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ABSTRACT

Structure, Function, and Inhibition of Enoyl Reductases. (December 2006)

Mack Ryan Kuo, B.S., Baylor University

Chair of Advisory Committee: Dr. James C. Sacchettini

Malaria and tuberculosis constitute two of the world’s deadliest infectious diseases.

Together, they afflict over one third of the world’s population. Once thought of

as one of a group of nearly vanquished diseases only 50 years ago, malaria and tu-

berculosis have experienced renewed prominence due to issues such as multi-drug

resistance and a lack of responsiveness by the global community. Fatty acid biosyn-

thesis has been shown to be an essential pathway to the causative organisms of

malaria and tuberculosis. One integral component of the fatty acid biosynthesis

pathway, enoyl acyl-carrier-protein (ACP) reductase, has repeatedly been validated

as an appropriate drug target in other organisms. The 2.4 Å crystal structure of

the enoyl-ACP reductase from the human parasite Plasmodium falciparum (PfENR)

reveals a nucleotide-binding Rossmann fold, as well as the identity of several active

site residues important for catalysis. The 2.43 Å crystal structure of PfENR bound

with triclosan, a widely utilized anti-bacterial compound, provides new information

concerning key elements of inhibitor binding. Applying knowledge attained from

these initial crystal structures, several triclosan derivatives were synthesized, and

subsequently PfENR:inhibitor co-crystal structures were determined to extend our

knowledge of protein:inhibitor interactions within the active site. Additionally, the

crystal structures of the enoyl-ACP reductase from the mouse parasite Plasmodium

berghei (PbENR), in apo-form and in complex with triclosan, were refined to 2.9 Å
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and 2.5 Å resolution, respectively. These structures confirm the structural and ac-

tive site conservation between the human and mouse parasite enoyl-ACP reductases,

suggesting that utilizing a murine model for in vivo testing of promising inhibitors is

viable. The 2.6 Å crystal structure of the enoyl-ACP reductase from Mycobacterium

tuberculosis (InhA) in complex with triclosan reveals a novel configuration of triclosan

binding, where two molecules of triclosan are accommodated within the InhA active

site. Finally, high-throughput screening approaches using enoyl acyl-carrier-protein

reductases as the targets were utilized to identify new lead compounds for future

generations of drugs. The 2.7 Å crystal structure of InhA bound with Genz-10850

confirms the value of this technique.
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CHAPTER I

INTRODUCTION TO MALARIA

History of Malaria

Malaria, or a disease resembling malaria, has plagued humanity for more than 4,000

years. The earliest recorded evidence of malaria was discovered in the form of anti-

gens detected in skin and lung samples (Miller et al., 1994) from mummified remains

dating from between 3200 and 1304 B.C. Enlarged, blackened spleens and livers, in-

dicative of malaria, were discovered in 3,000 year old Egyptian mummified remains.

Several ancient works of literature vividly described diseases possessing the char-

acteristics of malaria. Clay tablets inscribed with cuneiform writing around 2000

B.C. also described deadly, malaria-like periodic fevers, indicating that over 4,000

years ago Egypt already had a malarial presence. In 2700 B.C., several characteris-

tic symptoms (chills, fevers, and a third or fourth day periodicity) fever associated

with spleen enlargement of what would later be named malaria were described in the

ancient Chinese medical text, Nei Ching, The Canon of Medicine.

Several prominent Greek and Roman historical figures referenced malaria between

500-200 B.C. Homer’s Iliad, Aristotle’s writings (382-322 B.C.), Plato (428-347 B.C.),

and Sophocles (496-406 B.C.). Hippocrates (460-370 B.C.), in his treatise Book of

Epidemics, clearly described the quartan (every fourth day) and tertian (every third

day) fevers symptomatic of malaria. He also noted that quartan malaria was the less

dangerous of the two and the uncovered the association between enlarged spleens and

marshes. In 200 B.C., the Roman medical literature contains accurate descriptions

of malaria and references to stagnating bodies of water as the sources of disease.

This dissertation follows the style and format of EMBO Journal.
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This condition, described as “Roman fever”, eventually gave rise to the Italian word

mal’aria, translating to “bad air”, erroneously describing the cause of the sickness.

Between 300-500 A.D., Indian and Chinese physicians also had breakthroughs

regarding malaria. Susruta, an Indian physican (380-450 AD), authored a medical

text describing malaria and attributing the symptoms to the bites of certain insects.

In China, during the second century B.C., the Qinghao plant was described in the

medical text, 52 Remedies, found in the Mawangdui Tomb. In 340 A.D., the anti-

fever properties of qinghaosu were described by Ge Hong, and the active ingredient

of qinghaosu was isolated by Chinese scientists in 1971. Known as artemisinin, it is

presently a very potent and effective antimalarial drug, especially when administered

in combination therapy with other medicines.

By the 12th century, malaria had progressed as far west as Spain, and to Poland

and Russia in the east. By the 15th century, intermittent fevers were recorded as

being common in eastern Europe. In England, seasonal fevers called “agues” were

common in the 14th, 15th, and 16th centuries and were described by writer Geoffrey

Chaucer (1340-1400) and the playwright William Shakespeare (1564-1616). Spanish

Jesuit missionaries in Peru learned of a medicinal bark from the indigenous Incas

that was used to treat fevers and chills. With powder from the bark, the Countess of

Chinchon, was cured of her fever. The bark from the tree was then called Peruvian

bark and the tree was named Cinchona in honor of the countess. The active ingredient

from the bark is now known as the antimalarial quinine. Along with artemisinin,

quinine is one of the most effective anti-malarial drugs available today.

Charles Louis Alphonse Laveran, a French army surgeon stationed in Algeria, was

the first researcher to attribute the symptoms of malaria to parasites in the blood. His

examination of blood from feverish artillerymen revealed unusual microscopic bodies,

some with mobile filaments, on his microscope slides. Laveran eventually identified
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four different forms of the parasite: crescent shaped bodies, spherical bodies actively

moving flagella, spherical bodies with pigment and without movement, and much

smaller spherical bodies that also had pigment. These later were identified as separate

stages of the parasite development (male and female gametocytes, segmenter, and

trophozoite stages). For his discovery, Laveran was awarded the Nobel Prize in 1907.

In 1897, Ronald Ross, a British officer in the Indian Medical Service, was the first

to demonstrate that malaria parasites could be transmitted from infected patients to

mosquitoes. In further work with bird malaria, Ross showed that mosquitoes could

transmit malaria parasites from bird to bird (Ross, 1923). This necessitated a sporo-

gonic cycle (the time interval during which the parasite developed in the mosquito).

Thus, the nature of malaria transmission was determined. For his discovery, Ross

was awarded the Nobel Prize in 1902.

In 1899, led by Giovanni Batista Grassi, a team of Italian investigators, which in-

cluded Amico Bignami and Giuseppe Bastianelli, collected Anopheles claviger mosquitoes

and fed them on malarial patients. Mosquitoes infected by feeding on a patient

in Rome were transported to London where they fed on two volunteers, both of

whom developed benign tertian malaria, unequivocally demonstrating human-to-

human malaria transmission. The complete sporogonic cycle of P. vivax, and P.

malariae was demonstrated.

The construction of the Panama Canal demarcated the beginning of US efforts

to control malaria by targeting the disease vector, the anopheline mosquito. At the

inception of construction, 1906, there were over 26,000 employees working on the

Panama Canal, and over 21,000 were hospitalized for malaria at some time within

the duration of the project. After 6 years, the number of employees increased to over

50,000 people, but the number of hospitalized workers dramatically decreased to less

than 6,000 cases, showing the promise of vector targeting as a method of malaria
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control. In 1933, this strategy experienced renewed success when U.S. President

Franklin D. Roosevelt signed a bill that created the Tennessee Valley Authority

(TVA). This gave the federal government a centralized body to take advantage of the

Tennessee river’s potential for hydroelectric power, as well as improve the land and

waterways for development of the region. An organized and effective malaria control

program stemmed from this new authority in the Tennessee River valley. Malaria

affected 30 percent of the population in the region when the TVA was established,

but by 1947, the disease was essentially eliminated. Mosquito breeding sites were

reduced by controlling water levels and liberal applications of insecticide to target

the mosquito vector.

In 1934, the anti-malarial drug chloroquine was discovered by a German re-

searcher, Hans Andersag at Bayer. Chloroquine was recognized and established as an

effective and safe anti-malarial in 1946 by British and U.S. scientists, and quickly be-

came the most widely deployed front-line anti-malarial drug. In 1874, Othmer Zeidler

synthesized dichlorodiphenyltrichloroethane (DDT), but the insecticidal property of

DDT was not discovered until 1939 by Paul Müller in Switzerland, who later won

the Nobel Prize for Medicine in 1948 for his discovery. DDT was widely used for

malaria control at the end of World War II after it had proved effective against

malaria-carrying mosquitoes by British, Italian, and American scientists. However,

the rise in incidence of insecticide-resistant mosquitoes, as well as public concerns

about the effect of DDT on the environment, caused the demise of DDT application

for insect control.

1946 marked the inception of the Communicable Disease Center’s (CDC) mission

to combat malaria. Much of the early work done by the CDC was focused on the

control and eradication of malaria in the United States. With the successful reduction

of malaria in the United States, the CDC switched its malaria focus from eradication
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efforts to a strategy based on prevention and surveillance. By the end of 1949, over

4.6 million housespray applications had been made, and malaria incidence drop from

15,000 reported malaria cases in 1947 to only 2,000 cases in 1950. By 1951, malaria

was widely considered to be eradicated from the United States.

With the success of DDT, the advent of less toxic, more effective synthetic an-

timalarials, and the enthusiastic and urgent belief that time and money were of

the essence, the World Health Organization (WHO) submitted at the World Health

Assembly in 1955 an ambitious proposal for the eradication of malaria worldwide.

Eradication efforts began and focused on house spraying with residual insecticides,

anti-malarial drug treatment, and surveillance. Successes included eradication in

nations with temperate climates and seasonal malaria transmission. Some countries

such as India and Sri Lanka had sharp reductions in the number of cases, followed

by increases to substantial levels after efforts ceased. Other nations had negligi-

ble progress (such as Indonesia, Afghanistan, Haiti, and Nicaragua), and some na-

tions were excluded completely from the eradication campaign (most of sub-Saharan

Africa). The emergence of drug resistance, widespread resistance to available insec-

ticides, wars and massive population movements, difficulties in obtaining sustained

funding from donor countries, and lack of community participation made the long-

term maintenance of the effort untenable. Completion of the eradication campaign

was eventually abandoned in preference to a strategy of control.

Characteristics and Pathogenesis

Recent estimates of the incidence of malaria in the year 2002 place the number of

clinical episodes at 515 million, with a range of 300-660 million, placing approxi-

mately 2.2 billion people at risk (Snow et al., 2005). Malaria remains one of the
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top ten killers worldwide, with mortality rates between 1-2 million people annually.

Resistance to the most prevalent antimalarials is widespread, while it is developing

in others (Winstanley, 2002). Although four species of the genus Plasmodium cause

human malaria (P. falciparum, P. vivax, P. ovale, and P. malariae), the deadliest

of these is Plasmodium falciparum, a protozoan parasite transmitted from host to

host by an infected anopheline mosquito. Hours after the resultant infection, severe

P. falciparum infection is characterized by paroxysms (chills and fevers). P. falci-

parum is capable of causing acute life-threatening encephalopathy also referred to

as cerebral malaria. Cerebral malaria is the most severe form, resulting in 80% of

children’s death. The diagnostic features of cerebral malaria are unrousable comas

and seizures.

Normal development of the parasite requires the presence of two hosts: the

Anopheles mosquito vector (the definitive host, where sexual recombination occurs),

and humans (the intermediate host). The life cycle of malaria begins in the defini-

tive host when a female Anopheles mosquito ingests gametocytes (the first sexual

stages of parasites) from a malaria-infected vertebrate host. Microgametocytes (male

forms of gametes) and macrogametocytes (female forms of gametes) fertilize in the

mosquito midgut to form zygotes. About 18-24 hours post blood feeding, zygotes

further differentiate into motile ookinetes. Ookinetes migrate through the mosquito

gut wall and differentiate into oocysts on the external gut wall. The oocysts in-

crease in size until they rupture, releasing thousands of sporozoites destined for the

mosquito salivary glands.

Transmission occurs when the infected mosquito bites an uninfected host. Sporo-

zoites from the infected mosquito salivary ducts are transmitted to human host, and

travel within the bloodstream to the liver, ultimately entering the hepatocytes. The

sporozoites reproduce asexually over an approximately one-week time interval and
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develop into schizonts, containing 30,000 to 50,000 “daughter” parasites called mero-

zoites. Upon rupture of the schizonts, merozoites are subsequently released from the

liver to the blood where they invade the erythrocytes. Merozoites reproduce asexu-

ally over the next 48-72 hours, completing another round of multiplication, devouring

hemoglobin in the process and forming a red blood cell (RBC) with a ring-shaped

morphology termed the trophozoite. The trophozoites mature into schizonts, which

burst synchronously and release the merozoites into the bloodstream. This release

coincides with the periodic rises in body temperature associated with the attacks

seen in malaria infections. Significant numbers of RBCs are destroyed, resulting in

the paroxysms characteristic of malaria infections. The released merozoites also can

invade other RBCs and continue the cycle of RBC destruction.

While the majority of invading merozoites develop into asexual schizonts, some

differentiate into male (microgametocyte) and female (macrogametocyte) gameto-

cytes. The infective sporozoites are released into the mosquito haemocoele (midgut)

and move to the salivary gland, where they await injection into another human host,

thus completing the life cycle. Some plasmodial species (Plasmodium ovale and Plas-

modium vivax ) can produce a dormant form, a hypnozoite, which can cause relapses

of the disease months and even years after the original disease (relapsing malaria),

once triggered from its dormant state within the liver cells (Oaks et al., 1999; Warrell

and Gilles, 2002; Sherman, 1998).

Chemotherapy and Treatment

In the 1940s, the administration of chloroquine (CQ) ushered in the age of malaria

chemotherapy. Chloroquine was highly effective (3 doses with a 48 hour therapy

duration), easily administered, inexpensive, and had good safety and tolerability.
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An intra-erythrocytic parasite would ingest host cell hemoglobin, which rapidly de-

graded within a food vacuole within the parasite. Upon hemoglobin cleavage, free

heme would be released, resulting in toxicity. P. falciparum contends with this

problem of heme toxicity by polymerizing free heme into an insoluble crystalline ma-

terial termed hemozoin. Chloroquine inhibits the parasitic enzyme heme polymerase

that converts the toxic heme into non-toxic hemozoin, thereby resulting in the ac-

cumulation of toxic heme within the parasite. However, chloroquine resistance in

P. falciparum quickly arose in Thailand and Colombia in the 1950s, and emerged in

New Guinea and sub-Saharan Africa in the 1970s. By 1973, chloroquine treatment

had failure rates in excess of 30% in parts of Africa, and between 46-85% in Asia.

Subsequently, chloroquine monotherapy was replaced by sulfadoxine-pyrimethamine

cocktails in 1971 and became the standard second-line therapy against chloroquine

resistant malaria due to its superior safety and tolerability, and required only single-

dose chemotherapy. This combination acts synergistically against folate synthesis,

inhibiting dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR).

DHFR is required for the synthesis of thymidylate, purine nucleosides, methion-

ine and other metabolic intermediates, and disrupts DNA synthesis when inhibited.

Again, resistance to the sulfadoxine-pyrimethane combination was observed at the

Thai-Cambodian border in the 1960s, and failures occurred in refugee camps in Thai-

land in the 1970s. Mefloquine emerged as a successor to chloroquine in the 1980s.

Resistance occurred at the Thai-Cambodian border within a few years once again.

Quinine emerged as an effective anti-malarial drug that requires 21 doses adminis-

tered over a 7 day period. Quinine exerts its effects by inhibiting the α-subunit of

DNA gyrase and topoisomerase IV, leading to inhibition of nucleic acid synthesis.

Primaquine, developed during World War II, remains the only licensed tissue-stage

schizonticide for the prevention of relapse after infection. It has a uniquely broad
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spectrum, killing liver stages, asexual blood stages, and sexual blood stages. Despite

50 years of use in millions of people, primaquine and its mechanism of action are

poorly understood. Artemisinin, a sesquiterpene endoperoxide extracted from the

weed Artemesia annua, was developed by China in the 1960s and appears to be a

very promising anti-malarial because of its ability to rapidly clear parasites and its

demonstrated tolerance in humans. Artemisinins are among the newest and most

effective of all anti-malarial drugs, and are effective against blood-stage parasites in

nanomolar concentrations. The mode of action appears to occur in two steps, with

the first step requiring activation of artemisinin derivatives to produce radicals, fol-

lowed by alkylation of heme and specific malaria proteins. Heme-artemisinin adducts

were demonstrated in parasite-infected mice (Robert et al., 2005), supporting the no-

tion of activation.

Combined drug therapy, a strategy useful in treating the diseases tuberculosis,

leprosy, and infection with the human immunodeficiency virus (HIV), has recently

been applied to malaria chemotherapy. The purpose is to take advantage of the

synergistic and additive potential of individual drugs, thus increasing efficacy and

retarding the development of resistance to each individual drug. This strategy ide-

ally involves agents with separate mechanisms of action against the same stage of

parasite, so a sulfadoxine-pyrimethamine combination would not fit this criteria be-

cause both are folate antagonists. Similarly, combining a blood-stage schizonticide

with primaquine is not considered combined therapy, since the drugs attack different

stages of the parasite. The combination of atovaquone-chloroguanide, which affects

mitochondrial electron transport and folate metabolism in asexual blood stages, rep-

resents true combination therapy. Artemisinin Combination Therapy (ACT) pro-

vides the best present effort in treating malaria. The combination of artesunate and

mefloquine has been utilized in Thailand for 10 years, with no diminution of its effi-
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cacy (Wongsrichanalai et al., 2001). ACT has the following characteristics: (i) rapid

and substantial reduction of the parasite biomass (ii) rapid parasite clearance (iii)

rapid resolution of clinical symptoms (iv) effective action against multidrug-resistant

P. falciparum.

Drug Resistant Malaria

Treatment of malaria has been complicated in recent years by a surge in the resis-

tance of malaria to commonly dispensed antimalarials, particularly to the affordable

mainstays chloroquine and sulfadoxine-pyrimethamine. Molecular studies have iden-

tified several mutations associated with chloroquine resistance. Polymorphisms in

the P. falciparum chloroquine resistance transporter (pfcrt) gene, located on chro-

mosome 7, were reported to be important in chloroquine resistance. A Ser76 to Thr

mutation is tightly linked to resistance (Fidock et al., 2000; Djimdé et al., 2001a).

Polymorphisms in the P. falciparum multidrug resistance 1 gene (pfmdr1) have been

shown to modulate higher levels of chloroquine resistance, and also to affect meflo-

quine and quinine resistance (Djimdé et al., 2001b; Sidhu et al., 2002). The molecular

basis of resistance to pyrimethamine and sulfadoxine has been more clearly defined.

Polymorphisms in the dihydrofolate reductase (dfhr) gene have been shown to con-

fer resistance to pyrimethamine. Additional polymorphisms at amino acid positions

50, 51, 59, and 164 combined with Asn108 confer increasing levels of pyrimethamine

resistance. Similarly, polymorphisms in the dihydropteroate synthase (dhps) gene

confer resistance to sulfadoxine (Foote et al., 1990). The polymorphism Gly437 in

dhps encodes lower level resistance to sulfadoxine. Subsequent polymorphisms at

positions 436, 540, 581, and 613 confer increasing levels of resistance to this drug

(Syafruddin et al., 2005). Quinine resistance has been traced to mutations in the
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pfmdr1 gene, 162 kDa transporter protein that is a parasite homolog of the mam-

malian multidrug resistance gene family. A significant role in resistance has been

ascribed to N1042D mutation. The triple mutation S1034C/N1042D/D1246Y also

has been shown to enhance parasite susceptibility to mefloquine, halofantrine, and

artemisinin (Sidhu et al., 2005). Artemisinin, a promising drug against malaria, has

had well documented problems in availability and synthesis (Enserink, 2005). Most

recently, there have been studies identifying specific polymorphisms that result in

increased resistance to artemisinin (Jambou et al., 2005). Jambou et al. discovered

six of seven isolates with increased resistance to an artemisinin derivative shared a

single polymorphism, S769N in PfATPase6, a gene encoding a sarco/endoplasmic

reticulum calcium-dependent ATPase.

Every malaria drug administered has resulted in resistant strains of P. falciparum,

so research continues to focus on the development of new anti-malarial compounds.

It is clear that researchers must find more effective therapeutics that have a rapid

mode of action. New drugs must be developed that inhibit enzymes that have not

previously been targeted, to ensure that low level resistance is not already present in

some strain of P. falciparum, so as not to compromise the success of any new drugs.

Role of the Apicoplast

P. falciparum was recently discovered to have contain a unique plastid organelle, sur-

rounded by four membranes and containing its own genome. This organelle, termed

the apicoplast (McFadden et al., 1996; Wilson et al., 1996; Kohler et al., 1997) , was

discovered to be quite similar to plant chloroplasts, except it lacks chlorophyll and

the photosynthetic machinery necessary to create food from carbon dioxide (CO2)

and sunlight. The apicoplast is a characteristic feature of the apicomplexan parasites
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(Gornicki, 2003), and in Plasmodium falciparum contains a highly reduced genome,

comprised of 68 genes on a 35 kb circular DNA (Wilson et al., 1996). The apicoplast

is thought to have originated from an ancestral endosymbiotic relationship (Kohler

et al., 1997; Palmer and Delwiche, 1996; McFadden and Waller, 1997), involving the

assimilation of an ancient bacteria that lost its autonomy once engulfed by an ances-

tral apicomplexan predecessor. In the case of P. falciparum, the apicoplast has lost

all photosynthetic function, but still serves to provide the host with other metabolic

services that render them indispensable. The apicoplast has recently been found to

be essential to normal development of apicomplexan parasites (Fichera and Roos,

1997; He et al., 2001). Mutant parasites lacking an apicoplast are not viable (He

et al., 2001). It has been proposed that the lack of a functional apicoplast causes

parasites to fail to re-infect subsequent host cells and die, due to their inability to

synthesize a parasitophorous vacuole, which is useful for re-invasion of erythrocytes

(Fichera et al., 1995). The nature of the defect is not known, but these results

are consistent with the delayed-death phenotype observed for parasites treated with

antibiotics targeting apicoplast house-keeping functions.

The apicoplast functions as a fairly self-contained “cell-within-a-cell”, housing

the cell processes of DNA replication, transcription, translation, post-translational

modification, catabolism, and anabolism. Parasites die after treatment with drugs

that interrupt apicoplast genome replication, transcription, or translation (Ralph

et al., 2001; Fichera and Roos, 1997). A number of interesting pathways exist: non-

mevalonate isoprenoid synthesis, ferredoxin-dependent electron transport, lipoate

synthesis, iron-sulfur cluster formation, several stems of heme synthesis and de novo

fatty acid synthesis (Ralph et al., 2004). Each of these processes is bacterial in na-

ture, and potentially a drug target because of their differences from the eukaryotic

host pathways. It was recently demonstrated that the P. falciparum apicoplast con-
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tains a functional fatty acid biosynthesis system (Waller et al., 1998), a pathway that

has been targeted for inhibition by several anti-bacterials and presents new oppor-

tunities for drug targets. Genome sequencing of P. falciparum revealed the presence

of a de novo FAS-II fatty acid biosynthesis system (Gardner et al., 2002), a type

not predicted to occur in a protozoan. Plant-like and prokaryote-like biochemical

pathways which are not present in the parasite host or which differ significantly from

host pathways could be exploited in the control of malaria.

Proteins that are targeted to the apicoplast possess an amino-terminal leader pep-

tide capable of targeting nuclear-encoded proteins to the stroma of the apicoplast.

This requires traversal of four membranes needed to reach its destination. Apicoplast-

targeted proteins possess a leader peptide has a distinct bipartite architecture com-

prised of a hydrophobic signal peptide followed by a basic transit peptide (Gardner

et al., 2002; Foth et al., 2003; Zuegge et al., 2001). The signal peptide mediates co-

translational import into the lumen of the endoplasmic reticulum and is cleaved in

the process. The transit peptide is responsible for subsequent import into the stroma

of the apicoplast and is also cleaved. Studies with chimeric mutants show that leader

peptides are sufficient to target other proteins to the apicoplast (Waller et al., 2000,

1998; van Dooren et al., 2002). It is now thought that nearly 500 nuclear-encoded

proteins may be targeted to the stroma of the apicoplast.

Fatty Acid Biosynthesis

Fatty acid biosynthesis is an essential pathway (Zhang and Cronan, 1998; Egan and

Russell, 1973) present in all bacteria sequenced thus far, and provides the essential

building blocks for membrane phospholipid formation. Metabolites of fatty acid

biosynthesis form major constituents of the protective cell wall, as well as key cellular
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components such as quorum sensing molecules and a diverse variety of fatty and

lipoic acids. Fatty acids also provide a source of metabolic energy. Moreover, the

cell wall / membrane component fatty acyl chains are essential to microbe division

and metabolism, and microbial pathogens are apparently unable to survive simply by

scavenging host fatty acids. These factors combine to make the fatty acid biosynthesis

pathway an attractive target for anti-bacterial development.

Fatty acid biosynthesis can be classified into two systems: FAS-I and FAS-II.

Typically, FAS-II systems are found in plants, bacteria, and other microorganisms,

while FAS-I are found in higher eukaryotes such as humans (Smith, 1994). In FAS-

I, a large, multifunctional enzyme catalyzes all the reactions necessary for fatty

acid biosynthesis (Smith et al., 2003). In contrast, in the FAS-II system each of

the individual enzymatic activities are carried out by discrete enzymes (Rock and

Cronan, 1996; Harwood, 1996; Magnuson et al., 1993). The reactions of the fatty

acid biosynthesis pathway are identical in each individual step (Figure 1) between the

two systems. Although the chemical reactions involved in fatty acid biosynthesis are

identical, the chemical reactions responsible for fatty acid biosynthesis are organized

differently in humans. The differences between the systems afford an opportunity to

specifically target microorganisms without harming the human host.

Most of the groundwork for understanding of the FAS-II pathway came from

work first initiated in Escherichia coli, and the remarkable wealth of knowledge

gained from these experiments made E. coli the model system for research into FAS-

II biochemistry (Rock and Cronan, 1996). This work uncovered the production of

fatty acids as a repeating cycle of reactions involving the condensation, reduction,

dehydration, and the final reduction of carbon-carbon bonds. Later, searches of

newly available microbial genome databases revealed that the component genes and

proteins of the FAS-II pathways were well conserved, with a significant degree of
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Figure 1: Fatty acid biosynthesis pathway. Acetyl-CoA (1) is converted into malonyl-
CoA (2) by ACC and then to malonyl-ACP (3) by FabD. The resulting malonyl-ACP
condenses with another molecule of acetyl-CoA to form b-oxoacyl-ACP (4) catalyzed
by b-oxoacyl ACP synthase III (FabH). This is then converted into b-hydroxyacyl-
ACP (5) by b-oxoacyl ACP reductase (FabG) and then dehydrated by b-hydroxyacyl
ACP dehydratases (FabZ/FabA). The synthesis of unsaturated fatty acids branches
out at this step catalyzed first by FabA and then by FabB. The dehydrated product,
enoyl-ACP (6) is then reduced by enoyl-ACP reductase (FabI) to form butyryl-ACP
(7). This product re-enters the FAS cycle and the growing chain is elongated by two
carbon units per cycle. The condensing enzymes involved in elongation are FabB
and FabF.



16

sequence identity to the E. coli counterparts.

The first evidence of a FAS-II pathway in malaria parasites came from the ge-

nomics database analysis work of Waller et al. These investigators (Waller et al.,

1998) reported the presence of P. falciparum nuclear genes encoding proteins iden-

tified as the FAS-II enzymes acpP, fabH, and fabZ, encoding acyl-carrier protein

(ACP), β-ketoacyl-ACP synthase III, and β-hydroxy-ACP dehydratase, respectively.

FAS-II initiation is catalyzed by the enzyme complex acetyl-CoA carboxylase (Ac-

cABCD), which catalyzes a key step in intermediary metabolism that diverts acetyl-

CoA to malonyl-CoA. The overall ACC reaction requires the coordinate action of

four gene products, AccA, AccB, AccC, and AccD. The malonyl group of malonyl-

CoA is transferred to acyl-carrier protein (ACP) by malonyl-CoA:ACP transacylase

(FabD) to produce malonyl-ACP. All of the subsequent intermediates in FAS are

attached to the terminal sulfhydryl of ACP, making this protein a co-factor part-

ner in all subsequent reactions. Each of the intermediates in fatty acid biosynthesis

is persistently bound to acyl-carrier protein (ACP). β-ketoacyl-ACP synthase III

(FabH) catalyzes the first condensation step in the pathway using acetyl-CoA as the

primer and malonyl-CoA as the acceptor, resulting in a β-ketoacyl-ACP product

(acetoacetyl-ACP in the first cycle of fatty acid biosynthesis).

The acetoacetyl-ACP formed by FabH then enters the next step of biosynthesis,

the elongation cycle. This cycle consists of four core enzyme activities that pro-

gressively elongate the acyl chain attached to ACP by two carbons through each

revolution. β-ketoacyl-ACP reductase (FabG) is a ubiquitously expressed, NADPH-

dependent reductase that gives rise to β-hydroxyacyl-ACP from the preceding β-

ketoacyl-ACP reductase. This intermediate is dehydrated by the β-hydroxyacyl-

ACP dehydratases (FabA and FabZ). In P. falciparum, the enoyl-ACP is reduced by

enoyl-ACP reductase (PfENR) to complete the elongation cycle.
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Many FAS-II enzymes (the elongating condensation enzymes FabB, FabF, and

FabH and the enoyl-reductase FabI) have already been identified as the targets of

several widely utilized anti-bacterials. Inhibitors of the condensing enzymes include

cerulenin (Omura et al., 1967) and thiolactomycin (Jackowski et al., 1989; Nishida

et al., 1986; Tsay et al., 1992). Cerulenin is synthesized by the fungus Cephalosporium

ceruleans and irreversibly inhibits fatty acid synthases from a variety of prokaryotes

and eukaryotes. FabB is the major cerulenin target in E. coli, but unfortunately it

also is able to inhibit the essential mammalian fatty acid synthase enzyme. Thio-

lactomycin is specific for type II synthases, exhibiting anti-bacterial activity towards

gram-negative and gram-positive bacteria, M. tuberculosis (Kremer et al., 2000),

and P. falciparum (Waller et al., 1998). FabB is the major target for thiolacto-

mycin in E. coli, although FabF and FabH are also affected. BP1 is an inhibitor

of the multi-subunit acetyl-CoA carboxylase (Blanchard et al., 1999), targeting the

biotin carboxylase subunit AccC. Inhibitors of enoyl-ACP reductase include triclosan

(Heath et al., 1998), diazoborines (Roujeinikova et al., 1999b), isoniazid (Banerjee

et al., 1994), SB-627696, SB-663042, SB-633857 (Fan et al., 2002), and the pro-drug

NB2001 (Li et al., 2002). Triclosan is a noncovalent inhibitor of NADH/NADPH

dependent enoyl-ACP reductases (FabI) that is widely utilized as a broad spectrum

anti-bacterial and incorporated into several consumer products. Diazoborines and

isoniazid both covalently modify the NADH co-factor in order to form an adduct

that potently inhibits enoyl-ACP reductases. The GlaxoSmithKline compounds SB-

627696, SB-663042, and SB-633857 noncovalently inhibit S. aureus FabI. NB2001 is a

compound consisting of triclosan linked to a cephalosporin scaffold, which is cleaved

by bacterial β-lactamases. FAS-II is absent in humans, superseded by a FAS-I sys-

tem that is insensitive to many FAS-II inhibitors . The enzyme target of most of the

known FAS-II antimicrobial compounds is ENR, which catalyzes the final enzymatic
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Figure 2: Plasmodium falciparum enoyl-ACP reductase reaction. The substrate is a
2-trans-enoyl-ACP, which is reduced to yield a saturated chain in a NADH-dependent
manner. The mechanism is via a transfer of a hydride ion from the NADH co-factor
to the substrate.

step in the elongation cycle of the fatty acid biosynthesis. Thus far, only enoyl-ACP

reductase inhibitors have achieved in vivo efficacy.

P. falciparum Enoyl-ACP Reductase

The focus of this study is Plasmodium falciparum enoyl-ACP reductase (PfENR), an

enzyme that catalyzes the final reduction in the elongation cycle of FAS-II fatty acid

biosynthesis (Figure 2). From prior enzymatic studies with the homologous enzymes

E. coli FabI (Ward et al., 1999) and M. tuberculosis InhA (Quemard et al., 1995),

they were determined to follow a sequential kinetic mechanism, with NADH preferred

as the first substrate. The chemical mechanism involves the stereospecific hydride

transfer of the 4S hydrogen of NADH to the C3 position of 2-trans-enoyl substrate,

followed by the protonation at C2 of an enzyme-stabilized enolate intermediate.

Subsequent studies with PfENR showed it catalyzed an identical reaction (Surolia

and Surolia, 2001). PfENR is a nuclear-encoded, apicoplast-targeted protein and

has become an excellent anti-malarial candidate for a myriad of reasons. Many

inhibitors have been identified that specifically target enoyl-reductases in a wide

variety of organisms. There have also been many enzymatic characterizations of
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these enoyl reductases. Preliminary indications are that the inhibition of PfENR is a

reasonable anti-malarial target, with a mode of action separate from existing classes

of anti-malarial drugs.

It has been observed that enzyme inhibitors exert their effects in various man-

ners. They have been divided into four categories according to the strength of their

interaction with the enzyme and the rate at which equilibrium involving enzyme and

inhibitor is achieved. The categories are classical, slow-binding, tight-binding, and

slow-tight-binding. Historically, classical inhibitors have been the most well char-

acterized, while only a few studies have examined tight-binding inhibitors. From

investigations into the homologous enzymes E. coli FabI, B. napus ENR, and M. tu-

berculosis InhA with the inhibitors triclosan and isoniazid, it was evident that these

two inhibitors exerted their effects in a manner termed slow, tight-binding inhibi-

tion. The tight-binding designation stemmed from the observations that inhibition

was stoichiometric, i. e. all of the inhibitor was bound to the enzyme whenever the

inhibitor concentration decreased below that of the binding sites. The slow designa-

tion referred to the slow-onset of the inhibited complex, since it was observed that

the degree of inhibition increased gradually over several minutes (Ward et al., 1999).

Recently, triclosan has been shown to be a slow, tight-binding, reversible inhibitor

of PfENR (Kapoor et al., 2004). Kapoor et al. reported that inhibition by triclosan

with PfENR also exhibited slow onset, as the formation of the enzyme:inhibitor com-

plex took a long time to form relative to the catalytic rate of the enzyme. Triclosan

bound to PfENR in two steps, where the first step involved a rapid formation of

a weak initial enzyme:inhibitor complex, which slowly transforms to a more stable

and tightly bound enzyme:inhibitor complex from which the inhibitor dissociates in

a very slow manner (Kapoor et al., 2004).

The information available concerning enoyl reductases from other organisms will
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be incredibly beneficial in pursuing PfENR as an anti-malarial drug target. Given

the knowledge that PfENR is a critical component of the FAS-II pathway, that the

FAS-II pathway is essential to the function of the apicoplast, and that the apicoplast

is required for the viability of the malaria parasite, it is clear that FAS-II enzymes

including PfENR are important targets for anti-malarial drug discovery. Structural

information concerning the PfENR protein and insight gained from PfENR:inhibitor

complexes will advance our understanding of the key elements necessary for the

design of potent inhibitors that target this critical enzyme.
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CHAPTER II

CRYSTALLOGRAPHIC STUDIES OF PFENR*

Basic Crystallographic Theory

Determining the three dimensional structure of a protein is a labor-intensive pro-

cedure that is dependent upon overcoming several hurdles. Purified, homogeneous,

soluble protein is just the first step in x-ray crystallography. Once an appreciable

amount of protein is obtained, the protein is concentrated to an appropriate solubil-

ity and used for crystal screening experiments. Crystals are necessary because single

protein atoms do not sufficiently diffract an x-ray. This problem is circumvented

by irradiating a crystal, a repeating array of proteins oriented in discrete directions.

The identically oriented proteins diffract the impinging x-rays identically, serving to

augment and cumulatively provide a detectable diffracted x-ray beam.

Crystal screens consist of a variety of buffers, precipitants, and salts designed

to produce crystals by providing a starting point for optimization. This is a trial-

and-error process, since predicting crystallization conditions is currently not fea-

sible. Once a condition is discovered that produces crystals, the condition is opti-

mized amongst each component to produce larger, diffraction-quality crystals. When

suitably-sized crystals are obtained, it is important to find a cryoprotectant capable

of protecting the crystal from radiation damage while preserving the integrity of the

crystal throughout the data collection process. Then, the crystals are prepared for

x-ray diffraction experiments.

*Part of the data reported in this chapter is reprinted with permission from “Structural elucidation
of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase”
by Perozzo et al., 2002. J Biol Chem, 277, 13106-14. 2006 by the American Society for Biochemistry
and Molecular Biology.
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Data collection is initiated by exposing the cryo-preserved crystal to x-rays over

a small oscillation angle, usually about one degree. Over a given duration of x-ray

exposure, the crystal is rotated about its center to record reflections onto an x-ray

detector, resulting in one frame of data collection.

The conditions that produce diffraction are given by Bragg’s law:

2dhklsinθ = nλ

where dhkl refers to the distance between two parallel planes of lattice points,

θ is the angle of the impinging x-ray on the plane, n is an integer, and λ is the

wavelength of the incident x-ray. To summarize, a reflection is produced only when

the difference in path length for rays reflected from successive planes is equal to an

integral number of wavelengths of the impinging x-rays. Only when this condition

is satisfied will the rays reflected from successive planes emerge in phase with each

other, constructively interfering to produce a measurable diffracted beam. In all other

cases the angles of incidence produce waves emergent from successive planes that are

out of phase, so that they destructively interfere and no diffracted beam is recorded

on the x-ray detector. Bragg’s law simply states that all atoms on a set of equivalent,

parallel lattice planes diffract in phase with each other. Therefore, only a subset of

reflections are collected over a given oscillation range. To collect the entire range of

unique reflections, rotation of the crystal around its center (through manipulation of

the goniometer head) is necessary for a complete data set, resulting in the collection

of several successive frames. Each frame consists of numerous reflections comprising

a diffraction pattern, with each reflection having a position and intensity. Each

frame of data is processed to index each reflection and calculate its intensity. The

intensities of identical reflections collected on separate frames of data are compared
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and a scaling factor is applied to each frame. Afterwards, post-refinement scaling

commences to recover information from partially recorded reflections (reflections that

span consecutive frames). The result of scaling and post-refinement is that every

measurement of a particular Bragg reflection is averaged together, yielding a reduced

data set containing the index (hkl) and its averaged intensity (I).

The next step is to translate the diffraction data to electron density. A structure

factor equation is a Fourier series that describes a reflection, containing one term

corresponding to the contribution of each atom (or volume element) in the unit cell.

Fhkl =
n∑

j=1

fje
2πi(hxj+kyj+lzj)

In short, the structure factor equation that describes reflection hkl is a Fourier

series in which each term is the contribution of one atom. The contribution of each

atom j to Fhkl depends on the type of element, which determines the amplitude of

the contribution (fj), and its position in the unit cell (xj, yj, zj), which establishes

the phase of its contribution. In turn, the electron density is described by a Fourier

series in which each term is a structure factor. The Fourier transform is used to

convert the structure factors to ρ(x, y, z), the desired electron density equation:

ρ(x, y, z) =
1

V

∑

h

∑

k

∑

l

Fhkle
−2πi(hx+ky+lz)

A full description of a diffracted ray must contain three parameters: amplitude,

frequency, and phase. In data collection, only the indices of each reflection and

its corresponding intensity are observable. The only measurable variable in the

above electron density equation is Fhkl, and the measured intensity of a reflection

does not completely define Fhkl However, useful information can still be extracted.
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The structural amplitudes are directly obtainable from a single measurement of the

reflection intensity, in the following manner:

Ihkl ∝ |Fhkl|2

Simply put, the amplitude of the Fhkl is related to the intensity of Ihkl . In order

to compute ρ(x, y, z) from the structure factors, we must obtain, in addition to the

intensity of each reflection, the phase of each diffracted ray. This inability to measure

phase directly is addressed as the phase problem.

Phase Problem

The phase problem can be circumvented through several techniques. These in-

clude molecular replacement (MR), multiple isomorphous replacement (MIR), multi-

wavelength anomalous dispersion (MAD), and other variants using the anomalous

scattering properties of heavy atoms such as single isomorphous replacement (SIR),

and single anomalous dispersion (SAD). There are differing requirements for these

types of experiments. For example, MR requires an observed native data set and

a closely related phasing model. MIR requires a native data set and two or more

heavy metal derivatives. MAD typically requires incorporation of a heavy atom into

the protein of interest and data collection of up to four different wavelengths, with

increased data collection requirements. So there are numerous variations available to

circumvent the phase problem. For P. falciparum enoyl-ACP reductase, molecular

replacement was utilized as the most efficient technique for solving this particular

structure, since the structures of closely-related homologs were available.
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Molecular Replacement

Molecular replacement (Rossmann and Blow, 1962) is a computational technique

used to determine the phases, and therefore the three-dimensional structure, of a

protein using structural knowledge obtained from a homologous protein. This tech-

nique requires only a native data set and a structurally related phasing model. The

underlying principle of molecular replacement is to utilize the phases from the ex-

isting model, given by the location of the atoms, and insert the model into the

unit cell of the new protein. This step is typically divided into separate rotation

and translation functions for reasons of speed. Several programs including AMORE,

Phaser, CNS, MOLREP, and BRUTE, are commonly utilized to search for molecular

replacement solutions.

The searches are typically undertaken via Patterson searches. Simply put, the

coordinates of the known structure are used to compute the Patterson function:

P (uvw) =
1

V

∑

h

∑

k

∑

l

|Fhkl|2 e−2πi(hu+kv+lw)

Then the diffraction pattern of the protein of interest is used to calculate its

transform. The calculated transform from the known structure is compared to the

observed transform from the unknown structure, rotated through all possible orien-

tations, and a correlation coefficient calculated. Once the rotation and translation

searches are successfully accomplished, then it is possible to place the known molecule

in the crystallographic unit cell of the unknown molecule so that its atoms approxi-

mately assume the putative coordinates of the corresponding unknown atoms. Using

the structure factor equation, the coordinates of the known molecule can be used to

calculate phases for the Fhkl of the unknown crystal, providing first estimates of the

phases.
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Model Building

Model building is the process of constructing a protein model consistent with the

observed data, and proceeds after phasing. Several types of difference Fourier maps

are useful. The most accurate electron density maps (least subject to model bias)

are MAD and MIR maps. They are unbiased because the phases are not calculated

from a protein model, but empirically determined. These are typically most useful

for building novel proteins. Typical Fourier maps represent the difference between

observed structure factors (Fobs or Fo) and calculated structure factors (Fcalc or Fc).

2Fo - Fc maps represent the electron density around the model, while Fo - Fo and

Fo - Fc maps are useful in finding discrepancies between the model and the collected

data and are most useful in determining the location of inhibitors in initial models.

For molecular replacement experiments, a homologous protein with known structure

is used to provide estimates of the initial phases for the new protein. Structure

factors can be calculated from the known protein model. Computing the structure

factors from a model of the unit-cell contents is an essential part of crystallography,

for several reasons. First, this computation is useful in obtaining phases. This

process starts by obtaining rough estimates of initial phases, then undertaking an

iterative process to improve the estimates. This process entails two alternating steps:

(1) computed an estimated ρ(x, y, z) with the observed intensities (Iobs) and the

estimated phases (αcalc), and then calculating new structure factors Fcalc - either with

the the crude model of ρ(x, y, z) or a partial atomic model of the molecule containing

only those atoms that can definitively be located. The second computation produces

a new set of estimated phases, and the cycle is repeated: a new estimated ρ(x, y, z) (a

more complete model) is used to obtain new phases. With each cycle, the intent is to

obtain better phases, and better estimates of ρ(x, y, z) which means more complete
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and accurate models of the desired structure.

Electron density calculation is simply the Fourier transform of the structure fac-

tors:

ρ(x, y, z) =
1

V

∑

h

∑

k

∑

l

Fhkle
−2πi(hx+ky+lz)

Refinement

Refinement is the iterative process of correcting the model to be consistent with

the observed diffraction data. This can be accomplished by fixing protein geome-

try errors, and as a final step adding ordered water molecules to the model. This

process is monitored at each cycle of refinement with Rfactor and a cross-validated

data set, Rfree. This Rfree is a cross-validation data set that excludes up to 10%

of the collected data and is used to prevent over-refinement of the model. This was

necessary because it was shown previously that it was possible to incorrectly place

atoms into electron density and artificially reduce the Rfactor, resulting in a mislead-

ing model. Programs used for refinement include the least-squares, reciprocal-space

based program XPLOR, which has been superceded by the maximum-likelihood

based refinement programs CNS or REFMAC.

To monitor the correctness of the model building, to see if it is converging towards

improved phases and improved electron density ρ(x, y, z), the Fcalc and Fobs are

compared. A statistical value gauging the accuracy of the model to the observed

data is calculated as follows:

Rfactor =

∑
hkl ||Fobs| − |Fcalc||∑

hkl |Fobs|

In each step of refinement, the Rfactor and Rfree are monitored to ensure that
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the intensities (Iobs and Icalc present in the structure factors) are moving towards

convergence. When cycles of computation provide no further improvement in corre-

spondence between calculated and measured intensities, then this process is complete.

Results and Discussion

Initial crystallization trials utilized incomplete factorial screens purchased from Hamp-

ton Research. The screens contained 98 different conditions containing varying com-

binations of salt, precipitant, and buffer within a pH range of 4-10. PfENR protein

was screened at 20 mg/mL in the presence of NADH cofactor, and microcrystals

were discovered in a condition containing ammonium sulfate and 100 mM sodium

acetate, pH 5.6. Subsequently grid screening was performed to optimize the condi-

tions to that most favorable for large crystal growth. Over the course of 14 days,

good quality crystals were produced that resulted in diffraction to approximately 3

Å in initial tests using CuKα radiation from a rotating anode.

After screening several crystals to determine the highest quality one, a 95% com-

plete data set was collected to a resolution of 2.4 Å. The crystal was of the P43212

space group with unit cell dimensions of a = b = 134.0 Å, c = 84.0 Å, and α= β= γ=

90◦. Molecular replacement was performed using the cross rotation and translation

protocols in CNS (Brünger et al., 1998) using the structure of Brassica napus ENR

as the search model. The results indicated two possible rotation and translation so-

lutions, consistent with a Matthews coefficient calculation predicting two molecules

within the asymmetric unit. These solutions were subjected to rigid body refinement

protocols, where each monomer was initially treated as a rigid body for the purpose

of refinement. After rigid body refinement, the refine protocol from CNS was uti-
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lized to subject the model to successive steps of simulated annealing, minimization,

B-factor refinement, and to calculated sigma-A weighted 2Fo- Fc maps and Fo- Fc

difference maps. Sigma-A weighting attempts to present a more accurate model of

the error my multiplying the Fo term by m, representing the estimated correctness

of the phases, and multiplying the Fc term by D, applying a “blur” factor to the

phasing model. The starting temperature for the simulated annealing was 2500◦ K,

and the default settings for the energy minimization and B-factor refinement were

used for the initial refinement.

The 2Fo- Fc maps were of high quality, and matched well with the refined protein

model. Inspection of the Fo- Fc difference electron density maps revealed strong

density consistent with NADH, so the cofactor was included into the model for

future calculations. Two cofactors were located, one within each of the substrate

binding sites of each monomer. Ultimately, after further refinement to correct errors

in the protein backbone and side-chains, water molecules were added to the model

using CNS water picking protocols that selected peaks greater than 3σ in the Fo-

Fc electron density maps. Waters were inspected manually, and structure validation

was performed with the PROCHECK/WHATIF suite of programs.

PfENR Sequence Characteristics

pfenr encoded a predicted protein of 432 amino acids with an expected molecular

mass of 49.8 kDa. Sequence alignments (Figure 3) revealed that PfENR showed much

greater overall sequence similarity to plant ENRs than to microbial ENRs. Regions

of homology with plant enzymes were interrupted by a 43-amino acid insert (residues

325-367) that was enriched in the polar residues asparagine (30%), lysine (12%), glu-

tamine (9%), and serine (9%). This low complexity insertion was demonstrated to

be coding, because it was routinely identified in cDNA libraries, it did not have typ-
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ical splice acceptor and donor sequences, and it maintained the same A/T content

as the other coding regions. Similar insertions have previously been reported in P.

falciparum enzymes and are thought to generally have minimal impact on function

(Gardner et al., 1998; Gilberger et al., 2000). PfENR has a long N-terminal extension

(similar in length to plant ENRs) that is characteristic of bipartite N-terminal pre-

sequences found in Plasmodium and Toxoplasma parasite proteins targeted to the

apicoplast (Waller et al., 1998, 2000). Using prediction programs SIGNALP (Bendt-

sen et al., 2004) and PSORT (Nakai and Horton, 1999), a putative cleavage site for

the signal peptide could be detected between residues Cys20 and Phe21 ( Claros et al.,

1997; Nielsen et al., 1997). The size of the adjacent apicoplast translocation signal

was recently discovered to be 56 amino acids long, with Glu78 being the first amino

acid of the mature enzyme (Surolia and Surolia, 2001). Sequence alignments revealed

33 completely conserved and 44 highly conserved residues in the PfENR sequence

when compared with the ENRs of E. coli, B. napus, and Mycobacterium tuberculosis.

Mapping of the completely conserved residues onto the three-dimensional structure

of PfENR showed Gly104, Tyr277, Met281, Lys285, Ala312, and Pro314 located immedi-

ately adjacent to the nicotinamide ring of NADH. These residues are likely to play an

important role in substrate recognition and/or the catalytic function of the enzyme.

The remaining conserved residues were dispersed throughout the structure, occurring

mainly at the interfaces between the subunits of the tetramer or in positions where

they were predicted to stabilize the orientation of secondary structure.

Tertiary Structure of PfENR

Overall, the structure contained a Rossmann fold (Rossmann et al., 1974) and was

similar to all other structurally defined homologous enzymes. The PfENR subunit

comprised a single domain of 55 x 50 x 50 Å (Figure 4). Each subunit was composed
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Figure 3: Sequence alignment of PfENR with homologous enoyl reductases. The
degree of sequence identity was 48, 16, and 30%, for B. napus, E. coli, and M.
tuberculosis, respectively. Green indicates completely conserved residues, and yellow
indicates two or more highly conserved residues. The secondary structure of P.
falciparum ENR is shown above the sequences. The putative signal sequence cleavage
site is located between Cys20 and Phe21. The first amino acid of the mature, cleaved
enzyme is Glu78. The residues proposed to be catalytically important are indicated
by asterisks (*). The 43-amino acid low complexity region is underlined in red.
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Figure 4: Tertiary structure of Plasmodium falciparum enoyl-ACP reductase. Rep-
resentation of subunit B of the PfENR tetramer with the co-factor NADH bound to
their active sites. Helices are shown in blue, the β-strands in purple, NADH is repre-
sented as sticks, colored by atom type. The tertiary structure shows the Rossmann
fold typical of dinucleotide-binding enzymes. The chain break visible at the top of
the inhibitor binding site between α7 and α8 is due to the PfENR substrate binding
loop that was not resolved in the crystal structures.
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of seven β-strands (β1-β7) that formed a parallel β-sheet and nine α-helices (α1-

α9) that were connected to the β-strands by a number of loops of varying length.

The parallel β-sheet was flanked by helices α1, α2, α4, α5, α6, and α9, with α3

arranged along the top of α2 and α4. Helix α8 was located at the C-termini of

strands β6 and β7. Comparison of the Cα positions of the E. coli, M. tuberculosis,

and B. napus ENRs showed that the overall structure of all enzymes was very similar

(the Cα root mean square deviation for superimposition of PfENR with ENR from

B. napus : 0.30 Å; from E. coli : 0.78 Å; from M. tuberculosis : 0.75 Å; Figure 5,

a, c, and e). Whereas the core region built of the β-sheet was nearly identical in

all structures, major differences were nevertheless discernible between PfENR and

the ENRs of E. coli, M. tuberculosis, and B. napus, (Figure 5). The loop regions

between α2-β3, β3-α3-β4, and β4-α5 of PfENR were longer due to insertions in

the sequence, and helix α2 was shifted away from the protein, toward the solvent,

relative to the bacterial ENRs. Helix α3, a small helix in the loop region between

β3 and α4, was not observed in the microbial structures but was present in the

plant ENR. The aforementioned 43-amino acid low complexity insertion in PfENR

sequence localized to an important loop region (α7 and α8), near the catalytic center

of the protein. This region is thought to be a determinant in substrate specificity,

because it participates in acyl substrate binding, as shown in the M. tuberculosis

structure in which the bound fatty acyl substrate was held in place by the substrate

binding loop (Rozwarski et al., 1999). Only 3 amino acids of the low complexity

insertion were visible in the electron density maps, indicating that most of this region

was disordered even in the presence of bound substrate and inhibitor. Nonetheless,

the last visible amino acids just before (Lys325) and after (Tyr366) the low complexity

region were in nearly the exact same position as the comparable loop residues in the

E. coli enzyme structure (Figure 5d). For the E. coli ENR, this loop was disordered
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Figure 5: Superposition of PfENR with homologous enzymes. A, overall structures
of PfENR (red) and B. napus ENR (yellow) revealed a major difference occurring in
the lid region (magnified view in B), for which the loop of the B. napus enzyme made
a turn in the direction opposite to that found in P. falciparum, M. tuberculosis, and
E. coli ENRs. C, comparison of PfENR (red) and the E. coli ENR (green) is shown
on the left, whereas the lid region has been magnified and is presented in D. Both
lid regions adopted very similar orientations and conformations. E, major structural
differences were found for the lid region when the ENR of P. falciparum (red) and
M. tuberculosis (gold) were superimposed.
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Table 1: Observed Km and Vmax values for ENRs
Organism Km Vmax

µM µM/min-1

P. falciparum 48±3 16±2
B. napus 178 NA
E. coli 2,700 10
S. oleracea 40 11

when NAD+ was bound, but became ordered upon binding of the inhibitor triclosan

(Roujeinikova et al., 1999a; Qiu et al., 1999). In the M. tuberculosis ENR this

loop was displaced away in a more open conformation (Figure 5f), presumably for

the binding pocket to accommodate the binding of the longer fatty acid substrates

(C16-C56, precursors of mycolic acid) used by the mycobacterial enzyme. The loop

region of B. napus ENR was very different because β6 makes a turn in the opposite

direction when compared with all other structures, and connects β6 with α7 of B.

napus ENR, resulting in a substrate binding pocket that is considerably more solvent

exposed (Figure 5b). Earlier investigations into E. coli, B. napus, andM. tuberculosis

ENRs have found a correlation between the length of the substrate binding loop and

the fatty acyl substrate chain length (Rozwarski et al., 1999). If this held for P.

falciparum ENR, one could expect that very long-chain fatty acids would serve as

substrate and, by analogy to the M. tuberculosis ENR, the PfENR would not use

very short-chain acyl-CoAs as substrate. However, kinetic studies indicated that the

P. falciparum ENR can use crotonoyl-CoA (C4:1) (Table 1), with kinetics in line

with those observed for S. oleracea and B. napus ENRs.

Quaternary Structure of PfENR

In gel filtration studies, PfENR formed a tetramer in solution, in agreement with all

other bacterial and plant ENRs reported to date. In support of this, the packing
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in the crystal showed an obvious homotetramer possessing internal 222 symmetry

(Figure 6). The estimated dimensions for the tetramer were 60 x 85 x 85 Å . The

solvent-accessible surface areas for the subunits and the tetramer were calculated

using DSSP (Kabsch and Sander, 1983) and were determined to be about 15,000

Å2 for each subunit and 43,000 Å2 for the tetramer. Approximately 1600 Å2 (11%)

of the surface area of subunit A was buried, making intermolecular contacts with

subunit B, 1700 Å2 (12%) with subunit C, and 900 Å2 (6%) with subunit D. Thus,

the total surface area involved in intermolecular contacts of each subunit was 4200

Å2 or 29%. This type of organization for PfENR was comparable to the crystal

structures elucidated for enoyl-ACP reductases from E. coli (Baldock et al., 1996),

B. napus (Rafferty et al., 1995), and M. tuberculosis (Rozwarski et al., 1999).

Analysis of the Nucleotide Binding Site

Both the ENR:NADH binary complex and the ENR:NAD+/NADH inhibitor ternary

complexes showed excellent electron density for the co-factors. NAD+ and NADH

were localized to the enzyme in an extended conformation at the C-terminal end

of the β-sheet with both ribose sugar rings found as C2’-endo conformers and the

nicotinamide moiety in the syn conformation. The adenine ring was located in a

pocket on the surface of the protein, formed by the side chains of Trp131, Phe167,

Ala169, Ser170, Asn218 and the main chain between residues Phe167 and Asp168. Hy-

drogen bonds were formed between the adenine nitrogen atoms at position N1 with

the peptide nitrogen atom of Ala169 and at position N6 with the side chain of Asp168.

Both the 2’ and 3’ adenine ribose hydroxyl groups were hydrogen-bonded to the

same ordered water molecule, which in turn was hydrogen-bonded with the peptide

nitrogen of Trp131. This mode of hydrogen bonding in P. falciparum was different

from many NAD+/NADH-linked dehydrogenases for which the common mechanism
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Figure 6: Quaternary structure of the PfENR tetramer. Front view of the PfENR
biological tetramer, in which each subunit is represented as a differently colored
ribbon. The bound NADH is colored by atom type. Three perpendicular 2-fold
symmetry axes intersect in the center, creating a molecule of internal 222 symmetry.
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for co-factor recognition involves hydrogen bonding between an acidic residue and

both ribose hydroxyl groups (Wierenga et al., 1985). However, the recognition of

the adenine ribose hydroxyl groups was similar to that observed in B. napus and

E. coli ENRs. In PfENR, the 2’-hydroxyl group of the adenine ribose occupied a

small depression flanked by Gly106, Trp131 and Val134, which resulted in a tight fit

for the NAD+/NADH co-factor. This spatial arrangement leaves no room for the

extra phosphate group of NADPH and is consistent with the previous observation

that NADH was a much more efficient co-factor than NADPH for PfENR function

(Surolia and Surolia, 2001). The pyrophosphate moiety of NAD+(NADH) lay close

to the C-terminal part of the β-sheet and interacted with the glycine-rich region of

the loop connecting β1 and α1, with α1 being the nucleotide binding helix. Contacts

through hydrogen bonds were made by the pyrophosphate oxygen atoms with the

peptide nitrogen of Tyr111 and, mediated by a solvent molecule, with the main-chain

carbonyl of Gly104, the peptide nitrogen of Gly112 and the side-chain hydroxyl of

Ser215. By way of an additional water molecule, hydrogen bonding also occurred

with the peptide nitrogen of Gly104. The co-factor was bound by this series of hy-

drogen bonds and was not further supported by positively charged side chains close

to the nucleotide binding site. The nicotinamide binding pocket was composed of

the side chains of Tyr111, Leu265, Tyr267, Tyr277, Ala312, Gly313, Pro314, Leu315, and

Ile369. Both 2’- and 3’-ribose hydroxyl groups hydrogen-bonded to the amino group

of the Lys285, whereas only the 3’-group interacted with a solvent molecule that

was contacted by the side chain of His314. The nicotinamide ring was completely

ordered on the enzyme, where it interacted via specific hydrogen bonds formed by

the oxygen and nitrogen of the carboxamide moiety and the Leu315 peptide nitrogen

and co-factor pyrophosphate moiety. These interactions appeared to stabilize the

packing of the A-face of the nicotinamide ring against the phenolic ring of Tyr111,
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exposing the B-face to the active site. Thus, the co-factor adopted the same confor-

mation for stereospecific hydride transfer via the pro-4S hydrogen of NADH as that

observed with E. coli, B. napus, and M. tuberculosis ENRs (Rozwarski et al., 1999;

Roujeinikova et al., 1999a; Qiu et al., 1999; Rafferty et al., 1995; Dessen et al., 1995;

Stewart et al., 1999; Roujeinikova et al., 1999b; Ward et al., 1999).

Location of the Fatty Acyl Binding Pocket

Earlier structural studies of M. tuberculosis ENR complexed to the C16 fatty acyl

substrate analog and NAD+ revealed that the C16 substrate bound in a U-shaped

conformation, with the trans-double bond position directly adjacent to the nicoti-

namide ring of NAD+ and the side chain of Tyr277 interacting directly with the C16

substrate thioester carbonyl oxygen (Rozwarski et al., 1999). The binding crevice for

the fatty acyl portion of the substrate was built of hydrophobic residues that were

derived primarily from the substrate binding loop. The ENR structures from P. fal-

ciparum, B. napus, and E. coli showed a similar patch of predominantly hydrophobic

side chains adjacent to the position of the nicotinamide ring and the fatty acid chain

binding area. With PfENR, the corresponding amino acids and side chains flanking

the putative binding site were Tyr267, Gly276, Tyr277, Met281, Pro314, Ala319, Ala320,

Ala322, Ile323, Ile369, and Ala372. Most residues were located in helices α7 and α8

and formed a hydrophobic finger-shaped cavity with the approximate dimensions of

10 x 8 x 6 Å. One side of the cavity was accessible to solvent. Based on volumetric

measurements of the fatty acyl binding cavity in the PfENR:NADH binary complex,

there was only enough space to accommodate a substrate of six to eight carbon atoms

in length. This implies that there must be sufficient flexibility in the PfENR pocket

to bind longer substrates (up to at least C16), which probably occurs via an opening

movement of the flexible loop. In view of the present biochemical and structural
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information, it is possible that the extensive substrate binding loop of PfENR, which

includes the low complexity region, would allow for broader specificity in the fatty

acyl chain.
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CHAPTER III

PFENR INHIBITOR STUDIES*

To advance our knowledge of interactions concerning PfENR and inhibitors within

the active site, in vitro enzyme assays, co-crystallization experiments, and x-ray

diffraction experiments were conducted. Based on prior reports concerning homolo-

gous enoyl reductases, we targeted our initial research at understanding triclosan and

its interactions with PfENR. We directed our energies towards rational drug design

of triclosan, followed by generation of a comprehensive structure-activity relationship

(SAR) by substituting atoms at several positions on the molecule.

We were interested in the commercially available compound 5 - chloro - 2 - (2,4

- dichlorophenoxy) phenol, commonly known as triclosan, (Figure 7) for several rea-

sons. Triclosan inhibits P. falciparum in a stage specific manner, preventing tropho-

zoites from invading erythrocytes after 48 hours (Surolia and Surolia, 2001). Tri-

closan has been reported to inhibit the growth of drug-resistant and drug-sensitive

P. falciparum in in vitro whole cell assays with IC50 values of 0.2-0.9 µM (Kuo et al.,

2003). This activity was significantly better than that of the antibiotic thiolacto-

mycin, which is thought to act on FAS-II enzymes including β-ketoacyl-ACP syn-

thase, showed an IC50 value of approximately 50 µM against P. falciparum (Waller

et al., 1998). Triclosan was also reported to be effective in clearing Plasmodium

*Part of the data reported in this chapter is reprinted with permission from Bioorg Med Chem Lett,
Vol 15, Freundlich JS, Anderson JW, Sarantakis D, Shieh HM, Yu M, Valderramos JC, Lucumi E,
Kuo M, Jacobs WR, Fidock DA, Schiehser GA, Jacobus DP, Sacchettini JC, “Synthesis, biological
activity, and X-ray crystal structural analysis of diaryl ether inhibitors of malarial enoyl acyl carrier
protein reductase. Part 1: 4’-substituted triclosan derivatives”, 5247-5252, Copyright (2005), with
permission from Elsevier, and from Bioorg Med Chem Lett, Vol 16, Freundlich JS, Yu M, Lucumi E,
Kuo M, Tsai HC, Valderramos JC, Karagyozov L, Jacobs WR, Schiehser GA, Fidock DA, Jacobus
DP, Sacchettini JC, “Synthesis, biological activity, and X-ray crystal structural analysis of diaryl
ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 2: 2’-substituted triclosan
derivatives”, 2163-2169, Copyright (2006), with permission from Elsevier.
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Figure 7: Triclosan and its nomenclature. 5-chloro-2-(2,4-dichlorophenoxy)phenol,
commonly known as triclosan, is a hydroxy diphenyl ether that has been employed
for years in anti-bacterial products. Because of its favorable safety profile and ef-
fectiveness, its scaffold was adopted as a basis for derivatization, with the goal of
generating new compounds with improved pharmacological properties.
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berghei from mice with a single subcutaneous 38 mg/kg injection of triclosan, with

no apparent toxic side effects (Surolia and Surolia, 2001). Liver and kidney func-

tion were normal at this dose, as measured in assays for serum glutamate-pyruvate

transaminase and glutamate-oxaloacetate transaminase activities, as well as urea,

glucose, and creatinine levels. Triclosan has also been reported to specifically in-

hibit the enoyl reductase from P. falciparum (Surolia and Surolia, 2001), as well

as the homologous FAS-II enoyl reductases from other organisms such as Mycobac-

terium tuberculosis (Parikh et al., 2000), Staphylococcus aureus (Heath et al., 2000b),

Escherichia coli (Heath et al., 1998 ), Bacillus subtilis (Heath et al., 2000a), Bras-

sica napus (Roujeinikova et al., 1999a) , Haemophilus influenzae, (Marcinkeviciene

et al., 2001) and Pseudomonas aeruginosa (Hoang and Schweizer, 1999). Triclosan

possesses a favorable long-term safety profile (Jones et al. 2000), and has been incor-

porated into many household items, including toothpaste, soaps, mouthwash, and

even children’s toys (Bhargava and Leonard, 1996) as an antimicrobial agent. It has

been utilized for over 40 years in the United States and is recognized by the Food

and Drug Administration (FDA) as either an over-the-counter or prescription drug

(Jones et al., 2000). Observation of the enzyme activity assay is straightforward, re-

quiring only the spectrophotometric monitoring of the A340 to follow interconversion

of NADH to NAD+ that accompanies the transfer of a hydride from the co-factor to

the substrate. All these factors led us to pursue triclosan as a potential anti-malarial

agent.

The dramatically different binding affinities of triclosan for each of the enoyl-ACP

reductases (10,000-fold difference between E. coli FabI and M. tuberculosis InhA, in

particular) (Sivaraman et al., 2003) also suggested that tailoring the triclosan scaffold

to each specific enzyme was a reasonable endeavor. A multiple sequence alignment of

the various enoyl reductases (Figure 3) exhibited regions of low conservation within
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the substrate binding loop that were believed to be structurally adjacent to the

triclosan binding site. This allowed us to speculate that the differences could be ex-

ploited by developing a triclosan derivative with exquisite specificity for the FAS-II

enoyl-ACP reductase for a particular organism. While triclosan was very effective

against the enoyl-ACP reductases in vitro, it was unsuitable in this configuration

as an ingestible antibacterial. Limited studies regarding triclosan metabolism have

shown that triclosan is subject to modification through glucuronidation and sulfona-

tion at a key position, the phenolic hydrogen of the A ring (Wang et al., 2004).

Previous studies have also shown that triclosan was primarily excreted as the glu-

curonide following application of a 1% formulation to guinea pig or rat skin (Black

et al., 1975). Yet another study showed that topically applied triclosan formed sul-

fate and glucuronide conjugates in human as well as rat skin (Moss et al., 2000).

Finally, another study showed that polar bear livers sulfonate triclosan (Sacco and

James, 2005). Despite the observation that triclosan is subject to modification in

vivo, the basic triclosan scaffold holds promise as a starting point to modify, to

increase potency and specificity, as well as pharmacokinetic profiles.

Results and Discussion

The structure of the binary complex of PfENR:NADH gave us a starting point for

protein:co-factor:inhibitor ternary complex structural studies. Hundreds of vapor dif-

fusion experiments based on the optimized crystallization conditions were set up, in

order to obtain the largest, well-ordered, best-diffracting crystals possible. Inhibitors

were typically solubilized in acetonitrile, a solvent that was determined to be compat-

ible with the protein crystals in early solvent-screening trials. Inhibitors were allowed

to soak undisturbed into the crystals for 14 to 21 days, before being subjected to
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X-ray diffraction experiments. Provided that the crystals diffracted to sufficient res-

olution, complete data sets were collected on the PfENR:NAD+:inhibitor complexes.

Although the crystals generally suffered minor damage, the cell parameters of these

ternary complexes were isomorphous to the native crystals, greatly simplifying each

successive step of model building and refinement. A model of PfENR containing only

protein atoms was subjected to rigid body refinement and minimization using the

newly collected data, and sigma-A weighted 2Fo- Fc and Fo- Fc electron density maps

were calculated using the crystallographic refinement package CCP4 (Collaborative

Computational Project, Number 4, 1994). Inspection of the electron density maps

was performed with the molecular modeling program XtalView (McRee, 1999). If

the electron density maps exhibited peaks consistent with the presence of NADH

cofactor, the cofactors were built into the model and another round of restrained

refinement and map calculations performed. If the electron density maps exhibited

significant peaks consistent with a conformer of the incubated inhibitor, the inhibitor

was built into the model. Another cycle of restrained refinement and new electron

density map calculation followed. Waters were first automatically placed, subse-

quently manually inspected, then waters were added or deleted with the molecular

modeling program XtalView.

Analysis of the Triclosan Binding Site

Three distinct classes of chemically synthesized agents have been shown to act by

inhibiting this enzyme in the bacterial FAS-II pathway. Isoniazid targets the ENR

homolog, InhA, from M. tuberculosis, after activation and covalent attachment to

the nicotinamide ring of NADH (Rozwarski et al., 1998). The mechanism of in-

hibition of the diazoborines is through a covalent bond between a boron atom in

the diazoborine and the 2’-hydroxyl group of the nicotinamide ribose moiety in this
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enzyme (Kater et al., 1994; Bergler et al., 1994; Baldock et al., 1996). Another ex-

tremely potent bacterial ENR inhibitor is triclosan, which, in contrast to the other

antimicrobials, forms a non-covalent complex with NAD+ and protein primarily via

hydrogen bonds. The crystal structure of PfENR solved with protein incubated with

NAD+ and triclosan revealed the mode of triclosan binding (Figure 8). Comparison

of the P. falciparum ENR:NAD+:triclosan structure with the corresponding E. coli

and B. napus structures (Roujeinikova et al., 1999a; Stewart et al., 1999) demon-

strated that, for the malaria enzyme, the binding mode for triclosan was very similar,

showing the same stacking interaction with the nicotinamide ring of NAD+ and com-

parable hydrogen-bonding pattern with the 2’-hydroxyl group of the nicotinamide

ribose and with Tyr277. Ring A (the phenol ring) of the inhibitor interacted face-to-

face with the nicotinamide ring of NAD+ allowing π-cation interactions. The same

ring formed additional van der Waals interactions with the side chains of Tyr267,

Tyr277, Pro314, Phe368, and Ile369. The phenolic hydroxyl hydrogen-bonded to the 2’-

hydroxyl moiety of the nicotinamide ribose and the oxygen atom of Tyr277, and the

amino nitrogen of Lys285 was within 4.6 Å. These residues are completely conserved

in all known ENRs and have been implicated in the enzyme’s catalytic mechanism

(Rafferty et al., 1995; Parikh et al., 1999). The 4-chloro atom of ring A was sur-

rounded by mainly hydrophobic residues making van der Waals contacts with the

side chains of Tyr267, Pro314, and Phe368. The ether oxygen atom of triclosan inter-

acted with the 2’-hydroxyl group of the nicotinamide ribose, and it approached to

within 3.65 Å of one of the oxygen atoms of the nicotinamide ribose phosphate group.

Ring B (2,4-dichlorophenoxy ring) of triclosan was located in a pocket bounded by

the pyrophosphate and nicotinamide moieties of NAD+ , by the peptide backbone

residues 217-231 and by the side chains of Asn218, Val222, Tyr277, and Met281. Al-

though the 4-chloro atom of ring B was placed adjacent to the side chains of Val222



47

and Met281 and residues 218-219, the 2-chloro atom was surrounded by the α-carbon

atom, the side chain of Ala217, and atoms of the nicotinamide ribose pyrophosphate

moiety. One ordered water molecule was observed in the inhibitor binding site of

the binary ENR:NADH complex, interacting through hydrogen bonds with the 2’-

hydroxyl group of the nicotinamide ribose and with Tyr277. This water molecule

was very close to the position of the phenolic hydroxyl group of the inhibitors and

was displaced upon triclosan binding. Superposition of the binary and ternary com-

plex structures revealed subtle conformational changes in the protein upon inhibitor

binding, with the most pronounced change being a slight shift of helix α7 by 0.5 Å

towards the solvent.

Isoniazid

Isonicotinic acid hydrazide (INH), commonly known as isoniazid, has been used as an

effective first-line anti-tubercular agent for over 50 years. The target of isoniazid was

discovered to be InhA (Banerjee et al. 1994), a Mycobacterium tuberculosis enoyl-

ACP reductase enzyme homologous to PfENR. The structure of M. tuberculosis

InhA in complex with isoniazid (Rozwarski et al., 1998) revealed new interactions

in a vicinity distinct from where triclosan occupies upon binding. Isoniazid itself is

a prodrug that is activated by the catalase-peroxidase enzyme KatG (Zhang et al.,

1992) within M. tuberculosis, and covalently attaches to the nicotinamide ring of the

cofactor NADH to generate a tightly bound and potent adduct. The structure of

InhA:isoniazid showed that isoniazid binding is accompanied by an approximately 90◦

rotation of a catalytic residue (Phe149) to optimize aromatic ring stacking interactions

with the pyridine ring of the isonicotinic acyl group. While P. falciparum lacks a

homologous catalase-peroxidase enzyme to activate isoniazid, we crystallized the

PfENR:INH complex to enable us to characterize the analogous interactions in the
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Figure 8: Structural details of the triclosan binding site. Close-up view of the PfENR
active site. The hydroxyl-substituted ring of triclosan forms aromatic ring-stacking
interactions with the nicotinamide moiety of the NAD+ co-factor. Triclosan also
forms a conserved hydrogen-bonding network with Tyr277 and the 2’-ribose of the
NAD+ co-factor. Lys285 serves to position NAD+within the binding site.
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malarial enoyl-ACP reductase. The structure of PfENR:INH showed the isonicotinyl

group protruding into a hydrophobic cavity bordered by the residues Phe368, Ser311,

Ala312, Gly313, Pro314, Ala372, Ser376, and Asp414 (Figure 9), in a manner similar

to that of InhA:INH. Isoniazid also formed an additional aromatic ring stacking

interaction with Tyr267 of PfENR (Figure 10) as expected, and we chose to leverage

this knowledge to inspire new triclosan derivatives.

The Triclosan Analogs B13 and B24

Recently, the antibacterial activities of several 2-hydroxydiphenylethers as well as

hexachlorophene and 2-hydroxy-diphenylmethanes were determined (Ward et al.,

1999) against the FAS-II enoyl-ACP reductase from E. coli. Studies with a des-

hydroxyl analog of triclosan showed a more than 10,000-fold reduced affinity for E.

coli FabI and implicated a critical antibacterial role for the triclosan hydroxy group

(Ward et al., 1999). Moreover, it was proposed that the ether oxygen of triclosan

might be critical to the formation of the ternary complex, because corresponding

2-hydroxy-diphenylmethanes did not result in tight binding (Heath et al., 2000b),

while the replacement of the ether oxygen with sulfur abolished the inhibitory ac-

tivity (Heath et al., 1998). Ring B of triclosan was considered to be of lesser impor-

tance, because variations in this region had less effect on inhibitor activity. Synthesis

of 20 triclosan analogs followed by screening against purified PfENR revealed that

PfENR inhibition was sensitive to the hydroxyl group at the 1-position in ring A,

which could not be replaced with methoxy groups or sulfur derivatives, as observed

for the bacterial ENRs. These studies led us to identify a diphenylamine deriva-

tive (B13, Figure 11) with moderate inhibitory activity (Ki14.3 ±1.4µM) against

PfENR. This inhibitor, which carried nitrogen as a bridging atom, adopted a very

similar conformation compared with triclosan (2,4-dichloroaniline ring) (Figure 12).
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Figure 9: Isoniazid protrudes into a cavity not occupied by triclosan. PfENR is
indicated as a molecular surface, colored by electrostatic potential. The just-visible
isoniazid moiety (colored with green carbons) is covalently attached to the NADH co-
factor, and the isonicotinyl group protrudes into an open cavity not typically occupied
by substrate or triclosan. The residues Phe368, Ser311, Ala312, Gly313, Pro314, Ala372,
Ser376, and Asp414 serve as the border of the hydrophobic cavity.
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Figure 10: Isoniazid ring-stacks with Tyr267in PfENR. Isoniazid covalently modifies
NADH to create an INH-NADH adduct, and forms aromatic ring-stacking interac-
tions with Tyr267, and binds to the active site in an area separate from that typically
occupied by triclosan or substrate. Tyr277 does not form hydrogen bonds with isoni-
azid, while Lys285 maintains its conserved interaction with the NADH co-factor.
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Figure 11: Structures of triclosan derivatives tested for inhibitory activity. Biochem-
ical activity assays were performed using purified recombinant PfENR. Out of the
presented compounds, only triclosan, B13, and B24, showed significant biochemical
inhibition (cut-off 100 µM) of purified PfENR.
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The extensive hydrogen bonding network involving the 1-hydroxy group of ring A

and the π-π stacking interaction with the nicotinamide ring system were completely

maintained, emphasizing the importance of these interactions. An analog designed

through molecular modeling studies, B24, was found to have a Ki of 150 ± 14 nM

against purified PfENR, close to the 50 ± 6 nM Ki observed with triclosan. Struc-

tural analysis of this 6-hydroxy naphthalene derivative complexed to PfENR in the

presence of NAD+ revealed an electron density that was clearly detectable after the

first round of refinement, showing strong and continuous difference density for in-

hibitor in both monomers of PfENR. Ring A of B24 again stacked to the nicotinamide

ring system in the same manner as observed for triclosan. The extended ring B of

B24 was oriented in the same direction as the corresponding ring in triclosan but

was tilted by 10 degrees out of the plane found for ring B of triclosan and B13 . This

now allowed for three potential new hydrogen bonds mediated through the hydroxyl

group of the naphthalene ring, the side-chain nitrogen of Asn218 and the main-chain

oxygen and nitrogen of Ala219 (Figure 12). Reduced affinity of B24 for PfENR may

be a result of the missing chlorine in this analog. Because most bacterial ENRs have

a Phe at the position comparable to Asn218 of PfENR, it is likely that B24 will be

specific for the malarial protein.

Jacobus Pharmaceuticals Triclosan Analogs

To gain greater insight into the structure-activity relationship of the triclosan scaf-

fold, we substituted the atoms at several positions on the triclosan scaffold, on both

ring A and ring B. Molecular modeling studies identified two hydrophobic cavities

capable of being filled, one where the substrate binds, and one where the isonicotinyl

group from the isoniazid-NADH adduct protrudes. There were also several possibil-

ities for aromatic ring-stacking, van der Waals, hydrophobic, and hydrogen-bonding
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Figure 12: Structures of B13 and B24 bound to PfENR. B13 (yellow carbons) and
B24 (cyan carbons) maintained the hydrogen-bonding network observed when tri-
closan binds to PfENR. However, the extra length of the naphthol ring of B24 puts
the hydroxyl group within hydrogen-bonding distance of the backbone carbonyl and
nitrogen of Ala219, as well as the side chain of Asn218.
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interactions distributed throughout the binding cavity. Our intent was to discern

which interactions were reasonably available for inhibitor optimization. Several tri-

closan analogs, with a variety of substituents at the 1, 5, 6, 2’, and 4’ positions

were synthesized for testing in in vitro enzyme assay systems. PfENR enzyme as-

says were conducted in the presence of 50 µM inhibitor as an initial screen, and

any candidates exhibiting at least 50% inhibition were further subjected to IC50 de-

termination experiments, to elicit information about the relative potencies of each

derivative. Promising inhibitors were selected based on in vitro assay results, and

then incorporated into co-crystallization experiments.

1-position Inhibitors

The hydroxyl group on ring A of triclosan is a critical interaction, forming a 2.5

Å hydrogen bond to Tyr277 of the enzyme as well as a 2.7 Å hydrogen bond to

the NAD+ co-factor. This pattern of hydrogen bonding, along with a hydrogen bond

from Lys285 to the 2’-hydroxyl of the NAD+ co-factor, is conserved in most structures

of enoyl-reductases, with the exception of inhibitors that covalently modify the co-

factor such as diazoborines (Baldock et al., 1996) and isoniazid (Rozwarski et al.,

1998). While triclosan is an extremely potent inhibitor in vitro, the A-ring hydroxyl

group of triclosan is rapidly glucuronidated or sulfonated in live animal studies with

rats, rendering it ineffective. Triclosan is then quickly excreted as glucuroconjugates.

Our strategy was to remove or replace the hydroxyl group at the 1-position with a

functional group that would not be subject to in vivo modification, while maintaining

inhibitor potency. Dozens of 1-substituted triclosan derivatives were synthesized and

assayed for potency at 50 µM inhibitor concentration, using the percent inhibition

to gauge the relative effectiveness of each substitution. IC50 values were determined

only if the initial assays showed a moderate degree of inhibition.
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Table 2: Effects of substitution at the 1-position of triclosan

Compound R PfENR IC50(µM)
JPC-2642 OMe >50
JPC-2548 CF3 >50
JPC-1093 OCO2H >50
JPC-2063 NH2 >50
JPC-2064 NO2 >50
JPC-2025 OCH2CN >50
JPC-2070 NHSO2CH3 >50
JPC-2078 NHSO2Ph >50
JPC-2068 NHC(O)CH3 >50
JPC-2082 NHC(O)Ph >50

Substitution of the hydroxyl group at the 1-position with any other group resulted

in a dramatic loss of inhibitor potency in the in vitro PfENR enzyme activity as-

says. Table 2 shows a selection of triclosan analogs synthesized and screened against

PfENR. Regardless of the nature of the substitution, the triclosan analogs had no

significant inhibitory effect on the activity of the enzyme, implying that substitu-

tions at the 1-position were not tolerated. Structurally, modifications at this position

would disrupt the hydrogen bonding interaction of triclosan with the catalytically

important residue Tyr277 in the active site of the enzyme, as well as hydrogen bond-

ing interactions to the NAD+ co-factor. Modeling studies with a sample of these

inhibitors revealed that in order to accommodate 1-position substituted inhibitors,

the catalytic residues in PfENR could not adopt a conformation normally seen when

enoyl-ACP reductases are bound to substrates. Due to the low efficacy of these 1-

position modified triclosan analogs, co-crystallization of PfENR with these inhibitors
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was unsuccessful.

5-position Inhibitors

5-position inhibitors (Tables 3, 4, and 5) were pursued due to knowledge we trans-

ferred from the structure of the FAS-II enoyl-ACP reductase from M. tuberculosis

InhA complexed with isoniazid, as well as the structure of PfENR:INH. The isoniazid

moiety of the INH:NADH adduct projected into a hydrophobic cavity separate from

the area that triclosan or substrate would occupy, and formed an additional ring

stacking interaction with Tyr267 of PfENR. We chose to create a triclosan deriva-

tive to utilize this additional pocket and attempt to engineer an isoniazid:triclosan

chimera taking advantage of these favorable interactions with various substitutions

at the 5-position of triclosan. If a significant gain in potency could be achieved at the

5-position, then the removal or replacement of the A-ring phenol could be facilitated.

Enzymatic assays confirmed the feasibility of this guided design process. We

surmised that effective substitutions here could possibly lead to greater affinity of

the inhibitor for PfENR and subsequently more potent inhibition, just as in M.

tuberculosis InhA. The initial results of the 5-position inhibitor screens indicated

that increasing lengths of carbon chains were acceptable, while some aromatic rings

vectoring off the 5-position were also tolerated. A preference for hydrophobic atoms

was also notable. Modeling studies showed that the carbon chain allowed protrusion

into a small cavity bordered by Phe368, Ser311, Ala312, Gly313, Pro314, Ala372, Ser376,

and Asp414. Determination of the structure of PfENR in complex with JPC-2305

was pursued to test these suppositions.

Table 3 shows the biological activity of a range of differentially substituted 5-

position analogs. Clearly, hydrophobic groups such as methyl (JPC-2131) and phenyl

(JPC-2589) were preferred in the enzyme assays. JPC-2131 (IC50 = 200 ± 60 nM)
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Table 3: Inhibitory effects of 5-substituted derivatives

Compound R PfENR IC50(nM)
Triclosan Cl 73 ± 20
JPC-2131 CH3 200 ± 60
JPC-2589 Ph 140 ± 40
JPC-2590 CN 940 ± 100
JPC-2285 2H-tetrazol-5-yl >50,000
JPC-2287 C(O)NH2 21,000 ± 9,000
JPC-2286 COOH >50,000

Table 4: Inhibitory effects of selected 5-alkyl derivatives

Compound R PfENR IC50(nM)
Triclosan Cl 73 ± 20
JPC-2131 CH3 200 ± 60
JPC-2573 CH2CH3 110 ± 30
JPC-2572 (CH2)2CH3 210 ± 60
JPC-2571 (CH2)3CH3 480 ± 80
JPC-2489 CH2CH(CH3)2 180 ± 80
JPC-2591 CH2CH(CH3)CH2CH3 290 ±20
JPC-2590 (CH2)2CH(CH3)2 120 ± 50
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Table 5: Inhibitory properties of selected 5-aryl and heteroaryl derivatives

Compound R1 R2 PfENR IC50(nM)
JPC-2589 Ph Cl 140 ± 40
JPC-2305 o-CH3-Ph Cl 440 ± 100
JPC-2551 o-CH3-Ph CN 410 ± 100
JPC-2279 m-CH3-Ph Cl 230 ± 70
JPC-2264 p-F-Ph Cl 27 ± 8
JPC-2472 CH2Ph H 78 ± 20
JPC-2448 (CH2)2Ph Cl 87 ± 10
JPC-2592 (CH2)3Ph Cl 660 ± 90
JPC-2530 2-pyridyl CN 720 ± 70
JPC-2491 3-pyridyl Cl 33,000 ± 5,000
JPC-2522 4-pyridyl CN 3,600 ± 2,000
JPC-2492 CH2(2-pyridyl) Cl 640 ± 100
JPC-2501 CH2(3-pyridyl) Cl 840 ± 300
JPC-2575 CH2(4-pyridyl) CN 530 ± 100
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and phenyl JPC-2589 (IC50 = 140 ± 40 nM) were approximately as potent against

the enzyme when compared to triclosan (IC50 = 73 ± 20 nM). Analogs with polar

functionality such as carboxylic acid (JPC-2286, IC50 > 50,000 nM), carboxamide

(JPC-2287, IC50 = 21,000 ± 9,000 nM), and tetrazole (JPC-2285, IC50 > 50,000

nM) were much less efficacious. These observations are consistent with the view of

the 5-position binding pocket derived from the x-ray crystal structure of triclosan

bound to the PfENR:NAD+ complex. Analogs JPC-2131 and JPC-2589 were deemed

reasonable origins from which to initiate medicinal chemistry efforts.

Various alkyl-substituted triclosan derivatives are shown in Table 4. It is interest-

ing to note that the introduction of a cyclic constraint did not significantly improve

potency in the enzyme assays. While some inhibitors improved on the enzymatic po-

tency of JPC-2131, none of these alkyl analogs were more potent against the enzyme

than triclosan with no clear trend being discernible to the best of our abilities.

Derivatives of JPC-2589 are shown in Table 5. Placement of a methyl group

around the phenyl ring of JPC-2589 had a detrimental effect on the enzyme activity.

Substitution of 2-, 3-, and 4-pyridine for the 5-phenyl moiety in JPC-2589 led to a

decrease in activity in the in vitro enzyme assays. Noticeably, 3-pyridyl analog is

the least active of the trio. The benzyl and phenethyl derivatives were slightly more

potent against PfENR than phenyl JPC-2131, whereas phenylpropyl was much less

active.

The results of our exploration of the 5-position SAR and, in particular the data

presented in Table 5, are complemented by an x-ray crystal structure of o-tolyl

derivative JPC-2305 bound to the PfENR:NAD+ complex (Figure 13). Comparison

of the structure to that of triclosan bound clearly shows that the 5-o-tolyl better

fills the enzyme hydrophobic pocket into which triclosan’s 5-chloro group projects.

An increase in surface area of interaction of approximately 50 Å2 between JPC-2305
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and the enzyme active site results, compared to the binding of triclosan. The o-tolyl

group has enhanced van der Waals interactions with Pro314 and Phe368. Phe368 has

rotated approximately 60◦ from its conformation in the triclosan structure to engage

in an edge-to-face interaction with the o-tolyl moiety. Tyr267 is now engaged in a

face-to-face interaction with the o-tolyl group and has been pushed away from C6

of the triclosan A-ring by approximately 0.5 Å. JPC-2305 also is engaged in van der

Waals interactions with Ile323 and Ala372 due to the o-tolyl moiety; the chloro group

of triclosan is incapable of making these interactions.

6-position Inhibitors

The rationale behind developing 6-position inhibitors (Table 6) was an indirect mea-

sure to undermine the enzyme-catalyzed glucuronidation or sulfonation of the 1-

position of triclosan. We surmised that placing a bulky substituent at the 6-position

could conceivably occlude the hydroxyl group from being modified, due to steric

clashing with the modifying enzymes. While molecular modeling studies predicted

that modifications as the 6-position would cause steric interference with the catalytic

residue Tyr277 as well as other active site residues, this was surprisingly tolerated,

albeit with a slight loss of potency. Several inhibitors were tested in our in vitro

enzyme assay system, as shown in Table 6. Conservative and small substitutions,

such as JPC-2626 and JPC-2635, slightly diminished inhibitor potency. The addi-

tion of a carbonyl group at the 6-position decreased potency inhibitor effectiveness

further, but replacement of methylene recovered much of the potency. This implies

that a degree of flexibility is important at this position. JPC-2624, with a benzyl

group projecting off the 6-position, yielded the best results. Possibly a ring-stacking

interaction, perhaps with Phe368 or Tyr267 in the vicinity, is important in this ana-

log. Another explanation is that JPC-2624 may have an alternative mode of binding,
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Figure 13: Triclosan derivative JPC-2305 ring stacks with Tyr267 of PfENR. The
o-tolyl group binds in a portion of the enzyme distinct from triclosan binding. The
structure of PfENR:JPC-2305 showed the o-tolyl group protruding into a small hy-
drophobic cavity bordered by the residues Ile323 (not shown), Phe368, Ala372, Pro314.
JPC-2305 ring-stacked with Tyr267 and retained the conserved hydrogen-bonding
network seen in other enoyl-ACP reductases bound to triclosan.
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where the 6-position benzyl ring occupies the position where either the A or B ring

of triclosan typically binds. X-ray structural studies are necessary to unambiguously

determine the mode of binding. While none of the analogs had activity comparable

to triclosan, occluding the 1-position by modifying the 6-position may be a feasible

technique to prevent the host from forming glucuroconjugates that are summarily

excreted before they can act against the malarial parasite. While the potency of

6-position substitutions did not increase, this detriment could be overcome by op-

timization of the B ring to the PfENR binding cavity, and these were subsequently

analyzed. Substitutions at the A ring that decrease inhibitor potency could conceiv-

ably be compensated for with modifications of the B ring.

2’-position Inhibitors

The B ring of triclosan was also modified at two positions (Freundlich et al., 2006).

Several possible hydrogen bonding interactions were also apparent in this area of

the binding cavity. Examination of the PfENR:NAD+:triclosan ternary structure

revealed that the 2’-chloro group projected towards the pyrophosphate portion of

NAD+and was approximately 4 Å away from two of the negatively charged oxygens.

We proposed that a properly placed positively charged amine off the 2’-position could

favorably interact with one or both of these oxygens. In addition, a hydrophobic

substituent on the amine could participate in favorable interactions with proximal

enzyme residues such as Ala319 and Arg318. 2’-position analogs with these features

could have enhanced interactions, both with co-factor and enzyme, thus, conferring

greater binding ability for the enzyme:co-factor complex and potentially enhanced

parasitic activity.

In keeping with our design hypothesis, we examined the effect of placing hy-

drophobic groups off the amine terminus of JPC-2210 (Figure 7 ) in order to improve
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Table 6: Inhibitory effects of substitution at the 6-position of triclosan

Compound R PfENR IC50(µM)
JPC-2621 C(O)NH2 1.6
JPC-2622 C(O)NHCH3 2.11
JPC-2623 C(O)N(CH3)2 2.07
JPC-2640 C(O)CH3 2.93
JPC-2651 C(O)Ph 2.21
JPC-2625 COOH 10.48
JPC-2626 CH3 0.195
JPC-2635 CF3 0.419
JPC-2639 Ph 0.554
JPC-2646 CH2OH 0.772
JPC-2624 CH2Ph 0.187
JPC-2637 CH(OH)CH3 1.83
JPC-2650 CH(OH)Ph 2.21
JPC-2643 2-Cl-Ph-CH2 2.93
JPC-2644 3-Cl-Ph-CH2 0.894
JPC-2645 4-Cl-Ph-CH2 1.32
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Table 7: Inhibitory effects of selected 2’-substituted derivatives

Compound R1 R2 PfENR IC50 (µM)
Triclosan Cl Cl 0.073 ± 0.021
JPC-2205 NH2 H 7 ± 2
JPC-2210 CH2NH2 H >50

its enzyme and anti-parasitic potencies over that of triclosan. Shown in Tables 7,8,

9, 10, and 11 are the IC50 results of several 2’-substituted triclosan analogs.

Most attempts to substitute the 2’-position were met with greater than 10-fold

decreases in binding affinity. The chloro at the 2’-position appears to be already

well-suited for the local PfENR binding environment. Attempts to substitute at this

position apparently perturbed interactions in the halogen binding pocket enough to

turn a nanomolar inhibitor into a micromolar inhibitor. Interestingly, compounds

JPC-2311 and JPC-2265 differed by only the addition of a chloro group at the 4’-

position, but this resulted in a significant increase in binding affinity (35 µM versus

7.2 µM). This was a minor surprise, considering that a 5-chloro-2-phenoxyphenol

analog of triclosan lacking the ring B chlorines bound E. coli FabI 7-fold more tightly

than triclosan (Sivaraman et al., 2003).

4’-position Inhibitors

The x-ray crystal structures of aniline JPC-2136, nitro JPC-2137, urea JPC-2153,

and methylamide JPC-2166, bound to PfENR in the presence of co-factor, were

resolved as expected (Freundlich et al., 2005). The only significant difference in
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Table 8: Inhibitory effects of 2’-substituted derivatives with a 4’-hydrogen

Compound R PfENR IC50(µM)
JPC-2210 H >50
JPC-2239 CH2Ph 10 ± 3
JPC-2309 CH2(p-ClC6H4) 35 ± 4
JPC-2240 (CH2)3Ph 19 ± 5
JPC-2242 1-naphthyl 11 ± 4
JPC-2243 2-naphthyl 46 ± 14

Table 9: Inhibitory effects of 2’-substituted derivatives with a 4’-chloride

Compound R PfENR IC50(µM)
JPC-2613 CH3 >50
JPC-2549 C(O)Ph 18 ± 8
JPC-2490 SO2Ph 15 ± 7
JPC-2265 CH2(p-Cl-C6H4) 7.2 ± 1.4
JPC-2301 CH2(p-Ph-C6H4) 35 ± 15
JPC-2302 1-naphthyl >50
JPC-2303 2-napthyl 26 ± 7

JPC-2247 9 ± 3
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Table 10: Inhibitory effects of 2’-substituted derivatives: p-Cl-benzylamines
Compound Structure PfENR IC50(µM)

JPC-2311 35± 4

JPC-2265 7.2 ± 1.4

JPC-2333 7.2 ± 1.6

JPC-2308 22 ± 2

JPC-2446 27 ± 4

JPC-2307 28 ± 3
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Table 11: Inhibitory effects of 2’-substituted derivatives: selected amines

Compound NR1R2 PfENR IC50(µM)
JPC-2613 N(H)Me 27 ± 9
JPC-2614 NMe2 19 ± 5

JPC-2468 >50

JPC-2469 >50

JPC-2442 6.1 ± 1.0

JPC-2444 11 ± 2

JPC-2470 >50
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Table 12: Inhibitory effects of selected 4’-substituted derivatives

Compound R PfENR IC50(nM)
triclosan Cl 30
JPC-2181 OH 177
JPC-2137 NO2 201
JPC-2136 NH2 189
JPC-2149 CN 80
JPC-2283 CH2CN 295
JPC-2154 COOH 553
JPC-2150 1H-tetrazol-5-yl 1180
JPC-2212 C(O)NH2 52
JPC-2211 C(O)NHOH 1220

all of these structures is the interaction of the 4’-substituent with the surrounding

enzyme residues. Other interactions of the triclosan core with co-factor and enzyme

were preserved. Displayed in Figure 14, JPC-2136 utilized its aniline hydrogens to

form weak hydrogen bonds to the side chain carbonyl of Asn218 (dC=O−N = 3.4 Å)

and the main chain carbonyl of Ala219 (dC=O−N = 3.7 Å). The aniline nitrogen’s

lone pair may be engaged in a favorable interaction with the main chain N-H group

of Ala219 (dN−N = 2.7 Å). JPC-2137 binds in a conformation similar to JPC-2136

(Figure 14). The only significant change in the enzyme active site is the rotation of

the Asn218 side chain to allow its carboxamide N-H to interact with one of the nitro

oxygens. The other nitro oxygen forms a hydrogen bond with the main chain N-H

group of Ala219 (dN−O = 3.2 Å).

Methylamide derivative JPC-2166 utilized its amide carbonyl to form a hydrogen

bond with the side chain N-H of Asn218 (dN−O=C= 3.2 Å) and the carbonyl may
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Table 13: Inhibitory effects of selected 4’-amide derivatives

Compound R PfENR IC50(nM)
JPC-2212 NH2 52
JPC-2166 N(H)Me 435
JPC-2164 N(H)Bn 4380
JPC-2167 NMe2 401
JPC-2171 N-pyrrolidine 309
JPC-2168 N-piperidine 537
JPC-2169 N-morpholine 187

Table 14: Inhibitory effects of selected 4’-aniline derivatives

Compound R PfENR IC50(nM)
JPC-2136 H 189
JPC-2182 Ac 103
JPC-2170 Bz 143
JPC-2159 C(O)NH2 44
JPC-2153 C(O)N-morpholine 909
JPC-2160 SO2Ph 550
JPC-2190 SO2(1-naphthyl) 665
JPC-2191 SO2(2-naphthyl) 4160
JPC-2200 SO2CF3 206
JPC-2170 CH2Ph 2120
JPC-2192 CH2(2-CNPh) 331
JPC-2176 CH2(2-HOPh) 299
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Figure 14: Structural details of the PfENR:4’-inhibitor binding site. X-ray structure
of JPC-2136 (yellow carbons) and JPC-2137 (slate blue carbons) in the PfENR active
site (ribbon and tube with key residues in stick format) with bound co-factor (space-
fill). The JPC-2137 nitro group makes a hydrogen bond with the side chain N-H of
Asn218 and it may also be engaged in a weak hydrogen bound with the backbone
N-H of Ala219.
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also make a weak hydrogen bond with the main chain N-H group of Ala219 (dN−O=C

= 4.0 Å). Its N -methyl group appears to act favorably with the i -propyl side chain

of Val222. Depicted in Figure 15, the urea derivative JPC-2153, in contrast did

not have significant interactions between the appended morpholino group and the

enzyme, projecting instead towards solvent. The urea carbonyl moiety is hydrogen

bonded to the Asn218 side chain N-H group (dN−O=C = 2.8 Å) and the Ala219 main

chain N-H (dN−O=C = 3.0 Å).

Clearly, the crystal structures of JPC-2136, JPC-2137, JPC-2166, and JPC-

2153 demonstrated the ability to append hydrogen-bonding functionality off the 4’-

position through interactions with Asn218 and Ala219. However, from the enzyme data

in Tables 12, 13, and 14, it was exceedingly clear that overall losses in binding affinity

for the enzyme were realized. The reasons for these decreases in enzyme binding are

not clear at this moment. One can speculate that, in the structurally characterized

analogs, replacement of the chloro with a more polar group such as anilino, nitro,

carboxamido, or ureido may result in the loss of hydrophobic interactions with Val222

and Met281. Subtle rearrangements in the enzyme complex with co-factor and ligand

may also be responsible for the observed decreases in ligand affinity. Perhaps the

binding pocket is already well optimized for a halogen.

In conclusion, a series of 4’-substituted triclosan derivatives have been prepared

and assayed for the inhibition of purified PfENR and cultured P. falciparum. While

the effort did not result in compounds more potent than triclosan against the en-

zyme, it did provide an understanding of which groups could be substituted for

the 4’-chloro to provide nanomolar inhibitors of PfENR with demonstrated anti-

parasitic activity. X-ray crystallographic studies demonstrated the ability of a sub-

set of the prepared compounds to expand upon triclosan’s interactions with PfENR

via hydrogen-bonding networks with Asn218 and Ala219. This examination of the
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Figure 15: Structural details of the PfENR:JPC-2153 complex. X-ray structure
of JPC-2153 in the PfENR active site (ribbon and tube with key residues in stick
format) with bound co-factor (space-fill). The urea carbonyl moiety is hydrogen
bonded to the Asn218 side chain N-H group and the Ala219 main chain N-H.

4’-position will aid future efforts guided towards improving the potency and phar-

macokinetic profiles of this diarylether class of anti-malarials.

GlaxoSmithKline Compounds

A large scale high throughput screen was initiated with GlaxoSmithKline, using

PfENR as the drug-screening target. A class of propriety inhibitors from their screens

were identified as effective, and all of these compounds were confirmed as sub micro-

molar inhibitors against PfENR. These were built and docked into the active sites of
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PfENR with the docking program GOLD Jones et al. (1997). SB508982 was one of

the initial hits identified from the target-focused screening. The molecular modeling

studies carried out with this derivative suggested that this class of compounds could

interact by forming a hydrogen bond with Tyr267 at the PfENR active site. In this

scaffold, there is a potential hydrogen bonding interaction with Tyr267, a possible

hydrogen bond to Tyr277, and a π-stacking interaction between the amide and the

nicotinamide portion of NAD+. An acrylamide is needed to enforce a planar dispo-

sition within the active site, to direct a terminal benzyl ring towards the potential

hydrogen bonding interactions with Ala219 and Asn218.

SB643152, SB628749, and SB618268

The compounds SB643152, SB628749, and SB618268 were based on aminopyridine

compounds (Figure 16) first reported as low micromolar inhibitors against Staphy-

lococcus aureus and Haemophilus influenzae FabI (IC50= 16.5 and 6.9 µM, respec-

tively) (Miller et al., 2002). The aminopyridine derivatives appear to have a mode

of binding similar to that of triclosan. The linking amides in SB643152, SB628749,

and SB618268 are engaged in the same interactions as the phenolic ring of triclosan,

namely, π-ring stacking with the nicotinamide of the NAD+ co-factor, with the car-

bonyl oxygen interacting with Tyr277of PfENR as well as the ribose 2’-hydroxyl from

the co-factor. In the x-ray crystal structure, the phenol subunit of triclosan appears

to function as a transition state enolate mimetic, taking the place of the enolate

that results from hydride delivery from the cofactor to the β- position of the natural

substrate, crotonoyl-ACP.

Previous studies from Miller et al. implied that the indole position was the

minimal pharmacokinetic moiety necessary for inhibition. Therefore, modifications

to the rest of the moiety were considered for synthesis. The idea was to maximize
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Figure 16: Chemical structure of the GSK aminopyridine lead compound. This
GlaxoSmithKline aminopyridine compound was identified in high throughput screens
against the enoyl-ACP reductases for Staphylococcus aureus and Haemophilus in-
fluenzae. Derivatives of this backbone were synthesized using the active site of
PfENR to guide design of the inhibitors.

interactions with the phosphate oxygens on NAD+, however, this was not the result.

Instead, the compounds make additional hydrogen bonding interactions with the

backbone of PfENR.

GSK508982, GSK585309, GSK626808, and GSK626814

The proprietary GlaxoSmithKline compounds GSK508982, GSK585309, GSK626808,

and GSK626814 (structures not shown) were based upon a similar aminopyridine

backbone, with minor substitutions in the terminal benzyl ring. Several of these

inhibitors were soaked into PfENR:NADH binary crystals, and after 14 days of in-

cubation, data was collected. The structure of PfENR:NAD+:GSK585309 diffracted

the best of all the inhibitors, to a maximum resolution of 2.2 Å. This data set was

well refined with a maximum resolution of 2.2 Å and good statistics. The central

amide in the inhibitor is within hydrogen bonding distance of the catalytic residue

Tyr277 (2.7 Å) and the 2’-hydroxyl group of the NAD+co-factor (2.8 Å). The terminal

aniline of the inhibitor may participate in weak hydrogen bonding interactions with
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the backbone carbonyl of Ala219, with a distance of 3.0 Å. On the opposite end of

the inhibitor, the chloro-phenoxy ring protrudes into a hydrophobic pocket flanked

by Phe368, Ala372, Val274, and Pro314. The oxygen between the benzyl and piperidine

rings does not appear to interact with Tyr267, approaching within a distance of 4.1

Å at its closest point. As the only substitutions occurred in the terminal benzyl ring

that projects towards the exterior of the enzyme, the other GSK inhibitors did not

exhibit significant deviation of position within the active site of PfENR.

High Throughput Screens

In parallel with experiments centered around derivatives of the triclosan scaffold, high

throughput screens were initiated to identify lead compounds with broader chemical

diversity. The experiments incorporated both in vitro high throughput screening

assays as well as virtual screening techniques directed against PfENR.

In vitro Enzyme Assays

High throughput screening of a 50,000 compound library (ChemDiv) from Chemical

Diversity Labs was undertaken at Southern Research Institute. The 50,000 com-

pounds within the library were screened at 10 µM inhibitor concentration, and of

these, 350 selected based on several criteria. First of all, due to several anomalies

over the course of the screen, we filtered the initial results by selecting only those

compounds that inhibited PfENR greater than 20% and had χ2 values of 0.99 or

greater. This step was added to ensure that any potential hits stemmed from actual

measurement of initial velocity, instead of unusual occurrences or fluctuations in the

wells during absorbance readings. This resulted in a subset of approximately 1,000

compounds meeting both criteria. From the 1,000 compounds that passed this step

of filtering, the top 350 compounds were selected and purchased, based on greatest
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enzyme inhibition and adherence to Lipinski rules. The Lipinski rules or “the rule of

5” predicts that poor absorption or permeation is more likely when there are more

than 5 hydrogen-bond donors, 10 hydrogen-bond acceptors, the molecular weight is

greater than 500, and the calculated Log P (ClogP, a measure of solubility) is greater

than 5. If the compound violated two or more of these rules, the compound was not

included in this final set. This resulted in a set of 300 compounds being purchased,

possessing enzyme inhibition of between 46-100% at 10 µM. Of this pared down set,

55 were randomly selected and screened in in vitro enzyme assays at 10 µM to con-

firm the results of the initial high throughput screen. The HTS screen performed at

Southern Research Institute and the in vitro screen performed at Texas A&M gave

considerably different results for the same compounds, as summarized in Table 15

. The distribution was also noticeably in disagreement, with the HTS conducted at

Southern Research Institute yielding much more potent inhibitors, with all 55 com-

pounds tested inhibiting between 40-100%. Only 7 of the 55 compounds were within

this range in the in vitro enzyme assays performed at Texas A&M. There was not a

discernible pattern to normalize one assay to another. Several problems were noted

during the execution of these assays. First, the ChemDiv compounds were not all

completely soluble in the HTS plates, leading to fluctuating and erroneous readings

from the inhibitor suspension remaining in the well. Second, the crotonoyl-CoA sub-

strate originated from two different sources, leaving open the possibility that early

runs would not be comparable to later runs. Third, equipment problems were iden-

tified that resulted in an incorrect amount of dispensed enzyme, as well as technical

glitches with the armature used to automatically change plates. Fourth, the triclosan

controls were manually added, and it was evident that there were inaccuracies here

because the percent inhibition varied substantially from plate to plate. Finally, the

technical problems caused the high-throughput screen to be drawn out over a period
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of seven months, and there is no guarantee that the enzyme provided during this

time had equivalent activity.

MolSoft-ICM Virtual Screening

Molsoft-ICM docking software was utilized to search and score 336,000 compounds

from Chembridge. From 336,000 compounds, the program selected the top 750

docked compounds. These top 750 scoring compounds were submitted for absorp-

tion, distribution, metabolism, and excretion (ADME) prediction by preADME

(http://preadme.bmdrc.org/preadme), and two measures indicating cell permeabil-

ity, Caco-2 and MDCK, were considered for further filtering of results. This program

can predict permeability for Caco-2 cell (measures the net flux of a compound over a

cellular barrier), MDCK cell and BBB (blood-brain barrier), HIA (human intestinal

absorption), skin permeability, and plasma protein binding. The model for pre-

dicting Caco-2 is based on more data points, and is reportedly more accurate than

MDCK. Selecting for compounds with high Caco-2 scores (>7) yielded a list of 260

compounds. Further screening of that list for compounds with high MDCK scores

(>50) yielded a list of 169 compounds. These 169 compounds were ordered from

ChemBridge, and a subset of 88 compounds were randomly selected and screened at

10 µM of inhibitor in PfENR in vitro enzyme assays. These 88 compounds weakly

inhibited PfENR, with only 4 compounds decreasing enzyme activity by over 10%.

Because of these lackluster results at 10 µM inhibitor, a more comprehensive

screen was performed. These initial screens were repeated one time at 50 µM of

inhibitor with the entire set of 169 compounds. 95 of these compounds inhibited

PfENR activity 10% or less, 31 compounds inhibited PfENR between 10-20%, 14

compounds inhibited PfENR between 20-30%, 11 compounds between 30-40%, 2

compounds between 40-50%, and 8 compounds between 50-60%. The remaining 6
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Table 15: Selected Chemical Diversity compounds, assay comparison
ChemDiv ID SRI % Inhibition TAMU % Inhibition
2534-6551 100 -15
0272-0165 100 -4
3448-6741 100 0.8
4593-2742 100 1.8
4424-0922 100 3.3
3578-0866 100 4.6
3330-2686 100 5.3
2534-6536 100 9.0
3330-2700 100 11.0
4424-0668 100 26.0
4341-0545 100 30.4
3572-6013 100 34.0
1694-0068 100 84.2
4490-0017 85.7 15.4
2028-0074 73.0 78.1
4297-0723 71.3 33.3
4413-0020 68.6 -8.0
0488-0124 67.2 -4.1
K889-0658 66.3 -0.2
3699-1233 64.6 27.9
3336-0955 64.0 11.5
4393-0144 63.9 -1.0
K205-1682 63.4 10.0
1180-0297 63.2 21.5
4249-0088 60.2 3.0
4491-0983 59.5 -3.4
4300-0119 58.8 35.5
3232-0432 57.4 -2.0
3132-0181 57.2 1.3
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Figure 17: PfENR docked with ChemBridge compound 7682275. This compound
maintains an element of stacking with the NAD+ co-factor, but does not appear
to form any hydrogen bonds. The hydrogen bonding distances and geometries, to
either the co-factor or Tyr277, are unfavorable. The dichloro-substituted ring is also
predicted to sterically interfere with Tyr267, making it a less than ideal candidate for
an initial drug design scaffold.

compounds inhibited PfENR between 75-97% and were subjected to IC50 determi-

nations (Table 16). Only one compound, 7682275, exhibited an IC50 value less than

50 µM, at 33 µM. This compound was soaked into PfENR:NAD+ binary crystals

for 14 days, but was not present in the crystal structure after data collection. This

compound maintains an element of stacking with the NAD+ co-factor, but does not

appear to form any hydrogen bonds. The hydrogen bonding distances and geome-

tries, to either the co-factor or Tyr277, are unfavorable. The dichloro-substituted

ring is also predicted to sterically interfere with Tyr267, making it a less than ideal

candidate for an initial drug design scaffold.
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Table 16: Molsoft-ICM ChemBridge compounds, screen results
Compound Structure PfENR IC50(µM)

7682275 33.0

5217961 57.5

5964423 58.4

6401523 91.6

6842511 101.6

5344752 112.7
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ZINC Virtual Screening

Virtual High Throughput Screening (vHTS) experiments were conducted with FlexX

docking software and the ZINC 3.3 million compound library of commercially avail-

able small molecules (Irwin and Shoichet, 2005). This database was advantageous

for several reasons: (i) all chemicals are commercially available through various ven-

dors; (ii) biologically relevant protonation states have already been assigned; (iii)

chemicals are annotated with molecular weight, calculated logP values, and number

of rotatable bonds; (iv) compounds are prepared in multiple protonation states and

tautomeric forms; (v) database has been pre-filtered to conform to current opinion in

the field about eligible compounds form screening; (vi) the database is free. The crys-

tal structure of the ternary complex PfENR:NAD+:triclosan was used for vHTS. All

crystallographic waters were removed. Atom typing of protein residues and addition

of hydrogens to them was carried out by reference to standard Biopolymer libraries

keyed to residue type available in SYBYL 7.0. Terminal rotors such as methyl and

hydroxyl groups were then relaxed to avoid distortion of scores by spurious steric

clashes with the added hydrogen atoms. Charges were assigned to both protein and

ligand atoms as described by Gasteiger and Marsili. Binding sites were defined for

all scoring functions as including all atoms in protein residues where at least one

atom was within 6.5 angstroms of any atom in the inhibitor, triclosan, as found

in the parent crystal structure. Triclosan was then removed from the model and

the effective binary complex of PfENR and NADH was used for docking purposes.

FlexX docking runs utilized the default parameters provided in SYBYL 7.0. After-

wards, they were scored with the consensus scoring technique (Clark et al., 2002) to

give a score in five separate categories, namely FlexX, DOCK, PMF, GOLD, and

ChemScore. The FlexX scoring function considered the number of rotatable bonds
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in the ligand, hydrogen bonds (including atom types and geometry of interaction),

ion pairing, aromatic interactions, and the lipophilic contact energy (Rarey et al.,

1996). DOCK considered both electrostatic and hydrophobic contributions to the

binding energy, but did not include entropic terms (Meng et al., 1993). The PMF

scoring function was simply a summation over all pairwise interaction terms (Muegge

and Martin, 1999). The magnitude and sign of each interaction potential was based

on the atom types of the interacting pair and the intervening distance. Potential

curves for each atom type pairing were derived from a survey of crystal structures

retrieved from the Protein Data Bank. The GOLD evaluation function was the sum

of hydrogen bonding stabilization energy calculated from donor/acceptor pair atom

types and geometries; internal van der Waals energy for the ligand conformer in

question; and the strength of steric interactions between ligand and protein (Jones

et al., 1995, 1997). ChemScore used four terms that estimate contributions to bind-

ing energy from lipophilic interactions, metal-ligand binding, hydrogen bonding, and

loss of ligand flexibility (Eldridge et al., 1997). The concept of consensus scoring

was to identify those ligand conformations that have the highest score in most of the

scoring functions. Subsequently, the top candidates were selected as the intersection

of the top scoring 2% of each of the five categories. This resulted in 68 hits, which

were manually inspected before obtaining these compounds from each vendor for in

vitro enzyme assays. The results are given below in Table 17. For each category,

lower numbers (more negative) represent better scores. Triclosan was docked and

scores calculated for comparison, but was not selected amongst the top hits via the

consensus scoring technique.

Manual inspection of the docked compounds revealed some points of interest.

First, only 4 of the 68 docked compounds (selected compounds in Figure 18)

that were visualized with the molecular modeling program SPOCK retained
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Table 17: Selected ZINC compounds, docking comparison
ZINC ID FlexX DOCK PMF GOLD ChemScore
Triclosan -8.18 -498.80 -22.95 -55.08 -14.09
68769 -20.13 -2182.79 -10.19 -210.47 -17.99
105449 -20.59 -2180.37 -10.12 -213.44 -18.30
105523 -19.53 -2176.66 -9.20 -201.11 -17.66
414098 -20.87 -2316.14 -16.88 -243.79 -23.87
1911861 -29.80 -281.92 -10.54 -208.84 -17.93
152008 -17.89 -2339.46 -8.33 -240.14 -19.89
246330 -18.62 -3719.36 -10.80 -269.31 -22.05
279738 -10.98 -3536.22 -8.31 -215.03 -17.61
152008 -17.89 -2339.46 -8.33 -240.14 -19.89
488570 -28.09 -2258.78 43.73 -236.81 -18.01
537682 -28.63 -2242.43 -12.30 -219.49 -14.59
618454 -10.63 -3808.40 -18.42 -234.28 -18.02
703599 -31.44 -3852.98 21.23 -234.24 -18.19
741814 -30.04 -2187.29 63.88 -239.18 -19.21
752290 -13.70 -2370.04 -8.49 -211.60 -18.31
793428 -28.45 -3858.68 53.10 -210.28 -18.09
858779 -11.97 -3696.84 -10.01 -276.71 -19.16
920638 -32.37 -2210.12 55.92 -272.07 -18.55
1010182 -31.88 -2196.22 52.55 -282.87 -19.71
1010193 -29.38 -2191.45 38.56 -260.66 -20.53
1010201 -29.31 -2323.91 32.14 -288.36 -22.23
1157902 -11.94 -3656.32 -8.38 -273.26 -20.79
1205257 -30.44 -3795.04 7.67 -216.55 -19.04
1226158 -13.61 -2369.98 -8.50 -226.21 -18.35
1236811 -13.80 -3577.27 -6.82 -250.90 -17.47
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Figure 18: Stick models of ZINC lead compounds. A, B, C, and D correspond to
ZINC compounds 67689, 105549, 105523, and 1911861, respectively.
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atoms capable of hydrogen-bonding with the catalytic residue Tyr277. Three of these

compounds, 68769, 105449, and 105523 (Figure 19) were based on the same back-

bone, and had small changes in the terminal aromatic ring. The other ZINC com-

pound was 1911861 (Figure 20), which could possibly form an additional edge-to-face

ring stacking interaction with Tyr267. Of the complete set of 68 top hits, FlexX did

however preserve the aromatic ring-stacking property with the nicotinamide moiety

of the NADH co-factor in virtually every case, and also selected compounds that were

within hydrogen bonding distance of the PfENR backbone between residues 217-219.

FlexX also seemed to prefer molecules that would form hydrogen bonds with the co-

factor, and molecules that would completely fill the binding cavity. FlexX had one

outlier in this group, ZINC 1346103, which did not bind to the active site at all. In-

stead, it was docked to the outer perimeter of the protein. None of the hits protruded

into the hydrophobic cavity that isoniazid occupies. No compounds were docked that

took advantage of both the ring-stacking interactions as well as hydrogen-bonds or

van der Waals interactions to the residues 217-219. Compounds of interest were then

ordered from the vendor for future in vitro enzyme assays.

Conclusion

Our systematic modification of triclosan scaffolds, as well as co-crystal structures

with the GlaxoSmithKline compounds, helps shed light on the possibilities for mod-

ification to the triclosan scaffold and its impact on the surrounding residues. While

we did not achieve a more potent triclosan derivative, we have discerned areas of

the triclosan scaffold where modifications are tolerated to increase the value of the

pharmacokinetic profile, as well as characteristics necessary to maintain inhibitor

potency, such as hydrogen bonding to Tyr277, aromatic ring stacking with co-factor,
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Figure 19: PfENR:NADH docked with ZINC compound 68769. ZINC 68769 is indi-
cated in yellow carbons. This compound maintains the conserved hydrogen bonding
network common to triclosan as well as the aromatic ring stacking with the nicoti-
namide moiety of the co-factor. Compounds 105449 and 105523 were docked in a
similar fashion, with minor changes on the terminal aromatic ring facing the back-
bone of PfENR.
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Figure 20: PfENR:NADH docked with ZINC compound 1911861. ZINC 1911861
is indicated in yellow carbons. This compound maintains the conserved hydrogen
bonding network common to triclosan as well as the aromatic ring stacking with
the nicotinamide moiety of the co-factor. There’s a possible edge-to-face stacking
interaction between ZINC 1911861 and Tyr267.
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and hydrophobic interactions with the remainder of the active site.

Our data corresponds nicely with studies conducted by Kapoor et al. While we

approached the problem of understanding the critical interactions within the binding

site by modifying triclosan, Kapoor et al. modified the protein to measure the net

effects of mutations at several positions. They made the following mutations at

Ala217, to A217V and A217G, changes that would be predicted to affect the B ring

of triclosan. The A217V mutation resulted in a reduced affinity in excess of 7,700-

fold. Thus it seems reasonable to conclude that in the case of PfENR, the mutation

of Ala217 to Val leads to unacceptable steric contacts between the side chain of valine

and the B ring of triclosan, leading to reduced affinity of triclosan for the enzyme.

The 2’-chloro atom of ring B of triclosan is positioned close to the side chain of

Ala217. The A217G mutation resulted in a reduced affinity of 19-fold with respect

to the wild-type. The decrease in the affinity of the A217G mutant for triclosan

could be due to loss of hydrophobic contacts between triclosan and the side chain of

alanine. In contrast, the E. coli enzyme has a glycine at the corresponding position,

and its replacement by alanine reduced the affinity considerably for triclosan. Thus,

despite having nearly identical tertiary structure and the binding pocket, the malaria

enzyme differs drastically from its bacterial counterpart.

Kapoor et al. also introduced mutations at the Asn218 position, from N218A and

N218D. Ring B of triclosan was located in a pocket interacting with the pyrophos-

phate and nicotinamide moieties of NAD+, by peptide backbone residues 217-231

and by side chains of Asn218, Val222, Tyr277, and Met281. The mutation of Asn219 to

aspartic acid (N218D) led to a 50-fold decrease in the affinity of the malarial enzyme

for triclosan. The mutation M281T had 333-fold reduced affinity for triclosan. This

could be caused by the loss of van der Waals contacts between the 4-chloro atom of

ring B and hydrophobic side chain of Met281. In order to rule out the possibility that
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the addition of the β-branched threonine could introduce indirect effects due to the

perturbation of the local structure, the M281A mutant was made, and showed Ki

similar to M281T. Our crystal structure data with the 4’-position triclosan inhibitors

also revealed the significance of interactions with Asn218, as well as Ala219.

As observed from the crystal structure of the ternary complex of P. falciparum

with triclosan and NAD+, ring A of triclosan makes van der Waals interactions with

the side chain of Phe368. Also the 4-chloro atom of ring A of triclosan makes several

van der Waals contacts with Phe368. The F368A mutation and F368I mutation led to

240- and 210-fold (respectively) decreases in the affinity of enzyme for the inhibitor,

highlighting the importance of stacking and the van der Waals interactions between

ring A of triclosan and Phe368 of the enzyme. Kapoor et al. also indicated that

the loss of the ring B chlorines substantially decreases the potency of triclosan. The

Ala217 mutations project directly into ring B of triclosan, while the N218 mutations

are near the 4’-position of the B ring, an area we identified as a possible new inter-

action area for hydrogen bonds. Met281 lies near one of the chlorines on the B ring,

suggesting the loss of hydrophobic interactions is also detrimental. Phe368 occupies

an area near the A ring of triclosan and could possibly flip out of the way, suggesting

that Phe368 ring stacks or forms hydrophobic interactions with something.

Thus, to conclude, the strong affinity of PfENR for triclosan is discernible via

specific residues at the catalytic center of the protein. Because of the subtle but

significant contributions observed in these studies for the contribution of key residues

to the binding affinity of PfENR for triclosan, in contrast to its bacterial counterparts,

it should be possible to design better and specific analogs of triclosan as antimalarial

agents that do not target the host pathways. Our assays of hundreds of triclosan

analogs, along with Kapoor et al. investigations into PfENR mutations, help to

define which interactions are critical to inhibitor potency, and serve as a basis for
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future drug studies.
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CHAPTER IV

CRYSTALLOGRAPHIC STUDIES OF PBENR

Plasmodium berghei Enoyl-ACP Reductase

Malarial parasites are extremely species specific. Plasmodial species able to infect

humans are unable to infect non-primate animal models, posing problems for trans-

ferring knowledge from in vitro to in vivo experiments. However, recently published

studies demonstrated a high level of conservation of genome organization between

rodent and human plasmodial parasites. Comparative mapping of genes located in

the central regions of the chromosomes has shown that both linkage and gene or-

der appear to be well conserved between human and rodent parasites, resulting in

significant level of homology between these species. These similarities between hu-

man and rodent Plasmodial parasites have significant consequences and benefits for

anti-malarial drug research, providing researchers with a model organism from which

critical information can be learned. Compounds that are effective against the P. fal-

ciparum enoyl-ACP reductase in vitro could be subjected to testing in the murine

model, with a reasonable expectation that the results would be relevant to humans.

The similarity also provides a cost-effective and abundant experimental source for

further studies, as data obtained from our understanding of malaria in rodents can

be used to combat malaria in humans. To this end, we embarked upon determining

the structure of Plasmodium berghei enoyl-ACP reductase (PbENR).
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Results and Discussion

PbENR Sequence Characteristics

pbenr encoded a predicted protein of 396 amino acids with an expected molecular

mass of 44.8 kDa. Sequence alignments (Figure 21) revealed that PbENR showed

76% overall sequence identity to PfENR when comparing the mature enzyme se-

quences. Regions of significant homology with PfENR were interrupted by a 15-

amino acid deletion (residues 333-348 in PfENR are absent in PbENR) and a 6-

amino acid deletion (residues 358-363 in PfENR are absent in PbENR), in a segment

known as the low-complexity region in PfENR (residues 325-368). PbENR has a

long N-terminal extension (similar in length to plant ENRs) that is characteristic

of bipartite N-terminal pre-sequences found in Plasmodium and Toxoplasma para-

site proteins targeted to the apicoplast (Waller et al., 1998, 2000). The apicoplast

targeting sequence prediction programs PATS (Zuegge et al., 2001) and PlasmoAP

(Foth et al., 2003) predicted the first 23 N-terminal amino acids to be an apicoplast

targeting sequence, with the following ~51 residues are the adjacent transit peptide.

This segment of polypeptide shared little similarity with the bipartite N-terminal

pre-sequence found in the Plasmodium falciparum ENR protein. Using prediction

programs SIGNALP (Bendtsen et al., 2004) and PSORT (Nakai and Horton, 1999), a

putative cleavage site for the signal peptide could be detected between residues Cys21

and Phe22 (Claros et al., 1997; Nielsen et al., 1997). Sequence alignments revealed

220 completely conserved residues in the PbENR sequence when compared with the

closely related ENRs of P. falciparum and P. vivax. Interestingly, the three available

sequenced Plasmodial ENR proteins (Plasmodium berghei, Plasmodium falciparum,

and Plasmodium vivax ) have no significant identity over the N-terminal bi-partite

extension or in the low complexity region, but are well conserved in the remainder
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Figure 21: Sequence alignment of PfENR, PbENR, and PvENR. The proteins Plas-
modium falciparum ENR, Plasmodium berghei ENR, and Plasmodium vivax ENR
show great conservation, with a few notable differences. Completely conserved
residues are indicated in green. Note the differing low-complexity region lengths,
indicated in red underline. PbENR lacks approximately 30 residues that are present
in PfENR. The N-terminal bi-partite extensions also show little sequence conserva-
tion.

of the sequence.

Tertiary Structure

The tertiary structure of PbENR is presented in Figure 4, and is virtually identical

to that of PfENR. Overall, the structure was reminiscent of the Rossmann fold

(Rossmann et al., 1974) and was similar to all other structurally defined homologous

enzymes. The PbENR subunit comprised a single domain of 55 x 50 x 50 Å (Figure

4). Each subunit was composed of seven β-strands (β1-β7) that formed a parallel

β-sheet and nine α-helices (α1-α9) that were connected to the β-strands by a number
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of loops of varying length. The parallel β-sheet was flanked by helices α1, α2, α4, α5,

α6, and α9, with α3 arranged along the top of α2 and α4. Helix α8 was located at the

C-termini of strands β6 and β7. The aforementioned 10-amino acid low complexity

insertion in PbENR sequence localized to an important loop region (α7 and α8), near

the catalytic center of the protein. This region was thought to be a determinant in

substrate specificity, because it participates in acyl substrate binding, as shown in

the M. tuberculosis structure in which the bound fatty acyl substrate was held in

place by the substrate binding loop (Rozwarski et al., 1999). Only 3 amino acids

of the low complexity insertion were visible in the electron density maps, indicating

that most of this region was disordered even in the presence of bound co-factor.

Nonetheless, the last visible amino acids just before (Lys332) and after (Tyr349) the

low complexity region were in virtually the exact same position as the comparable

loop residues in the E. coli enzyme structure. Earlier investigations into E. coli, B.

napus, and M. tuberculosis ENRs have found a correlation between the length of the

substrate binding loop and the fatty acyl substrate chain length (Rozwarski et al.,

1999). If this held for P. berghei ENR, one could expect that long-chain fatty acids

would serve as substrate and, by analogy to the M. tuberculosis ENR, the PbENR

would not use very short-chain acyl-CoAs as substrate. However, kinetic studies

indicated that the P. berghei ENR can utilize crotonoyl-CoA (C4:1), much like P.

falciparum ENR which contains a substantially longer low-complexity insertion of

43 amino acids. The 43 amino acid low-complexity insertion in PfENR and the 13

amino acid insertion in PbENR (compared to E. coli FabI) do not appear to affect

the substrate chain-length specificity. This observation, coupled with the unusually

high polar residue content, raises questions about the role of the low-complexity

insertion in Plasmodial enzymes.
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Quaternary Structure

In gel filtration studies, PbENR formed a tetramer in solution, in agreement with all

other bacterial and plant ENRs reported to date. In support of this, the packing in

the crystal showed an obvious homotetramer possessing internal 222 symmetry. The

estimated dimensions for the tetramer were 60 x 85 x 85 Å . The solvent-accessible

surface areas for the subunits and the tetramer were calculated using DSSP (Kabsch

and Sander, 1983) and were determined to be about 15,000 Å2 for each subunit and

approximately 43,000 Å2 for the tetramer. Approximately 1600 Å2 (11%) of the

surface area of subunit A was buried, making intermolecular contacts with subunit

B, 1700 Å2 (12%) with subunit C, and 900 Å2 (6%) with subunit D. Thus, the

total surface area involved in intermolecular contacts of each subunit was 4200 Å2

or 29%. Again, these figures are virtually identical to those of PfENR. This type

of organization for PbENR was comparable to the crystal structures elucidated for

enoyl-ACP reductases from E. coli (Baldock et al., 1996), B. napus (Rafferty et al.,

1995), M. tuberculosis (Rozwarski et al., 1999), and Plasmodium falciparum (Perozzo

et al., 2002).

Analysis of the Nucleotide Binding Site

The PbENR:NADH binary complex showed excellent electron density for the co-

factor NAD+ and was localized to the enzyme in an extended conformation at the

C-terminal end of the β-sheet with both ribose sugar rings found as C2’-endo con-

formers and the nicotinamide moiety in the syn conformation . The adenine ring

was located in a pocket on the surface of the protein, formed by the side chains of

Trp114, Leu152, Ala154, Gly155, Asn203 and the main chain between residues Leu152

and Asp153. Hydrogen bonds were formed between the adenine nitrogen atoms at
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position N1 with the peptide nitrogen atom of Ala154 and at position N6 with the side

chain of Asp153. In PbENR, the 2’-hydroxyl group of the adenine ribose occupied

a small depression flanked by Gly89, Trp114 and Val117, which resulted in a tight fit

for the NAD+/NADH co-factor. This spatial arrangement leaves no room for the

extra phosphate group of NADPH and is consistent with the notion that NADH was

a much more efficient co-factor than NADPH for PbENR function. The pyrophos-

phate moiety of NAD+(NADH) lay close to the C-terminal part of the β-sheet and

interacted with the glycine-rich region of the loop connecting β1 and α1, with α1

being the nucleotide binding helix. Contacts through hydrogen bonds were made by

the pyrophosphate oxygen atoms with the peptide nitrogen of Tyr111 and, mediated

by a solvent molecule, with the main-chain carbonyl of Gly89, the peptide nitrogen of

Gly95 and the side-chain hydroxyl of Ser200. The co-factor was bound by this series

of hydrogen bonds and was not further supported by positively charged side chains

close to the nucleotide binding site. The nicotinamide binding pocket was composed

of the side chains of Tyr94, Leu250, Tyr252, Tyr262, Ala297, Gly298, Pro299, Leu300, and

Ile333. Both 2’- and 3’-ribose hydroxyl groups hydrogen-bonded to the amino group

of the Lys270, whereas only the 3’-group interacted with a solvent molecule that was

contacted by the side chain of His199. The nicotinamide ring was completely ordered

on the enzyme, where it interacted via specific hydrogen bonds formed by the oxy-

gen and nitrogen of the carboxamide moiety and the Leu300 peptide nitrogen and

co-factor pyrophosphate moiety. These interactions appeared to stabilize the packing

of the nicotinamide ring against the phenolic ring of Tyr111, exposing the B-face to

the active site. Thus, the co-factor adopted the same conformation for stereospecific

hydride transfer via the pro-4S hydrogen of NADH as that observed with E. coli, B.

napus, M. tuberculosis, and Plasmodium falciparum ENRs.
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Location of the Fatty-Acyl Binding Pocket

The binding site for the fatty acyl portion of the substrate was built with hydropho-

bic residues that were derived primarily from the substrate binding loop. The ENR

structures from P. falciparum, B. napus, M. tuberculosis, and E. coli showed a sim-

ilar patch of predominantly hydrophobic side chains adjacent to the position of the

nicotinamide ring and the fatty acid chain binding area, as would be expected with

a fatty acyl binding enzyme. With PbENR, the corresponding amino acids and

side chains flanking the putative binding site were Tyr252, Gly261, Tyr262, Met266,

Pro299, Ala304, Ala305, Ala307, Ile308, Ile333, and Ala336. Most residues were located

in helices α7 and α8 and formed a hydrophobic finger-shaped cavity. One side of

the cavity was accessible to solvent. Based on volumetric measurements of the fatty

acyl binding cavity in the PbENR:NADH binary complex and structural similarity

to PfENR, there was only enough space to accommodate a substrate of six to eight

carbon atoms in length.

Analysis of the Triclosan Binding Site

Triclosan has been previously demonstrated to inhibit a variety of ENR from homol-

ogous organisms, including the closely related Plasmodium falciparum ENR. To con-

firm the similarities between PbENR and PfENR, we co-crystallized PbENR with tri-

closan and determined the crystal structure. The crystal structure of PbENR solved

with protein incubated with NAD+ and triclosan (Figure 22) revealed the mode of

triclosan binding. Comparison of the P. berghei ENR:NAD+:triclosan structure with

the closely related Plasmodium falciparum enzyme as well as the corresponding E.

coli and B. napus structures demonstrated that, for PbENR, the binding mode for

triclosan was identical, showing the same aromatic ring stacking interaction with the
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Figure 22: Structural details of the PbENR binding site. Indicated in blue wire
frame is a 2Fo- Fc electron density map centered around the triclosan and NAD+

co-factor within the PbENR active site. The presence of triclosan is clearly indicated
within the electron density map. The mode of binding of triclosan is identical to that
of PfENR complexed with triclosan.
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nicotinamide ring of NAD+ and comparable hydrogen-bonding pattern with the 2’-

hydroxyl group of the nicotinamide ribose and with Tyr262. Ring A (the phenol ring)

of the inhibitor interacted face-to-face with the nicotinamide ring of NAD+ allowing

π-cation interactions. The same ring formed additional van der Waals interactions

with the side chains of Tyr252, Tyr262, Pro299, Phe322, and Ile323. The phenolic hy-

droxyl hydrogen-bonded to the 2’-hydroxyl moiety of the nicotinamide ribose and the

oxygen atom of Tyr262, and the amino nitrogen of Lys270 was within 4.6 Å. These

residues are completely conserved in all known ENRs and have been implicated in

the enzyme’s catalytic mechanism (Rafferty et al., 1995; Parikh et al., 1999). The

4-chloro atom of ring A was surrounded by mainly hydrophobic residues making van

der Waals contacts with the side chains of Tyr252, Pro299, and Phe332. The ether

oxygen atom of triclosan interacted with the 2’-hydroxyl group of the nicotinamide

ribose, and it approached to within 3.65 Å of one of the oxygen atoms of the nicoti-

namide ribose phosphate group. Ring B (2,4-dichlorophenoxy ring) of triclosan was

located in a pocket bounded by the pyrophosphate and nicotinamide moieties of

NAD+ , by the peptide backbone residues 202-216 and by the side chains of Asn203,

Val207, Tyr262, and Met266. Although the 4-chloro atom of ring B was placed adja-

cent to the side chains of Val207 and Met266 and residues 203-204, the 2-chloro atom

was surrounded by the α-carbon atom, the side chain of Ala202, and atoms of the

nicotinamide ribose pyrophosphate moiety. Superposition of the binary and ternary

complex structures revealed subtle conformational changes in the protein upon in-

hibitor binding, with the most pronounced change being a slight shift of helix α7 by

0.5 Å toward the solvent.
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Comparison to PfENR

The tertiary structure of PbENR is virtually identical to that of PfENR (Figure 23).

The only significant differences are within the N-terminal bipartite pre-sequence,

which is cleaved from the mature enzyme, and a smaller low-complexity region within

the substrate-binding loop of PbENR, between helices α7 and α8. There is also a

small, two residue insertion between loop α3 and α4. However, these differences do

not cause significant differences in the binding of triclosan or NADH, giving credence

to the possibility that inhibitors effective against PbENR would also have utility

against PfENR, due to the extremely high level of sequence identity and structural

similarity (less that 0.6 angstroms r.m.s.d.). This would allow researchers to cir-

cumvent the problems of extremely high species specificity posed by the Plasmodial

parasites and more directly apply their research towards treating malaria infections

of humans. Researcher could screen inhibitors against PfENR in in vitro enzyme as-

says, and test effective candidates in in vivo experiments against mice infected with

Plasmodium berghei, with a reasonable expectation that the mouse model closely

approximated human Plasmodium falciparum infection. This information would sig-

nificantly benefit malaria research in humans.
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Figure 23: Comparison of PbENR and PfENR structures with co-factor. Plasmodium
berghei ENR, indicated in blue ribbons, and Plasmodium falciparum ENR, indicated
in yellow ribbons are virtually identical when superimposed, with a root mean square
deviation of 0.56 angstroms. NADH co-factor is represented with spheres, and the
atoms are colored by element.
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CHAPTER V

INTRODUCTION TO TUBERCULOSIS

History of Tuberculosis

The disease tuberculosis (TB), historically referred to as consumption, wasting dis-

ease, phthisis, or white death, has afflicted humans for thousands of years. The

earliest recorded evidence of tuberculosis was discovered in the 10,000 year old skele-

tal remains in Germany. Fragments of spinal columns of Egyptian mummies dating

back to 2400 B.C. showed definitive signs of tubercular decay. The term phthisis ap-

peared first in Greek literature. Around 460 B.C., the Greek physician Hippocrates

identified phthisis as the most widespread disease of the times, and noted that it was

almost always fatal. Due to common phthisis-related fatalities, he admonished his

colleagues against visiting victims in late stages of the disease.

Exact pathological and anatomical descriptions of the disease began to appear in

the seventeenth century. In his Opera Medica of 1679, the Dutch physician Franciscus

Sylvius was the first to identify actual tubercles as a consistent and characteristic

change in the lungs and other areas of consumptive patients. He also described

their progression to abscesses and cavities. In 1702, French researcher John Jacobus

Manget described the pathological features of miliary tuberculosis, an acute form

of tuberculosis that is characterized by very small tubercles in various body organs,

caused by the spread of tubercle bacilli through the bloodstream. The earliest refer-

ences to the infectious nature of the disease appeared in seventeenth century Italian

medical literature. An edict issued by the Republic of Lucca in 1699 recommended

that personal effects belonging to the victim be destroyed after a tuberculosis-related
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fatality, followed by quarantine of the deceased individual’s home.

In 1720, the English physician Benjamin Marten was the first to conjecture, in

his publication, A New Theory of Consumption, that tuberculosis could be caused

by microorganisms and transmitted through shared foods or close contact. He pos-

tulated that microorganisms, once established within the host, could generate the

lesions and symptoms of the disease. He stated, moreover, that prolonged exposure

or close contact with individuals manifesting symptoms of tuberculosis was sufficient

to transmit the disease to a healthy person.

It was not until the 1800s that tuberculosis could begin to be treated. In contrast

to the significant level of understanding about the process of consumption, which en-

abled prevention and a break in the cycle of infection, those attempting to cure the

disease were still far from a solution. The introduction of the sanatorium provided

the first real step against tuberculosis. Hermann Brehmer, a botany student suffering

from tuberculosis, was instructed by his doctor to seek out a healthier climate. He

traveled to the Himalayas where he could pursue his botanical studies, while trying

to rid himself of the disease. He returned home cured of tuberculosis and began

to study medicine. In 1854, he presented his doctoral dissertation ambitiously en-

titled, Tuberculosis is a Curable Disease. In the same year, he built an institution

in Germany where, in the midst of fir trees, and with good nutrition, patients were

exposed on their balconies to continuous fresh air. This configuration inspired the

subsequent development of sanatoria, a powerful weapon in the battle against tu-

berculosis. In 1865, the French military doctor Jean-Antoine Villemin demonstrated

species-to-species transmission, by showing that tuberculosis could be passed from

humans to cattle and from cattle to rabbits. On the basis of this revolutionary evi-

dence, he postulated a specific microorganism as the cause of the disease, laying to

rest the centuries-old notion that consumption arose spontaneously in each affected
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individual. In 1882, Robert Koch discovered a staining technique that enabled him

to see Mycobacterium tuberculosis. What excited the world was not so much the sci-

entific brilliance of Koch’s discovery, but the accompanying certainty that now the

fight against humanity’s deadliest enemy could really begin. The causative microor-

ganism had been identified. The treatments available to doctors were still modest,

consisting of improved social and sanitary conditions, and adequate nutrition. These

factors were all that could be done to strengthen the body’s defenses to stave off the

bacillus. Sanatoria, now commonly established throughout Europe and the United

States, provided a dual function: they quarantined the sick, the source of infection,

from the general population, while the enforced rest, together with a proper diet and

the well-regulated hospital life assisted the healing processes.

These efforts were reinforced by the observation by Carlo Forlanini, that lung

collapse tended to have a favorable impact on the outcome of the disease. With

the introduction of artificial pneumothorax and surgical methods to reduce the lung

volume, the depressing era of helplessness in the face of advanced tuberculosis was

over, and active therapy had begun. A diagnostic milestone occurred in 1895, when

Wilhelm Konrad von Rontgen discovered the radiation that bears his name. Now the

progress and severity of a patient’s disease could be accurately followed and reviewed,

examining the chest x-rays of individuals to determine the progress of infection.

Another important development was provided by the French bacteriologist Calmette,

who, together with Guerin, used specific culture media to lower the virulence of the

bovine TB bacterium, creating the basis for the BCG vaccine still in widespread

use today. Then, in the middle of World War II, came the final breakthrough, the

greatest weapon to the bacterium that had ravaged humanity for thousands of years

- chemotherapy.

Chemotherapy of infectious diseases using sulfonamide and penicillins, had been
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underway for several years, but these molecules were ineffective against Mycobac-

terium tuberculosis. Selman Waksman had been systematically screening soil bacte-

ria and fungi, and in 1939 discovered the marked inhibitory effect of certain fungi

on bacterial growth. In 1940, he and his team were able to isolate an effective anti-

tubercular antibiotic, actinomycin. However, toxicity problems relegated it to less

prominent use in humans. In 1943, Waksman achieved success in the form of strep-

tomycin, which combined maximal inhibition of M. tuberculosis with relatively low

toxicity. A year later, the antibiotic was administered for the first time to a critically

ill tuberculosis patient. The effect was almost immediate, and impressive. His ad-

vanced disease was visibly arrested, the bacteria disappeared from his sputum, and

he made a rapid recovery. This discovery proved that M. tuberculosis was could be

combated successfully within the human body. Waksman was awarded the Nobel

Prize in Medicine and Physiology in 1952 for his discovery of streptomycin.

A rapid succession of anti-tuberculosis drugs appeared in the following years.

These were important because with only streptomycin therapy, resistant mutants

began to appear with a few months, endangering the success of antibiotic therapy.

Soon afterwards it was demonstrated that this problem could be overcome with

drug cocktails of a combination of two or three drugs. Following streptomycin, ρ-

aminosalicylic acid (1946), isoniazid (1952), pyrazinamide (1954), cycloserine (1955),

ethambutol (1962) and rifampin (also known as rifampicin; 1963) were introduced as

anti-tubercular agents. Aminoglycosides such as capreomycin, viomycin, kanamycin

and amikacin, and the newer quinolones (e.g. ofloxacin and ciprofloxacin) were only

used in drug resistance situations. Strategies of drug cocktails in concert with com-

binations of a β-lactam antibiotic with a β-lactamase inhibitor enhanced treatment

effectiveness, but the newer drugs, including the macrolides, had not received much

clinical testing.
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In the United States alone, the number of tuberculosis cases in the United States

declined steadily between 1920 and 1985, when the rate of newly reported cases hit

a low of 9 deaths per 100,000. In the 1980s, however, tuberculosis experienced a

resurgence, with the advent of AIDS, while new, drug-resistant forms of the disease

emerged.

The Tuberculosis Epidemic

Today, one third of the world’s population, two billion people, have latent tubercu-

losis infection, with approximately 7-8 million new cases arising each year. Disease

rates were expected to rise in excess of 10 million by 2005. Annually, three million

people fall victim to this disease, and it is the second leading cause of death from an

infectious disease (4% of all deaths), for a disease that is widely perceived as treat-

able and curable. There is a correlation of the registered number of new cases of

TB worldwide with economic conditions: 95% of those newly infected victims reside

in developing countries. In industrialized countries, the steady drop in tuberculosis

incidence leveled off in the mid-1980s, and then began to increase. Ominously, the

number of incurable cases due to multi-drug resistant mutants is rising.

A great influence in the rising incidences of tuberculosis is the proliferation of

Human Immunodeficiency Virus (HIV) infection. Epidemiological statistics indicate

that only one out of ten immunocompetent people infected with M. tuberculosis

will succumb to tuberculosis in their lifetimes, but among those with compromised

immune systems, one in ten per year will develop active tuberculosis. In many

industrialized countries this is a tragedy for the patients involved, but these cases

make up only a small minority of cases. In developing countries, the impact of

HIV infection on the TB situation is far more severe. A final factor contributing
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to the resurgence of tuberculosis is the emergence of multi-drug resistance. Several

errors have been made in allowing the threat of drug resistant tuberculosis: (i)

administration of a single drug instead of more effective drug cocktail combinations,

(ii) sub-therapeutic dosage below the pharmacologically required minimum inhibitory

concentration (MIC), (iii) treatment applied for too short a duration, (iv) socio-

economic problems under which poor people strive to obtain medical assistance,

(vi) insufficient regional drug availability, (vii) lack of dispensation facilities and

professional pharmaceutical care (Crofton et al., 1997).

First-line antibiotics in use today are isoniazid (isonicotinic acid hydrazide, INH),

rifampicin (rifampin, RMP), pyrazinamide (PZA), ethambutol (EMB), and strepto-

mycin (SM). These drugs are effective against actively metabolizing bacilli. Second

line drugs are protionamide (PTA), ethionamide (ETA), thiacetazone, thiocarlide,

cycloserine, capreomycine, and ρ-aminosalicylic acid (PAA), which are all bacterio-

static in nature and are utilized to strengthen the treatment of drug-resistant disease

or when bactericidal drugs are prohibited because of toxicity. These were developed

in the 1940s and 1950s, and all of these have since given rise to a drug-resistant

clinical isolates when singly-administered during pharmacotherapy.

Drug-resistant Tuberculosis

After the development of useful TB drugs in the 1940’s and 1950’s, the number of

deaths from tuberculosis in the U.S. dropped precipitously, about 6% annually for

the next 30 years. It was widely perceived that the threat of tuberculosis was under

control, and that it was a foregone conclusion that tuberculosis would be eradicated.

Over the years increasing apathy led to a reduction of government funding for tu-

berculosis research and public health programs. Alarmingly, in the mid 1980’s, the
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number of active TB cases in the U.S. surged, and this upward trend continued into

the 1990’s. In hindsight, several factors were identified for the sharp increase. Tu-

berculosis enjoys a synergistic relationship with AIDS, where the progression of the

HIV/AIDS epidemic leaves the immuno-compromised individuals more susceptible

to TB infection. Lagging interest in tuberculosis as a public health threat led to the

decay of the infrastructure necessary to monitor the disease within the population,

due to budget restrictions. The rise in prominence of multiply-drug resistant strains

of M. tuberculosis (MDR-TB) accompanied the lack of vigilance in combating TB.

Even in the 1950’s, resistance to singly-administered tuberculosis drugs was quite

common. Due to the protracted duration necessary to clear tuberculosis infection

(6-12 months), patient noncompliance to the complex drug regimens led to the ap-

pearance of a number of M. tuberculosis strains that gained resistance to many of

the first line TB drugs. The World Health Organization (WHO) responded by devel-

oping a new public health strategy named Directly Observed Therapy-Short Course

(DOTS) which centered around vigilant monitoring of the ingestion of each drug dose

throughout the entire course of treatment. Briefly, the DOTS program consisted of

a two-month treatment duration with a combination of four antibiotics including

isoniazid, rifampicin, and pyrazinamide, complemented with either streptomycin or

ethambutol, followed by a 6-month treatment with either ethionamide or ethambu-

tol, or a 4-month treatment with isoniazid and rifampicin. This program resulted

in a decrease of active cases each year beginning in 1993, culminating in less than

19,000 reported cases of TB in 1998. However, in this same time period, there were

documented incidences of MDR-TB in virtually every US state. Globally, in regions

such as Eastern Europe, Latin America, Africa, and Asia, MDR-TB accounted for

more than 4% of new TB cases. This is a significant financial burden, as the cost of

treating MDR-TB can approach $250,000, roughly 10-15 times the cost of treating
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a case of fully drug-sensitive tuberculosis (McKinney et al., 1998).

The mechanism of drug resistance for some of the first line anti-tubercular drugs

has been determined. Streptomycin (SM), the first successful drug against TB, is an

aminoglycoside with broad-spectrum bactericidal properties, and targets the riboso-

mal machinery, eventually inhibiting translation. Resistance quickly arose against

streptomycin, and the long-term detrimental side effects (liver damage) and incon-

venient delivery system (injection) of streptomycin also relegated it to a lesser role

for treatment of tuberculosis. Currently, the appearance of MDR-TB has renewed

interest in SM administration as an anti-tubercular strategy. SM binds to the 30s

ribosomal subunit near the ribosomal protein S12 and 16S rRNA, and disruption of

these interactions allows SM to interfere with the formation of an initiation complex

with mRNA, therefore inhibiting protein synthesis. The majority of SM-resistant

strains is ascribed to a mutation in the rpsL gene that encodes for the S12 protein.

Isoniazid (INH), the most effective and least toxic first-line tuberculosis drug, was

widely distributed for anti-tubercular use in the 1950’s. Drug-resistant strains began

to emerge soon afterwards, with Gardner Middlebrook isolating and characteriz-

ing the nature of the first isoniazid-resistant mutations of M. tuberculosis in 1954.

Middlebrook observed a loss of catalase-peroxidase activity in these mutants (Mid-

dlebrook, 1954), and indeed, a large percentage of the clinical isolates today have

lost catalase-peroxidase activity. Isoniazid-resistant strains cause mortality in 70 to

90% of AIDS-stricken patients who develop tuberculosis (Snider and Roper, 1992).

In 1992, it was confirmed that the loss of the catalase-peroxidase activity was due

to mutation or deletion of the protein KatG that has been shown to activate INH

(Zhang et al., 1992), and some 25 to 50% of the MDR-TB strains are attributable to

katG inactivation (Zhang et al., 1992; Heym et al., 1994; Stoeckle et al., 1993). Be-

tween 20 to 25% of INH resistant strains have also been shown to possess mutations
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in another gene, inhA (Heym et al., 1994). Mutations in inhA were found in 30% of

resistant M. tuberculosis isolates and were never found in sensitive isolates (Heym

et al., 1994; Morris et al., 1995; Musser et al., 1996; Ristow et al., 1995; Telenti

et al., 1997). This gene encodes an enoyl-ACP reductase essential to mycolic acid

biosynthesis. Genetic and structural data indicated that a KatG-activated isoniazid

metabolite binds to the active site of InhA and forms an isonicotinic acyl-NADH

adduct. This product remains bound to the active site of the enzyme, disrupting a

pathway essential to mycolic acid biosynthesis. Mutations in the inhA gene result

in a protein possessing reduced NADH binding affinity (Quemard et al., 1995). Up

to 80% of all INH resistant strains have mutations occurring in the katG or inhA

genes (Scior et al., 2002). As the formation of the isonicotinic acyl-NADH requires

NADH to bind InhA before the fatty acid substrate, the slightly decreased affinity

for NADH by the mutant protein hinders the formation of the covalent adduct, while

still maintaining enzymatic activity (Quemard et al., 1995). Pyrazinamide, discov-

ered in 1952, is a paradoxical and unconventional drug. It is not effective against

actively growing tuberculosis, unlike conventional antibiotics. Instead, it is more

active against old non-growing bacilli (Zhang et al., 2002). It’s mode of action is

still unclear, but it has been proposed to disrupt membrane transport and energetics

(Zhang et al., 2003). Resistance most often occurs through mutations in the pncA

gene encoding pyrazinamidase (PZase), an enzyme that converts PZA into pyrazi-

noic acid, the presumed active form of PZA against bacteria (Raynaud et al., 1999).

Ethambutol is used as a bacteriostat to prevent the growth of drug resistant strains

during treatment. The use of ethambutol was shown to inhibit arabinogalactan syn-

thesis (Deng et al., 1995), eventually leading to cell death. This inhibition has been

shown to make the bacilli more susceptible to other anti-tubercular drugs such as

isoniazid, streptomycin, and rifampin. A majority of the mutations leading to EMB
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resistance have been traced to amino acid substitutions at position 306 or 406 the

gene embB (Ramaswamy et al., 2000).

Every primary-line TB drug administered via monotherapy has resulted in re-

sistant strains of M. tuberculosis, so it is imperative research continues to focus on

the discovery and development of new anti-tubercular compounds. Due to the ap-

pearance of MDR-TB and the synergistic relationship between HIV and tuberculosis

infection, there is a greater threat than ever before. While wealthy industrialized

countries with modern and more advanced public health care systems can be ex-

pected to contain tuberculosis, much of the developing world cannot effectively man-

age a tuberculosis crisis. Thus, there is a critical need for effective drugs that are

not only effective, but also affordable, to globally combat MDR-TB.

Characteristics and Pathogenesis

The progression of tuberculosis infection has been classified into five distinct stages,

beginning with the initial infection.

Stage 1 commences when contagious sputum from infected individuals are in-

haled. These droplet nuclei are readily transmissible as aerosols, and are generated

through seemingly innocuous activities such as talking, sneezing, or coughing. In-

fected individuals can produce up to 3,000 aerosol droplets per cough attack, and

droplet nuclei can be spread to individuals ranging up to 10 feet away, and can persist

for relatively long periods of time.

Stage 2, also called the symbiotic stage, is accompanied by a logarithmic growth

of bacteria within immature macrophages, beginning 7-21 days after initial infection.

M. tuberculosis multiplies virtually unrestricted within unactivated macrophages un-

til the macrophages lyse. Other macrophages begin to extravasate from peripheral
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blood to replace the destroyed macrophages and phagocytose M. tuberculosis, but

they are also unactivated and cannot curtail infection.

Stage 3, beginning 2-3 weeks after initial infection, is delineated as the interval

when destruction of tissue surrounding the site of infection first occurs. At this point

lymphocytes begin to infiltrate and recognize processed and presented M. tuberculo-

sis antigens. This results in T-cell activation and the liberation of cytokines includ-

ing gamma interferon (IFN), which in turn initiates the activation of macrophages.

These activated macrophages are now capable of destroying M. tuberculosis. Conse-

quently, the individual becomes tuberculin-positive, and tubercle formation begins.

The center of the tubercle is characterized by tissue destruction (fibrosis), presenting

focal areas with necrotic cells, forming an amorphous granular cheese-like mass. The

conditions within these tubercles are unfavorable to M. tuberculosis multiplication,

because of low pH and anoxic environment. M. tuberculosis can, however, persist

within these tubercles until conditions favor reactivation.

Stage 4 is a critical juncture, determining whether the infection is halted, or

whether disease progresses. Although many activated macrophages can be found

surrounding the tubercles, the remainder may remain unactivated or poorly acti-

vated. M. tuberculosis uses these macrophages to replicate and hence the tubercle

grows, possibly invading a bronchus and spreading to other parts of the lung. Sim-

ilarly, the tubercle may invade an artery, vein, or other blood supply line. The

hematogenous spread of M. tuberculosis may result in extrapulmonary tuberculosis

otherwise known as miliary tuberculosis. The secondary lesions caused by miliary

tuberculosis can occur at virtually any anatomical location, but usually involve the

genitourinary system, bones, joints, lymph nodes, and peritoneum.

Stage 5 is characterized by liquefaction of the tubercle surrounding the bacilli,

and may occur several years after initial infection. Usually, the immune system is
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not prepared for this contingency. For unknown reasons, the caseous centers of the

tubercles begin to liquefy, liberating material conducive to growth. The organism

begins to rapidly multiply extracellularly. After time, the large antigen load causes

the walls of nearby bronchi to become necrotic and rupture, forming cavities and

allowing entrance into other airways and rapid spreading to other parts of the lung.

Only a very small percent of tuberculosis infections result in disease, and an

even smaller percentage of infections progress to an advanced stage. Usually the

host will begin to control the infection at some point. When the primary lesion

heals, it becomes fibrous and calcifies, becoming what is termed the Ghon complex.

Depending on the size and severity, the Ghon complex may never subside and is

readily visible upon chest x-ray. Small metastatic foci containing low numbers of

bacillus may also calcify. However, in many cases these foci will contain viable

organisms and are referred to as Simon foci. The Simon foci are also visible upon

chest X-ray, and are often the nucleation site of disease reactivation.

Defense Mechanisms

Mycobacterium tuberculosis is very well optimized for host invasion and survival, but

does so largely without the benefit of classical bacterial virulence factors such as

toxins, capsules and fimbriae. However, a number of structural and physiological

properties of the bacterium are beginning to be recognized for their contribution to

bacterial virulence and the pathology of tuberculosis. Mycobacterium tuberculosis

has specialized mechanisms to facilitate cell entry. The tubercle bacillus can bind

directly to mannose receptors on macrophages via the cell wall-associated mannosy-

lated glycolipid, LAM, or indirectly via certain complement receptors or Fc receptors.

M. tuberculosis can grow intracellularly, providing an effective means of evading the



115

immune system. In particular, antibodies and complement are ineffective in this lo-

cation. Once phagocytosed, M. tuberculosis can inhibit phagosome-lysosome fusion.

The exact mechanism utilized to accomplish this is not known but it is thought to be

the result of a protein secreted by bacterium that modifies the phagosome membrane.

The bacterium may remain in the phagosome or escape from the phagosome, in either

case finding a protected environment for growth in the macrophage. M. tuberculosis

also interferes with the toxic effects of reactive oxygen intermediates (ROI) produced

in the process of phagocytosis by two mechanisms: (i) Compounds including glycol-

ipids, sulfatides and LAM down regulate the oxidative cytotoxic mechanism; (ii)

macrophage uptake via complement receptors may bypass the activation of a respi-

ratory burst. There also exists an antigen 85 complex that is composed of a group

of secreted proteins known to bind fibronectin. These proteins may aid in walling off

the bacteria, barricading it from the immune system and may also facilitate tubercle

formation. The slow generation time can also be considered a defense mechanism.

Because of the slow generation time of M. tuberculosis, the immune system may not

readily recognize the bacteria or may be weakly triggered, to an extent insufficient to

eliminate them. Many other chronic diseases are caused by bacteria with slow gener-

ation times, for example, slow-growing M. leprae causes leprosy, Treponema pallidum

causes syphilis, and Borrelia burgdorferi causes Lyme disease.The high lipid concen-

tration in cell wall accounts for impermeability and resistance to antimicrobial agents,

resistance to killing by acidic and alkaline compounds in both the intracellular and

extracellular environment, and resistance to osmotic lysis via complement deposi-

tion and attack by lysozyme. Cord factor is another defense mechanism, although

poorly understood. The cord factor is primarily associated with virulent strains of

M. tuberculosis. It is known to be toxic to mammalian cells, but its exact role in

tuberculosis virulence is unclear.
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Mycobacterial Envelope

The mycobacterial envelope provides a unique and formidable defense mechanism,

and can be subdivided into three discrete units: the capsule, the cell wall, and

the cell membrane. While the plasma membrane of mycobacteria is very similar to

that found in other bacteria such as Escherichia coli, the unique mycobacterial cell

wall is distinguished by its great enrichment of covalently linked mycolic acids, and

possession of a disordered capsule. These two additions distinguish mycobacteria

from gram positive bacteria, that typically contain peptidoglycan as the dominant

component of the cell wall. The cell wall and capsule in particular provide a waxy,

highly impermeable defense mechanism against antibiotic agents, as well as the host

organisms’ defenses.

Capsule

The first discrete unit, the capsule, is composed of a mixture of polysaccharide, pro-

tein, and lipid, and forms the outermost and most complex layer of the mycobacterial

cell envelope. Electron micrograph studies illustrated that the capsule is a heteroge-

neous and fluid component of the cell envelope. Closer examination of the capsule

revealed that there were several elements that give M. tuberculosis both passive and

active defense mechanisms against the host cell. The highly impermeable nature of

the capsule contributes to passive resistance to acids, alcohols, alkaline conditions,

and reactive oxygen intermediates. However, the capsule also contains protein and

lipid components (such as β-lactamases, cord factor, host cell disruption enzymatic

activities) that give M. tuberculosis active resistance against host defenses. Thus, the

capsule provides a significant amount of protection to the bacillus by not only pas-

sively limiting the influx/efflux/access of the host cell (or antibacterial drugs) to the
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bacillus, but also actively allowing the bacillus to hinder the action of host enzymes,

modulate the host immune response, and process host-derived materials for use by

the mycobacterium. These unique abilities allow M. tuberculosis to survive and even

thrive within the harsh environment of macrophages, where immune system threats

are typically destroyed. In conditions inhospitable to TB proliferation, the bacillus

can also enter a dormant stage and linger until conditions are favorable for growth.

Electron microscopy and chemical extraction experiments have allowed researchers

to better characterize the contents of the capsule as an extensive conglomerate of

non-covalently attached lipids, acyl trehaloses, polysaccharides, proteins, and gly-

copeptidolipids. The capsular components exist in a fairly conserved fashion amongst

all mycobacteria, but the envelope varies in thickness depending on species. Specif-

ically, analysis of extracted capsule material indicates conservation of many neutral

polysaccharides, small amounts of various lipids, and proteins. However, the relative

proportions of the capsular components vary considerably among different species.

The most prominent components of the M. tuberculosis capsule are a glucan, ara-

binomannan, and a mannan, along with other as yet uncharacterized oligo- and

polysaccharides (Daffé and Etienne, 1999). The glucan, the most prevalent capsu-

lar polysaccharide, is similar to internal glycogen found in mycobacteria, consisting

of short, branched chains of 4-linked α-D-glucosyl residues substituted at position

6 with mono- or di-glucosyl residues. The arabinomannan is formed by chains of

6-linked mannosyl residues (occasionally branching at the 2 position) attached to

arabinose chains similar to those found in the cell wall, but are capped by oligoman-

nosides in slow growing mycobacteria.

The outer surface of the capsule consists primarily of protein and carbohydrates,

with approximately 2-5% of the material being lipid. Most of the lipid appears to

be in the inner portion of the capsule. Because of this arrangement, there is little or



118

no interaction of lipids with the host immune system before lysis of the bacteria by

immune cells. However, there are limited number of capsular lipids that appear to

have very important effects on host cells. Sulfatides are acidic glycolipids that seem to

interfere with the host immune response, including inhibition of phagosome/lysosome

fusion, inhibition of macrophage activation, stimulation of tumor necrosis factor-α,

and stimulation of neutrophils.

An important capsular lipid, trehalose dimycolate (TDM or cord factor) still

has no clear function ascribed to it. However, TDM has been implicated in the

pathogenicity of tuberculosis and is thought to be vital to the structural integrity of

the cell wall. TDM has been shown to be highly toxic in mice when prepared as an

emulsion , and the toxicity of TDM is also synergistically enhanced in vivo by the

presence of the major sulfatide of M. tuberculosis.

Several important capsule-associated proteins have been identified. Thus far,

only a limited number have been fairly well characterized and indicate a role in

either pathogenicity or cell wall biosynthesis. These include proteins involved in

β-lactam antibiotics resistance, cell wall biosynthesis, lectin binding, phospholipids

degradation, hemolytic activity, nitrogen assimilation, host cell scavenging, reactive

oxygen intermediate (ROI) detoxification, resistance to oxygen limitation, and my-

cobacterial aggregation. The class A β-lactamase BlaC, which destroys β-lactam

based antibiotics such as penicillin and cephalosporins, possesses a lipid attachment

site to localize it to either the capsule or the cell wall (Cole et al., 1998). PstS1, a

38 kDa lipoprotein, may be responsible for scavenging environmental phosphate, as

expression is upregulated during phosphate starvation (Espitia et al., 1992). FAP-B

is a glycoprotein that has been implicated in binding human fibronectin, efficient

invasion of epithelial cells, and possibly also in molybdate uptake (Cole et al., 1998).

Superoxide dismutase (SOD) protects the bacteria from oxidative stress through the
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destruction of ROI. The antigen 85 complex is responsible for the biosynthesis of

trehalose dimycolate.

The capsule-associated proteins help ensure enhanced survival through various

means by acting against the host immune response as well as having the responsibil-

ity for cell wall maintenance. The passive permeability barrier constructed from a

diverse collection of lipids is augmented by capsule-associated proteins that actively

synthesize compounds that interfere with specific pathways in the host. There are

yet to be identified factors within the capsule that allow M. tuberculosis to enter

the host cell, multiply within the environment of the host tissues, resist host defense

mechanisms, and cause damage to the tissues of the host.

Cell Wall

The second discrete unit of the mycobacterial envelope is the cell wall of M. tubercu-

losis, a truly unique work of architecture. Over the past 50 years, our understanding

of the structure of the mycobacterial cell wall and its associated lipids has been

enhanced by recent developments in NMR and mass spectral studies, as well as se-

quencing of the genome. The cell wall is composed of two segments, an upper layer

and a lower layer. The upper layer is centered around a massive core comprised of

peptidoglycan covalently attached via a diglycosylphosphate linker unit (L-Rha-D-

GlcNAc-P) to a linear galactofuran, in turn attached to several strands of a highly

branched arabinofuran, in turn attached to their signature mycolic acids, with their

long (up to C60) meromycolate chains and shorter α-chains (Brennan, 2003), depicted

in Figure 24.

This cell wall core is termed the mycolyl arabinogalactan-peptidoglycan com-

plex (mAGP). The mycolic acids are oriented perpendicular to the plasma mem-

brane, and form a highly impermeable lipid barrier responsible for the physiological



120

Figure 24: Structure of the mycobacterial cell well skeleton. The core of the my-
cobacterial cell wall is the mycolyl-arabinogalactan-peptidoglycan complex (mAGP).
The mycolic acids form a thick, highly hydrophobic, and impermeable barrier, and
are covalently linked to the arabinogalactan layer, which is in turn linked to the pep-
tidoglycan layer. The mycobacterial cell wall is also reduced in porin content. These
factors allow the mycobacterial cell wall to function as a highly efficient permeability
barrier.
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Figure 25: Structure of the arabinogalactan-mycolate cluster. The structure of the
arabinogalactan-mycolate cluster is shown above. The β-branch of the α-mycolate is
reduced in scale for clarity. Mycolic acids are shown covalently linked to the terminal
arabinose residues via an ester linkage. The α− and β-branches are able to pack
virtually parallel with each other, allowing the formation of a highly hydrophobic,
tightly stacked, and extremely impermeable barrier.

and disease-inducing aspects of M. tuberculosis. The fine structure of the mycolyl-

arabinogalactan cluster is illustrated in Figure 25. Interspersed throughout are sev-

eral types of lipids, including phthiocerol dimycocerosate, cord factor / dimycolyl-

trehalose, the sulfolipids, the phosphatidylinositol mannosides (PIMs), lipomannan

(LM), and lipoarabinomannan (LAM). These lipids have been implicated in signal-

ing events, in pathogenesis, as well as the immune response. Also intercalated in this

layer are several cell-wall proteins.

When mycobacterial cell walls are disrupted through chemical extraction, the free

lipids, proteins, LAM, and PIMs are solubilized, and the mycolic acid-arabinogalactan-

peptidoglycan complex remains as the insoluble remnants. These soluble lipids, pro-

teins, and lipoglycans, can be considered the signaling and effector molecules in

tuberculosis progression, whereas the insoluble core is essential for the viability of
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the cell. For example, cord factor (trehalose dimycolate) exerts considerable toxic

effects when injected in small amounts (10 µg) peritoneally into mice. Death is as-

sociated with intense peritonitis and acute pulmonary hemorrhage. Sulfolipids were

reportedly highly represented in the most virulent strains of mycobacteria, whereas

the attenuated strains were deficient in these components. Phthiocerol dimycolate

is a waxy, major lipid of the tubercle bacillus, and also reported to be implicated in

M. tuberculosis virulence. Also present are the free lipids PIM, LM, and LAM. They

are based on phosphatidyl inositol (PI), and attached to the inositol there may be

as many as 6 mannose molecules. These lipids are of interest because LAM from M.

tuberculosis has short mannose-containing oligosaccharide caps that allow it to bind

to the mannose receptor on macrophages. LAM can bind to Toll receptors and phys-

ically insert itself into membranes, inducing numerous types of signal transduction

events important in the host response in tuberculosis.

The peptidoglycan (lower layer) of the cell wall is quite similar to that of other

gram-positive bacteria. In the most common form of peptidoglycan, chains of alter-

nating residues of N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM), co-

valently attached through a β1→4 glycosidic linkage, are cross-linked by a tetrapep-

tide chain (L-alanyl-D-isoglutaminyl-meso-diaminopimelyl-D-alanine). The crosslink

between the tetrapeptide chains occurs between the diaminopimelic acid of one chain

and the D-alanine of a neighboring chain. The mycobacterial peptidoglycan differs

from the common type in two ways. First, the muramic acid is N-glycosylated rather

than N-acetylated. Secondly, some of the muramic acid crosslinks involve bonds be-

tween diaminopimelic acid groups of different tetrapeptides. The minor differences

are of unknown significance.
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Plasma Membrane

The third component of the mycobacterial cell envelope is the plasma membrane,

which bears great similarity to the plasma membranes of other bacteria. Lying

below the capsule and cell wall, the mycobacterial plasma membrane is composed

primarily of asymmetrically distributed polar lipids possessing a fatty acyl chain

and a hydrophilic head group. Its composition is very similar to typical bacterial

plasma membranes, and not thought to play a vital role in pathological processes

(Daffé and Etienne, 1999). Phospholipids in the form of phosphatidylinositol man-

nosides (PIMs), phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine,

comprise the majority of the lipid content of the plasma membrane. However, some

lipids, notably phosphatidylinositol mannosides and phosphatidylethanolamine, are

also present in purified cell walls and on the capsular surfaces of all mycobacterial

species examined. While the locations of various mycobacterial molecules can be gen-

eralized, the envelope is in reality a dynamic entity, where mycobacterial molecules

are moving within and throughout the envelope and even the cell wall skeleton is

being reconstructed.

Mycolic Acid Synthesis

Mycolic acids are the major constituent of M. tuberculosis cell wall structure. They

form a highly impermeable protective layer, and are involved other important roles

such as forming the structural components of the cell wall and envelope. As mycolic

acids possess such critical roles in tuberculosis for host cell evasion, enzymes involved

in their biosynthesis offer attractive targets in the battle against tuberculosis. My-

colic acids, defined as α-alkyl, β-hydroxy long chain fatty acids, are proposed to

be synthesized via a five stage pathway: (i) synthesis of C20 to C26 straight-chain
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saturated fatty acids to provide the α-alkyl branch; (ii) synthesis of the meromycolic

acid chain to provide the main carbon backbone, (iii) modification of this backbone

to introduce other functional groups, (iv) the final Claisen-type condensation step

followed by reduction; and (v) various mycolyltransferase processes to cellular lipids

(Schroeder et al., 2002). At the heart of this process is fatty acid biosynthesis, essen-

tial for producing the precursors of mycolic acids. Mycolic acids typically exist as a

homologous series of fatty acids differing by two-carbon units and are characterized

by very hydrophobic C54 to C63 fatty acids with C22 to C24 α-side chains. There

are three distinct structural classes of mycolic acids found in M. tuberculosis, and

they are the α-, methoxy-, and keto-mycolic acids (Figure 26). The α-mycolic acid is

the most abundant form (>70%), whereas the methoxy- and keto-mycolic acids are

the minor components (10-15%). Cyclopropane rings incorporated into mycolic acids

contribute to the structural integrity of the cell wall complex and protect the bacillus

from oxidative stress. Deletion of the proximal cyclopropane ring in of α-mycolic acid

or of methoxy- and keto-mycolates in M. tuberculosis leads to a significant attenua-

tion in growth of the two mutants in the mouse model of infection. A deletion of the

keto-mycolates leads to restricted growth of this mutant in macrophages. Thus, the

fine structure of mycolic acids is associated with virulence of M. tuberculosis. Inhi-

bition of mycolic acid synthesis has been shown to induce the lysis of M. smegmatis

cells (Vilcheze et al., 2000), emphasizing the importance of its role in forming the

highly impermeable and protective barrier. The process of fatty acid biosynthesis

holds the central role in the production of mycolic acids. Two distinct types of fatty

acid biosynthesis, FAS-I and FAS-II, have been characterized within M. tuberculosis.
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Figure 26: Chemical structures of mycolic acids. There are five forms of mycolic acids
in M. tuberculosis, illustrated by the three main families of mycolic acids with α-,
methoxy-, and keto-mycolates. The α- and β-branches are indicated. Cyclopropane
groups may be incorporated into the β-branch. The cyclopropane rings in α-mycolic
acids would have the cis configuration, while the methoxy- and keto-mycolic acids
can have either the cis or trans configuration on the proximal cyclopropane ring.
The length of the n1 and n3 units are normally 15,17, or 19 carbons long, while the
n2 units are usually between 12 and 17 carbons, depending on modifications at the
proximal and distal sites.
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Type I Fatty Acid Biosynthesis

A single gene, fab, encodes the multifunctional FAS-I system of M. tuberculosis.

The 2 MDa protein expressed by this gene forms a homodimer containing all of the

required functions of a de novo fatty acid synthesis system (Smith et al., 2003).

Studies of how Mycobacterium synthesize C16 to C18 and C24 to C26 fatty acids date

back to the 1970s, when Bloch et al. showed that M. smegmatis possess both a type

I fatty acid synthetase (FAS-I) and a type II fatty acid synthetase (FAS-II) system.

The main distinction between the two systems is the arrangement of the enzymes

involved, with FAS-I having a large single, multifunctional polypeptide encompassing

all of the enzyme activities, whereas the FAS-II system has each enzymatic activity

isolated on individual, dissociated proteins. Typically FAS-I systems are found in

eukaryotes and advanced prokaryotes, while the FAS-II systems are found in plants

and bacteria. Both the FAS-I and FAS-II systems were found in M. tuberculosis,

and were later shown to be very similar to those from M. smegmatis. The FAS-

I system synthesizes de novo fatty acids from two-carbon units, using acetyl-CoA

and malonyl-CoA as substrates, releasing C20 to C26 products. FAS-I also produces

hexacosanoyl-CoA (C26) and this fatty acid becomes the short α-alkyl chain and

methyl carboxyl segment of all mycolic acids of M. tuberculosis.

Type II Fatty Acid Biosynthesis

In M. tuberculosis, fatty acid biosynthesis also proceeds through a basic FAS-II elon-

gation cycle shown in Figure 27. It has been proposed that the C20 fatty acid is the

starting point where the FAS-II systems take over for the synthesis of the very-long-

chain mero segment of α-, methoxy-, and keto-mycolic acids (Takayama et al., 2005).

Malonyl-S-acyl carrier protein (malonyl-S-ACP, a co-substrate in reaction 1 of Fig-
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ure 27). Through successive cycles by β-ketoacyl-ACP synthase (KasA/KasB) and

β-ketoacyl-ACP reductase, R-CO-S-ACP is converted to R-CHOH-CH2-CO-S-ACP

(reactions 1 and 2). This product is then converted to trans-R-CH=CH-CO-S-ACP

by β-hydroxyacyl-ACP dehydrase (reaction 3). The gene encoding this enzyme has

yet to be identified in the M. tuberculosis genome. The product of reaction 3 is

reduced by 2-trans-enoyl-ACP reductase (InhA) to yield R-CH2- CH2-CO-S-ACP,

which is two carbons longer than the starting substrate. This product can then be

utilized in another FAS-II cycle of elongation, and the process begins anew.

Cyclopropane synthases and Methyltransferases

Many interesting modifications are observed within mycolic acids. These functional

modifications confer advantageous properties to the cell wall, and contribute to the

tight packing of the long-chain mycolates. The cyclopropanation of mycolic acids

also conveys resistance to host cell processes, and have profound effects on the re-

sistance of the mycobacteria to oxidative stress and the fluidity and permeability

of the cell wall. A few important mycolic acid modifying enzymes have been char-

acterized. MmaA2 is required for the introduction of the distal cyclopropane ring

in the formation of α-meroacid. PcaA (UmaA2) is required for the introduction

of the proximal distal ring in the formation of α-meroacid. MmaA4 introduces the

distal-branch methyl group in the formation of trans-oxygenated meroacids. MmaA3

O-methylates the distal secondary alcohol in the formation of cis- and trans-methoxy-

meroacids. MmaA2 and CmaA2 are required for the introduction of the proximal

cis-cyclopropane ring in methoxy-meroacids, and Mma2 is required for the introduc-

tion of the proximal cis-cyclopropane ring in keto-meroacids. MmaA1 and CmaA2

are required for the introduction of the proximal-branch methyl group and trans-

cyclopropane ring in trans-oxygenated meroacids.
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Figure 27: FAS-II fatty acid biosynthesis by M. tuberculosis. The substrates are
R-CO-S-ACP and malonyl-S-ACP derived from malonyl-S-CoA by FabD. R, long-
chain alkyl group. Enzymes involved in these reactions are as follows: 1, β-ketoacyl-
ACP synthase (KasA/KasB); 2, β-ketoacyl-ACP reductase; 3, β-hydroxyacyl-ACP
dehydrase; 4, 2-trans-enoyl-ACP reductase (InhA). The product of the last reaction
undergoes the next cycle of elongation as the ACP derivative on another FAS-II
module. This is a long-chain fatty acid elongation system in which the hydrocarbon
chain is increase by two carbons with the completion of each cycle.
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M. tuberculosis Enoyl Acyl-Carrier-Protein Reductase

As mycolic acids possess such a critical role in the viability of tuberculosis against

host cell defenses, the underlying pathways responsible for their synthesis were tar-

geted. The focus of this study, M. tuberculosis enoyl-ACP reductase (InhA), is a

NADH-dependent that participates in fatty acid biosynthesis. InhA catalyzes the

final step of reduction in the FAS-II elongation cycle through the reduction of 2-

trans-enoyl chains (> C12) to yield saturated chains (Figure 28). InhA has been

identified as an excellent anti-tubercular target for several reasons. First of all, the

first-line anti-tubercular drug isoniazid has been shown to inhibit mycolic acid syn-

thesis, and specifically target InhA (Banerjee et al., 1994). Temperature sensitive

inactivation of M. smegmatis InhA resulted in inhibition of mycolic acid synthesis

and subsequently a drastic change in cell morphology indicative of mycobacterial cell

lysis, emphasizing the critical role InhA possesses in tuberculosis viability Vilcheze

et al., 2000. Second, there exist several known inhibitors of homologous enoyl-ACP

reductases from other organisms, and the underpinnings of the mechanism have been

extensively studied, as well as the mode of action of the inhibitors. Third, only one

enoyl-ACP reductase is present in M. tuberculosis, unlike some of the other enzymes

in bacterial FAS-II systems Heath and Rock, 1995. Finally, the longer chain sub-

strate specificity of InhA distinguishes it from the enoyl-ACP reductases from other

sources, such as the enoyl-ACP reductase component of the human FAS-I system.

Mechanism

Previous studies with InhA have proposed that substrate reduction occurs via a

stepwise mechanism in which hydride transfer precedes protonation (Quemard et al.,

1995). In enzymatic experiments conducted by Parikh et al. (Parikh et al., 1999),
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Figure 28: M. tuberculosis enoyl-ACP reductase reaction. The substrate is a 2-
trans-enoyl-ACP, which is reduced to yield a saturated chain in a NADH-dependent
manner. The mechanism is via a transfer of a hydride ion from the co-factor to the
substrate.

they characterized InhA’s mechanism of action through kinetic isotope experiments

and mutational analysis. There are two critical conserved residues, Tyr158 and Lys165,

that form a hydrogen bond to the substrate/inhibitor and cofactor, respectively. Re-

placement of these residues with Y158F and K165A resulted in a decrease of 24 and

1500-fold in kcat. However, mutation to Y158S restored wild-type activity. Kinetic

isotope studies indicated that the transfer of a solvent-exchangeable proton is par-

tially rate-limiting for the wild-type and Y158S enzymes, but not for the Y158A

mutant. These data indicated that Tyr158 does not function formally as a proton

donor in the reaction but likely functions as an electrophilic catalyst, stabilizing

the transition state for hydride transfer by hydrogen bonding to the substrate car-

bonyl. It has been suggested that the 2’-hydroxyl oxygen of the nicotinamide ribose

of NADH may also stabilize the enolate intermediate through its hydrogen bonding

interaction with the fatty acyl substrate carbonyl thioester oxygen (Rozwarski et al.,

1999). Replacement of Lys165 with K165Q or K165R had no effect on the enzyme’s

catalytic ability to bind NADH, showing that they are able to substitute for lysine.

However, K165A and K165M mutations resulted enzymes unable to bind NADH,

indicating that Lys165 has a primary role in co-factor binding. These data are consis-

tent with a mechanism where InhA catalyzes the reduction of the trans double bound
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between positions C2 and C3 of the fatty acyl substrate through the formation of

an enolate intermediate through the direct transfer of a hydride ion from NADH to

position C3 of the substrate, followed by protonation at position C2.

Inhibition

Two inhibitors have been well characterized against M. tuberculosis InhA, namely

isoniazid and triclosan. Several early reports on the mechanism of action of isoniazid

suggested an effect on cell wall integrity. It was observed that acid-fastness, an

important clinical diagnostic tool for M. tuberculosis infection, was lost shortly after

treatment with isoniazid, presumably destroying the layer that allows the acid-fast

staining property unique to mycobacteria (Koch-Weser et al., 1953). Nearly two

decades later, it was demonstrated that isoniazid inhibits the synthesis of mycolic

acids in M. tuberculosis (Winder et al., 1970), and a direct correlation between

isoniazid uptake, viability, and mycolic acid biosynthesis was noted (Takayama et al.,

1972; Wang and Takayama, 1972). Isoniazid, the most effective and widely used

drug against tuberculosis since the 1950’s, has a somewhat complicated mode of

action. Isoniazid is a pro-drug that must be converted, via a mycobacterial catalase-

peroxidase enzyme KatG, into an activated form of the drug. The activated form of

isoniazid, suspected to be an isonicotinic-acyl radical, becomes covalently attached

to the nicotinamide ring of the NADH bound within the active site of InhA.

Crystal structures of the isoniazid-inhibited InhA revealed the basis for its tight

interaction. The location and orientation of the isonicotinic acyl group are com-

plementary to those of the surrounding InhA side chains, which creates a specific

hydrophobic binding pocket for the isonicotinic acyl group. When compared to the

crystal structure of the native InhA:NADH complex, the only significant difference

in the conformation of the protein is the side chain of Phe149 rotates approximately
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90◦ to optimize aromatic ring-stacking interactions with the pyridine ring of the ison-

icotinic acyl group. This NADH adduct acts very potently (Ki = 0.75 nM) as a slow,

tight-binding inhibitor (Rawat et al., 2003). As it turns out, a substantial fraction

of clinical isolates that are resistant to isoniazid are attributable to mutations or

deletions of katG, so a drug that could circumvent this requirement for activation,

but still inhibit InhA, would hold tremendous promise.

Triclosan, unlike isoniazid, does not require activation to achieve inhibition. Tri-

closan is a broad-spectrum antibacterial agent that enjoys widespread applications

in a multitude of consumer products, including soaps, toothpastes, dermatological

products, and is even embedded into toys (Bhargava and Leonard, 1996). It had

been widely deployed under the assumption that triclosan had a nonspecific mode

of action for disrupting bacterial membranes, therefore making it unlikely that re-

sistance could arise (Russell, 2000). However, Heath et al. identified the enzyme

triclosan specifically targets to be the FAS-II enoyl-ACP reductase in E. coli, and

triclosan-resistant bacteria have been identified. Early experiments with E. coli FabI

showed triclosan to be a potent inhibitor, with a Ki = 38 pM at saturating NAD+

concentration (Ward et al., 1999). Subsequent genetic studies have also revealed

that mutations in the enoyl reductase from M. smegmatis result in resistance to tri-

closan (McMurry et al., 1999). M. tuberculosis InhA is structurally similar to E.

coli FabI and 87% identical to the M. smegmatis enoyl reductase, implying that M.

tuberculosis InhA could also be inhibited by triclosan. Triclosan was later shown to

directly inhibit M. tuberculosis InhA in in vitro enzyme assays (Parikh et al., 2000).

Interestingly, triclosan is a relatively weak inhibitor of InhA compared to the E. coli

FabI (Parikh et al., 2000), with M. tuberculosis InhA having an affinity for triclosan

approximately 10,000-fold less than for the E. coli FabI (Ki = 0.22 µM versus 38

pM).
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It has been well documented that mycolic acid and cell wall biosynthesis are

excellent targets for anti-tuberculosis drugs. From a rational drug design perspective,

the InhA protein in particular is an excellent target, as biochemical and genetic

data indicate it is crucial to the viability of the bacillus. Structural information

arising from the structures of InhA in complex with various inhibitors will greatly

enhance drug discovery efforts by elucidating the key elements of inhibitor binding.

Specifically, the structure of InhA with inhibitors that do not require activation, such

as triclosan, will be a great weapon against drug-resistant tuberculosis.
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CHAPTER VI

CRYSTALLOGRAPHIC STUDIES OF INHA*

Results and Discussion

To facilitate the drug design process, we determined the crystal structure of the

ternary complex of InhA, NAD+, and triclosan. Triclosan appears to be an analog

of an intermediate in catalysis, and is classified as a slow, tight-binding, reversible

inhibitor. Triclosan does not require activation, nor does it covalently attach to

cofactor. In the previously determined structures of E. coli FabI with triclosan

(Ward et al., 1999; Qiu et al., 1999; Stewart et al., 1999; Levy et al., 1999), the

phenol ring of triclosan stacked above the nicotinamide ring of the coenzyme, which is

positively charged for NAD+, raising the possibility of a charge-transfer effect, which

may contribute to affinity (Ward et al., 1999). This may increase the preference for

enzyme-bound NAD+over NADH in the complex with the inhibitor. The C5-C6 bond

in the phenolic ring of triclosan seems to be in the position expected for the C2=C3

double bond of the enolate intermediate, with the 2,4-dichlorophenoxy moiety of

triclosan being located in the region anticipated to bind the phosphopantothene of

ACP. The importance of the hydroxyl group of triclosan is significant, as replacement

of the -OH with -H decreases affinity by over 10,000-fold.

*Part of the data reported in this chapter is reprinted with permission from “Structural elucidation
of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase”
by Perozzo et al., 2002. J Biol Chem, 277, 13106-14. 2006 by the American Society for Biochemistry
and Molecular Biology.
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Crystal Structure of InhA with Triclosan

Triclosan has been found to bind noncovalently to E. coli FabI (Ward et al., 1999;

Qiu et al., 1999; Stewart et al., 1999; Levy et al., 1999), Plasmodium falciparum

ENR (Perozzo et al., 2002), and Brassica napus ENR (Roujeinikova et al., 1999a).

Here we determined the structure of M. tuberculosis InhA in complex with triclosan,

to 2.6 Å resolution. This revealed binding of the triclosan inhibitor in a similar

site and orientation within the M. tuberculosis enzyme, when compared to the E.

coli and B. napus enzymes. Triclosan binding was found to overlap with the acyl

substrate-binding pocket and was quite separate from the site of INH binding. In

the crystal structure of the INH-NADH adduct (Rozwarski et al., 1998) bound to

InhA, the NAD(H) part of the adduct was maintained in the NAD(H)-binding site,

and the INH portion of the adduct projected into a pore formed by the rotation of

the side chain of Phe149. Phe149 was adjacent to the nicotinamide of NAD+ in the

substrate-bound form (Rozwarski et al., 1999) and rotated 90◦ to optimize stacking

with the pyridine ring of the isonicotinic acyl group. In contrast, in the InhA:triclosan

complex, the hydroxyl-substituted ring of triclosan (the “A” ring) stacked with the

nicotinamide ring of NAD+ and hydrogen bonded with the 2’-hydroxyl group of

NAD+ and with Tyr158 in the catalytic active site (Perozzo et al., 2002; Ward et al.,

1999; Qiu et al., 1999; Stewart et al., 1999; Levy et al., 1999; Roujeinikova et al.,

1999a) in a manner well-conserved across enoyl reductase structures. Hydrophobic

contacts were responsible for the remaining interactions. The dichlorophenyl ring

(the “B” ring) of triclosan was oriented orthogonally to the A ring, and the chlorines

were projected toward the solvent.

The crystal structure of InhA also revealed a unique binding stoichiometry (Figure

29) compared to other enoyl reductases. In the asymmetric unit, each monomer
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of InhA exhibited a significant deviation within the substrate-binding loops from

each other. One monomer contained a single molecule of triclosan, that possessed

the canonical triclosan hydrogen bonding network seen in enoyl reductases from all

known ENR:TCL structures.

This mode of triclosan binding was conserved for the ENRs and for InhA (figure

on page 147). However, the second monomer of InhA in the asymmetric unit showed

binding of two triclosan molecules to the active site (Figure 29). This had not been

observed for any of the triclosan:ENR complexes elucidated to date. In the doubly-

bound subunit, the mode of binding of one molecule of triclosan (designated TCN1)

was identical to ENR:triclosan structures reported previously (Perozzo et al., 2002;

Ward et al., 1999; Qiu et al., 1999; Stewart et al., 1999; Levy et al., 1999; Roujeinikova

et al., 1999a) and was also identical to the binding we observed in the singly-bound

monomer of M. tuberculosis InhA. The second molecule, designated TCN2, resided

in an inverted orientation relative to TCN1 in an almost entirely hydrophobic area

within the binding cavity. Both TCN1 and TCN2 were in identical low energy

conformations and exhibited mostly van der Waals interactions between themselves

and the protein. The binding of TCN2 to InhA was primarily mediated by van

der Waals interactions with the hydrophobic side chains of residues Met103, Gly104,

Phe149, Ala157, Met199, Ile202, Ile215, and Leu218. The majority of the interactions

were from the substrate-binding loop that extended from residues 197 to 226 and

that encompassed helices α6 (residues 197-206) and α7 (residues 209-226) (Figure

29). The only polar residues within 4 Å were Gln100 and Tyr158, which did not

hydrogen-bond with TCN2. TCN2 stabilized the substrate-binding loop, resulting

in an average B-factor of 54 Å2. This loop was only partially ordered (B-factor

70 Å2) in the subunit containing a single molecule of triclosan. Superposition of

each subunit (singly- versus doubly-bound forms) revealed significant deviations in
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Figure 29: Structure of the InhA:triclosan complex. Helices are depicted in blue, and
the β-strands are represented in yellow. The two molecules of triclosan occupied the
substrate-binding portion of the active site. The hydroxyl groups of the A rings were
oriented in opposing directions, whereas the dichlorophenyl rings (B rings) were in
approximately parallel planes but did not stack.
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the Cα- backbone in the substrate-binding loops that contacted triclosan (Figure

30). The presence of two molecules of triclosan in the active site of InhA can be

attributed to the specificity of the M. tuberculosis enzyme for long to very long chain

(C16 and up to C60) fatty acyl substrates, whereas E. coli FabI, B. napus, and P.

falciparum ENR all have specificity for short-chain fatty acyl substrates (C4 - C8).

To accommodate the growing long-chain fatty acids, InhA possesses a hydrophobic

substrate-binding loop (residues 197-226) that is 10 residues longer (residues 203-212)

than the corresponding loop in E. coli or B. napus FabI. The long loop in InhA,

comprising one face of the active site, correlated with a substrate-binding cavity

that is considerably larger in volume relative to ENRs from other organisms (acyl-

binding site volume of 1,551 Å3 for InhA, compared with 1,118 Å3 for E. coli FabI and

1,257 Å3 for B. napus ENR). These loop regions appeared to be of variable lengths,

adjusting to the size of the preferred substrate/inhibitor. Superimposition of the

backbones of the doubly-bound inhibitor form of InhA:triclosan and InhA complexed

with a fatty acyl substrate analog (C16-N-acetylcysteamine) produced a root mean

square deviation of 0.6 Å, showing that the occupancy by two molecules of triclosan

approximated a longer length substrate binding fairly well. Further examination

revealed that the C16- NAc and the two triclosan molecules showed strikingly similar

modes of binding, with the acyl-chain and the two molecules of triclosan adopting a

U-shaped or horseshoe conformation. The substrate-binding loops also superimposed

well (Figure 31) supporting the observation that two triclosans would appear to

mimic the C16 substrate fairly well. These data suggest that selective targeting of M.

tuberculosis within the human host might be achieved using an inhibitor composed

of the dual complex TCN1/TCN2.
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Figure 30: Superposition of the two forms of the InhA:triclosan complex. Super-
imposed ribbon diagrams representing the backbone of each subunit. The NAD+

co-factor is depicted in stick form, and triclosan is shown as spheres (TCN1 in cyan
and TCN2 in orange). White represents regions of InhA without significant backbone
deviations. Colored worms represent the conformation of the substrate-binding loop
(α6 and α7) in the singly- (magenta) and doubly- (yellow) bound forms of InhA. The
presence of TCN2 results in a pronounced shift of the loop in order to accommodate
the second triclosan molecules.
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Figure 31: Superposition of the InhA:C16-NAc and InhA:triclosan complexes. Ma-
genta ribbons represent the Cα trace of InhA:C16-NAc, and yellow ribbons represent
the Cα trace of the InhA:triclosan structure. The C16-NAc (cyan carbons) and the
two molecules of triclosan (yellow carbons) exhibit remarkably similar modes of bind-
ing, while the substrate binding loop shifts only slightly.
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Figure 32: Stick models of newly discovered InhA inhibitors. These inhibitors were
discovered from a high throughput combinatorial screen of recombinant M. tubercu-
losis InhA. A, Genz-8575; and B, Genz-10850.

Genzyme Inhibitors

A high-throughput screen of approximately 500,000 compounds from a combinato-

rial library against InhA resulted in the identification of Genz-8575 and Genz-10850

(Figure 32), two new classes of InhA inhibitors. Enzymatic testing of a series of

about 300 Genz-10850 analogs resulted in the generation of a structure-activity re-

lationship where substitution was not allowed at carbon positions 2 or 3 of the

piperazine ring (suggesting a steric clash with this part of the molecule) and where

polar substitutions were allowed at the 2-position of the fluorenyl group (suggesting

that this site is exposed to solvent). Alkylation or acylation of the indole nitrogen

was not tolerated, in agreement with the role of this moiety as a hydrogen-bonding

group (Table 18). These compounds were synthesized and assayed for their ability

to inhibit InhA-mediated, NADH-dependent catalysis of an octenoyl-CoA substrate.

The IC50 values in Table 18 refer to the concentration resulting in 50% inhibition

of enzyme activity and were the lowest for Genz-10850. For the Genz-8575 analogs,

a stringent requirement was detected at the trifluoromethylpyrimidine substituent,

with more latitude at the dinitrophenyl site (Table 19). The right columns in Table

19 show the percent inhibition of InhA activity in the presence of 40 µM of each of
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Table 18: InhA:Genz-10850 structure-activity relationship

Genz-# Rn-group IC50 (µM)
10850 H 0.16
11918 1-CO2CH3 0.34
12637 2-Cl, 3-NHAc >10
12638 2,7-I2 0.13
12639 2-NHAc 0.28
12640 2-NMe2 0.91
12641 2-NHCHO 0.18
12643 2,4,7-Cl3 0.17
12644 2-NO2 0.13
12645 3-NO2 0.13
12646 2,7-Br2 0.12
13100 2-NHCOB 0.59
13108 2-NHCOCH2CH2CH3 0.46
13347 2-NEt2 >10
13348 2-OCH3 0.52
13349 4-OCH3 0.82
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these compounds. The best of this initial set of pyrazoles, Genz-5542, was further

derived to generate analogs, including Genz-8575, which substituted a chlorine atom

with a nitro group and that gave the best inhibition of all compounds in this series.

When tested against purified InhA, Genz-8575 and Genz-10850 displayed IC50 values

of 2.4 and 0.16 µM, respectively (Kuo et al., 2003).

To gain insights into the molecular details of how this new group of compounds

binds to InhA, we solved the x-ray crystal structure of the InhA:NAD+:Genz-10850

ternary complex. Electron density for a single molecule of Genz-10850 was observed

in the InhA active site. Comparison of this structure with a previous structure of

InhA:NAD+:C16-NAc (Dessen et al., 1995; Rozwarski et al., 1998, 1999) suggested

that Genz-10850 also occupied a region of the active site that was normally bound

by substrate or inhibitor. This interpretation was supported by kinetic studies of

members of the two classes of Genzyme compounds, showing that they were com-

petitive with the enoyl-CoA substrate. The Genz-10850 carbonyl group formed a

hydrogen-bonding network with the 2’-ribose hydroxyl of the NAD+ and the side

chain of the catalytic residue Tyr158, highly reminiscent of the network observed in

triclosan binding (Figure 33). Binding of the bulky fluorenyl group occurred within

the substrate-binding pocket that normally sees the long acyl chain of the substrate.

Genz-10850 binding also resulted in a wider fatty acyl substrate-binding groove (com-

pared with the NAD+ bound structure) as well as additional van der Waals inter-

actions with the hydrophobic residues Gly96, Met103, Phe149, Met155, Pro156, Ala157,

Met161, Pro193, Ala198, Ile215, and Leu218. This information was in accord with the

observed structure-activity relationship for Genz-10850, which indicated that sub-

stitutions on the piperazine ring were detrimental to potency (sterically clash with

Phe149), whereas polar substitutions at the 2-position of the fluorene moiety would

be tolerated due to its exposure to solvent. Alkylation or acylation of the indole
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Table 19: InhA:Genz-8575 structure-activity relationship

Genz-# R1-group % Inhibition Genz-# R2-group % Inhibition

5537 17 5544 86

5538 14 5984 10

5539 8 5985 17

5540 10 5986 9

5542 82 6341 60

7466 11 6356 54

8575 91 6371 27

6386 5
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Figure 33: Structure of the InhA:Genz-10850 complex. Helices are depicted in blue,
and the loops are represented in pink. NAD+ is depicted as spheres. Genz-10850
(yellow carbons) is represented as a stick model, and occupied the substrate-binding
portion of the active site. The carbonyl group of Genz-10850 formed hydrogen bonds
with Tyr158 and the 2’-ribose of NAD+, in a manner identical to triclosan.
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nitrogen would disrupt a weak hydrogen bond between Genz-10850 and a NAD+

phosphate oxygen.

Comparison of InhA and Other ENR Inhibitors

Superimposition of the backbones of the two InhA inhibitor complexes, triclosan

and Genz-10850, revealed that the A and B ring of triclosan overlayed the piper-

azine and indole groups of Genz-10850, respectively. The triclosan hydroxyl group

and the Genz-10850 carbonyl group occupied similar positions and retained a similar

hydrogen-bonding network with the 2’-ribose hydroxyl of the dinucleotide co-factor

and the Tyr158 side chain. Van der Waals interactions accounted for the remainder of

the interactions between Genz-10850 and protein, and the fluorenyl moiety ordered

the substrate-binding loop. Our structural model of the mechanism of action for

these inhibitors is consistent with the structure-activity relationships identified in

other organisms (Perozzo et al., 2002; Ward et al., 1999; Qiu et al., 1999; Stewart

et al., 1999; Levy et al., 1999; Roujeinikova et al., 1999a). Several reports described

the mode of binding of triclosan to the ENRs from E. coli (Ward et al., 1999; Qiu

et al., 1999; Stewart et al., 1999; Levy et al., 1999), B. napus (Roujeinikova et al.,

1999a), and P. falciparum (Perozzo et al., 2002). All maintained the hydrogen-

bonding network between the A ring, a catalytic tyrosine, NAD+ co-factor, and

a catalytic lysine (Figure 34). The stacking interactions between the A ring and

NAD+ were also conserved. In addition to triclosan analogs (Heath et al., 1998;

Perozzo et al., 2002), other ENR inhibitors have been described, including deriva-

tives of diazoborines (Roujeinikova et al., 1999b), imidazoles (Heerding et al., 2001),

indoles (Seefeld et al., 2001), and aminopyridines (Miller et al., 2002). Perozzo et al.

(Perozzo et al., 2002) reported a series of triclosan derivatives utilized in inhibitor
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Figure 34: Active sites of M. tuberculosis and homologous ENRs. A, cross-section
through the surface of the InhA active site with bound triclosan, showing that InhA
contains an additional triclosan-binding site compared with other ENRs. B, similar
view of E. coli FabI with triclosan. C, cross-section through the Genz-10850-binding
site in InhA, revealing the bulky fluorenyl group of this inhibitor that widens the
fatty acid-binding loop. This is not observed in the NADH-bound structure that
lacks an analogous bulky substituent. Note also the interaction of the nitrogen of
the Genz-10850 indole ring with a NAD+ phosphate oxygen. D, cross-section of the
InhA active site with bound C16 fatty acyl substrate. Comparison with the inhibitor-
bound forms of InhA shows that both substrate and inhibitor utilize the 2’-OH ribose
of NADH as a hydrogen-bonding partner. E, cross-section of the InhA active site
with bound INH. The activated form of INH covalently attaches to the nicotinamide
ring of NADH. F, cross-section of the B. napus active site with bound triclosan.
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studies with PfENR. Common features associated with the more potent derivatives

included a hydroxyphenyl ring bridged with either a dichlorophenyl or a naphthol

ring. Substitution of the hydroxyl group of the A ring was not tolerated, whereas

the bridging atom could be either an oxygen or a nitrogen but not a sulfur or a

carbon (Heath et al., 1998, 2000b). Variability was allowed in the remainder of the

molecule, which tended to be highly hydrophobic. Binding of thienodiazoborine and

benzo-diazoborine to E. coli FabI has also been described (Baldock et al., 1996).

This report showed that the diazoborines covalently modified NAD+, whereas the

bicyclic rings formed face-to-face stacking interactions with the nicotinamide ring

and hydrogen-bonded to Tyr156. Heerding et al. (Heerding et al., 2001) reported

the crystal structure of E. coli FabI complexed to an inhibitor derived from disub-

stituted imidazoles (Protein Data Bank entry 1I2Z). In their analysis, the inhibitor

stacked with the nicotinamide ring of NAD+ , whereas the unsubstituted nitrogen

of the imidazole interacted with the catalytic tyrosine. The crystal structure of E.

coli FabI bound to an indole-derived inhibitor has also been described (Seefeld et al.,

2001) and showed that the 4-hydroxybenzamide moiety hydrogen-bonded to the cat-

alytic Tyr156 of FabI and had orthogonal π-stacking interactions with Tyr146 (Protein

Data Bank entry 1I30). Similar results were reported by Miller et al. (Miller et al.,

2002), who reported the structure of E. coli FabI bound to two aminopyridine-based

inhibitors. These inhibitors stacked with NAD+ and formed hydrogen bonds to a

conserved catalytic tyrosine Tyr156 (the equivalent of Tyr158 in InhA), as well as addi-

tional hydrogen bond interactions with either phosphates on NAD+ or two hydrogen

bonds to the Ala95 backbone. We note that lead optimization studies have been ini-

tiated on aminopyridine-based inhibitor hits (Payne et al., 2002), identified through

previous high-throughput screens against S. aureus FabI (Miller et al., 2002). Iter-

ative medicinal chemistry and structure-based drug design improved the inhibitory
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potency of the original lead compound by 350-fold, and the final compound retained

the moieties implicated as important for stacking and hydrogen-bonding. In the

structure of InhA with bound NAD+ and the product analog C16-NAc, a similar

hydrogen-bonding pattern was observed for the carbonyl oxygen of the C16-NAc.

The remainder of the product analog interacted with the substrate-binding loop,

restoring order to this loop upon binding. These studies, in concert with our crystal

structures of InhA:triclosan and InhA:Genz-10850, accentuate the importance of the

hydrogen bonding network, aromatic ring stacking interactions with either NAD+

or catalytic residues, and the presence of a hydrophobic moiety to mimic a fatty acyl

substrate.
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Discussion

The work undertaken in this thesis should greatly enhance inhibitor design efforts

against two of the most deadly infectious diseases worldwide, malaria and tuber-

culosis. Together, these diseases affect over one third of the world’s population,

and have a mortality rate upwards of 3 million people annually. The insight gained

from extensively examining the enoyl-ACP reductases from Plasmodium falciparum,

Plasmodium berghei, and Mycobacterium tuberculosis, as well as their complexes

with inhibitors, allows for the exploitation of the subtle differences between each of

these proteins to produce inhibitors exquisitely specific for each organism. Com-

prehensive knowledge of inhibitor action also affords the opportunity to optimize

protein:inhibitor interactions to develop more potent inhibitors.

Regarding malaria, the identification of the pfenr and pbenr genes sparked in-

terest into enoyl-ACP reductases as attractive and novel anti-malarial drug targets

in P. falciparum and P. berghei. Examination of the multiple sequence alignment of

PfENR and PbENR revealed that these enzymes shared 87% identity, except for the

N-terminal bipartite extension and a low-complexity insertion within the putative

substrate binding loop. This high degree of similarity had important implications

for in vivo testing of inhibitors against PfENR. The human parasite Plasmodium fal-

ciparum and the mouse parasite Plasmodium berghei are extremely species-specific,

unable to cross-infect other organisms. However, due to the well conserved nature of

the FAS-II enzymes in these organisms, it became apparent that inhibitors effective
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against P. falciparum in vitro should be effective against P. berghei as well.

The binary structures of PfENR:NADH and PbENR:NADH allowed for the iden-

tification and comparison of the structurally conserved regions of these proteins, as

well as the identification of unusual differences such as the differing lengths of the

substrate binding loops. PfENR contains a 43 amino acid insertion within the sub-

strate binding loop (residues 325-366), while PbENR possesses only a 10 amino acid

insertion (residues 313-323). However, these insertions were not well-ordered in the

crystal structures. The comparison verified the nearly identical tertiary structures

(< 0.8 angstrom rmsd) of the Plasmodial enoyl reductases from the two parasites,

supporting our contention that inhibitors that are effective against P. falciparum

ENR would also be active against P. berghei ENR. This allows for the use of P.

berghei in mice as an in vivo model system for testing compounds designed against

PfENR, and leaves us reasonably confident that compounds effective in enzyme as-

says and whole cell assays against the P. falciparum enoyl-ACP reductase would

have the same mode of action in P. berghei studies in mice.

The ternary structures of PfENR:NAD+:triclosan and PbENR:NAD+:triclosan,

while not particularly surprising compared to previous structures of homologous

enoyl-ACP reductases complexed with triclosan, allowed us to unequivocally identify

the catalytic residues, and therefore confirm the mode of action. For example, the

structure of PfENR in complex with triclosan showed unambiguously that Tyr277

was the critical catalytic residue involved in a conserved hydrogen bonding network,

while Tyr262 held the same role in the PbENR:triclosan complex. Lys285 in PfENR

and Lys273 in PbENR were assigned roles in co-factor binding, consistent with the

works of Ward et al. with E. coli FabI and triclosan inhibition. The structure

of PfENR:triclosan allowed us to infer roles of the residues populating the active

site, and possible inhibitor analogs to take advantage of hydrophobic interactions,
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hydrogen-bonding interactions, and ring-stacking interactions. Additionally, these

structures revealed the location of a second hydrophobic pocket in close proximity

to triclosan that could be utilized to provide increased inhibitor efficacy.

The structure of PfENR:isoniazid allowed us to confirm our speculation that the

second hydrophobic pocket could be utilized to improve inhibitor potency. The ison-

icotinyl group of the isoniazid-NADH adduct protruded into a small binding cavity,

and formed stacking interactions with Tyr267. This was highly similar to M. tuber-

culosis InhA and its interaction with isoniazid, except that Phe149 is involved in ring

stacking. Although Plasmodium falciparum does not contain a catalase-peroxidase

enzyme capable of activating isoniazid and forming an INH-NADH adduct, this type

of structural information is useful to consider in the design of new drugs.

The structure-activity relationships generated from the several hundred triclosan

analogs screened will help narrow down the key protein:inhibitor interactions nec-

essary to generate a potent, high-affinity, bioavailable inhibitor. We were able to

determine regions along the triclosan scaffold that were amenable to modification

while maintaining inhibitor potency, while also recognizing that modifying certain

positions had deleterious effects on inhibitor potency. For example, the 1-position

hydroxyl on the A ring of triclosan could not be substituted without destroying the

inhibitory activity, while modifications of the 5-position and 6-position were well tol-

erated. The 5-position on the A ring offered a building point to access the isoniazid

binding pocket, while the 6-position could potentially lower the efficiency of glu-

curonidation or sulfonation at the 1-position, giving the drug better bioavailability.

Substitutions on the B ring were allowed at the 2’ and 4’ position, but substitutions

here did not substantially improve inhibitor potency. X-ray crystallography of 4’-

substituted triclosan analogs confirmed the presence of additional hydrogen bonds

between inhibitor and backbone or side chain atoms of Asn218 and Ala219. While
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these analogs did not significantly enhance inhibitor potency, many of these analogs

did not destroy activity either. This knowledge could provide possibilities for modi-

fying the triclosan scaffold to improve the pharmacokinetic profile.

Regarding tuberculosis, the structure of InhA in complex with two compounds

that were not derivatives of available anti-tuberculars will be instrumental in advanc-

ing research into anti-tuberculars that circumvent existing resistance mechanisms.

Isoniazid resistant strains of tuberculosis typically have mutations in the KatG pro-

tein, which activates isoniazid. Compounds that do not require this step of activation

would immediate offer an advantage in anti-tubercular drug development. Triclosan,

Genz-8575, and Genz-10850 fit this criteria.

The M. tuberculosis InhA:triclosan crystal structure revealed an additional mode

of binding for the inhibitor, one not previously observed in enoyl-ACP reductases

from homologous organisms. Triclosan bound to InhA in the configuration normally

seen in other enoyl-ACP reductases, with Tyr158 hydrogen bonding with the hy-

droxyl group of triclosan, while the A ring stacked with the nicotinamide portion of

NAD+. However, in addition to seeing triclosan in this commonly observed orienta-

tion, there was a second molecule of triclosan in an inverted position adjacent to the

first molecule. This had not been reported in the literature previously. The doubly-

bound triclosan maintained a conformation that was similar to that of the preferred

C16 substrate, and is consistent with the specificity of InhA for long chain substrates.

This offers an avenue for engineering an inhibitor that is exquisitely specific for M.

tuberculosis InhA, while not adversely affecting fatty acid biosynthesis in the host.

Genz-8575 and Genz-10850, discovered through high-throughput screening tech-

niques, offer new chemical scaffolds that are distinct from the mode of action of

isoniazid. Genz-8575 and Genz-10850 were found to be effective against InhA in in

vitro enzyme assays, with IC50 values of 2.4 and 0.16 µM, respectively. Genz-8575
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was also found to be effective against strains of multi-drug resistant tuberculosis, as

well as whole cell cultures of P. falciparum (Kuo et al., 2003). To gain insight into

the molecular details of this class of inhibitors, we determined the crystal structure

of the InhA:Genz-10850 complex. Genz-10850 bound in the active site in the area

normally occupied by triclosan or substrate, and the Genz-10850 carbonyl group

hydrogen-bonded with Tyr158and the 2’-hydroxyl of the NAD+ co-factor. The fluo-

renyl group was situated within the binding pocket that normally borders the long

acyl chain of the substrate. These compounds offer novel leads for future optimiza-

tion studies, and provide a foundation on which to aim to develop a new family of

compounds for use against tuberculosis.

Future Work

While the investment of time and effort into obtaining structural information con-

cerning P. falciparum ENR, P. berghei ENR, and M. tuberculosis InhA have re-

turned a significant amount of information, research on these important enzymes

must continue. Future work will focus on discovering new lead compounds for

each of these proteins to increase chemical diversity, obtaining crystal structures

of protein:inhibitor complexes, and subsequently the generation of comprehensive

structure-activity relationship profiles for the purpose of optimizing lead compounds.

Several of these approaches are already in motion.

To generate greater chemical diversity, there are several approaches that can be

undertaken. High throughput screens can be conducted to search for more potent,

chemically diverse inhibitors. The 50,000 compound high throughput screens initi-

ated against PfENR with Southern Research Institute should be repeated, once the

technical problems are corrected. Two problems that could easily be corrected are to
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purchase crotonoyl-CoA from a single source, and to run the assays in a reasonable

amount of time so that the activity of the enzyme does not change within the du-

ration of the screening. Careful observation of the plate preparation and screening

process would allow early detection of problems, and prevent propagation of errors

throughout the screening process. Statistical analysis and inspection of the initial

velocity plots would filter out false positives, and the resulting list of “hits” would be

re-screened and subjected to IC50 determination. This procedure would elicit greater

accuracy and confidence in the results.

Virtual screening also offers the opportunity to discover new lead compounds.

The FlexX docking experiments yielded promising results. vHTS of the 3.3 million

compound library indicated 68 top hits, defined as the intersection of the top 2% of

scores across five categories of scoring algorithms. Visual inspection of the results

revealed five docked compounds that appear to have a mode of action that is con-

sistent with all available PfENR crystal structures. In vitro enzyme assays and IC50

determination will soon be conducted to verify these results.

After discovery of new and effective inhibitor scaffolds, crystal structures of the

enzyme:inhibitor complexes would make available new information regarding impor-

tant elements in inhibitor potency. Crystal structures have already played a signifi-

cant role in guiding triclosan analoging efforts, and should continue to do so with any

promising inhibitor candidates. One uncertainty is the presence of low-complexity

insertions within the substrate binding loops of the Plasmodial ENR proteins. Since

they border the active site and unusually enriched in polar residues, these insertions

could provide another means for tailoring drugs to the active site. However, because

they are not visibly ordered in the crystal structure, it remains to be seen whether

these low-complexity insertions should be accounted for in the drug design process.

In parallel, optimization of the triclosan scaffold should continue. Based on the
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widely disparate affinities of triclosan for the E. coli, M. tuberculosis, and P. falci-

parum enoyl-ACP reductases, there appears to be room for improvement in tailoring

triclosan to the enzyme. In vivo tests with P. berghei infected mice should be con-

ducted with the 6-position substituted inhibitors to determine if the modification

prevents glucuronidation while maintaining inhibitor potency. Genz-8575 and Genz-

10850, which have IC50 values of 18 and 32 µM, respectively, against PfENR, should

be co-crystallized to determine the mode of binding. For M. tuberculosis InhA,

derivatives that mimic the doubly-bound triclosan should be synthesized for in vitro

testing, and perhaps co-crystallization.

The present body of work and the future objectives combine to give the pro-

cess of anti-malarial and anti-tuberculosis drug development a promising start. The

combination of excellent drug targets, knowledge of current inhibitors, and straight-

forward in vitro enzyme assays, are great advantages in ensuring successful drug

discovery and optimization efforts against malaria and tuberculosis.
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CHAPTER VIII

EXPERIMENTAL: MATERIALS AND METHODS*

Plasmodium falciparum Enoyl-ACP Reductase

Cloning

Overlapping pfenr sequences were PCR-amplified from a P. falciparum (3D7 strain)

gametocyte cDNA pSPORT plasmid library (kindly provided by Dr. Thomas Tem-

pleton, Weill Medical College of Cornell University, New York) using vector-specific

primers (M13/pUC forward and reverse) combined with the following pfenr primers:

5’-TTT ATT GCT GGT ATA GGA GAT ACA AAT and 5’-ATT TGT ATC TCC

TAT ACC AGC AAT AAA, 5’-TGG CCT CCT GTT TAT AAT ATT TTT and 5’-

AAA AAT ATT ATA AAC AGG AGG CCA, 5’-GAA GAA ACG AAA AAT AAT

AAA AGA TAT AAT and 5’-ATA TCT TTT ATT ATT TTT CGT TTC TTC,

5’-CCA GGC TAT GGT GGA GGT ATG and 5’-CAT ACC TCC ACC ATA GCC

TGG, 5’-GAT TAT GCA ATA GAG TAT TCA and 5’-CAT ATT ATT TAA GTG

TTT CAT. PCR conditions were: 1× (94 ◦C for 2 min); 35× (94 ◦C for 20 s, 48

◦C for 10 s, 52 ◦C for 10 s, and 60 ◦C for 2 min). Amplified PCR fragments were

isolated and directly sequenced using internal primers.

Full-length pfenr gene was amplified using primers W1 (5’-AAC GTC CCATGG

ATA AAA TAT CAC AAC GGT TAT TAT TCC TCT TTC TAC AT) and W2 (5’-A

TAT GGATCC TCA TTC ATT TTC ATT GCG ATA TAT ATC ATC TGG TAA

AAA CAT), which contain NcoI and BamHI sites, respectively (underlined). Four

*Part of the data reported in this chapter is reprinted with permission from “Structural elucidation
of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase”
by Perozzo et al., 2002. J Biol Chem, 277, 13106-14. 2006 by the American Society for Biochemistry
and Molecular Biology.
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silent mutations (shown in lowercase letters) were introduced with mutagenic primers

M1 (5’-GAg AAG GAA GAg AAg AAg AAT TCA GCT AGC CAA AAT TAT ACA

TTT ATA GAT TAT) and M2 (5’-GAA TTc TTc TTc TCT TCC TTc TCA CCT

GAA TTG TTC ATA ATA TTA TGA ACA TC) using a two-step mega-primer

PCR method. In the first step, the cDNA library was used as a template to amplify

both a 5’ fragment with the primers W1 and M2 and a 3’ fragment with the primers

M1 and W2. Both reactions used the PCR conditions: 1× (94 ◦C for 2 minutes);

30× (94 ◦C for 20 seconds, 53 ◦C for 40 seconds, and 60 ◦C for 3 minutes). For

the second step, both fragments were gel-purified and combined in a PCR reaction

with primers W1 and W2, yielding the full-length pfenr. After restriction digestion,

the gene was ligated into the pET28a vector (Novagen) and transfected into E. coli

(NovaBlue, Novagen). A construct containing the four silent mutations was identified

and verified by restriction digestion, PCR, and automated sequencing with internal

primers.

This construct harboring the stabilized pfenr gene was used as a template to

prepare a N-terminal and C-terminal truncated version, using expression primers E1

(5’-AC GTC CCATGG TGC ATC ATC ATC ATC ATC ATA ATG AAG ATA TTT

GTT TTA TTG CTG GTA TAG G) and E2 (5’-ATAT GGATCC TCA ATC ATC

TGG TAA AAA CAT TAT ATT TAA TCC GTT ATC CAC ATA TAT TGT CTG)

(NcoI and BamHI sites underlined) and the PCR conditions described above. This

gene was ligated into pET28a, and its sequence was verified.

Recently, the full-length pfenr gene sequence also appeared in the P. falciparum

genome data base as sequence from the P. falciparum "blob" chromosomes that co-

migrate on pulse-field gels. This has been confirmed independently by two other

publications (Surolia and Surolia (2001); McLeod et al. (2001)). When compared

with these recently published sequences, our data from multiple independent PCR
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products show a Gln at position 35 instead of His, and an Asn instead of a Tyr

at position 88 of the complete amino acid sequence. Both changes occur at the N-

terminus of the enzyme in a region that is structurally distant to the site of enzymatic

function.

Purification

BL21(DE3) Codon+RIL cells (Novagen) harboring the expression plasmids were

grown in Terrific broth. When the A600 reached 0.8, the cells were induced with 1

mM isopropyl-1-thio-D-galactopyranoside for 5 h at 37 ◦C. Cell pellets were resus-

pended in buffer A (20 mM Tris/HCl, pH 8.0, 500 mM NaCl, 50 mM imidazole)

and disrupted using a French press. The filtered supernatant was applied to a metal

chelate affinity column loaded with nickel. The column was washed with buffer B

(20 mM Tris/HCl, pH 8.0, 500 mM NaCl, 150 mM imidazole) and eluted with buffer

C (20 mM Tris/HCl, pH 8.0, 500 mM NaCl, 400 mM imidazole). The protein was

concentrated using Centriprep 30 and applied to a Superdex 75 size-exclusion column

equilibrated with buffer D (20 mM Tris/HCl, pH 7.5, 150 mM NaCl).

Crystallization and Data Collection

Using hanging drop and vapor diffusion methods, PfENR was crystallized as a binary

complex with NADH bound to the enzyme and as a ternary complex with NAD+

and triclosan. The protein in buffer D (20 mg/ml) was incubated with 4 mM NAD+

and 1 mM triclosan for the ternary complex and with 4 mM NADH for the binary

complex. Two microliters of these mixtures was mixed with 2 µl of well solution

consisting of 2.35 M (NH4)2 SO4 and 100 mM buffer, pH 5.6 (sodium acetate for the

ternary, MES for the binary complex) and equilibrated against the reservoir solution

at 18 ◦C. The crystals of both complexes were isomorphous, belonged to the space
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group P43212 (cell dimensions a = b = 134.0 Å, c = 84.0 Å), and contained a dimer

(half of the functional tetramer) in the asymmetric unit.

Crystals of ternary complexes with NADH and the triclosan analogs B13 and B24

were prepared by soaking binary ENR:NADH crystals. The inhibitors were dissolved

in acetonitrile, directly added to the drops containing crystals of binary complexes,

and incubated for a week.

To increase protein yield and facilitate the crystallization process, the PfENR

protein was expressed without the N-terminal signal and translocation peptide and

the following 18 residues, as well as the C-terminal 7 amino acids, which were pre-

dicted to extend into solvent and potentially interfere with crystallization but not

contribute to enzyme function. When BL21(DE3) Codon+-RIL cells (Novagen)

were used for expression, the purification typically resulted in 20-30 mg of truncated

PfENR per liter of media. The Km and Vmax values of the truncated PfENR were

indistinguishable from the full-length enzyme carrying silent point mutations.

Diffraction data was collected at room temperature to 2.35 to 2.50 Å resolution

from single crystals using a MacScience DIP2030 image plate detector with double-

focusing mirrors coupled to a Rigaku x-ray generator utilizing a copper rotating

anode (CuKα wavelength = 1.54 Å). The data were processed and scaled using

the DENZO/SCALEPACK (Otwinowski and Minor 1997) crystallographic suite of

programs.

Enzyme Assays

All experiments were carried out on a Shimadzu UV-1201 UV-visible spectropho-

tometer at 25 ◦C in 20 mM Tris/HCl, pH 7.6, 150 mM NaCl. Kinetic parame-

ters were determined spectrophotometrically by following the oxidation of NADH to

NAD+ at 340 nm (ε = 6.3 mM−1cm−1). Km and Vmax values for crotonoyl-CoA



161

were determined at a fixed and saturating concentration of NADH (200 µM) and by

varying the substrate concentration (0-500 µM). Km and Vmax values for NADH

were determined at variable concentrations of NADH and a fixed and saturating con-

centration of crotonoyl-CoA (500 µM). Kinetic parameters were obtained by fitting

the initial velocity data to the Michaelis-Menten equation.

Inhibition constants were determined under conditions of saturating substrate

(500 µM crotonoyl-CoA, 200 µM NADH) and variable inhibitor concentration. Val-

ues for Ki were determined from the x-intercept of a Dixon plot, assuming uncom-

petitive inhibition. Mean values of two independent experiments are reported for

kinetic parameters and inhibition data.

IC50 results were determined by varying the concentration of inhibitor in stan-

dardized enzyme assays, and the IC50 calculated with the following formula:

vi

v0

=
1

1 + [I]
IC50

where vi/vo represents the fractional enzyme activity remaining after the addi-

tion of inhibitor, [I] represents the concentration of inhibitor added, and IC50 is

determined by curve fitting.

Crystallographic Methods

The structure of the ternary ENR:NAD+:triclosan complex was solved by molecular

replacement with AMORE (Navaza 1994) using only protein coordinates of the Bras-

sica napus ENR structure (Protein Data Bank entry 1ENO) as a search model. The

initial solution was used as a template for the Automated Protein Modeling Server

(available at www.expasy.ch/swissmod) to generate a three-dimensional model of the

PfENR sequence. The resulting model was then used to calculate an initial electron
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density map at 2.43 Å, which showed strong and continuous density for NAD+ and

triclosan. Several rounds of model refinement included the addition of missing amino

acids. In a later stage, water was automatically added and the final refinement was

carried out without any noncrystallographic symmetry restraints. This yielded a fi-

nal Rwork of 17.1% and a value for Rfree of 21.3%. The first 9 amino acids (including

the His6-tag) were not resolved, and 40 of the 43 amino acids comprising an insertion

next to the binding loop area did not show any density. There were no additional

breaks in the main chain, although the density was weak for residues Ile153-Lys155

and Glu179-Asn183 that form two small loop regions. The average B-value for pro-

tein atoms was 36 Å2. The final model contained a total of 289 amino acids, one

NAD+ molecule, one triclosan molecule, and 57 water molecules in each monomer.

PROCHECK analysis (Laskowski et al. 1993) showed 90% of all residues in the most

favored and 10% in the generously allowed regions of the Ramachandran diagram.

Because crystals of the binary complex with NADH were isomorphous to the

ternary complex, the protein coordinates of the latter were used to calculate the

initial binary complex density maps. The first map calculated at 2.40 Å clearly

identified the NADH co-factor with strong and continuous density. Subsequent re-

finement led to an Rwork of 17.6% and an Rfree of 22.4%. Again, no density was

observed for the first 9 amino acids and the same 40 amino acids of the binding loop

insertion of each monomer, and the same areas for the loops showed weak density.

The average B-value for main-chain atom positions of the binary structure was 31

Å2. The final model contained a total of 289 amino acids, one NADH molecule, and

77 water molecules in each monomer.

The ternary structures with bound inhibitors B13 and B24 were solved using

the method described above. Initial maps showed strong density for NADH, and

additional differences in electron density at the inhibitor binding site. Good density
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for B13 was only observed in monomer B, whereas B24 showed excellent density in

both monomers. The inhibitors were built into the model, and subsequent refinement

for B13 led to an Rwork of 18.7% and an Rfree of 23.2%, with a total of 289 amino

acids, one NADH, and 69 solvent molecules in each monomer and one B13 molecule

in subunit B. The ternary structure with bound B24 was refined to an Rwork of 17.6%

and an Rfree of 22.7%. The model comprised 289 amino acids, one NADH molecule,

one B24 molecule, and 64 solvent molecules in each monomer. Both structures lacked

density for the initial 9 amino acids and the same residues of the large loop insertion.

The density for the two small loops was weak. The average B-values of the main-

chain atoms of the ternary PfENR:NAD+:B13 and PfENR:NAD+:B24 complexes

were 33 and 34 Å2, respectively. The statistics for all the structural determinations

are presented in Table 20.

Crystallographic Programs

The HKL Software Suite (Otwinowski and Minor 1997) is composed of several indi-

vidual programs for useful for displaying, processing, and scaling x-ray diffraction im-

ages. Chief among these applications are the programs DENZO and SCALEPACK.

These programs allow for identification of unit cell parameters and crystal indexing of

x-ray reflections, necessary for the accurate determination of the crystal space group .

The set of parameters a, b, and c are unit cell axes measured in angstroms, while the

angles between these axes are defined in degrees and are represented by the variables

α, β, and γ, where α is the angle between axes b and c, β is the angle between axes

a and c, and γ the angle between axes a and b. Typically, only a single diffraction

pattern is necessary for estimates of these values, however, two or more images sepa-

rated by larger oscillation ranges may be necessary for accurate determination of the

unit cell parameters. Additionally, a variety of experimentally-derived x-ray detector
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Table 20: PfENR:NADH and PfENR:inhibitor crystallographic statistics
Data collection PfENR·NADH PfENR:Triclosan PfENR:B13 PfENR:B24

Maximum resolution (Å) 2.40 2.43 2.35 2.50
Space group P43212 P43212 P43212 P43212
a=b (Å) 133.28 133.08 133.37 133.10
c (Å) 83.83 84.16 83.86 83.69
α = β = γ (◦) 90 90 90 90
Rsym(%) 12.3 9.5 9.9 9.8
Completeness (%) 94.6 96.9 90.0 94.8
Refinement statistics
Resolution range (Å) 30-2.40 30-2.43 30-2.35 30-2.50
Number of reflections 28,422 28,104 28,883 25,188
Number of atoms
Protein 4,574 4,574 4,574 4,574
Water 154 114 138 128
Ligand(s) 88 122 120 128
Rcryst(%) 17.6 17.1 18.7 17.6
Rfree(%) 22.4 21.3 23.2 22.7
Average B-factors (Å2)
Protein (subunit A/B) 32/31 35/36 34/32 35/34
NADH+/NADH (subunit A/B) 32.3/23.4 28.0/28.6 56.9/26.8 29.7/26.0
Inhibitors (subunit A/B) 14.9/13.7 77.5/56.1 21.3/21.6
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parameters are necessary to properly index the crystal, the most important factors

being the crystal to detector distance, the θ offset, the incident x-ray wavelength, any

detector offsets, and the beam center position. The program DENZO utilizes these

known parameters to enforce Bravais lattice restrictions consistent with the diffrac-

tion pattern of the crystal. Most of the Bravais lattice classes have restrictions on the

α, β, and γ angles of the unit cell (α = β = γ = 90, for orthorhombic space groups)

and thus a distortion index is calculated to determine the best fit vectors must be

slightly distorted to match the diffraction pattern. Thus, a distortion index value is

calculated in DENZO that is given in percent values, where the lower the percent-

age, the better the observed data matches the calculated space group and unit cell.

The calculated distortion index as a guideline to select the Bravais lattice that best

agrees with the collected crystallographic data. Typically the Bravais lattice with

the highest symmetry and a low distortion index is selected as the proper Bravais

lattice. Once the unit cell and detector parameters are determined and refined, and

all data is collected, DENZO utilizes a weighted profile-fitting algorithm dependent

on factors such as spot size and background noise for determining the intensity of

each measured reflection. Each frame is processed individually, and each reflection

is integrated to calculate the area beneath the peak. The result is a series of files

corresponding to each individual frame collected during the experiment, which are

ready for the next step in structure determination: scaling of the data.

The SCALEPACK software scales the data resulting from DENZO. This program

performs the data reduction, merging, and qualitative analysis of symmetry related

reflections of a single data set. Each frame of integrated data contains values of the

indices of the reflections along with their intensities, and SCALEPACK assembles all

the reflection data into a single text file. The output from SCALEPACK typically

consists of the the hkl indices of each unique reflection, the intensity (I) of the unique
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reflections, the intensity of the region directly surrounding the measured reflections,

and the I/σ value (signal to noise ratio) for each reflection. Statistics are used to

assess the quality of the data collection, and are given as χ2 and Rsym. Data from

a high quality crystal should yield χ2 values near 1.0 and Rsym values below 10%,

and these values are useful in determining the utility of the data as well as whether

continuing the process of structure determination is feasible. For example, reflections

that do not give a signal-to-noise ratio above background can be used to eliminate a

particular resolution shell from future structure determination calculations.

HKL2000 is a program package that provides a graphical user interface for the

programs DENZO and SCALEPACK, insulating the user from editing scripts manu-

ally. It includes extended functionality such as a strategy program to optimize both

data collection speed and data completeness, three-dimensional profile fitting of x-

ray data, real-time monitoring of data collection quality and progress, and finally

statistical analysis of freshly collected data.

The Crystallography and NMR System (Brünger et al., 1998), abbreviated CNS,

is a suite of programs useful for various phasing techniques, Fourier electron density

map calculation and manipulation, and model refinement. The components of this

suite of programs were used to for simulated-annealing and maximum-likelihood

refinements for the models described in this study. Later steps generally included

energy minimization, placement of ordered water molecules, and temperature-factor

refinement. Several steps of refinement include Rfactor and an Rfree calculation for

monitoring the progress of protein structure determination. The Rfactor and Rfree

are both calculated using the following calculation.

Rfactor =

∑
hkl ||Fobs| − |Fcalc||∑

hkl |Fobs|
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The distinction between the Rfactor and Rfree lies in their utilization in protein model

building. Rfree is calculated with a small segment of the x-ray data, usually 5-10%,

that is excluded from protein model refinement, and serves as a measure of cross-

validation to prevent over-fitting of the protein model to the experimental data. As

the Rfree is not biased by the protein model, careful monitoring of this variable

prevents “over-fitting” that produces artificially low Rfactor values.

CCP4 Collaborative Crystallographic Programs Version 5 (Collaborative Compu-

tational Project, Number 4, 1994) is a suite of programs utilized for all steps of data

reduction, phase determination, electron density map manipulation, protein model

building, and model refinement. It contains separate programs that can be unified

into a graphical user interface with the front-end CCP4i (Potterton et al., 2003).

As a user interface, it simplifies repetitive and error-prone tasks such as manually

editing scripts, small molecule model building, changing data formats, and various

other menial tasks.

AMORE (Navaza, 1994) is one of the automated molecular replacement search

programs included within the CCP4 suite of programs. AMORE performs the rota-

tion and translation searches separately, as it is much more efficient that performing

the searches simultaneously. The rotation function searches Patterson space by mov-

ing the search model to the origin of the new unit cell and iterating through rotations

the search model. During the search, correlation values are calculated between a ta-

ble of the model protein structure factors and the observed amplitudes from the x-ray

data. This results in a list of peaks that clearly define the most likely rotations, which

are then used in translation searches. Correlation coefficients are recalculated as the

newly rotated molecule is translated within the unit cell of the new crystal form, and

the highest scoring combination of rotations and translations are used to generate

the full oligomer of the protein of interest within the unit cell. The contents of this
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unit cell are then ready for model refinement.

REFMAC (Murshudov et al., 1997) is a refinement program within the CCP4

suite of programs that uses maximum likelihood refinement as its minimization al-

gorithm. This suite of programs is analogous to CNS.

XtalView (McRee, 1999) is a suite of programs, with the component Xfit being

used for visualizing electron density maps, building of protein models, structure

validation, and fitting of small molecule inhibitors or substrates. XtalView can also

generate high quality figures suitable for publication.

PROCHECK (Laskowski et al., 1993) is a structure validation program used to

verify that the protein geometry, bond angles, and lengths lie within historically

accepted limits. The various analyses indicate both the degree of agreement with

the experimental data and the quality of their geometrical properties.

High Throughput Screening

All 50,000 compounds from the Chemical Diversity Labs compound library were

dissolved in 100% DMSO and plated at 1 µl per well in a 96-well flat bottom plate

using a BioMekFX. Test compound concentrations were 10 µM per inhibitor. All

procedures that involved transfer to the HTS platforms began with the transfer

of the 96-well plate, using the SAMI NT Method creation software on a Beckman

Coulter 2-meter rail system. The assay was further validated through variability

testing, which included Z-analyses to incorporate the assay’s signal dynamic range

and the data variation associated with sample measurement. The final assay (total

volume of 100 µl) included 20 mM Tris-HCl Buffer (pH 7.6), 300 µM NADH, 150

mM NaCl, 600 µM crotonoyl-CoA, and 12.0 µg/ml (340 nM) PfENR. The reagent

mix, including the Tris-HCL Buffer, NaCl, NADH, and crotonoyl CoA was combined,

protected from light and added to the test plate via a Titertek Multidrop 384. The
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reaction was initiated with the addition of PfENR (diluted in Tris-HCl Buffer, pH

7.6) using a Multimek 96. The test plate was then immediately transferred to a

Molecular Devices Spectramax Plus 384 where it was shaken for 20 seconds and read

kinetically at 340 nm for 12 second intervals over 2 minutes.

ZINC Virtual Screening

The crystal structure of the ternary complex PfENR:NAD+:triclosan was used for

virtual library screening results with the ZINC library of commercially available

small molecules. All crystallographic waters were removed. Atom typing of protein

residues and addition of hydrogens to them was carried out by reference to standard

Biopolymer libraries keyed to residue type available in SYBYL 7.0. Terminal rotors

such as methyl and hydroxyl groups were then relaxed to avoid distortion of scores

by spurious steric clashes with the added hydrogen atoms. Charges were assigned to

both protein and ligand atoms. Binding sites were defined for all scoring functions

as including all atoms in protein residues where at least one atom was within 5

angstroms of an atom in the inhibitor, triclosan, as found in the parent crystal

structure. FlexX docking runs utilized the default parameters provided in SYBYL

7.0. Afterwards, they were scored with the consensus scoring technique to give a

score in five separate categories. The top hits were selected as the intersection of the

top 2% of each of the five categories.

Plasmodium berghei Enoyl-ACP Reductase

Cloning

Full-length pbenr was amplified from Plasmodium berghei genomic DNA with primers

p433 (CC AGATCT ATT GTT AAT AGA ATT TTT ATT GAA TAT ATT C)
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including a BglII restriction site and p434 (CC GCGCGC GAA TAG AGT GAG

AAA GAG AAT GAA AGG) containing a BssHII restriction site. A stretch of 10

adenosines was replaced with a sequence enhanced in GC content using the site-

directed mutagenesis kit from Invitrogen. The forward primer p435 was CAG AAA

AAT ATG CAC CCT TA AAg AAg AAg TTA CTA TCT ACT GAT GTT GG

and the reverse primer p436 was CCA ACA TCA GTA GAT AGT AA cTT cTT

cTT TAA GGG TGC ATA TTT TTC TG with the silent mutations indicated with

underlining.

For cloning into the pET28a expression vector, pbenr was PCR amplified from

the product containing the silent mutations (lowercase) with the following primers

p444 (CC CATATG AAg AAT GAg AAT GAA AAT GAA ATc TGT TT, NdeI

site underlined) and p438 (CC GGATCC TCA ATC ATC AGG CCC AAA CAT

AAT ATT CAA TC, BamHI site underlined) and TA cloned into pGEM-T Easy

(Promega).

Purification

BL21(DE3) cells (Novagen) harboring the expression plasmids were grown in Luria

broth. When the A600 reached 0.8, the cells were induced with 0.75 mM isopropyl-

1-thio-D-galactopyranoside for 12 hours at 16 ◦C. Cell pellets were resuspended in

buffer A (20 mM Tris/HCl, pH 7.5, 50 mM imidazole) and disrupted using a French

press. The filtered supernatant was applied to a metal chelate affinity column loaded

with nickel. The column was washed with an increasing gradient of buffer B (20 mM

Tris/HCl, pH 7.5, 500 mM NaCl, 500 mM imidazole). Fractions containing His6-

MBP fusion protein were pooled and treated with with His6-TEV protease (1:100

v/v) at 16 ◦C overnight in order to cleave off the fusion protein. The protein/protease

mixture was then dialyzed in 4 L of dialysis buffer (20 mM Tris pH 7.5, 100 mM
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NaCl) for 12 hours and the extent of cleavage assessed by SDS-PAGE. Subsequently

the dialyzed protein/protease mixture was loaded onto an anion exchange column

and washed with loading buffer (20 mM Tris/HCl pH 7.5, 100 mM NaCl). A linear

gradient from 100 to 400 mM NaCl was utilized to elute the protein. The protein was

then dialyzed and concentrated using Centriprep 30 and prepared for crystallization.

Crystallization and Data Collection

Using hanging drop and vapor diffusion methods, PbENR was crystallized as a binary

complex with NADH bound to the enzyme and as a ternary complex with NAD+

and triclosan. The protein was incubated with 3 mM NAD+ and 1 mM triclosan for

the ternary complex and with 3 mM NADH for the binary complex. Two microliters

of these mixtures was mixed with 2 µl of well solution consisting of 100 mM Tris

pH 7.1, 14% PEG 2000, and 100 mM NaCl, and equilibrated against the reservoir

solution at 18 ◦C. The crystals of both complexes were isomorphous, belonged to the

space group P21 (cell dimensions a = 64.1 Å, b = 121.1 Å, c = 87.7 Å, α=γ =90,

β= 109), and contained a tetramer in the asymmetric unit.

Crystallographic Methods

The structure of the ternary PbENR:NAD+:triclosan complex was solved by molec-

ular replacement with AMORE using only protein coordinates of the Plasmodium

falciparum ENR structure (Protein Data Bank entry 1NHD) as a search model. The

initial solution was used as a template for the Automated Protein Modeling Server

(available at www.expasy.ch/swissmod) to generate a three-dimensional model of the

PbENR sequence. The resulting model was then used to calculate an initial electron

density map at 2.9 Å, which showed strong and continuous density for NAD+. Sev-

eral rounds of model refinement included the addition of missing amino acids. In a
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later stage, water was automatically added and the final refinement was carried out

without any noncrystallographic symmetry restraints. This yielded a final Rwork

of 19.1% and a value for Rfree of 25.3%. The first 9 amino acids (including the

His6-tag) were not resolved, and the amino acids comprising an insertion next to

the substrate binding loop area did not show any density. The average B-value for

protein atoms was 36 Å2. The final model contained a total of 289 amino acids, one

NAD+ molecule, one triclosan molecule, and 57 water molecules in each monomer.

PROCHECK analysis showed 90% of all residues in the most favored and 10% in

the generously allowed regions of the Ramachandran diagram.

Because crystals of the binary complex with NADH were isomorphous to the

ternary complex with triclosan, the protein coordinates of the latter were used to

calculate the initial binary complex density maps. The first map calculated at 2.40

Å clearly identified the NADH co-factor with strong and continuous density. Subse-

quent refinement led to an Rwork of 17.6% and an Rfree of 22.4%. Again, no density

was observed for the first 9 amino acids and the same amino acids of the binding loop

insertion of each monomer, and the same areas for the loops showed weak density.

The average B-value for main-chain atom positions of the binary structure was 31

Å2. The final model contained a total of 289 amino acids, one NADH molecule, and

77 water molecules in each monomer.

The statistics for all the structural determinations are presented in Table 21.

Mycobacterium tuberculosis Enoyl-ACP Reductase

Cloning

The inha gene of M. tuberculosis H37Rv was amplified by polymerase chain reaction

(PCR), using primers that contained NcoI and BamHI restriction sites at the 5’ and
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Table 21: PbENR:NADH and PbENR:triclosan crystallographic statistics
Data collection PbENR:NADH PbENR:NAD+:Triclosan
Maximum resolution (Å) 2.90 2.50
Space group P21 P21
a (Å) 64.11 64.34
b (Å) 120.93 121.20
c (Å) 87.69 87.83
α = γ (◦) 90 90
β= (◦) 109 108.97
Unique reflections 30,051 44,053
Rsym(%) 12.3 9.5
Completeness (%) 94.6 92.9
Redundancy 3.0 5.8
I/sigma 9.1 11.5
Refinement statistics
Resolution range (Å) 30-2.90 30-2.50
Number of reflections 30,051 44,053
Number of atoms
Protein 9,072 9,072
Water 77 238
Ligand(s) 166 234
Rcryst(%) 17.6 19.7
Rfree(%) 22.4 26.3
Average B-factors (Å2)
Protein 31.5 35.3
NADH+/NADH 32.3/23.4 46.0
Inhibitors 56.2
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3’ ends, respectively. The PCR product was ligated into the pET-15b expression

vector that had been previously treated with NcoI and BamHI restriction enzymes,

and this plasmid was used to transform the BL21(DE3) E. coli strain.

Purification

The E. coli BL21(DE3) strain was grown in 4L of Terrific broth in a 37◦ Celcius

shaker, to an OD600 of 1 and induced with 1 mM isopropyl-1-thio-D-galactopyranoside

for 12 hours. Cells were then harvested by centrifugation. Standard purification pro-

tocols were then performed at 4◦ Celcius, and fractions analyzed by SDS-PAGE. Cells

were disrupted with a French press, and the supernatant obtained after centrifugation

was dialyzed and applied to a 5 x 40 cm Blue-Sepharose (Pharmacia) affinity column.

Proteins were eluted using a linear 0-1 M NaCl gradient, and fractions containing the

InhA protein were pooled and applied to a 5 x 40 cm Phenyl-Sepharose (Pharmacia)

hydrophobic interaction column. Elution proceeded with a 500 - 5 mM NaCl de-

creasing linear gradient, and fractions containing the InhA protein were pooled and

concentrated, yielding a single 28.5 kDa band on SDS-PAGE stained with Coomassie

Blue.

High Throughput Screening and Synthesis of Inhibitors

The high throughput screen measured the NADH-dependent catalysis of an octenoyl

(C8:1 42)-CoA substrate as a decrease in 340 nm absorbance resulting from conver-

sion of NADH to NAD+ . This screen was run using samples synthesized as mixtures

of up to 100 compounds. For the mixture containing Genz-10850, indole-5-carboxylic

acid was reacted with 86 different amines in equimolar and limiting concentration.

This mixture showed 40% inhibition when tested at a total concentration of 40 µM.

The 86 compounds in this mixture were then individually synthesized and tested.
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The most potent analogs from this mixture were amides of indole-5-carboxylic acid

and 4-aryl-substituted piperazines. Subsequent synthesis of an array of piperazine

analogs resulted in Genz-10850 (Table 19), which showed potent inhibition of InhA

with an IC50 value of 0.15 µM. In the case of Genz-8575 (Table 19), a mixture of

13 malondialdehydes was reacted with an excess of (4-trifluoro-methyl-pyrimidine-

2-yl)-hydrazine. The resulting mixture had an inhibition of 38% against InhA at

40 µM. Deconvolution of this mixture yielded several active pyrazoles, the best

of which (Genz-5542, 2-[3-(4-chloro-2-nitrophenyl)- pyrazol-1-yl]-4-trifluoromethyl-

pyrimidine) showed 82% inhibition at 40 µM. Several analogs of this compound were

prepared, among them Genz-8575, the result of replacing the chlorine atom with a

nitro group. Genz-8575 displayed 91% inhibition at 40 M against InhA. Substrate

and coenzyme concentrations in these screens were 250 and 100 M, respectively.

IC50 values were determined by measuring the initial velocity over a broad range of

inhibitor concentrations, plotting the fractional activity as a function of the log of

the inhibitor concentration, and curve-fitting with a sigmoidal function. Inhibition

constants were determined under conditions of saturating substrate (200 µM sub-

strate and 600 µM NADH) and variable inhibitor concentrations. Ki values were

determined from the x-intercept of a Dixon plot, assuming uncompetitive inhibition.

For triclosan binding of InhA, we found a Ki of 8.5 µM, which differs from an earlier

measurement of 0.22 µM (Parikh et al. (2000)). These discrepant results may in

part be due to differences in the assay conditions, including the use of different chain

length acyl-CoA substrates (C12:1 CoA versus C8:1 CoA).

Crystallization and Data Collection

Hanging drop methods were utilized to co-crystallize InhA inhibitor complexes. For

the InhA:Genz-10850 complex, the product analog was solubilized in 100% Me2SO
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and added dropwise at room temperature to a dilute InhA solution containing NAD+.

The final molar ratios of the mixture were 1 InhA active site to 100 NAD+ to 1.5

Genz-10850, in 1% (v/v) Me2SO. The mixture was concentrated to 10 mg/ml, and

the crystals were produced in wells containing 12% polyethylene glycol 3350, 150

mM ammonium acetate, and 100 mM [(carbamoylmethyl)imino]diacetic acid, pH

6.8, using the vapor diffusion method. The crystals were of the space group C2 with

unit cell dimensions a = 101.01 Å, b = 83.31 Å, c = 193.07 Å, α = γ = 90◦, β

= 95.21◦ and contained 6 molecules per asymmetric unit. X-ray diffraction data of

the InhA:Genz-10850 crystal was collected using a MacScience DIP2030 image plate

detector coupled to a Rigaku x-ray generator utilizing a copper rotating anode (CuKα

= 1.54 Å). The detector was placed 200 mm from the crystal with no offset in the 2θ

angle. Each data frame was exposed for 10 min and consisted of a 1.5◦ rotation of

the crystal. For the InhA:triclosan complex, crystals bound to triclosan were formed

in the I212121 space group, unit cell a = 94.8 Å, b = 103.9 Å, c = 189.6 Å, α= β

= γ = 90◦, via hanging drop vapor diffusion experiments, with 100 mM Tris, pH

8.0, in the well solution. InhA was concentrated to 5 mg/ml and crystallized upon

the introduction of triclosan to a solution with a 1:2:1 stoichiometric ratio of InhA,

NAD+, and triclosan. Increasing the concentration of triclosan to yield a 1:2:2 (or

higher) stoichiometric ratio resulted in microcrystals that did not diffract. Data were

collected to 2.6 Å resolution at 120◦ K. X-ray diffraction data of the InhA:triclosan

crystal were collected at the Advanced Photon Source (Beamline 14-BM-C) at a

wavelength of 1.0 Å. The detector was placed 200 mm from the crystal. Each data

frame was exposed for 30 seconds and consisted of a 1.0◦ rotation of the crystal.

All images were autoindexed, integrated, and scaled together using the DENZO and

SCALEPACK software packages .
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Crystallographic Methods

Initial phases were obtained using molecular replacement, with a single subunit of

InhA derived from the hexagonal crystal form of InhA (Protein Data Bank code

1ENY) as a search model. Molecular replacement solutions for the translation and

rotation function were obtained from Crystallography and NMR software (CNS) .

The CNS software package was utilized for molecular replacement, rigid-body refine-

ment, simulated annealing, minimization, and B-factor refinement. The nucleotide

cofactor was easily identified in a symmetry-averaged difference Fourier (Fo - Fc )

electron density map, verifying the correctness of the molecular replacement solution.

Non-crystallographic symmetry restraints were applied after rigid body refinement

and initial simulated annealing. NAD+, triclosan, and water molecules were added

during several cycles of minimization followed by B-factor refinement, resulting in an

Rfactor of 19% and an Rfree of 28% for the InhA:Genz-10850 complex, and an Rfactor

of 22.5% and an Rfree of 28% for the InhA:triclosan complex. Non- crystallographic

restraints were removed when significant differences were observed between the indi-

vidual subunits present in the asymmetric unit. Inspection of Fo - Fc electron density

maps calculated from an InhA:NADH model revealed significant additional density

in the active sites of some of the subunits in the asymmetric unit. For the InhA

Genz-10850 complex, four of the six subunits contained product analog, whereas

the remaining subunits lacked bound inhibitor. For the InhA:triclosan complex, two

molecules of triclosan were clearly identified and placed in one subunit of the enzyme,

whereas the other subunit contained only one molecule of triclosan. The differences

may be related to negative cooperativity (Dessen et al., 1995), which may translate

into differences in inhibitor occupancy. Data collection statistics are presented in

Table 22.



178

Table 22: InhA:Genz-10850 and InhA:triclosan crystallographic statistics
Data Collection InhA:NADH:Genz-10850 InhA:NAD+:Triclosan
Maximum resolution (Å) 2.7 2.6
Space group C2 I212121
a (Å) 101.0 94.8
b (Å) 83.3 103.9
c (Å) 193.1 189.6
α (◦) 90 90
β (◦) 95.2 90
γ (◦) 90 90
Unique reflections 38,313 27,704
Rsym (%) 8.5 8.0
Completeness (%) 85.2 95.1
Redundancy 2.9 4.5
I/σ 13.2 10.3
Refinement statistics
Resolution range (Å) 30-2.7 30-2.6
No. reflections 38,313 27,704
No. atoms/subunit
Protein 11,964 11,964
NAD+ 44 44
Ligand(s) 30 17/34
Rcryst (%) 19.0 22.5
Rfree (%) 28.8 28.2
Average B factors (Å2)
Protein 31.6 26.5
NADH/NAD+ 44.1 45.8
Inhibitors 47.7 38/52
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