the last year. They misunderstood the “1/2” as a constant change. As a 

result, a linear relationship was recognized by those students based on the pattern 

they generalized from the values of the car.  

(3) Misunderstanding “linearity” as a certain direction. 

(4) Students knew the definition of linearity but failed to answer this problem. 
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Table 4.9 
Students’ errors in understanding linearity relationship (car value) 

 
Pretest (N=456) Posttest (N=506)  

Error Type Frequency Percentage

 

Frequency Percentage

1. Describing a real life          68 14.9%  66 13.04% 

2. Considering linearity as 
ratio                             

57 12.5%  101 19.96% 

3. Considering linearity as  
      direction      

28 6.1%  21 4.15% 

4. Write a definition               
       without explanation 

12 2.6%  13 2.57% 

5.   I don’t know                       53 11.6%  41 8.1% 

6.   No response                        179 39.25%  95 18.77% 

  

 

In Table 4.9, except for Error 5 (no response) and Error 6 (I do not know), the most 

frequent error is “Describing a real life,” “Considering linearity as ratio,” and 

“Considering linearity as direction” respectively. It is a little surprising the percentage 

of students who made Error 2 “considering linearity as ratio” increased from 12.55% 

in the pretest to 20.11% in the posttest. This increase demonstrated that students’ 

ability to find the pattern improved but they still failed to understand the meaning of 

“linearity.” What follows are detailed information and analysis of these errors. 

     Describing a real life. For the second type of errors, students were distracted by 

the unrelated information such as how expensive the car was. Many students provided 
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explanations based on their real life knowledge about cars without paying attention to 

the mathematics meaning. The typical students’ response is included in Figure 4.7: 

 

 

  Student 1:  

 

 

 

 

 

Comment: This student only described a real life picture for what happened to a 

new car over time. He did not grasp any mathematical meaning behind this real 

life situation.                                                                                           

   
                    Figure 4.7. Students’ response to Q15 using life experience only.  
 

 

  Considering linearity as ratio. Mathematics meaning of linearity means 

constant difference over equal intervals of an independent variable. The graph 

representation is a line with a constant slope and its symbolic form is a linear equation. 

Many students misunderstand the constant ratio as the meaning of linearity. Some 

considered the change of independent variables without considering whether such 
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change is over same equal interval (see the Figure 4.8 and Figure 4.9). For example, 

one student found that the car values decreased by half compared to the car’s value of 

the last year. Such explanations demonstrated that students had some understanding of 

linearity by relating linearity to “constant.” However, they did not really know what 

“constant” means.   

 

 

 
            Figure 4.8. Understanding linearity as ratio without considering another variable. 
 

 

Student 1:  

Comment: This student showed the linear relationship means constant change. 

Another variable, age of car, was also mentioned by the student. However, this 

student is wrong at calculating the amount of change. 
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            Figure 4.9. Misunderstanding linearity as ratio with considering another 
                              variable. 
 

 

 Considering linearity as inverse relationship. Some students pointed out in their 

responses that as the age of the car increased, the values of the car decreased, so the 

relationship between them was linear (or nonlinear). Those students misunderstood 

negative (or positive) correlation as a linear or nonlinear relationship.  

 Write a definition without explanation. Students could clearly state what the 

linearity meant but they failed to use this to explain why the relationship was non-linear. 

 

4.1.5   “19 = 3 + 4y” (Q16) 

             This problem assesses students’ ability to solve a linear equation. There are 

several potential difficulties for students. First, the structure of this equation is different 

from the ones that students are familiar with, that is, the left side is the number while the 

right side contains an unknown number. Students should be able to understand that the 

Student 2: 

 

Comment: This student had the same errors as the above student. However, this 

student realized that it was necessary to consider the change over another variable---

time. “Increase by one year” demonstrated “equal time”. 
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order in the equation does not matter because the equation has a symmetry property. 

Second, this problem uses “y” rather than “x” to represent an unknown variable. Some 

students assume that only “x” could be used to represent an unknown quantity. Such 

misunderstanding might cause some errors in students’ solutions. Finally, this problem is 

related to the understanding of the algebra expression. Some students may not 

understand what the “4y” represents, or not understand the structure of 3 + 4y. For 

example, some students in this study misunderstood 3 + 4y as 3 + 4 + y, (3 + 4) y, 3 x 4 

+ y, etc. Students’ errors in their solution were classified into six types in Table 4.10.  

 

Table 4.10 
Students’ errors in Q16: 19=3+4y 
 

Pretest (N=456) Posttest (N=506)  
 

Types of errors Frequency Percent 

 

Frequency Percent 

1. Add 3 and 4 first 
      (19=7y, y=2.7) 
 

5 1.1%  9 1.77% 

2.Running equation:  
      (4 y = 4 x 4 = 16+3 = 19)     
           

34 7.45%  96 18.97% 

3. Divided by 4  
      (4.75  = 3 + y)      
                

1 0.2%  1 0.19% 

4. y=12   (3+4=7, 19-7=12)    
                         

31 6.8%  78 15.41% 

5. y=2     (4y = y4 )                     2 0.6%  3 0.59% 

6. y=16   (confuse 4y with y)     9 1.96%  8 1.58% 

7. y= x 4                                     4 0.66%  3 0.59% 
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Table 4.10 (Continued) 

Pretest (N=456) Posttest (N=506)  
 

Types of errors Frequency Percent 

 

Frequency Percent 

8. others/ I don’t know               37 8.1%  31 6.1% 

9. No response                            272 59.6%  143 28.26% 

 

 

Error 1(add 3 and 4 first) and Error 4 (y = 12). These two types of errors were similar 

and most often found because in both situations, students first added “3” and “4.” The 

difference is that the structure of “3+4y” was misunderstood as “(3+4) y” in Error 1, 

while as “3+4+y” in Error 4. These students followed algorithms about solving linear 

equations very well in the remaining steps (see Figure 4.10 for typical students’ 

response). That is, except for the first step of misunderstanding “3+4y” as “(3+4)y” or 

“3+4+y”, the remaining steps of solving the equation were completely correct.   
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Student1: Example for Error 1.  

 

 

Student 2: Example for Error 4.  

     
                        Figure 4.10.  Examples of students’ answers for error 1 and error 4.  

 

 

 It is easier to underestimate learning complexity by attributing students’ errors to 

wrongly following an algorithm (Schoefeld, 1986). For this problem, the standard 

algorithm is to add and/or multiply the same number to both sides to simplify this 

equation. For example, students can add “-3” or multiply “1/4” to both sides first. 

However, in the above examples, both students added 3 and 4 first. Student 1 used the 

method of “trial and error” to find a solution while Student 2 subtracted 7 from 19. 

Though the two students were aware of the algorithm of solving this equation, they had 

trouble understanding the algebra expression of 3+4y. Therefore, they arrived at 

incorrect answers 2.7 and 12 respectively. Figure 4.11 clearly shows a typical error 

response.  
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                           Figure 4.11. Example of adding 3 and 4 first.  

 

 

When students’ responses contained more than one error, their answers would be 

coded in terms of the major error type.  Figure 4.12 shows a typical example. In this 

situation, the student’s response is coded as Error 4. The main mistake here was that this 

student misunderstood the structure of 3+4y as 3+4+y as reflected in above figures. In 

fact, this student quite well understood the process of solving a simple linear equation. 

For example, he correctly solved the equation: 12=4y. This student was not aware that 

“3+4y” was the same as “ y×+ 43 ”.He might think of the omitted sign “x” as “+,” 

which caused his error. 
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Students 3:  

 

 
             Figure 4.12. Student’s response contains more than one error. 

 

 

       Error 2: Running equation.  Regarding this type of error, students got the 

correct answer but explained why y = 4 by using running equations.  In the pretest, 34 

students used this approach while 96 students did so in the posttest. The increased 

number of students who got the correct answer, 4, demonstrated that students made 

progress in solving equations (at least their ability to reasonably guess). However, the 

error of running equations might reflect other problems about students’ understanding of 

equations. Such errors are ignored or endured by many teachers. Moreover, some 

teachers even write such forms themselves (Ding, Li, Capraro, & Kulm, 2006). 

Convenience was thought as an explanation why both teachers and students tend to make 

such mistakes. On the other hand, this inaccurate written form is one of the important 

reasons why students tend to misunderstand “equal sign” as “to do something” or 
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“association.” This form is strongly against the fundamental properties of equation such 

as equivalence, symmetry, or transitivity (Kieran, 1992).  As we mentioned before, there 

were more students in the posttest using a running equation than that of the pretest. 

Except for the reason of students’ improved skills in solving equations (e.g., more 

students got the correct answer, 4), it might also be due to students’ being exposed to 

instructions with inaccurate symbolic representations (e.g., more explanations were 

problematic). Because of this, some researchers believe misconceptions might be 

reinforced by incorrect instructions. Teachers need to set good examples of how to use 

mathematics symbols as accurately as possible.  

          Error 3:  Divided part of the terms in the equation by 4.   The third type of 

error is rare in both pretest and posttest. The main reason is because few students used an 

algebra approach. Students should perform the same operations on each side, but the 

principles behind the operations may not be easily understood by students. They need to 

understand that the same operation on both sides of an equation maintains the “equality” 

of the equation. 

 The main error in this type was that some students did the division on both sides 

but not on each item of both sides. For example, some students divided 19 by 4 on the 

left side and 4y by 4 on the right side. They forgot the item “3”; thus, they got the 

equation: 19/4 = 3 + y.  Actually, the standard algorithm is as simple and direct as “the 

algorithm of whole number addition and subtraction.” The rule is to divide every item by 

the same number. Resnick (1982) maintained that students actually have excellent 

abilities to follow procedures. However, why do students “forget” to divide every term 
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in the equation? Why do they use the wrong procedures?  A reasonable explanation here 

is that students might have a “bug algorithm” when they try to solve this equation by 

using “divide by 4.”  

The “bug algorithm” in this problem might be caused by students’ confusion of 

“dividing by the same number on both sides” with the similar algorithm of “subtracting 

the same number from both sides.” Students usually learn how to solve an equation first 

by subtracting the same number from both sides. In this problem, they need to subtract 3 

from “19” in the left side and subtract 3 from “3 + 4y” on the right side. If students are 

unable to see structure “3+4y” as an object, they may misunderstand the actual 

subtraction process as 19-3 = (3-3) +4y, rather than 19 -3 = (3 + 4y) -3. Therefore, they 

might invent an algorithm: “to operate on some items in each side rather than on algebra 

expressions.” Therefore, when they learn how to use division to solve such an equation, 

they may tend to divide only one term in the right side rather than each term. 

In a few words, there are two mathematics principles behind the algorithms of solving 

the linear equation. Students will have trouble if they only memorize the rules without 

understanding the underlying mathematics principles.  

          Error 5, Error 6, and Error 7.   Error 5 is misunderstanding 4y as y4 . This type 

of error can be traced to the understanding of “3+4y.” Students misunderstood 4y as y4  

partly because they knew an expression such as y4 contains no operation sign between 

the number and the letter. In contrast, the common expression “4 y× ” contains a “x” 

sign. Therefore, some students might be uncomfortable with the expression “4y” when 
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the “x” is omitted. Such inferences were confirmed by Error 7: y = x 4.  Figure 4.13 

provide students’ errors of type 5 and type 7: 

 

 

Student : Example for Error 5. 

 

Student   Example for Error 7. 

 

          
                    Figure 4.13. Example for students’ responses for error 5 and 7. 
 

 

The above errors showed that students’ difficulties were not from the procedures of 

solving equations but from the understanding of variable and algebra expression. Some 

students’ errors showed more clearly that they had difficulties in understanding “4y” as 
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“4 y× ”. This type of error also showed that students experienced difficulty 

understanding algebra expressions as a representation of a number even if they could use 

a letter to represent the number. Such difficulties were also reflected in Error 6: 

confused 4y with y (see Figure 4.14). 

 

 

Student example 

 

                        
                         Figure 4.14. Example of student’s response in error 6. 
 

 

 Another interesting finding is that many students did not respond to this problem. 

In the pretest, 272 students (59.65%) did not answer this question while 143 (28.49%) 

did not answer in the posttest. Students might not be familiar with the equation form 

when the left side is a specific number and the right side is an algebraic expression. If 

students knew the transitive property of equations, it would be easy for them to change 

the unfamiliar form into the familiar one: 3+4y=19, and some students did that. The use 

of the running equation to justify their answers actually partly showed these students’ 



 116

 
 

understanding of the transitivity of equation. This is because these students normally 

wrote the equation this way: 4 x 4 =16 + 3 =19 without rewriting it as 19 = 3 + 4 x 4.  

 
 
4.1.6 Apple Trees/Pine Trees and Stones/Bricks (Q 8) 

 
This problem contains four sub-questions. These questions are related to 

students’ real life. Students were asked to understand the patterns demonstrated by the 

figures in this problem. The first sub-problem is very easy for most students because 

they only need to count the number of bricks. The second problem is a little harder. 

Students need to fill in the missing numbers based on available information. To find and 

write the pattern is thought to be an important step for the transition from arithmetic to 

algebra thinking (NCTM, 2000) because “the crux of algebraic thinking is the 

recognition of patterns” (Moses, 1999, p.98). In this study, we only analyze the third and 

fourth sub-problems: Q8(C) and Q8(D) in detail. 

Q8 (C) is harder than the first two questions for many students. Students need the 

following abilities: (1) able to interpret what “n” represents (2) able to understand that 

nn •  and n•8 could stand for the number of pines or apple trees (bricks and stones) (3) 

able to retrieve a proper algorithm to solve this problem. Another possible approach is 

that students can list the table value (arithmetic approach) to solve this problem. 

Regarding the solving strategies, there are mainly two types: algebra and arithmetic. If 

students used a formula to get the answer 8, the strategy is assumed to be algebraic. If 

students only extended the table to get the answer, the method is claimed as an 
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arithmetic method even if they substitute the value for the n in the formula. Students’ 

errors in this question were classified into five categories as shown in Table 4.11: 

 

 

Table 4.11 
Students’ errors in solving apple tree (stone) problems 
 

Pretest (N=456) Posttest (N=506) Types of errors 

Frequency Percentage

 

Frequency Percentage 

1.Guessing without 
    explanations                 

64 14.03%  62 12.25% 

2. Misunderstanding “n”        36 7.89%  40 7.9% 

3. Adding all numbers            25 5.48%  26 5.13% 

4. Describing unrelated  
patterns                  

9 1.97%  7 1.38% 

5. Don’t know                        61 13.37%  66 13.4% 

6. No response                        117 15.65%  87 17.19% 

 

 

These errors are explained in detail in the following paragraph in terms of their  

solution strategies or possible error sources.  

  Guessing without any explanation. Some students might solve this problem 

intuitively, but did not provide a proper explanation;  

Misinterpreting “n” as the number of pine or apple trees / the number of bricks 

or stones (see Figure 4.15). Since mathematics is a language, the correct understanding 
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of the meaning of symbols is a prerequisite to learning mathematics, especially algebra. 

In this problem, “n” was clearly stated as “number of rows of stones” and students were 

asked to find the value for “n.” Students’ misunderstanding of “n” includes two 

situations: (a) misunderstanding n as the number of apple trees/stones, and (b) relating 

their answers to “equality.” Some students responded to this problem by looking at the 

incomplete table in the problem and found that there were two equal numbers in the 

table. When n=4, the number of stones is 16; when n=2, the number of bricks is also 16, 

as a result, the students concluded that n was equal to 2.  

Students may just add all numbers to get the answer (see Figure 4.16).  Some 

students may just add all numerical values when they did not figure a way to solve the 

problem. 

Some students just describe a pattern (see Figure 4.17). Such as, “n” increases 

by 1. The possible reason may be due to their prior experience. Students are asked to 

write a pattern in terms of table values. Such exercises appear frequently in many 

textbooks. 
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                         Figure 4.15. Example for misunderstanding “n” as the number of  
                                              apple trees/stones. 
 

 

 

 

       
                        Figure 4.16. Example for adding all numbers. 
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                       Figure 4.17. Students used unrelated patterns. 
 

 

 Q8 (D) is the toughest problem in the entire test. Students should be able to 

understand the meaning of “increase quickly.” They need to distinguish between 

“increase quicker” and “larger amount.” To increase quicker means the amount 

differences are larger in the same interval. The “larger amount” is the result of increasing. 

The main errors follow: (1) Using the existing table to give an incomplete explanation. 

Students make a judgment based only on the current table without extending the table to 

include more cases; (2) Border is large, thus pine or stone in the border will increase 

faster. Some students thought the border was larger because the border surrounds the 

inside parts; (3) Brick or pine is small so it takes more bricks (pines) for every stone 

(apple trees); (4) Using wrong patterns, such as: for every one pine tree, there are eight 

apple trees (for every one stone, there are eight bricks); and (5) Misunderstanding 

“quick” and “more.” Table 4.12 shows students’ errors in solving this problem 
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Table 4.12 
Students’ errors in solving 8 (D) 
 

Pretest (N=456) Posttest (N=506) 
 

Types of errors 

Frequency Percentage

 

Frequency Percentage

1. Incomplete table                      24  5.26%  44 8.69% 

2. Border explanation                  51 11.18%  39 7.70% 

3. Brick (pine) is small                20 4.38%  16 3.16% 

4. Wrong pattern                         62 13.59%  52 10.27% 

5. Misunderstand “quick” and  
      “more”                              

81 17.76%  108 21.34% 

6. Others /don’t know                 52 11.40%  58 11.46% 

7. No response                            99 21.70%  60 11.86% 

 

 

Figure 4.18, Figure 4.19, and Figure 4.20 show students’ typical responses 

corresponding to the above errors:  
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Example for Error1 

 

Comment: This student looks at an incomplete table to obtain the wrong answer 

Example for Error 2 

 

Comment: This student wrongly assumes the border will need more bricks 

(pines) to cover up. The response also showed that the student misunderstood 

“quick” and “more,” too. “The border is larger” is a wrong common sense 

assumption. 

 
                Figure 4.18. Typical students’ response for error 1 and Error 2. 
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Example for Error 3 

  

  Comment: Students wrongly used unrelated information that the brick 

 is small so more bricks are needed to take space. Again, many students  

who explained this way also misunderstood “quick” and “more.” 

 

Example for Error 4 

 

 Comment: Students invented the wrong patterns for the relationship between  

 bricks and stones. Such a response also shows that this student misunderstood  

 “quick” and “more.” 

  
                       Figure 4.19. Typical students’ responses for error 3 and error 4.    
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Example  for Error 5 

     

 

Comment: This example clearly illustrates the student’s misunderstanding of 

“ more” and “quick.” This student found that the number of pine trees and apple 

tress were equal when n=8. This student pointed out that in 1-7 the pine trees 

grew quicker and apple trees would increase when n was greater than 9. 

 

 
                        Figure 4.20. Typical student’s response for error 5.  
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4.2 The Results of Identified Misconceptions 

 

 As the previous task analysis shows, most items can be solved in only one step. 

Students normally simply apply their understanding of the corresponding conceptual 

knowledge to the problems. That is, if students had a sound understanding of variable, 

equation, and function, they should perform well on these items.  

   In this section, I address the misconceptions underlying the errors identified in 

the prior section. The misconceptions related to variable, equation, and function will be 

reported in order. In each subsection, I begin with analyzing the most common errors in 

both pretest and posttest, across different problems.  After that, I will identify possible 

misconceptions behind these errors.  

 

4.2.1 What are the misconceptions of “variable”? 

Students’ errors related to the misconceptions of “variable” across different 

problems are reported in Table 4.13 
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Table 4.13 
Frequency of students’ errors across Q9, Q15 and Q16 
 

Q 9 Q 15 Q 16  

Types of Errors Pre Post Pre Post Pre Post 

1. Refer to specific  38 27 44 73   

2. Wrong combination  19 10   70 83 

3. Label 17 19 18 18   

4. Reversed equations                      54 220     

5 No response 76 42 81 77 276 141 

 Note. Npre=456; Npst=506. 

 

The data in the above table illustrate two misconceptions of variable: (1) the 

misconception of a variable as a specific value, and (2) the misconception of a variable 

as a label. What follows is a detailed analysis of misconceptions based on Table 4.13: 

 The misconception of a variable as a specific value. Students tend to relate a 

variable to a specific value (Error 1 in Table 4.13). Q9 asked students to write an 

equation representing the relationship between Tachi and Bill’s ages, and many students 

(38 in pretest and 27 in posttest) referred to specific values. The same type of error also 

happened in Q15, where students were asked to name a variable under the condition that 

an example of a variable was provided. The number of this type of error increased in 

students’ posttest (14.42%, 73 students) compared with the pretest (9.64%, 44 students).  



 127

 
 

Students also tend to combine an algebra expression such as T+1 into T1 or 3+4y 

into 7y (Error 2 in above table).  Such errors are believed to have the same conceptual 

basis as Error 1, that is, students are unable to operate on or with variables. According to 

Kieran (1992), students’ preference to interpret a variable as a specific value and do 

arithmetic operations on them caused such types of errors. This type of errors occurred 

in both Q9 and Q16, with an especially high frequency in Q16. 

According to our standards of misconceptions, the conceptual–based errors 

should occur in different contexts (different problems) and at different times (both pre 

and posttest). Therefore, “understanding a variable as a specific unknown value,”  as 

reflected by students’ errors in both Q 9 and Q15 as well as Q16 in pre and posttest,  is a 

misconception held by many students. 

          The misconception of a variable as a label.  As shown in the above table, Error 3, 

“understanding a variable as a label,” was also very common. In Q9, 17 students in the 

pretest and 19 in the posttest were found to misuse “variable” as label. This type of error 

was also found in Q15, where 18 students in pretest and 18 in posttest clearly answered 

another variable is “donuts” or “Jack’s donuts” (see Table 4.13). When students view a 

variable as a label, they might be uncomfortable operating on it as a number. This 

inference is supported by students’ answers in multiple choice problem Q2 (for Q2, see 

Appendix 4), where students were required to choose an equation to represent the 

relationship between Mary’s and Julie’s cards. The correct answer is C (see Table 4.14).  

The big difference among the wrong answers is that there is no operational sign in 

expression A (3x=36), while there is a “+” sign in both B(x+3=36), and D (3x+36=x). 
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Though the problem itself clearly states the key word “in all” which corresponds to the 

additional signs in both B and D, most students still selected A: 

          

         Table 4.14 
         Students in Q2: Equation and variable problems 
 

 Q  2 

Answer   Pretest (N=456) Posttest (N=506) 

A. 3x=36 154 150 

B. x+3=36 49 32 

C. x+3x=36 211 284 

D. 3x+36=x    52 40 

 

 

One reasonable interpretation is that, these students might misunderstand variable as 

“label,” thus they were uncomfortable seeing a variable operating with a number. Since 

there is no operational sign in expression A, most students in both pre (154 students) and 

posttest (150 students) selected this one. 

    In a word, two major misconceptions with variables were identified, one is 

misunderstanding a variable as a specific value and the other is misunderstanding a 

variable as a label.  
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4.2.2 How did students misunderstand “equation”?   

 As mentioned earlier, students’ misconceptions of the equal sign and equity 

identified by most studies is “misunderstanding equal sign as to do something.” The 

problem used most often is one in the form, =+ 48  +5 (Carpenter, et al., 2003; 

Falkner, et al., 1999). In prior studies, most students filled the box with “12.” According 

to the assumption of this misconception, the misconception of “equal sign” should be 

found in different contexts across different people. Was such a misconception also found 

in algebra? According to the assessment map (see Appendix 2), items Q1, Q4, Q9, and 

Q16 were used to analyze students’ conceptions of equal sign and equality. The related 

errors are reported in Table 4.15. 

 

Table 4.15 
Frequency of students’ errors related to “equal sign” across Q 9 and Q16 
 
  Q 9 (Tachi and Bill)  Q16(19=3+4y) 

Error Type  Pretest Posttest  Pretest Posttest 

Using equal sign as association       21 21    

Running equation                                25 82 

 

    

          In responding to Q9, students wrote the equation like “T-B = difference” or “T = 

one year older than B.” Students may just use the “=” as everyday language “is.” Such a 

use of “=” was also found in the popular textbook: Mathematics Application and 
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Connections (Collins, Dritsas, Frey-Mason, & Howard, 1998), whereby students were 

required to finish the following item:  

Melanie made a long-distance call to her grandfather. The first 3 minutes cost $2, 

and each minute after that cost $0.5. How many minutes did they talk on the phone if 

the total cost of the call was $10? (p.473) 

In the same page, this textbook also provides the following explanation about how to 

translate the word problem into symbolic form:  

 

The cost of      $2 for the first                         $0.5 per                         the number of 
Phone call    is    3 minutes             plus           minute            times               minute 

   
   
 
       10           =        2                        +                  0.5               x                      m  
 
 

This use of the “equal sign” as shown in the textbook may cause a misunderstanding of 

the equal sign as an association. In the posttest, more students used running equations. 

Many teachers tolerate them and may even use running equations in their own teaching 

(Ding, Li, Capraro, & Kulm, 2006). It is unknown whether this use of the equal sign is 

caused by the misunderstanding of “equal sign” or just writing convenience. According 

to Carpenter et al. (2003), equations like this, =12 + 4, are more difficult than 

=+ 48 + 5. Students’ performance on this kind of equation is reported below (see 

Table 4.16) 
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      Table 4.16 
     Frequency of students’ performance in equation problems 
 

                Q1 (43=-28)  Q10 (a=b-2)  Q16(19=3+4y) 

Answers Pretest Posttest  Pretest Posttest  Pretest Posttest 

A 15 184 139  186 278  56 163 

B 25 15 12       

C 61 18 9       

D 71 242 341       

       Note. Q10, and Q16 only provide the frequency of students’ correct performance. 

 

The items in Table 4.16 have common characteristics. The first one is most simple and 

also most students answered it correctly. The second one is harder in that there are two 

variables. And the third one is most difficult because students need to understand the 

structure of algebra expression well.  The earlier error analysis of the problems Q1 and 

Q16 showed that students have more difficulty understanding variables and algebra 

expression rather than the “equal sign.”  

 

 4.2.3 How did students misunderstand function?  

 At the middle school level, students should understand how the change in one 

variable causes change in another. Moreover, students need to know linear or nonlinear 

functions, be able to use a graph to represent a function, and be able to compare different 
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functions, for example, the speed of change.  Table 4.17 reports the errors made by 

students in different problems.  

  

Table 4.17 
 Students’ responses for the multiple choice of function  
 

               Q5  Q6  Q7  

Item  Pre post  Pre Post  pre post 

Correct  314 404  153 195  286 387 

Note. Npre = 456, Npost = 506. 

 

Students did very well in both Q5 and Q7.  For Q5, students need to find the pattern 

between two variables. For Q7, they must note how the value of y changes as that of x 

changes. For the Q6, students must answer whether there is a relationship and what the 

relationship is. Although in the multiple choice problems, students’ are very well aware 

that function is about the relationship, they tended to consider function as the change of 

one variable which is the first misconception I identified from students’ errors. Table 

4.18 shows students’ error responses about function in different problems: 
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Table 4.18 
Students’ error responses about function in Q11, and Q13 
 

Q11 (raising flag)  Q13 (car value)  

Pretest          Posttest  Pretest       Posttest 

Understanding function 
without considering 
another variable  

159                 178 

(34.87%)       (35.26%) 

 57                102 

   (12.55%)         (20.11%) 

 

 

For Q11, small boy raising a flag, many students chose B or C (159 students in pretest 

and 178 students in posttest (see Table 4.18). The typical reason is that, the flag leaves 

the ground.  The choice of B or C for most students is due to the direction of the flag’s 

raising. However, these students did not consider another variable: time. Only a few 

students used words such as “gradually,” “slowly,” “pause,” “steadily,” or “break.” The 

use of such words is thought to be a sign of understanding the relationship between 

height and ground.  Such a misunderstanding of function is more obviously 

demonstrated by Q13. Many students (57 students in the pretest and 102 students in the 

posttest, see Table 4.18) thought it was a linear relationship between the car’s value and 

the age of the car. In fact, these students only compared the value of car difference 

without considering the time factor. That is, they did not mention that linear means a 

constant difference over equal time (equal interval).  

Another misconception demonstrated by students in Q8 (D) is “the more, the 

quicker.” Many students first compared the number of bricks (or pine trees) to the 
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numbers of stones (apple trees), then they claimed that the number of stones (apple trees) 

will increase quicker than that of the bricks (pine trees). The typical reason held by these 

students is that there will be more bricks after n > 8. Such a confusing of “amount” and 

“rate” was clearly demonstrated in students’ responses. 

 

4.2.4 A statistical analysis of students’ misconception: Test of the robustness of 

misconceptions. 

 A statistical test for the difference between two population proportions was used 

to test the change of students’ errors related to misconceptions in the pre and posttests.  

“This test should be used only if n1π1, n1(1- π1), n2 π2, n2(1- π1) are all at least 5” (Ott & 

Longnecker, 2001, p.486). This assumption was tested and met for this study. Table 4.19 

shows the results of students’ error changes: 

     

 Table 4.19 
  The change of students’ errors related to misconceptions 
 

Percent of Error Error  Change  

Concept 

 

Item  Pre (n=456) Post(n=506)  Z P (а <.05) 

Variable Q9 8% 5%  3.096348 .0008 

 Q15 9.6% 14%  -2.85243 .002 

Equation Q16 5% 16%  -6.74945 <.001 

Function Q11 35% 35%  0 .4801 

 Q13 13% 20%  -3.93653 <.001 
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As the above table shows, students made fewer errors in post test of Q9, which means 

students’ understanding was significantly improved for this problem (P9 = .0008). 

However, students’ errors were not changed for Q11 from the pre to the posttest (p11 

= .4801). Surprisingly, students made more errors in Q15, Q16, and Q13 in the posttest. 

The error increases were also significant for all three (p15 = .002; p16 < .001; and p13 

< .001). In summary, students’ errors related to certain misconceptions did not decrease 

but increased, which demonstrates the robustness of misconceptions. 

 

4.3 Students’ Understanding of Concepts as Object and Process 

        As mentioned earlier, mathematics knowledge has a dual nature. Sfard (1991) &  

Sfard & Linchevski (1994) explored the importance and difficulties of students’ 

understanding concepts in the transition from process oriented to object oriented 

thinking. Chi (2005) investigated the robustness of misconceptions from a similar 

approach. She pointed out that the reason some misconceptions were extremely robust is 

because remediation of the misconceptions requires students’ transition from a process-

oriented to an object-oriented level.  Therefore, it is reasonable to assume that high-

achieving students (with few errors) understand some concepts at an object level while 

low-achieving students (with many errors) understand at a process level. The robustness 

to correction displayed by students’ misconceptions underlying these errors is mainly 

due to the difficulties of transition from different ontological levels.  
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In this study, I examined the top 10% high achieving (HA, N=37) and top 10% 

low achieving (LA, N=40) students’ understandings of variable, equation, and function 

in the posttest. Those students participated in both pre and posttest (N=320). Since some 

students’ scores are the same, more than 32 students in each group were selected. 

Students’ responses were coded at an ontological level according to the rubric developed 

in the methodology section. It is interesting to know whether there is a difference 

between the HA and LA students’ understandings of algebra concepts. It is also 

interesting to investigate whether the high achieving students are more likely to use 

object oriented thinking in problem solving. 

In this section, I begin with the report of general information of students’ 

performance for two groups of items. I then report detailed information about students’ 

solutions, which demonstrated ontological differences in their understanding of variable, 

equation, and function. 

 

4.3.1 The general information 

Report of students’ object and process-oriented thinking. According to 

students’ achievement (total score) on the posttest, 37 students were identified as high 

achieving (HA) students while 40 were identified as low achieving (LA) students. I first 

examined these students’ performance on two groups of problems. To solve the first 

group of problems (Q5, Q6, Q7, Q10, Q12; see Appendix 4), students’ understanding of 

algebra concepts must reach a process level, that is, process-oriented thinking is enough 

to solve those problems. To solve the second group of problems (Q8c, Q8d, Q9, Q11, 
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Q13, and Q16; see Appendix 4), students’ understanding of algebra concepts should 

reach an object level, that is, object-oriented thinking is necessary. Table 4.20 shows the 

number of students who correctly solved first and second group items.  

Table 4.20 shows that the LA (Low Achieving) group performed poorly compared with 

the HA group on every item. They did worse on the questions which required object -

oriented thinking.  

Secondly, I examined and compared the two groups of students’ understanding 

of the three algebra concepts at the ontological level in each short-response item (Q8c, 

Q8d, Q9, Q11, Q13, and Q16). Students’ understanding was coded as object-oriented 

thinking or process-oriented thinking. Table 4.21 shows the results. The justification of 

coding a student’s response as an object or process-thinking will be provided in 

subsection 4.3.2.  
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 Table 4.20 
The number of students who correctly solved the selected problems 
 

Problems Selected HA Students (N=37) LA Students (N=40) 

Q5 37 17 

Q6 37 9 

Q7 37 20 

Q10 37 8 

 

Process-

oriented 

thinking needed 

Q12 37 7 

Q8(C) 32 0 

Q8(D) 8 0 

Q9 31 3 

Q11 17 0 

Q13 18 0 

 

Object-oriented 

thinking needed 

Q16 34 0 
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  Table 4.21 
  Students’ object-oriented and process-oriented understanding  
 

 HA students (N=37)  LA Students (N=40) 

  
Object 

  
Process 

 Below 
Process/ 
NA  

  
Object

  
Process 

 Below 
Process/ 
NA 

Q8(C) 0  32  5  0    0  40 

Q8(D) 3  5   29  0  0  40 

Q9 31  0  6  3  8  29 

Q10 17  3  17  0  0  40 

Q13 15  3  19  0  0  40 

Q16 23   11  3  0  2  38 

 

 

 Interpretation of tables. There is a gap between HA and LA students’ 

performance in solving process-oriented problems. Moreover, the gap becomes larger in 

solving object-oriented problems. Only three students out of the LA group correctly 

answered one problem (Q9) and demonstrated object-thinking about variables. Eight of 

the students from the LA group demonstrated process-oriented thinking about variables 

because they refer to specific values. That means they know variables can represent 

numerical values. Some of them refer to a variable as a label which is below the process-

thinking level. HA students demonstrated more object-thinking about variable, equation, 

and function. However, most students at the middle school level had difficulties in using 
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symbolic forms of function to explain which is in a higher level. In general, HA 

students’ demonstrated much more object-oriented thinking than those in the LA group.  

 

4.3.2 The detailed information about coding object and process thinking 

In this subsection, I explain how students’ responses in the HA and LA groups 

were coded at the object or process levels.  Examples for each item are provided as 

evidence. 

             For Q5, Q6 and Q7, the solution required understanding how an  independent 

variable changes over a dependent variable. Such a view of function is process-oriented. 

The performance difference between HA and LA group for these problems is 

significantly smaller than the gap for other problems: Q8 (C ) (D), Q9, Q11, Q13 and 

Q16. 

As we analyzed before, the solution for those problems needs object-oriented thinking.  

The indication of students’ object-oriented or process-oriented thinking was 

demonstrated by students’ solution strategies. In general, the algebra approach  

corresponds to object–oriented thinking while the arithmetic approach reflects students’ 

process-oriented thinking.  Some problems such as Q8 (C), Q8 (D), or Q16 can be 

solved by both arithmetic approach (e.g., listing table values) or algebraic (e.g., using 

symbolic formula). The method of listing table values is called arithmetic is because 

such an approach obtains a general conclusion by looking at limited cases. 

 About Q8 (c). In this problem, some students listed a table value and found that 

the number of bricks and stones is equal when n=8. This approach cannot eliminate other 
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values, or justify why there are no other values which also met the requirements. No 

student used nn •= 82  to get the solution directly. Some students listed a table to solve 

this problem. The following examples are students’ typical arithmetic approaches (see 

Figure 4.21 and Figure 4.22). 

 

Student 1. 

 

                        
                        Figure 4.21.  Using table values to find the answer n=8. 
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      Student 2. 

     
                        Figure4.22. First guessing and then checking the answer. 
     

 

  Though the above approaches are correct, they were still coded as process-oriented 

thinking. The reason is that, these approaches were arithmetic. Student 1 simply 

compared the outputs of a function. Student 2 used “guess and check.” He/she made a 

comparison by referring to the formula. However, this student still used a specific value 

8 (although it is correct in this problem) to substitute for the letters in the functions. Such 

an approach was ontologically different from the way of solving nn •= 82 , that is, to 

eliminate the other possible values. Thus, Student 2 ’s method only verified whether 8 
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was a correct answer. As a result, students who used the second approach were still 

coded as using process-oriented thinking.  

 About Q8 (D).  In this problem, the main method used by students was to list a 

table and show how the number of stones increased more quickly. Figure 4.23 shows a 

typical answer.  

 

 

 

       
                    Figure 4.23. Students used the arithmetic approach to answer the problem. 
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 Students who used such an approach were coded as process-thinking because they did 

not directly use a formula (such as: n2 – (n-1)2 > 8). When students listed the table values, 

they focused on the input and output process, which is an arithmetic method. 

        In contrast, students’ understanding at an object level addressed a global pattern of 

function and went beyond the constituent levels---the input and output process. For 

example, they might draw a graph or point out the nonlinear characteristics of function. 

What follows are some typical answers (See Figure 4.24 and Figure 4.25)  

 

 

Student 1: 

 

 

 

 

 

 

 

 

 

                   
                        Figure 4.24.  A graph response indicating an object-oriented thinking. 
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This student drew a graph. Although he/she did not clearly and completely explain why 

“stones will increase more quickly.” this response was thought of as an algebra approach 

in that the student correctly drew two graphs and tried to compare their global properties; 

for example, which one is larger or quicker in the end. Such a comparison by using 

graphs does not need to go into the constituent level. Thus, this students’ understanding 

reached an object-oriented level.   

 

 

Student 2.  

 

 
                       Figure 4.25. Example of students’ object-oriented thinking. 
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Student 3. 

 

  
                         Figure 4.26. A response indicating object-oriented thinking. 
 

 

 

Student 3 in Figure 4.26 explored the process of changing the number of apple trees over 

the number of rows. However, this student did not stop where the “amount of increase” 

changed from 3, 5, 7, 9, …  He (she) gave an algebraic explanation of why apple trees 

increase more quickly from the linearity and nonlinearity of functions. If this student had 

not used the property of functions to explain his idea, it would have been coded as a 

process-oriented thinking. 

  About Q9. This question is about understanding variables. Students’ 

approaches to using specific numbers was an indication of process-oriented thinking 

about variables (Weinberg, 2004). Moreover, if students incorrectly combined letters and 
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numbers, such as T+1= T1, they were thought to be unable to operate on the variables. 

As a result, their understanding of variables was coded as  process-oriented thinking. In 

contrast, if students could correctly answer the problem by T=B+1 without referring to 

any specific values, it would be thought of as object-oriented thinking. As a result, the 

correct form “T=B+1” indicated that students had operated well on variables; that is, 

variables thus become the “objects” to be operated.  

         About Q11 and Q13. Students who are not very aware of the meaning of linearity 

had difficulty responding to these problems completely. For Q11, students need to 

interpret the “graph” as “steadily,” that is, be able to use mathematics language to 

interpret life situations. The students in the HA group used “steadily” or “linearity” to 

interpret why the graph they chose can describe the “raising flag.”  The example of 

students’ responses thought of as object-thinking were provided in the methodology 

section. If students used key words like “gradually,” or “slowly,” such answers are 

thought of as process-thinking.  Using these words showed that students understand that 

the height of the flag is changing. However, there is an ontological difference between 

recognition of a change and description of a change using mathematics language. If 

students only used key words like “go up” or “raise,” such responses were thought of as 

separating height from time. The students thought only about the height above the 

ground, not over time. Such responses will not be coded as object-oriented thinking.  

         For Q13, it is about the linearity of function. The algebraic way is to find the 

symbolic way to represent the pattern as this student did (see Figure 4.27).  
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          An example of the algebra approach and object-oriented thinking for Q13. The use 

of symbolic expression indicates that the student used the slope of linear function to 

support his answer. Such answers typically indicate that the student thinks of the function 

as an object by considering its global pattern without going into the constituent level.  

 
                       Figure 4.27. Students’ response indicating object-oriented thinking.  
 
 
 

 About Q16.Object and process thinking were mainly coded from their solution 

strategies. If students just guessed and checked to get the answer, they were categorized 

as process-thinking. This is because the guess and check process is mainly to compare 

the output value (by substituting y with the specific value) with 19. If students use an 

algebra approach, that is, they perform the same operation on the equation or use change 

side and change sign, then the students were coded as object-thinking about the equation 

in terms of the literature review.  

         In other words, if students thought about functions from the input-output 

perspective (for example, to answer Q5, Q6, and Q7 where students are asked to 
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calculate the output value or describe how to calculate output) or used this approach to 

answer the problem (for example, to use table values to answer Q8 (C) (D)), those 

students were coded as process-oriented thinking. If students used the characteristics of 

functions to interpret or solve the problems, used or wrote graphs, used or wrote 

symbolic forms of functions, or operated with functions like comparison of function or 

subtraction between functions, all of those were coded as object-oriented thinking. For 

other cases, students’ responses were not coded either object or process.  

It was found that the high-achieving students are more likely to use object-

oriented thinking in problem solving. In contrast, the low-achieving students who made 

many more errors either understand some concepts at a process level or, in some cases, 

below that level.  
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5. DISCUSSION AND CONCLUSION 

 

 The fundamental goal of this research is to explore why some students have 

difficulty learning school mathematics, including certain basic concepts. This study 

assumes that a better understanding of students’ systematic errors in basic mathematics 

concepts leads to a better understanding of students’ general mathematics learning 

principles, especially for those kids who fail to grasp basic mathematics concepts. This 

section includes discussion of misconceptions based on this study and further comments 

for future research and professional development. 

 

5.1 Basic Concerns  

 5.1.1 Do students misunderstand “equal sign” as “to do something”?  

 For quite some time, researchers investigating students’ misconceptions claimed 

that students tended to misunderstand “equal sign” as “to do something” and such 

misconceptions prevented students from further mathematics learning (Behr, Erlwanger, 

& Nichols 1980; Carpenter, et al, 2003; Sáenz-Ludlow & Walgamuth, 1998; Thompson 

& Babcock, 1978). In this study, some students made similar mistakes. However, they 

were found to perform reasonably well in solving problems such as “43= -28.” About 

53.10% of students correctly answered this question in the pretest while 67.39% did so 

in the posttest. For another problem, “a=b-2,” students also performed well (40.78% in 

the pretest and 54.94% in the posttest answered correctly).  Referring to the study 

conducted by Falkner, et al. (1999), they found that all 145 sixth-graders filled the box in 
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8+4=+5 with 12 or 17. Moreover, less than 10% of students can answer this problem at 

each grade level (also cited by Capenter et. al., 2003). The main reason for such bad 

performance was attributed to “misconception of equal sign.” I disagree with this 

attribution based on the results of my study. First, the students did reasonably well in the 

problems as mentioned before. If students had such a misconception of equal sign as “to 

do something,” they would have difficulty solving the problems like “43=⁭ -28” or 

“a=b-2”; however, their performance on these two problems was much better than that 

for the problem, 8+4=+5. Furthermore, according to a study that investigated Chinese 

and U.S. elementary students’ performance on similar problems (Ding, et al., 2006), 

about 99% of Chinese sixth graders and about 88% of Chinese second graders correctly 

answered those problems. If students truly have the robust misconception of the equal 

sign as claimed by Carpenter et al, it is expected that Chinese students would not do so 

well in this problem and American seventh and eighth graders in our study should also 

not do so well on these problems. This is because a robust misconception should hold 

across different people (including students from America, China and other countries).  

 So what kind of misconception does underlie the errors for the problem 8+4= 

⁭+5? I argue that the misconception of “8+4” was the cause of students’ errors. There 

are two interpretations of “8+4”; it can be thought as an algebraic expression 

representing the same amount as “12,” or it indicates an addition between 4 and 8, and 

the result of that operation is 12. In solving an equation, it is necessary to understand the 

left and right side as an object: the algebraic expression rather than a computation 

process. As I analyzed students’ errors in 19=3+4y, students had more difficulty 
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understanding the structure of “3+4y” rather than the meaning of “=.” Students who used 

the “guess and check” method without using an algebra approach also know the way to 

check an equation. In other words, students’ difficulties or errors about the problem such 

as 8+4 = ⁭+5 should not mainly be attributed to the misunderstanding of “=” but the 

difficulty of understanding of “8+4” as an object. The understanding of algebraic 

expression as an object and the distributive law is the key to understanding equation; for 

example, the transitivity and symmetry of equation. I recommend that teachers should 

pay more attention to helping students understand these conception rather than the equal 

sign.  

 

5.1.2 Are misconceptions of variable and function robust to change?   

 Students’ most common error in solving the “Tachi and Bill problem” in this 

study is “reverse error” in both the pretest (11.84%) and the posttest (43.48%). Such a 

result is consistent with other studies (Clement, et al., 1981). In Clement et al.’s study in 

which college students were asked to write an equation to describe “there are six time as 

many students as professors,” many students wrote a wrong equation, 6s=p.  The authors 

attributed such errors to students’ misconception of the variable as a “label,” that is, “S” 

was misunderstood as “student” rather than “the number of students.” As stated in 

Chapter 4, students’ errors directly related to the misconception of variable as “label” 

did not decrease from pretest to posttest. In order to know whether this misconception 

was robust to change, a statistical analysis was conducted and the result showed that 

students’ reverse errors related to the misconception of variable did not decrease but 
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significantly increased (Z=-20.9084, p <0.001).  Therefore, this misconception proved to 

be robust. 

                As mentioned before, one of the students’ misconceptions of function was to 

consider only the dependent variable without the independent variable. In the “car value” 

problem, students only considered the change of car value without referring to the 

change of time. Similarly, in the “small boy raising flag” problem, students only 

considered the change in the height of the flag without referring to the change over time. 

Students’ errors related to the above misconception did not change after one year 

instruction.   

       

5.1.3 Why do students’ misconceptions usually resist change?—An object and 

process perspective.    

 The robust misconceptions about science concepts have been well documented in 

science education. In mathematics education, there were also some studies about 

misconceptions in whole number of addition and subtraction area. However, research on 

misconception about algebra concepts is not well documented.  

           Although the causes of misconceptions are very complicated, they have common 

characteristics. That is, they are all “invented” by students. Thus, these misconceptions 

are meaningful for students and are easily activated in solving problems, and repeated 

misuse may reinforce the misconceptions. Another important cause is the complexity of 

mathematical concepts. Those concepts are usually developed over hundreds or 

thousands of years but students are expected to grasp them within several years. One big 
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challenge for students is that they need to transition their understanding of mathematics 

concepts from process to object, which is consistent with historical development of most 

concepts. For the learning of variable, students have the challenge to transition from 

process-oriented to object-oriented thinking. They need to consider a variable as a “place 

holder” rather than a specific value or substituted by specific values. Without such a 

transition, students tend to make many errors such as: simplifying an algebra expression 

like T+1 to T1. The relationship between misconceptions, robust misconception, object 

and process-oriented thinking is stated in the Figure 5.1. Their different combinations 

may cause different learning  

 results: 

 

 

  

                                   

 

 

                       Figure 5.1. A matrix of the relationship of misconception and object-    
                                          process thinking.     
 
Note.    OC: This is the best result. Students have object-oriented thinking and have no misconceptions   

 PC:  Students have a sound understanding at the process level. For example, students thought of 

         function as a relationship between dependent and independent variables. Such  

  
Correct  
conception 

 
               Mis- 
              conception 

Object-
thinking  

  

Process-
thinking 

 
      OC                                      OM              
                                          
 

      PC                                        PM 
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         understanding has potential misconceptions about the function which might easily occur in a 

         new situation.  

 OM: This misconception is easily to be changed because it is at the same stage as OC. For  

                        example, some students have such a misconception about variable: different letter should  

                        represent different values.  

 PM:  This misconception is hard to change because it is at a lower stage of thinking than OC.      

 

 

The above matrix shows outcomes of students’ understanding of concepts at 

either of two stages (process and object) interacting with either of two aspects (correct 

conception and misconception). The arrows show the possible path of correcting 

students’ misconceptions. When students’ thinking is in the process stage, sometimes 

such thinking (PC) does not affect how to solve a problem. For example, when students 

understand the function from the change of dependent variable over the independent 

variable, students have no problem in solving problems like “look at the equation, 

y=2x+5, if x increases by 1, what happens to y?” Students’ understanding of function as 

a relationship will not affect how to solve this problem because they can use table values 

(the process-oriented approach) to answer this type of question. However, if students can 

understand the function as an object, they can make a prompt judgment by just looking 

at the “slope” of the function without referring to the input and output process. On the 

other hand, if students are asked to answer the problem like “which function will 

increase more quickly: y = 8x or y = x 2 ?”   It does not help much if students still think 

of function as a relationship. For example, with process-oriented thinking, students 
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usually compare these two functions by using table values. As a result, many students 

may develop alternative strategies or “bug strategies”. For example, in Q8 (D), students 

used the invented “bug strategies”—they compared the amount rather than the change of 

amount to solve this problem. Due to understanding of function as process--that is, the 

relationship, students have difficulty using the properties of functions (linear or square) 

or operating on their symbolic forms to solve problems.  

Another example is about students’ understanding of algebra expression. For 

example, some students may only see subtracting from one item,“3,” rather than from “3 

+ 4y.” That is, they just saw 19-3 = (3-3) +4 y, rather than 19-3 = (3 + 4y)-3.  At this 

time, it is extremely possible for these students to invent an algorithm: “operate on some 

items in the right side rather than the whole algebra expression.”  Later, when students 

learn how to use “dividing by the same number on both sides” to solve this equation, the 

invented algorithm may turn to a “bug algorithm,” that is, “divide some items on each 

side rather than the whole algebra expression,” which might then cause students’ errors 

such as “19/4=3 + 4y/4” as demonstrated by students’ solution (see Results section, 

4.1.5). Therefore, only when students are able to see each side as an algebra expression, 

an “object,” can they solve this equation by firstly dividing the equation by 4, that is 

4
)43(

4
)19( y+
= , then using the distributive law to finish the remaining steps. Therefore, 

when students’ understanding is PC, teachers need to help students transition their 

thinking to reach OC even if there is no misconception at the process level (PC). Further, 

if students have PM, it is not enough for teachers to just tell them standard algorithms 

which are only correct procedures at the process level (PC), without correcting students’ 
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misconceptions of algebra expressions. Teachers need to help correct students’ 

misconceptions toward an object-oriented understanding. Otherwise, students’ 

misconceptions may be reinforced by the repeating instruction emphasizing only the 

“correct algorithms”.        

 Misconceptions in the object-thinking stage are evident in that students still 

harbor some wrong misconceptions (OM). For example, students may have a sound 

understanding of “variable” as “placeholder.” However, they may think that different 

letters should represent different numbers. Students with such misconceptions have 

difficulty understanding problems such as whether the equation c = r is true (Stephens, 

2005). Such a misconception is relatively easy to be corrected because it is in the same 

stage as that of the OC. Stephens (2005, p. 97) found that students (27% of grade 6, 

36.8% of grade 7, and 45.2% of grade 8) could correctly answer the problem “Is 

nphnmh ++=++  Always, Sometimes, or Never True” (N = 371).  I interpreted the 

above data as evidence that students made good progress from grade six to grade eight.  

 The particularly robust misconception is the misconception at the stage of 

process-oriented thinking (PM). For example, students only consider one variable of a 

function, that is, students tend to ignore the independent variable. For example, in the 

“car value” problem, students only considered the difference between values of the car 

without mentioning the age. Such misconceptions are particularly robust in that students 

need to change their conception ontologically. For the PM, there are basically two paths 

to correct students’ misconceptions. One is PM-OM-OC, that is, first help students 

transition to object thinking and then correct their misconceptions. Another is PM-PC-
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OC, that is, to help students correct their misconception at the process level, then help 

them transition to object level. It is very important and also difficult to research on how 

to correct students’ misconceptions, especially robust misconceptions which will be the 

focus of my future study. 

  In summary: The dual nature of mathematics concepts can be described as object 

or process. Some researchers use structural and operational to describe the dual nature. 

There is no necessary causal relationship between object-process understanding level 

and students’ misconceptions. That is, whether students had the object or process 

thinking for a concept, they may have or have no misconceptions of that concept at the  

corresponding level. The relationship between object-process and misconception is in 

that if students had misconceptions at the process level, such misconception will be 

particularly robust. Otherwise, if students had the misconception at the object-level, it is 

still robust but relatively easy to be corrected compared to the PM (misconception at 

process-level). Last, there may be more than one misconception for a specific concept.  

 

5.1.4 The difference between high-achieving and low-achieving students  

      The comparison between high achieving and low achieving students’ understandings 

of concepts as object or process showed that a larger difference existed in solving 

problems that need object-oriented thinking. Another finding is that high achieving 

students prefer to use object-oriented thinking more often to solve problems which can 

also be easily solved using process-oriented thinking. For example, in solving the 

problem Q 10 ( 2−= ba ), the high-achieving students tended to use the property of 
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equation rather than computation to solve this problem (See Figure 5.2 and Figure 5.3). 

Students 1 and 2 in Figure 5.2 used large numbers which partly showed that those 

students used the object-oriented thinking of equation. When the numbers are small, 

there is no big difference between the two levels of thinking.  However, when the 

numbers are too large, for example, 98999+ 9809 = 98998+ , object-oriented thinking 

will show the advantage. Student 3 in Figure 5.3 more clearly showed his/her object-

thinking process:  he used the property that adding the same quantity to both sides of 

equation would not change the equivalence. In contrast, the low achieving students 

preferred using the equation as a formula to produce a pair of numbers which are 

unusually small. Such a solution without any explanation partially shows the low 

achieving students’ understanding of the concepts at a process level .  

 

 

Student 1 and Student 2 used the big number. It is more likely those two 

students answer this problem in term of property of equation.   

                           
 
                       Figure 5.2. Student solution partially shows object thinking.  
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Student 3: this student used the property of equation, that is, add the same  

number to each side of this equation 

 

 
                       Figure 5.3. Student’s solution clearly shows object-thinking.  
 

 

 Therefore, the gap between high-achieving and low-achieving students is not 

only in students’ scores. The more important difference is in their understanding of 

concepts which causes differences in approaches to solving problems. This result clearly 

illuminates the necessity of transition from process-oriented thinking to object-oriented 

thinking. At the same time, such a difference also demonstrates the difficulties of 

transition and robustness of misconceptions. 

 

5.2 Further Comments  

 5.2.1 Not underestimating the complexity of learning mathematics concepts 

 As mentioned earlier, compared to the research on conception, especially 

misconception, in science education, similar research is not well documented in 

mathematics education. Thompson (1985) claimed that “little attention has been given to 

the issue of the development of mathematical objects in people’s thinking” (p. 232). 
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Besides, teachers also tend to underestimate the complexity of learning mathematics 

concepts.  

       This study shows that students have extreme difficulty understanding 

fundamental algebra concepts. In the pretest, approximately 180 different types of 

incorrect responses were found in answering the simple problem “Tachi is one year older 

than Bill” by using an equation. By analyzing students’ answers, the typical difficulty for 

students is about how to operate on or with a variable. Thus, the fundamental problem is 

to understand “variable.” The key to improve the understanding of variable for those 

students is the transition from process to object thinking. That is, students should not 

always refer to specific values or concrete material to solve such problems. Teachers 

should be aware that such a transition is an ontological change from arithmetic to 

algebra thinking. In the historical development of mathematics, the use and introduction 

of variable spans more than one thousand years. It is certainly not enough for teachers 

just to tell students the definition of variables. The learning of function is also difficult in 

that students need to transition from process to object thinking. The introduction of 

function usually begins with tables, computations of input and output values, or finding 

patterns. Then the property of functions is introduced and the multiple representations of 

functions are emphasized. Such a sequence is consistent with the development of 

function. Though it is not enough to stay in the process stage, it is difficult for students 

to understand a function at an object level as found by this study. Even high level 

students experienced difficulty in thinking about functions from the object perspective.  



 162

 
 

        Essentially, the transition from process-thinking to object-thinking is the source 

of students’ errors and difficulties. So far, there is still no effective way supported by 

research that can be used to help students facilitate such transitions. One of the most 

often used strategies is to use manipulative tools to help students understand these 

complex concepts. The negative aspect of such a method should be noted. Does the 

implementation of teaching using manipulatives really have a great impact on the 

learning and understanding of mathematics? Two ways were typically used by past 

researchers to explore this problem. One is to study the relationship between 

effectiveness of using manipulatives and students’ achievement. Students were found to 

have higher scores when manipulatives were used in the classroom (Butler, Miller, 

Crehan, Babbit, & Pierce, 2003; Stein & Bovaino, 2001). Another way is through 

analyzing the cognitive foundation of using manipulatives which may go back to Piaget. 

According to Piaget, students have four stages of learning: sensory motor (infancy), 

preoperational (preschool), concrete operational (elementary and middle school), and 

formal operational (higher grades). During the third stage, children can process abstract 

concepts and symbols like fractions; however, they have no mental ability to learn these 

abstract concepts without referring to concrete materials (Piaget, 1952). As Uttal, 

Scudder, and Deloache (1997, p.38) state, “Concrete objects allow children to establish 

connections between their everyday experiences and their nascent mathematics concepts 

and symbols.”  

         However, manipulatives are not magical. Ball (1992, p.47) argued that 

manipulatives were not the carrier of meaning because “although kinesthetic experience 
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can enhance perception and thinking, understanding does not travel through the finger 

and up the arm.” The reasons are also related to manipulative tools themselves. Moyer 

(2001, p.177) pointed out that “the manipulative is simply the manufacturer’s 

representation of a mathematics concept that may be used for different purpose in 

various contexts with varying degrees of ‘transparency’.’’ Since students are neophytes 

to the abstract mathematics concepts, they have difficulty finding the relationships 

between the manipulative tools and correspondent mathematics concepts which may be 

obvious for teachers. Hiebert and Carpenter (1992) used the connection perspective to 

explain the reasons: “It is not easy for students to relate their interactions with materials 

to existing networks. They do not interpret the materials in the way that the teacher 

expects, and the use of concrete material is then likely to generate only haphazard 

connections” (p.71). 

 The results of this study partly support the statements of Moyer (2001) and 

Hiebert and Carpenter (1992). The students’ life experiences interfered with students’ 

understanding in that students are unable to find the mathematics meaning behind the 

real life situations. For example, in the problem about the flag raising, 201 (34.87%) 

students in the pretest and 217 (35.26%) students in the posttest interpreted the graph 

based on their life experience and composed a wrong explanation for the problem. The 

use of manipulatives is a way to use students’ life experiences or familiar things to 

facilitate students’ understanding or conceptual change. Thus, students may be 

negatively affected by irrelevant information contained in manipulative tools and thus 

fail to think in the way that teachers desire. For example, many students in this study 
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were concerned with unimportant information, such as “small boy” and “the older, the 

less value of the car,” in solving Q11 and Q13 respectively.  

         Does using manipulatives help students transition from PM to PC or OM to OC? 

From the historical development of mathematics, arithmetic can be thought of as the 

abstract of concrete material or life experience. For example, the number “1” is produced 

from different individual objects, one apple, one orange, or one pound; thus, the use of 

concrete material or manipulatives to help students develop “number” concepts seems to 

be useful. The learning of operation on numbers by using manipulatives looks a little 

harder because the “number” becomes an “object”, that is, the conception of addition is 

at the higher level whose object is a mathematics concept rather than concrete material. 

For algebra, even its basic concepts are largely abstracted from arithmetic concepts and 

thus are further removed from concrete materials. The use of manipulatives to improve 

algebra understanding at least is not as effective as that of arithmetic. In algebra study, 

finding mathematical meanings carried by manuipulative tools will be more difficult for 

many students.  

           Another strategy to help students transition from process to object oriented 

thinking is to use confrontation and to cause a cognitive conflict. However, confronting 

only makes students realize the problem but not fix the problem. The importance of the 

confronting approach is that students realized the necessity of conceptual change. For 

example, when students made the errors in the problem like 8+4 =+5,.  if they realized 

the unreasonable facets of their wrong answers like “12”, it would be possible for them 

to reflect on their solution or thinking, which is an initial sequence of real conceptual 
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change. This study did not contradict such an approach. Even more, it points out that the 

most important and difficult aspects of conceptual change are to help students transition 

from process to object-oriented thinking. However, the approaches to effectively 

complete such a transition need be given more attention in the future.  

 

5.2.2 The influence of prior experience and knowledge on students’ learning 

  The effect of prior experience and knowledge can be both positive and negative. 

In this study, 201 (34.87%)  students in the pretest and 217 (35.26%) students in post test 

only drew on the everyday life experience to justify their answers about the “raising a 

flag” problem without referring to any mathematics knowledge or language. In another 

problem in this study, 68 (14.91%) students in the pretest and 66 (13.04%) students in 

the posttest only talked about the values of the car without mentioning the linearity issue. 

Since students’ understanding or intuition caused by outside school knowledge is 

sometimes contrary to formal mathematics knowledge, teachers need to pay much more 

attention to identify and use students’ everyday life experiences to help them understand 

mathematical concepts. For example, the “small boy raises flag” problem, many students 

were confused by the life pictures with the graphs. They interpreted the graph of “height 

over time” as the life picture of “position above ground”.  On the other hand, since 

everyday life experience is most familiar and also meaningful for students, the proper 

use of this informal knowledge can improve students’ understanding of mathematics 

learning.  
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5.2.3 Students’ robust misconceptions and curriculum development 

 Since students’ errors can be attributed to flawed procedural or conceptual 

knowledge and it is difficult to change students’ robust misconceptions despite “good” 

teaching, teachers should be careful when recycling curricula. This study shows that 

students’ misconceptions are often robust to change. For example, some errors made by 

students did not change after one year of instruction as demonstrated by the comparison 

of students’ pre and posttests. Such robust misconceptions are also demonstrated by the 

surprising posttest achievement gap between the seventh and eighth graders. Among the 

top 10% of students (see Appendix 8)  in the total test,  the number of  seventh graders  

greatly exceeded that of the eighth graders (75% vs. 25%) though there were an almost 

equal number of participants in each grade level (171 vs. 151 respectively). I interpreted 

this strange phenomenon partly as the entrenched misconceptions being reinforced in 

students’ ongoing studies. Therefore, it is important for students to gain correct 

understanding of concepts at the very beginning. “The best time to learn mathematics is 

when it is first taught; the best way to teach mathematics is to teach it well the first time” 

(Everybody Count, p .13). Based on the results of this study, I raise the concern about 

whether recycling curricula characterized by increasing complexity but repeating the 

same contents are good for students’ learning of mathematics. East Asian countries do 

not present mathematics contents in such a repetitive way. Mathematics teachers in those 

countries usually make a judgment about what prior knowledge needs to be reviewed for 

new learning based on the real situation of students in their classrooms.  
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5.2.4 Developing teachers initial subject knowledge 

 Ma (1999) compared American and Chinese elementary teachers’ mathematical 

knowledge. Although American elementary teachers normally complete sixteen years or 

more of education while Chinese elementary teachers only have a 12-year education, 

Chinese teachers demonstrate a better “profound understanding of fundamental 

mathematics (PUFM)” compared to their American counterparts. A more surprising 

result stated in Ma’s research is that even Chinese high school students and pre-service 

teachers demonstrate better PUFM compared to American in-service teachers.  

All members of the Chinese groups (ninth graders and prospective elementary 

teachers) succeeded in computing 
2
1

4
31 ÷ and knew the formulas for calculating 

perimeter and area. However, only 43% of the U.S. teachers succeeded in the 

division by fractions calculation, and 17% of the U.S. teachers reported that they 

did not know the area and perimeter formulas. For the two more conceptually 

demanding questions, the difference was even greater. Eight-five percent of the 

Chinese prospective teachers and 40% of the Chinese ninth graders created a 

conceptually correct story problem to represent the meaning of division by 

fractions, but only 4% of the U.S. teachers did (Ma, 1999, p. 127-128).  

Cuban (1984) pointed out that teacher education has weak influence on K-12 teaching 

and he also suggested part of the reason. “Teachers learn more about teaching from the 

thousands of hours they have spent as students in K-12 classrooms than they do from 

their relatively brief time under the tutelage of teacher educators” (Labaree, 1992, p. 

139). Since many current students will become future K-12 teachers, their solid 
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understanding on fundamental mathematical concepts will lend them a hand in their 

teaching. Since students’ misconceptions are robust and even reinforced by continuing 

instruction (Resnick, et al., 1989), the effect of teacher education for pre-service teachers 

in universal course may not be as effective as expected. Therefore, to ensure sound 

recycled curricula, it is necessary for students to develop a deep mathematical 

understanding from the very beginning, the K-12 education. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 169

 
 

REFERENCES 

American Association for the Advancement of Science (AAAS). (1993). Benchmarks  

 for science literacy. New York: Oxford University. 

Anderson, C.W., & Smith, E.L. (1987). Teaching science. In Richardson-Koehler, V. 

 (Ed.), Educators’ handbook: A research perspective (pp. 84-111). New York: 

 Longman, Inc. 

Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Lawrence 

 Erlbaum Associates. 

 Anderson, J. R. (2002). Spanning seven orders of magnitude: A challenge for cognitive 

 modeling. Cognitive Science, 26, 85-112. 

Ashlock, R. B. (2002). Error patterns in computation: Using error patterns to improve 

 instruction. Upper Saddle River, NJ: Prentice Hall. 

Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt,  

 Rinehart and Winston. 

Ball, L. D. (1992). Magical hope: Manipulatives and the reform of mathematics  

 Education. American Educator, 16(2), 14-18. 

Ball, L. D. (2003). Mathematics proficiency for all students: Toward a strategic 

 research and development program in mathematics education. Santa Monica, 

 CA:  RAND Corporation. 

Barcellos, A. (2005). Mathematics misconceptions of college-age algebra students. 

 Unpublished doctoral dissertation, University of California, Davis. 

Behr, M., Erlwanger, S., & Nichols, E. (1980). How the children view the equals sign.  



 170

 
 

 Mathematics Teaching, 92, 13-15. 

Booth, L. R. (1984). Algebra: Children’s strategies and errors. Windsor, England:   

 NFER-Nelson. 

Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A. F. Coxford & A. 

 P.  Shulte (Eds.), The ideas of algebra, K-12 (pp. 20-32). Reston, VA: NCTM. 

Brown, J. S., & Burton, R. (1978). Diagnostic models for procedural bugs in basic  

 mathematical skills. Cognitive Science, 2, 155-192.  

Brown, J. S., & VanLehn, K. (1980). A generative theory of bugs in procedural skills,  

 Cognitive Science, 4(4), 349-377. 

Brown, J. S., & VanLehn, K. (1982). Toward a generative theory of “bugs”. In T. P. 

 Carpenter, J. M. Moser, & T. A. Romberg (Eds.), Addition and subtraction: A 

 cognitive perspective. (pp. 117-135). Hillsdale, NJ: Lawrence Erlbaum 

 Association, Inc. 

Bruner, J. (1960). The process of education. Cambridge, MA: Harvard University Press. 

Butler, F., Miller, S., Crehan K., Babbitt, B., & Pierce, T. (2003). Fraction  

instruction for students with mathematics disabilities: Comparing two teaching 

sequences. Learning Disabilities Research and Practice, 18, 99-111. 

Capraro, M., Capraro, R., Harbaugh, A., Kulm, G., Sebesta, L., Sun, Y., et al. (2004, 

 April). Representational models for the teaching and learning of mathematics. 

 Paper presented at the annual Conference of National Council of Teachers of 

 Mathematics, Philddelphia, PA.  



 171

 
 

Carpenter, T. P., Franke, L. P., & Levi, L. (2003). Thinking mathematically: Integrating 

 arithmetic & algebra in elementary school. Portsmouth, NH: Heinemann. 

Capenter, T. P., Corbitt, M. K., Kepner, H. S., Lindquist, M. M., & Reys, R. (1980). 

Results of the second NAEP mathematics assessment: Secondary school. The 

Mathematics Teacher, 73, 329-338. 

Chi, M. T. H.  (1997). Creativity: Shifting across ontological categories flexibly. In T. B.  

Ward, S. M. Smith, R. A. Finke & J. Vaid (Eds.), Creative thought: An 

investigation of conceptual structures and processes (pp. 209-234). Washington, 

DC: American Psychological Association. 

Chi, M. T. H. (2005). Commonsense conceptions of emergent process: Why some  

misconceptions are robust. The Journal of the Learning Science, 14, 161-199. 

Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual  

change. In M. Limon & L. Mason (Eds.), Reforming the process of conceptual 

change: Integrating theory and practice (pp. 3-27), Dordrecht, The Netherlands: 

Kluwer Academic.  

Clement, J. (1982). Algebra word problem solutions: Thought processes underlying a  

common misconception. Journal for Research in Mathematics Education 13, 16-

30. 

Clement, J., Lochhead, J., & Monk, G. (1981). Translation difficulties in learning  

mathematics. The American Mathematical Monthly, 8, 286-290. 

Confrey, J. (1990). A review of the research on student conceptions in mathematics,  

 science, and programming. Review of Research in Education, 16, 3-56.  



 172

 
 

Cuban. L. (1984), How teachers taught. New York: Longman. 

Davis, R. B., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable  

 misconception stages.  Journal of Mathematics Behavior, 5, 281-303. 

Ding, M., Li, X., Capraro, M. M., & Kulm, G. (2006). Teacher responses to students’ 

errors in transition from verbal to symbolic representation. Submitted to 

Mathematical Thinking and Learning. 

Dubinsky, E. (1995). After examples and before proofs: Constructing mental objects.  

 Unpublished manuscript, Purdue University: West Lafayette, IN. 

Dubinsky, E. & Harel, G. (1992). The nature of the process conception of function. In G. 

Harel & E. Dubinsky (Eds.), The concept of function: Aspects of epistemology 

and pedagogy (pp. 85-106). Washington, DC: Mathematical Association of 

America.  

Ernest, P. (1991). The philosophy of mathematics education. London: Farmer. 

Erlwanger, S. H. (1973). Benny’s conception of rules and answers in IPI mathematics, 

 Journal of Children’s Mathematical Behavior, 1(2), 7-26. 

Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children’s understanding of equality: 

A foundation for algebra. Teaching Children Mathematics, 6, 232-236. 

Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children’s science and its  

 consequences for teaching. Science Education, 66, 623-633.  

Graham, A. T. & Thomas, M. O. J. (2000). Building a versatile understanding of  

algebraic variables with a graphic calculator. Educational Studies in Mathematics, 

41, 265-282.  



 173

 
 

Hammer, D. (1996). Misconceptions or P-Primes: How may alternative perspectives of  

cognitive structure influence instructional perceptions and intentions? The 

Journal of The Learning Science, 5, 97-127. 

Harper, E. (1979). The child’s interpretation of a numerical variable. Unpublished 

doctoral dissertation, University of Bath, England. 

Harper, E. (1987). Ghosts of Diophantus. Educational Studies in Mathematics, 18, 75-90. 

Hart, K. (1981). Children's understanding of mathematics: 11–16. London, England: 

Murray. 

Haverty, L. A. (1999). The importance of basic number knowledge to advanced 

mathematical problem solving. Unpublished doctoral dissertation, Carnegie 

Mellon University: Pittsburgh, PA. 

Herscovics, N. (1989). Cognitive obstacles encountered in the learning of algebra. In S.  

Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of 

algebra (pp. 60-86). Reston, VA: National Council of Teachers of Mathematics. 

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics:  

An introduction analysis. In J. Hiebert. (Ed.), Conceptual and procedural 

knowledge: The case of mathematics (pp. 1-28). London: Lawrence Erlbaum.  

Hibert, J., & Capenter, T. P. (1992). Learning and teaching with understanding. In D. A.  

Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 

65-97). New York: Macmillan. 

Jourdain, P. E. B. (1956). The nature of mathematics. In J. R. Newman, (Ed.), The work 

of mathematics, New York: Simon and Schuster. 



 174

 
 

Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in 

 Mathematics, 12, 317-326. 

Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), 

 Handbook of research on mathematics teaching and learning (pp. 390-419). 

 New York: Macmillan. 

Kilpartick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn  

mathematics. Report of the Mathematics Learning Study Committee. National 

Research Council, National Academy Press: Washington, DC.  

Knuth, E., Stephens, A., McNeil, N. M., & Alibali, M. W. (2006). Does understanding  

the equal sign matter? Evidence from solving equations. Journal for Research in 

Mathematics Education, 37, 197-312.  

Kulm, G. (2004, April). Content alignment of test items necessity and sufficiency criteria. 

Paper presented at the annual meeting of the American Educational Research 

Association. San Diego, CA. 

Labaree, D. (1992). Power, knowledge and the rationalization of teaching: A genealogy 

 of the movement to professionalize teaching. Harvard Educational Review, 62, 

 123-154. 

Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers' understanding 

of fundamental mathematics in China and the United States. Mahwah, NJ: 

Lawrence Erlbaum. 



 175

 
 

MacGregor, M., & Stacey, K. (1993). Cognitive models underlying students’ 

 formulation of simple linear equations. Journal for Research in Mathematics 

 Education, 24, 217-232. 

MacGregor, M &. Stacey, K. (1997). Students’ understanding of algebraic notation.  

     Educational Studies in Mathematics, 33, 1-19 

Matz, M. (1982). Towards a process model for school algebra error. In D. Sleeman  and 

 J. S. Brown (Eds.), Intelligent tutoring systems (pp. 25-50). New York: 

 Academic Press.  

McNeil, N. M., & Alibali, M. W. (2005). Why won’t you change your mind? 

 Knowledge of operational patterns hinders learning and performance. Child 

 Development, 76, 1-17. 

Moses, B. (1999). Algebraic thinking. Grades k-12. National Council of Teachers of  

            Mathematics: Reston, VA. 

Moyer, P.S. (2001). Are we having fun yet? How teachers use manipulatives to teach  

 mathematics. Educational Studies in Mathematics, 47, 175-197. 

National Council of Teachers of Mathematics. (NCTM). (2000). Principles and 

standards for school mathematics. Reston, VA: the author. 

National Research Council. (NRC). (1989). Everybody counts: A report to the nation of  

 the future of mathematics education. Washington, DC: National Academy Press 

Newman, M. A. (1977). An analysis of sixth-grade pupils’ errors on written 

 mathematical tasks. In M. A. Clements, & J. Foyster (Eds.), Research in 



 176

 
 

 mathematics education in Australia (Vol. 2, pp. 239-258). Melbourne: 

 Swineburne Press.  

Ott, L., & Longnecker, M. (2001). An introduction to statistical methods and data 

 analysis.  Pacific Grove, CA: Duxbury Press. 

Payne, S. J. & Squibb, H. R. (1990). Algebra mal-rules and cognitive accounts of error.  

Cognitive Science, 14, 445-481. 

Philipp, R. A. (1999). The many uses of algebraic variables. In B. Moses (Ed.),  

Algebraic thinking, Grades K-12: Readings from NCTM’s school-based journals 

and other publications. Reston, VA: NCTM. 

Piget, J. (1952). The child’s conception of number. New York: Humanities Press  

Piaget, J. (1970). Genetic epistemology. New York: Norton. 

Poincare, H. (1952). Science and method. New York: Dover. 

Radatz, H. (1979). Error analysis in mathematics education. Journal for Research in  

Mathematics Education, 10, 163-172. 

Resnick, L. B. (1982). Syntax and semantics in learning to subtract. In T. Carpenter, J. 

 Moser, & T. Romberg (Eds.), Addition and subtraction: A cognitive perspective  

(pp. 136-155). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Resnick, L. B. & Omanson, S. F. (1987). Learning to understand arithmetic. In R., 

 Glaser (Ed.), Advances in instructional psychology, (pp. 41-95). Hillsdale, NJ: 

 Lawrence Erlbaum Associates. 

Resnick, L. B., Nesher, P., Leonard, F., Magone, M., Omanson, S., & Peled, I. (1989).  



 177

 
 

Conceptual bases of arithmetic errors: The case of decimal fractions. Journal for 

Research in Mathematics Education, 20, 8-27.  

Rosnick, P. (1981). Some misconceptions concerning the concept of variable. 

 Mathematics Teacher, 74, 418-420. 

Sáenz-Ludlow, A., & Walgamuth, C. (1998). Third graders’ interpretations of equality  

 and the equal symbol. Educational Studies in Mathematics, 35, 153-187 

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press. 

Schoenfeld, A. H. (1987). Cognitive science and mathematics education. Hillsdale, NJ:  

  Lawrence Erlbaum Associates. 

Schoenfeld, A. H. (1999). Looking toward the 21st century: Challenges of educational  

theory and practice. Educational Researcher, 28(7), 4-14. 

Schoenfeld, A. H., & Arcavi, A. (1988). On the meaning of variable. Mathematics 

 Teacher, 81, 420-427. 

Schulman, L. S. (1999). Taking learning seriously. Change (July/August), 11-17 

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on  

processes and objects as different sides of the same coin. Educational Studies in 

 Mathematics, 22, 1-36. 

Sfard, A. (1992). Operational origins of mathematical objects and the quandary of  

Reification: The case of function. In G, Harel & E, Dubinxky, (Eds.), The 

concept of function: Aspects of epistemology and pedagogy MAA Notes Vol. 25. 

Washington, DC: Mathematical Association of American. . 

Sfard, A. & Linchevski, L. (1994). The gains and the pitfalls of reification: The case of  



 178

 
 

algebra. Educational Studies in Mathematics, 26, 191-228. 

Silver, E. A. (1986). Using conceptual and procedural knowledge: A focus on  

relationships. In J. Hibert (Ed.), Conceptual and procedural knowledge: The case 

of mathematics (pp. 181-198). London: Lawrence Erlbaum Association.  

Sierpinska, A. (1992). On understanding the notion of function. In G. Harel, & E. 

Dubinsky (Eds.), The concept of function: Aspects of epistemology and pedagogy 

(pp. 25-58). Washington, DC: Mathematical Association of America.  

Sims-Knight, J., & Kaput, J. J. (1983). Exploring difficulties in transformations between  

natural language and image-based representations and abstract symbol systems of 

mathematics. In D. Rogers, & J. Sloboda (Eds.), The acquisition of symbolic 

skills (pp. 561-569). New York: Plenum. 

Simon, M. A., Tzur, R., Heinz, K., & Kinzel, M. (2004). Explicating a mechanism for  

conceptual learning: Elaborating the construct of reflective abstraction. Journal 

for Research in Mathematics Education, 35, 305-329. 

Sleeman, D. (1982).  Assessing aspects of competence in basic algebra, In D. Sleeman &  

J. S. Brown (Eds.), Intelligent tutoring systems (pp. 185-200), New York: 

Academic Press.   

Sleeman, D. (1984). An attempt to understand students’ understanding of basic algebra.  

Cognitive Science, 8, 387-412. 

Slotta, J. D. & Chi, M.T.H. (2006).  The impact of ontology training on conceptual  

change: Helping students understand the challenging topics in 

 science.  Cognition and Instruction, 24, 261–289. 



 179

 
 

 Slotta, J. D., Chi, M. T. H., & Joram, E. (1995). Assessing students’ misclassifications 

 of physics concepts: An ontological basis for conceptual change. Cognition and 

 Instruction, 13, 373-400. 

Sommers, F. (1971). Structural ontology. Philosophia, 1, 21-42.  

Stein, M. K., & Bovalino, J. W. (2001). Manipulative: One piece of the puzzle.  

Mathematics Teaching in the Middle School, 6, 356-359. 

Stephens, A. C. (2005). Developing students’ understandings of variable. Mathematics 

 Teaching in the Middle School, 11, 96-100.  

Thompson, P. W. (1985). Experience, problem solving, and learning mathematics:  

Considerations in developing curricula. In E. A. Silver (Ed.), Learning and 

teaching mathematical problem solving: Multiple research perspective (pp. 189-

236). Hillsdale, NJ: Erlbaum. 

Thompson, C., & Babcock, J. (1978). A successful strategy for teaching missing 

addends. Arithmetic Teacher, 26(4), 38-41. 

Usiskin, Z. (1988). Conceptions of school algebra and uses of variable. . In A. F. 

 Coxford, & A. P. Shulte (Eds.), The ideas of algebra, K-12 (pp. 8-19). Reston, 

 VA: National Council of Teachers of Mathematics. 

Uttal, D. H., Sudder, K., & Deloache, J. S. (1997). Manipulative as symbols: A new  

 perspective on the use of concrete objects to teach mathematics. Journal of  

 Applied Developmental Psychology, 18, 37-54. 

Vergnaud, G. (1984). Understanding mathematics at the secondary school level. In A.  



 180

 
 

Bell, B. Low, & J. Kilpatrick (Eds.), Theory, research & practice in mathematics 

education (Report of ICME5 Working Group on Research in Mathematics 

Education, pp. 27-35). Nottingham, UK: Shell Center for Mathematical 

Education.  

Vergnaud, G. (1986). Long terme et court terme dans l’apprentissage de l’algebre. 

 Paper presented at the Colloque Franco Allemand de didactique des 

 mathematique et de l’informatique, Marseilles, France. 

VanLehn, K. (1990). Minds bugs: The origins of procedural misconceptions. Cambridge,  

 MA: MIT Press. 

Watson, I. (1980). Investigating errors of beginning mathematicians. Educational 

 Studies in Mathematics, 11, 319-329. 

Weinberg, A. D. (2005). A framework for analyzing functions in mathematical discourse. 

 Unpublished dissertation, University of Wisconsin-Madison.                           

Woodward. J., & Howard. L. (1994). The misconceptions of youth: Errors and their  

   mathematical meaning. Exceptional Children, 61(2), 126-136. 

Young, R & O’Shea, T. (1981). Errors in children’s subtraction. Cognitive Science, 5,  

152-177. 

 

 

 

 

 



 181

 
 

APPENDIX A. ASSESSMENT MAP-ALGEBRA  
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 If 3k = m, k > m  
 (Variable reversal  
 
         
          
                                                                  A letter stands for a specific object                in a syntacti
 manner 
 All functions are line  Each letter has a specific numeric value 

    The choice of letters is arbitrary 
                  Variables and constants are opposites  
   
     
            
                                  

Equations can be 
used to find 
unknown values.  
                                      
AE4

Variable 
Variables are seen in this strand 
as component parts of equations, 
as they are used to model

Change 
This strand includes 
concepts of change over 
time, as well as the change 
in one variable as it relates 
to change in another.

Mathematical 
statements can be used 
to describe how one 
quantity changes when 
another changes. 
AND

Quantities (known or 
unknown) can be 
represented by symbols 
other than numerals, e.g. 
Mary sells k donuts. Jon 
sells three times as many, 
i.e. 3 x k .         
                                                

Variable expressions can 
represent a generalization 
of numeric or geometric 
patterns.                           
                                        

Variables can be 
used to represent a 
generalized rule or 
principle, e.g. a + b = 
b + a.                          

Equality and 
Equations 

Equations are being used 
to model notions of 
change, so this strand 
focuses on concepts of 
equality and the use of 

The equals sign 
indicates an 
equivalence between 
two expressions.       
AE1

An equation 
containing a variable 
may be true for just 
one value of the 
variable. AND An 
equation containing 
two variables may

If a relationship is linear 
slope represents the rate of 
change.  
AND 
Rates of change can be 
computed from

When two variables 
are related, the 
relationship is either 
linear or nonlinear.       

 
 

TEKS 
The student uses letters as variables in 
mathematical expressions to describe how 
one quantity changes when a related 
quantity changes.  
Gr. 6 #4  
The student represents a relationship 
in…symbolic form. 
Gr. 7 #4 
The student makes connections among 
various representations of a numerical 
relationship.  

Delaware 
Analyze functional relationships to explain how a 
change in one quantity results in a change in 
another. 10.61 
Represent situations with…equations... 
7.60 
Model and solve real-world and mathematical 
problems using algebraic methods. 
7.61 

Symbolic equations can be used to summarize how the quantity of something changes 
over time or in response to other changes. Benchmarks 11C 6-8 #4 

Equations can be 
used to model real-
world situations.        
AE2

Things change in 
steady, repetitive, or 
irregular ways--or 
sometimes in more 
than one way at the 
same time. AC1
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DESCRIPTION OF “STRANDS” (“STORY LINES”): 
Change – This strand includes concepts of change over time, as well as the change in 
one variable as it relates to change in another. 
 
Variable – Variables are seen in this strand as component parts of equations, as they are 
used to model change. 
 
Equality and Equations – Equations are being used to model notions of change, so this 
strand focuses on concepts of equality and the use of equations to model situations. 
 
 
 
Color Key: 
Black = targeted learning goals 
Red = prerequisite ideas 
Green = common student errors/misconceptions 
Blue = strand (story line) 
 
 
 
* This map is from MSMP website, please refer to http://msmp.tamu.edu 
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APPENDIX B. ITEMS USEDTO TEST EACH CONCEPT: VARIABLE, 

EQUATION, AND FUNCTION 

Form A 
Item 
Number  

Item  
Description 

Item 
Type 

Map 
Location 

Level of  
Complexity

Score 
Points 

Weightin
g 
Factor 

1 43= x-28 mc AE4* L 1 1 
2 Equation to represent 

trading cards 
mc AE2 L 1 1 

3 Expression to 
repression represent 
Girl Scouts 

mc AV1* L 1 1 

4 Jacob’s rule mc AV3 L 1 1 
5 Rule for numbers in 

table 
mc AC5* M 1 2 

6 What’s not true about 
y=2t 

mc AC5 
AC3 

M 1 2 

7 What’s true about y 
=2x + 5 

mc AC1 
AC3 
AC5 

M 1 2 

8 Tachi and Bill scr AC3 
AE2 

L 1 1 

9 a = b – 2 scr AE3 M 1 2 
10 Small boy raises the 

flag 
scr AC1 

AC3 
M 2 1 

11 Missing number in 
table 

scr AC3 M 1 2 

12 Value of car not linear scr AC2 M 2 1 
13 Stella’s phone plan scr AC5 

AC1 
M 2 1 

14 Maria and Jinko’s 
donut sales 

scr AV4 
AV1 

L 2 .5 

15 19 = 3 + 4x scr AE4 L 2 .5 
16A How many pine trees in 

2 rows 
Super ---- L 1 0 

16B Complete the table Super AC1 
AC3 

L 2 .5 

16C N x N = 8N Super AC1 
AC5 
AE1 
AE2 
AV2 

M 2 1 

16D Compare apple trees 
and pine trees over time 

Super AC1 
AC4 
 

H 2 1.5 

Note. AE: Algebra equation; AC: Algebra change (function); AV: Algebra variable 
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APPENDIX C. ALEGBRA RUBRIC FOR CODING STUDENTS’ WRONG 

ANSWERS 

 
 
Items code Type of errors  Comments  Examples 

 
8 C  
 
 
 

1 Gave an answers 
without any 
explanations  

Some students just give an 
answer without any 
explanations. 

n x n ; 2n ; or 64 

 
 
 
 
 

 
2 
 
 
 

Misunderstand 
meaning of  “n” 

Students misunderstand 
“n” as the number of 
stones or bricks; students 
may also seek the pattern 
for n.  

For the # of 
bricks, I just 
keeping on 
adding 8 

 
 
 
 
 
 

 
3 
 
 
 
 

 
Add all or some 
numbers n the table  

Students add the numbers 
appeared in the tables or  
part of the numbers, the 
typical answer is 120 

I add all the 
numbers to get 
120 

 
 
 
 
 
 

 
 
4 
 
 
 

Describe a unrelated 
pattern 

Students describe what 
happens in the problem  

The n increase 1 
every time  

 
 
 
 
 

5 
 
 
 
 

Others/ or I do not 
know  

Some students say they do 
not understand. 

I do not know, 
sorry. 

 
 
 
 
 

 
 
6 
 
 

No response  Students have no 
responses at all. 
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Items 
 

 
Code  
 

 
Types of errors 
 

 
Comments  
 

 
Examples 
 

 
1. 

Using 
incomplete 
table  
 

Some students just use 
values in the table provided 
by the prior problem 8C to 
explain their ideas. 
 

 
Number of bricks 
because, well just 
look at the graph in 
C. 

2.  Border is 
always larger 
 

Some students think that 
the border is larger, 
therefore, more bricks or 
pines are needed to cover 
or surround the inside part. 
 

Bricks. Because it 
takes more bricks to 
surround the stones. 

3 Brick (pine) is 
small 

Some students just look at 
the picture and think: Since 
the outside figures (bricks 
or pine trees) are small, 
more these stuffs are then 
needed. 

The number of bricks 
increases quickly 
because the stones are 
bigger than the bricks 
in the diagram, so it 
takes more bricks to 
surround the stones. 
 

4. Confuse the 
“quick” and 
“more”  

Even some student chose 
correct answer, they may 
explain the stones (apple 
trees) will increase quickly 
because the number of 
these stuffs will be greater 
after n>8. 
 

Number of stones. 
Once it passes 8 
rows, there will be 
more stones because 
9 x 8 is less than 9 x 
9, 10 x 8 < 10 x 10, 
etc, etc. 

5 Others/I do not 
know 

Some students say they do 
not understand this 
problem. 
 

I do not understand 
what the question is 
asking. 

 
 
 
 
8 D 

6 No response  Students have no response 
at all. 
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Items code Types of errors Comments  Examples 

1 Flag go straight up Some students who 
chose B may consider 
the raising flag 
situation without using 
any mathematics 
knowledge.  
 

Because the flag goes 
straight up. 
 
.  

2 Small boy Some students choose 
C by only considering 
the boy is small rather 
than the relationship 
between height and 
time. 
 

Because the boy is 
small, he pulled the 
flag and stopped, and 
then continued. 

3 Slowly/gradually Some students are 
aware the variable 
“time”, however, they 
did not mention the 
linear relationship by 
words such as 
“steadily”. 
   

Because it goes up 
gradually. 

4 Others / I do not 
know 

Students say they do 
not understand this 
problem. 
 

I do not understand 
what the question is 
asking. 

 
 
 
 
11 

5 No response  
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Items code Types of errors Comments  Examples 

1 Linearity as 
constant ratio 

Some students think 
the relationship here 
“Is” linear because 
they see the ratio of the 
car prices. 
 

Each year the price of 
car is half of the price 
than the year before. 

2 Describe a real life Some students just 
consider real life of 
experience of car’s age 
and value. 
 

As the car becomes 
older, it loses its’ 
value. 

3 Constant difference 
without time 

Some students see the 
differences of car 
values are not constant. 
But they may not 
consider another 
variable “time” 
 

Because the car value 
decreased  

4 Linearity related to 
direction 

Some students 
consider linearity just 
can be represented as a 
line goes up rather than 
go down.  
 
Another misconception 
is “linearity” just 
related to direction 
whatever the value 
change. 

“Is not” linear. 
Because if you make 
a line, it goes down 
rather than going up. 
 
 
“Is” linear. Because 
the year is going up 
while the price is 
going down.  

5 Others / I do not 
know 

Some students say they 
do not understand. 

If I know what 
“linear” means, it will 
helps. 
 

 
 
 
 
13 

6 No response Students have no 
response at all. 
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Items code Types of errors Comments  Examples 

1 Five times as many 
as  

Students view “5 
times” as a variable 

X 5,  
five times as many 
 

2 Donuts, Jinko’s 
donuts 

Students view 
“donuts” as a variable 
 

Donuts 

3 Jinko sells five 
times as 

Students view the term 
“Jinko sells ” 
something as a 
variable 
 

Jinko sells five times 
as 

4 Price, 25 cents or 
constant numbers 

Students write “price” 
a known number “25 
cents” as varible 

25 cents,  
Price 
 

5 Others / I do not 
know 

Students do not 
understand this 
problem 
 

I do not know what 
“variable” means 

 
 
 
 
15 

6 No response Students have no 
response 
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Items code Types of errors Comments  Examples 

1 Y = 2.7 Some students view 
the equation as:  
19 = (3 + 4)y 

3 + 4 = 7, 
19 = 7y 
Y = 2.7 
 

2 Y = 12 Some students view 
this equation as: 
19 = 3 + 4 + y 

3 + 4 = 7, 
Y = 19 – 7 
Y = 12 
 

3 Divided by 4  Some students just 
divided 19 rather than 
every item by 4. 

19 = 3 +4y 
4.75 = 3 + y 
Y = 1.75 
 

4 Y = 2 Some students view 4y 
and 4y as the same 
thing. 

19=3+4y 
16= 4y 
Y=2 

5 Y = 16 Some students view 
“y” and “4y” as the 
same thing. 

19 = 3 + 4y 
Y = 19 -3 = 16 
 

6 Running equation Some students get 
correct answer with 
running equation. 

19=3 + 4y 
4 x 4 = 16 + 3 = 19 

7 Y = x 4  Some students are 
more compatible with 
the expression 4 x y 
than 4y. So when they 
get correct answer 4, 
they thought it should 
be x 4. 

19 = 3 + 4y 
16 = 4y 
Y = 4 or x 4 

8 Others / I do not 
know 

Some students say they 
do not understand. 

I do not understand, 

 
 
 
 
16 

9 No response Some students have no 
response. 
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APPENDIX D. THE ALGEBRA TEST ITEMS USED IN THE PROJECT AND 

THIS STUDY 
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APPENDIX E. STUDENTS DETAILED ERROR ANSWERS  

 

S_ID pre test 
12450 A-B=1 
12030 T+B=total + T1 = tache's older 
12035 T+1 and B = -1 
12040 T=1year old or B 
12041 T+B=a, a = both the ages combined 
12042 T=12 & B=13=exactly one year difference 
12043 B+9=T 
12060 T-B=One 
12062 T=Tachi age, B= Bills age 
12064 T-B 
12071 T-B 
12072 T-B= 
12073 B?=T? 
12074 T-B=7 
12076 T is old than B 
12077 1/T > 0/B 
12078 T-2= B 
12079 T-B 
12081 T x 1 x B = 369 days older 
12082 T=d years old / B = 1 year old 
12084 T-B =age between 
12086 x = x, you don't have any data to compare 
12451 T + 1 = B age 
12452 T + B 
12456 T- B= answer 
12460 T x 2=B 
12463 15(Bill) -16 (Tachi) =1 year older;  15 (Bill) / 16 (Tachi)= 1 
12464 T+B=25 
12514 T+1=B 
12515 T: 49+1=50;   B: 48+1=49 
12516 T+1year =B 
12524 T+1=B or B+1=T 
12600 T=a and B=1 
12603 13(younger)-14 (older) 
12604 T/B=1, 1 stands for 1 year, and "/" = over billy 
12607 T-B 
12608 B=1-T 
12691 Billy is one year older than Tachi 
12692 T>B 
12693 T=19=Ba 
12694 1= -14 
12695 T>B 
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12698 L+4=10+B=17 
12700 B=T1 
12701 x = B/x1 = T 
12702 T=8, B=7; Tis 8 years old, B is 7 years old 
12703 a=1, B=6, Tis 7 and Bis 6 
12704 T-5 
12814 T1=B 
12843 T+1=B or B+1=T 
12844 T+1+B 
12847 T-B=n 
12851 T-B=difference 
12852 T-B=age difference 
12853 T+B=T-1 
12854 T1-B=1year older 
12931 T=B-1 
12935 B/T=1 
13051 year x 1 year 
13054 T-age, B-age 
13056 T/B 
13057 Tis 365 days older than B 
13059 T-B= 
13060 B+T=x, T+B=( ), T-B=x,  B-T= (  )  
13061 T-B=age difference 
13063 n-T+n=B 
13064 3/4 + 6/4 = 9 (T) / 8 (B)  
13080 Tx2=B 
13082 T1=B 
13087 B-xT 
13090 B-xT 
13093 B=T+1y;  B=Bills age, T= Tacci's age, y=years 
13149 T/B=1,  
13150 n=how old they are;    T: n+1=?;   B: n=1=?-1=? 
13154 tx1=b 
13201 T+B=one year higher than B 
13203 T=1=B 
13204 a-b=2 (T) - 1 = 1(B) 
13205 T1+B=one higher number 
13206 T+B=TB 
13207 T-B=____ 
13208 T20-1=B19 
13210 T+B=T 
13212 Tx1=B 
13213 T11-1(1year older 10)=B10 
13235 T=Bx1year 
13236 T-1<than B 
13237 T-B= 
13239 T1<B /  T-1=B 
13261 T=1xB 
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13263 T=n+1 
13264 B= -1T 
13267 T=1B 
13270 B=1T 
13271 T=Ba, a=age 
13283 B=1T 
13284 T=-1B 
13285 T-a=b 
13288 T=Bx 
13289 T=Bx 
13290 T/B 
13293 T>B by 1year 
13302 T-B= 
13303 T/B 
13304 T-B=How much older T is than B 
13323 T= -B1 
13324 T+1 (2);   B  (1) 
13440 t18, B17,   B17+1=18 
13443 T=-1;  B=+2 
13444 9(T) - 8(B) = 1 (T) 
13447 B+T= or T-B= 
13560 T-B 
13562 T-B 
13563 AxA/a=    A=age; a=answer 
13564 T/B=X/1 
13568 T (13) - B (12) =1 
13569 T-B 
13571 B/T 
13742 B/T 
13743 1/B=T/B 
13813 TXB=1 
13814 Tachie is older than Bill 
12045 T-365=B 
12052 T=B+B 
12057 Tachi was born one year before Bill, so tachi is one year older then Bill. 
12465 T--13, B--12 
12467 You can do = T-B= years apart (now many) 
12469 Bis 14, so T would be 15 yrs. Old,  B + 1= T 
12472 T+B=Tachi and Bill 
12473 T=11, B=12 
12479 A-B=1 
12529 B+1=T's Age 
12617 T/B=yrs 
12618 T+1-B=T1  /  T=15, B=14 
12619 T-n=B, n=1 
12620 B/T 
12622 B=13, T=14, so Bill is 13 and Tachi is 14. 
12708 a=B-1 
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12710 I can't. You didn't give me Bill's age. 
12712 T=21, B=20, 1=T-B 
12713 19T+18B 
12715 T=12, B=13,  B-T=1 
12716 T is 1 year ahead of B 
12828 BN+1=TN 
12829 T=nB,  n=older 
12830 B-T=comparision 
12858 T<B 
12946 T-B-1 
12948 N=1 
12949 B+T-B=T 
13065 T=1=n, B=0=y;  n= year older,  y=year younger 
13076 22
13068 T-B=B-T 
13069 T=13, B=12 
13071 T/B= 
13074 T-B=n 
13079 n-n=T 
13155 tx1=B 
13158 13=(1)-12 
13160 T-8-1=b=B 
13161 T is 10-1 = 9 - B's age 
13162 T-B=T10+B11=1 
13163 T=13, B=12, T=13-1=B 
13165 TB 
13167 B+1T-1 
13168 Tachi was born 365days before Bill 
13215 T=2, B=1, T+B=3, or B+T=3 
13216 T/B=1T 
13217 B=1year younger than T. 
13221 T-B=0 
13222 Tachi age - Bill age = 1 year 
13223 T=3 yrs old, B= 2 yrs old, I don't really know! 
13224 T=B=1 
13225 T-B=B's age 
13226 B-T=the year difference 
13228 B10, T11 
13229 T-B=n 
13247 T-B=B's age;  B+1=T's age 
13248 B+360=T 
13249 T>B 
13250 T+N=1 
13305 T-age=B 
13307 T1=B- 
13311 T=1year older than B 
13312 Bx3=T  or 3B=T 
13313 T<B 
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13315 T1+B=N 
13316 T-B=amount of years older,  TxB=Equals? 
13319 T x 1=B 
13455 B=T-1yr. 
13579 T=1year older than B 
13583 T+1=B+0 
13585 T-B 
13587 T+(B+1),  T+(B1) 
13588 T-B=(y) 
13589 T-B 
13759 T1+B 
13760 T+n=B 
13761 4
13762 Tachi is older than Bill 
13763 4
13819 Tachi's age = Bill's age + 1 yr 
13825 2004-y+2004-y=-1y 
13827 T is 1 year older 
13828 B+1yr. = Tachi - 1yr. 
13829 T-B=? 
13875 Bill is 9 years old 
13995 T=9, B=10 
13996 T is one year older than B 
13997 T-B=A 
13998 Tachi is bigger than Bills 
13999 T-1year than Bill 
14000 year 
14003 T>b 
14004 x+B=T 
14005 T=B 
14006 T-B 
14161 T+B=14T 
14162 T+ -------B 
12080 T-B=1 year difference 
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S_ID posttest 
13463 T2=B1 
13460 T2=36s B 
13582 T-b=1 13-12=1 N-n=1 N 
13585 T-B=y y=age difference 
13337 T-b=1 13-12=1 N-n=1 N 
13340 12+11=23 
13336 T*B=n 
13338 T+B=age 
15182 T*1=T age 
13337 T-b=1 12-13=1 
15178 T-B=age 
13827 B+n=age 
13825 T+1 
13278 T=1x+1 
13280 Tahi 1+T Bill B 
13283 T=1x+-1 
12076 T is older than B 
12077 T>B T-b=1 
12080 TXB=T+b 
12084 B+T 
15150 T-B= 
15198 B+B=B 
12081 T+b=1 
13214 T=1year=B 
13217 T= exactly one year older than B  
13221 T-B=A 
13223 B=1 T=11 B+1=11 
13219 Tachi ten Bil 9 
13220 Bx1=T or T-1=B 
12825 T>B  
12826 T is B-1 
15194 TX1=B+2=one 
12827 Tx1=B 
12829 TXB=1 
12832 T-1=b Tachi-1=Bill 
15049 T age is increased 1 time than B's age 
12618 y=T1x+B 
12621 T=x+B+x 
12629 Y=Tx+12 Y=Bx+11 
15195 T-B= 
12619 B=+-1 
13067 12/32=2.6 
13071 L=1XB 
13072 T=1 year older 
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13065 T=+B=1x 
13073 T=9 B=8 
13074 Bx12 months=T 
13076 B-T=How much older Tachi is than Bill 
13079 T-B=Age difference 
15064 B+T=1 
15192 T+1=-1B 
12529 B's age +1ys=T's age 
12533 B+1+ 
15147 T+B=1 
12867 T-B=age 
12712 T-B=1 year older 
12473 T=1 to B=0 
12474 T>B 
12479 B=A-2 
12465 T=11 B=10   years      
12467 T's age +1 = B's age 
12471 T-B=difference 
12472 B+1=T Age 
12477 T-B=Age 
12052 T is 1 than B  
15144 T? 
12053 T1=-B 
12055 Tx+1=B 
12057 Tage =B age 
15076 T1=-B 
13101 9/16=0.5 or 16/9=1.7 
13247 How many years apart 
13312 Tn+B 
13319 age=T+1+B 
13157 T=1B 
13155 T=Bx1 
13158 T-B =age difference 
13162 T>B 
13167 T=1y=B 
13441 T-B=D D=difference in age  
13444 T-B=x 
13445 BT=1 
13443 B-y=T B=Bill's y=year T=Tach's 
13744 T1+B 
13565 T+1-B 
13571 T1=B 
13322 T+B 
15090 Tachi (12) is older than Bill by one 
15080 T-B(T/B)=x 
13813 (T)1-B 
13800 T12=B 
13802 B+365=T 
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13803 T>B 
13814 T=10 B=9 
13271 T=15 B=14 y=T-B 
13273 4+1 (1) 
12062 TX1+B 
12071 TXB 
12063 T1+B1 
12064 T+1=B 
15138 1T-B 
13200 T=Bage 
13225 B=1T 
13227 B+1g=T 
12810 T=6 B=5 T=Bx6=s 
12814 nT+1-nB 
12812 T X B=c (conpared answer) 
15127 T=T1 B 
12603 y=T*n+B*n-1 
13054 t-b 
13057 T=2=1years=B+1+ 1 2  
15056 T=one year older /b=age 
15122 B=1t 
13291 T>1=B 
15094 TA+TB=n 
13249 B=T1 
13243 Tx1=b 
13259 T+B+1=age 
13094 T+1-B 
13083 T/B 
13080 A=T-B 
13090 T=1 B=0 
13088 TxB= 
15141 T=Bx1 
12035 T+1=B-1= 
12457 Bx1 =T 
12456 T-B=answer 
12453 Tx1-B 
12462 B+1=T+1 
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APPENDIX F. TOP 10% AND BELOW 10% STUDENTS 
 
Top 10% students according to posttest scores  
           Student ID             Teacher ID   Grade    Pretest   Posttest 
      1113459         42      7       13       23 
     1212050         99      8       17       24 
     1212059         99      8       15       22 
      1212512          4      7       18       20 
     1212520          4      7        5       21 
      1212521          4      7       17       21 
     1212532          4      7       15       22 
      1212846          6      7       18       20 
      1212850          6      7       15       22 
      1212851          6      7       13       21 
      1212866          6      7        9       20 
      1212868      6      7       11       21 
      1212931      5      7       20       22 
      1212934          5      7       16       21 
      1212941             5      7       11       24 
     1212942      5      7       14       22 
      1212943          5      7       16       25 
      1212944      5      7       14       20 
      1212951          5      7       15       20 
      1212953          5      7        9       21 
      1213059         88      8        6       20 
      1213239        101      8       16       21 
      1213266      8      8        7       21 
      2212044         99      8       11       20 
      2212517          4      7       17       22 
      2212519          4      7       16       20 
      2212522          4      7       17       20 
      2212523      4      7       12       22 
      2212524      4      7       15       21 
      2212531      4      7       15       26 
      2212847          6      7       13       21 
      2212858      6      7       12       22 
      2212862          6      7       13       24 
      2212865          6      7        9       20 
      2212940      5      7       13       21 
      2212945         5      7       26       22 
      2212946          5      7       11       20 
      2212947      5      7       17       26 
      2213142        103      7        8       21 
      2213164        103      7       12       20 
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      2213296    102      8       17       25 
  2213311        102      8       17       20 

 
 Below 10%   students according to posttest scores  
           Student ID             Teacher ID   Grade    Pretest   Posttest 
      1213064     88      8       6      1 
      2212699          24      7       6      2 
      1212450          59      7       5      2 
      1212052     99      8       8      2 
      2212827     69      7       6      3 
      1113445     42      7       4      3 
      1212454          59      7       2      3 
      1212704     24      7       1      3 
      1212035     99      8       5      3 
      1213067     88      8       5      3 
      1213057     88      8       4      3 
      1212062     10      8       4      3 
      1213301              102      8       4      3 
      1213217     65      8       3      3 
      1213063          88      8       2      3 
      1212474          59      7       6      4 
      1213071          88      8       6      4 
      2213219          65      8       5      4 
      1212073          10      8       5      4 
      2212063          10      8       5      4 
      1212046          99      8       4      4 
      1213054          88      8       4      4 
      2213082         110      8       4      4 
      2213091         110      8       3      4 
      2212057     99      8       3      4 
      1213088    110      8       2      4 
      2213101         110      8       1      4 
      1212473          59      7       8      5 
      1212815          69      7       8      5 
      2212716     24      7       6      5 
      2212812     69      7       4      5 
      2212829          69      7       3      5 
      1212071     10      8       5      5 
      1212040     99      8       5      5 
      2213319              102      8       4      5 
      2213315              102      8       3      5 
      1213102    110      8       2      5 
      2212053          99      8       2      5 
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