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ABSTRACT

An Algorithm for Identifying Clusters of Functionally Related Genes in Genomes.

(December 2006)

Gang Man Yi, B.S., Kangnung National University, South Korea

Co–Chairs of Advisory Committee: Dr. Michael Thon
Dr. Sing-Hoi Sze

An increasing body of literature shows that genomes of eukaryotes can contain

clusters of functionally related genes. Most approaches to identify gene clusters utilize

microarray data or metabolic pathway databases to find groups of genes on chromo-

somes that are linked by common attributes. A generalized method that can find

gene clusters, regardless of the mechanism of origin, would provide researchers with

an unbiased method for finding clusters and studying the evolutionary forces that

give rise to them.

I present a basis of algorithm to identify gene clusters in eukaryotic genomes

that utilizes functional categories defined in graph-based vocabularies such as the

Gene Ontology (GO). Clusters identified in this manner need only have a common

function and are not constrained by gene expression or other properties. I tested the

algorithm by analyzing genomes of a representative set of species. I identified species

specific variation in percentage of clustered genes as well as in properties of gene

clusters, including size distribution and functional annotation. These properties may

be diagnostic of the evolutionary forces that lead to the formation of gene clusters.

The approach finds all gene clusters in the data set and ranks them by their likelihood

of occurrence by chance. The method successfully identified clusters.
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CHAPTER I

INTRODUCTION

A. Background

It is well known that genes in bacterial genomes are usually not distributed ran-

domly in the genome but are organized into groups of transcriptionally linked genes

called operons. Unlike their prokaryotic counterparts, genes in eukaryotic genomes

are traditionally thought of as being randomly distributed among the chromosomes.

However, an increasing number of functional and comparative genomic studies are

revealing that, in fact, gene clusters may be common in eukaryotic species (Lee [1]

and Hurst [2]). Furthermore, these studies suggest that multiple mechanisms may be

responsible for forming gene clusters leading to levels of organization that range from

small clusters comprised of only a few genes to large clusters spanning hundreds of

genes.

Operon-like gene clusters are known to occur in Caenorhabditis elegans and share

many similarities with their prokaryotic counterparts. Fungi also contain metabolic

pathway clusters though their structure differs considerably from operons in C. elegans

(Blumenthal [3], Zorio [4] and Spieth [5]). Some fungal metabolic pathway clusters

have been shown to have coordinated gene transcription through the action of cis-

acting regulatory elements (Herbert [6] and Sophianopoulou [7]). The yeast (Saccha-

romyces cerevisiae) genome contains a number of well documented clusters, including

the DAL and GAL clusters, which contain 6 and 3 genes respectively (Hittinger [8]

and Cooper [9]). Filamentous fungi also contain a number of metabolic pathway

clusters that consist of genes for biosynthesis of primary or secondary metabolites

The journal model is IEEE Transactions on Automatic Control.
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(Keller [10]). In all of these cases, the gene clusters are relatively small in size, often

containing less than 15 genes arranged adjacent to one another on the chromosome.

One of the first genome wide analyses of metabolic pathway clustering in eu-

karyotes revealed that gene clusters may span large segments of the genome (Lee

[1]). Their method examined genes linked to the same pathway described in the

Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa [11]). The average

distance of gene pairs within the pathway were compared to the distance calculated

from randomized gene order. Two important conclusions could be drawn from this

study. First, in every species examined, statistically significant clusters of metabolic

pathway genes were found, suggesting that gene clusters are widespread in eukary-

otes. Second, gene clusters were not necessarily comprised of sets of adjacent genes.

Many clusters were sparse, i.e. they were comprised of genes belonging to the same

metabolic pathway that were spread out over large segments of the genome but were

nevertheless much closer to each other than expected by chance. In fact, a large

number of gene expression studies are now showing that co-expressed genes have a

tendency to be clustered and that the genes in these clusters tend to have related

functions (for a review, see Hurst [2]). It is important to note however, that gene

clusters are not always comprised of genes belonging to the same metabolic pathway,

nor do they necessarily have coordinated gene expression. In this thesis, I define a

gene cluster as a set of genes with a common function, that are closer to one another

than is expected by chance.

The presence of gene clusters implies that clustering confers a selective advan-

tage and that some evolutionary mechanism exists to promote the formation and

maintenance of clusters. Genes in gene clusters may belong to common metabolic

pathways, in which each gene encodes a protein (a gene product) that functions as

an enzymatic step in a cellular metabolic process. Alternatively, gene products may
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form interaction networks in which proteins interact directly with each other to form

multimeric proteins or serve as ligands and receptors in signaling cascades. Clusters

of interacting proteins have been reported in S. cerevisiae (Teichmann [12]) and it

has also been suggested that human protein ligands may be genetically linked to their

receptors (Hurst [2]). In either case, there must be selective pressure to promote clus-

tering. Such selective pressure may arise through coordinated gene expression and it

is believed that this is the most common force that drives clustering. Alternatively,

coinheritance may provide the motive force for driving the clustering of genes. This

theory states that natural selection will favor genetic linkage among genes that inter-

act in some way, and they will tend to be inherited as a group (Fisher [13] and Nei

[14]). It was recently demonstrated that among inbred mouse lines, extensive regions

of linkage disequilibrium exist that are correlated with biological function (Petkov

[15]). These observations are consistent with the concept of coinheritance and such

a mechanism might also explain the clustering of metabolic pathway genes reported

by Lee [1].

Another mechanism by which gene clusters may form is through the tandem

duplication of genes. Such homologous gene clusters are widespread in eukaryotes

(Thomas [16]). In C. elegans, Thomas [16] showed that clusters of homologous genes

tend to be formed of species specific gene families that play roles in detoxification and

immunity, and are found in chromosomal regions that undergo rapid evolution and

reorganization. Further study of the content, function and distribution of homologous

gene clusters will likely reveal important processes that regulate the formation of gene

families.

Computational approaches to identify gene clusters are usually aimed at identi-

fying specific cluster types, such as those that correspond to metabolic pathways or

that represent sets of co-expressed genes. A generalized approach that can identify
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all clusters in a genome would be of great value for the study of eukaryotic genome

organization and evolution. In addition, identification of gene clusters may help to

identify functional relationships among genes, and aide in the discovery of metabolic

pathways and protein interactions.

In comparison with Lee [1] paper, it only considers metabolic pathway, so the

identified clusters are constrained within the metabolic pathway, and are not consid-

ered subsets of the metabolic pathway. The proposed method considers all functions

of Gene Ontology, so the clusters are not constrained with specific properties. Clusters

by the proposed method can obtain clusters with the broad functional meaning.

In this thesis, I describe a method for finding clusters of genes that are anno-

tated to common functional categories described in the Gene Ontology (Ashburner

[17]). The Gene Ontology (GO) is a common controlled vocabulary of terms and

phrases describing the function of genes and gene products. The terms and relation-

ships among the terms are represented by a directed acyclic graph (DAG) in which

vertices represent GO terms and edges represent relationships among similar terms.

Genes can be annotated with GO terms creating gene associations that can be used

for whole genome analyses. The Gene Ontology provides a rich framework for iden-

tifying gene clusters, regardless of the evolutionary mechanisms responsible for their

formation. The proposed method can identify all possible clusters of genes annotated

to the same GO term, or a common parent term, and assigns p and e statistics that

enable statistical evaluation of the clusters. I also describe an implementation of

the algorithm and statistical test called C-Hunter. To demonstrate the utility of the

proposed method, I apply C-Hunter to the genomes of Escherichia coli and Saccha-

romyces cerevisiae, and show that clusters identified with C-Hunter correspond to

well-documented clusters in these species. I also perform a comparative analysis of

gene clusters in several eukaryotic species and find species specific variation in the
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number, size, function, and putative evolutionary origin of the clusters. A compara-

tive analysis of clustering in several species revealed that species can be distinguished

by a specific variation in percentage of clustered genes as well as in properties of gene

clusters including size distribution and functional annotation.
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CHAPTER II

METHODS

A. Preliminaries

A gene cluster is defined as a group of genes that are annotated with the same GO

term or have the same parent term, and are also found within close proximity to each

other on a chromosome. Cluster size refers to the number of genes in the cluster

having the same GO term or parent term. Cluster length refers to the chromosomal

length occupied by the cluster, including intervening genes that are not members of

the cluster.

B. Algorithm and statistical evaluation of clusters

I present two algorithms to identify gene clusters in eukaryotic genomes that utilizes

functional categories defined in graph-based vocabularies such as the Gene Ontology

(GO). Clusters identified in this manner need only have a common function and are

not constrained by gene expression or other properties. Clusters of genes annotated

to a common GO term, or a common parent term, can be identified allowing for the

identification of gene clusters regardless of the evolutionary mechanisms responsible

for their formation. The algorithm is tested by analyzing genomes of a representative

set of species.

I represent each chromosome c by an ordered sequence of genes (g1, g2 . . . , gn)

while ignoring the orientation of each gene gi on c. To investigate functional assign-

ments of these genes, I use the GO database (Ashburner [17]), in which three rooted

directed acyclic graphs are used to define hierarchical structures of increasingly spe-

cific functional categories, with top level categories being biological process, cellular
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t1 t2

t4t3

t5 t6

g1 g2

g3

g4

Fig. 1. Illustration of the set of all reachable vertices by a given gene list gi in a directed

acyclic graph G. tj is GO term.

component and molecular function. In each graph G = (V, E), each vertex v ∈ V

represents a functional category (called a GO term) and each edge (u, v) ∈ E repre-

sents that u is functionally less specific than v. Since each gene can have more than

one functional assignment, the set of all GO terms that are associated with each gene

is able to link to many genes (Figure 1). The difference between the two algorithms

is the way in which putative genes clusters are selected. Algorithm 1 is focusing on

genes on a chromosome and Algorithm 2 is focusing on GO terms. In order to se-

lect functionally related genes in Algorithm 1, fixed size clusters, which range in size

from 2 to n where n is the number of genes in a chromosome, are selected sequen-

tially. However, in Algorithm 2, functionally related genes, which span a region of a

chromosome length, are selected by GO terms. GO terms are obtained by reversed

topological search order using the depth-first search (DFS) in the DAG. The search

takes in O(|E|) time (Cormen [18])).
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c = g1 g2 g3 g4 g5 g6 n = 6

c(w) = g1 g2 g3 k = 3

t(c(w)) = t3 t4 t5

cluster 1 [t4] g2 g3 n′ = 2 k′ = 2

cluster 2 [t3,t4] g1 g2 g3 n′ = 3 k′ = 3

cluster 3 [t3,t5] g1 g3 n′ = 3 k′ = 2

Fig. 2. Illustration of all clusters of fixed size. The clusters are associated with genes

linked to terms(defined in figure 1) by the combination of t(c(w)). c is a set of

genes in a chromosome, c(w) consists of genes of cluster size k=3. Cluster uses

genes with the combination of terms associated in c(w).

1. Algorithm 1

The first algorithm is finding gene clusters by a combination of functional categories

annotating genes (see figures 1 and 2). Each chromosome c is represented by an

ordered sequence of genes (g1, g2 . . . , gn). For each candidate cluster c(w), a set of

terms is associated with genes in c(w). The candidate cluster of size at least two and

at most n moves from g1 to n− k + 1, where n is a number of genes in a chromosome

c, k is the number of genes associated with a common parent term, and k′ is the

number of genes in a cluster. The terms in t(c(w)) are determined by which a term

is associated with at least one gene in c(w). Terms to find gene clusters are selected

by a combination of the term ti in t(c(w)) (see figure 2). Only clusters, which have

sub-node terms, are merged to clusters which have parent-node terms. For instance,

in Table I, cluster {t3, t4, t5} and {t4, t5} is merged to a cluster {t3, t4}, because t4

is a parent term of t5. Clusters {t3} and {t5} consist of only one gene, so they’re
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Table I. Illustration of a combination of terms. gis are genes associated to terms tj in

clusters. The filled circle denotes ‘removed cluster’

Cluster(terms) Genes Status

t3 ⇒ g1 ⇒ •
t4 ⇒ g2, g3

t5 ⇒ g3 ⇒ •
t3, t4 ⇒ g1, g2, g3

t3, t5 ⇒ g1, g3

t4, t5 ⇒ g2, g3 ⇒ •
t3, t4, t5 ⇒ g1, g2, g3 ⇒ •

removed, because only clusters consisting of at least two genes are considered.

Candidate clusters are created by the combination of all functional categories in

c(w) by selecting genes where more than two genes are in the cluster. The probability

of each gene cluster with function t occurring by chance can be calculated by the

hypergeometric distribution. It models the probability of observing at least k′ from

GO term within a cluster of size n′. This statistical test measures whether a cluster is

enriched with genes from a particular term to a greater extent than would be expected

by chance. p-value is given by

p(n, n′, k, k′) = 1−
k′−1∑

i=0

(
k
i

)(
n−k
n′−i

)
(

n
n′

)
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where





n = Total number of genes in a chromosome

n′ = Cluster length

k = Number of genes associated with a common parent term

k′ = Number of genes in a cluster

I check all genes n in a chromosome with various cluster size up to n, so it takes

O(n2). In each cluster, O(2t) takes to calculate all possible terms. Thus, the overall

time complexity takes O(n22t).

The major problems in Algorithm 1 are “fixed cluster length” and “many com-

putations”. Gene clusters can be comprised of only a few genes to large clusters

spanning hundred of genes without any considerations of a gene location within the

cluster. But Algorithm 1 uses the fixed cluster length which is linearly increasing.

Thus, only gene clusters which are comprised of sets of adjacent genes are found.

The time complexity O(n22t) in Algorithm 1 takes an exponential-time, thus, many

computations are required. To make up for these problems in Algorithm 1, Algorithm

2 considers to trace each GO term in DAG and also considers genes associated with

terms.

2. Algorithm 2

The basic condition of Algorithm 2 is same with Algorithm 1. I represent each chro-

mosome by an ordered sequence of genes while ignoring the orientation of each gene

on a chromosome. Functional annotations will be obtained from the gene ontology

(GO) database. I combine three graphs (biological process, cellular component and

molecular function) into a single directed acyclic graph G = (V,E) with three con-

nected components, in which each vertex v ∈ V represents a functional category and
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v

Fig. 3. Illustration of the set R(v) of all reachable vertices from a given vertex v in a

directed acyclic graph G. Filled circles denote vertices in R(v), while hollow

circles denote other vertices.

each edge (u, v) ∈ E represents that v is functionally more specific than u.

Since each gene gi can have more than one functional assignment, let F (gi) ⊆ V

be the set of all GO terms that are associated with gi. Although these associations are

typically on the bottom level of G, I am also interested in investigating the clustering

of genes that belong to less specific functional categories. I consider each vertex v ∈ V

and let R(v) be the set of all vertices that are reachable from v in G (Figure 3), which

gives all GO terms that are more specific than v in addition to v. I study the cluster-

ing of genes that belong to this category by finding all genes on the given chromosome

c that are associated with at least one GO term in R(v). This defines a subsequence

c(v) = (g′1, g
′
2 . . . , g′n′) of c so that R(v)∩F (g′j) 6= ∅ for each j. I think of each substring

(g′j, g
′
j+1 . . . , g′j+k′−1) on c(v) between the jth gene and the (j + k′ − 1)th gene as a

potential gene cluster that spans the region (gi, gi+1, . . . , gi+k−1) on c between the ith

gene and the (i + k − 1)th gene, where gi = g′j and gi+k−1 = g′j+k′−1 (Figure 4). The

probability of finding such a cluster of size at least k′ is given by the hypergeometric
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c = g1 g2 g3 g4 g5 g6 n = 6

c(v) = g′1 g′2 g′3 n′ = 3

cluster 1 g3 g5 k = 3 k′ = 2

cluster 2 g5 g6 k = 2 k′ = 2

cluster 3 g3 g5 g6 k = 4 k′ = 3

Fig. 4. Illustration of all clusters of size greater than one that are associated with a

vertex v in G.

distribution as

p(n, n′, k, k′) =
k∑

i=k′

(
n′
i

)(
n−n′
k−i

)
(

n
k

) .

where





n = Total number of genes in a chromosome

n′ = Number of genes associated with a common parent term

k = Cluster length

k′ = Number of genes in a cluster

I evaluate its statistical significance by finding the expected number of such clus-

ters that span a region of length k on c, which is given by

e(n, n′, k, k′) = (n− k + 1)p(n, n′, k, k′).
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Algorithm C-Hunter(G,c,F ) {
for each vertex v in G do {

R(v) ← set of all vertices that are reachable from v in G;

c(v) ← subsequence (g′1, g
′
2, . . . , g

′
n′) of c =

(g1, g2, . . . , gn) so that R(v) ∩ F (g′j) 6= ∅ for each j;

for k′ ← 1 to n′ do {
for j ← 1 to n′ − k′ + 1 do {

compute e(n, n′, k, k′) of the cluster

(g′j, g
′
j+1, . . . , g

′
j+k′−1) on c(v) that spans the

region (gi, gi+1, . . . , gi+k−1) on c, where

gi = g′j and gi+k−1 = g′j+k′−1; } } } }

Fig. 5. Algorithm to find all functionally related gene clusters on a chromosome c

which belong to each functional category that is represented by each vertex v

in G. The function F defines the set of all vertices in G that are associated

with each gene on c.

The details of the algorithm are given in Figure 5. To compute c(v), first initialize

its set of genes according to the function F . Then consider each vertex u in reversed

topological order (which can be obtained by depth-first search in O(|E|) time (Cormen

[18])), and update c(u) by considering each edge (u, v) and adding genes from c(v)

to obtain all the qualifying genes. Since there are at most n genes to add along

each edge and at most n genes to store in each vertex, the above procedure takes

O(|E|n) time and O(|V |n) space (there is no need to compute R(v) explicitly). For a
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GO Database Converter

Biological

Process
Cellular

Component

Molecular

Function

GO Graph

Fig. 6. The flowchart of converting GO Database to C-Hunter Database.

fixed vertex v and a fixed k′, since each cluster (g′j, g
′
j+1, . . . , g

′
j+k′−1) can be obtained

from the previous one in constant time by removing g′j−1 and adding g′j+k′−1 (except

for the leftmost cluster), the time to obtain all the clusters is proportional to the

total number of clusters. To compute the e-value of each cluster, for fixed n and

n′, I preprocess and store all the O(n) binomial coefficients. For fixed n, n′ and

k′, I use O(n) space to store p(n, n′, k, k′) for all k and obtain p(n, n′, k, k′) from

p(n, n′, k, k′ − 1) in constant time. For each vertex v, it then takes O(n2) time to

compute all the e-values. The overall time complexity for the entire algorithm is thus

O(|E|n + |V |n2). Since it is only necessary to store clusters that have e-value below

a cutoff, the space requirement is not prohibitively large.
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Make Map & GO data

gene2acess gene2go
Chromosome

Information

Genes Annotated to GOChromosome Map

Fig. 7. The flowchart of making C-Hunter chromosome map file and GO data file.

C. Data set

I selected species that represent a broad phylogenetic diversity, and also had signif-

icant percentages of genes annotated with GO terms. The genomes varied in the

level of annotation, ranging from 25.1% in D. rerio to 96.2% in S. cerevisiae (Ta-

ble II). Proteins annotated with GO terms and files describing the order of genes

within each chromosome were obtained from NCBI (http://www.ncbi.nlm.nih.gov/).

I use gene2accession files and gene2go files, both from the NCBI ftp site to obtain

the ordered gene sequence for a given chromosome and the GO term assignments for

its genes respectively (Figures 6 and 7).
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Fig. 8. Among top clusters in S. cerevisiae, gene clusters associated with DIP networks

with mean distance of less than 2.

D. Comparative analysis of gene clusters

Gene clusters that originated by gene duplication, selection for genetic linkage of

interacting proteins, or selection for metabolic pathway clustering may be identified

by comparing C-Hunter clusters to clusters found in public databases or identified

by various other clustering algorithms. To identify clusters containing interacting

proteins, I compared C-Hunter clusters to the Database of Interacting Proteins (DIP)

(Xenarios [19]), which defines paths between proteins in terms of an undirected graph

where a node represents a protein and an edge represents an interaction between two

proteins. For each C-Hunter cluster, I computed the shortest path between each pair

of proteins within the cluster. Using the minimum spanning tree (MST) algorithm
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(Prim [20]), to find the shortest path between protein pairs, I computed the mean

minimum distance between all possible protein pairs within each C-Hunter cluster.

Clusters with mean distance of less than 2 were considered putative interacting protein

clusters (Figure 8).

In order to identify putative homologous gene clusters, I compared C-Hunter

clusters to those formed by TribeMCL, a method for clustering proteins into groups

related by sequence similarity (Enright [21]). I used the default TribeMCL options

with a BLAST e-value cutoff of 1e-05. C-Hunter clusters corresponded to TribeMCL

clusters if they exactly matched, or were a sub set of a TribeMCL cluster.

Lastly, I searched for correspondence between C-Hunter and KEGG (Kanehisa

[11]) to identify whether genes within a cluster belong to a common metabolic path-

way. I assume the C-Hunter cluster represents a metabolic pathway if all proteins in

the cluster are annotated to the same KEGG pathway.
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CHAPTER III

RESULTS AND DISCUSSION

A. Method use

As I discussed in the method section, the overall performance of Algorithm 2 is better

than Algorithm 1 in terms of the algorithm efficiency and the speed. Algorithm

1 uses the fixed cluster length, but the actual cluster length can be smaller than

the fixed cluster length if the genes are not annotated on the border. In addition,

Algorithm 1 takes the exponential time due to the combination of computations.

Therefore, I adopted Algorithm 2 for a series of experiments on actual data sets.

Because Algorithm 2 is focusing on GO terms to select the putative genes, we will not

miss clusters with the low e-value clusters due to the cluster length.The Algorithm 2

requires polynomial-time which is comparatively better than Algorithm 1. I developed

a software package called C-Hunter that implements Algorithm 2 that can be used to

find gene clusters in genomes that are annotated with GO terms.

B. Implementation

C-Hunter implements the above described algorithm and provides output of the clus-

ters and statistical test in human readable format as well as comma separated format

suitable for import into other applications. The algorithm finds all gene clusters that

have an e-value below a user specified cutoff and as such, numerous overlapping gene

clusters are often reported (Figure 9). To improve readability of the output and fa-

cilitate comparative analyses of multiple genomes, I also apply several filtering steps

(See figure 10). The standard filtering step consists of the removal of clusters that are

exact subsets of a larger cluster that has a lower e-value. I also implement a second
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optional filtering step that either masks or removes highly similar, overlapping clus-

ters. In the second filtering process, the clusters are first sorted by e-value. Then,

starting with the cluster with the lowest e-value, all other clusters that overlap by

a user specified threshold are labeled as members of a group of overlapping clusters.

This process is repeated for each cluster that has not yet been labeled as a member

of another group. A user supplied parameter defines whether the labeled groups are

reported in the output file or are ignored.

The running time for whole genome analyses depends on the number of genes in

the genome and the number of annotated genes. For instance, the S. cerevisiae data

set that I used for this analysis contains 6150 genes of which 96.2% are annotated with

GO terms (Table II). The running time for this data set was 4 minutes including all

filtering steps when executed on a system equipped with 2.8 Ghz Pentium IV processor

with 2 gigabytes of RAM.

I postulated that the primary limitation of the proposed approach to finding gene

clusters would be in the quality and quantity of the protein sequence annotation, and

that there would be a tendency to find more gene clusters in species with more richly

annotated genomes. The species I selected for analyses vary widely in the percentage

of genes with functional annotations and the D. rerio and S. cerevisiae genomes

contain the least and most annotated proteins, respectively (Table II). Surprisingly,

C-Hunter found nearly identical percentage of genes within clusters in these species.

Furthermore, I found no obvious tendency for level of annotation to be correlated with

percentage of genes in clusters or number of clusters in the other species examined

(Table II).
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C. Validation of known gene clusters

I evaluated the sensitivity of the proposed approach by using C-Hunter to search for

clusters in the E. coli genome and confirming the presence of documented operons in

the C-Hunter output files. Most bacterial operons are less than 10 genes in length and

when the default C-Hunter parameters are used, large, sparse clusters predominate

the search results. Clusters representing operons are either not present in the output

because they have been removed by the first filtering step, or are hidden among a

long list of larger clusters. By modifying the C-Hunter parameters to eliminate large

clusters, smaller operon-sized clusters are more easily identified. Therefore, I limited

the search space to clusters containing 10 genes or less, and manually inspected the

top 10 clusters in the output for known E. coli operons according to the Yale CGSC

database (http://cgsc.biology.yale.edu/). Each of the top ten clusters correspond to

known operons in the database and were identified as complete or nearly complete

operons by C-Hunter. In the case of the his operon, an additional flanking gene

was identified as part of the cluster but was not reported by the CGSC database.

The his operon entry in the database contains eight genes while the C-Hunter cluster

corresponding to this operon contains nine genes. Further inspection revealed that the

additional gene, hisL, encodes the his operon leader peptide, which plays a regulatory

role in the operon. I also found an overlapping cluster spanning a genomic interval

(cluster size) of 281 genes, that contains 10 genes annotated to “histidine biosynthesis”

(e-value 3.27e-7). Since the search was limited to clusters containing 10 genes, I

postulated that a larger “histidine biosynthesis” cluster might be identified if the

search was not restricted. By performing the search again with unrestricted cluster

size, I identified a cluster spanning a genomic interval of 621 genes containing 12 genes

annotated to “histidine biosynthesis” (e-value 3.24e-7). This cluster may represent a
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level of organization in the E. coli genome that is on a much larger scale than that

of operons.

I also validated the presence of well-documented gene clusters in S. cerevisiae.

While the S. cerevisiae genome does not contain operons per se, it is known to contain

clusters of genes belonging to metabolic pathways. Gene clusters in S cerevisiae are

not as well described as they are in bacteria however two well documented examples

are known, namely, the GAL and DAL clusters. Therefore, I evaluated whether C-

Hunter could identify these clusters. Using the default parameters (e-value cutoff

0.001, and no limits on cluster size) I identified the presence of both the S. cerevisiae

DAL and GAL clusters as the first and sixth clusters in the result file. The proposed

algorithm identified 4 of the 6 genes that make up the allantoin cluster (Wong [22])

within a genomic interval that contains 6 genes (Figure 9). Two of the six genes were

not identified as members of the cluster because their GO annotations did not share

a common vertex in the GO graph with the other members of the cluster. The GAL

cluster is comprised of 3 genes and was found in its entirety in analysis (not shown).

For a reference, C-Hunter identified 25 clusters in the S. cerevisiae output, but

C-Hunter identified 18 clusters using GO terms without IEA (Inferred from Electronic

Annotation) evidence code. The evidence code indicates how annotation to a partic-

ular term is supported, and is not necessarily a classification of an experiment. IEA

is based on “hits” in sequence similarity searches, and curated by not a human but

an electronic annotation (http://www.geneontology.org). In the S. cerevisiae output

using GO terms with IEA, C-Hunter identified less cluster than clusters including

IEA annotations, and I could not find GAL cluster which is one of well documented

clusters in S. cerevisiae The average number of genes per cluster (5.72) is larger than

the original output (5.32) (see Table II).
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D. Identification and comparative analysis of eukaryotic gene clusters

I used the C-Hunter application to find gene clusters in eight model organism genomes.

For comparative analyses, I employed an e-value cutoff of 0.001 and applied the

optional filtering step to remove clusters that overlap by 50% or more. I retained the

cluster with the lowest e-value within each group for comparative analyses. Average

cluster size varied considerably among species (Table II) with M. musculus containing

the largest clusters. The smallest clusters were found in S. cerevisiae, with the top

ten clusters averaging 5.3 genes per cluster. The gene clusters identified varied not
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only in size but in density as well. Small clusters such as bacterial operons and

the S. cerevisiae GAL and DAL clusters contained small numbers of genes with few

intervening genes that were not part of the cluster. At the other end of the spectrum,

many of the large clusters frequently found in vertebrate genomes were interspersed

with genes that were not members of the cluster. For example, the top cluster in

H. sapiens cluster 4 (GO:0006334 - nucleosome assembly) spans a genomic segment

containing 84 genes, of which 26 are annotated to the function.

The size distribution of clusters varied between species as well (Figure 11). In

all species examined, the majority of clusters were small in size, often smaller than

10 genes, however, some contain large clusters containing hundreds of genes. Large
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Table III. Percentage of genes in each genome that were found in clusters assigned to

each of the three sections within the Gene Ontology (Among clusters with

e-value ≤ 0.001 and overlap threshold of 50%).

Species Biological

Process

Cellular

Component

Molecular

Function

A. thaliana 34.74 21.86 43.41

C. elegans 89.92 1.46 8.62

D. rerio 26.85 2.68 70.47

D. melanogaster 24.37 3.19 72.44

E. coli 71.36 25.38 3.26

H. sapiens 31.25 42.17 26.58

M. musculus 34.12 28.08 37.80

S. cerevisiae 26.49 8.65 64.86

clusters comprised of more than 100 genes were found in most species, but were much

less common than clusters with less than 10. One exception is M. musculus which,

unlike any of the other species examined, contains predominantly large gene clusters.

The M. musculus genome has approximately the same proportion of annotated genes

as H. sapiens (50.9% vs. 65.6%) (Table II) yet has 6.3X more genes per cluster and

4.6X less clusters. This result is somewhat unexpected since mouse and human have

strongly conserved gene order (Zhao [23]).

The Gene Ontology is divided into three separate graphs reflecting three general

functional categories that describe gene function. To aide in identifying the functional

constraints that may be important in forming gene clusters, I investigated whether
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there was a tendency in any of the species I examined for functional gene clusters

to be annotated to terms within the three general categories. I considered number

of clustered genes annotated to each ontology rather than number of clusters since

the former can be compared directly to the annotations represented in the whole

genome. All of the analyzed genomes contain genes annotated to GO terms from all

three of the ontologies at roughly equivalent levels. However in some species I found

considerable bias in representation of clustered genes among the three ontologies

(Figure 12 and Table III). The most striking examples are in the C. elegans and

E. coli genomes where 89.92% and 71.36% respectively of the genes were found in

the Biological Process ontology. C. elegans is unique among eukaryotes in that, like

bacteria, its genome contains operons and some analyses suggest that as many at 15%

of the genes in this species are arranged in this manner (Spieth [5]). The Biological

Process ontology contains terms describing metabolic processes and it is likely that

the relatively high proportion of genes annotated to this ontology reflects a trend

towards clustering of metabolic pathways.

The presence of gene clusters in eukaryotic genomes indicates that there is some

selective pressure to form and maintain them. Several evolutionary processes have

been proposed to provide the mechanism by which clusters of functionally related

genes may arise. These are summarized below:

• Gene Duplication

Duplicated genes are often found adjacent to each other, leading to clusters of

genes with identical or similar functions. Gene duplication has been proposed

as one of the major mechanisms by which new genes arise (Ohno [24]).

• Promoter-drives-expression (Hurst [2])

Genes may share promoter elements that only function when they are in close
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proximity to each other. This can enable co-expression of sets of genes that

need to be regulated together. Examples include bidirectional promoters and

polycistronic transcripts that have been described in some eukaryotes (Hurst

[2]).

• Selection for Genetic Linkage.

Two models have been proposed to provide selective pressure to genes with com-

mon functions to become genetically linked. Coordinated gene expression may

be regulated at the chromatin level to regulate gene expression over chromoso-

mal segments that span hundreds of kilobases (Hurst [2]). This can provide a

selective pressure for genes to be located within close proximity to one another

yet still separated by intervening genes. A second model suggests that proteins

that interact with each other might be genetically linked. If certain combina-

tions of alleles interact more strongly than others, selection might favor genetic

linkage so that the interacting genes tend to be inherited as a group (Cooper

[25] and Teichmann [12]).

The C-Hunter algorithm will enable us to identify all clusters of functionally re-

lated genes in genomes. By examining the clusters, we may be able to determine which

of the above-described evolutionary process is responsible to forming the cluster. By

comparing several species, we can gain insight into the relative contribution of each

of these evolutionary processes into the formation of gene clusters. Clusters identified

with C-Hunter can be compared to other data sets that can suggest whether genes

are related by gene duplications, have coordinated transcription, or interact with each

other. While such a study is beyond the scope of this thesis, I performed an analysis

of the S. cerevisiae genome to demonstrate how such an analysis might be performed.

I assigned C-Hunter clusters to categories, depending on evidence available to suggest
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Table IV. Percentage of genes and gene clusters comprised of duplicated genes. *fil-

tering was applied using a 50% overlap threshold

Species Percent of Clusters* Percent of Genes

A. thaliana 79.51 60.46

C. elegans 18.18 65.24

D. rerio 60.00 81.55

D. melanogaster 51.64 44.48

E. coli 0.00 22.68

H. sapiens 50.81 58.77

M. musculus 22.50 55.58

S. cerevisiae 40.00 7.59

relationships among the proteins. Homologous gene clusters were identified by deter-

mining whether genes corresponded to a cluster of highly similar proteins identified

with TribeMCL. TribeMCL is a method for clustering proteins into groups related

by sequence similarities. All species examined, except for E. coli contained some

percentage of homologous gene clusters (Table IV). There was no clear association

to the overall percentage of duplicated genes in each genome, suggesting that the

presence of homologous gene clusters is not merely a function of the rate of gene du-

plication. The human genome contained more than twice as many homologous gene

clusters than mouse, consistent with the overall larger number of clusters found in

human (Table II) and suggesting that the increased number of clusters in human are

predominantly clusters of homologous genes.

C-Hunter clusters representing groups of interacting proteins or metabolic path-
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ways were identified by searching for corresponding clusters in DIP and KEGG, re-

spectively. Database of Interacting Proteins (DIP) is useful for protein functions and

protein-protein intreractions. This analysis was only performed with S. cerevisiae

since it was the only species that is relatively completely represented in the DIP and

KEGG databases. I found three clusters (containing 4, 3 and 2 genes) that contained

evidence of genes encoding interacting proteins (Table V). Cluster 8 contains four

histone proteins that make up the yeast nucleosome. Clusters 13 and 14 both en-

code genes with products that are involved with thiamine biosynthesis. Cluster 13

encodes SNZ3, SNO3, and THI5 while cluster 14 encodes SNZ2, SNO2 and THI12

and comprise two clusters of homologous sets of genes (Rodŕıguez-Navarro [26]).

I found six clusters that contained genes annotated to the same KEGG metabolic

pathway. Four were also identified as homologous gene clusters, so it is likely that

the cluster members represent redundant components of the metabolic pathways.

Two, however, are not homologous gene clusters and correspond to known metabolic

pathway clusters in yeast, the biotin biosynthesis cluster (Wu [27]) (cluster 4) and the

GAL cluster (cluster 6). Absent from this list is cluster 1, the DAL cluster because

only three of the four genes from this cluster were identified as components of the

KEGG Purine metabolic pathway.
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CHAPTER IV

CONCLUSION

I have developed an algorithm and application to identify clusters of functionally

related genes in eukaryotic and prokaryotic genomes. The proposed approach finds

all gene clusters in the data set and ranks them by their likelihood of occurrence by

chance. Post-hoc filtering and sorting options create a report that is easy to read and

enables researchers to evaluate the biological relevance of the results (See figures 13

and 14). The proposed method successfully identified clusters in the D.rerio genome,

which contains only 25.1% GO annotated genes indicating that gene clusters can be

identified even in sparsely annotated genomes.

The comparative analysis revealed species specific differences in gene cluster con-

tent, size distribution, and functional annotations. Variation in the level of complete-

ness of the functional annotation could lead to differences in the number and size of

gene clusters and should be taken into consideration when performing comparative

studies. Despite this, some of the differences in cluster properties are likely to result

from species specific differences in the evolutionary processes that drive the functional

clustering of genes.

I was also able to identify a cluster corresponding to four of the six genes that

make up the S. cerevisiae DAL cluster. The remaining two genes, while annotated

with GO terms, did not share a common node in the GO graph with the other genes

in the cluster. While a new node representing all members of the DAL cluster may

eventually be added to the GO, its absence does not preclude the identification of the

cluster and indicates that new gene clusters may be identified, despite the lack of a

unifying term in the GO graph.

One interesting result is that the relative level of gene clustering and average
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cluster sizes that I observed among the species I examined was quite different from

that reported by Lee [1]. These authors reported the presence of large metabolic

pathway clusters in several species, including S. cerevisiae whereas the analysis by

C-Hunter identified predominantly small clusters in this species. These differences

can be attributed to the use of different functional annotation methods as well as the

nature of the statistical tests that were employed.

A comparative analysis of gene cluster content revealed that the mouse genome

contains considerably fewer and larger gene clusters than human, despite the high level

of conserved synteny between the two species (Zhao [23] and Waterson [28]). This

may indicate that only subtle genome rearrangements are required for gene cluster

formation. Alternatively, gene clusters may be concentrated in genomic segments that

lack conserved synteny, and undergo frequent rearrangements, which would enable

lineage specific changes in the forces that lead to gene clustering to shape clusters

with such different properties. Integration of gene clusters identified with C-Hunter

with other data types, such as synteny maps will shed new light on the evolutionary

forces that lead to the formation and maintenance of functionally conserved gene

clusters.
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#===========================================================================================#

Date : Thu May 4 15:42:46 2006

Total # of GO/FunCat nodes : 20436

Total # of genes : 6150

Total # of chromsomes : 16

Minimum # of genes in a cluster : 2

Maximum # of genes in a cluster ( 0 = No maximum size ) : 0

Maximum cluster size ( 0 = No maximum size ) : 0

E-value cutoff ( 0 = No consideration ) : 0.001

Threshold of cluster overlap ( 0 = No consideration ) : 50%

GO/FunCat scheme file : Scheme/scheme.GO.data.converted

Map_file : Data_set/SaccharomycesCerevisiae/map_list

FunCat data file : Data_set/SaccharomycesCerevisiae/data_list

Output file : SC

#===========================================================================================#

GROUP,NODE,#CHR,P-VALUE,E-VALUE,GENES,DEPTH,k,n’,k’,TERM

1,0000256,8,3.77651e-12,2.32067e-08,YIR027C YIR029W YIR031C YIR032C,7,6,6,4,allantoin catabolism

2,0006814,3,2.5807e-11,1.58662e-07,YDR038C YDR039C YDR040C,8,3,3,3,sodium ion transport

3,0006530,11,5.99655e-11,3.68068e-07,YLR155C YLR157C YLR158C YLR160C,9,13,5,4,asparagine catabolism

4,0009102,13,1.03228e-10,6.34646e-07,YNR056C YNR057C YNR058W,8,3,4,3,biotin biosynthesis

5,0015392,4,9.03246e-10,5.54954e-06,YER056C YER060W YER060W-A,9,7,3,3,cytosine-purine permease activity

6,0006012,1,1.44519e-09,8.88505e-06,YBR018C YBR019C YBR020W,9,3,8,3,galactose metabolism

7,0005488,3,3.74121e-09,2.25707e-05,YDR150W YDR151C YDR153C YDR159W YDR160W YDR164C YDR165W YDR166C

YDR168W YDR170W-A YDR171W YDR172W YDR174W YDR176W YDR188W YDR189W YDR191W YDR194C YDR195W YDR207C

YDR210W-B YDR210W-A YDR210C-D YDR210C-C YDR211W YDR212W YDR216W YDR217C YDR219C YDR224C YDR225W

YDR227W YDR228C YDR229W YDR231C YDR235W YDR240C YDR243C YDR244W YDR252W YDR253C YDR254W YDR258C

YDR261W-B YDR261W-A YDR261C-D YDR261C-C,2,118,1059,47,binding

8,0000788,1,5.88806e-09,3.61409e-05,YBL003C YBL002W YBR009C YBR010W,7,13,12,4,nuclear nucleosome

9,0015891,14,8.66481e-09,5.32626e-05,YOR381W YOR382W YOR383C,5,4,9,3,siderophore transport

10,0019541,15,9.02364e-09,5.54412e-05,YPR001W YPR002W YPR006C,7,7,5,3,propionate metabolism

11,0005353,3,1.17422e-08,7.2191e-05,YDR342C YDR343C YDR345C,7,3,15,3,fructose transporter activity

12,0005353,7,1.17422e-08,7.2191e-05,YHR092C YHR094C YHR096C,7,3,15,3,fructose transporter activity

13,0009228,5,2.5007e-08,0.000153743,YFL060C YFL059W YFL058W,8,3,19,3,thiamin biosynthesis

14,0009228,13,2.5007e-08,0.000153743,YNL334C YNL333W YNL332W,8,3,19,3,thiamin biosynthesis

15,0006790,11,3.29387e-08,0.000202441,YLL062C YLL060C YLL058W YLL057C,5,5,57,4,sulfur metabolism

16,0016070,7,3.69069e-08,0.000225759,YHR062C YHR065C YHR069C YHR070W YHR072W-A YHR077C YHR079C YHR081W

YHR085W YHR086W YHR087W YHR088W YHR089C YHR091C,6,34,450,14,RNA metabolism

17,0000943,6,5.1211e-08,0.000314794,YGR161W-B YGR161W-A YGR161C-D YGR161C-C,5,4,94,4,retrotransposon

nucleocapsid

18,0000943,9,5.1211e-08,0.000314794,YJR027W YJR026W YJR029W YJR028W,5,4,94,4,retrotransposon

nucleocapsid

19,0000943,15,5.1211e-08,0.000314794,YPR158W-B YPR158W-A YPR158C-D YPR158C-C,5,4,94,4,retrotransposon

nucleocapsid

20,0019483,12,5.28872e-08,0.000325203,YMR169C YMR170C,9,2,2,2,beta-alanine biosynthesis

21,0003850,7,5.28872e-08,0.000325203,YHR043C YHR044C,8,2,2,2,2-deoxyglucose-6-phosphatase activity

22,0015291,1,6.05632e-08,0.00037204,YBR291C YBR293W YBR296C YBR298C,5,8,35,4,porter activity

23,0004099,11,1.58662e-07,0.000975451,YLR307W YLR308W,6,3,2,2,chitin deacetylase activity

24,0008863,15,1.58662e-07,0.00097561,YPL276W YPL275W,6,2,3,2,formate dehydrogenase activity

25,0003941,8,1.58662e-07,0.00097561,YIL168W YIL167W,6,2,3,2,L-serine ammonia-lyase activity

Fig. 13. C-Hunter output of 25 top clusters in S. cerevisiae.
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Group # : 1, #Clusters : 2, 0000256 : allantoin catabolism

Cluster 1, 0000256 : allantoin catabolism

E = 2.32067e-08, P = 3.77651e-12, Cluster size = 6

Number of genes in this cluster = 4, chromosome # = 8

Number of genes with this term (or a child term) = 6

Genes:YIR027C

0000256 - allantoin catabolism

0004038 - allantoinase activity

0005622 - intracellular

YIR029W

0000256 - allantoin catabolism

0004037 - allantoicase activity

0008372 - cellular component unknown

YIR031C

0000256 - allantoin catabolism

0004474 - malate synthase activity

0008372 - cellular component unknown

YIR032C

0000256 - allantoin catabolism

0004848 - ureidoglycolate hydrolase activity

0016020 - membrane

Cluster 2, 0006807 : nitrogen compound metabolism

E = 0.000463027, P = 7.54239e-08, Cluster size = 12

Number of genes in this cluster = 7, chromosome # = 8

Number of genes with this term (or a child term) = 236

Genes:YIR023W

0003704 - specific RNA polymerase II transcription factor activity

0005634 - nucleus

0006357 - regulation of transcription from RNA polymerase II promoter

0019740 - nitrogen utilization

YIR027C

0000256 - allantoin catabolism

0004038 - allantoinase activity

0005622 - intracellular

YIR029W

0000256 - allantoin catabolism

0004037 - allantoicase activity

0008372 - cellular component unknown

YIR030C

0005554 - molecular funtion unknown

0006807 - nitrogen compound metabolism

0008372 - cellular component unknown

YIR031C

0000256 - allantoin catabolism

0004474 - malate synthase activity

0008372 - cellular component unknown

YIR032C

0000256 - allantoin catabolism

0004848 - ureidoglycolate hydrolase activity

0016020 - membrane

YIR034C

0004754 - saccharopine dehydrogenase (NAD+\, L-lysine-forming) activity

0005737 - cytoplasm

0019878 - lysine biosynthesis via aminoadipic acid

Fig. 14. Human readable output of S. cerevisiae. Total number of genes = 6150,

Number of chromosomes = 16. Minimum number of genes in a cluster = 2,

e-value cutoff = 0.001, Threshold of cluster overlap = 50%.
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CHAPTER V

FUTURE WORK

The current C-Hunter algorithm shows good results in several species. In order to

increase the speed of C-Hunter, only new p-values are stored in the memory for each

new computation. This method gives faster speed than many computations without

storing data, but new species which can be more associated to GO terms than previous

experiment data are able to consume many expensive hardware resources. In the next

version, the novel memory management is needed.

C-Hunter finds many gene clusters qualitatively and quantitatively, but in order

to improve the time complexity and enhance the quality of outputs in terms of finding

gene clusters which are matched with real data sets (i.e. DAL or GAL clusters),

increasing the sensitivity of the statistical test by applying a new statistical method

would be a good idea. One approach can be to apply the bayesian statistical test.

Using gene expression data or other data sources, the prior probability of candidate

clusters can be obtained, and the posterior probability of set of genes annotating GO

terms also can be measured so that the time complexity and the probability sensitivity

can be improved, because the current measurement of the hypergeometric distribution

takes many computations. Another way is using Hidden Markov Models (HMMs),

which are statistical models that model a system being in a state at a particular

time point and the transitions between states. It would be interesting to improve the

current model to a new model using HMM in terms of finding gene clusters.
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