
 

TWO APPLICATIONS OF THE FABRY-PEROT 

INTERFEROMETRIC SENSOR 

 
A Dissertation 

 
by 
 

ZHAOXIA XIE 
 
 
 
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 
 
 

August 2006 
 
 
 
 
 

Major Subject: Electrical Engineering 
 



 

 

 
 
 

TWO APPLICATIONS OF THE FABRY-PEROT 

INTERFEROMETRIC SENSOR 

 
A Dissertation 

 
by 
 

ZHAOXIA XIE 
 
  
 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY  
 
 
 

 
Approved by: 
 
Co-Chairs of Committee,  Ohannes Eknoyan 

Henry F. Taylor 
Committee Members,        Chin B. Su 

Gerard L. Cote 
Head of Department,         Costas N. Georghiades 

 
 
 
 
 
 
 

August 2006 
 
 

Major Subject: Electrical Engineering



 

 

iii 

 
ABSTRACT 

 
 

 
Two Applications of the Fabry-Perot Interferometric Sensor. (August 2006) 

Zhaoxia Xie, B.S., Shandong University, Shandong, China; 

M.S., Shandong University, Shandong, China; 

M.S., University of Houston 

Co-Chairs of Advisory Committee: Dr. Ohannes Eknoyan 
  Dr. Henry F. Taylor 

 

Two important applications of the fiber Fabry-Perot Interferometer (FFPI) sensor 

are investigated: (1) an optical binary switch for aerospace application, and (2) an FFPI 

weigh-in-motion sensor for measuring the weight of trucks traveling down a highway.  

In the fiber optical switch, the FFPI sensor is bonded to a copper cantilever to 

sense the elongation of cavity length induced by force applied to the end of the 

cantilever via a pushed button. Light from a superluminescent diode light source passes 

through a scanned Michelson interferometer and is reflected from a sensing FFPI and a 

reference FFPI to produce a fringe pattern.  A secondary interferometer uses a 

distributed feedback laser light source to compensate for irregularities in the mechanical 

scanning rate of the moving stage to achieve precision measurement of the optical path 

difference.  

The system is calibrated by applying known weights to the cantilever. The 

elongation measured by the FFPI sensor shows excellent linearity as a function of the 
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force applied, and little hysteresis was observed. By comparing the measured force to a 

threshold, the system produces a binary signal that indicates the state of the pilot-

actuated system; i. e., whether or not the button has been pushed. 

In FFPI weigh-in-motion sensors system, the FFPI sensors are installed in metal 

bars so that they will experience the strain induced by applied loads and are connected to 

the Signal Conditioning Unit (SCU). The SCU determines the induced phase shift in the 

FFPI and produces voltage outputs proportional to the phase shifts.   

Laboratory Material Testing System tests show that the fiber optic sensor 

response is a fairly linear function of the axial displacement. In highway tests the FFPI 

sensors showed strong responses and consistently reproduced the expected 

characteristics of truck wheel crossings. A falling weight deflectometer was used to 

calibrate the sensor response and predict unknown loads. All sensors in steel bars and 

aluminum bars showed excellent repeatability and accurate predictions, with an average 

relative percentage error within 2%. The study on sensor response variation with applied 

load positions shows a bell shaped distribution. Truck tests on the road sensors indicate 

that the repeatability of wheel crossings at similar position is good. The sensor can 

accurately measure axle spacing, speed, and truck class. 
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

The first objective of this research is to develop an optical binary switch to be 

used in aircraft. Present aircraft utilize electrical wiring for transmitting sensor signals in 

systems for controlling elevators, rudders, and other flight-critical elements.  There is 

strong interest in the avionics community in increasing the safety and reliability of 

aircraft while reducing operating and maintenance costs by replacing conventional wire 

systems with fiber optics.  Extensive research is performed on structure health 

monitoring (SHM) of aerospace vehicles and aircraft [1]. Fiber optical sensors have 

remarkable advantage in meeting the minimal size and weight requirement due to 

improved multiplexing capability. Other major benefits include low cost and immunity 

to electromagnetic interference (EMI) and lightning. One important type of sensor is a 

binary switch which is actuated when the pilot presses a button.  The signal from the 

switch is a “0” when no force is applied and a “1” when the operator-induced strain in 

the sensing element exceeds a threshold [2]. 
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Weigh-in-motion systems are devices that are capable of weighing vehicles in-

motion at speeds up to and including typical mainline highway speeds. In order to ensure 

public safety and highway infrastructure longevity, most commercial carriers (big trucks) 

on the high way must be weighed everyday. Due to the sheer value of car and truck 

traffic on our highways, current weighing system using slow and cumbersome static 

scales aren’t a viable option. Furthermore there is a growing concern over the increase in 

overweight truck loads on highways caused by economic growth. Pavement performance 

is influenced greatly by truck traffic loading rather than traffic repetition, Therefore 

there’s a strong demand for an economic and effective WIM system. 

The second objective of this research is to investigate the feasibility of a weigh-

in-motion (WIM) measurement system utilizing fiber Fabry-Perot optical sensors.   This 

is the first investigation of this unique sensor as an alternative to piezoelectric sensors 

for the WIM applications.  Disadvantages of present day piezoelectric-based WIM 

systems include: maintenance difficulties, susceptibility to corrosion, occurrence of 

erroneous readings and damage due to power surges, signal crosstalk from adjacent 

traffic lanes, and high cost. The fiber optic Fabry-Perot sensor is more durable, immune 

from electromagnetic interference and crosstalk, electrically isolated from the 

monitoring equipment, free from corrosion effects, suitable for remote monitoring with 

multi-km separation between the signal conditioning unit (SCU) and the sensors, and 

potentially cost-effective when many sensors are operated from a single SCU[3-7].    
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1.2 Previous Work 

Fiber optics is playing an increasing role in data transmission, signal distribution, 

and sensing. Extensive research has been performed in using communication-based 

optical fibers for sensing physical parameters such as temperature, pressure, strain, 

displacement and refractive index etc., due to many of their many attractive features that 

supersede the conventional sensor. Application of fiber optic sensors can be found in 

areas such as aerospace, civil construction, the transportation industry, biology, medicine, 

and manufacturing.  

Optical fiber sensors can be classified as extrinsic sensors and intrinsic sensors. 

For the extrinsic sensors the fiber conducts light to and from the measurand outside the 

fiber while for the intrinsic senor the fiber itself senses the perturbation to be 

investigated. By different modulations of light in response to the measurand, these 

sensors can also be classified as intensity sensors (amplitude modulated), phase 

modulated interferometer sensors and polarization modulated sensors.  Among them, the 

interferometer sensor can provide the highest sensitivity for measuring physical changes. 

There are two schemes in interferometric sensors aimed at determining the 

optical path difference (OPD): (1) high coherence interferometric sensors using laser 

sources have the advantage of high speed dynamic measurement but usually cannot 

provide absolute OPD result; (2) low coherent interferometry (LCI) also called white 

light interferometry (WLI) uses low coherent light sources such as a light emitting diode 

or superluminescent diodes (SLD). WLIs, in principle, have the advantage of achieving 

absolute OPD measurement from “cold start” with Michelson, Mach-Zehnder, Fabry-
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Perot or other configuration. They can be used in static or quasi-static parameters 

measurement such as temperature, pressure etc.  

The first intrinsic Fabry-Perot interferometer (FFPI) sensors were fabricated by C. 

E. Lee and Henry F Taylor at Texas A&M University in 1988 [8] . The FFPI have 

unique advantages over other fiber-optic sensing elements, as well as exhibit high 

sensitivity and rapid response. Intensive research was conducted on pressure and 

temperature sensor systems devoted to developing a practical measurement system by 

using FFPI’s [2, 8-20].  

Considerable research into sensor systems of dynamic pressure or strain have 

been carried out at Texas A&M University in order to measure current [18], engine 

pressure [19, 20] and railroad bridge monitoring systems [21]. The fundamental 

methodology is to utilize the phase shift undergone by the reflected light from FFPI 

sensors due to various environmental perturbations. The interference fringe data is 

processed by the signal conditioning unit (SCU) with a microprocessor to determine the 

phase shift in the fiber interferometer, and to produce voltage outputs proportional to the 

phase shifts.   

For measuring the absolute OPD of static or quasi-static parameters from the 

cold start, i.e. without input the initial value of the parameter whenever the system is 

turned on, low-coherent interferometry has drawn more and more attention from 

researchers[22-29]. Study into LCI’s using dual FFPIs was also performed at TAMU 

[12-15, 22].  Compared to laser sources, this type has the advantage of identifying the 

interference fringe order with a high level of precision from the output pattern of the 
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interferometer using a broadband source; compared to some reported extrinsic Fabry-

Perot temperature sensors also based on low coherence interferometry [24-26],  it has the 

advantage of high resolution and a large dynamic range. 

1.3 Objectives 

The primary objectives of this research are: 

1. To develop an optical binary switch system which is actuated by the pilot 

pressing a button based on low coherence interferometry.  The signal from the switch is 

a “0” when no force is applied or a “1” when the operator-induced strain in the sensing 

element exceeds a threshold.    

2. To investigate the feasibility of a weigh-in-motion (WIM) measurement 

system utilizing fiber Fabry-Perot optical sensors.  
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CHAPTER II 

THEORETICAL BACKGROUND 

2.1 Fiber Interferometers 

The four most commonly used types of classical fiber interferometers are 

Michelson, Mach-Zehnder, Sagnac and Fabry-Perot interferometers. The basic working 

principle of an interferometer is that it divides a beam into either two or many beams, the 

beams travel through different optical paths. Thus when reunited the light wave 

amplitudes add coherently, and interfere with each other. In this research we mainly use 

Michelson and Fabry-Perot interferometers. 

2.1.1 Fiber Fabry-Perot Interferometer (FFPI) 

 
 
 

 

Fig. 1. Fiber Fabry-Perot interferometer with two internal mirrors 

 
 
 

The Fabry-Perot interferometer is a typical multiple beam device. The output 

depends upon the successive multiple reflections of an input beam between the two 
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mirrors forming the etalon. It serves as a basic type of laser resonant cavity and as a 

filter in communication systems. It is widely used in laser and optics research. 

The fiber Fabry-Perot interferometer is composed of two dielectric internal 

mirrors that form a Fabry-Perot cavity within a single mode fiber, as shown in Fig. 1. 

The sensor is generally monitored in reflection, and the magnitude of the optical signal 

Pr is determined by the interference of light reflected by the two mirrors 

r i 1 2 1 2P P (R R 2 R * R cos )= ∗ + − ∗ ϕ .                              (2.1) 

where Pi and Pr are the incident and reflected optical powers, R1 and R2 are the mirror 

reflectances (R1 and R2) <<1, L is the cavity length (mirror separation), and � is the 

round-trip phase shift of the light inside the cavity. 

If the reflectances R1 and R2 are the same, with R=R1=R2, equation (2.1) 

becomes 

)cos1(2 ϕ−= ir RPP   .                                                  (2.2) 

The round trip phase shift can be expressed as 

λ
πνπϕ nL

c
Ln 44 ==                                                      (2.3) 

where n is the refractive index, � is the optical frequency, L is the cavity length of FFPI, 

and c is the free space wavelength of the light source. 

The reflective power Pr will change in response to the variation of phase �. � can 

be expressed as 

TL ϕϕϕϕϕ υ ∆+∆+∆+= 0                                                   (2.4) 

with 
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πϕ                                                        (2.5) 
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L4                                                         (2.6) 
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LT

υ
λ
πϕ 4                                                       (2.7) 

where �0 is the initial round phase shift, and �L, �� and �T are the changes in length, 

frequency and temperature, respectively. 

The FFPI can sense any physical perturbation, including perturbations in 

temperature, pressure and strain that can change the optical path nL. The reflected 

optical power is the coherence summation of the two waves reflected from the two 

mirrors and is converted to electrical signal by a photodetector. Increasing the cavity 

length L will increase the sensitivity of the sensor system. 

2.1.2 Michelson interferometer  

The Michelson interferometer is widely used in the optical industry for testing 

lenses and prisms, measuring the refractive index, or examining minute details of the 

surface. The Michelson interferometer is shown in Fig. 2.  

Light from the source is divided by the beam splitter into two paths. As the light 

is reflected from the mirrors ends, the beam passes back into the beamsplitter towards 

the photodetector where the phase shift between the two beams is detected. The 

difference of phase shift can be represented as 

λ
π )(4 21 LLn −=∆Φ                                                 (2.8) 
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Fig. 2 Free space Michelson interferometer 

 
 
 

where n is the refractive index of the fiber used, L1 and L2 are the lengths of the two 

paths, and � is the central wavelength of the light source. Usually a moving stage is used 

to obtain the interference fringe pattern. 

The detected light intensity is 

)cos(2 2121 ∆Φ++= IIIII                                          (2.9) 

2.2 Low Coherence Interferometry 

Low coherence interferometry (LCI) is designed to measure the optical path 

difference of the sensing interferometer by using a broadband light source (coherence 

length ~ 20-50 �m). 

Equation (2.9) is valid only if the light source is coherent, i.e. the light source is 

monochromatic. For the incoherent source there’s no interference, so I=I1+I2; for the 

broad band light source, ��=10~100nm, the reflected power for each wavelength is:  

Light in 

Beam 
Splitter 

Path 1 

Path 2 

Mirror 1 

Mirror 2 

Lens 

Lens 

Photodiode 

L1 

L2 

Moving stage 
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))/2cos(1)((2 111 cLII r νπυ ∆−=    

))/2cos(1)((2 222 cLII r νπυ ∆−=  

…….. 

))/2cos(1)((2 cLII nnrn νπυ ∆−=                                   (2.10) 

so the  total intensity is        ))]/2cos(1)(([2
1

cLII ii

n

i
t νπυ ∆−= �

=

  .                           (2.11) 

Here the �L=2(L1-L2) is the optical path difference. The interference term is 

�
=

∆=
n

i
iin cLII

1
21 )/2cos()(2),.......,( νπυννν  .                   (2.12) 

For light of a continuum spectrum, the intensity is given by the spectral density 

of S(�), the interference term is 

�
∞

∆=
0

21 )/2cos()(2),....,( υυπυυυυ dcLSI n  .                      (2.13) 

Assuming that the spectral distribution of the source is a Gaussian spectrum, 

which is a reasonably good approximation for many SLD’s, the spectral power density 

of the light incident upon the sensor FFPI can be written as 

( )2
0

2
20

)(
0

)(
)( υυρυ

υυ

υ −−∆
−−

∝∝ eAeS    .                           (2.14) 

Here, �=�Lc/2c, A0 is constant, c is the speed of light in the free space, and Lc is the 

coherence length of the light source 

λ
λ

υ
τ

∆
=

∆
==

2

k
c

kcL cc                                             (2.15) 
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where �c is the coherence time, � is the center wavelength of the source, and �� and �� 

are spectral width of the source in frequency and in wavelength, respectively. According 

to the spectral line shape, k is determined as follows [28] 

Gaussian line: 664.0
2ln2 ==

π
k  

Lorentzian line: 318.0
1 ==
π

k  

Rectangular line: 1=k . 

Then the fringe signal 

)/2cos(

)/2cos()(2),....,(

2)2(

0

0
21

λπ

υυπυυυυ

LeA

dcLSI

cL
L

n

∆∝

∆=

∆−

∞

�
                             (2.16) 

with �=c/�0. An interferometer pattern is observed when the moving stage scan so that 

2|L1-L2|<Lc. The maximum amplitude of the fringe pattern is observed when L1=L2. As 

the optical path difference �L increases, the decrease in fringe visibility is given by 

	



�
�


�
�
�

�
�
�

� ∆−=
Lc

L
V

2
exp5.0                                            (2.17) 

The basic setup of the LCI is shown in Fig. 3. Light from a broadband light 

source is coupled into a processing interferometer, such as a scanned Michelson 

interferometer, and then into the sensing interferometer. In our system we use an FFPI 

sensor, which assumes that the reflectance of the two mirrors in the FFPI mirrors is 

<<1(low-finesse interferometer). The round trip phase shift in the sensing interferometer  
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Fig. 3. Block diagram of low coherent interferometer system 

 
 
 

�s can be written as 

                                                              
c

Ls
s

πυϕ 2
=                                                    (2.18) 

where Ls is the optical path difference in the sensing interferometer, Ls=2nL, and n is the 

effective refractive index of the fiber mode. 

The phase difference in the processing interferometer �p is: 

c

Lp
p

πυ
ϕ

2
=                                                      (2.19) 

where Lp is the optical path difference for the two arms of the processing interferometer.  

The spectral power density if the light transmitted by the processing interferometer dPp/d 

� can be written as 

2

)cos1( pSLDp

d
dP

d

dP ϕ
υυ

+
=                                      (2.20) 

SLD 

Processing Interferometer Sensing Interferometer 

Photodetector 

Signal Processing 
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The total power incident on the processing interferometer PSLD is given by integrating 

the spectral power density over the spectrum of the light source 

υ
υ

d
d

dP
P SLD

SLD �=                                                   (2.21) 

The reflected power from the sensing interferometer Pr can be written as 

2

)cos1(
4 pSLDr

d
dP

R
d
dP ϕ

υ
α

υ
+

=                                (2.22) 

where R is the reflectance of the mirrors in the sensing interferometer, with R<<1, 	 is a 

constant that represents the optical loss between the sensor and reference interferometers. 

If we combine equations (2.21) and (2.22), we get: 

)cos1)(cos1(4 sp
SLDr

d
dP

R
d
dP ϕϕ

υ
α

υ
++=                            (2.23) 

In computing the output power we need to integrate equation 2.23 with respect to the 

frequency over the spectrum of the light source. Assuming that the spectrum is 

sufficiently broad so that the integral extends over many periods of the cosine function, 

we get 

0coscos �� == υϕυϕ dd sp                                       (2.24) 

As stated above, the spectral power density of SLD can be written as in equation 2.14, 

then 

( ) ][ 2
0

2

Re υυρ

υ
−−=

d
dPSLD     .                                          (2.25) 

Substituting equations 2.24 and 2.25 into 2.23, then integrating yield the result  
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with �LOPD the path difference of the two interferometers, �LOPD=|Ls-Lp|. 

2.3 Photoelastic Effect 

The photoelastic effect describes the relationship between the material strain and 

the resulting refractive index change in the material. When a homogeneous continuum 

optical medium is subjected to external forces, changes in the refractive index are 

induced. In standard contracted notation, the effect is described by 

�=�
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�∆
j

jij
i

SP
n2

1
 (i, j=1 to 6)                                   (2.27) 

where �
�

�
�
�

�∆ 2

1
n

 denotes the change of indecatrix, Pij refers to the coefficient of the strain-

optic tensor, S1, S2, and S3 are the principle strains, and S4, S5 and S6 are the sheer strains. 

For fused silica, the photo elastic effect is small, and �(1/n2)i=-2�ni/n3 can be assumed. 

For linear stress-strain, Sj can be expressed as 
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Here ε0 is the strain in z direction; 
 is the Poisson’s ratio which is determined by 

material property. 

The strain-optic tensor for fused silica is 
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where P11 and P12 are the individual strain-optic coefficients, and P44=( P11- P12)/2. 

Light propagating through a longitudinally strained single mode fiber is polarized 

along the transverse direction (i=1, 2), and therefore we can see a change in the 

refractive index 

[ ]31212111

3

1

3

)(
22

SPPPs
n

SP
n

n
j

jjx ++−=−=∆ �  

[ ]31212111

3

2

3

)(
22

SPPPs
n

SP
n

n
j

jjy ++−=−=∆ �  

thus   ( )[ ]31211211

3

2
SPSPP

n
nn yx ++−=∆=∆     .                       (2.30)  

To the FFPI sensor, when used as a strain sensor with temperature and pressure 

held constant, the round trip phase shift of the FFPI sensing element � in response to an 

axial strain � is given by combining equations 2.5 and 2.30. As a result we get 

( )[ ]{ }121112
25.01

4
PPPn

nL +−−=∆ γ
λ

επϕ                                (2.31) 

For a fused-silica fiber, with n=1.45, P11=0.12, P12=0.27, and 
=0.17, we find that  

L3.14
ϕλε ∆=          .                                                     (2.32) 
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Another case to consider is one in which a uniform radial pressure P is applied to 

the fiber, which causes a refractive index change. In that case, �=P/E, where P is the 

pressure applied, and E is the Young’s modulus of the material. The change in the fiber 

refractive index for light polarized perpendicular to the fiber axis (due to the longitudinal 

stress) is given by  

( )( )1112

2

1
2

PP
E
Pn

n
nx υυ −−��

�

�
��
�

�
=

∆
  .                                   (2.33) 

The change in optical path length of the interferometer owing to the strain can be 

expressed as 

( )
L
L

n
n

nL
Ln xx ∆+

∆
=

∆
   .                                       (2.34) 

The round-trip phase shift 

( )
λ

πϕ nL∆=∆ 4
                                                (2.35) 

for a fused silica fiber E = 7x1010 N/m2, from equation (2.33), (2.34), and (2.35) we can 

get 

L
P 111086.8 −×

∆= ϕλ
                                               (2.36) 

with N/m2 as the unit for P. 
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CHAPTER III 

SYSTEM SETUP 

3.1 Optical Binary System Overview 

In the optical switch applications, it is necessary to determine the state of the 

switch (i. e., whether or not a force is applied) from a “cold start”.   This means that if 

the power of the monitoring system is turned on with no prior knowledge of the history 

of the system, it is necessary to determine whether or not a force is being applied.  This 

implies that that the system must be capable of a static measurement of the length of the 

FFPI. 

The requirement of static measurement capability rules out the use of a simple 

laser monitoring system, which is not capable of strain measurement from a “cold start”.  

The alternative is a “white light interferometer” (WLI) shown in Fig. 4. The WLI 

achieves the static measurement capability by using a broadband light source instead of a 

narrowband laser.  Presently we use a 1325nm superluminescent diode (SLD) as the 

broadband light source. 

The FFPI sensor is bonded to a copper cantilever.  A force applied to an end of 

the cantilever causes it to bend, resulting in an elongation of the FFPI sensor.  Light 

from the SLD passes through the Michelson interferometer and is reflected from a 

sensing FFPI and a reference FFPI, producing a fringe pattern.  The temporal 

displacement of the two central fringes is proportional to the change in the OPD of the 

sensing FFPI. A secondary interferometer uses a distributed feedback (DFB) laser light 

source to compensate for irregularities in the mechanical scanning rate of the moving 
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stage. High resolution can be achieved by using a cross-correlation algorithm data 

processing using C++. 

3.1.1 White light interferometer optical system 

The monitoring setup shown in Fig. 4 consists of two bulk scanned Michelson 

interferometers sharing a common mirror mounted translation stage [29]. The 

interferometer using the SLD light source monitors the FFPI; while a second 

interferometer uses a distributed feedback (DFB) laser. 

All fiber interferometers have the advantage of light weight and small size, are 

less susceptible to vibrations, and alignment problems are totally eliminated by using all-

fiber components. However, fiber interferometers have the disadvantage that the state of 

polarization (SOP) of the light changes randomly. Its SOP is very sensitive to external 

perturbations such as temperature and strain. Polarization changes in the arms of the 

interferometer will cause fluctuations in the fringe visibility.   

The bulk free space Michelson interferometer is not only immune to random 

changes in the SOP in fiber propagation paths; it also avoids difficulties in fabricating 

length-matched arms for all-fiber Fabry-Perot or Mach-Zehnder interferometers. It also 

has the advantage of providing large dynamic range so that it can be used for the 

coherent multiplexing of many sensors. 

However, it’s difficult to achieve an extremely high resolution in the OPD 

measurement with a mechanically scanned interferometer, due to the random variations 

in the motor rate of the motor-driven translation stage. This is overcome by using a  
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Fig. 4. WLI system for monitoring fiber interferometer 
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The same mirrors in the mounted translation stage ensure the same displacement 

in the two interferometers. The output signal from the DFB interferometer can be 

assumed to be a perfect sine function. The periodicity of the DFB fringe pattern is used 

to determine the exact position of the stage and to compensate for the irregularity of 

mechanical stage motion. 

3.1.2 Calibration and test setup for binary switch 

The arrangement for calibration of the fiber-optic switch is shown in Fig. 5.  The 

FFPI sensing element is bonded to a copper cantilever.  A force applied to the end of the 

cantilever causes it to bend, resulting in an elongation of the FFPI.  The response of the 

switch to an applied force is tested by applying known weights to the cantilever. 

When a force is applied to the cantilever, according to classical elasticity theory, 

M/I = σ/(h/2). Here M is the bending moment, σ is the stress, h and b are the thickness 

and width of the beam, respectively, and I=bh3/12 is the second moment of area of the 

beam. The bending moment is M=G(Lb-Lf). Here G is the weight applied to the beam, Lb 

is the length of the beam, and Lf is the distance of one point in the FFPI cavity to the 

fixed end of the beam. The stress can be expressed as σ=εE. From the above discussion, 

we can get: 

)/()(6 2EbhGLL fb −=ε  .                                             (3.1) 

Averaging the strain in the cavity of length L gives: 

)/()2/(6 2EbhGLLb −=ε   .                                                (3.2) 

This equation shows that when the FFPI cavity is bonded at the fixing end, as indicated 

in Fig. 5, we can get the maximum level of strain.  



 

 

21 

A switch configuration employing an FFPI element bonded to a cantilever is 

shown in Fig. 6.  The design ensures that no mechanical contact with the cantilever 

occurs until the button is pushed.  The two legs move with the pushbutton. The shorter 

one exerts the force to the cantilever and causes an elongation of FFPI cavity; the longer 

leg ensures that the cantilever will not be over-bended. 

3.2 Weigh-in-motion System Overview 

The whole system consists of a fiber-embedded metal bar which senses the 

pressure induced when the truck wheels pass, a signal conditioning unit (SCU) to 

provide laser light source, signal processing and output signal, and a data acquisition 

system and computer, as shown in Fig. 7. 

Sensors were embedded in both steel and aluminum bars.  The lengths of the bars 

were 1 foot for lab calibration and 4 or 5 feet for road tests. The sensor was bonded with 

polyimide in a 1/4×1/8 inch groove in the metal bar (Fig. 8) with cross-sectional 

dimensions of 1×1 inch.  The groove was then filled with high temperature red silicone. 

In lab tests we embedded one sensor in the metal bar. In road tests 5 sensors were 

embedded in each bar, as shown in Fig. 9.  The distribution of sensors was intended to 

ensure that the right side of the tires of the truck will pass close to one or more of the 

sensors.  
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Fig. 5.  Setup for calibration of FFPI sensor 

 

 

 

  

Fig. 6. Binary fiber optic switch 
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Fig. 7. FFPI weigh-in-motion measurement system 

 
 
 

 

Fig.8. Cross section of metal bar embedded with fiber FFPI sensor 

 
 
 

 

Fig 9. Sensors embedded in metal bars 
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3.3.1 Light source 

In this research two types of light source were used. One was superluminescent 

diode (SLD) with a peak wavelength of 1325nm, and one was distributed feedback 

(DFB) laser with a peak wavelength of 1554nm. 

The SLD is a semiconductor laser which has the advantage of a broad bandwidth 

(typically a few tens of nm), which thus makes it a suitable light source for an LCI. It’s 

less susceptible to reflection-induced noise than the high coherence laser diodes. The 

elimination of the reflection from the diode surface is the main difficulty in the 

manufacturing of an SLD. There are several methods to suppress lasing such as 

unpumped absorbing regions [30] and window structures with tapered active layers [30, 

31]. The characteristics of the SLD are given in Table 1. 

 
 
 

Table 1. Optical and electrical characteristics of SLD 

Parameter Symbol Condition Min Typical Max Unit 

Fiber output power P cw 0.5 -- 2 mW 

Peak wavelength � p cw 1330 1350 1380 nm 

Spectral width �� cw 20 30 40 nm 

Operating voltage Vp cw 1.3 1.5 1.7 V 

Operating temperature Tc cw -40 -- +60 °C 

TE cooler current ITE cw -- -- 0.3 A 

Bite rate B -- -- -- 560 -- 

Lifetime Tlife -- -- -- 150 kH 
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The first report of a CW operation of a semiconductor DFB laser was made 

around the mid 1970s. Ordinary semiconductor lasers oscillate in many modes and are 

impossible to incorporate into a monolithic device. The DFB laser diodes were the only 

LDs with sufficient single-mode stability, sufficient modulation bandwidth and 

sufficient easy fabrication for use in today’s optical communication systems. They have 

a corrugated layer etched internally, which forms an optical grating that selectively 

reflects light according to its wavelength. The grating period d is chosen to satisfy the 

Bragg condition 2neffd=�. In addition to their narrow bandwidth (typically 0.1-0.4nm) 

and long high-bandwidth transmission paths, DFB lasers are less temperature dependant 

and more linear in their response than conventional laser diodes. The characteristic of 

DFB’s are given in Table 2.  

3.3.2 Photodetector 

We used three Fujitsu FID3Z1LX InGaAs PIN photodectors with multimode 

fiber pigtails in our setup. PIN photodiodes are the most common detectors in fiber 

systems. The PIN diode has a wide intrinsic semiconductor layer with a high resistance 

between the p and n regions; this improves the efficiency and the speed relative to the pn 

photodiode. The photodiodes we used were designed for use in high bit rate transmission 

systems up to 2.5GB, and local area network and subscriber loop at both 1310nm and 

1550nm wavelengths. The PIN chip has a photosensitive area of 50�m in diameter, with 

a planar structure and a guard ring for high reliability. The quantum efficiency is 

specified to be over 80% at 1310nm and the dark current is 0.1nA, both at room  
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Table 2. Optical and electrical characteristics of DFB laser 

Parameter Symbol Condition Min Typical Max Unit 

Fiber output power P cw 2.0 -- -- mW 

Threshold current Ith cw 2.0 -- 50 mA 

Forward current Vf cw, P=2.0mW  1.1 1.5 V 

Slope efficiency S cw, P=2.0mW 33 -- 200 �W/mA 

Modulation current Im cw, P=2.0mW 10 -- 60 mA 

Peak wavelength � p cw, P=2.0mW 1530 -- 1570 nm 

Spectral width �� cw, P=2.0mW -- -- 0.4 nm 

Sidemode suppression  cw, P=2.0mW 30   dB 

Monitor  current Im cw 0.05 -- 1.0 mA 

Monitoring dark current CD cw -- 1 500 nA 

Monitor capacity Ct f-1MHz -- 6 10 pF 

Linearity of P-Im  cw -- --  +10 % 

 
 
 

temperature and with a reverse voltage of 5K. The optical and electrical characteristics 

and the maximum rating of the photodiode are listed in Tables 3a and 3b. 

3.3.3 Translation stage and motor control system 

In our LCI systems, the mechanical scanning of the Michelson interferometer is 

controlled by a motorized micropositioning system to provide the scanning of the 

mirrors. A micropositioning system consists of the actuator and the driver.  

The Motor MikeTM actuator by Oriel Corporation uses a DC motor with an 

integral gear head to allow pinpoint positioning or constant velocity operation. The 



 

 

27 

Table 3a. Absolute maximum rating of the photodetector 
 

Parameter Symbol Rating Unit 

Storage Temperature Tstg -40 to+90 °C 

Operating case temperature Top -40 to+90 °C 

Forward current IF 5 mA 

Reverse current IR 2 mA 

Reverse Voltage VR 20 V 

 
 
 
 

Table 3b. The optical and electrical characteristics of the photodetector 

Parameter Symbol Condition Min. Max. Unit 

VR=1V, 1300nm A/W  

Responsibility 

 

R VR=1V, 1500nm 

 

0.8 

 

--- A/W 

VR=1V, -20--+70°C --- ±3 % Variation of Responsibility ∆R 

VR=1V, -40--+85°C --- ±4 % 

VR=5V, Ta=25°C --- 1 

VR=5V, Ta=70°C --- 10 

 

Dark current 

 

ID 

VR=5V, Ta=25°C --- 20 

 

nA 

Cut-off frequency  

fC 

RL=50Ω, VR=5V 

-3dBfrom 500kHz 

 

2.5 

 

--- 

 

GHz 

Capacity Ct F=1MHz, VR=5V, --- 0.9 pF 

Optical return Loss   30 --- dB 
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travel length is 50mm, an inch and metric scale provides a coarse reading of the 

spindle’s travel. It provides high resolution and minimal backlash.  

The driver we used is a DCX-PCI100 Intel compatible PC computer-based 

servomotor and I/O controller made by Precision MicroControl (PMC). The DCX-

PCI100 Motion Controller provides drive and control signals for 1 to 8 miniature DC 

servo motors, eliminating the cost and bulk of external amplifiers for these motors. This 

controller is based on PMC's field-proven modular multi-processor architecture and is 

designed to control high-precision, low-power motorized micrometer actuators and 

stages in applications such as opto-electronic R&D and production, medical and 

scientific instrumentation, and laboratory automation. 

The DCX motherboard uses a 192MHz 32 bit MIPS processor that is 

programmed to perform motion control tasks. Specially designed servo control nodules 

were installed on the motherboard to configure it for controlling from 1 to 8 servo 

motors. Each DCX motion control module installed on the motherboard provides all the 

circuitry required to control on the motor and its associated axis I/O. 

The DCX servo modules use a position feedback loop to control the servo. The 

DCX-MC100 controls the operation of the servo motor via a 12 bit, +/- 10volt analog 

output signal to an external servo amplifier. It provides a 0-12volt, 8 bit, direct motor 

drive output capable of directly driving a 12 volt motor with up to 0.5A of current. 

Incremental encoder inputs to these modules provide the feedback information for 

closing the position loop. In operation, the servo module subtracts the actual position 

(the feedback position) from the desired position (the trajectory generator position), and 
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the resulting position error is processed by the digital filter on the module. The output of 

the digital filter sets the module’s servo command output level. 

The module processor monitors the motor’s position via an incremental encoder. 

The two quadrature signals from the encoder are used to keep track of the absolute 

position of the motor. Each time a logic transition occurs at one of the quadrature inputs. 

The DCX position counter is incremented or decremented accordingly. This provides 

four times the resolution over the number of lines provided by the encoder. The encoder 

interface is buffered by a differential line receiver on the DCX module. Jumpers on the 

DCX module allow the user to configure the differential receiver for use with single 

ended or differential encoders. 

A “Proportional Integral Derivative” (PID) digital filter on the module is used to 

compensate for the servo feedback loop. The motor is held at the desired position by 

applying a restoring force to the motor proportional to the position error, plus the 

integral of the error and the derivative of that error. 

3.3.4 The Signal Conditioning System (SCU) 

The SCU is manufactured by Fiber Dynamics Incorporation and is designed for 8, 

12 or 24 channels; it is mainly composed of three parts: the sensor, the Signal 

Conditioning Unit and a Hand Held Terminal (HHT) control for configuration of the 

system, shown in Fig.10. (from manual of SCU). The Signal Conditioning Unit has a 

1.3�m DFB laser installed in it, along with a thermoelectric cooler (TEC) for stable 

temperature operation. The laser is driven with a current driver (CD) and modulated with  
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Fig. 10. Structure of Signal Conditioning Unit (SCU) for 24 channels 

 
 
 

a periodic waveform by a microprocessor. An optical splitter (or coupler) distributes the 

laser light to the individual FFPI sensors, and 8, 12 or 24 (the number of the channel) 

2X1 splitters direct the reflected light to any array of photodetectors corresponding to 

each other. The optical system schematic is shown in Fig. 11. 

After the reflected laser light from each sensor is converted to an electrical signal 

by the photodiode, a microprocessor tracks the signal change by using a digital timing 

scheme to determine the optical phase shift in each sensor. The signal is analyzed with a 

comparator and the perturbation information is passed to the output terminal. One 

reference FFPI is used to compensate for any wavelength drift of the laser and linearity 

of the system. The normal sampling rate is 2.4 kHz, equal to the repetition frequency of  
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Fig. 11. Optical system schematics of SCU 

 
 
 

the laser. The sampling rate can be increased to 8 kHz through the HHT, with a 

corresponding reduction in the number of active channels. 

3.3.5 Falling Weight Deflectometer (FWD) 

The field testing and calibration of the WIM systems were developed based 

upon a falling weight deflectometer. The falling weight deflectometer (FWD) (shown in 

Fig. 12) is an impulse-type testing device that produces a dynamic, transient impulse 

load on the pavement surface that simulate a moving wheel load. The duration and 

magnitude of the force applied is representative of the load pulse induced by a moving 

truck or aircraft at moderate speeds. Measurement of the pavement’s structural 

properties via the FWD is a commonly accepted practice in highway pavement testing 

with the advantage of nondestructive, one man operation, accurate and fast, with a wide 

loading range and is easily transportable [3][32]. 
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The FWD provides us all the necessary information such as load impact, surface 

deflection, and deflection in different depth, etc. The emphasis of the test was placed on 

the repeatability of the FWD results, the linearity of the load impact with corresponding 

sensor signal output, and estimate of the unknown load and the sensor signal amplitude 

variations with the various load positions.  

 

 

 

 

Fig. 12. Falling weight deflectometor
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CHAPTER IV 

SIGNAL PROCESSING ALGORITHM 

4.1 Summary of Signal Processing Algorithm 

The collected data are two sets of interference fringes shown in Fig. 13. They are 

cosine waves modulated by a Gaussian profile: one fringe pattern for the sensing FFPI 

and another for a reference which is not subjected to strain. Three factors determine the 

accuracy of the WLI system: (1) the irregularities in the movement of the translation 

stage in Michelson processing interferometer (2) whether the central (maximum-

amplitude) fringe can be accurately identified and (3) whether the peak position of the 

central fringe can be precisely determined. 
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Fig. 13. Interference fringe patterns of sensing and reference sensors 
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The second Michelson interferometer driven by a DFB laser is critical to the 

setup here in order to achieve a high level of precision in the OPD measurement and to 

facilitate the multiplexing sensor measurements along one single fiber with high 

sensitivity. A unique signal processing algorithm implemented in C++ language has 

been developed at Texas A&M University to correct the velocity change in the 

translation stage, identify the central fringe, determine its precise position, and determine 

the state of the binary switch.  Three major signal processing steps to be performed in 

the data processing procedure are: 

(1). Correct the SLD fringe data using the DFB fringe date 

This step corrects for changes in speed during the translation stage scans.  The 

output from the DFB Michelson interferometer is assumed to be a sinusoidal function of 

the mirror displacement.  The sinusoidal periodicity is determined by the very stable 

DFB laser wavelength, and thus can be assumed to be constant and can be used to 

control time to distance transformation of the data from the SLD processing 

interferometer. Therefore, it makes it possible to precisely determine the position of the 

moving mirror when its speed varies with time.  

(2). Perform a cross correlation of the sensing fringe data, noted as sen[i], and reference 

fringe data noted as ref[i]. 

After cross correlation, the position of the central fringe represents the distance 

between the central peaks of sen[i] and ref[i]. Because the amplitudes of the fringes near 

the central fringe are very nearly the same, reliable identification of the central fringe is 
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crucial. A mistake in the identification will result in a large measurement error and is 

intolerable.  

(3). Determine the state of the binary switch from the central fringe position which 

theoretically is a linear response to applied force. 

The National Instrument data acquisition board (AT-MIO-16E-1) and a 

specifically designed Labview program are used to collect analog input data from the 

photodiode. The sampling rate is 4000 sample/second,   the collected data were saved in 

data files and later processed by the C++ program. 

4.2 Correction of SLD Fringe Data Using DFB Fringe Data 

First we needed to filter and normalize the sensor and reference data sets. Let sno 

denotes the sampling number 

1
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where n and C0~Cn depend upon filter function. For a smoothing by 5 point average, n=4 

and Ci=1 for (i=1 to n). After this, sno=(original sno)-(4). 

Then we performed a normalization to make the average values of both fringe 

data become zero 
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The fringe patterns shown in Fig. 13 are intensity versus time. In calculating the OPD, 

what we needed was intensity versus the temporal position, the periodicity of DFB laser 

signal is used as a criterion. The procedure can be concluded by the following 3 steps: 

1. Zero-Point determination: precisely determine the points at which the DFB laser 

signal crosses the baseline using a linear interpolation of the sampled DFB 

interferometer signal. The baseline is set to be the average value of the DFB data set. 

The distance between the two adjacent zero-points indicate half-wavelength (λ/2) 

temporal displacement in the translation stage.   

2. DFB grid construction: inserting a fixed number of points equally spaced between 

zero-points. In our experiments, we inserted 50 points per each half-wavelength in 

order to ensure enough sampling points and resolution.  

3. Resample the sensor data: determine the value of the reference and sensing sensors 

signals at the time corresponding to the DFB grid by linear interpolation of the two 

adjacent original sampled signals. After resampling, the new set of data represents 

intensity versus temporal distance. 

4.3 Perform Cross Correlation of New sen[i] and ref[i]  

The cross correlation of the resampled sensing and reference data is given by 

�
−
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1

0

][*][][
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j

ijsenjreficor                                            (4.5) 

for –(sno-1)≤ i ≤ (sno-1) and for 0≤ (j+i)  ≤(sno-1). 
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After cross correlation, the central fringe position of the correlation result 

represents the distance of the central fringe position of sen[i] from that of ref[i], which 

represent the optical path difference between the reference and sensing sensors. 

Figs. 14 and 15 depict the experimental cross-correlation data before and after we 

used the correction by the DFB fringe. They clearly indicate the necessity and 

importance of using the DFB interferometer compensation to obtain precision OPD 

measurements with WLI techniques. 

4.4 Identify the Central Fringe in Corrected Correlation Data  

Fig. 16 shows that the peak points compose an envelop function. The 

identification of the central fringe pattern can be performed by hypothetic test using the 

following equation 

)()(),( jiEjiEji −−+=∆                                             (4.6) 
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Fig. 14. Cross-correlation of fringe pattern before correction 
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Fig. 15. Cross-correlation of fringe pattern after correction 
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Fig. 16. The envelop of fringe peak of Fig. 15 
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where E(i) is the ith peak amplitude  of the correlation data, in an ideal noiseless case, 

and ∆(ic, j) will be zero for all j if ic is the central fringe. In lab tests, we assumed that the 

minimum values of summation of all ∆(i, j) through j corresponded to the central fringe. 

The central fringe is then correlated with a set of true cosine curve generated by 

computer for enhancement of the resolution [28] 

�
−

=

+−−+⋅+=
lcpnrcpn

j F
i

cpnnjlcpn
zcp

jlcpncorisumre
0

)]1)(
2

cos[][][_
π

      (4.7) 

where lcpn and rcpn are the indexes of the right and left negative peaks of the central 

fringe, cpnn is the index of the central peak, and F is the resolution enhancement factor, 

The value of i which gives the maximum value of reso_sum[i] corresponds to the 

enhanced central fringe position with an enhancement of 

F
Fi

cpnfcpn
−+=_                                               (4.8) 

The C++ program for the whole data processing is listed in the Appendix. 
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CHAPTER V 

OPTICAL BINARY SWITCH EXPERIMENTAL PROCEDURE AND 

RESULTS 

5.1 FFPI Sensor Fabrication  

The fabrication procedure of the FFPI sensor is depicted in Fig. 17: (1) A 

magnetron sputtering machine is used to coat the cleaved fiber end with a thin film of 

TiO2 of thickness 1000Å. (2). Fusion splicing the coated fiber with a normal cleaved 

fiber. The splicing machine heats the cleaved surface of the fibers with an electric arc, 

and splices them together. By controlling the arc current and arc duration time (lower 

than a normal splice), the coated fiber and the normal fiber will form an in-line fiber 

with an internal mirror. Desired mirror reflectance and splicing strength can be achieved 

by multi-splicing. (3) The fiber with the mirror is then cleaved to the desired cavity 

length of 10mm or 12mm, and fusion spliced with another normal fiber. Again, multi-

splicing of the joint achieves the desired mirror reflectance and splicing strength.  

An experimental setup (Fig. 18) is used to monitor the FFPI fabrication. A 1.3µm 

DFB laser diode is driven by an LD driver circuit and modulated by a pulse generator. 

Light from the DFB laser passes through an isolator and a 3 dB coupler, and part of the 

signal is reflected from the sensor. The reflected signal then goes through the coupler to 

the photodiode. The reflection interference fringe is displayed on an oscilloscope (Fig 

19). 
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1. Sputtering TiO2 on the cleaved fiber end 

 

2.    Fusion splicing to make the first mirror 

 

3. Cleaving the desired cavity and fusion splicing with another coated fiber 

 

4. Second mirror making complete the FFPI 

 

 

Fig. 17. FFPI sensor fabrication 
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Fig. 18 Arrangement of monitoring the fabrication of FFPI 

 
 
 

 

Fig. 19.  Reflected sensor signal displayed in the oscilloscope 
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5.2 Optical Binary Switch System Overview 

The sensing sensor is bonded to the copper cantilever as shown in Fig. 5, The 

reference sensor is free from stress and located in the same optical table to experience 

the same temperature. The FFPI cavity is around 10mm with a reflectivity of 0.05. 

We used Ohaus metric weights to calibrate, as shown in Fig 5. The weight we 

added to elongate the cantilever ranged from 0 to 200g and 300g. The data was collected 

through the National Instrument PCI-MIO-16E-1 data acquisition board and via 

LabVIEW programming, and then processed by the C++ program. The sampling rate 

was kept at 4000/s by controlling the moving speed of the DC step motor at about 

130µm/s. As a result, we achieved about 40 sampling points in one fringe, each of which 

was 1.32µm, the wavelength of the SLD. 

The ILX Lightwave LDX-3412 current source was used to control the driving 

current of the SLD. Another LDX3525 current source was used to control the cooling 

current in the SLD package; the temperature of the SLD heat sink was sensed by an 

inner thermistor with a resistance of 15Ω and monitored by a digital multimeter. 

5.3 System Evaluation 

5.3.1 Signal Noise Ratio (SNR) of the system 

The signal-noise-ratio (SNR) was tested to evaluate the possibility of correctly 

identifying the central fringe. The noise was calculated as follows 

N

nV
V

N

n
noise

�
−

==

1

0

2}]([
 .                                                     (5.1) 
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Here N represents the total sample points collected in calculating the SNR, V(n) is the 

nth noise data, and the SNR is: 

noise

signal

V

V
SNR log20=                                                       (5.2) 

Most of the noise comes from a lab-made signal amplifier. If using a commercial 

low-noise signal amplifier; the SNR can be reduced 18 dB lower. Additional noise may 

be induced by the effect of temperature on the photodetector, light scattering in the 

optical setup and the overall data acquisition process. Previous researches have 

concluded that even at low SNR conditions for the system, the system still works well. 

In our experiments the driven current of the SLD is usually within 180-198 mA. For all 

the tests conducted, the measured SNR of reference and sensing sensor were all over 

40dB.  

5.3.2 Resolution test 

Two resolution tests were performed to evaluate the system. The first test was the 

resolution of the optical WLI system. The sensing sensor was free from bonding to the 

cantilever and both the sensing and reference sensors were kept at the same temperature. 

The experiment’s results are shown in Fig. 20. This shows that the maximum fringe drift 

(maximum minus the minimum fringe) is 0.0022 fringes, and the standard deviation is 

0.000651. The second resolution test tested the whole optical binary system. The sensing 

senor was bonded to the cantilever with no weight added in order to compare it to the 

first test; also, the two sensors were kept at the same temperature. The experiment’s 

results are shown in Fig. 21. The maximum fringe drift is 0.025 fringe, and standard 
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deviation is 0.007029. There was a recorded 10 times difference in resolution, which 

possibly originates from the uneven residual stress in the bonding process and 

mechanical vibration of the cantilever. The resolution can be increased by improving the 

mechanical fabrication process in the optical binary switch. 

From equation (3.2), with Young’s Modulus E=130GPa for the copper, 

cantilever represented as Lb=50mm, b=2mm, h=4mm, and the sensor cavity at L=10mm, 

the elongation of the cavity ∆L is 0.006329 µm/gram, corresponding to a 0.01104 fringe 

displacement/gram. Thus the resolution in applied weight is recorded as 2.3g. Spatial 

resolution when the wavelength is 1320nm is 33nm. 

The main element in the optical system that degrades the optical system’s 

resolution is the stabilization of the DFB laser wavelength. The drift of the wavelength 

within a single data acquisition period will induce changes in the DFB zero-crossing 

periods, and thus will cause error in signal processing. The wavelength of the DFB laser 

is affected by both the drive current and the laser case temperature. These two 

parameters must be held constant during the experiment. The DFB laser that we used 

changes the wavelength 5nm when the temperature changes about 40°C, which 

corresponds to 0.125nm per °C. Another possible element is the SLD power fluctuation 

caused by the changes in power supply; which has been shown to have a minor influence. 
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Fig. 20. Resolution test of the optical system when the sensing sensor is free from 
bonding to the cantilever 
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Fig. 21 Resolution test of the whole system when the sensing sensor is bonded to the 
cantilever 

 
 
 

5.3.3 Binary switch calibration, repeatability and threshold determination 

A series of calibration and repeatability tests were carried out using the setup in 

Fig. 5. Two example test results are shown in Fig. 22 and Fig. 23 using two different 
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sensing sensors (cavity length 10mm) and the same reference sensor. We used 

Y=X0+α*G to describe how the fringe displacement varies with the added weight, where 

G is the added weight, Y is the fringe displacement after applying the weight, X0 is the 

initial 0g fringe displacement, and α is ∆Y/∆G. In Fig. 22 the weight was increased from 

0 to 294g, and then decreased to 0g.  The α factor for the increases in weight is 0.01188 

fringe/gram, and the α factor for the decreases in weight is 0.01163fringe/gram. In Fig. 

23 the weight was increased from 0 to 200g and then decreased to 0g. The α for the 

increases in weight is 0.01162, the α for the decreases in weight is 0.01128. Theoretical 

α result has been obtained to be 0.01104; the experimental results are in good agreement 

with this theoretical value. The tiny difference probably originated from measurements 

of the following parameters: the cavity length of the sensors, and the length, width and 

height of the cantilever. 

 The results show that the fringe displacement was a monotonic and good linear 

function of the applied weight, with a calibration factor of one fringe per 90 g of force 

applied, and little hysteresis was observed.  In the present avionics application, the 

threshold could be set at any value less than 200 g, the minimum force applied by a pilot 

seeking to actuate the switch.  

The Binary Optical Switch design has already been shown in Fig. 6.  The push 

button is supported by a spring to ensure that the cantilever is free from any contact. 

When it is pushed, the shorter leg applies force to the cantilever, while the longer leg 

protects the cantilever from being over-bended in case the pushing force is too strong. 
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Fig. 22 Calibration and repeatability test of the binary switch (sensor #1) 
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Fig. 23 Calibration and repeatability test of the binary switch (sensor #2) 
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The threshold of applied weight was set to be 100g in our test, and the initial 

value of X0 was tested when no force was applied to the cantilever. Then the threshold of 

output signal is determined. For example, in sensor #2, X0=87.89, b=0.01162, from 

calculations the threshold of fringe displacement was set to Yt=89.1. With no failure 

recorded, the binary switch successfully produced a “1” output whenever the button was 

pushed and a “0” when there was no force.   
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CHAPTER VI 

FIBER OPTIC WEIGH-IN-MOTION SENSOR EXPERIMENTAL 

PROCEDURE AND RESULTS 

6.1 Laboratory Characterization Tests and Results 

Laboratory tests on the performance of the embedded FFPI sensors were 

performed in the Texas Transportation Institute (TTI) Material Testing System (MTS) 

laboratory.   The test samples were 1 foot long aluminum and steel bars, with an FFPI 

sensor embedded in the center of each bar. In each case the axis of the FFPI sensing 

fiber was parallel to the axis of the metal bar.  During each test sequence, the MTS 

machine strikes the bar five times at a 5 Hz frequency.  The maximum applied force can 

be varied from 200 to 4500 pounds, with a minimum of 50 pounds exerted in every 

strike to eliminate any bouncing of the bar.  

The response of the sensors embedded in the steel and aluminum with a 

maximum MTS striking force of 2000 pounds are shown in Figs. 24 and 25. The signal 

for the sensor embedded in the steel bar showed a single peak in response to an MTS 

strike, while the aluminum bar exhibited a pronounced ringing effect with two strain 

peaks for each strike. Figure 26 shows the axial displacement of the steel bar and the 

fiber-optic sensor response as a function of the maximum MTS force. The axial 

displacement data was obtained with a conventional sensor (data provided by TTI).  

Both the axial displacement and the fiber-optic sensor’s amplitude are nonlinear 

functions of the maximum force.  However, as shown in Fig. 27, the fiber optic sensor’s 
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response is a fairly linear function of the axial displacement, indicating that this sensor is 

a promising solution for measuring strain in the WIM application. 
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Fig. 24.  Steel bar response to the MTS 
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Fig. 25.  Aluminum bar response to the MTS 
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Fig. 26.  Dependence of the peak FFPI sensor response and axial displacement on a 
striking force 
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Fig. 27. Dependence of the peak FFPI sensor response on the axial displacement 
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6.2. Highway Tests and Results 

Road tests were performed in August 2003 on Texas SH48.  As in the MTS tests, 

the sensors were embedded in steel and aluminum bars with cross-sectional dimensions 

of 1 x 1 inch. In the road tests, the bars were 4 feet long, and 5 sensors were embedded 

in each bar, as shown in Fig. 28.  The distribution of the sensors was intended to ensure 

that the right side tires of the truck will pass close to one or more of the sensors. Two 

saw cuts were made in the freeway across half of one lane, 1 inch wide and 2 inches 

deep. Hot bituminous sealant was used to secure the bars into the roadway and fill in the 

sawed grooves. After the bar was bonded into place, solid hot mix Epoxy was used to 

evenly fill in the grooves to the level of the road surface, so that the sensors measured 

the strain experienced by the surrounding pavement.  

Representative data are shown in Figs. 29 and 30.  Because the signal amplitude 

is based on the position of the wheels relative to the sensor, the relative amplitudes are 

an indication of the position of the truck in the lane.   In Fig. 29, sensor 5 produces a 

signal larger than that of the other sensors, indicating that the truck is in the right-hand 

portion 

 
 
 

 

 

 

 

Fig. 28.  Locations of the sensors, in inches, along the four foot length of a metal bar.  

Sensor 

Edge of lane 

#4 #2 #1 #3 #5 



 

 

54 

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0
- 2

- 1

0

1

2

3

 

 

se
ns

or
 s

ig
na

l (
vo

lta
ge

)

T im e  ( 1 /1 0 0 0  s e c )

 s e n s o r 1
 s e n s o r 2
 s e n s o r 3
 s e n s o r 4
 s e n s o r 5

S te e l  b a r  s ig n a l  o u tp u t
o f  # 7 6 8  t r u c k  ( c la s s  9 )

 

Fig. 29.  Response of five FFPI sensors embedded in the steel bar to a class 9 truck, as 
distinguished by two wheel crossings in the third group 
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Fig. 30.  Response of five FFPI sensors embedded in the aluminum bar to a class 10 
truck, as distinguished by three wheel crossings in the third group 
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of the lane. After a truck passes by, the signal from each sensor quickly resumes its 

starting value, thus allowing for the collection of data from a continuous line of trucks. 

A total of 30 trucks were monitored with sensors in the aluminum bar and 

another 30 trucks were monitored with sensors in the steel bar. An effort to correlate the 

fiber optic sensor data with the static weights of these trucks supplied by TTI was not 

successful.  One factor which probably contributed to the discrepancy was the fact that 

the limited distance (2 ½ feet) over which the FFPI sensors were distributed made it 

possible to monitor only one wheel of each truck, so that uneven lateral distribution of 

weight would lead to erroneous readings.   

6.3 FFPI Weigh-In-Motion System Installation at the Riverside Campus 

The FFPI sensor was bonded with polyimide in a 1/4×1/8 inch groove in the 5 

feet long metal bar as shown in Fig. 8. The extended fiber cables were total 250 feet long 

and had an FC-APC connection to the SCU for signal acquisition and processing. The 

cable was protected from bending by ~1 meter shrinkage tube at the very end of the 

metal bar. Sensors were embedded in both the steel and the aluminum bars in order to 

compare the performance of the two materials under each truckload. The lengths of the 

bars were 5 Feet. In total 5 sensors were embedded in each bar.  

Two steel bars and two aluminum bars were each embedded with 5 sensors and 

installed in two lanes on the flight line road between 6th and 7th street at Texas A&M’s 

Riverside campus. The proposed WIM Riverside project layout is shown in Fig. 31. Four 

saw cuts were made in the concrete road to house the four metal bars and fibers cables.  
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Fig. 31. WIM Riverside campus layout 

 
 
 

In Fig. 31, S1 and S2 indicate slots for steel bar #1 and #2 respectively, and A1, A2 

indicate slots for aluminum bar #1 and #2, respectively. 

The procedure for installing the embedded metal bars with the sensors into road 

pavement is briefly depicted in Figs. 32 to Fig. 34. First, a concrete saw with a diamond 

impregnated blade was used to cut slots in the cement of the concrete road (Fig.32). The 

slots were cut perpendicular to the center line of the two lanes. In Fig. 31, the solid line 

indicates that the trench housing metal bar was cut with cross section of 1 inch × 3.5 

inches; the dashed lines indicate the slots used to house the extended fiber cables were 

cut with a cross section of 0.5 inches × 3.5 inches. A hammer drill with a crystal bit was 

used to prepare saw cuts to ensure that the slots perfectly fit the metal bar, and then the 

saw cuts were vacuumed and cleaned with Toluene to allow for ideal bonding of the 
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high performance epoxy adhesive was quickly mixed with the hardener and this mixed 

epoxy was rapidly poured into each slot at a ~0.5 inch depth. Even the surface, the final 

depth after filling is 3 inch to the surface. Third, the metal bar was put in the slot and the 

slot was filled with mixed epoxy up to the surface (Fig. 33), making the epoxy surface 

perfectly even with the road surface. Fourth, the fiber cable was housed into the slot and 

sealant was pumped in even with the road’s surface. Fig. 34 shows the road with the 

embedded sensor bar after the epoxy and the sealant have dried. 

 
 
 

 

Fig. 32.  Sensor bar installation: Saw tooth cutting the slot in the road 
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Fig. 33. Sensor bar installation: putting the metal bar in the slot and filling it with epoxy 
up to the top 

 
 
 
 
 

 

Fig. 34. Sensor bar installation: Final appearance after the epoxy and sealant have dried 
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6.4 Calibration of the FO-WIM Sensor Using the Falling Weight Deflectometor 

The Dynatest Model 8002 FWD was used in the road test, it provides a practical 

way to evaluate the sensor performance. It is designed for multi-purpose pavement 

applications, and ideal for weigh-in-motion calibration. The impulse-type testing imparts 

a transient load onto the pavement surface, and the duration and magnitude of the force 

applied represents the load pulse induced by a truck moving at a moderate speeds. It can 

provide accurate information such as pressure, load profiles and deflection of the basin 

at different depths.   

The FWD consists of sensors used to detect the height setting of the raised 

weights. The weights are raised by a hydraulic system, the weight is then free to fall via 

release from a catch. Force is applied to a hip plate through a rubber buffer, and then to a 

seating plate which interfaces with the road’s surface. In between the hip plate and the 

seating plate, a load cell measures the load applied and several deflection sensors detect 

the deflection of the basin.  The applied loads are controlled by the height of the weights 

are raised, not by adding weights. 

A trailer mounted with the FWD was pulled to a position so that one center 

sensor was directly under the center of the seating plate (as shown in Fig. 35). Data were 

collected from three fiber sensors: the center sensor and the other two sensors to the right 

and left of the center sensor. Table 4 shows the sensor chosen and the position of the 

three sensors to one marked end of the bar. 7-9 levels of load were applied ranging from 

5000-13000 pounds, with each level the increase in the load is around 1000 pounds. 

Each level consists of 20 similar applied loads for the study of repeatability. Two levels  
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Fig. 35 One marked steel bar sensor under the center of load disk of FWD 

 
 
 

Table 4. Measured sensor number and position to the marked end of metal bar 

 
 Center sensor Left side sensor Right side sensor 

Steel bar #3/ 39inch #5/ 46inch #2/ 32inch 

Aluminum bar #13/ 30inch #15/ 46inch #12/ 24inch 

 
 
 
 

of unknown load tests were performed in order to study the ability of the sensors to 

predict unknown loads.   

The signal from the steel bar sensors and the aluminum sensors are depicted in 

Fig. 36 and Fig. 37. All sensors showed clear and simultaneous pulse response to the 

main and residual impulses of applied loads. Figs. 38 and 39 demonstrate the 

repeatability of test results for the two bar sensors. It is evident that the sensors give very 
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Fig. 36. Steel bar sensor responses to the FWD load applied at ~9000 pounds 
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Fig. 37. Aluminum bar sensor responses to the FWD load applied at ~7600 pounds 
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stable signals with a standard deviation of less than 0.03 for the steel bar sensors and less 

than 0.05 for the aluminum bar sensors. 

A closer look at the sensor output pulse shape in response to the real time profile 

of the FWD loads provided by the FWD system shown in Fig. 40. The traces of both 

aluminum bar sensors and steel bar sensors show good matches to the FWD load profiles, 

with the steel bar sensors offering closer match.  The traces have been rescaled in the x 

and y axes to facilitate a comparison between them. The ripple in the FWD profile is 

induced by the rubber buffer which provides a buffering effect on the impact of the 

FWD. 
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Fig. 38. Repeatability test of the steel bar sensors 
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Fig. 39. Repeatability test of the aluminum bar sensors 
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Fig. 40. Sensor responses to corresponding FWD load profiles  
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A series of tests were conducted to study the dependence of the sensor signal 

amplitude on the different levels of the FWD applied loads. Figs. 42 and 43 show the 

steel bar and aluminum bar sensor signal amplitudes variation versus several levels of 

FWD loads, respectively. Each level has 20 applications of similar loads. The y axis is 

the first peak amplitude and corresponds to the studied main load impact. The three lines 

are the least square linear regressions of the raw data, the dots. The linearity coefficient 

B (slope of the line) and interception V0 of each sensor is shown in Tables 5 and 6. Figs. 

42 and 43 clearly indicate that the sensor responses are highly linear; a coefficient of 

determination (COD) R2 greater than 99.5% is achieved for all these sensors. The high 

degree of linearity of these sensor responses thereby indicates a high accuracy in 

correlating the sensor signal amplitude to the FWD applied loads. Thus a high accuracy 

can be expected in predicting unknown loads.  
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Fig. 41. Steel bar sensor responses to different FWD applied loads 
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Fig. 42. Aluminum bar sensor responses to different FWD applied loads 

 
 
 

Table 5. Linearity coefficients of steel bar sensors 

 
 Sensor #3 Sensor #1 Sensor #5 

B (voltage/pound) 2.64*10-4 2.24*10-4 3.42*10-4 

V0 (voltage) -0.1959 -0.2680 -0.3511 

 
 
 

Table 6. Linearity coefficients of aluminum bar sensors 

 
 Sensor #3 Sensor #1 Sensor #5 

B (voltage/pound) 0.000224 0.000342 0.000264 

V0 (voltage) -0.195903 -0.268001 -0.351146 
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Two sets of each of the 20 unknown similar loads were tested in steel bar sensors. 

After obtaining the sensor signal amplitudes through data processing and by using the 

linearity coefficient in Table 5 we can get the predicted values that were applied FWD 

loads. The predicted values are then compared to the practical FWD load values later 

provided by TTI. The two sets are shown in Tables 7 and 8, respectively. A relative 

percentage error (RPE) was used to characterize the precision of the prediction. 

%100×
−

=
true

measuredtrue

load
loadload

RPE  .                       (6.1) 

Tables 7 and 8 clearly show the high accuracy the sensor achieved in estimating 

applied loads. The center sensor shows an extraordinary excellent prediction with 

regards to the unknown loads. The difference between the estimated value and the 

practical load value are all less than 5 pounds, and an RPE less than 0.05% is achieved. 

Another two sensors also showed an excellent prediction with an RPE less than 4.0% 

and 2.0% respectively. Using the average of the three sensor’s estimation, the RPEs are 

less than 2.0%. The all negative RPEs are most likely induced by the minor laser 

instability and the thermal instability of the SCU system. 

A wider range of unknown FWD loads were applied to the aluminum bar sensors, 

and the estimation results and RPEs are shown in Table 9. Compared to the steel bar 

sensors, the center sensor of the aluminum bar shows a higher RPE of less than 4%. The 

RPE of the other two sensors is less than 5% and 4%, respectively, which is generally 

higher than the steel bar sensors. However, after averaging the prediction of the three 

sensors, the average RPEs are all less than 2.0%. 
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Table 7. Prediction and RPE’s of the steel bar FWD applied loads of data V series 

 

 

 

 

V data series sensor #3 sensor #2 sensor #5 real value RPE #3 RPE #2 RPE #5 
 
Avg. RPE 

1 7502.889 7708.013 7645.641 7506.124 0.0431% -2.6897% -1.8587% -1.5018% 

2 7335.847 7565.914 7480.947 7339.216 0.0459% -3.0889% -1.9311% -1.6580% 

4 7353.327 7564.179 7496.559 7356.681 0.0456% -2.8205% -1.9014% -1.5588% 

5 7306.724 7562.013 7485.582 7310.116 0.0464% -3.4459% -2.4003% -1.9333% 

6 7323.965 7550.631 7440.181 7325.795 0.0250% -3.0691% -1.5614% -1.5352% 

7 7407.847 7614.096 7550.478 7411.158 0.0447% -2.7383% -1.8799% -1.5245% 

8 7375.001 7618.558 7495.802 7378.338 0.0452% -3.2557% -1.5920% -1.6008% 

9 7295.093 7471.081 7407.787 7298.495 0.0466% -2.3647% -1.4975% -1.2718% 

10 7343.617 7581.82 7464.677 7346.98 0.0458% -3.1964% -1.6020% -1.5842% 

11 7342.298 7571.371 7465.612 7345.661 0.0458% -3.0727% -1.6330% -1.5533% 

12 7299.591 7495.678 7410.005 7302.989 0.0465% -2.6385% -1.4654% -1.3524% 

13 7378.946 7572.179 7466.1 7382.28 0.0452% -2.5724% -1.1354% -1.2209% 

14 7319.986 7552.752 7427.713 7323.367 0.0462% -3.1322% -1.4248% -1.5036% 

15 7537.402 7776.408 7695.323 7540.609 0.0425% -3.1271% -2.0517% -1.7121% 

16 7300.228 7506.912 7407.734 7303.626 0.0465% -2.7834% -1.4254% -1.3874% 

17 7276.655 7512.749 7413.032 7280.071 0.0469% -3.1961% -1.8264% -1.6585% 

18 7354.98 7570.921 7462.127 7358.334 0.0456% -2.8891% -1.4106% -1.4180% 

19 7260.673 7444.807 7358.091 7264.103 0.0472% -2.4876% -1.2939% -1.2448% 

20 7493.768 7667.19 7575.433 7497.011 0.0433% -2.2700% -1.0460% -1.0909% 
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Table 8. Prediction and RPE’s of the steel bar FWD applied loads of data X series 

 

X 

data 

series 

sensor #3 

prediction 

sensor #2 

prediction 

sensor #5 

prediction 
real value RPE #3 RPE #2 RPE #5 

 

Avg. RPE 

1 9859.736 9951.22 10013.07 9861.078 0.0136% -0.9141% -1.5413% -0.8139% 

2 9584.495 9675.07 9710.702 9586.059 0.0163% -0.9285% -1.3003% -0.7375% 

3 9654.707 9730.786 9772.234 9656.214 0.0156% -0.7723% -1.2015% -0.6527% 

4 9620.181 9706.189 9760.822 9621.715 0.0159% -0.8780% -1.4458% -0.7693% 

5 9566.169 9678.994 9693.739 9567.747 0.0165% -1.1627% -1.3168% -0.8210% 

6 9580.416 9712.539 9704.292 9581.983 0.0164% -1.3625% -1.2764% -0.8742% 

7 9712.776 9864.168 9896.513 9714.236 0.0150% -1.5434% -1.8764% -1.1349% 

8 9590.17 9705.695 9735.849 9591.729 0.0163% -1.1882% -1.5025% -0.8915% 

9 9549.969 9689.674 9713.105 9551.56 0.0167% -1.4460% -1.6913% -1.0402% 

10 9536.283 9651.544 9710.301 9537.885 0.0168% -1.1917% -1.8077% -0.9942% 

11 9586.684 9698.438 9736.095 9588.246 0.0163% -1.1492% -1.5420% -0.8916% 

12 9654.551 9839.744 9855.705 9656.058 0.0156% -1.9023% -2.0676% -1.3181% 

13 9386.141 9446.598 9487.878 9387.863 0.0183% -0.6256% -1.0654% -0.5576% 

14 9504.721 9651.397 9691.484 9506.348 0.0171% -1.5258% -1.9475% -1.1521% 

15 9517.203 9637.235 9665.853 9518.821 0.0170% -1.2440% -1.5446% -0.9239% 

16 9494.7 9616.503 9633.743 9496.335 0.0172% -1.2654% -1.4470% -0.8984% 

17 9527.555 9697.308 9715.28 9529.163 0.0169% -1.7645% -1.9531% -1.2336% 

18 9580.515 9666.66 9711.542 9582.081 0.0163% -0.8827% -1.3511% -0.7391% 

19 9631.883 9721.499 9736.67 9633.408 0.0158% -0.9144% -1.0719% -0.6568% 

20 9733.719 9855.202 9867.473 9735.163 0.0148% -1.2330% -1.3591% -0.8591% 
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Table 9. Prediction and RPE’s of the aluminum bar FWD applied loads 

Data 

series 

sensor 13 

prediction 

load 

sensor 12 

prediction 

load 

sensor 15 

prediction 

load 

real 

force 
RPE #13 RPE #12 RPE #15 

Avg. 

RPE  

h01 10579.36 10799.78 10580.15 10805 2.09% 0.05% 2.08% 1.41% 

h04 10471.97 10538.24 10468.13 10813 3.15% 2.54% 3.19% 2.96% 

h06 6635.078 6584.071 6506.253 6662 0.40% 1.17% 2.34% 1.30% 

h07 10484.6 10640.81 10516.47 10869 3.54% 2.10% 3.24% 2.96% 

h12 10268.22 10393.96 10181.31 10686 3.91% 2.73% 4.72% 3.79% 

h13 10526.22 10740.77 10685.51 10801 2.54% 0.56% 1.07% 1.39% 

h14 10479.86 10584.8 10521.27 10809 3.05% 2.07% 2.66% 2.59% 

h15 10491.13 10634.03 10492.3 10785 2.72% 1.40% 2.71% 2.28% 

h16 6622.66 6492.865 6623.952 6630 0.11% 2.07% 0.09% 0.76% 

h18 10443.37 10561.36 10572.83 10770 3.03% 1.94% 1.83% 2.27% 

h19 10660.47 10766.75 10906.58 10853 1.77% 0.79% -0.49% 0.69% 

k02 6814.19 6877.65 6787.136 6718 -1.43% -2.38% -1.03% -1.61% 

k04 6754.196 6763.344 6694.686 6674 -1.20% -1.34% -0.31% -0.95% 

k07 6729.616 6663.375 6655.956 6630 -1.50% -0.50% -0.39% -0.80% 

k08 6754.519 6733.195 6650.935 6666 -1.33% -1.01% 0.23% -0.70% 

k10 6651.601 6496.911 6628.85 6582 -1.06% 1.29% -0.71% -0.16% 

k12 6563.252 6445.063 6423.189 6630 1.01% 2.79% 3.12% 2.31% 

k14 6677.555 6590.052 6650.412 6630 -0.72% 0.60% -0.31% -0.14% 

k15 6659.578 6550.665 6664.771 6590 -1.06% 0.60% -1.13% -0.53% 

k17 6594.847 6485.709 6590.123 6543 -0.79% 0.88% -0.72% -0.21% 

k20 6490.44 6321.107 6347.716 6575 1.29% 3.86% 3.46% 2.87% 

 



 

 

70 

6.5 Evaluation of Sensor Performance under Varying FWD Load Positions 

An evaluation of sensor performance under varying FWD loads positions was 

also performed. Around 10 positions along the line of the bar were chosen; in each 

position, 3 levels of loads around 6500, 10000, and 13000 pounds were applied, each 

level includes 5 similar load applications. Figs. 43 and 44 show examples of steel and 

aluminum bar sensor responses with varying load positions, respectively.  The peak 

amplitudes under the three specific loads were obtained through linear regression of the 

3 levels of data retrieved from each position, and the distance is measured from the senor 

position to the center of the circular seating plate. 

A nonlinear, symmetric, bell shaped distribution of the sensor signal’s amplitude 

as it varied with each load position is displayed here. The maximum is reached at around 

the 0 inch position,  which is quite reasonable; Fig. 44 also shows that one point near the 

0 inch position has the same amplitude with the 0 inch’s. In about 10 inches of 

displacement, the signal’s amplitude decreases over 3dB. At around 30 inches of 

displacement the signal almost drops to zero. Our experimental results were then 

compared to the BISAR simulation, a multilayer linear elastic program developed by the 

Shell Company. BISAR is widely used in layered elastic road performance analysis; it 

facilitates the mechanistic modeling of the pavement structure and calculates the stresses 

and strains caused by vehicle loading. In our simulation, a typical pavement structure 

was modeled as a multi-layered elastic system, with circular uniform loads of a radius of 

5.9 inches with only a vertical stress, in order to simulate the FWD loads.  
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Fig. 43. Variation of steel bar sensor #3 responses with the FWD load position 
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Fig. 44. Variation of aluminum bar sensor #12 responses with the FWD load position 
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Fig. 45. BISAR simulation results of stress and strain variations with the load position 

 
 
 

The BISAR results are shown in Fig. 45. It is evident that our results are in 

agreement with the simulation results, which show that the strain has a good bell-shaped 

distribution.  As expected there are discontinuity problems at the edge of the circular 

load, but this couldn’t be shown in our test due to the limited test spots. 

This position distribution of sensor responses suggests an optimized sensor 

network distribution which would need to be figured out for real road applications of this 

sensor.   

6.6 Sensor Performance in Truck Tests and Analysis 

Truck tests were performed in the test area.  The two-wheel truck has two front 

tires and four rear tires. The related parameters of the truck are listed in Table 10.   The 

two numbers on the rear tires indicate the outside/inside value. 
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Table 10. Parameters of the truck 

 Weight (pound) Tire width (inch) Lateral distance (inch) Tire pressure (Lbs) 

Left 4980 8.5 74  

Front Right 4900 7.5 

 

90 72 

Left 6480 9/7.5 78/80  

Rear Right 7380 8/7.5 

 

94.5 82/70 

 
 
 
 

The truck was driven at speeds of 25-40 miles per hour, from north to south, 

along the center of the two lanes. Totally four channel signals were collected: two 

sensors from S1 and S2, respectively, or two sensors from A1 and A2, respectively.  

Figs. 46 and 47 shows the signal collected from the steel bar sensor and the 

aluminum bar sensor, respectively, after initializing the baseline to zero. Because S1 and 

S2, A1 and A2 have a longitudinal distance, the two figures show two groups of wheel 

passing clearly. This allows us to measurement the truck speed, along with the clear 

front and rear wheel peak separation, which in turn allow us to get a good measurement 

of the axel distance. 

Both Figs. 46 and 47 didn’t show a constant ratio of the signal amplitude of the 

rear wheel to front wheel due to the front tire and rear tire being in different lateral 

positions. We also can observe the fact that some aluminum bar sensors show a ripple in 

top of the pulse, which happens more often than in the steel bar sensors through the  
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Fig. 46. Steel bar sensor responses to truck wheel crossings 
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Fig. 47. Aluminum bar sensor responses to truck wheel crossing 
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entirety of the tests. The possible reason is that aluminum is more sensitive to the road’s 

unevenness. 

To closely study the sensor’s response to the truck wheels in the passing position, 

lime powder was used to record the trace of the rear right outside tire. Approximately 40 

tests were conducted for the steel bar and the aluminum bar sensor, respectively, and 4 

or 5 tests with each truck wheel passing at similar positions were performed to study the 

repeatability of the sensor’s response. 

Figs. 48 and 49 show the good repeatability of the sensors responses to similar 

truck crossing positions. The signal amplitude is almost the same for both the aluminum 

bar sensors and the steel bar sensors. The different position of the first peak is due to the 

truck passing at a slightly different speed. The three clearly identified front wheel peaks 

only have a time separation of 1/8 of a second. This indicates that our sensor can 

precisely measure speed of truck. 

Fig. 50 shows the sensor #3 output amplitudes in response to different wheels 

passing positions. Around one location, the first wheel had one maximum amplitude 

whereas the second peak shows that in two locations it reaches maximum amplitude, 

separating around 20 inches, which is exactly the two tires’ distance in the rear right. 

However, generally speaking, the distributions are not as good as we obtained from the 

FWD test. Fig 51 shows the aluminum bar sensor’s response to different wheels passing 

position.  The result is not good at all, it didn’t show a very stable distribution for the 

aluminum bar sensors when the truck passed in different positions. 
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Fig. 48. Repeatability: two steel bar sensor responses to truck wheel crossings at the 
same position 
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Fig. 49. Repeatability: two aluminum bar sensor responses to truck wheel crossing at the 
same position 



 

 

78 

j�k�l�l�mon�p�qAr�sFt�u1vw�p�moq�l�tBx�y�w�tlAky{z�|�l�l�mox�p�t�t�uBw�vUx�y�t�u1k�uBy�w

}
}�~�
�

�~�
s

s�~�
�

��~�
�

� ��} � s} � �B} } �B} s}
� ut3k�pw���lA�q�y�;z�|�l�l�mox�p�t�t�uGw�vUx�y�t�u3k�u1ywFky

tl3w�t1y�qAr�sg��uBw��|��

� ��
���
��
�� ��
��
���
� � � �
� �

����
� �
���
�

��uGq�tkoz�|�l�l�m
tl��y�w� oz�|�l�l�m

 

Fig. 50. Steel bar sensor #3 output amplitude variation with FWD load positions 
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Fig. 51. Aluminum bar sensor #13 output amplitude variation with FWD load positions 
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The general inefficiency of the sensor performance in the real truck tests is 

attributable to the complexity of the impact the tire applied to the ground as compared to 

the FWD’s. The force is involved in three directions: x, y and z, instead of only in the z 

direction. Thus the induced stress includes vertical, lateral and transverse stresses, and 

will also be affected by different tire types which will induce different stress 

distributions [33][34]. The aluminum bar sensors are further influenced by the low 

material stiffness. 
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CHAPTER VII 

CONCLUSIONS 

 

Research on two practical applications of the FFPI sensor was successfully 

conducted. 

An optical binary switch for airplane applications based on white light 

interferometry has been demonstrated. The strain measured by the sensing element 

shows excellent linearity as a function of the force applied; good agreement between 

calculated and experimental results was observed.  By properly setting a threshold, the 

system produces a binary signal indicating the state of the pilot-actuated system; i. e., 

whether or not the button is being pushed. 

Research in fiber-optic weigh-in-motion sensors show that the FFPI sensor has a 

great potential for measuring the truck axel and gross weight. An important achievement 

is that the steel bar center sensor can now estimate the FWD load with extraordinary 

precision. In all test data, the predicted value is shown to be less than 5 pounds of 

difference from the practical value (upon 9000 pounds) later provided by TTI. The 

experiments show that the two sensor assemblies both have the ability to predict vertical 

loads with an average RPE less than 2%. The sensor signals matches very well to the 

time profiles of the FWD loads. The FFPI sensors also demonstrate their ability to 

measure axel distance, truck speed, and truck type. An evaluation of sensor performance 

under varying load positions shows that the sensor’s behavior agrees with BISAR 

simulations in the FWD test, and a bell shaped distribution is observed. In the truck test, 
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the sensor showed a good level of repeatability with similar wheel crossing positions. In 

all of the tests, the steel bar sensors performed better than the aluminum bar sensors. The 

inefficiency of the sensor performance in weighing the trucks originates mainly from its 

signal dependency on position. The complexity of tire impact induced stress is also 

important. These two problems can be overcome by first: redesigning the metal bar 

structure and the surrounding material to eliminate the shear stress; secondly by 

optimizing distribution the sensor network along a lane; and third by minimizing the lane 

width in the test spot. 

We can conclude that the proposed fiber FFPI weigh-in motion sensor has a great 

potential to be a long-lasting, cost-effective solution for truck classification and WIM 

applications. 
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CHAPTER VIII 

RECOMMENDATIONS 

Concerning the binary optical switch, future tests should be done to test the 

system performance at different temperatures. The reference and sensing sensor should 

experience the same temperature. The whole setup is now on an optical table, integrating 

the optical system into one box with vibration protection is suggested for real airplane 

applications, and the ability of the system to handle vibrations needs to be studied. The 

ability to extend one sensing sensor to the multiplexing of many sensors on a single fiber 

is promising. Thus, in one optical system, multiple binary switches can be realized. To 

achieve better results, the mirror reflectance of the FFPI needs to be optimized. Also, a 

new configuration of connecting multiple sensors through couplers needs to be figured 

out to efficiently utilize the SLD light source.  

In sensor fabrication, new techniques will be needed to overcome the brittleness 

of the sensor. A recoating of plastic buffer is necessary to protect the sensor from being 

broken, especially when the sensor functions as a strain sensor.  

The results of the fiber-optic weigh-in-motion sensors have shown the feasibility 

of using FFPI sensors in monitoring heavy traffic. FFPI sensors have proved to have the 

ability of precisely measure the vertical load, axle spacing, traffic speed, and truck class. 

In addition steel bar sensor’s performance is better than that of the aluminum bar. The 

sensors performance in axel weight and gross weight is influenced by the position of the 

wheel crossing and shear stresses. It will be necessary to modify the design of the metal 

bar and the embedding process. More elastic and long-lasting material should be chosen 
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to surrounding the bar, well on the top and on the bottom using the same epoxy. This 

may help buffer the shear stress.  

A sensor network of non-even sensor distribution is suggested, according to the 

Gaussian distribution of truck wheels passing in a high way across lane. Sensors should 

mainly be embedded in the two sides of the lane, with separation of 5-6 inches, avoiding 

the middle area and the very end of the lane where there is little chance of wheel 

crossing. The suggested sensor distribution is shown in Fig. 52. It’s obvious that the 

more sensors there are, the better performance that can be expected. 

Finally, the sensor’s performance needs to be monitored under actual traffic 

conditions. Other aspects such as integrating into existing weigh-in-motion monitoring 

and classification systems to compare the performance should also be undertaken. 

 

 

 

 

Fig. 52. Suggested sensor distribution across a lane
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APPENDIX 
 

PROGRAM LIST 
 

/*********************************************************************/ 
/* This program is designed for signal processing of WLI interferometer, the 
detailedalgorithm is explained in Chapter IV: 

1. Filter: 5 points average 
2. Normalization 
3. Correstion of SLD data from DFB data 
4. Peak finding: hypothesis test 
5. Fine tune resolution enhancement 

       Compiler: Microsoft Visual C++6.0 
       Final revised on Oct. 4, 2004 by Zhaoxia Xie                                                        */ 
/********************************************************************/ 
#include<math.h> 
#include<stdlib.h> 
#include<stdio.h> 
#include<iomanip.h> 
 
#define DFB a 
 
const int R=3000;            // ref and sen peaks are in range of -R to +R 
const int np=50;                 // np:# of points in one period of DFB 
const int ng=2500; 
//const int K=40; 
const int t=1;              // used in find hcp 
const int T=40; 
const int R1=2,R2=4,R3=6; 
 
const int Max_samples=15000; 
const int Num=1500; 
const int Q=70;                 //hpdat[Q][P] need adjusting 
const int P=19; 
const int Z=40;                 //used in calculate:pcorr_sum 
const int F=500;                //used in correlation with cosine curve 
int   i,M,N,k,m,K;                //M:Total readin data number, N: useful data 
float d,b,y,dxa,dxb; 
FILE  *fp,*fpc,*fp1,*fp2,*fp3; 
 
char filename[30]; 
char temp[12]; 
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int main(int argc, char *argv[]) 
{float SLD_sen_in[30000],SLD_ref_in[30000],DFB_in[30000]; 

float SLD_sen[Max_samples],SLD_ref[Max_samples],DFB[Max_samples]; 
if((fp=fopen(argv[1],"r"))==NULL) 

  {fprintf(stderr,"Error opening original file.\n"); 
   exit(1); 
   } 

while(!feof(fp)) 
   { 
    fscanf(fp,"%f %f %f\n", SLD_ref_in+i,SLD_sen_in+i,DFB_in+i); 

i++; 
   } 
   M=i+1;                    //  M is the total readin sample points 
   If (M>30000) 
   {printf("Something wrong,M>30000\n"); 
       exit(0); 
      } 
   printf("TOTAL sample points is:M=%d\t",M); 
   fclose(fp); 
/***************           cut data              ******************/ 
int index_ref=0; 
int index_sen=0; 
   int index1,index2; 
   float max_SLD_ref=SLD_ref_in[0]; 
   float max_SLD_sen=SLD_sen_in[0]; 
   for(i=1;i<M;i++) 
   {if(max_SLD_ref<=SLD_ref_in[i]) 
      {max_SLD_ref=SLD_ref_in[i]; 
          index_ref=i; 
         } 
       if(max_SLD_sen<=SLD_sen_in[i]) 
      {max_SLD_sen=SLD_sen_in[i]; 
          index_sen=i; 
         } 
       } 

k=0; 
   if (index_ref>=index_sen) 
   {if (index_sen>=R) 
 index1=index_sen-R; 
       else index1=0; 
if (index_ref+R<=M) 
   index2=index_ref+R; 
   else index2=M; 
      for (i=index1;i<index2;i++) 
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      {SLD_ref[k]=SLD_ref_in[i]; 
          SLD_sen[k]=SLD_sen_in[i]; 
         DFB[k]=DFB_in[i]; 
         k++; 
         } 
      N=k+1; 
      } 
 
   else {if (index_ref>=R) 
index1=index_ref-R; 
   else index1=0; 
   if (index_sen+R<=M) 
   index2=index_sen+R; 
   else index2=M; 
   for (i=index1;i<index2;i++) 
       {SLD_ref[k]=SLD_ref_in[i]; 
           SLD_sen[k]=SLD_sen_in[i]; 
           DFB[k]=DFB_in[i]; 
           k++; 
          } 
   N=k+1; 
        } 
   printf("TOTAL sample points is:N=%d\t",N); 
/*******  Do a five points average of dates just read in   *******/ 
 
for(i=0;i<(N-4);i++) 
   {SLD_sen[i]=(SLD_sen[i]+SLD_sen[i+1]+SLD_sen[i+2]+SLD_sen[i+3] 
                   +SLD_sen[i+4]+SLD_sen[i+5])/5; 
       SLD_ref[i]=(SLD_ref[i]+SLD_ref[i+1]+SLD_ref[i+2]+SLD_ref[i+3] 
                   +SLD_ref[i+4]+SLD_ref[i+5])/5; 

DFB[i]=(DFB[i]+DFB[i+1]+DFB[i+2]+DFB[i+3]+DFB[i+4]+DFB[i+5])/5; 
      } 
  N=N-4; 
 
   /***************           Normalization          *****************/ 
 
float DFB_sum, SLD_sen_sum, SLD_ref_sum; 
   SLD_sen_sum=0.0; 
  SLD_ref_sum=0.0; 
  DFB_sum=0.0; 
  for (i=0;i<N;i++) 
   {SLD_sen_sum = SLD_sen_sum+SLD_sen[i]; 
       SLD_ref_sum = SLD_ref_sum+SLD_ref[i]; 
       DFB_sum= DFB_sum+DFB[i]; 
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      } 
   for (i=0; i<N; i++) 
   {SLD_sen[i]=SLD_sen[i]-(SLD_sen_sum/N); 
       SLD_ref[i]=SLD_ref[i]-(SLD_ref_sum/N); 
       DFB[i]=DFB[i]-(DFB_sum/N); 
      } 
**************************************************************/ 
 

int flag1=1,flag2=0; 
float sum1=0,sum2=0; 

for (i=0;i<N;i++) 
   {if ((i>1)&&(DFB[i]>0)&&(DFB[i-1]<=0)) 
      flag2=1; 
       if (i>(N-3*np)&&(DFB[i]>0)&&(DFB[i-1]<=0)) 
         flag1=0; 
       sum1+=DFB[i]*flag1*flag2; 
       sum2+=flag1*flag2; 
      } 
   for (i=1;i<N;i++) 
   DFB[i]=DFB[i]-sum1/sum2; 
/*****  find the period(cross points) of DFB[i] with x-axis   *****/ 
/*   printf("began to process DFB side to find period etc\n");    */ 
/* period_0[j] is x-position of last point of the jth period 
   period_1[j] is the period length(T) of jth period 
   period_1[j]=period_0[j+1]-period_0[j]                                   
*********************************************************/ 
 
   float period_0[Num],period_1[Num]; 
  int j=0,Number_period; 
   int last[Num],Np[Num]; 
   k=1; 
  for (i=0;i<N;i++) 
   {if ((a[i]*a[i+1]<=0)&&(a[i-1]<a[i])&&(a[i]<a[i+1])&&(a[i+1]<a[i+2])) 
       {period_0[j]=i+(a[i]/(a[i]-a[i+1])); 
            last[k]=i; 
            k++; 
         j++; 
         } 
     } 
      Number_period=j; 
      printf("Number of periods of DFB=%d\n",Number_period); 
 
   for (j=0; j<Number_period; j++) 
   {period_1[j]=period_0[j+1]-period_0[j]; 
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       Np[j]=last[j+1]-last[j]; 
} 

   printf("\n");   
/******   find the coordinate x0 of each points ***********/ 
 

float x0[Max_samples],x1[Max_samples],x2[Max_samples]; 
   float Nc,Ncp,q; 
   int Nx0; 
Nc=period_0[0]; 
   Ncp=period_0[1]; 
   Nx0=(int)Nc; 
   q=(float)Nx0; 
   x0[Nx0]=(q-Nc)/(Ncp-Nc); 
   i=0; 
   while (i<(Number_period-1)) 
   {Nc=period_0[i]; 
       Ncp=period_0[i+1]; 
for (j=(int)period_0[i]+1;j<=Ncp;j++) 
       x0[j]=i+(j-Nc)/(Ncp-Nc); 
         i++; 
       x0[j]=i+(j-Ncp)/(Ncp-Nc); 
      } 
/*******    set new x grid values for adjusted data x1[i] ******/ 
 
   float dx; 
   dx=1/(float)np; 
int Nj=np*(Number_period-1); 
   for (i=0;i<=Nj;i++) 
   x1[i]=(float)i*dx;       
/*******      calculate corrected sen and ref data       **********/ 
 

float ys[Max_samples],yr[Max_samples]; 
j=0; 
   for (i=Nx0;i<(N-1);) 
   {d=x0[i]; 
       b=x0[i+1]; 
       y=x1[j]; 
       if ((d<y)&&(b>=y)) 
       {dxa=y-d; 
          dxb=b-y; 
          ys[j]=(SLD_sen[i]*dxb+SLD_sen[i+1]*dxa)/(dxa+dxb); 
          yr[j]=(SLD_ref[i]*dxb+SLD_ref[i+1]*dxa)/(dxa+dxb); 
          j++; 
         } 



 

 

93 

       else i++; 
/****************out put the raw data max min and diff*******************/ 
  int maxsj=0;   /*max sensor x axis position*/ 
  int maxrj=0;   /*max reference x axis position*/ 
  float maxys=ys[0];  /*max sensor y axis value*/ 
  float maxyr=yr[0];  /*max reference y axis value*/ 
  for (int m=1;m<j;m++) 
  {if (ys[m]>maxys) 

{   maxys=ys[m]; 
      maxsj=m; 
      } 
   if (yr[m]>maxyr){ 
   maxyr=yr[m]; 
      maxrj=m; 
      } 
  } 
  float peakdist=maxrj-maxsj; 
  printf(" \nraw data sensing sensor peak is:%f, at x axis %d\n", maxys, maxsj); 
  printf("raw data reference sensor peak is %f, at x axis %d\n", maxyr,maxrj); 
  printf("raw data peak fringe distance is: %f\n\n",peakdist); 
/******************          correlation t         ****************/ 
 
  float corr[2*Max_samples],peak[500],pcorr_0[500]; 
   float peak_max=0,peak_min=0, c=0; 
   float jmax,jmin,y1,y2,y3,dp,u,v,w; 
   int jm; 
   int Num_peak_corr; 
   for (i=0;i<N*2;i++) 
   corr[i]=0; 
       for (k=-(Nj-1);k<Nj;k++) 
   {for (i=0;i<Nj;i++) 
       {if((i-k)>=0&&((i-k)<Nj)) 
         corr[k+Nj]=corr[k+Nj]+ys[i]*yr[i-k]; 
            c=corr[k+Nj-1]; 
         } 
       if (c>peak_max) 
       {peak_max=c; 
          jmax=k; 
         } 
       If (c<peak_min) 
       {peak_min=c; 
          jmin=k; 
         } 
       x2[k+Nj]=(float)k/(float)np; 
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      } 
      printf("jmax=%f\tjmin=%f\n",jmax,jmin); 
/*********    write correlation data to fle: corr.dat    **********/ 
 
   if ((fpc=fopen("correlation.dat","w"))==NULL) 
     {printf("can not write to file:correlation.dat\n"); 
      exit(1); 
      } 
   for (i=0;i<2*N-1;i++) 
      fprintf(fpc,"%f\t%f\n",x2[i],corr[i]); 
fclose(fpc); 
peak_min=100; 
   peak_max=-100; 
   j=1; 
   jm=1; 
for (k=jmax-ng;k<(jmax+ng);k++) 
   {if (corr[k+Nj]*corr[k+Nj+1]<0) 
      {if(peak_min<0) 
         {y2=peak_min; 
             peak_min=100; 

} 
        else 
          {y2=peak_max; 
             peak_max=-100; 

} 
       y1=corr[jm-1]; 
       y3=corr[jm+1]; 
       u=y2; 
       v=0.5*(y3-y1); 
       w=0.5*(y1+y3-2*y2); 
       peak[j]=u-0.25*v*v/w; 
       dp=-0.5*v/w; 
       dp=corr[k+Nj]/(corr[k+Nj]-corr[k+Nj+1]); 
       pcorr_0[j]=(k+dp)/np; 
       j++; 
         } 
       else 
       {if((corr[k+Nj]<0)&&(corr[k+Nj]<peak_min)) 
         {peak_min=corr[k+Nj]; 
             jm=k+Nj; 
            } 
         if ((corr[k+Nj]>0)&&(corr[k+Nj]>peak_max)) 
         {peak_max=corr[k+Nj]; 
             jm=k+Nj; 
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            } 
         } 
       } 
       Num_peak_corr=j; 

printf("Number of peaks in correlation within jmax+/-2500 is:  
%d\n\n",Num_peak_corr); 
 

       /*************   use crossing to find central peak   **************/ 
 
   int peak_order=1; 
peak_max=peak[1]; 
for (i=1;i<Num_peak_corr-1;i++) 
   {if (peak[i]>peak_max) 
      {peak_max=peak[i]; 
          peak_order=i; 
         } 
      } 
   printf("the order of possible maximum peak is:%d ",peak_order); 
   printf("peak value is:%f\n\n",peak_max); 
   int p[7],hcp; 
   float pk0,pk1,pk2,pk3,pk4,pk5,pk6; 
   float cpn,cpn1,cpn2,cpn3,cpn4,cpn5; 
   float cumpk[7]; 
   int realpeak; 
   float cummin=100000.0;    
   for (i=0;i<7;i++) 
   cumpk[i]=0; 
   p[0]=peak_order; 
   p[1]=p[0]-2; 
   p[2]=p[0]+2; 
   p[3]=p[0]-4; 
   p[4]=p[0]+4; 
   p[5]=p[0]-6; 
   p[6]=p[0]+6; 
   for (m=1;m<30;m++) 
     {K=2*m; 
      printf("check the central peak using +/-%d fringes:\n",K); 
      pk0=peak[p[0]+K]-peak[p[0]-K]; 
      cumpk[0]+=fabs(pk0); 
   pk1=peak[p[1]+K]-peak[p[1]-K]; 
     cumpk[1]+=fabs(pk1); 
   pk2=peak[p[2]+K]-peak[p[2]-K]; 
      cumpk[2]+=fabs(pk2); 
   pk3=peak[p[3]+K]-peak[p[3]-K]; 
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      cumpk[3]+=fabs(pk3); 
   pk4=peak[p[4]+K]-peak[p[4]-K]; 
      cumpk[4]+=fabs(pk4); 
      pk5=peak[p[5]+K]-peak[p[5]-K]; 
      cumpk[5]+=fabs(pk5);       
      pk6=peak[p[6]+K]-peak[p[6]-K]; 
      cumpk[6]+=fabs(pk6); 

printf("pk0=%f;pk1=%f;pk2=%f;pk3=%f;pk4=%f\n",pk0,pk1,pk2,pk3,pk
4); 

      printf("pk5=%f;pk6=%f\n",pk5,pk6); 
   printf("peak[p0+%d]-peak[p0-%d]=pk0=%f\n",K,K,pk0); 
     printf("peak[p1+%d]-peak[p1-%d]=pk1=%f\n",K,K,pk1); 
   printf("peak[p2+%d]-peak[p2-%d]=pk2=%f\n",K,K,pk2); 
   printf("peak[p3+%d]-peak[p3-%d]=pk3=%f\n",K,K,pk3); 
      printf("peak[p4+%d]-peak[p4-%d]=pk4=%f\n",K,K,pk4); 
      printf("peak[p5+%d]-peak[p5-%d]=pk5=%f\n",K,K,pk5); 
      printf("peak[p6+%d]-peak[p6-%d]=pk6=%f\n",K,K,pk6); 
   if ((cumpk[0]<cumpk[1])&&(cumpk[0]<cumpk[2])) 
      {printf("hcp=%d is central peak.\n\n",p[0]); 
          hcp=p[0];} 
      else if ((cumpk[1]<cumpk[3])&&(cumpk[1]<cumpk[0])) 
      {printf("hcp=%d is central peak.\n\n",p[1]); 
          hcp=p[1]; 

} 
   else if ((cumpk[2]<cumpk[4])&&(cumpk[2]<cumpk[0])) 
   {printf("hcp=%d is central peak.\n\n",p[2]); 
          hcp=p[2]; 

}              
   else  { 

printf("peak not among %d,%d,%d using  
K=40\n\n",p[0],p[1],p[2]);                 float mincumpk=100000; 

                 for (i=0; i<7;i++){     if (cumpk[i]<mincumpk){ 
      mincumpk=cumpk[i]; 
   realpeak=i; 
                     } 
                 } 
                 hcp=p[realpeak];                 printf("hcp=%d is central peak.\n\n",p[realpeak]); 
      } 
}    
   printf("using crossing to find central peak:\n"); 
   if (hcp>0) 
   {cpn=(pcorr_0[hcp]+pcorr_0[hcp-1])/2; 
   printf("central peak position= %f\n",cpn); 
   cpn1=(pcorr_0[hcp+1]+pcorr_0[hcp-2])/2; 
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   printf("use 2 crossing to find peak postion=%f\n",cpn1); 
         cpn2=(pcorr_0[hcp+2]+pcorr_0[hcp-3])/2; 
   printf("use 3 crossing to find peak postion=%f\n",cpn2); 
   cpn3=(pcorr_0[hcp+3]+pcorr_0[hcp-4])/2; 
   printf("use 4 crossing to find peak postion=%f\n",cpn3); 
         cpn4=(pcorr_0[hcp+4]+pcorr_0[hcp-5])/2; 
   printf("use 5 crossing to find peak postion=%f\n",cpn4); 
   cpn5=(pcorr_0[hcp+5]+pcorr_0[hcp-6])/2; 
   printf("use 6 crossing to find peak postion=%f\n\n\n",cpn5); 
      } 
         else printf("Something wrong,check the data carefully\n\n\n");           
   for (int i=0;i<7;i++)  { 

printf("The Sum of the difference assuming p[%d] is 
central is: %f\n", i,cumpk[i]); 

         }           
   If ((fp3=fopen("result.dat","a"))==NULL) 
     {printf("can not write to file:result.dat\n"); 
      exit(1); 
      } 
  fprintf(fp3,"%f\n",cpn); 
fclose(fpc); 
   return 0; 
/***************     resolution enhancement      ****************** 
 *******first:find negative peak of central fringe********************/ 
   float reso[2*F],reso_sum[2*F],cpn_f; 
   int lcpn,rcpn; 
lcpn=rcpn=cpn; 
   for (i=0;i<(ceil(period_corr/2)+1);i++) 
   {if (corr[lcpn-2]>corr[lcpn-1]&&corr[lcpn-1]>=corr[lcpn]&& 
      corr[lcpn]<=corr[lcpn+1]&&corr[lcpn+1]<corr[lcpn+2]) 
       break; 
       lcpn--; 
      } 
   printf("lcpn=%d\t",lcpn); 
   for (i=0;i<(ceil(period_corr/2)+1);i++) 
   {if (corr[rcpn-2]>corr[rcpn-1]&&corr[rcpn-1]>=corr[rcpn]&& 
      corr[rcpn]<=corr[rcpn+1]&&corr[rcpn+1]<corr[rcpn+2]) 
       break; 
       rcpn++; 
      } 
   printf("rcpn=%d\n",rcpn); 
   /*****correlation with a generated cosine curve to enhance resoltuon.******/ 
    /* enhanced resolution=1/(sample/fringe)*(500/sample))*********/ 
    /* if 50 samples per fringe, enhance 1/25000*********/ 
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/*generate a cosine curve and have correlation with it*********/ 
   for(i=0;i<2*F;i++)      //F=500 
   reso_sum[i]=0; 
  for (i=0;i<2*F;i++) 
   {for(j=0;j<(rcpn-lcpn+1);j++) 
      {reso[i]=0.5*cos(2.0*pi*((float)(lcpn+j)-((float)(cpn-1)+ 
         ((float)i/(float)F)))/period_corr); 
          reso_sum[i]+=corr[lcpn+j]*reso[i]; 
         } 
      } 
   For (i=2;i<2*F-2;i++) 
   {if (reso_sum[i-2]<reso_sum[i-1]&&reso_sum[i-1]<=reso_sum[i]&& 
      reso_sum[i]>=reso_sum[i+1]&&reso_sum[i+1]>reso_sum[i+2]) 
       break; 
      }           
   printf("i for resolution enhancement=%d\n\n",i); 
 
/*******find data after resolution,save to file:temperature.dat  *****/  
cpn_f=(float)cpn+(((float)i-F)/F)-(float)N; 
   cpn_f=(float)cpn+(((float)i-F)/F); 
   printf("cpn_f(final peak point of corr[i])is=:%f\n", 
            cpn_f-np*(Number_period-1)+1); 
   printf("peaks distance is(in fringes)[cpn_f-np*(Number_period-1)+1]/np)=%f\n", 
                               (cpn_f-np*(Number_period-1)+1)/np); 
 
/*****    write to fle: temperature(*fpt)   ***********************/ 
   if( (fpt=fopen("temperature_0508double.dat","a"))==NULL) 
     {printf("can not write and append to file:temperature_0508double.dat\n"); 
      exit(1); 
     } 
   fprintf(fpt,"%-15s\t%-12s\t%f\t%f\n",filename,temp, 
       cpn_f-np*(Number_period-1)+1,(cpn_f-np*(Number_period-1)+1)/np); 
   fclose(fpt); 
               
/************************************************************/ 
 
   return 0; 
} 
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