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ABSTRACT  

Control of a Benchmark Structure Using GA-Optimized Fuzzy Logic Control. 

(December 2006) 

David Adam Shook, B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Paul N. Roschke 

 

Mitigation of displacement and acceleration responses of a three story benchmark 

structure excited by seismic motions is pursued in this study.  Multiple 20-kN 

magnetorheological (MR) dampers are installed in the three-story benchmark structure 

and managed by a global fuzzy logic controller to provide smart damping forces to the 

benchmark structure.  Two configurations of MR damper locations are considered to 

display multiple-input, single-output and multiple-input, multiple-output control 

capabilities.  Characterization tests of each MR damper are performed in a laboratory to 

enable the formulation of fuzzy inference models.  Prediction of MR damper forces by 

the fuzzy models shows sufficient agreement with experimental results.   

A controlled-elitist multi-objective genetic algorithm is utilized to optimize a set 

of fuzzy logic controllers with concurrent consideration to four structural response 

metrics.  The genetic algorithm is able to identify optimal passive cases for MR damper 

operation, and then further improve their performance by intelligently modulating the 

command voltage for concurrent reductions of displacement and acceleration responses.  

An optimal controller is identified and validated through numerical simulation and full-

scale experimentation.  Numerical and experimental results show that performance of the 

controller algorithm is superior to optimal passive cases in 43% of investigated studies. 

Furthermore, the state-space model of the benchmark structure that is used in 

numerical simulations has been improved by a modified version of the same genetic 

algorithm used in development of fuzzy logic controllers.  Experimental validation shows 

that the state-space model optimized by the genetic algorithm provides accurate 

prediction of response of the benchmark structure to base excitation. 
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INTRODUCTION 

General 

Since the first ages of civilization technological advancement has progressed 

rapidly during certain periods and has been caught in doldrums through others.  In more 

recent years, engineers have continued to inspire the imagination and surmount prior 

limitations.  One such example is construction of the Tower 101 building in Taipei, 

Taiwan (Fig. 1), which has a height of 508 m and is currently the tallest building in the 

world.  Although it was once thought to be impractical to construct such a tall building in 

a location that is often subject to seismic temblors and is susceptible to numerous 

typhoons each summer, Tower 101 has shown the resilience of technological progress 

and innovation.  As architects and designers continue to push the limits of structural steel 

and other modern materials, simple solutions of the past must make way for innovations 

of the future.  New technologies are continually being employed by structural engineers 

in their practice.  Smarter, not stronger, is the language of the populous. 

 
Fig. 1. Tower 101 in Taipei, Taiwan 

This thesis follows the style of the Journal of Structural Engineering, ASCE. 
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Structural Control Systems 

One recent innovation for constructed facilities such as buildings and bridges that 

has garnered much attention is the concept of structural control, which was first proposed 

by Yao (1972).  Structural control can be defined as any system that dissipates unwanted 

energy in a structure that is imparted to it by internal or external perturbations. 

Numerous domestic and foreign structures are incorporating this technology into 

new and retrofit construction projects.  Engineers from the United States have pioneered 

these technologies as exampled by the Citicorp building in New York City, New York.  

Here a passive tuned mass damper was installed during construction of the building in 

1977.  A variety of other North American examples include the base isolation system 

installed in the University of Southern California University Hospital located in Los 

Angles, California, and the tuned water damping system installed in the One Wall Centre 

tower in Vancouver, British Columbia, Canada.  A more recent example of such 

technology includes the largest mechanical damping system in the world, which was 

installed in Tower 101 in 2004.  Each of these full-scale implementations of structural 

control devices share one key similarity: passive control.  That is, the control device is 

not altered by any external system during operation.   

In Asian countries researchers have ventured into active and semi-active control 

systems where the properties of the implemented damping device are altered in real time 

for the intelligent reduction of motion experienced by the structure.  An abbreviated 

listing of currently installed semi-active and active structural control systems is shown in 

Table 1.  For a more complete list of full-scale installations consult Spencer and 

Nagarajaiah (2003). 

Table 1. Example Implimentations of Structural Control Devices 
Structure Location Control System  

Yokohama Land Mark Tower  Yokohama, Japan (1993) Active mass damper  
T.C. Tower Kau-Shon, Taiwan (1997) Active mass damper  
Laxa Osaka Osaka, Japan (1999) Semi-active mass damper 

Shin-Jei Building Taipei, Taiwan (1999) Active mass damper 
Keio University Engineering Bldg. Tokyo, Japan (2000) Variable-orifice damper  

Harumi Island Triton Square  Tokyo, Japan (2001) Coupled building control  
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Overview of Structural Control 

In the following section a brief synopsis of structural control devices is provided.  

These structural control devices are classified into three groups: active, passive, and 

semi-active.  An example of each of these control devices is shown in Fig. 2. 

(a) Active Control Device  
(Toda: www.toda.co.jp) 

(b) Passive Control Device  
(Popular Mechanics: 

www.popularemechanics.com) 

 
(c) Semi-Active Control Device 
Fig. 2. Example Control Devices 

Active control techniques utilize mechanical systems to impose actuated forces on 

a structure for the purpose of mitigating excitation.  These systems employ a variety of 

technologies, but generally include hydraulic actuators such as the one shown in Fig. 2a.  

Here an active mass damping system is used to mitigate wind loads in a tall structure.  To 

provide optimal control these devices often produce significant forces on a structure to 

counteract external disturbances.  However, when internal forces acting on a structure 
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such as a tall building become large, the optimal control forces required become 

exceptionally large as well.  Thus, very large actuators are needed which, in turn, require 

exceedingly large amounts of power.  In the event of a loss of power (e.g. in an 

earthquake), beneficial effects of the actuators would be nullified.  Moreover, dynamic 

instability can occur with active control and possibly aggravate response of a building 

instead of reducing it. 

By contrast, passive control approaches utilize inert force-resisting mechanical 

systems that absorb the energy of a structure and thereby mitigate excitation.  Passive 

control devices employ a variety of technologies, and are effective in a number of 

situations.  A commonplace example of a passive control system is the set of shock 

absorbers that are commonly installed in automobiles.  A structural engineering example 

is the pendulum and tuned mass dampers that are installed in Tower 101 as shown in Fig. 

2(b).  Passive devices can be categorized into three basic types: springs, viscous dampers, 

and energy absorbing structural elements.  When correctly tuned to the motion of the 

structure, these devices can effectively absorb energy from unwanted perturbations.  

These techniques are very reliable and generally require no power.  Moreover, dynamic 

instability is not a concern since no energy is imparted to the structure; rather, energy is 

absorbed.  Passive devices are often only optimized for a single scenario, and thus lack 

adaptive capabilities.  As a consequence if structural characteristics change beyond the 

operational range of the passive device, it becomes ineffective in fulfilling its intended 

purpose. 

The final category of structural control is termed semi-active.  This approach 

utilizes variable force-resisting mechanical systems that absorb energy and thereby 

mitigate undesirable motion.  Semi-active control systems employ a variety of 

technologies including its more common form, variable viscous damping.  This variable 

component, of an otherwise passive system, highlights a key difference between passive 

and semi-active control, namely controllability.  With a modest amount of power semi-

active control combines the adaptability of active control with the reliability of passive 

control.  Furthermore, dynamic instability is not a concern for semi-active control 

approaches since these semi-active devices only modulate their level of resistance and do 

not impart energy into the structure. 
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In a recent publication by Spencer and Nagarajaiah (2003) an overview of current 

technologies in the realm of structural control are discussed.  Evidence justifying the need 

for semi-active control systems is provided.  This paper calls for the continued 

development of both technology and controller algorithms.  Toward this goal, the current 

study intends to advance the development of effective structural control algorithms and 

improve optimization methods. 

Justification for Proposed Control System  

In what follows, control of a multi-degree of freedom structure is pursued.  

Several key components are required for the implementation of such control systems.  An 

overview of the rationale and background for each component is provided below to give 

the reader a foundation before providing details of their development and integration. 

Control Device 

For this study semi-active devices are selected as a means to mitigate structural 

responses to excitation.  Two general categories of semi-active devices include variable 

orifice dampers and rheological dampers.  Variable orifice dampers typically consist of a 

piston in a casing that is filled with a fluid such as water or oil (see Fig. 3). 

Controllability is derived from constricting the flow of fluid during motion of the piston.  

Recently, these types of viscous dampers have been determined to be effective in 

mitigating wind excitations as noted by Kim and Adeli (2005) and Reigles and Symans 

(2005).  Generally, mechanical properties of the damper are tuned for optimal alleviation 

of acceleration responses of the structure where wind excitation is most taxing.  As a 

result, the reduction displacement responses are often a secondary priority.  Moreover, 

constricting the flow of the fluid through an orifice can require more power than a simple 

backup battery system could provide.  This is crucial in the event of a power failure.  

Although variable orifice dampers often require less power than active control 

applications, it is a concern of engineers. 

Rheological dampers offer a similar resistance to motion, yet resistance is derived 

from the modulation of fluid properties rather than the alteration of orifice size.  Two 

commonly employed fluids that exhibit such a rheological phenomenon are 

electrorheological (ER) and magnetorheological (MR) dampers.  Both fluids alter their 

resistance to motion when current is applied.  This idea was initially proposed by 



6 

Winslow (1948) with the invention of electromagnetic (ER) fluid.  ER fluid lacks 

significant resistance to motion and requires a large amount of voltage; consequently, it 

has been largely abandoned by engineers who instead are opting for use of MR fluid.   

Dampers that utilize MR fluid for the modulation of resistance are termed MR 

dampers.  An example of this type of device is shown in Fig. 3(b).  MR dampers typically 

consist of a piston in a steel casing that is filled with MR fluid.  MR fluid consists of base 

oil, magnetizable particles (iron), and a stabilizer.  An electrical current is applied to the 

MR fluid through a coil wrapped around the piston head which produces a magnetic 

field.  The magnetized particles align with the magnetic field created by the coil when a 

current is applied.  Upon alignment of the rheological particles the effective density of 

the oil-based liquid changes drastically.  Since the particles generally align within a few 

milliseconds, the fluid converts from a free flowing oil-based liquid to a high density 

semi-solid almost instantaneously.  This conversion process is also reversible when the 

magnetic field is removed.  Thus, by continuously varying the current the MR fluid can 

produce a sweeping range of effective densities, thus providing the damper with 

significant controllability. 

Two key advantages of rheological dampers in comparison with variable orifice 

dampers include reaction time of the controlling event and lower power requirements.  

Primarily for these reasons, rheological dampers, or more explicitly, MR dampers, are 

selected for control system implementation in this study. 

In the previous text justification for the semi-active components of control has 

been provided.  The next step in development of an efficient vibration control system is 

to exploit the beneficial characteristics of MR dampers.  The following section presents 

the controller algorithm that is to be developed. 

Controller Algorithm 

For active and semi-active systems a controller is necessary to manage the 

mechanical equipment.  A controller is any algorithm that adjusts characteristics of a 

control device.  Since a semi-active control device is selected for use in this study, 

namely an MR damper, a controller is also necessitated.  
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Oil/Water

Piston Rod

Valve
Casing

 
(a) 

Rheological 
Fluid

Piston Rod

Magnetic Coil

Magnetic Field

 

Casing

 
(b) 

Fig. 3. Sketches of (a) Variable Orifice and (b) Rheological Dampers 

Numerous algorithms have been developed prior to and since the inception of the 

concept of structural control.  Control algorithms have a sweeping range of applications 

and capabilities.  In the past, much of the structural control research community 

gravitated towards use of what is termed here as “traditional” control methods.  Examples 

of these controllers include Proportional, Integration, and Derivative (PID), Linear 

Quadratic Gaussian (LQG), and H-Infinity (H∞).  Traditional control algorithms can 

provide adequate control management for certain classes of problems, but this is often at 

the expense of a strong robust nature.  This is due to the sensitivity of traditional 

controllers to characteristics of the structure itself such as mass, stiffness, and damping.  

Thus, if the structural properties vary from those used to develop the control algorithm, 

the effectiveness of many of these control algorithms diminishes significantly as 

discussed by Casciati et al. (1994) and Deoskar et al. (1996).  

In more recent studies, controllers that make use of fuzzy logic have gained 

acceptance in the research community for their robust nature and ability to account for 

uncertainties.  Fuzzy sets were first introduced by Zadeh (1965) as a means of effective 
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control when considering uncertainties.  A fuzzy inference system (FIS) is a compilation 

of IF [ ], THEN [ ] statements, that, when combined in unison, provide a unique form of 

control.  Avoiding complex and computationally expensive state observers or estimators 

that are often used in traditional control, fuzzy logic seeks a more simplistic approach to 

save computational time and account for non-linear relationships with relative ease.  

Logic statements or ‘rules’ relate any provided input signal to desired output signals.  

Fuzzy logic shows its multifaceted nature in that it can be developed for both numerical 

modeling of systems and as a controller of a system.  In this study fuzzy logic is used for 

both numerical modeling of MR dampers and management of MR damper command 

signals. 

Fuzzy inference systems are adaptable for control of multiple-input, single-output 

(MISO) and multiple-input, multiple-output (MIMO) systems.  Nonlinear relationships 

are required for mapping specified inputs to desired outputs for both MR damper 

modeling and development of a fuzzy logic controller (FLC).  Fuzzy logic is inherently 

proficient at nonlinear relationships, thus making it an even more viable candidate for 

MR damper modeling and controller implementation.  A sketch of a nonspecific fuzzy 

inference system is shown in Fig. 4. 

 
Fig. 4. Nonspecific Fuzzy Inference System 

Controller Inputs 

Dynamic motion of the structure must be characterized to provide fuzzy logic 

controllers with information in order to identify voltage singals to modulate MR damper 

resistance levels.  In general there are three commonly used metrics for characterization 
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of dynamic motion: displacement, velocity, and acceleration.  Although displacement is 

an ideal characterization of building motion, it is fiscally expensive to acquire accurate 

displacement data in real time for a civil engineering structure such as a tall building or 

bridge.  For example, displacements are generally measured with linear velocity 

displacement transducers (LVDTs).  They are often unreliable for use in actual structures 

in the event of a strong seismic motion that could damage such devices.  Furthermore, 

they usually require some fixed location for installation which is often impossible to 

acquire in real civil engineering structures.  Velocity transducers are simply 

accelerometers fitted with a state-estimator.  Thus, accuracy of the signal depends on the 

accuracy of real-time time integration of acceleration signals.  This is not a 

computationally efficient means of response observation.  Accelerometers, which 

measure acceleration, are relatively inexpensive and are more reliable than LVDTs or 

velocity transducers.  Therefore, for this study, building characterization is quantified by 

acceleration feedback from specified degrees of freedom. 

Since accelerometers are very sensitive to excitation, a common issue with their 

use is their inherent “noisy” signal or poor signal quality.  That is, they are prone to a 

poor signal to noise ratio.  A key advantage for the of fuzzy inference systems is their 

ability to provide acceptable and even optimal output signals despite significant noise in 

input signals.  Many algorithms based on traditional control theory are hampered by 

unwanted noise that is common in readings from most accelerometers.  What is more, 

many traditional control methods require multiple building characterization types such as 

displacement and acceleration to compute control signals, whereas fuzzy logic can be 

optimized for any set of input or output signals. 

Optimization Algorithm 

The system proposed in this study for optimal control of a civil engineering 

structure utilizes MR dampers which are managed by a fuzzy logic controller that 

employs acceleration feedback for characterization of building motion.  This system is 

inherently nonlinear due to the nonlinearity associated with the MR dampers response to 

motion.  The complexity of this system requires automation to develop an optimal FLC.  

A heuristic optimization process that is reasonably free of user guidance is desired since 

understanding the complex relationships involved such a system is a daunting task.  For 
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this reason a novel approach to optimization is considered here through use of a genetic 

algorithm (GA).  A robust trial-and-error approach to optimization is studied that allows 

the user to optimize a FLC by training with a specified data set and adjustment of a 

relatively few user-defined parameters. 

Use of genetic algorithms for optimization, since first bring proposed by Holland 

et al. 1975, has striven towards a blind optimization process that identifies unexpected 

relationships where other optimization processes can not.  The optimization is to be 

robust and consider numerous potential solutions.  With these thoughts in mind, genetic 

algorithms have been employed to identify optimal solutions for a variety of optimization 

objectives.  The general flow of logic of a rudimentary genetic algorithm can be 

described as shown in Fig. 5.   

 
Fig. 5. Typical Flow of Logic of a Nonspecific Genetic Algorithm 

A population of solutions is considered at each generation as opposed to a single 

solution as exampled by neural network optimization techniques.  By this fundamental 

principle, genetic algorithms are much more explorative than many prior optimization 

processes. 
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Recent advances in GA methodology have been exploited by numerous 

researchers.  For example, Schaffer (1985) incorporated the idea of non-domination.  In 

later studies Fonseca and Fleming (1993) and Goldberg (1989) considered a truly multi-

objective optimization with the employment of Pareto fronts.  The ability to optimize on 

multiple objectives simultaneously was crucial in bringing GA into the robust automated 

optimization process it is today.  In recent years researchers of genetic algorithms such as 

Deb (2001) have brought GA-based approaches to the forefront of multi-objective 

optimization. 

Summary of Proposed Control System 

Thus, for the proposed control system MR dampers that are managed by a FLC 

are used to provide optimal control forces to a civil engineering structure.  The FLC must 

be able to consider multiple concurrent structural response optimization objectives.  

Thus, a GA is employed for its robust and multi-objective optimization capabilities.  FLC 

performance is then experimentally substantiated through full-scale testing on a 

benchmark structure. 

Numerical Modeling and Simulation 

Since no online learning algorithms are pursued in the current study, two entities 

require numerical modeling in advance of experimental testing to produce a fuzzy logic 

controller.  To numerically simulate dynamic responses of the building to external forces, 

a feedback control loop is required as shown in Fig. 6.  As described in a later section, a 

state-space model of the benchmark structure is created using a modified version of the 

genetic algorithm originally used in FLC development.  Second, the MR dampers are 

modeled using a neuro-fuzzy approach.  Both the state-space model of the benchmark 

structure and fuzzy models of the MR dampers are created using results from 

experimental tests that isolate each entity to investigate their dynamic characteristics 

independently of each other.  Subsequently, these models are incorporated into the 

numerical simulation such that the MR dampers are assumed to be “force producers” as 

can be shown by basic mechanics of free bodies and (see Fig. 7).  Notation of excitation 

and response forces in Fig. 7 are derived from Chopra (2006).  Also, FMR is the resistance 

force of the MR damper and V denotes voltage specified for damper operation. 
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Fig. 6. Flow Chart of Numerical Simulation 
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Fig. 7. Free Body Diagram of Simple Structure 

Experimental Studies 

In this study experimental substantiation of GA-optimized FLCs is conducted 

with employment of two 20 kN MR dampers and a 9 m tall benchmark structure.  

Experimental trials were conducted at the National Center for Research on Earthquake 

Engineering (NCREE) located in Taipei, Taiwan, with the aid of local researchers.  A 

seismic simulator located at NCREE is used for experimental testing of the FLCs for a 

variety of near- and far-field excitations.  Furthermore, performance tests of MR dampers 

were conducted by an NCREE researcher to aid in the formulation of numerical models 

representing the MR dampers. 
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Software 

MATLAB 7.2, Simulink, and a complementary set of toolboxes are used to 

conduct numerical simulation and computations in the work that follows.  Moreover, a 

genetic algorithm is used which is based on work by Deb and Goel (2001), and further 

advanced by Kim and Roschke (2006b).  Significant alterations of these algorithms are 

described in what follows and are used in the simulations.  Since a GA is computationally 

intensive a cluster-based supercomputer is employed for GA calculations to expedite 

optimization. 
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1.    REVIEW OF LITERATURE AND RELEVANT TOPICS 
1.1. General 

Current and prior research to this study are noted and discussed in the following 

section.  The compilation of relevant research is vital to understanding the intellectual 

merit of the proposed control system.  What is more, many key topics are derived from 

prior work which is disseminated in what follows. 

1.2. Modeling of a MR Damper 

Any method used in MR damper modeling requires several key components, the 

most important of which is the ability to generate non-linear relationships that accurately 

describe the response of the damper to motion and voltage.  Resistance of an MR damper 

is modulated by application of a range of voltages as discussed in subsequent sections.  

Generally, numerical models consist of a set of input variables and they output one or 

more results that correspond to the device that is being modeled.  The methods of 

mapping these relationships differentiate the various modeling techniques.   

Several, often competing, factors are to be considered when designing a 

numerical model of an MR damper.  The first and most important is accuracy.  Accurate 

models of dampers are critical for future controller formulation.  Robustness is also a 

vital aspect of a numerical model.  That is, the model must be adept in accounting for 

new scenarios and uncertainties.  Finally, the model should be as computationally fast as 

possible.  In subsequent development of FLC controllers numerous computational cycles 

will be required; as such rapid calculation of MR damper forces is needed. 

Modeling techniques for MR dampers can be summarized into two categories: 

analytical and non-analytical.  A well known analytical technique that accurately models 

MR damper behavior through a set of seven governing differential equations has 

previously been proposed by Spencer et al. (1997).  This proposed method is a modified 

version of the classic Bouc-Wen model initially proposed by Wen (1976).  Validation of 

the Bouc-Wen model involves using several types of motion and voltage time-histories 

both of which are sinusoidal and random.  All presented data show validity of a highly 

accurate model.  Also, three error metrics have been proposed to quantify the accuracy of 

force prediction of the Bouc-Wen model.  A significant shortcoming of the Bouc-Wen 
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model is computational efficiency.  Although a highly accurate model of the MR damper 

is formulated, computational time is quite expensive as described by Schurter and 

Roschke (2000).  Since heuristic optimization, as employed in this study, requires 

numerous expensive computational cycles for FLC development, this type of modeling is 

not selected for this study. 

Other researchers have since developed numerous modified Bouc-Wen models 

that have more efficient computational algorithms.  A modified Bouc-Wen model has 

been proposed by Lin et al. (2005) for a 3 kN MR damper in which on-line parameter 

identification is conducted.  Here several models of the 3 kN MR damper operating at 

discrete voltage levels are generated.  Then cubic interpolation is used to identify MR 

damper characteristics with specified voltages lie between identified models.  Although 

this model is not as accurate as the one proposed by Spencer et al. (1997), it is very 

computationally efficient and suitable for heuristic optimization of a control system.  As 

an alternative to on-line parameter identification, a genetic algorithm has been proposed 

by Giulea et al. (2004) for the identification for Bouc-Wen parameters. 

More recently Jiménez and Álvarez-Icaza developed an alternative modeling 

method, termed the LuGre friction model (2005).   This modified LuGre friction model, 

original proposed by Canudas et al. (1995), has been simplified and utilizes a set of linear 

approximations to model an inherently non-linear device.  The LuGre friction model is 

reported to be more computationally efficient than the Bouc-Wen model as proposed by 

Spencer et al. (1997).  The modified LuGre approach models damper behavior with a set 

of two differential equations.  When results are compared to the Spencer et al. (1997) 

Bouc-Wen model a similar degree of accuracy can be noted.   

Other researchers have incorporated fuzzy logic in modeling of MR dampers as 

referenced by Schurter and Roschke (2000), Likhitruangsilp and Roschke (2003), Atray 

and Roschke (2004), Oh et al. (2004), and Kim et al. (2006).  In these studies a neuro-

fuzzy approach to MR damper modeling has been proposed that shows high accuracy in 

tandem with efficient computational effort.  Previous neuro-fuzzy modeling studies from 

this group of researchers utilized an Adaptive Neuro-Fuzzy training of Sugeno-type 

(ANFIS) for fuzzy training of the fuzzy model as initially developed by Jang (1993).  

ANFIS is an automated optimization process which, through trial and error, formulates a 
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set of fuzzy rules that relate input and output arguments.  A similar approach is utilized in 

the current study, but modifications from prior modeling efforts are incorporated.   

1.3. Control System Background and Optimization 

A number of control strategies exist in the research community today.  They can 

be generally summarized into two approaches: traditional and non-traditional control.  

Traditional control is an umbrella term that describes numerous control algorithms 

including commonly used algorithms such as PID, LQR, skyhook, or H∞.  These types of 

controllers are prevalent in many of the research communities interested in control.  Less 

commonly utilized are non-traditional controllers.  Examples of this classification include 

fuzzy logic and neural network controllers.  Generally speaking, traditional controllers 

directly use structural characteristics such as mass and stiffness in their formulation.  

Non-traditional controllers incorporate a wide variety of algorithms but, in general, are 

logic-based algorithms which incorporate weights and bias.  These control strategies are 

generally not derived, but formulated through an iterative process and make use of error 

metrics. 

Other methods such as modal control strategies (Cho et al., 2005) have been 

recently applied to management of MR dampers in seismic scenarios.  Here researchers 

seek to control specific modes of the structure that are prevalent in response to seismic 

excitation.  For optimal control they assume linear elastic analysis of the structure.  The 

developed controller utilizes displacement, velocity, and acceleration feedback for 

controller operation.  A Kalman filter is usually employed to estimate these states.  

However, use of a Kalman filter is computationally expensive in real-time application of 

a control system.  Although this control system has limitations, it does perform well for 

its intended purpose of controlling a set of selected modes.  Alternatively, a non-

traditional model control strategy has been developed by Rao and Datta (2006) with 

employment of an artificial neural network.  The neural network is optimized to mitigate 

response of a few select modes instead of the total response of the structure.  Results also 

show effective reductions to of building response. 

Skyhook control has been employed by Nagarajaiah and Narasimhan (2003) for 

control of a numerical benchmark base-isolated structure that is augmented with MR 

dampers.  Here assessments of both semi-active and active control schemes are pursued.  
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The skyhook controller is determined to be not quite as effective as a clipped optimal 

controller for the semi-active case. 

Many structural engineering researchers have used widely known control 

strategies such as Lyapunov and energy based methods for semi-active control of MR 

dampers (Sahasrabudhe and Nagarajaiah, 2005; Yoshida and Dyke, 2005; Renzi and 

Serino, 2004, Dyke et al., 1996).  These controllers have been shown to be effective in 

numerical and physical testing.  Each of these strategies relies on the accurate 

determination of structural characteristics such as mass and stiffness prior to controller 

formulation.  These methods have been shown to be effective when highly accurate 

models of the structure can be attained.  When accurate models cannot be attained the 

effectiveness of the controller often diminishes. 

Prior efforts for optimization of fuzzy logic controllers have employed automated 

strategies such as neural networks and neuro-fuzzy optimization algorithms (Schurter and 

Roschke, 2001).  In the cited study artificial neuro-networks are employed for modeling 

of MR damper behavior and control system development separately.  Since the employed 

neuro-fuzzy optimization process (ANFIS) is limited to one output researchers were 

limited in the number of control devices they could include in the global control scheme.  

Schurter and Roschke (2001) optimized a single and multiple degree of freedom control 

system with superior results for the MDOF case.  Researchers were also limited to the 

control capabilities of an LQR controller since LQR controller output is selected as a 

means to calculate controller error. 

GA optimization for fuzzy logic controller optimization has been conducted by 

several groups of researchers.  Ahlawat and Ramaswamy (2004a and 2004b) optimized 

controllers for wind and seismic excitations in separate studies with positive results from 

of each.  Researchers were limited to numerical simulations in evaluating their GA 

optimized fuzzy controller.  Researchers optimized the proposed control system 

considering only two objectives.  In the cited study feedback of velocity and acceleration 

are used for building characterization.  In a similar effort a semi-active control strategy 

has been proposed by Yan and Zhou (2004) which incorporates optimization of a FLC by 

a genetic algorithm.  Here only one optimization objective is considered. 
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Recently Kim and Roschke (2006a and 2006b) further advanced GA-optimization 

of fuzzy logic controllers related to structural control applications.  In each of these 

applications control of a hybrid base isolation system augmented by one or more MR 

dampers is pursued.  Kim and Roschke (2006b) pursued concurrent minimization of four 

structural response objectives utilizing a non-dominated sorting genetic algorithm 

(NSGA-II) in each case.  Favorable results are observed, especially when considering 

performance of traditional methods such as skyhook control. 

Prior efforts to experimentally investigate the effectiveness of structural systems 

that incorporate MR damper technology have been primarily limited to small scale 

structures.  However, one recent example of a large scale test utilized a decentralized 

control strategy to mitigate the seismic response of a four degree of freedom steel frame 

building (Renzi and Serino, 2004).  Four MR dampers are attached to the structure using 

a bracing configuration that spanned two floors.  Results show that MR dampers can be 

very effective in reducing both displacement and acceleration response of the structure to 

seismic excitations.  Other researchers utilized a 24,000 kg single degree of freedom 

structure for large scale testing of a hybrid base isolation system (Kim et al., 2006).  A 

friction pendulum system augmented by a 20-kN MR damper is employed to effectively 

mitigate response of the structure to a suite of scaled earthquakes.  Soda et al. (2003) also 

conducted a large scale experiment with linear roller bearings augmented by a 40 kN MR 

damper as a base isolation system for a three degree of freedom structure.  Favorable 

reductions in seismic response of the structure were obtained.  These three studies consist 

of the majority of large scale tests involving MR dampers in structural control 

applications that have been reported in the literature.  Clearly further large-scale 

experimental investigations are needed to bring MR damper technology into full fruition 

as an effective control device. 

1.4. GA System Identification 

Past endeavors to use a GA as a means for system identification of civil 

engineering structures have entertained few large-scale experimental studies available for 

verification of accuracy and single objective optimization as exampled by Perry et al. 

(2006).  In this study a GA algorithm is used to accurately identify only the acceleration 

response of a structure.  Displacement and velocity are not predicted since they would be 
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difficult to attain from a full-scale civil engineering structure.  Few large scale 

verification studies have been attempted by prior researchers that employ this type of 

parametric identification.  Other popular methods include frequency-domain system 

identification (Jin et al., 2005) and subspace methods (Overschee and DeMoor, 1996) 

which utilize state-space formulations.  The frequency-domain based methods offer rapid 

convergence towards a solution, but generally exhibit difficulties with data that have a 

high frequency component due to instrumentation noise (Perry et al., 2006) 

1.5. Summary 

In the previous narrative concepts and results from existing literature have been 

discussed to aid the reader in understanding the currently proposed study.  With 

discussion of current literature provided, focus now turns to the benchmark structure that 

is to be tested, modeled, and controlled in a series of large-scale laboratory tests. 
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2.    OVERVIEW OF BENCHMARK STRUCTURE 
2.1. General 

In the following text the proposed benchmark structure and related equipment 

used in experimental testing are described.  The test structure and equipment reside at the 

National Center for Research on Earthquake Engineering (NCREE) located in Taipei, 

Taiwan, and are shown in Fig. 8. 

  
Fig. 8. Benchmark Structure 

2.2. Test Structure 

The benchmark structure is 9 m tall and has a total mass of approximately 18,440 

kg.  Details pertaining to the benchmark geometry and mass are provided in Table 2.  All 

columns, beams, and braces are composed of H150×150×7×10 rolled shapes of grade 

A36 steel.  Density of the steel is assumed to be 7,850 kg/m3.  Moreover, lead weights are 

placed on each floor to increase the mass to stiffness ratio.  This is important since the 

benchmark structure should exhibit similar response characteristics as a real civil 

engineering structure.  Since many tall structures have a fundamental frequency of 

approximately 1 Hz, the target frequency for the benchmark structure is similar.  As 
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described in Table 2 the approximated lumped mass of each floor includes all 

components attached to the benchmark structure such as floor beams, columns, floor 

plates, lead weights, and etc.  It can be observed in Table 2 and in Fig. 8 that more lead 

weights are attached to the 3rd floor than to the 1st or 2nd floors.  Note also that some lead 

weights are removed from the 1st and 2nd floors to make room for the installation of MR 

dampers.  This can also be observed in Table 2. 

Table 2. Benchmark Structure Information 
Parameter Value 

Floor Height 3 m 
Floor Dimensions 2 m × 3 m 

Column, Beam, and Chevron Size (A36) H150×150×7×10 
Estimated  Lumped Floor Masses  

1st Floor 5,800 kg 
2nd Floor 5,800 kg 
3rd Floor 6,840 kg 

Total 18,440 kg 
Mass of One ‘Rack’ of Lead Weights 250 kg 

Number of Lead Weight Racks Per Floor  
1st Floor 10 
2nd Floor 10 
3rd Floor 14 

Floor Plate Thickness 25 mm 
Density of Steel 7,850 kg/m3 
Density of Lead 11,340 kg/m3 

Modulus of Elasticity of Steel 210 GPa 
Yield Strength of Steel 250 MPa 

 

The structure is idealized into three degrees of freedom as illustrated in Fig. 9.  

Since a state-space model of the structure is necessary for numerical simulation purposes, 

it must also be composed.  Eqs. (1), (2), and (3) list the mass, stiffness, and damping 

coefficient matrices, while Eqs. (5), (6), and (7) are used describe the state-space model 

of the structure (Franklin et al., 2002): 
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where M, K, and C denotes the mass, stiffness, and damping coefficient matrices, 

respectively, m and k denote mass and stiffness, respectively, of an individual floor, ω is 

a fundamental frequency defined by an eigenvalue analysis, ζ is the values, u is a vector 

of pertebation inputs, and A, B, C, and D are state-space coefficient matrices. 

 
Fig. 9. Idealization of Benchmark Structure 
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As shown in Eqs. (3) and (4), Raleigh damping is employed for calculation of the 

damping coefficient matrix (Chopra, 2006).  Identification of stiffness and damping 

parameters is pursued later in the text with the aid of a genetic algorithm.  GA identified 

values are presented in Table 3 to provide a complete description of the state-space model 

in the current section of the manuscript.  State-space modeling is a linear modeling 

technique and is utilized for numerical simulations to be conducted in 

MATLAB/Simulink (2006).  As discussed later, these GA-optimized values do not hold a 

unique physical meaning since state-space formulations are non-unique.  Yet, by 

employment of these values in the state-space model highly accurate predictions of the 

response of the benchmark structure are achieved. 

Table 3. Identified Stiffness and Damping Values 
Parameter GA Identified Value 

1k  1,172.82 kN/m 

2k  1,750.02 kN/m 

3k  1,998.30 kN/m 
ζ  0.00525 

 

Identified mass and stiffness values are used to compute eigenvalues and 

eigenvectors as shown in Tables 4 and 5.  Here it can be observed that the benchmark 

structure exhibits a fundamental frequency of approximately 1 Hz, thus the addition of 

lead weights to the structure is justified.  Note that the eigenvectors have been normalized 

to unity.  A sketch of the mode shapes is shown in Fig. 10. 

Table 4. Benchmark Eigenvalues 
 Fundamental Frequencies (Hz) 

Mode 1 1.05 
Mode 2 3.25 
Mode 3 4.99 
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Table 5. Benchmark Eigenvectors 
 Mode 1 Mode 2 Mode 3 

Floor 3 -1 -0.682 -0.423 
Floor 2 -0.851 0.290 1 
Floor 1 -0.558 1 -0.631 

 
Fig. 10. Mode Shapes of Benchmark Structure 

2.2.1. Experimental Setup 

Tests conducted using the MTS seismic simulator at NCREE require use of the 

control room and experimental hardware as shown in Fig. 11(a).  The control room is 

used by the NCREE staff to control the shake table and record all data collected from 

installed transducers.  The FLC is implemented into a computer that manages the 

dSPACE data acquisition and control system shown in Fig. 11(b).  The FLC specifies 

unique voltages to be applied to one or more MR dampers.  The dSPACE hardware sends 

this voltage to a voltage controlled current source (VCCS) where the voltage is used to 

specify proportional amplitude of current to be applied to the MR dampers as shown in 

Fig. 12(a).  The VCCS requires 24 V of power and can be operated using two automobile 

batteries connected in series.  However, NCREE researchers choose to use a standard 

power supply as shown in Fig. 12(b).  To measure the motion of the benchmark structure 

an array of transducers are installed on each floor of the structure.  To monitor 

displacements, velocities, and accelerations of each floor LVDTs, velocity transducers, 

and accelerometers are installed, as shown in Fig. 13(a).  To monitor the displacement 

experienced and force produced by the MR damper a LVDT and load cell are installed as 

shown in Fig. 13. 
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(a) (b) 
Fig. 11. (a) NCREE Control Room and (b) dSPACE Hardware  

 
 
 

  
(a) (b) 

Fig. 12. (a) VCCS and (b) Power Supply  
 
 
 
 

 

 

Fig. 13. Benchmark Transducer Photos 
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An experimental setup of the MIMO case is shown in Fig. 14.  Individual 

components of the experiment are realized in this schematic diagram that describes their 

relationships.  Accelerations measured on each floor by accelerometers are sent to the 

dSPACE hardware system where FLC computations are performed.  A sketch relating 

inputs and outputs of a MIMO case FLC is rendered in Fig. 15 with employed units.  

Then the FLC-specified voltages are sent to the MR dampers via one or more VCCSs.  

Data from all transducers and voltages sent to the MR dampers are collected by the 

hardware at NCREE for a complete set of experimental results. 

 
Fig. 14. Experimental Setup 

 
 
 

 
Fig. 15. FLC Sketch of MIMO Case 
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2.2.2. MR Damper Locations in Benchmark Structure 

The benchmark structure contains three potential locations for MR damper 

installation.  Two MR damper configurations are studied to show the adaptability of 

fuzzy logic control and genetic algorithm optimization.  The first case involves multiple-

input, single-output (MISO) control and the second case involves multiple-input, 

multiple-output (MIMO) control.  In the MISO case MR damper A is attached to the 

inverted chevron brace between the ground and 1st floor.  In the MIMO case MR damper 

A is attached to the inverted chevron brace between the ground and 1st floor and the MR 

damper B is attached to the inverted chevron brace between the 2nd  and  3rd floors.  Both 

MISO and MIMO cases are graphically rendered in Fig. 16 to aid in understanding their 

installations. 

  
(a) (b) 

Fig. 16. Rendering of MISO (a) and MIMO (b) Structures 



28 

2.3. Training Excitations 

A variety of excitations need to be accounted for in the training process of the 

FLC.  Artificial earthquake motions are created as described in what follows.  Generation 

of this artificial earthquake was first proposed by Nagarajaiah and Narasimhan (2005).  

All parameters for this artificial earthquake are obtained from Kim and Roschke (2006b). 

Generated artificial seismic excitations consist of amplitude and frequency 

content located in near-field seismic records.  A set of near-field seismic records are 

compiled and studied to produce parameters required by a shaping filter.  Near-field 

seismic records can be fundamentally differentiated from far-field seismic records by 

several metrics including their peak velocity (Chopra, 2006).  Near-field excitation 

characteristics are used for training data since they exhibit higher velocities than far-field 

tremblers. 

Creation of the artificial earthquake occurs in three stages.  In the first step 

random data points are generated and passed through a shaping filter as follows: 

 2 2

4
( ) g g

g g g

s
F s

s s w
ζ ω
ζ ω

=
+ +

 (8)

where s  is the generated white noise in the time domain.  Values for the shaping filter 

are ωg = 2π radian/sec and ζg = 0.3.  Here, frequencies with near-field characteristics are 

extracted from the random data.  In Fig. 17, a 10 sec portion of the initial random data 

and post shaping filter data are shown.  The total time span of the excitation is 30 sec. 

Data retrieved from the shaping filter are processed through a shaping envelope, 

see Fig. 18.  This is done to give a realistic growth and decay of excitation, as is typical 

for most seismic records.  Exponential and logarithmic decay functions are used for time 

intervals from a to tb, and tc to d, respectively.  Values for the shaping envelope are as 

follows: tb = 7, tc = 12, td = 30, and α = 0.3, (see Fig. 18). 
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Fig. 17. (a) Initial Random Data, (b) Post-Shaping Filter Data 
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Fig. 18. Shaping Envelope 

Due to inter-story drift limitations of 30 mm as mentioned earlier, the excitation is 

scaled to 100 gal to ensure that the structure remains linearly elastic during experimental 

testing.  Fig. 19 displays the excitation created by the artificial earthquake generator with 

respect to time and frequency content.  Notice that the majority of excitation is near 1 Hz. 
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Fig. 19. Artificial Seismic Base Excitation (a) Time History and (b) FFT 

2.4. Seismic Records 

In addition to the artificial record, four recorded ground motions are used for a 

variety of applications in the current study.  Acceleration time histories of these recorded 

events are shownin Fig. 20.  Selected excitations consist of a variety of near- and far-field 

seismic events.  Records include excitations from the El Centro (1940), Kobe (1995), and 

Chi-Chi (1999) earthquakes.  Two stations are selected from the Chi-Chi earthquake: 

TCU076 and TCU082.  The amplitude of the excitations are limited such that the 

materials of the benchmark structure remain linear and in the elastic range.  It has been 

determined through experimentation that inter-story drifts beyond 30 mm incite material 

yielding of the steel in the columns.  Therefore, for the uncontrolled case the peak 

acceleration of most temblors must be scaled to no more than 100 gal.  With the addition 

of two MR dampers excitations can be scaled to as high as 300 gal depending on the 

frequency content of the seismic record. 
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Fig. 20. Recorded Ground Motion Records (100 gal) 

2.5. Summary 

A test structure has been identified for implementation of a structural controller in 

numerical simulation and experimental testing.  Furthermore, an artificial excitation has 

been established for training purposes with the GA optimization.  Now generation of 

neuro-fuzzy models of MR dampers A and B are discussed. 
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3.    MAGNETORHEOLOGICAL DAMPERS 
3.1. General 

MR dampers provide a significant amount of controllability for a structural 

engineer.  Their controllability is derived from rheological properties exhibited by iron 

particles suspended in an oil-based MR fluid when a magnetic field is applied to the 

damper.  The magnetic field is the result of current being applied to the coil.  Amplitude 

of the current is specified by a voltage originating from a dSPACE data acquisition and 

control system.  Thus, the terms voltage and current are used interchangeably in what 

follows.  In the next subsections, the rationale for employment of neuro-fuzzy modeling 

techniques and details pertaining to experimental characterization tests of MR dampers A 

and B are discussed.  MR dampers A and B are each approximately 1 m  in length (see 

Fig. 21). 

 
(a) 

 
(b) 

 Fig. 21. MR Dampers (a) A and (b) B 

3.2. Fuzzy Logic for MR Damper Modeling 

Fuzzy logic is a non-analytical method of modeling nonlinear behavior.  A fuzzy 

inference system (FIS) is composed of a set of rules that contain input and output 

relationships.  For neuro-fuzzy modeling Sugeno-type FISs are used where membership 

functions compose the antecedent portion and polynomial equations compose the 

subsequent portion (see Fig. 22). 
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Fig. 22. Fuzzy Inference System for MR Damper 

For this study generalized bell-shaped membership functions are used as inputs 

and a polynomial is used for the output.  To model damper behavior inputs must be 

selected that yield accurate MR damper behavior.  Displacement is important since 

casing and piston alignment are typically imperfect which affects damper resistance.  

Velocity is also used since resistance of the piston head through the viscous MR liquid is 

best described by velocity.  Voltage is an important variable since it can drastically 

change the effective density of the MR fluid.  Acceleration is not used since ample 

information is provided by displacement, velocity, and voltage data. 

3.2.1. Advantages to Fuzzy Logic Modeling of MR Dampers 

MR dampers have been employed as semi-active variable viscous dampers for a 

number of structural engineering research studies.  A common problem associated with 

MR dampers is their non-linear response to motion, especially when current is applied to 

the coil.  To model the non-linear nature of MR dampers researchers have derived 

accurate, but computationally expensive differential equations (Spencer et al., 1997).  

This differs from fuzzy logic which requires almost negligible computational time.  To 

contrast this computational difference Fig. 23 shows the computational processing time 

required for a phenomenological model of a SD-1000 MR damper proposed by Spencer 

et al. (1997) and a fuzzy logic model as proposed by Schurter and Roschke (2000).  

Schurter and Roschke (2000) discovered that the ratio of the computational time between 

the phenomenological model and fuzzy model is approximately 150:1.  Since 

phenomenological models are computationally taxing it is advantageous to use the fuzzy 
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logic model, especially since thousands of numerical simulations are required for a single 

GA optimization used later in development of a FLC.  Furthermore, MR damper A is a 

two stage model and no phenomenological model has been proposed with such a 

configuration. 

 
Fig. 23. Comparison of CPU Time for MR Damper Models 

Moreover, fuzzy logic has an inherent component of robustness that allows the 

numerical model to account for some uncertainties.  Although accuracy of the FIS is still 

very dependent on the training data, FISs are more reliable than typical analytical models 

when motions occur that are not accounted for in training.  This robustness is primarily 

derived from the continuous membership and linear functions that fully describe the 

inputs and outputs, respectively. 

Despite the advantages of using FIS numerical models, an important disadvantage 

must be considered.  In general, FISs are not quite as accurate as these other modeling 

techniques.  That is, there is a compromise between accuracy and computational speed 

for numerical modeling methods.  FISs reside in the faster yet modestly less precise 

spectrum of numerical models.  The reduction in precision is not considered to be a 

problem since the FIS has been shown to accurately mimic experimental results.  Thus, a 

good compromise between computational time and numerical precision is ascertained. 

3.2.2. Design of MR Damper  

MR dampers A and B are both two-stage MR dampers as demonstrated in Fig. 24.  

Two coils rather that one are installed around each piston head to increase the resistance 

of the damper.  Unfortunately, due to a manufacturing mistake the coils are wound in the 
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same direction and thus the magnetic fieldes cancel each other in the region between the 

two coils.  If they had been wound in opposite directions, even more resistance could be 

achieved.  Also, it should be noted that for MR damper A one of the two coils is believed 

to be malfunctioning.  As shown later (see pages 38 and 39), this alters the resistance 

capacity of the damper; however, this malfunction is not fatal to its operation.  

Displacement and voltage ranges for MR dampers A and B are listed in Table 6. 

Table 6. MR Damper Characteristics 
Characteristic Range 
Displacement ± 140 mm 

Voltage 0 – 1.2 Volts

MR Fluid

Piston Rod

Magnetic Coils

Magnetic Fields

 

Casing

 
Fig. 24. Schematic of MR Dampers A and B 

3.3. Experimental Characterization Tests 

In preparation for installation in the benchmark structures, a series of 

characterization tests are performed on MR dampers A and B (see Fig. 21).  The objective 

of the characterization tests is to experimentally quantify the response of each damper to 

a variety of motions and applied currents. 

Performance tests of each MR damper are conducted by NCREE researchers who 

provided data that are used to produce a fuzzy model of each device.  Acquiring robust 

and thorough data from experimental tests is important when preparing training data.  

Prior approaches by Schurter and Roschke (2000) employed a philosophy of acquiring 

data beyond the operational use of the damper.  Thus, if a maximum velocity of 30 cm/s 
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is expected of the damper in operation, then a maximum velocity range of 45 cm/s would 

be pursued in performance testing.  This approach is helpful and can aid in producing a 

robust FIS.  Yet, care must be taken during the training of the FIS to ensure that the fuzzy 

rules are accurate in these higher ranges of operation where training data may be sparse.   

ANFIS is employed as the neuro-fuzzy optimization algorithm to generate fuzzy 

models of the MR dampers.  ANFIS gives consideration to every data point provided in 

the training data.  Thus, regions of data with relatively few data points can yield 

unreliable results in the neuro-fuzzy model.  For these reasons a different approach to 

generation of training data is employed for this study.  As previously mentioned, 

experimental testing should provide data well beyond the expected operational ranges of 

the damper, and the data should be plentiful inside these operational ranges to ensure a 

reliable set of training data for the FIS.  The expected operational ranges for these 

dampers during testing of the benchmark structure are ±35 mm for displacement and ±30 

cm/s for velocity.  Thus, training data are not required to extend beyond these ranges, but 

should be plentiful over the entire ranges.  Testing data were provided by NCREE 

researchers and did not include all ranges of operation. 

Two random displacement time histories termed ‘RD1’ and ‘RD2’ are used for 

performance testing.  RD1 and RD2 are tested with passive voltages ranging from 

passive-off (0 V) to passive-on (1.2 V).  Voltage is increased in increments of 0.2 V for a 

total of 14 damper tests for each MR damper.  Although this is not an ideal composition 

of performance tests, they are the only data made available by NCREE researchers.  

Ideally a suite of random and sinusoidal displacements test would have been conducted 

that could fully explore the operational ranges of the MR dampers.  Furthermore, random 

and passive voltage signals would be included to completely investigate the operational 

ranges of the dampers. 

Time history plots of RD1 and RD2 are shown in Figs. 25 and 26.  Velocity time 

histories are calculated from the displacement time histories by the 4th order backward 

difference formula as follows: 

4 3 2 13 16 36 48 25
12

i i i i ix x x x xx
t

− − − −− + − +
=

Δ
&  (9)
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where x  and x&  denote displacement and velocity, respectively, and Δt denotes the time 

step.  A 4th order backward difference approach is used since the data collected contain a 

modest amount of noise as is common with all data acquisition systems.  If a lower order 

difference equation had been used the computed velocity data would be inaccurate.  No 

filtering is required. 
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Fig. 25. RD1 and RD2 Time Histories 

As shown in Fig. 26 an even distribution of points at or beyond the operational 

range of the MR dampers is not achieved.  This lack of data has a negative affect on 

subsequent accuracy of the fuzzy models.  Yet in spite of this difficulty the ANFIS 

algorithm produces sufficiently accurate models of both MR dampers.   
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Fig. 26. Displacement vs. Velocity for RD1 and RD2 

Figs. 27 and 28 show the controllability of both MR dampers.  Controllability is 

judged by observing the passive-off (0 V) and passive-on (1.2 V) resistances of the MR 

damper to excitation.  Clearly, the resisting force of the passive-on case is significantly 

higher than for the passive-off.  This means that a significant variation of resistance can 

be achieved by modulating the voltage to each MR damper.  This is one of the favorable 

characteristics of an MR damper. 
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Fig. 27. Hysteretic Behavior of MR Damper A Over RD1 
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Fig. 28. Hysteretic Behavior of MR Damper B Over RD1 

3.4. Fuzzy Modeling of a MR Damper 

In the following text information concerning fuzzy models of both MR dampers is 

reported.  Neuro-fuzzy optimization is a hybridization of fuzzy and neural network theory 

in which Sugeno-type fuzzy inference systems are used.  In this study an Adaptive 

Neuro-Fuzzy Inference System (ANFIS) algorithm is utilized for parametric 

identification of the Sugeno-type FIS.  Key factors are discussed below that are critical in 

the development of fuzzy models. 

3.4.1. Selection of Training Data 

The selection of training data is crucial in producing an accurate fuzzy model of a 

MR damper.  ANFIS, through an iterative learning process, attempts to optimize fuzzy 

membership functions and the fuzzy rule base to accurately model provided output data.  

Thus, accuracy of the ANFIS generated fuzzy model is primarily dependent on the 

training data with which it is presented.  ANFIS requires both input and output data to 

build a numerical model; thus, input and output parameters must be selected.  As 

discussed in Section 3.2, displacement, velocity, and applied voltage are selected as 

inputs.  The output is the resistance force exerted by the damper.  For this study two sets 

of performance tests have been conducted corresponding to data sets RD1 and RD2.  

Each data set has been evaluated over a suite of passive voltages ranging from 0 to 1.2 

volts.  RD1 is used to form ANFIS training data since it exhibits the best distribution and 
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greatest range of data points.  The initial training data set used for neuro-fuzzy modeling 

of MR dampers A and B are shown in Figs. 29 and 30.  Since these training data sets are 

created by concatenating several tests, Figs. 31(a) and 31(b) should be observed to see 

how evenly distributed the data points are in relation to displacement and velocity.   

Note that numerous sparse regions of data can be seen in Figs. 31(a) and 31(b).  In 

these regions the ANFIS algorithm is required to guess and interpolate what the data 

should be since fuzzy logic is composed of continuous functions of the entire input and 

output domains.  This interpolation often results in noticeable error.  To help increase 

accuracy of the FIS over a reasonable region of displacements, the original training data 

are modified or ‘trimmed.’  These new training data sets are voided of any data points 

that contain displacement magnitudes greater than ± 25 mm as shown in Figs. 31(a) and 

31(b) as denoted by the shaded regions. Although significantly more regions could be 

voided, restraint is exercised to maximize the operational range of the FIS. 

FIS rules are commonly described by graphical means.  A three-dimensional 

surface where two inputs and one output can be visually inspected simultaneously is the 

most common representation.  This fuzzy surface is often used to verify if the FIS is 

realistic by expert knowledge.  Inspection of the FIS surface can yield important 

discoveries.  For example, two fuzzy surfaces are shown in Fig. 32.  Fig. 32(a) is a fuzzy 

surface trained on all data shown in Fig. 31 which contains sparse displacement data 

points that have magnitudes greater than ±25 mm.  Note the significant gradient in the 

surface near the 30 mm displacement and -20 cm/s velocity coordinates.  This directly 

corresponds to the lack of data located in this region as shown in Fig. 31.  Fig. 32(b) is a 

fuzzy surface trained on the same data, but with sparse data points beyond the ± 25 mm 

limit removed.  That is, by removing data points that lay outside of the desired range the 

large gradient has been corrected.  Modest alterations in the training data have significant 

effects on the FIS surface if regions of sparsely populated data exist. 
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(a) 

 
(b) 

Fig. 31. Trimmed (a) A and (b) B Training Data 
 
 
 

  
(a) (b) 

Fig. 32. Resulting Fuzzy Surfaces (a) With and (b) Without Sparse Regions of Data 
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3.4.2. Optimal ANIFS Training Parameters 

ANFIS uses both training data and user defined parameters in optimization 

procedures.  User defined parameters include: number of membership functions per 

input, membership function type, step size, increasing and decreasing step size, and the 

number of epochs used in training.  For this study only generalized bell-shaped 

membership functions are used since they have shown through trial and error to be the 

most adaptive method for use with experimental data that often contains unwanted high 

frequency content (i.e. noise).  Other types of membership functions, such as triangular, 

often yield poor results when using laboratory data.  Encoding of the ANFIS algorithm is 

conducted in MATLAB/Simulink (2006) and is provided in Appendix A. 

Step size is an important tuning parameter for ANFIS optimization.  The step size 

is a value that determines the magnitude of alteration of fuzzy parameters at each epoch.  

An epoch is a set of iterations.  Inside a single epoch all alterations are determined by the 

presiding step size.  After several iterations the step size is decreased or increased 

depending on the error calculated by ANFIS.  MATLAB/Simulink has specified defaults 

of 0.01, 0.9, and 1.1 for initial, decreasing, and increasing step sizes, respectively.  In the 

computations that follow, the initial step size is specified to be 0.15 for ANFIS training of 

MR damper A and 0.2 for ANFIS training of MR damper B.  Generally, a slight increase 

in step size during early epochs followed by a gradual reduction is ideal over the series of 

epochs.  This trend is observed in ANFIS training results of both MR dampers as shown 

in Fig. 33.  Here execution of ANFIS yields an early increase in step size that is followed 

by a gradual reduction to almost zero. 
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Fig. 33. Step Size Alterations of ANFIS Training for MR Damper (a) A and (b) B 
 
 
 
During ANFIS training membership functions are shifted and re-sized to optimize 

the model for accurate prediction of desired outputs.  Thus, it is important to observe the 

location and width of membership functions before and after training, as shown in Figs. 

34 and 35.  Significant shifts can be seen in all three input sets of membership functions, 

especially for voltage. 
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Two membership functions are used for each input variable.  This is not the ideal 

composition of membership functions for neuro-fuzzy modeling of a MR damper.  

Ideally, three or four membership functions would be used for velocity and or voltage 

inputs as shown by Schurter and Roschke (2000).  With the addition of more membership 

functions the potential accuracy of the neuro-fuzzy model is increased.  These additional 

membership functions allow the neuro-fuzzy model to be more closely fitted to the 

training data.  However, since the training data in this application contains significant 

regions of sparse data points a lower accuracy model is chosen so that the neuro-fuzzy 

algorithm does not produce FISs similar to the one shown in Fig. 32(a). 

3.4.3. Validation of FIS for MR Damper 

The primary source for validation of the fuzzy models is through comparison with 

experimental data collected during characterization tests, but not used for training.  To 

quantify the accuracy of the fuzzy models a modified set of metrics have been employed 

that were initially proposed by Spencer et al. (1997).  These metrics relate error of fuzzy 

models to time, displacement, and velocity.  They are defined as follows: 

t
t

F

E ε
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=  ,  x
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=  ,  x
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F expF dtσ = ∫  (14)

where Fexp. denotes measured experimental force, FFIS denotes fuzzy prediction of force, 

x is displacement of the damper piston, and t denotes time.  Performance of the fuzzy 

models according to the above metrics for sets of validation data is tabulated in Table 7. 
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Table 7. Performance of Fuzzy Models of MR Dampers A and B 
 Fuzzy Model of MR A Fuzzy Model of MR B 
 tE  xE  xE &  tE  xE  xE &  

RD1 (0 Volts) 0.039 0.092 0.057 0.024 0.057 0.033 
RD1 (0.2 Volts) 0.090 0.203 0.129 0.046 0.107 0.053 
RD1 (0.4 Volts) 0.109 0.248 0.162 0.077 0.180 0.101 
RD1 (0.6 Volts) 0.141 0.325 0.205 0.087 0.204 0.118 
RD1 (0.8 Volts) 0.149 0.339 0.218 0.099 0.220 0.135 
RD1 (1.0 Volts) 0.173 0.382 0.254 0.108 0.243 0.147 
RD1 (1.2 Volts) 0.100 0.214 0.146 0.118 0.264 0.157 

Avg. Error 0.114 0.258 0.167 0.080 0.182 0.106 
RD2 (0 Volts) 0.081 0.201 0.121 0.115 0.288 0.256 

RD2 (0.2 Volts) 1.053 2.478 1.578 0.233 0.585 0.447 
RD2 (0.4 Volts) 0.426 1.013 0.662 0.663 1.550 0.949 
RD2 (0.6 Volts) 0.230 0.540 0.348 0.392 0.915 0.568 
RD2 (0.8 Volts) 0.231 0.521 0.347 0.435 1.022 0.608 
RD2 (1.0 Volts) 0.164 0.372 0.246 0.286 0.672 0.392 
RD2 (1.2 Volts) 0.155 0.356 0.231 0.222 0.528 0.295 

Avg. Error 0.334 0.783 0.505 0.335 0.794 0.502 
 

Generally these results show that the fuzzy models are not as accurate as the 

Bouc-Wen model proposed by Spencer et al. (1997).  As discussed above, this is an 

acceptable margin of error since the Spencer et al. (1997) Bouc-Wen model is 

computational expensive in comparison with the fuzzy model. Furthermore, a less than 

idea set of training data was used in neuro-fuzzy training of the model, adversely 

affecting the accuracy of the model. 

Along with a quantitative analysis of the MR dampers, a visual inspection is also 

pursued.  Figs. 36 through 39 display performance of the fuzzy models in comparison to 

collected experimental data.  Here good agreement with collected experimental data can 

be observed.  Thus, the neuro-fuzzy model is deemed to be suitable for numerical 

simulations. 
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Fig. 36. Data Set 1 (0 V): MR Damper A 
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Fig. 37. Data Set 2 (1.2 V): MR Damper A 
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Fig. 38. Data Set 2 (0 V): MR Damper B 
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Fig. 39. Data Set 2 (1.2 V): MR Damper B 
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A final inspection of the fuzzy surfaces bears evidence of the ability of fuzzy 

logic to be evaluated with expert knowledge.  As shown in Fig. 40, FIS surfaces have 

realistic magnitudes and reasonable geometries.  It is important to note the differences 

between the fuzzy models for MR dampers A and B.  Although the dampers have similar 

mechanical configurations, the resulting numerical models of the dampers are 

significantly different.  The primary difference between the two dampers is the failed coil 

in MR damper A.  It is important to note that the difference is accounted for in the fuzzy 

model of MR damper A by observation of Fig. 40.  This is especially evident in 

contrasting Figs. 40(b) versus (e) and (c) versus (f).  Here with respect to increasing 

voltage a nonlinear increase in force is observed in Figs. 40(e) and (f) as opposed to a 

more linear increase in force as shown in Figs. 40(b) and (c).  This phenomenon can be 

attributed to the position of membership functions shown in Figs. 34 and 35.  Here 

membership functions composing the voltage input of MR damper A are generally 

monotonic for the entire range of voltage input after neuro-fuzzy training.  This stands in 

contrast to MR damper B where voltage input membership functions show non-

monotonic characteristics.  In the monotonic case of MR damper A a more linear 

relationship between voltage and force is established, whereas a more nonlinear 

relationship is evident in MR damper B.  Classical modeling methods would have 

significant difficulty in accounting for such a modification, yet neuro-fuzzy modeling is 

successful in capturing these important characteristics of MR dampers A and B. 
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(a) (d) 

 
(b) (e) 

(c) (f) 
Fig. 40. FIS Surface Plots: (a, b, c) MR Damper A and (d, e, f) MR Damper B  

3.4.4. Ensuring Realistic Results of Fuzzy Model 

A common occurrence resulting from neuro-fuzzy modeling of MR dampers is 

prediction of a modest force output when displacement and velocity inputs are exactly 
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zero.  This error generally does not affect the performance of the FIS when evaluated 

over experimental results and is often negligible.  However, this error can create 

instability in numerical simulations that are carried out in conjunction with a state-space 

model of a structure as shown in Fig. 6 with free body assumptions as shown in Fig. 7.  If 

the excitation is zero then the total response of the state-space model is zero.  Due to free-

body diagram assumptions the MR damper force predicted by the fuzzy model is added 

into the excitation just before entering into the state-space model.  Thus, if the FIS is 

outputting some non-zero force, this force results in an output from the state-space model 

being non-zero despite the fact that the external excitation is zero.  This error in fuzzy 

prediction of MR dampers forces often leads to significant inaccuracies in numerical 

simulations and even instability of the simulation. 

To correct this error two approaches can be investigated.  The first approach 

consists of adding a number of artificial data points to the training data that consist of 

exactly zero displacement and velocity.  Corresponding values of the voltage are given 

nonzero magnitudes since these input data points should not alter the FIS output if 

displacement and velocity are exactly zero.  This alteration of training data is acceptable 

since the additional training data makes physical sense.  Despite the inclusion of new 

data, neuro-fuzzy training of the FIS produced similar results to the original training data 

set.  Thus, this methodology, although ideal, is abandoned. 

The second approach consists of modifying the FIS model directly.  This 

alteration is permissible if the modified FIS still predicts MR damper forces accurately as 

judged by a comparison with all collected experimental data.  Alteration to the FIS model 

consists of adding one membership function to each input and output as noted in Fig. 41.  

Here the solid, bold line represents the added membership functions.  For displacement 

and velocity inputs the membership function is restricted to have a small width such that 

it only affects the region of inputs near zero.  The membership function added to the 

voltage input is specified to be at or near 1.0 over the entire range of the input.  This is 

done since the FIS output should be zero for all voltage levels if displacement and 

velocity inputs are exactly zero. 
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Fig. 41. Membership Functions with Addition of Seat for MR Damper B 

The new antecedent membership functions are united by a single rule with a 

constant subsequent for the output.  Recall that here Sugeno-type fuzzy inference systems 

are used for MR damper modeling and ANFIS optimization.  Hence, the output 

membership is a polynomial, not a Gaussian or generalized bell function.  A polynomial 

consisting of only a constant is chosen and set to 0.0 since the outputted force should be 

0.0 when each of these membership functions is activated by the inputs.  The width of 

each membership function is determined by its effect on the fuzzy surface.  Occasionally 

the addition of a membership function can cause a sudden irregularity in the surface and 

thus an unrealistic model as shown in Fig. 42.  To prevent this occurrence observation of 

the FIS surface is required.  Note that the FIS surface does not pass through zero at 1.2 

volts, but that the total FIS output is approximately zero after inclusion of additional 

membership functions. 
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(a) (b) 
Fig. 42.  Fuzzy Surfaces with (a) Unrealistic Surface and with (b) Realistic Surface  

3.5. Investigation of Benchmark Structure and MR Damper Relationship 

It is important to understand the relationship between the benchmark structure and 

the installed MR dampers in both MISO and MIMO configurations.  To approximate the 

interaction between the structure and MR damper(s) numerical simulations are conducted 

to observe the response of the structure to a single excitation, but with a variety of 

constant, passive voltages specified to the damper(s).  Numerical simulations are 

conducted with the structure excited by the artificial earthquake.  Numerical simulations 

are conducted with the same excitation signal, but the voltage specified to the MR 

damper(s) is increased from 0 V to 1.2 V in increments of 0.1 V.  By observing the 

resulting displacement and acceleration responses an optimal reduction of these 

objectives for passive operation of the damper(s) is identified to occur at 1.1 V and 1.0 V, 

respectively, for both MISO and MIMO cases.  This information reveals that, for passive 

control, both displacement and acceleration are reduced to their optimal values at or near 

the passive-on case for this excitation record.  What is more, optimal voltage levels may 

change with varying excitation records.  Although it is possible that a passive controller 

with voltages at or near the passive-on case may provide optimal control, without a 

thorough investigation of semi-active control such an assumption is not justified.  

Therefore, a controller superior to the passive-on case is pursued through application of 

fuzzy logic control. 
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3.6. Summary 

Fuzzy models of two MR dampers have been generated from experimental tests 

using the neuro-fuzzy optimization algorithm ANFIS.  Several methods are utilized to 

validate each FIS as a viable model of the behavior of its MR damper using both visual 

inspection and quantitative metrics.  Thus, the fuzzy models can be used in development 

of fuzzy logic controller for mitigation of structural response. 
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4.    DEVELOPMENT OF MULTI-OBJECTIVE GENETIC 

ALGORITHM 
4.1. General 

With the test structure identified and accurate models of the MR dampers having 

been created, construction of a fuzzy logic controller (FLC) is pursued.  Since the 

relationships between the inputs and outputs of a FLC are very complex, an automated 

process is needed to produce optimal FLCs that can account for these relationships.  As 

mentioned earlier genetic algorithms (GA), first proposed by Holland (1975), have been 

used in a variety of applications with success in solving problems involving minimization 

of multiple objectives (Sarkar and Jayant, 2004; Guo et al., 2004).  Genetic algorithms 

mimic natural selection through improvement by fitness and generation cycles.  Schaffer 

(1985) realized the potential for genetic algorithms and hypothesized a multi-objective 

GA.  Early efforts towards the optimization of fuzzy logic by GA were lead by Karr 

(1991).  More advanced Pareto based multi-objective optimization algorithms were 

proposed by Goldberg (1989) and later by Fonseca and Fleming (1993).   

Commonly, genetic algorithms only account for one or two objectives, but in this 

application the following four structural response characteristics are selected to be the 

objectives for GA optimization of FLCs: 

• Peak inter-story drift of all floors 

• Peak absolute acceleration of all floors 

• Root-mean-squared of inter-story drift of all floors 

• Root-mean-squared of absolute acceleration of all floors 

All four of these objectives are vital to the ability of a fuzzy logic controller to 

minimize structural responses that often incite damage in the structure.  Peak inter-story 

drift is chosen for structural safety in cases of seismic and high wind excitations to help 

prevent an overloading scenario that could lead to collapse.  Root-mean-squared (RMS) 

of inter-story drift is chosen to minimize the possibility of low-cycle fatigue that can 

develop quickly in the immediate response of a tall structure to seismic excitation or an 

extended imposition of strong winds.  Peak and RMS accelerations generally are 

correlated to the comfort of inhabitants and much debate has centered on how to best 
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quantify acceleration in relation to the comfort of the inhabitants.  Therefore, both peak 

and RMS accelerations are accounted for in this study.  Furthermore, nonstructural 

components such as water and electrical machinery are frequently damaged by high 

accelerations.  Considering both comfort and cost, acceleration is a key characteristic of 

structural response that needs to be minimized.   

For discussion, optimization of FLCs is focused on this in this section though 

similar discussions and arguments could be made for GA system identification of the 

state-space model of the benchmark structure discussed more in detail in Section 6. 

4.2. Overview of NSGA-II CE 

A non-dominated multi-objective algorithm (NSGA-II CE) is employed for 

optimization (Deb and Goel, 2001) of the FLCs.  An overview of the algorithm is shown 

in Fig. 43.  The initial population is composed of completely randomized values.  A non-

random initial set of FLCs is not suggested in order to avoid any user preference or 

weight to a considered fuzzy relationship.  Rather, the approach is to use the GA, through 

a trial and error process, to identify optimal relationships between inputs and outputs with 

minimal user assistance.  For purposes of optimization a chromosome is created to 

represent the FLC.  A chromosome is a string of real-valued, floating point parameters 

that can completely describe a single FLC.  Encoding of the GA optimization algorithm 

is conducted in MATLAB/Simulink (2006) and is provided in Appendix B. 

4.3. Makeup of Chromosome 

The chromosome consists of all floating point values for parameters, not a binary 

alphabet.  The use of real-valued, floating point quantities for parameters over binary 

digits has gained use since Janikow and Michalewicz (1991) discovered that a real-valued 

chromosome used in a GA is more efficient in computational time and has a faster 

convergence rate than traditional binary chromosomes.  For this reason real-valued, 

floating point quantities are used. 
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Fig. 43. NSGA-II CE Flow Chart 

Each chromosome is subdivided into four sections: FLC rules, objectives, rank, 

and crowding distance (see Fig. 44).  A FLC is completely described by a set of fuzzy 

rules that are used to relate input and output variables.  As described in what follows the 

fuzzy logic controllers are of the Mamdani-type and, thus, the inputs and outputs are 

described by membership functions as displayed by Fig. 15.   

 
Fig. 44. Example Chromosome 
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Each rule relates input and output variables by their membership functions.  Here 

Gaussian curve membership functions are employed that can be completely described by 

the location of its center (c) and its width (σ) as follows: 
2

2
( )

2( )
x c

y x e σ

⎛ ⎞−
−⎜ ⎟⎜ ⎟
⎝ ⎠=  (15)

An example membership function is shown in Fig. 45.  The membership function always 

has a peak value of unity, but the width and location of its center are variable.  Ten rules 

are used to relate inputs and outputs in this study.  Since each input and output is assigned 

one membership function per rule, 40 and 50 membership functions are incurred for the 

MISO and MIMO cases, respectively.  Moreover, two variables (c and σ) are needed to 

fully describe each membership function; thus, 80 and 100 variables are to be adjusted by 

the GA for the MISO and MIMO cases, respectively.  Initially more rules are believed to 

be more effective in creating a valuable FLC, but it has been concluded that use of only a 

few rules produces a more effective and efficient controller. 
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Fig. 45. Example of Membership Function 

The values of these variables comprise the first portion of the chromosome and 

are the building blocks of each FLC.  The second and third sections of the chromosome 

contain information about objectives and objective status. 

4.4. Objectives 

Effectiveness of each FLC that is created by the GA is evaluated by a quantitative 

structural response metric that is termed an objective.  For this application the FLC is 
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evaluated for effectiveness as the controller for the three story structure that is subjected 

to a series of seismic loads (see Fig. 8).  Results of each FLC are classified according to 

its ability to reduce inter-story drift ( x̂ ) and absolute acceleration (u&&% ).  More specifically 

each controller is evaluated over four objectives: peak drift (J1), peak acceleration (J2), 

RMS of displacement (J3), and RMS of acceleration (J4).  These objectives are defined as 

follows: 
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where σ(x) denotes the computation of RMS of quantity x, j denotes the floor of 

consideration, and t denotes time.  The objectives are stored near the end of the 

chromosome but before the rank and crowding distance (see Fig. 44).  To account for all 

four objectives, a multi-objective GA is necessitated.  This leads to a number of 

optimization considerations that are outlined below. 

4.5. Crossovers and Mutations 

Fundamental aspects of the evolutionary search process of a genetic algorithm are 

the concepts of crossovers and mutations.  These two operators modify parent 

chromosomes to produce the next generation of solutions.  They allow for exploration of 

new solutions while maintaining continuity of current solutions. 

4.5.1. Crossovers 

Crossovers occur when two parent chromosomes exchange equal amounts of 

information to produce two children as shown in Fig. 46.  A parent chromosome is a 

chromosome from the prior generation.  A child chromosome is a newly formed 

chromosome in the current generation.  In this study all individuals in the parent 
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population are subjected to a crossover to produce the child population.  The parent and 

child populations have the same number of chromosomes at the conclusion of the 

crossover operation. 
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Fig. 46. Crossover Operation 

4.5.2. Dynamic Mutations 

Data are altered at random after the crossover operations are complete to keep the 

generation cycle from becoming static; this is called mutation.  In this study a very 

explorative GA is required since four objectives are considered concurrently.  Thus, a 

dynamic mutation algorithm is employed which alters the magnitude of the mutation 

according to the following: 

             1
b

ay g
m

⎛ ⎞⎛ ⎞Δ = −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (20)

Here Δ is the value added to the current mutation candidate.  Also, y is the maximum 

amount of change allowed by the FLC ranges specified by the user, g is a random number 

between 0 and 1, a is the current generation, m is the maximum number of generations, 

and b is a user defined shape factor.  A larger value of b provides a more exploitive 

mutation process and a low value of b produces a more explorative mutation process.  In 

this study a shape factor of 1 is selected.  In Fig. 47 Eq. (20) has been evaluated over 

many generations.  In this study 20% of each child population is mutated before being 
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pooled with the parent population.  In a single mutation only one value of the 

chromosome is altered. 
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Fig. 47. Delta Computations for Many Generations 

4.6. Fronts and Crowding Distances 

Recent developments in the field of GA optimization have caused a number of 

engineering and scientific fields to give consideration to its inherent simplicity and 

capacity to be tailored for unique situations.  A key reason for the increased interest in 

GA optimization is the ability to optimize on several objectives simultaneously.  Several 

widely accepted multi-objective genetic algorithms include: Pareto-Archived Evolution 

Strategy (PAES) (Knowles and Corne, 1999), Strength Pareto Evolutionary Algorithm 

(SPEA) (Zitzler and Thiele, 1998), and Non-dominated Sorting Genetic Algorithm 

(NSGA-II CE) (Deb and Goel, 2001).   

Two central factors of all GAs are the exploitation of current solutions and 

exploration of new solutions.  PAES and SPEA suggest using an archived set of optimal 

solutions, and each have an algorithm for entrance into this optimal archived set of 

solutions.  The archived sets of solutions for PAES are safe from elimination unless a 

newly produced child solution proves superior to both parents that spawned the child.  

This creates a very exploitive nature for PAES, but limits its explorative aspects. 

SPEA specifies that the first non-dominated front of each generation be included 

in the archived set of optimal solutions.  Thus the archived set of solutions can become 

exceedingly large.  Child populations are derived from this large population which gives 
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SPEA a strong explorative nature, yet a much weaker exploitive nature.  To avoid an 

excessively large archive population, a pruning algorithm is employed to manage the size 

of the archived set of solutions.  Flowcharts describing PAES and SPEA are shown in 

Fig. 48. 

  
(a) (b) 

Fig. 48. Flowcharts (a) PAES and (b) SPEA Algorithms 

NSGA-II CE allows for the entire population to be evaluated at each generation; 

thus, none of the solutions are truly safe from elimination.  This, in turn, reduces the 

exploitive nature but greatly increases the explorative nature of NSGA-II CE. 

4.6.1. A Description of Pareto Fronts 

The following is an outline of the definition of a Pareto front.  A “rank” is an 

integer value assigned to a front.  A front is a group of non-dominated individuals that 

reside in the current population.  The 1st front is completely non-dominated.  That is, each 

individual of the front must have no superior when all objectives are considered.  

Superiority is determined by checking that no other individuals dominate the individual.  
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The striped region in Fig. 49 illustrates this concept.  For example no other FLC can have 

superior results for “Objective 2” at “Objective 1” than the considered FLC.  Once the 1st 

front is determined by locating all non-dominated solutions, its FLCs are set aside and the 

next front of “non-dominated” solutions is determined.  They are denoted as the 2nd front 

and so on. 

  
Fig. 49. Pareto Fronts and Crowding Distances 

4.6.2. A Description of Crowding Distances 

Crowding distances are a way to differentiate members of an individual front.  A 

crowding distance is a value that describes the density of solutions surrounding a single 

solution in a single Pareto front.  In multi-objective optimizations these densities are 

summed as follows: 
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where φ denotes the crowding distance of an individual with respect to all Pareto fronts, 

ψ denotes the crowding distance of a single individual with respect to members of the kth 

Pareto front, X denotes the ith individual of a common Pareto front, J is the total number 

of optimization objectives, and K denotes the number of Pareto fronts defined later in 
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Eqn. (23).  Prior to computation of crowding distances the entire pool of solutions are 

sorted in into Pareto fronts.  Then ψ is computed for each individual of each Pareto front.  

Note that the crowding distance is cumulative among all objectives.  Thus, a crowding 

distance with respect to members of a common Pareto front is attained.  In Fig. 49 the 

crowding distances ψ1 and ψ2 of a single solution with respect to ‘Objective 1’ and 

‘Objective 2’ are shown, respectively.   

Between two solutions (i.e. FLCs) within the same rank, the solution with the 

larger crowding distance is considered superior.  This may seem counter intuitive since 

the optimal solution is not necessarily far away from the other solutions.  However, this 

logic is implemented to encourage strong diversity of the population.  Moreover, a 

minimum number of solutions in each front are specified to keep all solutions of a 

population from evolving into a single front.  Exploration of new solutions and diversity 

of current solutions are key issues when working with a GA. 

4.6.3. Longitudinal and Lateral Diversity 

Two types of diversity are considered in this study: longitudinal and lateral 

diversity as depicted in Fig. 50.  PAES, SPEA, and NSGA-II CE give consideration to 

longitudinal diversity with the use of clustering and/or crowding distance.  Lateral 

diversity is satisfied by maintaining a population consisting of multiple Pareto fronts.  

Often, GA optimization converges toward a local Pareto front, while the global front still 

remains unknown.  Requiring lateral diversity aids in preventing solutions from 

converging too quickly to a local Pareto front.  PAES gives minimal consideration to 

lateral diversity, but SPEA gives significant consideration with its archived set of non-

dominated fronts from numerous generations.  NSGA-II CE proposes using controlled 

elitism through a forced selection of Pareto front sizes to ensure that individuals from a 

specified number of fronts are maintained in the population.  This differs from SPEA 

which maintains an archived set of non-dominated solutions from all or many 

generations.  Considering numerous previous non-dominated fronts from prior 

generations in forming a child population is relatively inefficient in maintaining lateral 

diversity in comparison with NSGA-II CE. 
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Fig. 50. Types of Diversity 

4.7. Controlled Elitism 

To avoid early convergence to a localized solution a more explorative GA is 

required.  A vital component to an explorative GA is diversity in the population.  Deb and 

Goel (2001) have determined that forcing dominated solutions to coexist in a population 

is an effective way to avoid early convergence, especially in a multi-objective GA which 

is termed controlled elitism.  This philosophy differed from the original NSGA-II (Deb et 

al. 2002) which did not include controlled elitism.  A geometric distribution is used to 

specify the number of solutions allowed in each front as follows: 

11
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i K
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−−
=

−
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where ni represents the number of individuals allowed in rank i.  The total number of 

individuals in the population is N, K is the desired number of fronts for the population, 

and r is a user defined parameter.  Typically 2 to 5 fronts are desirable; in this study 4 

fronts are specified. 

A large value of r  produces a uniform distribution (most diversity) and a smaller 

value of r  produces a more exponential distribution (minimal diversity).  An r value of 

0.5 is used for this study.  Fig. 9 shows the population distribution among fronts for a 

population (N) of 100 and K of 4 with different r values.  Thus, a large r is more 

explorative of new solutions and a small r is more exploitive of current solutions. 
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Fig. 51. Population Size for Each Pareto Front for Different r Values 

4.8. Optimization Examples 

To better understand NSGA-II CE and to validate its improvement from its 

predecessor, NSGA-II, two commonly used optimization problems are considered.  The 

first optimization problem is termed ‘F6’ in optimization literature and consists of a very 

complex scenario where identifying the global minima is difficult due to a significant 

number of local minima as proposed by Schaffer et al. (1989).  The ‘F6’ function 

contains only two variables and is a single optimization objective.  The second 

optimization problem is titled ‘ZDT4’ and is augmented by the Griewangk functional as 

proposed by Deb (1999).  This problem can have any number of variables and contains 

two competing objectives as discussed by Deb and Goel (2001).  For this study 10 and 

100 variables are demonstrated.  Initially, all GA examples in this section utilize a 

population of 100, undergo 200 generation cycles, are given a crossover rate of 95%, and 

have no mutations.  Mutations are suppressed to allow for a more clear comparison 

between NSGA-II and NSGA-II CE algorithms.  Each algorithm beings with the same 

initial randomized set of FLCs. 

4.8.1. F6 Optimization Problem 

The F6 problem is defined as follows: 
2 2 2

1 2
1 2 2 2 2

1 2

sin ( ) 0.5
( , ) 0.5

1.0 0.001 ( )
x x

F x x
x x

+ −
= +

+ ⋅ +
 (24)

where x1 and x2 are variables to be defined.  If x1 and x2 are evaluated over a range of ± 

20 Figs. 52 and 53 can be generated.  The F6 surface has numerous local minima near the 
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global minima which is located at exactly (0,0) where the F6 function is exactly zero.  

Note that the global minimum is located at the origin and is equal to zero but that there 

are numerous local minima in the vicinity of the origin.  Thus, ‘F6’ is considered to be a 

difficult optimization problem.   

 
Fig. 52. F6 Surface 
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Fig. 53. F6 2D Slice 
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For the F6 optimization problem both NSGA-II and NSGA-II CE are not able to 

locate the global minimum when mutations are suppressed.  This is due numerous local 

minima near the global minimum.  To observe the performance of each algorithm with 

the aid of mutations a mutation rate of 20% is now included for each algorithm.  After 

conducting GA optimization 10 times for each algorithm it is found that NSGA-II does 

not locate the global minimum within 200 generations.  However, NSGA-II CE identifies 

the global minimum within approximately 20 generations.  As shown in Fig. 54, NSGA-

II CE is able to quickly realize the global minimum.  Thus, for the F6 optimization 

problem NSGA-II CE has been determined to be superior to NSGA-II, but only with the 

aid of mutations. 
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Fig. 54. Results of F6 Optimization 

4.8.2. ZDT4 Optimization Problem 

The ZDT4 optimization problem augmented with the Griewangk functional is 

defined by: 

 1 1( )f x x=  (25)

2 1( ) ( )[1 ( )]f x g x x g x= −  (26)

10
2

2

1 2

( ) 91 [ 10cos(4 )]

[0,1], [ 5,5], 2,...,10.

i i
i

g x x x

x x i

π
=

= + −

∈ ∈ − =

∑  (27)
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where f1(x) and f2(x) define the two objectives, x1 and xi are variables to be defined by 

GA, g(x) is the Griewangk functional, and i denotes the number of variables to include.  

This optimization problem possesses less complexity between variables than the F6 

problem, but is scalable to any number of variables.  For this problem two numerical 

examples are presented with 10 and 100 variables, respectively. 

To better understand the Griewangk functional Fig. 55 is created to show the case 

when i is set equal to 2.  In this case a surface can be generated that describes a two 

variable application of the Griewangk functional.  Clearly, the global minimum is not as 

difficult to locate as for the F6 functional, but with competing objectives and numerous 

variables included; this multi-objective optimization problem becomes exceedingly 

difficult.  Also, it is difficult to quantify results since this is a multi-objective problem.  

Therefore, the most globally optimal Pareto front discovered by each algorithm is used as 

a comparison. 

 
Fig. 55. Griewangk Problem with 2 Variables 
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Results of NSGA-II and NSGA-II CE optimization for ZDT4 are shown in Fig. 

56.  Here, it is evident that NSGA-II CE provides a more globally optimal set of solutions 

than the original NSGA-II with either 10 or 100 variables.  The 100 variable case is of 

primary interest in this study since fuzzy logic controllers for the MISO and MIMO cases 

consist of 80 and 100 variables, respectively.  As evidenced by this study and prior work 

of Deb et al. (2002), NSGA-II CE is shown to be superior to previous optimization 

methods that are based on the NSGA-II algorithm. 
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Fig. 56. Results of ZDT4 Optimization with (a) 10 and (b) 100 Variables 

4.9. Summary 

A genetic algorithm has been outlined, discussed, and explored.  With an accurate 

model of the MR damper having been identified and the GA optimization method being 

formulated, optimization of the state-space model of the benchmark structure is now 

presented. 
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5.    GENETIC ALGORITHM SYSTEM IDENTIFICATION 
5.1. General 

A GA algorithm for system identification the benchmark building has been 

developed that incorporates the same NSGA-II CE algorithm employed for development 

of fuzzy logic controllers.  In this case the goal for is to determine stiffness and damping 

coefficients used in a state-space representation of the structure.  In the current study, a 

robust approach to optimization is presented since prediction of displacement, velocity, 

and acceleration are all considered concurrently through multi-objective optimization.  

Furthermore, full-scale tests are conducted for verification of the GA system 

identification results over a suite of excitations. 

Four variables are estimated by the GA to predict the response of the structure to 

excitation including stiffness matrix coefficients and the critical damping ratio.  With this 

information the following can be defined: 
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where U is a vector of displacements of the building floors relative to its base, gU&&  is the 

ground acceleration, M is the mass coefficient matrix, K is the stiffness coefficient 

matrix, C is the damping coefficient matrix, ζ is the critical damping ratio, and ω1 and ω2 

are 1st and 3rd fundamental frequencies of the structure.  For the damping matrix α and β 

are Rayleigh damping coefficients (Chopra, 2006) that are determined by an eigenvalue 

analysis.  The masses of the structure (m1, m2, and m3) are assumed to be known and are 

calculated using assumed geometries and densities of the structure (see Table 2). 
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Assuming that the ends of the columns do not rotate, the translational stiffness of 

each column about its weak axis is initially calculated to be approximately 500 kN/m per 

column using the following equation: 

312 EIk
L

=  (30)

where E is Young’s modulus of elasticity, I is the second area moment of inertia about 

the weak axis, and L is the unsupported length of the column.  Thus, an effective stiffness 

per floor of approximately 2,000 kN/m can be assumed since there are four columns 

acting together.  This calculation is used as a reference point in deciding the range of the 

search space of the GA.  The search space for the GA is taken to be ±50% of the 

calculated k value.  Damping is estimated by computing Raleigh damping coefficients.  

Here damping is assumed to be accurately estimated by using modes 1 and 3 (Chopra 

2006).  A range of 0.001 – 0.01 is assumed for critical damping, ζ, since damping effects 

should be modest in this all-steel structure.  In summary, the variables for the GA system 

identification algorithm to identify include k1, k2, k3, and ζ. 

Training data for the GA consists of full-scale experimental results that are 

collected during testing of the uncontrolled benchmark structure when no dampers are 

installed although the chevron braces are attached to the frame.  While excitations from 

numerous historic earthquakes are tested on the uncontrolled benchmark structure, data 

collected from an El Centro 100 gal earthquake are used for training.  This excitation is 

selected since results of GA optimization are observed to be more accurate than results 

that are obtained using other excitations.  Displacement and acceleration data are 

collected through an array of LVDTs and accelerometers, respectively, which are 

attached to each floor of the benchmark structure and discussed in Section 3. 

Three objectives are used to quantify simulated results.  Each objective is the 

root-mean-squared-error (RMSE) computed when compared to actual full-scale 

experimental results with respect to displacement, velocity, and acceleration response.  

These objectives are expressed mathematically as follows: 
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{ }1 ,exp. , .max ( )j j simj
J u uσ= −  (31)

{ }2 ,exp. , .max ( )j j simj
J u uσ= −& &  (32)

{ }3 ,exp. , .max ( )j j simj
J u uσ= − &&  (33)

where j denotes the floor under consideration, u, u& , and u&&  denote displacement, velocity, 

and acceleration relative to the base of the structure, respectively.   

GA optimization results (see Table 3) reveal that GA optimized stiffness values 

differ considerably from those of the closed-form calculations from Eq. (30).  It should be 

noted that GA-optimal values for k1, k2, k3, and ζ are not unique since the state-space 

formulation is non-unique.  These values have an uncertain physical meaning.  Figs. 57 

and 58 show estimated structural responses of the 3rd floor from the GA-optimized 

structural model of the benchmark structure that is excited by 100 gal El Centro and 200 

gal Kobe earthquakes, respectively.  Results shown in Fig. 57 correspond to the 

uncontrolled case with no MR dampers installed, while results shown in Fig. 58 

correspond to GA-optimized FLC control of the MIMO structure.  Measured and fuzzy 

predictions for MR damper B are also shown.  Note that accuracy of these results relies 

on the accuracy of the GA-optimized state-space model and also on the ANFIS optimized 

neural fuzzy models of the MR dampers. 

To further affirm the state-space model with experimental results, a fast Fourier 

transform is taken of the acceleration response of the 3rd floor from both numerical 

simulation and experimental testing (see Figs. 59 and 60).  The sinusoidal excitation is a 

simple test where a few cycles of a sine wave are generated at 1.38 Hz to excite the 

structure.  In both the simple sinusoidal case and a more complex seismic case the GA-

optimized state-space model are shown to be highly accurate in reproducing experimental 

results.  It can be observed that the first three modes are modeled accurately since the 

peak frequencies show strong agreement.  Table 4 shows the eigenfrequencies of the 

benchmark structure according to the GA-optimized state-space model.  Note that each 

plot has been normalized to unity for the ordinate axis. 
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Fig. 59. FFT of Acceleration Responses for 3rd Floor: El Centro 100 gal  
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Fig. 60. FFT of Acceleration Responses for 3rd Floor: Sinusoidal Excitation 

5.2. Summary 

The previous text discusses GA optimization of the state-space model of the 

benchmark structure.  Four optimization objectives are included to accurately quantify 

error in the state-space prediction when compared to experimental results.  Results show 

that a highly accurate state-space model has been achieved.  Next, results of GA 

optimization of the FLC are provided.  Furthermore, numerical and experimental 

substantiation of the FLC are given.  
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6.    RESULTS OF GA OPTIMIZATION AND EXPERIMENTAL 

TESTING 
6.1. General 

Results of GA optimization of fuzzy logic controllers are described in this section.  

First results of GA optimization are shown and a fuzzy logic controller is identified for 

both the MISO and MIMO control cases.  Then numerical simulations are carried out to 

show the effectiveness of the identified fuzzy logic controllers for a suite of excitations 

containing near- and far-field excitations.  Finally, experimental validation of controllers 

is provided from large-scale experimental tests. 

6.2. Results of GA Optimization 

In what follows results of GA optimization of FLCs for the MISO and MIMO 

cases are provided.  Figs. 61 and 62 show the Pareto fronts that result from GA 

optimization of MISO and MIMO controllers, respectively.  Here, each symbol 

represents the performance of one FLC when considering two of the four performance 

objectives.  Since four objectives are considered six plots are required to describe the 

GA-optimized results for each damper configuration.  Figs. 63 and 64 show rank 1 of 

generations 1, 50, and 200; thus, the progression from early, primitive controllers to more 

advanced controllers is evident.  Longitudinal diversity is maintained as can be observed 

by the final population of generation 200.  This diversity in the GA pool of fuzzy logic 

controllers demonstrates that by favoring solutions with increased crowding distances a 

pool of FLC controllers displaying longitudinal diversity can be maintained.  Lateral 

diversity of solutions can be observed in Figs. 61 and 62 by noting the number of 

solutions in each front of generation 200.  Thus, it is shown that NSGE-II CE is 

successful in maintaining both lateral and longitudinal diversity.  Furthermore, a balance 

of optimization towards the reduction of displacement and acceleration responses can be 

observed.  Hence, the benefit of concurrent optimization is shown. 

In several cases controllers from early generations had already attained a 

substantial reduction in a single objective and, therefore, only minimal improvement is 

observed.  For example, controllers that reduced displacement well in early generations 

commonly specify significant amounts of voltage that closely approximates the passive-
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on case.  Still other controllers are outputting small amounts of voltage and imitate the 

passive-off case.  GA-optimization is able to combine these characteristics to define a 

smart controller that combines the favorable attributes of each case into a single 

controller. 
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Fig. 61. Pareto Fronts Resulting from MISO GA Optimization 
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Fig. 62. Pareto Fronts Resulting from MIMO GA Optimization 
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Fig. 63. Several Generations Resulting from MISO GA Optimization 
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Fig. 64. Several Generations Resulting from MIMO GA Optimization 
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By observation of results from GA optimization two optimal controllers are 

identified that correspond to the MISO and MIMO cases (see Figs. 65 and 66).  The 

controllers are selected by equal merit of all four objectives; that is, the controller might 

not perform with global optimal results for all objectives.  Yet, the identified controllers 

possess favorable results considering all four objectives. 
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Fig. 65. MISO Control Surfaces 

Fuzzy logic controllers can be partially described by a set of surfaces where input 

and output relationships are shown graphically.  Figs. 65 and 66 display all potential 

fuzzy surfaces of MISO and MIMO controllers.  Although these three-dimensional 

surfaces aid in understanding each controller, it is not possible to fully realize their 

complete combination visually.  However, this set of surfaces is adequate for a control 

engineer to understanding its fundamental aspects.   
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Fig. 66. MIMO Control Surfaces 

As observed in Section 3.5, an optimal passive operating voltage of 

approximately 1.0 V exists with consideration for displacement and acceleration 

responses.  Although this information is not imparted to the FLCs by the user, GA 

optimization is able to identify these optimal passive voltages without user guidance.  

This can be verified by observation of the prominent monotonic sections near 1.0 V of all 

FLC surfaces shown in Figs. 65 and 66 for both MISO and MIMO cases for MR damper 

A.  In the MIMO case an optimial passive operational voltage of appoximatly 0.5 V is 
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identified.  Moreover, GA optimization is able to improve upon all of these passive 

voltages by altering the command signal as demonstrated by the non-monotonic section 

of the fuzzy surfaces in these figures.  Thus, GA-optimization ascertained that for some 

input cases a passive voltage provides optimal reduction to displacement and acceleration 

responses, but in many other cases the intelligent modulation of voltages can improve the 

response of the structure beyond any single passive case.  

To observe FLC output signals under experimental operation Fig. 67 has been 

generated to observe, in a simplified sense, FLC input/output relationships from 

experimental testing of MISO case under a 100 gal TCU076 earthquake and MIMO 

under a 200 gal TCU082 earthquake..  Here the third input of the FLC, acceleration of the 

3rd floor, is plotted against the voltages specified for MR damper A for both MISO and 

MIMO cases.  For the MISO case in Fig. 67(a) a higher consentration of specified 

voltages are located near 1.0 V.  This is expected due to the monotonic regions of the 

fuzzy surfaces near 1.0 V as shown in Fig. 65(a).  A more even distribution of specified 

voltages is observed in the MIMO case in Fig. 65(b).  It is important to monitor these 

relationships to further understand GA-optimized FLCs and how effective each region of 

the FLC under is varing excitions.  The input ranges of the FLCs are chosen to be ± 1 

m/s2.  For the 100 gal case this range is reasonable, but for the 200 gal case the 

accelerations extend significantly beyond the input ranges of the FLC.  To formulate a 

more robust FLC, extention of the input ranges would help facilitate a more robust 

controller when higher amplitude tremblors occur.  Yet, as shown later, good results have 

been obtained with input ranges being limited to ± 1 m/s2. 

In what follows results and discussion relating to the numerical and experimental 

evaluation of GA-optimized FLCs are provided.  In the first two sections results pertinent 

to numerical simulations and experimental trials are examined through tabulated 

performance metrics and visual inspections of plotted data.  In the third section results 

from numerical simulation and experimental trials are pooled to observe overall 

performance of the FLC controllers.  Note that the GA-optimized FLC was trained on an 

artificial seismic record as discussed in Section 3.3.  In the following sections only  

seismic records that were not part of the training records are used for investigation of 

FLC performance. 
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Fig. 67. Input/Output of Controllers in (a) 100 gal and (b) 200 gal excitations  

6.2.1. Results of Numerical Simulations 

An evaluation of MISO and MIMO performance is first conducted using 

numerical simulations.  Numerical simulations are computed by use of 

MATLAB/Simulink (2006) code that is listed in Appendix C.  In Figs. 68 through 82 

time histories of floor displacement and acceleration as well as hysteresis plots of MR 

damper force are provided to allow a visual inspection of the controlled, passive-off, and 

FLC results from numerical simulation of the Kobe, El Centro, and Chi-Chi earthquakes 

(denoted as stations TCU076 and TCU082).  The Kobe and El Centro seismic records are 

generally classified as near-field excitations while the two Chi-Chi seismic records 

utilized are generally classified as far-field excitation records.  All displacement and 

acceleration values are shown relative to the base of the structure.   

Figs. 68 through 71, and 74 through 77 show time history results considering four 

earthquakes that are simulated at various intensity levels.  For all floors the passive-off 

case shows great improvement upon the uncontrolled case for both displacement and 
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acceleration responses as shown by the Kobe excitation in Figs. 68 and 69.  FLC 

controlled cases show further improvement upon the passive-off case with respect to 

displacement responses for both 100 and 200 gal excitation levels.  Although not noted in 

the time histories of the 2nd and 3rd floors, the inter-story drifts of all cases were 

minimized such that plastic deformations do not occur.  This linear deformation is later 

substantiated by experimental trials. 

Acceleration reductions are notable, but are generally not as significant as for the 

displacements.  This is a very positive result of the FLC since acceleration responses are 

not aggravated as is common in many structural control applications.  As observed in 

Figs. 69 and 75 the 1st floor acceleration response of the FLC case and uncontrolled case 

are similar, but when considering the 3rd floor response the reduction is more substantial.  

This top floor reduction of acceleration response is crucial in structural engineering 

applications were high accelerations on the top floor of a building often cause damage to 

non-structural components such as air conditioning ducts, electrical conduits, and water 

supply lines.  What is more, in modest excitations personnel located on the top floor of a 

building might become sick due to a sudden increase in acceleration.  Thus, the FLC is 

effective in reducing the global acceleration response of the building as considered in the 

optimization objectives of Eqs. 12 and 14. 

As an aid to understanding the operational characteristics of MR damper A during 

the simulated earthquakes, Figs. 72, 73, 78, and 79 show hysteresis plots of force versus 

displacement and force versus velocity.  From these figures the effect of FLC control on 

the magnitude of the displacement and velocity is apparent by their reduction.  

Conversely, the MR forces corresponding to FLC control clearly increase over those 

predicted during passive operation.  For the displacement versus force figures it is 

interesting to note that the shapes of the passive and FLC curves are rotated 

approximately 90 degrees from each other.  Safety limitations for the MR damper stroke 

are considered in its peak displacement as noted earlier in Table 6.  Here the peak 

displacements experienced by the MR damper are well within the ± 240 mm stroke 

limitation.  The ‘classical’ S-shape of the force-velocity curve is readily apparent for the 

passive-off hysteresis curves.  By contrast, the initial slope of the force-velocity curves is 

much steeper than for the passive-off case; however the horizontal portion of the FLC 
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curves is not well-developed because the velocity is reduced in comparison with the 

passive-off operation.  The full capacity of the MR damper is not fully realized in 

numerical simulation since the peak MR damper force is approximately 15 kN except in 

the 200 gal Chi-Chi (TCU082) case as shown in Fig. 79.  Thus, for the majority of cases 

reserve capacity of the MR damper is retained. 

Data presented in Table 8 correspond to numerical simulation results for both 

MISO and MIMO cases of control as outlined in Eqs. 11-14.  Results from two control 

cases are shown: passive-on (“P-ON”) and fuzzy logic controlled (“FLC”).  Passive-off 

information is implicitly included since both passive-on and FLC results are normalized 

by the corresponding passive-off value; thus, if the value of the performance index is 

greater than 1, passive-off is the superior case.  Uncontrolled data are not provided since 

they do not substantiate effectiveness of the controller and they could not be attained for 

excitations greater than 100 gal because of the possibility of large strains causing damage 

to the steel columns.  Italicized values denote FLC performance that is superior to 

passive-off control while bolded values denote results superior to both passive results.  

The optimal passive case of 1.0 V being applied to the MR dampers is not included since 

it was not tested during the experimental trials.   
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Fig. 72. Numerical Simulation of MISO: Hysteresis from 100 gal Kobe Earthquake  
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Fig. 73. Numerical Simulation of MIMO: Hysteresis from 200 gal El Centro Earthquake 
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Fig. 78. Numerical Simulation of MISO: Hysteresis from 100 gal TCU076 Earthquake 
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Fig. 79. Numerical Simulation of MIMO: Hysteresis from 200 gal TCU082 Earthquake  
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Table 8. Numerical Evaluation of FLC Controllers 
    MISO Configuration MIMO Configuration 

  1J  2J  3J  4J  1J  2J  3J  4J  

El Centro (100 gal) P-ON 0.85 1.30 0.65 1.07 0.76 1.29 0.93 0.98
 FLC 0.79 1.27 0.64 1.01 0.74 1.34 0.92 0.97

Kobe (100 gal) P-ON 0.53 0.74 0.63 1.08 0.49 0.86 0.92 0.98
 FLC 0.55 0.68 0.61 1.01 0.50 1.17 0.89 0.93

Chi-Chi, TCU076 (100 gal) P-ON 0.58 0.99 0.59 1.01 0.55 0.96 0.91 0.95
 FLC 0.61 1.01 0.60 0.96 0.56 1.52 0.89 0.96

Chi-Chi, TCU082 (100 gal) P-ON 0.63 1.13 0.66 1.10 0.53 1.08 0.98 1.02
 FLC 0.59 1.10 0.66 1.03 0.56 1.72 0.95 0.99

El Centro (200 gal) P-ON - - - - 0.68 1.16 0.83 0.89
 FLC - - - - 0.62 1.68 0.80 0.95

Kobe (200 gal) P-ON - - - - 0.58 1.23 0.74 0.82
 FLC - - - - 0.72 1.49 0.73 0.92

Chi-Chi, TCU076 (200 gal) P-ON - - - - 0.58 1.38 0.73 0.85
 FLC - - - - 0.64 1.20 0.72 0.92

Chi-Chi, TCU082 (200 gal) P-ON - - - - 0.53 1.08 0.98 1.02
 FLC - - - - 0.56 1.72 0.95 0.99

 

From these tabulated results of numerical simulation performance of the fuzzy 

logic controllers are superior to both passive cases for many cases over a variety of 

excitations, objectives, and MR damper configurations.  The fuzzy logic controller for the 

MIMO case is superior to both passive cases concerning objective J3 over all excitations 

while maintaining favorable performance over the remaining objectives.  For almost all 

cases fuzzy logic control is superior to both passive cases for at least one or more 

objectives.  This shows that multi-objective optimization is effective in reducing all 

objectives. 

6.2.2. Results of Experimental Trials 

In this subsection experimental evidence of FLC performance is reported.  

Experimental testing of the FLC controllers utilizing the benchmark structure with 

installed MR dampers was conducted at the NCREE laboratory in June 2006. 
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Figs. 83 through 97 present results from experimental testing of the benchmark 

structure with an installed control system.  Several time histories and hysteretic plots are 

shown with uncontrolled, passive-off, and FLC controlled cases for 100 gal excitation 

and passive-off and FLC controlled for 200 gal excitations.  No uncontrolled 200 gal 

experimental trials were conducted due to potential plastic deformations that could occur 

in the benchmark columns under such loads.  Excitation levels greater than 100 gal were 

investigated after installation of the MR dampers due to their additive resistance to 

motion.  Corresponding with results of numerical simulations, FLC controlled 

displacement reductions are considerable when compared to the uncontrolled case, but 

acceleration reduction are not as large.  Yet, an increase in accelerations above the 

uncontrolled case is not observed. 

In experimental trials a higher frequency component of acceleration is observed 

that was not realized in numerical simulations.  This is very apparent in the acceleration 

response of the 1st floor of the benchmark structure excited by the Chi-Chi (TCU076) 

earthquake as shown in Fig.  90 when compared to the numerical simulations shown in 

Fig. 75.  Although this high frequency content is not numerically simulated and not 

incorporated into GA optimization of the FLC, it has been experimentally shown that the 

FLC of MR dampers can effectively mitigate this unexpected response. 

Results from experimental testing of MISO and MIMO controllers validate 

performance of the fuzzy logic controller.  When experimental results are compared to 

results of numerical simulation reasonably good agreement is indicated, but some non-

trivial discrepancies exist.  Differences of this magnitude are expected in real-world 

applications and yet are valid concerns in controller assessment.  Despite this difficulty, 

the clemency of fuzzy logic shows that it can accommodate non-trivial errors during 

optimization and still perform favorably under a variety of excitations.  Experimental 

results show FLC robustness with consideration of frequency content and the magnitude 

of excitation in the MIMO control case. 

FLC specified voltages for MR damper A shown in Figs.  80, 81, and 82 

correspond to numerical simulation, while Figs.  95, 96, and 97 correspond to MR 

damper voltages from experimental tests.  In earlier efforts penalty functions were 

employed in GA optimization to ensure that the voltage specified by the FLC is small 



102 

when the response of the building, as characterized by measured acceleration, is minimal.  

This was found to have an adverse effect on GA optimization of FLCs, resulting in poor 

performance of GA-generated FLCs.  Although ideal, this philosophy was abandoned and 

penalty functions negated to ensure optimal performance of the FLC under high 

amplitude excitations.  If these controllers were to be implemented in a real civil 

engineering structure a switching algorithm would need to be installed to bring the 

controller online when acceleration responses became significant; also, it would need to 

remain in an offline mode for the remainder of its service. 

Experimental results of the response of the MR dampers to motion under seismic 

loadings are shown in Figs. 87, 88, 93, and 94.  Here peak displacements of 

approximately ± 20 mm and peak velocities of approximately ± 20 cm/s are observed 

except for the 200gal TCU082 excitation shown in Fig. 94.  This gives experimental 

evidence to the validity of selected in ranges for the neuro-fuzzy model of the MR 

dampers in Section 4 of ± 25 mm for displacement and ± 20 for velocity.  Hence, the 

‘trimming’ of training data is justified since experimental trials show that the MR damper 

generally does not experience displacement or velocities outside of the modeled range for 

100 or 200 gal excitations.  In numerical simulations where inputs to the neuro fuzzy 

model extend beyond the modeled ranges (as shown in Fig. 79) the inputs are truncated at 

the saturation limits of the neuro fuzzy model.  
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Fig. 87. Experimental Results of MISO: Hysteresis from 100 gal Kobe Earthquake 
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Fig. 88. Experimental Results of MIMO: Hysteresis from 200 gal El Centro Earthquake 
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Fig. 93. Experimental Results of MISO: Hysteresis from 100 gal TCU076 Earthquake 
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Fig. 94. Experimental Results of MIMO: Hysteresis from 200 gal TCU082 Earthquake 
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As can be observed in Table 9, FLC performance with respect to the 100 gal 

excitation level is favorable for most performance objectives when compared to both 

passive cases.  FLC performance digresses as excitation levels increase above 100 gal.  
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This can be attributed to training of the FLC on a 100 gal artificial earthquake.  Yet, FLC 

management is not negated since results are always superior to the passive-off case and 

are, at times, superior to the passive-on case. 

When comparing numerical simulations and experimental results reasonable 

agreement can be observed.  This is due to extensive modeling efforts using both neuro-

fuzzy theory for generation of MR damper models and multiobjective optimization of a 

state-space model of the benchmark building.  Despite these efforts some non-negligible 

errors do exist in numerical simulations.  Such errors are reasonable and do not severally 

hinder the performance of FLCs in experimental trials.  Metrics in this table display the 

robust nature of the FLC performance. 

Table 9. Experimental Evaluation FLC Controllers 
  MISO Configuration MIMO Configuration 

  1J  2J  3J  4J  1J  2J  3J  4J  

El Centro (100 gal) P-ON 0.99 0.98 0.89 1.13 1.26 1.62 1.15 1.30
 FLC 1.05 0.96 0.85 1.11 1.19 1.33 1.18 1.31

Kobe (100 gal) P-ON 0.93 1.09 1.01 1.37 0.70 1.14 1.17 1.55
 FLC 0.92 0.92 0.94 1.28 0.59 1.11 1.02 1.36

Chi-Chi, TCU076 (100 gal) P-ON 1.01 1.06 0.84 1.20 0.72 0.97 1.04 1.36
 FLC 1.04 1.06 0.97 1.39 0.63 0.95 0.98 1.30

Chi-Chi, TCU082 (100 gal) P-ON 0.43 0.64 0.40 0.69 0.82 1.64 1.08 1.53
 FLC 0.43 0.59 0.38 0.63 0.72 1.54 0.96 1.36

El Centro (200 gal) P-ON - - - - 0.68 1.46 0.80 1.12
 FLC - - - - 0.78 1.41 0.77 1.06

Kobe (200 gal) P-ON - - - - 0.58 0.70 0.53 0.86
 FLC - - - - 0.72 0.87 0.56 0.84

Chi-Chi, TCU076 (200 gal) P-ON - - - - 0.58 0.76 0.51 0.88
 FLC - - - - 0.64 0.81 0.48 0.84

Chi-Chi, TCU082 (200 gal) P-ON - - - - 0.53 0.79 0.55 0.95
 FLC - - - - 0.59 0.87 0.51 0.83

 

6.2.3. General Summary of FLC Performance  

Substantiation of the FLC controllers has been provided using numerical 

simulations and experimental trials.  Although experimental tests are critical for showing 

the validity of FLCs in future real world implementations, substantiation of the FLC 



115 

controller algorithm is found equally in numerical simulation and experimental trials.  

These results are further summarized in Table 10 where the percentages of cases for 

which GA-optimized FLCs are superior to both passive cases are listed considering both 

numerical simulations and experimental trials.  A ‘case’ corresponds to each objective of 

each excitation.  That is, there are 16 cases resulting from the MISO configuration and 32 

cases resulting from the MIMO configuration.   

In Table 10 cases corresponding to the MISO configuration show greater 

consistency than the MIMO configuration when comparing simulation and experimental 

results for the singular passive cases.  Although this can be attributed to a number of 

factors it is believed to primarily be derived from errors in modeling of MR dampers.  

Since two MR dampers are incorporated in the MIMO case the potential for error 

increases in comparison with the MISO configuration.  It is believed that with a more 

ideal set of training data a much more accurate model of the MR damper could be 

attained as shown by Kim et al. (2006).  When considering percentages in the ‘Overall’ 

column in Table 10, both passive-off and passive-off cases show favorable FLC 

performance.  It can also be observed that FLC performance is superior to both passive 

voltages for 43% of all cases.  Thus, the effectiveness of the GA optimization of FLC 

controllers is demonstrated. 

Table 10. Summary of Controller Performance 
 MISO MIMO Overall
 Simulation Experimental Simulation Experimental  

Cases FLC is superior to 
passive-off 63% 63% 84% 63% 68% 

Cases FLC is superior to 
passive-on 69% 63% 47% 72% 63% 

Cases FLC is superior to 
passive-off and passive-on 38% 50% 44% 41% 43% 

 

6.3. Summary 

Overall results of numerical simulation and experimental testing show that GA 

optimization of MISO and MIMO control systems manifest improvement over both 

passive cases for a wide range of seismic records and configurations.  GA-optimized FLC 
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results show a reduction in displacement from the passive-on case without increasing the 

acceleration response.  Also, for all numerical and experimental cases less voltage is 

specified to the MR damper(s) and the peak force produced by the MR dampers is 

reduced in comparison with the passive-on case.  Difficulties of FLC performance can be 

observed at higher PGA excitations such as the 200 gal excitation records corresponding 

to the numerical simulation of the MIMO case.  Such difficulties in control can be 

improved upon by selection of a more robust artificial excitation or alteration in FLC 

fuzzy limits prior to optimization.  Despite these concerns, results similar to passive-on 

operation of the damper(s) are recorded for 200 gal excitation cases.  Thus, the GA-

optimized FLC is suitable for 100 and 200 gal excitations, but optimal for 100 gal 

excitations.  Moreover, the FLC is robust with respect to frequency content due to 

favorable results corresponding to both near- and far-field excitations.  Although 

difficulties appear when the level of the excitation amplitude is increased, GA-optimized 

FLCs are shown to be robust over a range of seismic intensities.  GA-optimized FLC 

results show a clear reduction in displacement from the passive-on and passive-off cases 

without aggravation of the acceleration response. 
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7.    CONCLUSIONS 

All the research topics in this thesis converge towards the single goal of creating 

an effective structural control system for the mitigation of seismic excitations in civil 

engineering structures.  To accomplish this several areas of study are included and consist 

of the following: 

• Dynamic analysis of MDOF structures using state-space formulation, 

• Identification of MR damper properties using neuro-fuzzy optimization 

techniques, 

• Formulation of a multi-objective genetic algorithm, 

• Identification of MDOF system properties using a genetic algorithm, 

• Creation and identification of GA-optimized fuzzy logic controllers, and 

• Experimental validation of identified controllers. 

Discussion and dissemination of results of the above mentioned topics are 

presented in this thesis in seven correlated sections. 

Section 1 gives reasons for the necessity of structural control systems for the 

mitigation of hazardous loads such as earthquakes.  Then a control device, controller 

algorithm, and optimization method are identified.  Finally an overview of software 

utilized in this study is provided. 

Section 2 provides discussion of related studies pertaining to this investigation.  A 

background of well-known studies and current literature is provided to give the reader a 

foundation for the current study. 

Section 3 discusses the benchmark structure and its state-space formulation.  

Details pertaining to both material and geometry related to the benchmark structure are 

provided.  The experimental setup is discussed and details are given to better describe the 

tests conducted and transducers employed.  In the later portion of Section 3 a summery of 

the artificial earthquake that is created is provided.  The artificial excitation is created to 

give a single excitation that contains characteristics of numerous earthquake records and 

at the same time avoids any preference to a single excitation or characteristic. 
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Section 4 provides details pertaining to MR dampers A and B that are used in the 

present study.  Experimental performance tests that are conducted in Taiwan at NCREE 

are outlined and commented on.  Furthermore, modeling of the MR dampers with a 

neuro-fuzzy optimization method called ANFIS is elaborated upon.  Ideal characteristics 

of neuro-fuzzy training data are provided and linked to deficiencies in the current 

experimental tests. 

Section 5 furnishes an overview of the genetic algorithm used in this study and its 

multi-objective capabilities.  Comparisons with other major GA algorithms are provided 

and a rationale for employment of NSGA-II CE is given.  Furthermore, several common 

optimization examples are used to explain the employment of NSGA-II CE as opposed to 

its forerunner NSGA-II. 

Section 6 supplies details pertaining to system identification of the benchmark 

structure by utilization of the NSGA-II CE algorithm.  Data collected from experimental 

tests are used in optimization and validation of the optimal state-space model. 

Section 7 renders results of GA optimization for both MISO and MIMO cases.  

Here Pareto fronts are presented to show progression and final results of GA 

optimization.  In addition, numerical substantiation of fuzzy logic controller is provided 

through evaluation of the controller performance over a suite of earthquake excitation 

records.  Finally, these numerical endeavors are validating by experimental testing of the 

controller implemented on the benchmark structure. 

7.1. Overall Effectiveness of GA Optimization 

Numerical and experimental results of GA-optimized fuzzy logic controllers 

demonstrate improvement upon both passive-on and passive-off cases over a suite of 

excitations, but do not offer substantial reductions from these passive cases.  The ability 

of a controller to significantly improve upon the optimal passive case is a common 

difficulty of many researchers in semi-active structural control. 

This deficiency in controller effectiveness is believed to be primarily derived 

from physical limitations.  A structure with an array of semi-active devices contains 

physical limitations that no controller can overcome or circumvent.  For example, there 

exists a global minimization of structural responses that corresponds to an optimal 

modulation in the resisting force of the semi-active devices.  This minimization of 
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structural responses may, for example, only be 5% lower than any passive operation of 

the semi-active devices.  The effectiveness of a controller can only be judged within this 

context.  This context is difficult to define for most systems including the currently 

studied benchmark problem.  It is believed that FLC management of the MR dampers in 

both MISO and MIMO cases of this study are optimal, but are only modestly superior to 

optimal passive operation of the MR dampers. 

With such information in mind the potential of FLC performance could be greatly 

improved if the building/damper system were altered such that FLC management of MR 

dampers has a great effect on the response of the structure to excitation.  For example, in 

a new construction scenario where MR dampers are to be installed the number, location, 

and individual characteristics of each MR can be optimized.  Here, more avenues can be 

included in FLC generation to produce optimality with respect to structural response 

mitigation and fiscal cost can be attained. 

In this study, the above-mentioned damper and structure parameters are assumed 

to be fixed and then a controller is derived for the provided system.  A more ideal 

application of a genetic algorithm would be to consider variations in damper 

characteristics and, potentially, structural design considerations.  The current study has 

the goal of providing the basis of a controller formulation if such a turn-key approach to 

structural control is devised. 

Furthermore, new heuristic optimization methods need to be explored and 

developed for optimization of FLCs.  As demonstrated in Section 4.8, deficiencies in 

NSGA-II CE exist as exampled by the ‘F6’ optimization example.  Continued 

improvement of current algorithms and consideration of new methods will assist in 

generating faster and robust optimization algorithms. 

The improved integration of structural control methods and devices is one of 

continued innovation in the structural engineering community.  The advancement of 

semi-active structural control techniques will help bring today’s imagination into 

tomorrow’s reality for structural engineers.  

7.2. Future Work 

With a comprehensive study of the MISO and MIMO systems considered in this 

thesis having been conducted, more complex systems can also be pursued.  Such 
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configurations include control of torsional motion and base-isolated structures.  Each of 

these systems possesses unique characteristics and difficulties for optimal control, yet 

they are related to realistic applications of MR dampers.  Such prominence is compelling 

researchers to develop and test control schemes for these applications. 

Torsional response of structures is often one of significant interest to structural 

design engineers due to the inherently weak resistance of most structures to torsional 

motion.  A small number of large-scale torsional tests have been conducted with semi-

active control systems.  Implementation of torsional control systems concerning the 

NCREE benchmark structure could consist of inclusion of eccentric masses to incite 

significant torsional response of the benchmark structure for the MR dampers to mitigate 

as shown in Fig. 98.  Early experimental tests show significant promise for such GA-

optimized fuzzy logic control systems.  Furthermore, a base-isolated benchmark problem 

has been issued by Nagarajaiah et al. (2002) that considers torsional response for an 

asymmetric building.  Such applications are also to be considered in future efforts by the 

author. 

  
 Fig. 98. Torsional Benchmark Structure with Eccentric Masses 
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A second application of future consideration is control of base-isolated structures.  

Here MR dampers would augment already existing passive devices such as high damping 

rubber bearings or friction pendulum systems as shown in Fig. 99.  Bidirectional 

excitation should be also considered for controller development since earthquake motion 

is not usually aligned with a specific axis of a structure.  Additionally, benchmark 

simulations created by Narasimhan et al. (2002) consider base isolation with MR damper 

augmentation as well. 

 
Fig. 99. Base Isolated Benchmark Structure 

Creation and experimental validation of GA-optimized fuzzy logic controllers for 

these and other structural systems are crucial to the development of semi-active control 

systems.  Continued efforts towards realistic and optimal control systems are to remain at 

the forefront of research and are the focus of future studies by the author. 
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APPENDIX A  

MATLAB CODE FOR NEURO-FUZZY TRAINING  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%ANFIS Model of 20kN MR Damper A 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This M-file will generate TWO ANFIS models, thus the for loop being i=1:2 
clear;clc; 
for i = 1:2 
    tic 
    %Load in Test Data to be used in training 
    load TrnDataANFIS 
    time = dataset(1,:); 
    disp = dataset(2,:); 
    vel = dataset(3,:); 
    volts = dataset(5,:); 
    force = dataset(4,:); 
 
    %Create Training and Validation Data 
    input = [disp' vel' volts']; 
    output = [force']; 
    data = [input output]; 
     
    % Define training and checking data 
    numPts = length(data); 
    interval = 1; 
    trnData = data(1:interval:numPts,:); 
    chkData = data(interval:interval:numPts,:); 
    clear data 
    numPtsused = length(trnData) 
     
    %Number of membership functions 
    if i == 1 
        numMFs = [2 2 2]; 
    elseif i == 2 
        numMFs = [2 4 3]; 
    end 
 
    %Type of membership function 
    mfType = 'gbellmf'; 
 
    %For now provide a fis to be trained called in_fismat 
    %genfis1 is a basic fis provided by matlab 
    in_fismat = genfis1(trnData,numMFs,mfType); 
 
    %Define training options (trnOpt) 
    %Training epochs 
    epoch_n = 200; 
    %Training error goal 
    error_goal = 0; 
    %Training step size 
    ss = 0.2; 
    %Training step size decrease rate 
    ss_dec_rate = 0.8; 
    %Training step size increase rate 
    ss_inc_rate = 1.2; 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %ANFIS training 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    [trn_out_fismat trn_error step_size chk_out_fismat chk_error] = ... 
        anfis(trnData, in_fismat, [epoch_n nan ss ss_dec_rate ss_inc_rate], ... 
        [1,1,1,1], chkData); 
    writefis (chk_out_fismat,'fis_anfis'); 
 
    %Plot Error Curves 
    errorplot = figure('Color',[1 1 1]) 
    subplot(2,1,1) 
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    [a, b] = min(chk_error); 
    plot (1:epoch_n, trn_error, '-', ... 
        1:epoch_n, chk_error, ':', ... 
        b, a, 'go'); 
    xlabel ('Epochs'); 
    ylabel ('RMSE'); 
    title ('Error Curves'); 
    legend ('Training error', 'Checking error', 0); 
    grid on 
    subplot(2,1,2) 
    plot (1:epoch_n,step_size, '-', 1:epoch_n,step_size, 'x') 
    axis ([-inf inf -inf inf]) 
    xlabel ('Epochs'); ylabel ('Step Size'); title ('Step Sizes') 
    grid on 
    if i == 1 
        hgsave(errorplot,'errorplot_222_gbel'); 
    elseif i == 2 
        hgsave(errorplot,'errorplot_243_gbel'); 
    end 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %ANFIS Results 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    force_anfis = evalfis([disp' vel' volts'],trn_out_fismat); 
    force_anfis = force_anfis'; 
 
    %Plot given data and ANFIS output to see how good ANFIS optimized FIS is 
    dataplot = figure('Color',[1 1 1]) 
    subplot(3,1,1) 
    plot(time,force,time,force_anfis); 
    xlabel('Time (s)') 
    ylabel('Force (N)') 
    title('Validation') 
    legend('Training Data','ANFIS Output') 
    subplot(3,1,2) 
    plot(disp,force,disp,force_anfis); 
    xlabel('Displacement (mm)') 
    ylabel('Force (N)') 
    legend('Training Data','ANFIS Output') 
    subplot(3,1,3) 
    plot(vel,force,vel,force_anfis); 
    xlabel('Velocity (mm/s)') 
    ylabel('Force (N)') 
    legend('Training Data','ANFIS Output') 
    if i == 1 
        hgsave(dataplot,'dataplot_222_gbel'); 
    elseif i == 2 
        hgsave(dataplot,'dataplot_243_gbel'); 
    end 
 
    %New Membership Functions 
    mfplot = figure('Color',[1 1 1]) 
    subplot (321); 
    plotmf (in_fismat, 'input', 1); 
    subplot (322); 
    plotmf (chk_out_fismat, 'input', 1); 
    delete (findobj(gcf, 'type', 'text')); 
    subplot (321); 
    title ('Initial MFs for Input 1'); 
    subplot (322); 
    title ('Final MFs for Input 1'); 
    subplot (323); 
    plotmf (in_fismat, 'input', 2); 
    subplot (324); 
    plotmf (chk_out_fismat, 'input', 2); 
    delete (findobj(gcf, 'type', 'text')); 
    subplot (323); 
    title ('Initial MFs for Input 2'); 
    subplot (324); 
    title ('Final MFs for Input 2'); 



130 

    subplot (325); 
    plotmf (in_fismat, 'input', 3); 
    subplot (326); 
    plotmf (chk_out_fismat, 'input', 3); 
    delete (findobj(gcf, 'type', 'text')); 
    subplot (325); 
    title ('Initial MFs for Input 3'); 
    subplot (326); 
    title ('Final MFs for Input 3'); 
    if i == 1 
        hgsave(mfplot,'mfplot_222_gbel'); 
    elseif i == 2 
        hgsave(mfplot,'mfplot_243_gbel'); 
    end 
     
    %Plot FIS surface 
    fisplot = figure 
    gensurf(trn_out_fismat) 
    if i == 1 
        hgsave(fisplot,'fisplot_222_gbel'); 
    elseif i == 2 
        hgsave(fisplot,'fisplot_243_gbel'); 
    end 
 
    if i == 1 
        writefis(trn_out_fismat,'222FIS_gbel'); 
    elseif i == 2 
        writefis(trn_out_fismat,'243FIS_gbel'); 
    end 
    toc/60 
end 
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APPENDIX B  

MATLAB CODE FOR FLC OPTIMIZATION 

Create FLC from 
Chromosome

Compute Crowding Distances

Identify Pareto Fronts

Perform Crossovers
Operations

Perform Mutations

runopt_gauss.m

NSGA2.m

getNonDomSort.mgetNonDomPop.m

calcCrowdDist.m

tournSelectNSGA2_r.m

simpleXoverNSGA2.m

nonUnifMutateNSGA2.m

Evaluate Pool of 
Solutions

Generate Next 
Generation of 

Solutions

Initialize and 
Iterate NSGA-II 
CE Algorithm

Compute Objectives

fitfunc1_gauss.m

calcPI.m

runsim.mcalc_Damping.m

ga_ncree_one_
mr_damper.mdl

Evaluate FLC

Fig. B1. Flowchart of NSGA-II CE M-files 

In what follows M-files and Simulink diagrams used in excecution of NSGA-II 

CE optimization are provided. 
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B. 1.  runtop_gauss.m 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% runopt_gauss.m 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% M-file running Genetic Algorithm Optimization Toolbox 
% Intended for control of NCREE Benchmark.  The controller uses a fuzzy inference system. 
% There are 3DOFs in the NCREE structure.  Each story has a 
% Chevron brace that attaches the damper between two floors. 
% Input to the controller consists of accelerations from the 1st, 2nd, 3rd, 
% There is no time delay (see Kyle Schurter's thesis). 
% Output from the controller is a voltage signal to the single MR damper 
% located bewteen the ground and the 1st floor.  Gaussian membership 
% functions are used for the input and output variables. 
% Here only one MR Damper is installed between the ground and 1st floor 
% 
% Created by : Hyun-Su Kim 
%              09-06-2004 
% Modified by: PR    18 December 2004 
% Modified by: PR    11 Feb 2005 
% Modified b : PR    31 May 2005 
% Modified b : PR    4  June 2005 
% Modified by: DS    8  August 2005 
%              DS   18  May 2006 
glbvar; 
 
% Define the degrees of freedom of the structure 
nDOF = 3 ; 
 
% Initialize the number of the iteration to zero. 
nIter = 0; 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Define the earthquake name and time history (see Simulink) 
load ArtEQ 
eq = [feq(1,:);feq(2,:)*9.81]; 
 
% Extract the time vector from the input file. 
t = eq(1,:); 
save eq eq 
% Prepare time increment and total simulation time for Simulink 
dt = t(2) - t(1) ; 
Duration = max(t(:)) ; 
% +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Enter the number of the run from the keyboard.  There are only two 
% possibilities:  1 = first time run, 2 = any restart run. 
numRun = input('Input number of run [Default = 1]: '); 
if isempty(numRun) 
  numRun = 1; 
end 
if numRun ~= 1 
 disp('If you loaded previous results, strike any key to continue. Otherwise, press [Ctrl+C], load previous results and try 
again!'); 
  pause 
  initPop = endPop; 
  bResume = 1; 
else 
  initPop = []; 
  bResume = 0; 
end 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Define Fitness Function 
fitnessFunc = 'fitfunc1_gauss'; 
% Declare the number of variables for each rule 
% For 3 inputs and 1 output there are 8 variables for each rule, 
% 2 for each of the 3 inputs and 2 for the 1 output. 
nVariableNum = 8 ; 
% Declare the total number of rules for each input and output variable. 
% Here Kyle Schurter's thesis is followed: use fewer rules, but more 
% variables. 
nRules = 10 ; 
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% Declare the number of input variables: 'x' rules times variables 
numVar = nVariableNum*nRules ; 
% Set the total population size.  This is somewhat arbitrary. 
popSize = 20 ; 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
%Number of generations for GA optimization 
genNum = 200; % for one running 
%Number of muation generations for GA optimization 
mutGenNum = 300; %finalGenNum-genNum*(numRun-1); 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% load MR FIS - PY 20kN (march 2006 performance testing) 
MRfis = readfis('B1_Seat_222b.fis'); 
MR_disp_sat_min = MRfis.input(1).range(1); 
MR_disp_sat_max = MRfis.input(1).range(2); 
MR_vel_sat_min = MRfis.input(2).range(1); 
MR_vel_sat_max = MRfis.input(2).range(2); 
MR_volt_sat_min = MRfis.input(3).range(1); 
MR_volt_sat_max = MRfis.input(3).range(2); 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% The range of accelerations that is to be used for training the controller 
% Units are m/s^2. 
min_acc = -1 ; 
max_acc =  1 ; 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% The range of each input variable is given below.  
acc_range     = [0 0.4] ; 
c_acc_range   = [min_acc max_acc] ; 
volt_range    = [0 0.4] ; 
c_volt_range  = [MR_volt_sat_min MR_volt_sat_max] ; 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Intial chromosomes 
initRange = [ ... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range;... 
   acc_range; c_acc_range; acc_range; c_acc_range; acc_range; c_acc_range; volt_range; c_volt_range] ; 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Check to see that the number of rules times the number of variables per 
% rule agrees with the dimensions of initRange 
if numVar ~= size(initRange,1) 
    disp ('Check the size of the initRange and the number of rules, etc.'); 
    stop 
end 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Set the mutation rate for child individuals that are created by the mutation operator. 
mutRate = 0.3; 
% Compute the number of population members in the next generation that are obtained from mutation. 
mutNum =  mutRate*popSize; 
% Set the rate of child individuals that are created by the crossover 
% operator.  Again, some guidance was obtained from the Matlab GA user 
% manual. 
xoverRate = 1; 
% Calculate the number of population members for the next generation 
xoverNum =  floor(xoverRate*popSize/2.); 
% Set a tolerance rate. 
tolerance = 1e-6; 
% Set a switch for displaying values to the screen during calculations. 
dispOnOff = 1; 
% Define the number of multiobjective functions  
numObj = 4; 
%=== Start GA function ==================================================== 
[x,endPop,bPop,traceInfo] = NSGA2(initRange, fitnessFunc,[],initPop,... 
    [popSize tolerance dispOnOff numObj bResume],'maxGenTerm',genNum,... 
  'tournSelectNSGA2',[2],['simpleXoverNSGA2'],[xoverNum 0],'nonUnifMutateNSGA2',[mutNum mutGenNum 3]); 
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B. 2.  NSGA2.m 
function [x,endPop,bPop,traceInfo] = NSGA2 (bounds,evalFN,evalOps,startPop,opts,... 
    termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps) 
% GA run a genetic algorithm 
% function [x,endPop,bPop,traceInfo] = NSGA2(bounds,evalFN,evalOps,startPop,opts, 
%                                       termFN,termOps,selectFN,selectOps, 
%                                       xOverFNs,xOverOps,mutFNs,mutOps) 
% 
% Output Arguments: 
%   x            - the non-dominated individuals of the first front 
%   endPop       - the final population 
%   bPop         - a trace of the non-dominated individuals of the first 
%   front 
%   traceInfo    - a matrix of the objectives of the non-dominated individuals 
%                  of the first front for each generation 
% 
% Input Arguments: 
%   bounds       - a matrix of lower and upper bounds on the variables 
%                    (see initRange in runopt) 
%   evalFN       - the name of the evaluation .m function 
%   evalOps      - options to pass to the evaluation function ([NULL]) 
%   startPop     - a matrix of solutions that can be initialized 
%                  from initialize.m 
%   opts         - [pop_size epsilon display obj_num resume_flag] 
%                  pop_size is the basic population size. 
%                  epsilon is tolerance to compare values. 
%                  display is 1 to output progress 0 for quiet. 
%                  obj_num is number of numti-objectives. 
%                  if resume_flag is 0, start with random new population, 
%                  resume_flag is 1, resume with startPop 
%                  ([100 1e-6 1 2 0]) 
%   termFN       - name of the .m termination function (['maxGenTerm']) 
%   termOps      - options string to be passed to the termination function 
%                  ([100]). 
%   selectFN     - name of the .m selection function (['tournSelectNSGA2']) 
%   selectOpts   - options string to be passed to select after 
%                  select (tournament number) ([2]) 
%   xOverFNS     - a string containing blank seperated names of Xover.m 
%                  heuristicXover is not available !!!! 
%                  But, now heuristicXover is available only in case of Nagoya approach 
%                  because fitness is evaluated right after crossover operation 
%                  To use this function, fitness should be evaluated right 
%                  after crossover operation or parent pool and children 
%                  pool should be separated to keep fitness of parents. 
%                  Because this function use fitness of parent. 
%                  files (['simpleXoverNSGA2']) 
%   xOverOps     - A matrix of options to pass to Xover.m files with the 
%                  first column being the number of that xOver to perform 
%                  similiarly for mutation ([2 0]) 
%   mutFNs       - a string containing blank separated names of mutation.m 
%                  files (['nonUnifMutateNSGA2']) 
%   mutOps       - A matrix of options to pass to Xover.m files with the 
%                  first column being the number of that xOver to perform 
%                  similiarly for mutation ([4 100 3]) 
 
% Binary and Real-Valued Simulation Evolution for Matlab 
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay 
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
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% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU 
% General Public License can be obtained from the 
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
 
%%$Log: ga.m,v $ 
%Revision 1.10  1996/02/02  15:03:00  jjoine 
% Fixed the ordering of imput arguments in the comments to match 
% the actual order in the ga function. 
% 
%Revision 1.9  1995/08/28  20:01:07  chouck 
% Updated initialization parameters, updated mutation parameters to reflect 
% b being the third option to the nonuniform mutations 
% 
%Revision 1.8  1995/08/10  12:59:49  jjoine 
%Started Logfile to keep track of revisions 
% 
% Modified by Hyun-Su Kim,  2004/10/17 
% Modified by Paul Roschke, 5 December 2004   25 January 2005 
%  This file calls on a public-domain GA toolbox (gaot) and uses an NSGA-2 
%  algorithm that was developed from papers by 
%  Kalyanmoy Deb and Tushar 
%  Goel, "Controlled Elitist Non-dominated Sorting Genetic Algorithms for 
%  Better Convergence," 
%  Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T. Meyarivan, "A Fast 
%  Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective 
%  Optimization: NSGA-II" 
 
% Load global variables 
glbvar ; 
 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% The variable 'nargin' is the number of function arguments in the call 
% to this routine.  It is a standard Matlab function.  See "help nargin" 
n = nargin; 
% Check for numerous cases of input parameters for the NSGA2 function. 
if n < 2 | n == 6 | n == 10 | n == 12 
    disp ('Insufficient arguments') 
end 
% Number of input arguments is 2 and there are no input evaluation options 
if n < 3 
    evalOps = []; 
end 
% Number of input arguments is 4, so assign some input evaluation option 
% values. 
if n < 5 
    opts = [100 1e-6 1 2 0]; 
end 
if isempty(opts) 
    opts = [100 1e-6 1 2 0]; 
end 
% Number of input arguments is less than six, so enter 
% default value for termination. 
if n < 6 
    termOps = [100]; 
    % Define the Matlab function maxGenTerm.m file name 
    termFN = 'maxGenTerm'; 
end 
% Set the default mutation filename information 
if n < 12 
    mutFNs = ['nonUnifMutateNSGA2']; 
    mutOps = [4 termOps(1) 3]; 
end 
% Assign default crossover information 
if n < 10 
    xOverFNs = ['simpleXoverNSGA2']; 
    xOverOps = [2 0]; 
end 
% Default select options string, only i.e. roullete wheel 
if n < 9 
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    selectOps = []; 
end 
% Set default for selection function 
if n < 8 
    selectFN = ['tournSelectNSGA2']; 
    selectOps = [2]; 
end 
% Set default for termination information 
if n < 6 
    termOps = [100]; 
    termFN = 'maxGenTerm'; 
end 
% If no starting population is given 
if n < 4 
    startPop = []; 
    % Set a resume flag 
    opts(5) = 0; 
end 
% If no starting population is given, generate randomly 
if isempty(startPop) 
    % Set resume flag 
    opts(5) = 0; 
end 
 
% Define a string variables that will be sent to be run in Matlab as 
% a command line entry by the 'eval.m' function. 
e1str = ['[c1 c1(numVar+1:numVar+numObj)]=' evalFN '(c1,[gen numObj evalOps]);']; 
 
% Return a matrix of strings from the original string that is blank 
% separated.  See list in incoming parameters to this function. 
xOverFNs = parse(xOverFNs); 
mutFNs   = parse(mutFNs); 
 
%=== Set Initial values =================================================== 
popSize      = opts(1);   %Number of individuals in the population (See runopt.m) 
epsilon      = opts(2);   %Threshold for two fittness to differ 
display      = opts(3);   %Display progress 
numObj       = opts(4);   %Number of objectives 
resumeFg     = opts(5);   %Resume Flag 
numVar       = size(bounds,1);       %Number of variables 
xZomeLength  = numVar+numObj+2; %Length of the xzome=numVars+multi_objs+rank+dist 
endPop       = zeros(popSize,xZomeLength); %A secondary population matrix 
c1           = zeros(1,xZomeLength);  %An individual 
c2           = zeros(1,xZomeLength);  %An individual 
numXOvers    = size(xOverFNs,1);      %Number of Crossover operators 
numMuts      = size(mutFNs,1);       %Number of Mutation operators 
bFoundIn     = 1;                %Number of times best has changed 
%See very bottom of this routine. 
gen          = 1;                %Current generation number 
done         = 0;                       %Done with simulated evolution 
% nargout is a special Matlab function that gives the number of function output 
% arguments. Inside the body of a user-defined function, NARGOUT returns the 
% number of output arguments that were used to call the function. 
collectTrace = (nargout > 3);       %Should we collect info every gen 
 
%=== Start NSGA2 ========================================================== 
% Use the next set of statements to loop until the expression is not true. 
% A 'true' value occurs when the expression is '1' and a 'false' value 
% occurs when the expression is '2.'  So, if 'done' is set to '0' (see 
% above) the 'not done' is made to be one and the expression is 'true.' 
% Later, when 'done' is set to unity, then 'not zero' is zero, and the 
% value of the expression is 'false' and the looping ceases.  (Go figure.) 
while (~done) 
 
    %=== Start Next Generation === 
    if gen == 1 
        % Check the 'bResume' flag from the runopt.m definition to see if this 
        % is a restart from a previous run.  If resumeFg = 0, this is the first 
        % run and initialization of a population is required. 
        if resumeFg == 0 
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            startPop = initializeNSGA2 (popSize, bounds, evalFN, [], [1e-6 numObj]); 
        end 
    else 
        % Redifine previous generation endPop as new startPop 
        startPop = endPop; 
    end 
 
    %+++++++Define Parent Population (ie startPop)+++++++ 
    %=== Selection operator ("r") === 
    % Intead of a normal tourneyment style selection an "r" value 
    % implimentation has been made. 
 
    % Determine Number of individuals allowed in each rank by geometric 
    % distribution (Deb and Goel).  "numInRank" is a vector with the limit of the 
    % number of individuals per rank. 
    n = size(startPop,1)/2; 
    K = 4; 
    r = 0.5; 
    [numInRank] = getNumIndividualsPerRank(n,K,r) 
 
    % Location of Crowding Distance in startPop 
    e = size(startPop,2); 
    % Setup zero matrix to fill up with best of parent population 
    newPop = zeros(n,e+1); 
    % Start counter for newPopmatrix 
    newPopRow = 1; 
    % Define "check" for while loop 
    check = 1; 
    % Define rank for ranks in loop 
    rank = 1; 
 
    % Get non dominated fronts 
    [sortedPop] = getNonDomSort(startPop, numObj) 
    save sortedPop sortedPop 
     
    % Create Position Vector.  This is needed since individuals will be 
    % relocated to other matricies (ie extraPop) 
    for i = 1:size(sortedPop,1) 
        pos(i) = i; 
    end 
    % Add Position Vector to sortedPop 
    sortedPop = [sortedPop,pos']; 
        % Set up matrix for extraPop 
    extraPop = []; 
 
    % Loop for each rank of startPop 
    while check > 0 
        % Print current rank in command window 
        rank = rank 
        % Remove old leftOverPop 
        leftOverPop = []; 
        % Get rid of previous Front information 
        currentFrontPop = []; 
        % If an extra rank is needed, fill it up with individuals from 
        % extraPop and ranks larger than K here 
        if rank > K 
            disp('K Case') 
            % Calculate number needed to full up population from extraPop 
            numNeededPop = size(newPop,1) - lastRowNewPop; 
            % Define last row of currentFrontPop 
            lastRowNewPop = newPopRow + numNeededPop - 1; 
                        % Loop over sortedPop and include ranks above K for final 
            % review for addition to newPop 
            % Set up counter for next Loop 
            counterK = 1; 
            for k = 1:size(sortedPop,1) 
                % Check rank > k and add to extraPop 
                if sortedPop(k,e-1) > K 
                    leftOverPop(counterK,:) = sortedPop(k,:); 
                    % Increase counter by 1 
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                    counterK = counterK +1; 
                end 
            end 
            % Add ranks larger than K to extraPop 
            extraPop = [extraPop;leftOverPop]; 
             
            % Use tournment selection for fill up newPop with "left overs" 
            newPop(newPopRow:lastRowNewPop,:) = tournSelectNSGA2_r(extraPop,[gen numNeededPop]); 
        else 
            % Loop for each rank and take individuals as specified by "r" 
            % to fill up newPop 
            % Count number of individuals in current front 
            numSortedPop = size(sortedPop,1); 
            % Counter for loop 
            counter = 1; 
            % Loop over all of sortedPop to fine current front of interest 
            for i = 1:numSortedPop 
                if sortedPop(i,e-1) == rank 
                    currentFrontPop(counter,:) = sortedPop(i,:); 
                    counter = counter + 1; 
                end 
            end 
            % Get number of individuals in currentRank 
            nCurrentFront = size(currentFrontPop,1); 
             
            % Make sure the current Front has a population great than 0. 
            % If it doesn't then skip to end of if statement. 
            if nCurrentFront ~= 0 
                % Define last row of new rank 
                lastRowNewPop = newPopRow + nCurrentFront - 1; 
                 
                %%%%%%% Possible Cases for "r" implimentation %%%%%%% 
                % Case 1: Equal number of individuals in current non 
                %           dominated front as allowed by "r" 
                % Case 2: More individuals in current non dominated front 
                %           than allowed by "r" 
                % Case 3: Less individuals in current non dominated front 
                %           than allowed by "r" 
                %%%% Case 1 %%%% 
                if nCurrentFront == numInRank(rank) 
                    % If size of Front and number allowed by "r" the same then use all 
                    % of current front 
                    disp('Case 1') 
                    newPop(newPopRow:lastRowNewPop,:) = currentFrontPop; 
                    currentFrontPop = []; 
                %%%% Case 2 %%%% 
                elseif nCurrentFront > numInRank(rank) 
                    % If size of Front is more than allowed by "r" then use the 
                    % "tournSelectNSGA2" and take the indivuald with larger 
                    % crowding distances by a random tournament.   
                    % This makes sure we good distribution of individuals in front. 
                    % We don't take just the largest crowding 
                    % distance b/c that would focus to much on the "outer" solns. 
                    disp('Case 2') 
                    % Define last row of new front to be added to newPop 
                    lastRowNewPop = newPopRow + numInRank(rank) - 1; 
                    % Add new front to newPop 
                    newPop(newPopRow:lastRowNewPop,:) = tournSelectNSGA2_r(currentFrontPop,[gen numInRank(rank)]); 
                     
                    % Since this is case 2, extra individuals exist.  Find 
                    % their positions in "pos" vector added above 
                    newRemovePos = newPop(newPopRow:lastRowNewPop,e+1); 
                    % Reset killRow varaible 
                    killRow = []; 
                    % Loop for each chromosome to remove 
                    for m = newRemovePos' 
                        % Loop over each row to locate the chromosome to be 
                        % removed 
                        for j = 1:size(currentFrontPop,1) 
                            % If statement used to find location in 
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                            % currentFrontPop matrix so it can be removed 
                            if currentFrontPop(j,e+1) == m 
                                % killRow contains location in 
                                % currentFrontPop of chromosome to be 
                                % removed 
                                killRow = [killRow;j]; 
                            end 
                        end 
                    end 
                    % Remove all used chromosomes 
                    currentFrontPop(killRow,:) = []; 
                    % Redefine left over chromosomes to be added to 
                    % extraPop 
                    leftOverPop = currentFrontPop; 
                %%%% Case 3 %%%% 
                elseif nCurrentFront < numInRank(rank) 
                    disp('Case 3') 
                    % Since there are less individuals than specified by 
                    % "r" take all avaible for current non dominated front 
                    % and add to newPop 
                    newPop(newPopRow:lastRowNewPop,:) = currentFrontPop; 
                    % Now change numInRank for current rank to the number 
                    % actually added to newPop and increase the next rank 
                    % by the number of extra individuals specified by "r". 
                    % This will change the actual number of individuals in 
                    % each rank so updated numInRank appropriately. 
                    if rank ~= K 
                        extra = numInRank(rank) - nCurrentFront; 
                        numInRank(rank+1) = numInRank(rank+1) + extra; 
                        numInRank(rank) = numInRank(rank) - extra; 
                    end 
                end 
                % Update new row for next iteration of while loop 
                newPopRow = lastRowNewPop + 1; 
            end 
            numInRank 
            extraPop = [extraPop;leftOverPop]; 
        end 
        % End while loop when newPop is full or stop loop if to many 
        % individuals added (ie logic error occured) 
        % check to see if last row is still zeros 
        if newPop(end,1) ~= 0 
            check = 0; 
        elseif lastRowNewPop > n 
            disp('Error in "r" value selection, see NSGA2.m') 
            stop 
        end 
 
        % Update rank for next iteration of while loop 
        rank = rank + 1; 
        newPop = newPop 
    end 
    % Redefine startPop and remove position vector 
    startPop = newPop(:,1:end-1); 
 
    %+++++++Define Children Population (ie startPop)+++++++ 
    %=== Crossover operator === 
    % The basic crossover rate is set in runopt to be something like 0.8. 
    % Then, xoverNum is calculated and passed through the call to NSGA2.  The 
    % parameters are passed into this routine through xOverOps.  Note that 
    % numXOvers is usually one in the next loop because we only pass in the 
    % tournSelectNSGA2 operator. 
    % Number of children in chldPop 
    chldPop = startPop; 
    chldSize = size(chldPop,1); 
    for i = 1:numXOvers, 
        % Loop through the number in the first parameter in xOverOps. 
        % This number is usually something like 40 for a population of 100. 
        for j = 1:xOverOps(i,1), 
            % Randomly select a parent; first generate a random number between 
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            % 0 and 1.  Multiply by the population, etc. 
            a = round(rand*(chldSize-1)+1); 
            % Randomly select a second parent in the same manner. 
            b = round(rand*(chldSize-1)+1); 
            % Remove any trailing whitespace characters from the name in the 
            % string of the crossover function. 
            xN = deblank(xOverFNs(i,:)); 
            % Execute the 'xN' function(s) [usually one function] which is defined 
            % above to be 'simpleXoverNSGA2'.  For 'bounds' see initRange in 
            % runopt. 
            [c1 c2] = feval (xN, chldPop(a,:), chldPop(b,:), bounds, [gen xOverOps(i,:) numObj]); 
            % Move the 'c1' and 'c2' chromosomes into the endPop. 
            chldPop(a,:) = c1; 
            chldPop(b,:) = c2; 
        end 
    end 
    %=== Mutation operator === 
    % [mutNum mutGenNum 3] 
    % Here only one mutation operator is used: nonUnifMutateNSGA2 
    % So, numMuts = 1 and only execute once the next 'for' loop 
    for i = 1:numMuts, 
        % Loop through the number of mutations; 
        % Incoming parameters:  mutOps = [mutNum mutGenNum 3] 
        % From runopt: mutNum = mutRate*popSize; 
        % So, typically, mutRate*popSize = 0.2 x 100 = 20 
        for j = 1:mutOps(i,1), 
            % Randomly select a parent; first generate a random number between 
            % 0 and 1; multiply by the population, etc. 
            a = round(rand*(chldSize-1)+1); 
            % Remove any trailing whitespace characters from the name in the 
            % string of the mutation function. 
            % Execute the 'nonUnifMutateNSGA2'function which is defined above. 
            % For 'bounds' see initRange in runopt. 
            % Incoming parameters mutOps from runopt are [mutNum mutGenNum 3]. 
            % Also from runopt: mutNum =  mutRate*popSize.  numObj is the number 
            % of objectives in this problem. 
            c1 = feval (deblank(mutFNs(i,:)), chldPop(a,:), bounds, [gen mutOps(i,:) numObj]); 
            % Add the mutated chromosome to the population 
            chldPop(a,:) = c1; 
        end 
    end 
    % Define endPop with "exploited" startPop and "explored" population 
    % chldPop 
    startPopsize = size(startPop); 
    chldPopsize = size(chldPop); 
    endPop = [startPop;chldPop]; 
 
    %=== Evaluate fitness of all the chromosomes in the new generation 
    endSize = size(endPop,1) 
    for i = 1:endSize 
        % Transfer the new population (endPop) into the temporary 'c1' array. 
        c1 = endPop(i,:); 
        % Execute the e1str string as a Malab command (see above for definition) 
        % This is the location for eventual parallelization. 
        eval(e1str); 
        % Move the 'c1' population back into endPop, but this time the 
        % performance indices are known. 
        endPop(i,:) = c1; 
    end 
    disp('stop') 
    endPop 
    save endPop endPop 
    %=== End of NSGA2 ========================================================= 
    % Wrap up this generation and prepare for the next generation. 
    % Save non-dominated individuals from endPop. 
    nonDomPops = getNonDomPop (endPop, [numObj 2]); 
    % Determine the number of non-dominated individuals in the endPop 
    numNonDom = size(nonDomPops,1); 
    % The array traceInfo that is formed below gives the multiobjective 
    % information for rank 1 fronts for each generation.  This can be plotted 
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    % out after a run is complete to look at the advance of the front with 
    % the number of the generation. 
    % See definition of 'collectTrace' above (nargout > 3) 
    if collectTrace 
        % Put the current generation number into the traceInfo array 
        traceInfo(gen,1) = gen; 
        % Save the objectives of all non-dominated individuals. 
        for itmp = 1:numNonDom 
            for jtmp = 1:numObj 
                traceInfo(gen,1+(itmp-1)*numObj+jtmp) = nonDomPops(itmp,numVar+jtmp); 
            end 
        end 
    end 
    % Write output to screen display; see definition as opts(3) above. 
    % In runopt.m the line 'dispOnOff = 1' sets the display to 'on.' 
    if display 
        % Update the display with the current generation number.  The first 
        % argument in the next command, '1', is a file identifier specifying 
        % that the output is to be written to the screen.  '\n' requests a line 
        % feed. 
        fprintf(1,'\n Current Gen: %d, Num of Non-dominated Pop: %d\n',gen,numNonDom); 
    end 
    % Generate a column vector with the generation number.  Length of the 
    % vector is equal to the length of the non-dominated population. 
    genVec = ones(numNonDom,1)*gen; 
    % Place the column of generation numbers to the left of the array of 
    % non-dominated individuals and add the entire matrix to the bottom of 
    % the bPop array.  That is, keep a running list of the best population 
    % members. 
    bPop(bFoundIn:bFoundIn+numNonDom-1,:) = [genVec nonDomPops]; 
    % Update the counter of the number of non-dominated population members 
    % that have been saved. 
    bFoundIn = bFoundIn + numNonDom; 
    % Create a new array 'x' that containes the non-dominated population 
    x = nonDomPops; 
    %if gen==10 | gen==20 |gen==30 |gen==40 |gen==50 |gen==60 |gen==70 |gen==80 |gen==90 |gen==100 |gen==110 
|gen==120 |gen==130 |gen==140 |gen==150 |gen==160 |gen==170 |gen==180 |gen==190 |gen==200 
    % According to the list below, save important information in a 
    % 'garesults 10' type file at frequent intervals of generations 
    % so that a restart of the optimization process can be made if necessary. 
    save currentGenResponse 
    if gen==1 | gen==5 | gen==10 | gen==15 | gen==20 | gen==25 | gen==30 | gen==40 | gen==50 | gen==60 | gen==70 | 
gen==80 | gen==90 | gen==100 | gen==110 | gen==120 | gen==130 | gen==140 | gen==150 | gen==160 | gen==170 | 
gen==180 | gen==190 | gen==200 
        sName = sprintf ('%s %d', 'garesults', gen); 
        save (sName, 'traceInfo', 'x', 'bPop', 'endPop', ... 
            'uncon_peak_drift_Max', 'uncon_peak_acc_Max', 'uncon_peak_baseShear_Max', ... 
            'uncon_rms_drift_Max',  'uncon_rms_acc_Max',  'uncon_rms_baseShear_Max' ); 
    end 
    % Check to see if the GA optimization is complete. Run termFN.m function 
    % which is usually 'maxGenTerm'.  The logic is simple:  'done' is true if 
    % the current 'gen' is greater than or equal to the maximum number of 
    % generations. 
    done = feval (termFN, [gen termOps], bPop, endPop); 
    % Iterate the generation number in preparation for another run. 
    gen = gen + 1; 
end 
%=== End of GA ============================================================ 
 
% Save a results file that summarizes the final population. 
% After the run is complete a careful inspection of the rank one 
% population individuals is made and one of these chromosomes is selected 
% to serve as the controller based on engineering judgment of which one 
% (or more) of the objectives is important. 
% Also the uncontrolled values are saved in case of a restart, because in a 
% restart run the initializeNSGA2 is not executed. 
% Format:  save ( filename, x, y, z,.... etc variables) 
save ('garesults', 'traceInfo', 'x', 'bPop', 'endPop', ... 
    'uncon_peak_drift_Max', 'uncon_peak_acc_Max', 'uncon_peak_baseShear_Max', ... 
    'uncon_rms_drift_Max',  'uncon_rms_acc_Max',  'uncon_rms_baseShear_Max' ); 
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B. 3.  getNonDomSort.m 
function [rankedPop] = getNonDomSort(curPop, numObj) 
% Get ranking and crowding distance for all individuals in the population. 
% Rank of the first Pareto front is 1.  
% 
% function [rankedPop] = getNonDomSort(curPop, numObj) 
% rankedPop - this output matrix is the final ranked population 
% curPop  - the current population and is the input population to this 
% routine. 
% numObj - number of objectives in a multiple objective problem 
%   Modified by PR   13 December 2004 
 
%  
% Find the length of a chromosome; i.e. numVar + numObj + rank + dist 
e = size(curPop,2); 
% Find the number of individuals in the population 
n = size(curPop,1); 
% Set up a vector of zeros for the rank of each population member. 
rankVec = zeros(n,1); 
% Set up a vector of zeros for the crowding distance of each population 
% member. 
distVec = zeros(n,1); 
% Initialize the number of the rank to unity (for starting) 
nRank = 1; 
% Initialize the size of the population. This variable changes as the 
% population is added or subtracted. 
nCurPopNum = n; 
% Set up a temporary array that can be modified during the sort process 
tmpPop = curPop; 
 
% Cycle through the following procedure until all of the current population 
% members have been eliminated. 
while (nCurPopNum > 0) 
  % Place the non-dominated members of the population in array nonDomPop 
  % and make a vector 'pos' that gives the row number of each population 
  % member in the old population.  
  [nonDomPop pos] = getNonDomPop (tmpPop, [numObj 2]); 
  % Determine the number of non-dominated members in the new population. 
  numNonDomPop = size (nonDomPop,1); 
  % For the nonDomPop calculate the crowding distance 
  [nonDomPop] = calcCrowdDist (nonDomPop, numObj); 
  % Set up an empty array that will hold the 'old' position number. 
  oldPos = []; 
  % Loop through each of the non-dominated rows 
  for itmp = 1:numNonDomPop 
    % Put the row location of each non-dominated individual in the rankVec 
    % in the oldPos array. 
    % getPosInOldPop.m is a subfunction that is written below. 
    % 'rankVec' begins as an array of zeros. 'n' is the number of 
    % individuals in the sorted population, and 
    % 'pos' is the row number in the original array. 
    oldPos(itmp) = getPosInOldPop(rankVec, n, pos(itmp)); 
  end 
  % Set rank and distance into their arrays 
  rankVec(oldPos(:),1) = nRank; 
  distVec(oldPos(:),1) = nonDomPop(:,e); 
   
  tmpPop(pos(:),:) = []; 
  nRank = nRank + 1; 
  nCurPopNum = size(tmpPop,1); 
end 
% Put the incoming curPop (current population) array into the new array 
% rankedPop.  Then add the rankVec and distVec columns to the array. 
% That is, at the end of this routine, the new population is really just 
% the old population, but with the ranking and distance vectors added. 
rankedPop = curPop; 
rankedPop(:,e-1) = rankVec; 
rankedPop(:,e)   = distVec; 
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%====== Sub Function================================================================== 
function oldPos = getPosInOldPop (rankVec, nTot, nPos) 
 
% rankVec begins as a column of zeros. 
% nTot 
% nPos  
% Calling:     oldPos(itmp) = getPosInOldPop(rankVec, n, pos(itmp)); 
% This subfunction determines the number of the chromosome in the original 
% unsorted array of chromosomes. 
% Modified by PR    10 December 2004 
 
  % Initialize an index 
  nCumNum = 0; 
  % Loop through all of the population being considered and sorted. 
  for itmp = 1:nTot 
    % Look for a non-dominated element   
    if rankVec(itmp,1) == 0  
      % Increase the number of the index by one if a non-dominated element 
      % is found. 
      nCumNum = nCumNum+1; 
      if nCumNum == nPos 
        oldPos = itmp; 
        break; 
      end 
    end 
  end 
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B. 4.  getNonDomPop.m 
function[newPop pos] = getNonDomPop (oldPop, options) 
% getNonDomPop.m selects non-dominated individuals from array 'oldPop.' 
% This routine follows the discussion on page 4 of the paper by Deb, 
% Agrawal, Pratap, and Meyarivan. 
% 
% function[newPop] = getNonDomPop(oldPop,options) 
% newPop  - the nonDominated individuals 
% pos     - position of nonDominated individuals in old population 
% oldPop  - the current population 
% options - options to getNonDomPop [number_of_objective num_of_additional_data] 
 
% Determine the number of objectives in the multiobjective problem. 
nobj = options(1); 
% Bring in additional data from options(2) 
naddData = options(2); 
% Determine the length of a chromosome that is to be worked on, but do not 
% include the rank and distance columns.  e = number of variables + numObjs 
e = size(oldPop,2)-naddData; 
% Determine the number of individuals in the population 
n = size(oldPop,1); 
% Set up a new array that will hold the number of individuals that dominate 
% each of the members of the population. 
donNum = zeros(n,1);  
 
% Loop through each individual in the population.  The purpose of this 
% entire set of statements is to determine for each individual how many other 
% individuals lie in the 3rd quadrant from this individual.  Note that this 
% 3rd quadrant requirement must hold for all of the objectives.   
% This number is placed in the donNum array. 
for itmp = 1:n 
  % Loop through all other individuals in the population 
  for jtmp = 1:n 
    if jtmp ~= itmp 
       
      % Assume that the jtmp chromosome dominates the itmp chromosome. 
      bDominate = 1; 
      % Loop through each objective function 
      for ktmp = 1:nobj 
        % Check to see if the itmp chromosome dominates the jtmp 
        % chromosome for any of the objectives.  If this is true then  
        % the jtmp chromosome does not dominate the itmp chromosome. 
        if oldPop(itmp,e-nobj+ktmp) < oldPop(jtmp,e-nobj+ktmp) 
          % Change the assumption that jtmp dominates. 
          bDominate = 0; 
          break; 
        end 
      end 
      % For the case that jtmp dominates itmp for at least one objective: 
      if bDominate == 1 
        % Loop through each objective function 
        for ktmp = 1:nobj 
          % Check to see if the itmp chromosome is dominated by the jtmp 
          % chromosome for all objective functions. 
          if oldPop(itmp,e-nobj+ktmp) > oldPop(jtmp,e-nobj+ktmp) 
          bDominate = 2; 
          break; 
          end 
        end 
      end 
      % For the case that variable bDominate is still 2, the jtmp 
      % chromosome dominates the itmp individual. 
      if bDominate == 2 % individual(jtmp) dominate individual(itmp) 
        % Increase the count of the number of dominant individuals for 
        % itmp. 
        donNum(itmp,1) = donNum(itmp,1)+1; 
      end 
       
    end 
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  end 
end 
% The number of 3rd quadrant dominant chromosomes should be known for each 
% member of the population. 
 
% Set up a counter for the number of non-dominated individuals that have 
% been found. 
numNewPop = 1; 
% Loop through each member of the entire incoming population 
for itmp = 1:n  
  % If there are no individuals that dominate this chromosome: 
  if donNum(itmp,1) == 0 
    % Check to see if an identical individual exists.  Assume there is 
    % none. 
    bExist = 0; 
    % Loop through all other members of the population 
    for jtmp = 1:numNewPop-1 
      % Compare all variables (but not the objectives and the rank and 
      % distance).  Note that 'end' is a specialized Matlab name that goes 
      % to the end of an array dimension.  (I.e. you do not need to use the 
      % 'size' function.) 
      if newPop(jtmp,1:(end-nobj-naddData))==oldPop(itmp,1:(end-nobj-naddData)) 
      bExist = 1; 
      % Do not include this element in the non-dominated population. 
      break; 
      end 
    end 
    % If no identical individual has been found to exist 
    if bExist == 0 
      % Add the chromosome to the newPop of non-dominated individuals 
      newPop(numNewPop,:) = oldPop(itmp,:); 
      % Place the row number of the non-dominated individual in the 'pos' 
      % array that is passed back to the calling routine. 
      pos(numNewPop) = itmp; 
      % Increase the counter of the number of non-dominated individuals. 
      numNewPop=numNewPop+1; 
    end 
  end 
end 



146 

B. 5.  calcCrowdDist.m 
function [calcPop] = calcCrowdDist(curPop, numObj) 
% Calculate crowding distance of each individuals 
% 
% function [calcPop] = calcCrowdDist(curPop, numObj) 
% calcPop  - population having calculated crowding distance 
% curPop  - the current population 
% numObj - number of objectives 
 
% Determine the number of individuals in the incoming population 
nPop = size(curPop,1); 
% Determine the length of the chromosome, which is the number of changeable 
% variables plus the number of objective functions.  Disregard the rank and 
% distance variables.  The latter variable will be determined in this 
% routine. 
nCol = size(curPop,2) - 2; 
 
% Set up a zero-vector that will hold the crowding distances. 
crowdDist = zeros(nPop,1); 
% Loop through each of the objective functions and sort each column 
% according to the lowest objective function 
for itmp = 1:numObj 
  % Sort the column in each objective function.  Place the result in vector 
  % 'ytmp' and place original row number of each entry in 'xtmp' so that you 
  % can (see below) get the crowding distances back in the next to last column of the 
  % current population array. 
  [ytmp xtmp] = sort(curPop(:,nCol-numObj+itmp)); 
   
  % Set the crowding distance for the first and last point to large numbers 
  crowdDist(xtmp(1))   = 99999; 
  crowdDist(xtmp(nPop))= 99999; 
   
  % For each of the other performance-evaluated points, add the difference 
  % of the two neighboring performance-evaluated points to the current 
  % crowdDist value and place the value in the correct location of the 
  % original population.  Note that the crowdDist vector is cumulative and 
  % that it is therefore summed over all of the objective functions. 
  for jtmp = 2:nPop-1 
    crowdDist(xtmp(jtmp)) = crowdDist(xtmp(jtmp))+(ytmp(jtmp+1)-ytmp(jtmp-1)); 
  end 
 
end 
 
calcPop = curPop; 
% Enter the crowding distances in the last column of the current population 
% array. 
calcPop(:,nCol+2) = crowdDist(:,1); 
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B. 6.  tournSelectNSGA2_r.m 
function[newPop winners] = tournSelectNSGA2_r(oldPop,options) 
% Performs a tournament selection. 
% Modified by PR    13 December 2004 
%             DS    6  June     2005 - Modifed for "r" value (see "Case 2" 
%                                      in NSGA2.m) 
% 
% function[newPop] = tournSelectNSGA2(oldPop,options) 
% newPop  - the new population selected from the oldPop 
% oldPop  - the current population 
% options - options to normGeomSelect [gen population_size_of_newPop] 
 
% Binary and Real-Valued Simulation Evolution for Matlab 
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay 
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU 
% General Public License can be obtained from the 
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
 
% Define options 
gen = options(1); 
% Size of newPop allowed by options 2 
newPopSize = options(2); 
 
% Set the number of tournaments to two. 
% That is, compare two individuals from the population and select the best 
% of the two. 
tournSize = 2; 
% Determine the chromosome length = variables + objectives + rank + 
% distance.  Be careful for the -1, came from a pos vector at the end :) 
e = size(oldPop,2)-1; 
% Create an array of zeros that will hold the newPop after the tournament 
% selection is complete 
newPop = zeros(newPopSize,e+1); 
% 
% Create an array that is 'tournSize x n' and is filled with random numbers 
% that range in magnitude from 0 to tournSize.  This is the schedule for the 
% tournament. 
nOldPop = size(oldPop,1); 
tourns = round(rand(tournSize,nOldPop)*nOldPop); 
 
% Make sure there aren no zeros in tourns and there isn't a tourny between 
% the same two chromosomes. 
for i = 1:nOldPop 
    if tourns(1,i) == 0 
        tourns(1,i) = 1; 
    end 
    if tourns(2,i) == 0 
        tourns(2,i) = 1; 
    end 
    if tourns(2,i) < nOldPop 
        if tourns(1,i) == tourns(2,i) 
            tourns(2,i) = tourns(2,i)+1; 
        end 
    elseif tourns(2,i) == nOldPop 
        if tourns(1,i) == tourns(2,i) & tourns(2,i) ~= 1 
            tourns(2,i) = tourns(2,i)-1; 
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        end 
    end 
end 
 
% Determine the winner of the tournaments 
% From the above definition of 'e' notice that, for example, the notation 
% 'e-1' means the same thing as 'end-1'. 
 
for itmp = 1:newPopSize 
    % Compare two chromosomes (if 2 is better than 1 use it) 
    if oldPop(tourns(1,itmp),e-1) > oldPop(tourns(2,itmp),e-1) 
        newPop(itmp,:) = oldPop(tourns(2,itmp),:); 
    % Otherwise, if 1 is better than 2, use it 
    elseif oldPop(tourns(1,itmp),e-1) < oldPop(tourns(2,itmp),e-1) 
        newPop(itmp,:) = oldPop(tourns(1,itmp),:); 
    % if rank is identical, longer distance is better 
    else  
        if oldPop(tourns(1,itmp),e) > oldPop(tourns(2,itmp),e) 
            newPop(itmp,:) = oldPop(tourns(1,itmp),:); 
        else 
            newPop(itmp,:) = oldPop(tourns(2,itmp),:); 
        end 
    end 
end 
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B. 7.  simpleXoverNSGA2.m 
function [c1,c2] = simpleXoverNSGA2(p1,p2,bounds,Ops) 
% Simple crossover takes two parents P1,P2 and performs simple single point 
% crossover in multiobjective optimization.   
% 
% function [c1,c2] = simpleXoverNSGA2(p1,p2,bounds,Ops) 
% p1      - the first parent ( [solution string function value] ) 
% p2      - the second parent ( [solution string function value] ) 
% bounds  - the bounds matrix for the solution space 
% Ops     - Options matrix for simple crossover [gen #SimpXovers 0 numObjs]. 
 
% Modified by Hyun-Su Kim, 2004-10-14 
% Modified by PR  12 December 2004 
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
 
% Determine the number of objectives 
numObj = Ops(4); 
% Determine the number of variables by finding the length of the entire 
% chromosome and subtracting the number of objectives and 2 for the rank 
% and crowding distance columns. 
numVar = size(p1,2)-numObj-2;   
% Pick a cut point randomly from 1-number of vars 
cPoint = round(rand * (numVar-2)) + 1; 
 
% Create two children by switching the 'tail' end of both chromosomes. 
c1 = [p1(1:cPoint) p2(cPoint+1:numVar+numObj+2)]; 
c2 = [p2(1:cPoint) p1(cPoint+1:numVar+numObj+2)]; 
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B. 8.   nonUnifMutateNSGA2.m 
function [parent] = nonUnifMutateNSGA2 (parent, bounds, Ops) 
% Non uniform mutation changes one of the parameters of the parent 
% based on a non-uniform probability distribution in multiobjective optimization.  This Gaussian 
% distribution starts wide, and narrows to a point distribution as the 
% current generation approaches the maximum generation. 
% 
% function [newSol] = nonUnifMutateNSGA2(parent,bounds,Ops) 
% parent  - the first parent ( [solution string function value] ) 
% bounds  - the bounds matrix for the solution space 
% Ops     - Options for nonUnifMutate[gen #NonUnifMutations maxGen b numObj] 
 
% Binary and Real-Valued Simulation Evolution for Matlab  
% Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay  
% 
% C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function 
% optimization: A Matlab implementation. ACM Transactions on Mathmatical 
% Software, Submitted 1996. 
% 
% This program is free software; you can redistribute it and/or modify 
% it under the terms of the GNU General Public License as published by 
% the Free Software Foundation; either version 1, or (at your option) 
% any later version. 
% 
% This program is distributed in the hope that it will be useful, 
% but WITHOUT ANY WARRANTY; without even the implied warranty of 
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
% GNU General Public License for more details. A copy of the GNU  
% General Public License can be obtained from the  
% Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
% Modified  PR    12 December 2004 
 
% Determine the number of the current generation 
cg = Ops(1); 
% Determine the maximum number of generations from mutGenNum in runopt. 
mg = Ops(3);                              
% Determine the shape parameter (usually use 3) 
b = Ops(4); 
% Determine the number of objectives 
numObj = Ops(5); 
% Determine the range of each variable 
df = bounds(:,2) - bounds(:,1); 
% Determine the number of variables in the parent chromosome 
numVar = size(parent,2) - numObj - 2; 
% Randomly pick a variable (from 1 to number of vars) to mutate 
mPoint = round(rand * (numVar-1)) + 1; 
% Round a random number (between 0 and 1) to the nearest interger (0 or 1). 
md = round(rand); 
if md      
  % Mutate toward the upper bound (see simple function delta.m) 
  newValue = parent(mPoint)+delta(cg,mg, bounds(mPoint,2)-parent(mPoint), b); 
else 
  % Mutate towards lower bound (see simple function delta.m) 
  newValue = parent(mPoint)-delta(cg,mg, parent(mPoint)-bounds(mPoint,1), b); 
end 
% Make the mutated child by placing the mutated chromosome into the parent 
% as output from the function. 
parent(mPoint) = newValue;  
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B. 9.  nonUnifMutateNSGA2.m 
function [chrom fitness] = fitfunc1_gauss (chrom, param) 
% fitfunc1_gauss.m   Defines the fitness function for a four story building for 
% use with NSGA-2 optimization. 
% Four inputs (1st, 2nd, 3rd, and 4th floor accelerations) and one output (voltage to the damper) 
% are used for the fuzzy logic inference system. 
% Inputs for this fitfunc1_gauss.m function are 
%    1. The chromosome chrom whose fitness is to be evaluated 
%    2. A vector of parameters related to the chrom 
% Outputs for this function are: 
%    1. The chromosome string 
%    2. The fitness of the chromosome 
% Use Gaussian bell membership functions. 
% There is a total 'x' rules and only one direction of motion. 
% Each rule consists of 10 variables - 2 for each of four inputs and 2 for the output. 
% Gaussian membership functions require 2 parameters to define their 
% location and shape.  Also see runopt_gauss.m for the range of each variable. 
% For one case, there is a total of 50 variables (5 rules x 10 
% variables/rule). 
% Modified PNR  1 Feb 2005 
 
% Declare golbal variables so that they are available. 
glbvar; 
 
% Define the length of a subvector from the input vector 'chrom.' 
% For this substring, exclude the objectives, rank, distance, and device 
% locations (if any - not used for the building)  
% from the original vector coming into this fitness function 
% m-file.  All variables in the mutatable chromosome chrom are real-valued 
% variables, not integers - although this can also be programmed but has 
% not been done so far for simplicity. 
 
% nChromLen = length(chrom)-param(2)-2-devNum; 
nChromLen = length(chrom)-param(2)-2; 
%========================================================================== 
% Use the getInteger function (see bottom of this m-file) to set the 
% real-valued damper location to an integer; i.e. round down. 
   
% Go to the story below the story of the current damper.  The MR damper 
% lies between these two stories and is assumed to be connected with a 
% chevron brace. 
% Initialize a vector that shows the location of damper 1.  All are zeros 
% except where the damper is located.  Also, account for action and 
% 'reaction', namely, add another force on the story below in the opposite 
% direction.  An exception occurs when the MR damper is located in the 
% first story and the reaction forces are transmitted to the foundation. 
%========================================================================== 
 
% Units: m, N, sec 
% Define the range of the accelerations from glbvar   
minAcc = min_acc; 
maxAcc = max_acc; 
 
% Bring in the number of variables (nVariableNum) for each rule from glbvar.m 
% For triangles with 2 inputs and 1 output: nVariableNum = 6; 
% Calculate the number of rules. 
% See nVariableNum definition in runopt_tri.m.  It is passed through 
% glbvar.m. 
nRuleNum = nChromLen/nVariableNum; 
   
%====== Start of making FLC FIS  
  Input1MF  = []; % Gaussian Bell Shape MF 
  Input2MF  = []; % Gaussian Bell Shape MF 
  Input3MF  = []; % Gaussian Bell Shape MF 
  Output1MF = []; % Gaussian Bell Shape MF 
  ruleList  = []; % Value=[MF ID of Input1, MF ID of Output1, Weight, Connection] X number of Rules(number of row) 
   
% Cycle through each of the rules that are to be created.  First look 
% through all of the elements of the chromosome.  Except for repeated ones, 
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% first enter the number of unique membership functions that are in the 
% chromosome.  Usually, there will be as many membership functions for each 
% input and each output as there are rules.  That is, for 20 rules, there will 
% be 20 membership functions for each of two inputs and 20 membership 
% functions for each of two outputs.  Triangular membership functions are 
% used.  Start with an empty set for each membership function list. 
% Note:  some of the notation below is used in preparation for having 
% accelerometers on all four floors.  For now, only the 2nd and 4th floors 
% are assumed to have accelerations fed back to the controller. 
  for m = 1:nRuleNum 
       
    %=== Set up membership functions for Input1 (1st floor accelerations) 
    [nMFNum1 nTmp] = size(Input1MF); 
    bExistFg = 0; 
    for n = 1:nMFNum1 
      % Check for a previously existing membership function, which is not very 
      % likely because of use of real-valued parameters, decimal 
      % representation, etc. 
      if (chrom(1+(m-1)*nVariableNum)==Input1MF(n, 1))... 
              & (chrom(2+(m-1)*nVariableNum)==Input1MF(n, 2)) 
        imf1 = n; 
        bExistFg = 1; 
        break; 
      end 
    end 
    if bExistFg == 0 
      Input1MF(nMFNum1+1,:) = [chrom(1+(m-1)*nVariableNum) chrom(2+(m-1)*nVariableNum)]; 
      imf1 = nMFNum1+1; 
    end 
       
    %=== Set up membership functions for Input2 (2nd floor accelerations) 
    [nMFNum2 nTmp] = size(Input2MF); 
    bExistFg = 0; 
    for n = 1:nMFNum2 
      % Check for a previously existing membership function, which is not very 
      % likely because of use of real-valued parameters, decimal 
      % representation, etc. 
      if (chrom(3+(m-1)*nVariableNum)==Input2MF(n, 1))... 
              & (chrom(4+(m-1)*nVariableNum)==Input2MF(n, 2)) 
        imf2 = n; 
        bExistFg = 1; 
        break; 
      end 
    end 
    if bExistFg == 0 
      Input2MF(nMFNum2+1,:) = [chrom(3+(m-1)*nVariableNum) chrom(4+(m-1)*nVariableNum)]; 
      imf2 = nMFNum2+1; 
    end 
       
    %=== Set up membership functions for Input3 (3rd floor accelerations) 
    [nMFNum3 nTmp] = size(Input3MF); 
    bExistFg = 0; 
    for n = 1:nMFNum3 
      % Check for a previously existing membership function, which is not very 
      % likely because of use of real-valued parameters, decimal 
      % representation, etc. 
      if (chrom(5+(m-1)*nVariableNum)==Input3MF(n, 1))... 
              & (chrom(6+(m-1)*nVariableNum)==Input3MF(n, 2)) 
        imf3 = n; 
        bExistFg = 1; 
        break; 
      end 
    end 
    if bExistFg == 0 
      Input3MF(nMFNum3+1,:) = [chrom(5+(m-1)*nVariableNum) chrom(6+(m-1)*nVariableNum)]; 
      imf3 = nMFNum3+1; 
    end 
     
    %=== Set Output1 MF 
    [nMFNumO1 nTmp] = size(Output1MF); 
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    bExistFg = 0; 
    for n = 1:nMFNumO1 
      if (chrom(7+(m-1)*nVariableNum)==Output1MF(n, 1))... 
              & (chrom(8+(m-1)*nVariableNum)==Output1MF(n, 2)) 
        omf1 = n; 
        bExistFg = 1; 
        break; 
      end  
    end 
    if bExistFg == 0 
      %%Output1MF(nMFNumO1+1,:) = [chrom(5+(m-1)*nVariableNum) chrom(6+(m-1)*nVariableNum)]; 
      Output1MF(nMFNumO1+1,:) = [chrom(7+(m-1)*nVariableNum) chrom(8+(m-1)*nVariableNum)]; 
      omf1 = nMFNumO1+1; 
    end 
        % Add rules and combine to make an array 
    % Variable 'wf' indicates the weight that is applied to the rule. 
    % Variable 'andOr' is '1' for the 'AND' operator, and '0' for 'OR.' 
    wf = 1; 
    andOr = 1; 
    ruleList(m,:) = [imf1, imf2, imf3, omf1, wf, andOr]; 
    %ruleList(m,:) = [imf1, imf2, imf3, imf4, omf1, wf, andOr]; 
    %ruleList(m,:) = [imf1, imf2, imf3, imf4, omf1, omf2, omf3, omf4, wf, andOr]; 
  end 
 
  %%%%% All rules should now have been created. 
  % Create a new fuzzy inference system with the filename flcFis.fis.  
  flcFis = newfis('flcFis'); 
  % Add the acceleration variable (1st floor) as an input for the fis. 
  % Also, convert two-parameter triangles to three-parameter triangles. 
  flcFis = addvar(flcFis, 'input', 'Acceleration 1', [minAcc maxAcc]); 
  [nMFNum1 nTmp] = size(Input1MF); 
  for n = 1:nMFNum1 
    mfName = sprintf('MF%d', n); 
    flcFis = addmf(flcFis, 'input', 1, mfName, 'gaussmf', [Input1MF(n,1) Input1MF(n,2)]); 
  end 
    % Add the acceleration variable (2nd floor) as an input for the fis. 
  % Also, convert two-parameter triangles to three-parameter triangles. 
  flcFis = addvar(flcFis, 'input', 'Acceleration 2', [minAcc maxAcc]); 
  [nMFNum2 nTmp] = size(Input2MF); 
  for n = 1:nMFNum2 
    mfName = sprintf('MF%d', n); 
    flcFis = addmf(flcFis, 'input', 2, mfName, 'gaussmf', [Input2MF(n,1) Input2MF(n,2)]); 
  end 
  % Add the acceleration variable (3rd floor) as an input for the fis. 
  % Also, convert two-parameter triangles to three-parameter triangles. 
  flcFis = addvar(flcFis, 'input', 'Acceleration 3', [minAcc maxAcc]); 
  [nMFNum3 nTmp] = size(Input3MF); 
  for n = 1:nMFNum3 
    mfName = sprintf('MF%d', n); 
    flcFis = addmf(flcFis, 'input', 3, mfName, 'gaussmf', [Input3MF(n,1) Input3MF(n,2)]); 
  end 
  % Add the voltage variable for MR damper 1 as an output for the fis 
  % Also, convert two-parameter triangles to three-parameter triangles. 
  flcFis = addvar(flcFis, 'output', 'Voltage1', [MR_volt_sat_min MR_volt_sat_max]); 
  [nMFNumO1 nTmp] = size(Output1MF); 
  for n = 1:nMFNumO1 
    mfName = sprintf('MF%d', n); 
    flcFis = addmf(flcFis, 'output', 1, mfName, 'gaussmf', [Output1MF(n,1) Output1MF(n,2)]); 
  end 
  flcFis = addrule(flcFis, ruleList); 
%====== End of making FLC FIS  
% Run simulation file runsim.m for structure to be analyzed.  This m-file 
% calls a Simulink file that carries out the actual simulation. 
runsim; 
fitness(1) = J1; 
fitness(2) = J2; 
fitness(3) = J3; 
fitness(4) = J4; 
% Increment the counter for the number of simulations that have been run. 
nIter = nIter + 1 



154 

B. 10.   runsim.m 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% runsim.m 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% This file sets up and runs the Simulink file ga_single_mr_damper.mdl 
% which performs a set of analyses on a building using several forcing  
% functions from earthquake loads. 
%  
% Script file to run simulations with a single MR damper. 
% Written by Paul Roschke   18 December 2004   1 Feb 2005 
% Modified by D. Shook      8  August   2005 
% Units: N, m, sec 
% Note:  there are two accelerometers used for feedback to the controller. 
% Load global variables 
glbvar ; 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Load FLC and set saturation limits for each input 
% For now use acceleration feedback from 1st, 2nd, 3rd, and 4th floors 
% Note:  notation prepares for having all 4 accels. 
flcFis = readfis('ArtEQ_1MR_JALL_gen90_num17.fis'); 
sat_limits = getfis (flcFis, 'inrange'); 
FLC_inp1_sat_min = sat_limits(1,1); 
FLC_inp1_sat_max = sat_limits(1,2); 
FLC_inp2_sat_min = sat_limits(2,1); 
FLC_inp2_sat_max = sat_limits(2,2); 
FLC_inp3_sat_min = sat_limits(3,1); 
FLC_inp3_sat_max = sat_limits(3,2); 
clear sat_limits ; 
 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% GA SysID Results 
k1 = 1513225.8297356027; 
k2 = 1120105.1448637175; 
k3 = 2021016.0873949619; 
zeta = 0.003393440499187; 
 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% ABCD 
m1 = 5800; 
m2 = 5800; 
m3 = 6840; 
MassVec = [m1,m2,m3]; 
M = diag(MassVec); 
 
K = [k1+k2 -k2     0; 
        -k2     k2+k3 -k3; 
         0     -k3     k3]; 
[C] = Calc_Damping_Torsion_3Floor(M,K,zeta); 
nDOF = 3; 
%  Build state space matrices for the building structure. 
A = [zeros(nDOF) eye(nDOF); -inv(M)*K -inv(M)*C];   
B = [zeros(nDOF); inv(M)]; 
C = [eye(nDOF) zeros(nDOF); zeros(nDOF) eye(nDOF); -inv(M)*K -inv(M)*C];   
D = [zeros(nDOF); zeros(nDOF); inv(M)]; 
% Unit: Newtons 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
LocatorMatrix = [-1  1  0 ; 
                            0 -1  1 ; 
                     0  0 -1 ]; 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% Run Simulink to execute analysis 
sim('ga_ncree_one_mr_damper') 
% Calculate Performance Indices 
load response 
calcPI 
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B. 11.   Calc_Damping.m 
% function [C] = Calc_Damping(M,K,zeta) 
 
% Determine Eigen Values & Vectors 
[phi,w] = eig(K,M); 
wn = sqrt(w)/(2*pi); 
 
% Transform M and K to modal coordinates 
Mm = phi'*M*phi; 
Km = phi'*K*phi; 
 
% Calculate modal damping by Rayleigh damping 
% Define eigen values to use in damping computations.  Use 1st and 3rd modes 
w1 = w(1,1); 
w2 = w(3,3); 
% Solve for Alpha and Beta 
alpha = zeta*2*w1*w2/(w1+w2); 
beta = zeta*2/(w1+w2); 
 
% Solveing for Modal Cm 
Cm = alpha*Mm + beta*Km; 
 
% Calculate C from Cm 
C = inv(phi')*Cm*inv(phi); 
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B. 12.   calcPI.m 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% calcPI.m 
% ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 
% The order and column of saved variables in Simulink is as follows: 
%%           t EQForce Disp  Vel    Accel     MR Force  Voltage EQ Accel 
%% response: 1 2 3 4   5 6 7 8 9 10 11 12 13  14 15 16  17      18 
% Written by Paul Roschke    19 December 2004   1 Feb 2005 
% Uncontrolled peak and rms responses enter this routine through the global 
% variables. 
glbvar 
load response 
gen 
% Cycle through each story level, looking for peak and rms values: 
for itmp=1:nDOF 
  if itmp==1 
    con_peak_drift = max(abs(response(4+itmp, :))); 
    con_peak_drift_Max = con_peak_drift; 
    con_peak_acc  = max(abs(response(10+itmp, :))); 
    con_peak_acc_Max = con_peak_acc; 
    con_rms_drift = rms(response(4+itmp, :)); 
    con_rms_drift_Max = con_rms_drift; 
    con_rms_acc  = rms(response(10+itmp, :)); 
    con_rms_acc_Max = con_rms_acc; 
  else 
    con_peak_drift = max(abs(response(4+itmp, :)-response(4+itmp-1, :))); 
    con_peak_drift_Max = max(con_peak_drift_Max,con_peak_drift); 
    con_peak_acc  = max(abs(response(10+itmp, :))); 
    con_peak_acc_Max = max(con_peak_acc_Max,con_peak_acc); 
    con_rms_drift = rms(response(4+itmp, :)-response(4+itmp-1, :)); 
    con_rms_drift_Max = max(con_rms_drift_Max,con_rms_drift); 
    con_rms_acc  = rms(response(10+itmp, :)); 
    con_rms_acc_Max = max(con_rms_acc_Max,con_rms_acc); 
  end 
end 
% Calculate Objectives 
J1 = con_peak_drift_Max/uncon_peak_drift_Max; 
J2 = con_peak_acc_Max/uncon_peak_acc_Max; 
J3 = con_rms_drift_Max/uncon_rms_drift_Max; 
J4 = con_rms_acc_Max/uncon_rms_acc_Max; 
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B. 13.   ga_ncree_one_mr_damper.mdl 

 
B. 14.   ga_ncree_one_mr_damper/FLC 

 
B. 15.  ga_ncree_one_mr_damper/FLC/FLC 
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B. 16.  ga_ncree_one_mr_damper/NCREE 20kN MR damper 

 
B. 17.  ga_ncree_one_mr_damper/NCREE 20kN MR damper/Fuzzy model of 

20kN MR damper 
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APPENDIX C 

MATLAB CODE FOR GA SYSTEM IDENTIFICATION 
For GA system identification of the benchmark structure using the NSGA-II CE 

algorithm all files shown in Appendix B are required.  Below are modified versions of 

files shown in Appendix B used to conduct GA system identification. 

C. 1.  fitfunc1_gauss.m 
function [chrom fitness] = fitfunc1_gauss (chrom, param) 
 
glbvar; 
% This routine forms ABCD Matrices for simulation in Simulink 
% Form Mass Matrix 
m1 = 5800; 
m2 = 5800; 
m3 = 6840; 
MassVec = [m1,m2,m3]; 
M = diag(MassVec); 
 
% Define Stifness Values 
k1 = chrom(1); 
k2 = chrom(2); 
k3 = chrom(3); 
zeta = chrom(4); 
 
stiff = [k1+k2 -k2     0; 
    -k2     k2+k3 -k3; 
    0     -k3     k3]; 
% Get Damping Properties 
 
[damp,wn] = Calc_Damping(M,stiff,zeta); 
 
%  Build state space matrices for the building structure. 
A = [zeros(nDOF) eye(nDOF); -inv(M)*stiff -inv(M)*damp];   
B = [zeros(nDOF); inv(M)]; 
C = [eye(nDOF) zeros(nDOF); zeros(nDOF) eye(nDOF); -inv(M)*stiff -inv(M)*damp];   
D = [zeros(nDOF); zeros(nDOF); inv(M)];  
 
% Run Simulink to execute analysis 
tic 
sim('GA_evalMCK) 
toc 
 
% Calculate Performance Indices 
load response 
calcPI 
fitness(1) = J1; 
fitness(2) = J2; 
fitness(3) = J3; 
 
% Increment the counter for the number of simulations that have been run. 
nIter = nIter + 1 
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C. 2.  calcPI.m 
% calcPI.m 
% This routine calculates the performance indices for the TAMU tower. 
% The order and column of saved variables in Simulink is as follows: 
%           t EQAccel Disp    Vel    Accel 
% response: 1 2       3 4     5 6    7 8 
 
glbvar 
load response 
 
% Make sure Simulink completed simulation.  It can stop early due to divergence of solution, note the STOP in the % 
Simulink file 
numPtsLab = length(t); 
numPtsSim = length(response(1,:)); 
 
% If simulation completed do this 
if numPtsLab == numPtsSim 
    d1sim = response(2,:); 
    d2sim = response(3,:); 
    d3sim = response(4,:); 
    v1sim = response(5,:); 
    v2sim = response(6,:); 
    v3sim = response(7,:); 
    a1sim = response(8,:); 
    a2sim = response(9,:); 
    a3sim = response(10,:); 
    % Fine RMS error of each response: 
    d1RMSerror = rms(d1sim-d1)/rms(d1); 
    d2RMSerror = rms(d2sim-d2)/rms(d2); 
    d3RMSerror = rms(d3sim-d3)/rms(d3); 
    v1RMSerror = rms(v1sim-v1)/rms(v1); 
    v2RMSerror = rms(v2sim-v2)/rms(v2); 
    v3RMSerror = rms(v3sim-v3)/rms(v3); 
    a1RMSerror = rms(a1sim-a1)/rms(a1); 
    a2RMSerror = rms(a2sim-a2)/rms(a2); 
    a3RMSerror = rms(a3-a3sim)/rms(a3); 
    % Determine J1 J2 J3 
    J1 = max([d1RMSerror,d2RMSerror,d3RMSerror]); 
    J2 = max([v1RMSerror,v2RMSerror,v3RMSerror]); 
    J3 = max([a1RMSerror,a2RMSerror,a3RMSerror]); 
 
    % Penalty function (no penalty) 
    penalty = 0; 
    J1 = J1 + penalty; 
    J2 = J2 + penalty; 
    J3 = J3 + penalty; 
 
% If simulation didn’t complete do this 
else 
    J1 = 2; 
    J2 = 2; 
    J3 = 2; 
end 
 
J = [J1 J2 J3] 
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C. 3.  GA_evalMCK.mdl 

 



162 

APPENDIX D  

MATLAB CODE FOR COMPARING FLCS 
clc;clear; 
 
% Use this file to evaluate an FLC on a number of EQ's 
% Loop for each EQ record.   
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%            Read in FLC           % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
flcFIS = readfis('220_ALLJ_gbell40gen.fis'); 
sat_limits = getfis (flcFIS, 'inrange'); 
FLC_inp1_sat_min = sat_limits(1,1); 
FLC_inp1_sat_max = sat_limits(1,2); 
FLC_inp2_sat_min = sat_limits(2,1); 
FLC_inp2_sat_max = sat_limits(2,2); 
FLC_inp3_sat_min = sat_limits(3,1); 
FLC_inp3_sat_max = sat_limits(3,2); 
max_volt = 1.2; 
 
% Load MR FIS 
MRfis1 = readfis('B1_seat_222.fis'); 
MR1_disp_sat_min = MRfis1.input(1).range(1); 
MR1_disp_sat_max = MRfis1.input(1).range(2); 
MR1_vel_sat_min = MRfis1.input(2).range(1); 
MR1_vel_sat_max = MRfis1.input(2).range(2); 
MR1_volt_sat_min = MRfis1.input(3).range(1); 
MR1_volt_sat_max = MRfis1.input(3).range(2); 
 
% load MR FIS for 2nd floor - Roschke 20kN 
MRfis2 = readfis('B2_Seat_222.fis'); 
MR2_disp_sat_min = MRfis2.input(1).range(1); 
MR2_disp_sat_max = MRfis2.input(1).range(2); 
MR2_vel_sat_min = MRfis2.input(2).range(1); 
MR2_vel_sat_max = MRfis2.input(2).range(2); 
MR2_volt_sat_min = MRfis2.input(3).range(1); 
MR2_volt_sat_max = MRfis2.input(3).range(2); 
 
% Loop for several excitations 
for i = 1:4 
    if i == 1 
        %load ELC100_ArtEQ_2MR 
        load ELC200_ArtEQ_2MR 
        eq = data; 
        accel = eq(2,:)*9.81; 
    elseif i == 2 
        %load KOBE100_ArtEQ_2MR 
        load KOBE200_ArtEQ_2MR 
        eq = data; 
        accel = eq(2,:)*9.81; 
    elseif i == 3 
        %load TCU76100_ArtEQ_2MR 
        load TCU76200_ArtEQ_2MR 
        eq = data; 
        accel = eq(2,:)*9.81; 
    elseif i == 4 
        load TCU82100_ArtEQ_2MR 
        %load TCU82200_ArtEQ_2MR 
        eq = data; 
        accel = eq(2,:)*9.81; 
    end 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %              Load EQ             % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    time = eq(1,:); 
    dt = time(1,2)-time(1,1); 



163 

    dt = 0.001; 
    Duration = max(time(:)); 
    % Create an earthquake matrix that will be used in Simulink 
    eq = [time; accel]; 
    % Save for Simulation 
    save eq eq 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %          Locator Matrix          % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    LocatorMatrix = [-1  1  0 ; 
                      0 -1  1 ; 
                      0  0 -1 ] ; 
 
    % Max Accel that instrudment can read 
    sensor_min_acc = -20 ; 
    sensor_max_acc =  20 ; 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %   Build ABCD Matricies for 3DOF Benchmark  % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % New SysID with correct masses 
    k1 = 1172818.1282418387; 
    k2 = 1750017.1838405035; 
    k3 = 1998294.2058354884; 
    zeta = 0.00525031239033; 
 
    % ABCD 
    m1 = 5800; 
    m2 = 5800; 
    m3 = 6840; 
    MassVec = [m1,m2,m3]; 
    M = diag(MassVec); 
 
    K = [k1+k2 -k2     0; 
        -k2     k2+k3 -k3; 
        0     -k3     k3]; 
    [C] = Calc_Damping(M,K,zeta); 
    nDOF = 3; 
 
    %  Build state space matrices for the building structure. 
    A = [zeros(nDOF) eye(nDOF); -inv(M)*K -inv(M)*C]; 
    B = [zeros(nDOF); inv(M)]; 
    C = [eye(nDOF) zeros(nDOF); zeros(nDOF) eye(nDOF); -inv(M)*K -inv(M)*C]; 
    D = [zeros(nDOF); zeros(nDOF); inv(M)]; 
    % Unit: Newtons 
 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %          Run Simulation          % 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    % Run Passive Off 
    disp('Passive Off') 
    passVolt = 0; 
    select = 2; 
    % Run Uncontrolled Bldg 
    sim('simulateBldg') 
    load response 
    poff = response; 
    time = poff(1,:); 
    poffd1 = poff(5,:)*1000; 
    poffd2 = poff(6,:)*1000; 
    poffd3 = poff(7,:)*1000; 
    poffv1 = poff(8,:); 
    poffv2 = poff(9,:); 
    poffv3 = poff(10,:); 
    poffa1 = poff(11,:); 
    poffa2 = poff(12,:); 
    poffa3 = poff(13,:); 
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    % Run Passive On 
    disp('Passive On') 
    passVolt = max_volt; 
    select = 2; 
    % Run Uncontrolled Bldg 
    sim('simulateBldg') 
    load response 
    pon = response; 
    time = pon(1,:); 
    pond1 = pon(5,:)*1000; 
    pond2 = pon(6,:)*1000; 
    pond3 = pon(7,:)*1000; 
    ponv1 = pon(8,:); 
    ponv2 = pon(9,:); 
    ponv3 = pon(10,:); 
    pona1 = pon(11,:); 
    pona2 = pon(12,:); 
    pona3 = pon(13,:); 
 
    % Run FLC controlled 
    disp('FLC Controlled') 
    select = 1; 
    sim('simulateBldg') 
    load response 
    con = response; 
    dcon1 = con(5,:)*1000; 
    dcon2 = con(6,:)*1000; 
    dcon3 = con(7,:)*1000; 
    vcon1 = con(8,:); 
    vcon2 = con(9,:); 
    vcon3 = con(10,:); 
    acon1 = con(11,:); 
    acon2 = con(12,:); 
    acon3 = con(13,:); 
    mrforce1 = con(15,:); 
    mrvolt1 = con(18,:); 
 
    % Build tables to compare data 
    poffdmax = max([max(abs(poffd1)),max(abs(poffd2-poffd1)),max(abs(poffd3-poffd2))]); 
    pondmax = max([max(abs(pond1)),max(abs(pond2-pond1)),max(abs(pond3-pond2))]); 
    flcdmax = max([max(abs(dcon1)),max(abs(dcon2-dcon1)),max(abs(dcon3-dcon2))]); 
 
    poffamax = max([max(abs(poffa1)),max(abs(poffa2)),max(abs(poffa3))]); 
    ponamax = max([max(abs(pona1)),max(abs(pona2)),max(abs(pona3))]); 
    flcamax = max([max(abs(acon1)),max(abs(acon2)),max(abs(acon3))]); 
 
    poffdrms = max([rms(poffd1),rms(poffd2-poffd1),rms(poffd3-poffd2)]); 
    pondrms = max([rms(pond1),rms(pond2-pond1),rms(pond3-pond2)]); 
    flcdrms = max([rms(dcon1),rms(dcon2-dcon1),rms(dcon3-dcon2)]); 
 
    poffarms = max([rms(poffa1),rms(poffa2),rms(poffa3)]); 
    ponarms = max([rms(pona1),rms(pona2),rms(pona3)]); 
    flcarms = max([rms(acon1),rms(acon2),rms(acon3)]); 
 
    pon = [pondmax/poffdmax,ponamax/poffamax,pondrms/poffdrms,ponarms/poffarms]; 
    flc = [flcdmax/poffdmax,flcamax/poffamax,flcdrms/poffdrms,flcarms/poffarms]; 
     
    JResults{i,1} = [pon;flc]; 
    Jdisp = cell2mat(JResults) 
    disp('<<<<<<<<<<<<------------>>>>>>>>>>>>>') 
end 
disp('J Results') 
JResults = cell2mat(JResults) 
disp('done') 
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