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ABSTRACT

Quantifying Forest Stands using Landsat:

An Initial Exploration. (May 1986)

Virgil Steven Lewis, B.S., Colorado State University

Chairman of Advisory Conmittee: Dr. Robert D. Baker

Forest stand parameters were shown to be estimable, using data
acquired by the Landsat satellite, at a statistically significant level of
accuracy. When volume was regressed against spectral signature, the
vegetation index which was found to be most significantly associated with
volume was the Kauth and Thomas brightness measure. Average stand height
was the forest stand parameter which had the highest level of statistical
association with spectral signature. The greenness-brightness ratio was
the vegetation index for which this association occurred. Average stand
diameter, crown diameter, and per acre basal area were also shown to have

statistically significant associations with spectral signature, as is
represented on Landsat digital data. Canopy closure and stems per acre
did not have significant associations with spectral signature.

A computerized classification analysis of spectral signature data for
forest stands, based on mensurational characteristics obtained from a

cluster analysis of conventional forest inventory data, separated the data
into distinct classification categories, rather than grouping the data
into a single category which would be expected in a uniform population.

An indirect approach to estimation of volume from spectral signature
was done using spectral estimates of canopy closure, crown diameter, and
average stand height. These estimates were input into an aerial photo
volume table developed for the study area, and a volume estimate obtained.
These indirect estimates, along with direct estimates, were not

statistically different from the actual volume on a set of stands reserved
from the initial model development.

Canopy closure was demonstrated not to be useful in the estimation of
field based stand parameters, due to its confounded nature among stems per
acre and tree diameter, which is similar to that of basal area.
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In general, Landsat data can be used to enumerate forest stands over

large areas with a sufficient degree of accuracy as to allow for its use

in forest survey, as an example. The potential for substantial cost
reductions in the application of Landsat to forest survey, the potential
for the incorporation of remote sensing into the technology of geographic
information systems as a component of forest survey and other applications
are reviewed along with the potential applications of the results of this
study with other remote sensing devices.
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Chapter I.

iNnmjcnoN

The principal thrust of computerized analysis in remote sensing^
for the assessment of forest resources has occurred in two areas: first,
in the development and refinement of computer software for mapping and
classification of forest stands, and second, as an initial phase in the
design and implementation of forest inventory sampling schemes (Aldrich
1979).

A number of techniques for enhancement of remote sensing data in
forest classification and mapping have been developed, however, little
work has been done beyond simple forest stand classification and mapping.

Statement of the problem

A need exists to evaluate the behavior of canopy closure and other
remotely measurable forest stand parameters across their field measurable

counterparts and those stand parameters which have not been studied for
their potential as remotely measurable quantities. No such work has been
done to analyze these behaviors in East Texas forest lands. Stand

parameters estimated from remote sensing data need to be quantified in
such a way as to account for combinations of canopy closure, crown

diameter, height, and other forest stand parameters. To that end, the
behavior of spectral signature, as various stand parameters fluctuate,
needs to be examined, and quantified in a manner which is directly
applicable to East Texas forests, and can be extended to other forest

regions in the United States and beyond.

(1) - Appendix D contains definitions of terms, used in this study,which could cause the reader confusion.

Citations, graphics, and text follows the style of:
Fhotogranmetric Engineering and Remote Sensing.



Stand parameter estimation using digital remote sensing data has
received scant attention since the launching of Landsat-1 in 1972.
Research, prior to and since its launch, investigating utilization of
spectral data for inferences concerning forest stand parameters has been
restricted to applications related to forest calssification and mapping

Canopy closure, crown diameter, and height are the stand parameters
most directly visible from a remote sensing device. They are also
surrogates for the individual tree volume equation of diameter squared,
multiplied by height, and by stocking for a volume estimate on an areal
basis (Husch et al. 1972, Dilworth 1977). Since they are also the cannon

inputs to an aerial photo volume table (AFVT) equation, using an APVT
approach with digital remote sensing data lends itself to investigation
(Aldrich 1979, Avery 1978).

Traditionally used remote sensing data, such as color infrared aerial

photography at a scale of 1:15,840, provides a level of information in
excess of what an operational forest manager needs. The digital nature of
satellite imagery offers potential flexibility in natural resource data
management heretofore unrealized. For example, the midcycle update of
regional forest surveys can be expidited by incorporating multispectral
imagery into the survey process.

Upon combining multispectral methods for estimation of stand

parameters with the emerging technology of geographic information systems
(GIS), as an example, a substantial proportion of summary statistics that
are reported in a forest survey can be obtained using a combined data
management system, Separating a major proportion of summary statistic
compilation from field data collection should result in significant cost
savings, and minimal, if any, degradation in accuracy, bias, and precision
in stannary statistic reporting.

Finally, the deficiency of previous WDrk in utilizing spectral
signature to draw inferences concerning forest stand parameters suggested
the potential for work in this area.



Objectives

The overall objective of this study was to answer the question: Is
there a quantifiable relationship between spectral signature, as is
represented by Landsat digital count data, and timber volume or those
stand parameters that can be used to estimate volume through an aerial
photo volume table (APVT) approach? Spectral signature can be defined as

the observed solar radiation reflected by a forest stand. The three
inputs to an APVT are canopy closure, crown diameter, and average stand
height. Within the overall objective, four subobjectives were considered

1. Using statistical methods, quantify the relationship of stand
volume versus canopy closure, crown diameter, and average stand
height.

2. Using statistical methods, quantify the behavior of canopy

closure as basal area, stems per acre, average tree diameter,
average height, and crown diameter are varied.

3. Determine if a quantative relationship exists between spectral
signature and timber volume.

4. Using statistical methods, quantify the behavior of spectral
signature as basal area, stems per acre, average stand height,
average tree diameter, canopy closure, and crown diameter are
varied.



Chapter II.

LITERATURE REVIEW

Limited research has been done to partition digital data in order to
obtain information concerning forest stand parameters. Work which has
been done was in conjunction with other objectives, and provided limited
results pertinent to this study. The following areas will be considered
as a framework for developing and supporting the premise of this study:
examples of compendia on remote sensing methodologies, general application
of Landsat data to forest research, results of a study investigating the
application of Landsat data for estimation of rangeland brush canopy

densities, the uses and development of aerial photo volume tables, and the
uses of vegetation indices for information extraction from Landsat data.

Syntheses of remote sensing methods

Aldrich (1979) reviewed the applications of remote sensing for wild¬
land resources. He reconmended useful journals for particular application
areas, and appropriate remote sensing platforms. He pointed out the
limitations associated with specific sensors and future potential research
areas.

The prominent synthesis of remote sensing techniques, as applied to a

wide array of disciplines, is presented in the Manual of Remote Sensing
(American Society of Fhotogranmetry 1983). The two volumes assemble the
literature on remote sensing, presenting it in a summarized, concise form.
These sources served as guides to those areas of research most closely
related to this study, due to the lack of previous work directly
applicable to it.

Landsat imagery research applied to forestry

The Landsat satellite, launched in July of 1972, carried two imaging
systems of which the Multispectral Scanner (MSS) is the one pertinent to
this study. The device is an optical-mechanical scanner, working through



the use of rotating mirrors that record the reflected solar radiation from
an area of Interest. The analog signal is digitized into numerical form,
and then transmitted to the ground. Four channels were selected for use
in the MSS, corresponding approximately to the wavelengths for which
color infrared aerial photography film was designed. Each band is
sensitive to the approximate wavelength for which a corresponding film
layer is sensitive in color infrared film. Channel 4, designated in this
study as MSS4 or B4, corresponds to the green region of visible light,
ranging from 0.5 to 0.6 micrometers in wavelength (a micrometer is

_61.0 X 10" meters). M3S5, or B5, corresponds to red light, ranging from
0.6 to 0.7 micrometers in wavelength. MSS6, or B6, corresponding to near
infrared wavelengths, ranges from 0.7 to 0.8 micrometers. MSS7, or B7,
also in the near infrared region, ranges from 0.8 to 1.1 micrometers.

The principal area of forestry research involving the use of Landsat
imagery concerns the use of classification and mapping of forest lands as

either a preliminary stage in forest survey, or as a stand alone product.
Early examples of image classification work will be discussed to

illustrate to primary emphasis of Landsat research applied to forestry.
Landgrebe et al. (1972) clustered Landsat digital data into 11 descriptive
land use/land cover categories and used training sets from each land use/
land cover category to implement a maximum likelihood classification
routine. An approximate classification accuracy of 75-80 percent was
achieved. Heath (1974) reported results from a clustering routine on the
Sam Houston National Forest. An overall classification and mapping
accuracy of 74 percent was achieved. Two classification algorithms were

compared in a U.S.D.A., Forest Service study in Georgia, Colorado, and
South Dakota (Hoffer and LARS Staff 1973, Heller 1975). In a pointwise
comparison of forestland classification, the nearest neighbor method
achieved an 80 percent accuracy, and the maximum likelihood a 90 percent

accuracy rate.
The utility of Landsat as a sole source for land cover classification

and mapping has been well documented. Additional useful examples include:
Texas Natural Resources Information System (1979), Finley (1979), and
Mazade (1981).



Ancillary data, such as aerial photography, multitemporal data,
digital terrain maps, ownership and political boundaries have been shown,
when combined with Landsat data, to improve classification accuracies.
Illustrative examples include: Strahler et al. (1978), Fleming and Hoffer
(1979), Hoffer et al. (1979), and Nelson and Hbffer (1979).

A number of results in the area of "pure” classification have been
negative. An example of this is found in Colwell and Titus (1976). While
attempting to incorporate Landsat data into a forest inventory plan for
the Sam Houston National Forest, they found the forestland too

homogeneous to allow for stratification into what they termed "surveyable"
units. Helms and Shain (1981) pointed out a series of problems associated
with the use of remote sensing data as applied to forest inventory.
Ground verification and remotely sensed data must be matched temporally to
avoid classification confusion resulting from land use/land cover change.
Precise ground plot location and registration of the ground plot location
on a map using Landsat data is difficult due to its digital nature.

Positive results for the use of Landsat data as an element of forest

surveys have been obtained in the Pacific Northwest and California.

Harding and Scott (1978) used Landsat land use/land cover classification
results as a means to stratify a forested study area as a precursor to

optimal plot size determination, photo plot location, and finally field
verification. Ownership and political boundaries were digitized and
merged with Landsat multispectral data into a combined data file. The

output products consisted of color coded maps and tabular statistics
arrayed by ownership category.

In Douglas County, Oregon, a "semi-supervised'' classification was

used to establish nine broad vegetative categories, which, when combined
with photo interpretation, ownership, and location description, allowed
subdivision by species and density classes. Ground plots were then
visited as the final stage in the overall sampling scheme. The output
products from the inventory consisted of small scale vegetative maps,
intermediate scale "vegetative treatment opportunity" maps, and tabular
descriptive statistics (Aggers and Kelley 1976, Oregon State Dept, of
Forestry 1978). On the Klamath National Forest, in northern California,
Defense Mapping Agency Digital Terrain Map data were merged with Landsat



multispectral imagery into a composite file, which was then classified
and used as a preliminary stage in a forest inventory operation (Strahler
et al. 1978, 1981).

Research directed toward using Landsat multispectral data to draw
inferences concerning forest stand parameters, for example cubic foot
volumes, has not been attempted beyond classification of canopy closures
into descriptive categories. A number of works have shown that open
versus closed canopies can be distinguished in ponderosa pine (Pirns
ponderosa) due to browning of understory vegetation in sutumn (Hbffer and
LARS staff 1973, 1975a, 1975b, Strahler et al. 1978, Mead et al. 1979a).
Open versus closed canopies were also shown to be visible in Douglas-fir
(Pseudotsuga menziesii), white fir (Abies cdncblor), and red fir (Abies
magnifica) forests (Strahler et al. 1978). Williams (1976) showed that
three broad categories of canopy closure can be distinguished in the pine-
hardwood forests of eastern North Carolina. It was suggested that these
differences in canopy closure are a result of an increase in observed
infrared radiance from the understory vegetation visible through a forest
canopy.

A major point must be remembered when considering previous work using
Landsat data to draw inferences concerning forest stand parameters. The
results obtained have been primarily qualitative in nature, adjunct to
mapping and classification of forests, or as an initial stage in forest
survey. To the best knowledge of the author, no previous studies have
attempted to directly quantify forest stand parameters based on satellite
data.

Rangeland brush canopy results

Boyd (1984) demonstrated a statistically significant relationship
between vegetation indices derived from Landsat data and rangeland brush
canopy percentages. An example of a vegetation index is the simple ratio
of Landsat band 7 divided by band 5. The vegetation index found to be the
least sensitive to soil background was the greenness index (Kauth and
Thomas 1976).

Since percent canopy cover is a quantity that can be estimated in



forests, the implication follows that Landsat can provide data from which
this quantity can be estimated. When height and crown diameter are
accounted for, it follows that an APVT-like approach can be used with
Landsat data. A cautionary result concerning the practical equivalence of
certain groups of vegetation indices will be examined in the section of
vegetation Indices and their use.

Aerial photo volume tables

The majority of previous work on APVT’s has concentrated on their
development and use in forest inventory. Avery (1958) demonstrated the
feasibility of constructing composite aerial volume tables in mixed pine-
hardwood standsc compiled from individual tree measurements. A composite
aerial volume table can be entered to estimate gross volume for a stand
without accounting for the individual species within that stand. The
tradeoff here is a larger standard error of the estimate, depending on the
accuracy, precision, and bias of the input measurements. Composite tables
can provide volume estimates within ten percent of the actual field
volume, provided the inputs: canopy closure, crown diameter, and height
are measured reliably.

Avery and Myhre (1959) developed a composite table for Southern
Arkansas pine-hardwood forests using multiple regression techniques,
excluding crown diameter as an independent variable. The local nature of
aerial volume tables was re-emphasized as well as the points brought out
in Avery (1958).

Pope (1962) presented a systematic technique for use in constructing
aerial volume tables using regression methods. Avery (1978) presented a

section containing suggestions for deciding whether or not a composite
table should be used as opposed to an individual species table. Mead and
Smith (1979b) developed a table for use in pine forests infested with
southern pine beetle, using multiple regression techniques with height
and canopy closure as the independent variables.

The most common form of the aerial volume equations developed in the
literature, applied to southern forests, involve height, crown diameter,
canopy closure, their squares, and some function of the interaction of



the previous terms. The form of the model selected in this study used
Avery (1958), Avery and Myhre (1959), and Mead and Smith (1979) as guides
for variable selection. A detailed discussion concerning the actual
development of the aerial volume table used in this study is presented in
the section cn APVT model development and analysis.

Vegetation indices

Numerous works, primarily in crop and rangeland analysis, have shown
that Landsat data relate closely with vegetation density indicators such
as biomass, leaf area index, and percent canopy coverage (Richardson and
Wiegand 1977).

The premise for developing a vegetation index is to suppress insofar
as possible the soil background effect by employing a transformation to
the digital data. Numerous vegetation indices have been developed for
seasonal vegetation condition analysis using vegetation amounts and
conditions, plant canopy models for yield estimation, or classification
techniques for crop and soil condition surveys. A comparative treatise
on this subject was done by Lautenschlager and Perry (1981).

Kauth and Thomas (1976), using a sequential orthogonalization of the
Gram-Schmidt matrix process (Rao 1973), derived linear combinations
reducing the mathematical dimensions of Landsat gray shade data. Using
matrix notation and the descriptive terms coined by them, they are as

follows:

let SR = (B4, B5, B6, B7) be the vector of digital counts for a

Landsat picture element at a given location, then,
f 'Greenness'' (G) :

G = SR' (-.283, -.66, .577, .388),
"Brightness" (B):
B = SR' (.332, .603, .675, .262),
"Yellowness" (Y):
Y = SR' (.723, -.597, .206, -.278)
"Nonesuch" (N):
N = SR'(.404, -.039, -.505, .762).

(1)
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Wheeler et al. (1976) and MLsra et al. (1977b) used principal
component analysis to independently derive linear combinations which
reduce the dimensionality of a data set, while preserving as much of the
original sample variation as possible. They achieved the following
results, using the same matrix notation:

Gp - SR' (-.386, -.536, .535, .532),
Bp - SR* (.406, .600, .645, .243),
Yp = SR' (.723, -.597, .206, -.278)
N = SR' (.404, -.039, -.505, .762).

Misra et al. (1977a) also rescaled the principal component analysis
into spectral density space, followed by transformation back into digital
count space, achieving similar results to that of Kauth and Thomas (1976).

The remarkable similarity between the three works is likely due to
the "greenness" component accounting for over 80 percent of the total
sample variation, in all cases. Principal component analysis assumes no

prior ordering or interpretation of input variables, whereas the Grarn-
Schmidt orthogonalization indirectly allows some freedom of choice in
variable ordering. Another example of the numerous vegetation indices
that have been developed appears in Hay et al. (1979).

Aaronscn and Davis (1979) showed a significant correlation among the
numerous vegetation indices developed up to that time. Correlation
coefficients ranged from .81 up to 1.00. Lautenschlager and Perry (1981)
performed a cluster analysis on the vegetation indices available and
showed that two large clusters existed, having intracluster correlations
of greater than .90, and several smaller groupings. The two large
clusters were based on: (1), bands 7 and 5, and (2), bands 6 and 5. The
second group also includes linear combinations of all four Landsat bands.

Tucker (1979) showed that for monitoring vegetation, combinations of
red and infrared wavelengths are superior to green-infrared combinations.
The properties of red-infrared combinations are similar for biomass, leaf
area index, chlorophyll content, and leaf water content estimation. He
showed that the asymptotic properties of the red-infrared combinations are

similar in prediction of high amounts of green biomass, and that standing
dead vegetation has a linearizing effect on biomass estimation,



combined with a corresponding decrease in the coefficient of
determination.

In surrmary, numerous vegetation indices used in monitoring crop and
rangeland vegetation condition and production have been developed. Each
index displays differing degrees of sensitivity to soil background effects
and vegetation condition parameters such as leaf area index. Perry and
Lautenschlager (1984) showed, however, that for decision making in the *

context of classification, vegetation indices within two large categories
can be shown to be functionally equivalent. The two groupings consist of
those indices based on ratios, and those based on differences, to exploit
distinctions between vegetation and soil background effects. A number of
vegetation indices, in the works previously described, will be used to

statistically relate timber volume to spectral signature. These indices
will be formally defined in the methods chapter.

A note on the analogy between volume and biomass

No attempt has apparently been made to use vegetation indices to
estimate tree volume, and other stand parameters, from satellite imagery.
However, due to the relationship between volume and biomass, and the

relationship between certain stand parameters, such as individual tree
diameter and height versus volume, the techniques for estimating biomass
should be applicable to volume and other stand parameter estimation.
Consider the following empirical relationship:

Biomass = volume X density per unit volume. (3)

If an analyst has the appropriate volume to biomass conversions,
translation from volume to biomass should be possible.



Chapter III.

THE STUDY AREA.

The study area for this research is located in Polk County, Texas.
The area is adjacent to Lake Livingston. Figure 1 indicates the location
of those stands selected for analysis and verification.

Land cover in the area is a mosaic of forest, urban, and agricultural
areas. The topography of the area is typical of the upper Gulf Coastal
plain, consisting of gently rolling plains, interrupted by low lying
cuestas and flood plains. Soils within the area are also typical of the
East Texas forest region, consisting of mostly sandy soils on uplands,
and clays to silty clays in bottomland areas.

Forest types in the area are a mixture of pine, hardwDod, and mixed
pine-hardwood stands. The prediminant mixture in the area is one of
oak and pine, with the predominant pine being loblolly pine (Pinus taeda).
Slash pine (Pinus elliotii), shortleaf pine (Pinus echinata), and

longleaf pine (Pinus palustris) occur sporadically in the area as well.
Upland hardwoods are primarily a mixture of oak and hickory (Quercus spp. -

Carya spp.), with sweetgum (Liquidambar styraciflua), hackberry (Celtis
occidental is), and hawthome (Craetagus spp.) as examples of sporadically
occurring components. Bottomland forests are typified by elm (Ulmus),
tupelo (Nyssa spp.) , and ash (Fraxinus spp.) .

Forest management in the area covers the entire spectrum of potential
management scenarios, from intensive pine plantation management conversion
practiced by industrial forest managers to custodial forms of management
practiced by non-industrial private timber owners such as farm woodlots.
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Chapter IV.

MATERIAL USED AND DATA OBTAINED

The premise for this study, to examine to potential relationships
between spectral signature versus timber volume and other forest stand
parameters, necessitated the acquisition of data on three levels before

proceeding with the quantitative analysis. The three levels were the
ground data, aerial photography data, and satellite data.

The ground data, acquired from and with the permission of a
cooperating landowner, consisted of stand maps by compartment and stand
and stock tables on an individual stand basis (Figure Al, Appendix A,
contains an example of both stand maps and it's associated data). The
stands averaged between 50 and 110 feet in estimated height, 0 to 300
stems per acre, and 7 to 16 inches in average tree diameter (Tables 1 and
2 present the stand distribution by height, stems per acre, and average
tree diameter class).

The aerial photography data were extracted from color infrared aerial

reprints, at a scale of 1:20,000, obtained on loan from the Texas Forest

Service (TFS). TFS obtained these reprints by permission of Kirby Forest
Industries who was the original contractor with Park Aerial Surveys of
Lexington, Kentucky.

Satellite data were obtained from two Landsat MSS images, partitioned
into subscenes that registered to the quadrangles covering the study area
(Table C22, Appendix C). They were obtained from the image library of the
Texas Natural Resources Information System at Austin, Texas.

Each of the three levels of data contributed a portion of a single
observation used in the quantitative analyses. In addition to the four
subobjectives of this study, a separate, detailed narrative on data
extraction preceeds the analytical description and follows.

Data extraction

Field data

A critical point must be emphasized at this juncture. Because ground
data were obtained from conventional forest inventory techniques, forest
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Table 1. Number of Study Stands
by Height Class and Stems per Acre.

Height
Class

Stems per Acre

0-60 60-120 120-180 180-240 240-300 more than 3°0(feet)

50-60 1
60-70 2 4 8 1 1
70-80 4 23 22 2 1 1
80-90 5 20 25 k
90-100 1 10 8 2



Table 2. Number of Study Stands
by Height Class and Dbh Class,

Height Dbh Class (inches)
C"^ SIS8
(feet) 7-8 8-9 9-10 10-11 11-12 12-16

50-60
60-70
70-80
80-90
90-100
100-110

1 1
9 11

23 16 5
14 20 10

5 8
1

2
5
5
l

5
7
1

2
4
4



management activities are continually occurring on the area. Only one set
of aerial photographs at a sufficiently large scale was available, and
only two Landsat scenes of adequate quality were available near the time
when the field inventory was taken. As a consequence of this, the
following criteria were used in study stand selection:

1. Study stands must be reliably located on the aerial photography.
2. Field data must indicate no silvicultural activities since the

time of aerial photography.
3. No stands with an extremely elongated shape will be examined.

Elongated stands, when examined on digital imagery, present the
problem of excessive number of mixed pixels, being both in and
out of the stand simultaneously.

4. Field and satellite data will be matched as closely in time as

is possible.
Field data, including total basal area, volume, number of stems

were recorded on a per acre basis for each individual stand. Average
diameter at breast height (denoted in this study as Dbh) for an individual
stand was estimated in the following manner:

1. Average basal area per stem was estimated from the quotient of
basal area per acre over stems per acre.

2. Average Dbh was then estimated by solving:
BA. = .005454 X (Dbh2) (4)

for Dbh and computing the Dbh estimate.
To determine average height for a stand, a circuitous method was

necessary. Individual plot tally records were not available from the
cooperating landowner due to the sheer volume of data requested and the
fact that a substantial portion of the records had been destroyed after a

short archiving period within the company. As a consequence, an estimate
was made using site index, recorded for a minimum of three trees per
stand. This estimate, less desirable in terms of statistical reliability,
was the only one available.

Schumacher and Coile (1960) presented an equation for predicting
height based on age and site index for southern pines. A requisite for
recording of site trees within a stand during the field inventory was to
record site index based upon loblolly pine wherever possible. The
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presumption was made that successful location of loblolly site trees was

achieved, facilitating the use of the Schumacher and Coile equation as

shown below:

In (height) = ln(site index) - 6.258 X (1/age - 1/50), (5)
where In denotes the natural logarithm.
The estimates of average stand diameter and height were then appended

to their respective observation containing, the rest of the field data.

Aerial photography data

Accompanying stand and stock table data were stand maps for the study
area, on a compartmental basis. Study stands were transferred by a Kail
reflecting projector to the 7% minute U.S. Geological Survey quadrangles
covering the study area. Photo centers from the coverage on the area were

also located on the quadrangles. Acetate overlays were prepared for each
photo in the study area containing study stands, according to the criteria
discussed earlier for study stand selection.

Field inventory plots were distributed in a systematic manner on a

161 by 322 meter (8 by 16 chain) grid. A dot grid corresponding to the
same grid size was constructed for use with aerial photography. The first
inventory plot was located in the stand 80 meters south and 80 meters east

(4 chains) of the northwest comer of the stand. Circular .4046 hectare
(one acre) photo plots were located on the photography in such a manner as

to closely approximate the original field inventory as possible. Canopy
closure and crown diameter were the twD measurements desired at each photo
plot. Canopy closure was measured three times, twice by the "ocular"
method discussed in Avery (1978), and a third time using a crown closure
comparator (Aldrich 1967, Aldrich and Norick 1969). Crown diameter was

measured using a Michigan Photo Interpreters Aid. Measurements were taken
for the smallest visible, largest visible, and approximate median visible
crown for each photo plot. Averages were taken for both canopy closure
and crown diameter per stand and then appended to the per stand field
data.

A critical point concerning study stand selection is explained below.
The selection criteria for study stands combined with the need for data



which is temporally matched, resulted in a distinctly nonrandom
distribution of study stands within the study area. Summaries of stand
volume and stocking, at a coarser level of resolution, were available from
the cooperating landowner as an ancillary data source. Each study stand
was segregated from the remaining stands and treated as a separate
classification category. A comparison between covariance matrices for
basal area was performed using the version of Box's M test implemented on

the DISCRIM procedure of the Statistical Analysis System (SAS) at the Data
Processing Center, Texas ASM University (Mardia et al. 1979, SAS 1982).
Appendix B contains details of this test.

The key point to remember concerning this test of sampling adequacy,
or "representativeness", is that the study stands appear to be adequately
representative of the natural stands in the area. At the .10 level, no

significant difference in covariance matrices, based on pine and hardwood
basal area, existed.

The significant difference between mean basal area vectors (Table B3,
Appendix B) can be attributed to the ongoing conversion of the area from
natural stands to a pine plantation form of forest management. This is
reflected in the significant difference between the two pine basal area
values and the lack of significance in hardwood basal areas. Since the
selection of study stands emphasized natural stands, those stands which
were pine plantations were pooled into the ramaining category, forcing the
significant difference.

Satellite data

As was previously discussed, quadrangle sized subscenes were
extracted from the two Landsat scenes available for the study area.

Study stands were located on the quadrangles. An example of a subscene,
the Blanchard quadrangle, is given in Figure 2. The following procedure
was used for extraction of spectral data from each quadrangle.

1. The individual quadrangle was digitized, capturing individual
stand boundaries, using the video camera digitizer located at
the Remote Sensing Center (RSC) at Texas ASM University.
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2. The Landsat subscene was entered into the image processor at
the RSC.

3. The quadrangle was geometrically transformed to align it with
the subscene, followed by actual registration.

4. Means and standard deviations were recorded, by Landsat band,
for each study stand within the quadrangle.

5. These values were appended to the overall data base containing
ground and aerial photography data.

An ideal image should possess the property of consistent registering
with neighboring images, irrespective of the time of imaging. Due to the
orbital drift inherent in the satellite, this ideal is almost never
achieved.

A considerable portion of the spectral data was lost due to a 10-15
kilometer gap between the two scenes acquired. No other scenes from the
time desired met the restrictions placed on scene quality which were
minimum cloud cover and maximum contrast. Seventy nine of the original
146 study stands were able to have spectral data extracted from them.

An ideal image processor should allow extraction of an unlimited
number of training sets for classification. This ideal is almost never
achieved due to the exorbitant amount of central processing unit (CPU)
time involved.

Full covariance matrices for each stand were unobtainable because the
routine used in their extraction is designed for training set extraction
prior to classification. A maximum of five training sets were premitted
by this routine, therefore individual bands had to be extracted using an
algorithm which obtained statistics by individual band only.
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Chapter V.

METHODS USED

In developing the premise for this study, four analyses, which
corresponded to the subobjectives of this study, were developed, followed
by a sysnthesis to answer the overall objective question. Initially, an
aerial photo volume table (AFVT) equation was developed, followed by an
examination of the relationships between canopy closure and the stand
parameters of interest in this research: stems per acre, average stand
Dbh, basal area, and crown diameter.

Spectral analysis consisted of two sections: first, an analysis of
the relationships between spectral signature versus volume and those stand

parameters needed for input into the AFVT equation, and second, an

examination of the relationship between spectral signature and those stand
parameters not examined with respect to estimating volume.

The development of the AFVT equation served two purposes: first, to

provide the second step in the indirect volume estimation from spectral
signature, and second, to present a volume table for use in East Texas
forests. The analysis of canopy closure relationships was for the purpose
of determining if ground stand parameters can be estimated using it, and
as an indication of its relative contribution to both spectral signature
and the development of the aerial photo volume table.

Spectral analysis of volume relationships, central to the overall
purposes of this study, was partitioned into three subapproached. First,
cluster analysis was done using the inherent properties of stand level
data to determine natural "dumpings’' within the data, followed by a

classification analysis using the spectral signature associated with each
stand. Second, volume was regressed against spectral signature, and last,
the inputs to the derived AFVT equation were regressed against spectral
signature, estimated from imagery, and then the estimates of canopy

closure, crown diameter, and average stand height were input into the AFVT
equation to obtain an estimate of volume.

Stand parameters, not associated with volume estimation methods, were

regressed against spectral signature to see if complete forest enumeration
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using remote sensing devices is possible.
This section will be discussed in tWD parts. First, the sequence in

which analyses were done will be outlined, and second, the methods used
within was separate analysis.

Analytical sequence
*

This section will outline the order in which analyses were done. The
test for sampling adequacy, or "representativeness", was first (Appendix
B). Since no additional samples were taken, the aerial photo volume table
was developed for Polk County, Texas. The final equation was held in
reserve for use in the indirect portion of the spectral analysis.

Canopy closure relationships with ground level stand parameters was

done next. Spectral extimation methods were performed simultaneously,
after the analysis of canopy closure relationships. The three methods
used were the clustering/classification approach, the direct regression
approach, and the indirect regression approach. The indirect regression
approach used the aerial photo volume table equation, reserved from the
first analysis.

Verification analysis, comparing estimated volumes versus actual
field volumes for a set of timber stands reserved from initial analysis,
was done following spectral analysis. Finally, spectral estimation of
those stand parameters, basal area, average tree diameter, and steins per

acre, which were not used to draw inferences concerning timber volume was

done using regression methods.
The next section will outline the specific methods used for each of

the separate analyses. A brief outline of the statistical methods not
corrmonly used in forestry will be included at the appropriate point in the
discussion.



24

Individual analysis methods

APVT analysis methods

Standard multiple regression techniques were used in formulating a
model describing stand volume as a function of height, canopy closure, and
crown diameter. Initial model formulation incorporated canopy closure,
crown diameter, height, their squares, and all interactions of the above
six variables. The use of a quadratic plus interaction model follows
similar lines of reasoning as set out by Avery (1958), Avery and Myhre
(1959), and Mead and Smith (1979b). In brief, their models considered
the strong association between crown diameter and Dbh, using this
association in an analogy to the relationship between tree diameter

2
squared multiplied by height (Dbh X HT). The resulting formulation
described individual tree volume by terms similar to crown diameter

2
squared times height (CD X HT). On an areal basis, stand canopy closure
can then be considered as analogous to stand basal area, expanding the
individual tree volume to a per acre basis.

The initial search among the variables just discussed was done using
stepwise regression using the MAXR and MINR variable selection criteria
(SAS 1982, Neter et al. 1983). Suitable candidates were then screened

o

using both Mallows C statistic and R (Hocking 1976, Neter et al. 1983),
and those variable combinations making practical sense in terms of the
input variables.

Those models which optimized the aforementioned criteria were then
run on the REG procedure on the Statistical Analysis System (SAS 1982),
estimating regression coefficients and extracting the appropriate
diagnostic statistics.

A second iteration employed the use of a logarithmic transformation
to volume, and regressing against the independent variables from the
selected candidate models. Two reasons effected this decision: first, the

tendency of the transformations to mitigate heteroscedasticity in residual
behavior (Neter et al. 1983), and second, to evalute its predicitive
potential concomitant’with the reasoning set out by Mead and Smith (1979b).
The logarithmic aerial photo volume table equation was used to develop the



table for use in Polk County, Texas.
The third iteration involved two presumptions: first, that canopy

closure is the more reliable of the two photo measurements, and second,
repeating the same notion with crown diameter. Each model In this case

incorporated as independent variables expected crown diameter given canopy
closure, or expected canopy closure given crown diameter. The expected
variables were estimated as follows:

ECD = (554.623 X (CC/STPA))^, and (6)
ECC = .0018 X CD2 X STPA, where: (7)

ECC = expected canopy closure in percent,
ECD = expected crown diameter in feet,
CC = canopy closure in percent,
CD = crown diameter in feet, and
STPA = stems per acre.

Each of the above formulation alternatives was estimated for each of

the candidate models. Final model selection was based on the tradeoff
2

between R , multicollinearity effects, "good" diagnostic statistics
(specifically the Prediction REsidual Sum of Squares, or PRESS), and its

"explainability" in terms of the analogy to conventional volume equations.

Canopy closure analysis

This analysis attempted to examine potential relationships between
canopy closure and certain ground stand parameters. The premise for this
analysis can be established with an abbreviated and generalized review of
stand development over time. As a stand develops, one should expect that
the number of stems per acre decreases and that height, Dbh, and basal
area increase, implying a relatively constant canopy closure in stands
that are unmanaged. Most industrial forestlands in East Texas have had
some form of forest management activities performed on them, and as a

consequence cannot be strictly considered as unmanaged. The following
hypothesis was posed: in managed stands, differential stocking should be
detectable through changes in canopy closure.

To that end, two approaches were considered: multiple regression and
response surface fitting (Neter et al. 1983, Myers 1976), with canopy



closure as the independent variable. The use of response surface
analysis facilitates examination of the effect of independent variables on

the dependent variable in an optimizing approach with a quadratic and
interaction regression.

Spectral data analysis: volume estimation

Three approaches were used for analyzing relationships between timber
volume and spectral signature: A) clustering/classification, B) an

indirect regression approach, and C) a direct regression approach. Each
approach will now be briefly outlined.

A) clustering/classification approach

Two steps were used in this approach: (1), field data clustering to
enumerate qualitative categories based on volume, stocking, and height,
and (2), following clustering by classification using stand concomitant
spectral data to attempt separation of the categories derived from
clustering (Mardia et al. 1979). Field data, compiled into total volume,
total stocking, and average size sunmaries were clustered using the
FASTCLUS procedure in SAS (SAS 1982). This routine produced cluster
sumnary statistics, and a cluster membership listing by individual stand.
Cluster membership listings were not directly available on the other
clustering routines available. Clustering was done on both principal
components of the raw data and the raw data itself. Cluster membership
was then identified for each stand, and an artificial variable identifying
cluster membership appended to the overall data set.

The classification step involved utilizing the spectral signature
mean vectors as the variable with which the discriminant analysis was

done, and the qualitative cluster membership codes as the variable into
which the classification was done. Linear and quadratic classification
functions were used depending upon the homogeneity of covariance matrices,
or variances with single indices. Linear classification functions, used
when variances are similar, use a pooled variance or covariance matrix.
A quadratic classification function, used when variances or covariance
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matrices are heterogeneous, employs the within category covariance
matrices. The decision to use a linear or quadratic classification
function was based on a test for covariance matrix homogeneity.

B) indirect regression approach

The aerial photo volume table equation is brought into play in this
approach. The following models were posed for this approach:

CC, CD, or HT = f(SPS), where: (8)
CC = canopy closure in percent,
CD = crown diameter in feet,
HT = average stand height in feet, and
SPS denotes spectral signature.

The premise here is that if one could estimate the three inputs to
the aerial photo volume table equation, all that would be necessary is
entering the crown diameter, canopy closure, and height estimates into the
APVT equation in order to obtain a volume estimate. Univariate regression
and canonical correlation (Johnson and Wichem 1982, Mardia et al. 1979)
were the two techniques employed here. In addition to using unaltered
spectral signature, the following transformations were made: greenness,

brightness, the greenness-brightness ratio (Kauth and Thomas 1976), the
simple ratios of Landsat band 7 to band 5 and band 6 to band 5, the
normalized differences, differences, and difference-difference (Richardson
and Wiegand 1977). Formal definitions of these transformations, called
vegetation indices, will be presented shortly. In each case, the
dependent variables, crown diameter, canopy closure, and average stand
height were maintained in an untransformed state due to the time

limitations on this study. Reconmendations for further analysis are

discussed in the summary discussion chapter.

C) direct regression approach

In this case, volume was directly related to spectral signature in a

similar fashion as with canopy closure, crown diameter, and average stand
height in the indirect approach. The same formulation was used here as
with the indirect approach, substituting volume on the left hand side.
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Verification analysis

Twenty two stands within the study area were selected and reserved
from analysis to test the results obtained in the first spectral data
analysis section. Each estimation technique calculated a volume estimate
for each stand. The volumes actually occuring in the reserved stands
acted as a control against which the estimated volumes could be compared.
Each estimation technique was considered as an individual treatment, and
the estimated volumes as an observation for that technique. An analysis
of variance was performed comparing volumes obtained from estimation using
spectral data and volumes actually occuring in the reserved stands.

Spectral data analysis: other stand parameters

Stand parameters not used in volume estimation were regressed against
spectral signature data, with spectral data as the independent variable.
The models hypothesized for this section are as follows:

Stems per acre, basal area, or Dbh = f(SPS), (9)
where: SPS denotes spectral signature.
In this instance, simple correlation, partial correlation, canonical

correlation, and univariate regression were the techniques used to
evaluate this set of relationships. In addition to the raw spectral data,
the transformations discussed in the previous section and to be defined
shortly were also employed. Independent variables were kept in an
untransformed state due to the time limitations on this study. As a

consequence, recommendations for further analysis are presented in the
summary discussion chapter.
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A note on the use of vegetation index acronyms

The large number of vegetation Indices in the spectral analysis
portions of this study could potentially produce confusion for the reader.
To that end, throughout the remainder of this study, the following
acronyms will refer to their respective vegetation -indices, defined below.

R7: The ratio of Landsat B7 divided by B5.
R6: Landsat B6 / B5.

ND7: (B7 - B5) / (B7 + B5).
ND6: (B6 - B5) / (B6 4- B5).
D7: B7 - B5.

D6: B6 - B5.

DD: 2 X (B7 + B6) - (B5 + B4).
G: (-.283 X B4) - (.66 X B5) + (.577 X B6) + (.388 X B7). (10)
B: (.332 X B4) + (.603 X B5) + (.675 X B6) + (.262 X B7).
GB: G / B.

PRIN (I) : The I' th principal component from the raw data used for
the experiment. I = 1, 2, 3, 4.

B4, B5, B6, B7: Individual Landsat MSS bands or channels.
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Chapter VI.

RESULTS AND DISCUSSION

The three Inputs to the development of the aerial photo volume table
equation were canopy closure, crown diameter, and average stand height
(CC, CD, HT respectively). Each of these variables are correlated with
one another at a high level of significance (Table 3). As a consequence
of this phenomenon, a natural property of any regression model fitted to
them will be one of some degree of multicollinearity (Neter et al. 1983).
Multicollinearity is an unavoidable consequence of using numerous
combinations of few original variables. Photographically measured
mensurational variables, being few in number available, will nearly always
have some degree of multicollinearity associated with them in regression
analyses.

Canopy closure, crown diameter, height, their squares, and all
possible combinations of these six were used in a stepwise regression to

explore for likely candidates for further analysis. A total of twenty
three variable combinations were explored (Table 4). The MAXR and MINR

options of the STEPWISE procedure on SAS (SAS 1982) were used as the

exploration techniques. The background for both exploration criteria, and
others, are discussed in the survey article on variable selection in
regression analysis by Hocking (1976). Higher power terms and cross-

products were not considered because the typical pattern involved with
them usually presents bizarre behavior in prediction beyond the range of
the data (Pope 1962, Neter et al. 1983).

The nine "best" candidate models, from the available combinations of
variables were examined (Table 5). The ''best'f model choice, when

considering an number of potential candidates, involves a considerable
degree of subjectivity on the part of an analyst. Two subjective criteria
beyond mathematical considerations were used in final model selection.

First, height, crown diameter, and canopy closure were to be included
in the final model as separate variables. The second criteria was to
include the AB2C term in the final model (see Table 4). The reasons for
these two criteria are: (a) to mitigate the multicollinearity resulting



Table 3* Partial correlations among the aerial
photo volume table input variables, with the
significance probability of the correlation
coefficient in the row immediately below the
coefficient itself.

APVT Input Variables

CC CD HT

Prob(r) =

CC 1.0000
0.0000

.4649

.0001
.2459
.002?

Prob(r) =

CD 1.0000
0.0000

.2700

.0009

Prob(r) =

HT 1.0000
0.0000

CC denotes canopy closure in percent,
CD denotes crown diameter in feet, and
HT denotes average stand height in feet.

Note s
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Table 4. Definitions of the variables used in
building the aerial photo volume table equation
with stepwise regression.

HT = height in feet
CD = crown diameter in feet

HTCC = HT X CC

H2 = HT2
CD2 = CD2
HCC2 = HT X CC2

HCD2 = HT X CD2

CDCC2 = CD X CC2

ABC2 = CC X CD X H2

A2B2C = CC2 X CD2 X HT

AB2C2 = CC X CD2 X H2

A2BC = CC2 X CD X HT

CC = canopy closure (pet.)
CDCC = CD X CC

HTCD = HT X CD

CC2 = CC2
H2CC = H2 X CC

H2CD = H2 X CD

CD2CC = CD2 X CC

ABC = CC X CD X HT

AB2C = CC X CD2 X HT

A2BC2 = CC2 X CD X H2

A2B2C2 = CC2 X CD2 X H2
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Table 5« Stepwise aerial photo volume table regression
variable selection* results for the first nine model
candidates, giving the variables included first, then
highlights of diagnostic statistics.

Number of Variables
in the Model

"best" Variable
Combination

1 H2CC

2 HTCC, H2CC
3 CD2, CD2CC, A2B2C
4 CC, CD, CDCC, AB2C
5 CC, CD, CDCC, HCC2, AB2C
6 HCC2, H2CD, CD2CC, ABC,

A2BC2, A2B2C2
7 HT, HCC2, H2CD, CD2CC,

AB2C, A2BC2, A2B2C2
8 HT, CD, HCC2, H2CD, CD2CC

AB2C, A2BC2, A2B2C2
9 HT, CC, CC2, HTCD, CDCC,

H2CD, CD2CC, A2BC2, A2B2C2
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Table 5« (cont.) APVT variable selection
from stepwise regression* diagnostic highlights.

Number of
Variables R2 cp F, d.f. error

1 .4171 52.48 103.77, 145
2 .4692 37.03 63.64, 144
3 • 5008 28.40 47.83, 143
4 .5079 28.03 36.64, 142
5 • 5098 29.41 29.33, 141
6 .5276 25.41 26.07, 140
7 • 5395 23.41 23.27, 139
8 .5418 24.68 20.40, 138
9 • 5517 23.34 18.74, 137

Note: refer to Table 4. for definitions of the variables

used in this table.
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from the naturally high degree of correlation occurring in crossproducts
of the kind used here, and (b) to maintain consistency with the analogy
between tree diameter squared multiplied by height and its ccnoemitant
term using crown diameter.

Several patterns of behavior appeared in the stepwise analysis. When
the number of variables in the model is increased, the C statistic will

P
approach the number of variables in the model, indicating an unbiased
model estimate (Hocking 1976, Neter et al. 1983). This particular
statistic stabilized in the vicinity of 20 when the number of variables

equaled 5, and remained there as additional variables were incorporated
into the model. This statistic does not give an indication of
multicollinearity. When the number of variables equaled six and beyond,
the variance inflation factor (VIF) increased at an almost exponential
rate. A definition of VIF can be found in Neter et al. (1983). At 20
variables, the smallest approximately "unbiased" model, the average VIF
was 100,000 plus. From a heuristic viewpoint, as the number of variables
is increased in an aerial photo volume table model, its interpretation
becomes more of a mathematical abstraction rather than one easily used in

the field. As a consequence to the above behaviors, an upper limit of 5

independent terms was placed on the final model.
2

The "optimum" tradeoff between maximization of R , a minimum of
multicollinearity effects, and having as close to the number of
variables as possible, resulted in the following five term model:

Volume = bQ + b-j^ X CC + b2 X CD + b3 X CDCC + b^ X HCC2
+ b5 X AB2C.

In view of the subjective criteria previously mentioned, an
examination of the HCC2 term is desirable and follows. Height times

canopy closure squared can be thought of as analogous to stocking squared
times height. The resultant dependent term, if HCC2 is treated separately,
would be feet^, in effect a nonsense parameter. Furthermore, a term that
is easily comparable with stocking, CDCC, already exists, implying
redundancy. When considering the analogy with tree diameter squared
multiplied times height, the slope coefficient for the AB2C term,
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comparable to individual tree volume, was not significantly different from
zero. Upon replacing the HCC2 term with HT, two things occurred. First,
the AB2C term had the highest probability of being significantly different
from zero among all five term models containing it. Second, inclusion of
the simple height term drastically simplifies field interpretation and
application.

Seme curious aspects regarding the use of APVT's will be considered
before discussing the final model in detail. A majority of previous work
in the development of APVT's incorporated either field measured height, or
ancillary mappings of site index or height as the "vertical" component of
table construction. While this is useful in expiditing data collection,
a high risk of bias introduction exists and should be compensated for,
whether by completely enumerating height in the field or relating field

and photo measurements bv post-photo interpretative ground verification.
Mead and Smith (1979b) restricted themselves to strict field measurements

of height as did Avery (1958) and Avery and Myhre (1959). Use of actual
field height estimates eliminates additional variation due to photo
interpretation, consequently forcing an increase in the precision of the
model. It is probably not appropriate to refer to these as true aerial
photo volume tables.

Crown diameter as an input to an AFVT has either been ignored or

measured in the field. Avery (1958) measured crown diameter in the field
on the three largest trees in a study stand. Avery and Myhre (1959)
discarded crown diameter as having too small an overall contribution to
the overall model. No mention was made of average crown diameter or the
range of crown diameters within a stand. The possibility that the three
largest crown diameters biased the relative contribution of crown diameter
towards a smaller value was not examined. Mead and Smith (1979b) did not

even consider this in their analysis, presenting only vague reasons for
this.

Height estimation, as done for this study, is intermediate in its
desirability in terms of enumerating the actual variability we would
expect in photographic measurements of height. The "semi-simulated" form
of
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height estimated by Schumacher and Coile (1960) in their site index based
height equation is likely to be intermediate in variability between field
measured and photo measured height.

Seme measure of variability in height estimation is desirable even if
for the reason that it can be adjusted for in a means whereby unbiasedness
is preserved insofar as possible, for example using covariate analysis.

While the use of either AFVT is useful in and of itself, an
additional source of prediction error exists due to the quality of the
photography used. Scale, tonal, textural, and processing errors can
contribute to an excessive error of prediction. Finally, the human factor
of training and experience ccmes into play in contributing to the overall
volume estimation error in a multiplicative or even exponential manner.

Several remarks concerning the interpretative quality of the aerial
photography used in this study also need to preface detailed discussion of
the final model. In each of the cases just discussed, large scale photos,
usually at a scale of 1:8,000, were used. The nominal scale of the

photography used in this study was 1:20,000. The actual scale varied from
1:20,800 to 1:21,000. The interpretative quality of the photography can
be described as exceptionally poor. Tonal, and textural contrast was
almost nonexistent. Color quality was poor, dominated by a bizarre orange
caste. As a consequence to the poor photo interpretative quality of the
available coverage, a considerable reduction in the proportion of

2variation "explained’’ by the model (R ) occurred. The final value of the
coefficient of determination was around 0.5.

Models for both volume and the log of volume were chosen (Table 6).
The coefficient of determination from these models, given the photographic
quality problems, compares favorably with previous work done in southern
forests. Avery and Myhre (1959) obtained a coefficient of multiple
correlation of about 0.77. This compares well with the multiple
correlation for the volume model, .6871, and the log volume model, .6298.
The difference between the models in this study and previous models is
attributable to the photographic quality, scale, and interpretative
problems discussed earlier.

In both models, HT, CDCC, and AB2C were the slope terms which were

significantly different -from zero, at the .05 level. They can be
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Table 6. Aerial photo volume table equationsi
results for the final models.

Equation form*

Volume 9

log(volume)
= bQ + b^CD + b2CC + b^HT + bjjCDCC + by^C

Regression Statistics Summary

Dependent
Variables F(5.l4l) Prob(F) Mean Sq. Error

Volume (cords)
ln(Volurae)

25.221
18.546

.0001

.0001
50.2311
0.1810

Dependent
Variables R2 Coefficient of

Variation
PRESS
mean

Volume
In(Volume)

.47212

.39677
36.8043
14.9216

-0.0029
-0.0016

Dependent PRESS PRESS
Variables Standard Error Variance

Volume .62343 57-13^1
In(Volume) .03631 0.1938

Note: see Table 4 for variable definitions
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Table 6. (cont.) Aerial photo volume
tablet final equation results.

Regression Coefficients

Coefficient Volume log(Volume)

b0 12.20876 -0.243064

>1 -3.13304 -0.010958

*2 0.20380 0.027639

>3 0.02111 -0.001572
0.338764 0.025407

»5 2.5076 X 10"5 6.3033 X 10~7
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visualized as height, the stocking surrogate, and the Individual tree
volume surrogate, respectively. Canopy closure and crown diameter were
retained in the final model due to their contribution to the overall

models1 explanation of variance in both the volume and log (volume) models.
It was also, done to facilitate comparisons with the expected canopy
closure and expected crown diameter alternatives.

The relative degree of imprecision in the final model candidates is
reflected in the prediction residual sum of squares (PRESS) statistics.
This can be done by comparing the variance of PRESS to mean square error

(MSE) . The closer the variance of PRESS is to MSE, the implication is one

of relative precision in a model. Bias can be qualitatively evaluated by
examining the mean of PRESS. The closer the mean of PRESS is to zero, the
implication is one of relative unbiasedness in a model. In the case of
the final APVT models, both models were relatively imprecise and
relative unbiasedness.

Given the photographic quality problems, and time restraints on this
study, the model retained for use with the indirect regression portion of
the spectral analysis was the volume model. A volume table for the log
of volume model was developed for presentation in table form (Table 7).

"Expected" models

Estimates of expected canopy closure (ECC) given crown diameter, and
expected crown diameter (ECD) given canopy closure, were made for each
study stand using equations (7) and (6), respectively (Tables Cl and C2,
Appendix C, present regression analyses for both APVT alternative
formulations).

The expected canopy closure model was only a slight improvement over
2the original model, in terms of R . The expected crown diameter model was

2
substantially better than the original model, also in terms of R . ECD's
relationship to stems per acre and consequently volume’s relationship to
the number of stems per acre is the likely factor in driving up the
precision of the model. However, for the reasons described with respect
to previous work on APVT's, this model and the one using ECC cannot be
considered as actual aerial photo volume table equations. Nevertheless,
the presumption of crown diameter average in a stand, based on the number
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Table 7* Aerial photo volume table
for Polk County, Texas, using the
log volume model.

Crown Diameter = 10 feet

Canopy
Closure
(percent)

Height (feet)

50 60 70 80
(Volume in cords per acre)

90

10 2«42 2.4l 2.40 2.39 2.38
20 5-27 5.26 5.26 5.27 5.25
30 8.11 8.12 8.12 8.12 8.13
40 10.96 10.97 10.98 10.99 11.00
5° 13.81 13.83 13.84 13.86 13.88
6o 16.66 16.68 16.71 16.73 16.75
70 19.51 19.54 19.57 19.59 19.62
80 22.36 22.39 22.43 22.46 22.50
90 25.21 25.25 25.29 25.33 25.37
100 28.05 28.10 28.15 28.20 28.24

Crown Diameter = 15 feet

Canopy Height (feet)
Closure
(percent) 50 60 70 80 90

(Volume in cords per acre)

10 3.67 3*67 3.67 3.67 3.67
20 7.83 7.84 7.86 7.87 7.88
30 11.99 12.02 12.04 12.07 12.10
40 16.15 16.19 16.23 16.27 16.31
50 20.30 20.36 20.42 20.47 20.53
60 24.46 24.53 24.60 24.67 24.74
70 28.62 28.71 28.79 28.87 28.96
80 32.78 32.88 32.98 33.07 33.17
90 36.94 37.05 37-16 37.27 37.39
100 41.10 41.22 41-35 41.48 4l.6o
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Table 7. (cont.) Aerial photo volume table
for Polk County* Texas.

Crown Diameter = 20 feet

Canopy
Closure
(percent)

Height (feet)

50 60 70 80
(Volume in cords per acre)

90

10 4.94 4.95 4.96 4.97 4.98
20 10.43 10.46 10.50 10.53 10.57
30 15.91 15.97 16.03 16.09 16.15
40 21.39 21.48 21.56 21.65 21.73
50 26.88 26.99 27.10 27.21 27.32
6o 32.36 32.50 32.63 32.77 32.90
70 37.85 38.00 38.17 38.33 38.49
80 43.32 43.52 43.71 43.88 44.07
90 48.81 49.02 49.24 49.45 49.66

100 54.29 54.53 54.77 55.00 55.24

Crown Diameter = 25 feet

Canopy
Closure
(percent)

Height (feet)

50 60 70 80
(Volume in cords per acre)

90

10 6.23 6.25 6.28 6. 30 6.32
20 13.05 13.12 13.18 13.24 13.30
30 19.88 19.98 20.08 20.19 20.29
40 26.71 26.85 26.99 27.13 27.27
50 33.53 33-71 33.89 34.07 34.25
60 40.35 40.58 40.80 41.02 41.24
70 47.18 47.44 47.70 47.96 48.22
80 54.00 54.30 54. 60 54.90 55.20
90 60.83 61.17 61.51 61.85 62.18

100 67.65 68.03 68.41 68.79 69.17
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of stems per acre is still a valid one. The average expected crown

diameter is larger than measured crown diameter, because as canopy-

closure tends toward complete, closure, individual crowns tend towards
ever greater degrees of overlapping with neighboring trees.

In the case of forest stands under intensive management, assuming
accuracy of canopy closure measurements, once a stand has been treated,
significant radial crown growth occurs before radial bole growth. The
tree moves to exploit the newly available canopy space left vacant by
harvested trees. The speculative nature of these assertions will need

corroboration.

In sunmary, the development of the APVT for Polk County, Texas, used
the basic outline of Pope (1962). The final models compared well with

previous work done in southern forests, specifically Avery (1958) and
Avery and Myhre (1959). Two alternatives evaluating expected crown
diameter and expected canopy closure indicated that canopy closure is the
irore reliable of the photographically derived measurements from this
study. This combined with the precision of the ECD model reinforced Avery
and Myhre's assertion that photo measurements must be reliable before
aerial photo volume table irodels will approach conventional volume tables
in statistical precision, accuracy, and unbiasedness. An additional
indication is that canopy closure can be measured accurately on photos of
substantially smaller scale than can crown diameter.
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Canopy closure relationships

The hypothesis posed for canopy closure analysis was that in managed
forest stands, differential levels of stocking could be estimated using
canopy closure.

Initial selection of stand parameters included height, stems per
acre, and their crossproduct. Selection of these variables is based on

the following considerations. As height increases, an increase in crown

diameter and a corresponding increase in canopy closure would be expected.
An increase in the number of stems per acre will result in an increase in

canopy closure. The crossproduct was included to examine whether or not
it showed greater sensitivity to canopy closure rather than the individual
stand paremters themselves. Basal area was not used in the first
iteration.

A regression predicting canopy closure from height, stems per acre,
and their crossproduct (HT X ST) was developed (Table 8). The estimated
equation appears to be modestly biased and imprecise, based on the PRESS,
prediction residual sum of squares, statistics. One explanation for the
low coefficient of determination can be addressed by recalling the
discussion concerning the expected canopy closure and crown diameter AFVT
models. To reiterate, after forest management activities occur within a

stand, substantial radial crown growth occurs before appreciable diameter
accumulation happens. The tree moves to occupy space vacated by harvested
trees.

The crossproduct between height and stems per acre is naturally
correlated with the inputs to it to a high degree. As a consequence,

multicollinearity is a factor in this model.
Prediction of stand parameters based on canopy closure was the second

step in this section. Basal area, average tree diameter and crown

diameter were included in this iteration. Each of these stand parameters
was regressed against canopy closure as a dependent variable (Table 9).

The closest correspondence can be seen in basal area, which is
confounded with tree size and height in a similar manner as is canopy

closure. The interaction of height times stems per acre can be considered
as similar to height and stems per acre separately. This interaction,



Table 8. Canopy closure regression summary for
the model using heightf stems per acre9 and their
crossproduct.

Equation forms

CC = bQ + b1HT + b2ST + b^ST X HT,
wheres CC » canopy closurev

ST » stems per acref and
HT » average stand height.

Regression Statistics Summary Listing

F(3,143 d.f.) * 12'971 Prob(F) = .0001
R2 = .2139 Coefficient of Variation = 11.151

PRESS mean = -0.1018

PRESS variance = 73*2383 Mean Square Error a 67*681

Regression Coefficient Estimates

Coefficient Estimate t statistic Prob(t)

b

b

b

b

0

1

2

3

31.0247 3.109 .0023
0.4641 3-594 .0004
0.2126 2.871 .0047
-0.0021 -2.190 .0030
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Table 9* Regression estimation of stand parameters
using canopy closure as the independent variable#

Equation formi
Parameter = bQ -f b^CCt

wherei CC = canopy closure*

*

Intercept Coefficients

Parameter b0 t statistic Prob(t)

Stems/acre -44.0803 -1.184 .2383
Height 58.6660 9.136 .0001
Stems X Height -4335.1700 -1.447 .1501
DBH 8.7790 9.303 .0001
Crown Diameter 11.9390 10.401 .0001
Basal Area -17.3070 -1.153 .2509

Slope Coefficients

Parameter h t statistic Prob(t)

Stems/acre 2.3201 4.633 .0001
Height 0.2948 3.413 .0008
Stems X Height 197.9910 4.913 .0001
DBH 0.0106 0.824 .4115
Crown Diameter 0.0144 0.934 • 3521
Basal Area 1.0617 5.256 .0001

2
Parameter R

Stems/acre .1290
Height .0744
Stems X Height .1427
DBH .0047
Crown Diameter .0059
Basal Area .1650

Note s DBH denotes average tree diameter#
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although not additive, appears to be only slightly more sensitive to

canopy closure and consequently redundant.
Dbh and crown diameter apparently do not influence canopy closure.

The study area consists of managed forest stands, having silvicultural
activities occuring on them at some point in time. As a consequence, the
radial crown growth phenomenon, discussed in the previous section, can be
applied here as well.

The relative contribution of individual stand parameters to

canopy closure was examined through a quadratic regression alternative to

analysis of variance, termed a response surface analysis (Myers 1976, see

Table C3, Appendix C, for the results of this analysis). Each stand
parameter was regressed against canopy closure, linear and quadratic
contributions to each model extracted, and overall significances examined.

Stans per acre, height, and basal area are again the field measured
variables showing appreciable differences across levels of canopy closure.
The relatively low, respective, coefficients of determination are likely
due to the accelerated radial crown growth phenomenon discussed earlier.

The multivariate test, canonical correlations (Table C4, Appendix C),
corroborated the previous two analyses. In both cases, an extremely

-6
significant, on the order of 10 , test statistics for testing for zero

2
correlation were found. A relatively low canonical R was also found.
For stems per acre, height, and their crossproduct, the standardized
canonical coefficient vector represented a contrast between the two
untransformed variables and their crossproduct. It alludes to the point,
discussed earlier, concerning the redundancy of height times stems. The
interpretation of canonical vectors involves a substantial degree of
subjectivity, so the coefficient vectors should be considered under a
caveat emptor.

The largest canonical coefficients, or loadings, are on stems per
acre, height, Dbh, and with the opposite sign, basal area for the second
canonical analysis (also on Table C4, Appendix C). Three points need
emphasis here: first, the most influential variables appear to be stems
per acre, Dbh, and height; second, height follows Dbh in loading magnitude,
and third, basal area appears to contrast stems per acre and Dbh, which is
analogous to stocking as represented by basal area.
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Recapitulating, a relationship appears to exist between canopy
closure and stems per acre, height, and basal area. Basal area appears
to be most closely associated with canopy closure, however basal area is
confounded among stems per acre and individual tree size in a similar
fashion as canopy closure. This indicates that the two stand parameters
cannot be remotely used to infer stocking and volume on the ground.
Disparate stocking situations can result in the same value for basal
area and canopy closure. Crown diameter tends to be biased towards
smaller size values, as canopies tend towards complete closure. The
subjective nature of canopy closure measurements off of aerial photography
using visual interpretation, in addition to its high degree of uniformity
over variolas stocking situations, biasing towards higher values because
of potential confusion of understory vegetation as overstory, renders it
marginally useful in drawing inferences concerning ground stand
parameters.



Spectral analysis

Correlations

Coefficients of simple correlation, between spectral signature,
including raw data and vegetation indices, and the field and aerial data
were obtained (Table 10). On the basis of simple correlation, crown

diameter, volume, height, basal area, and tree diameter have a predominant
number of significant correlations. In light of the significant
correlations among Landsat bands (see page 68), and among the stand
variables, simple correlations, although significant on the surface, are

only useful in pairwise comparisons. The majority of regression models
used in this analysis consisted of pairwise analyses.

Partial correlation coefficients, correlations between two variables

adjusting for all other variables in a data set, give an indication of the
association between variables in a multivariate sense (Table 11). Given
the coarse resolution of Landsat data and its inherent noise, and the
additional variation in the data due to sensor system and stmospheric
noise, highly significant partial correlations were not expected. Any
significance level of .20 or smaller was deemed to be signficant in the
context of this study.

A number of candidates appeared, even so far as to be considered as

significant in the "classical" statistical sense. The best candidates for
crown diameter were: band 4 (B4), band 6 (B6), band 7 (B7), brightness
(B) , greenness (G) , the difference-difference (DD), the difference-7 (D7),
and the difference-6 (D6). The raw data could be considered as a function
of the amount of vegetation being viewed by the sensor, and what portion
is actually tree crowns. A similar argument can be posed for the three
difference indices (D7, D6, DD), and greenness. Brightness, which wauld
be expected to be negatively associated with crown diameter having more
of the soil component intercepted by foliage, has a significant positive
association. One potential, and somewhat speculative, explanation can be
examined by considering the foliage density within a crown. In larger
crowns, the relative foliage density, as is being viewed by the sensor,
is smaller due to the larger crown volume available,
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Table 10. Simple correlations between spectral
data and stand parameters, with the significance
probability of the correlation in the row
immediately below the correlation coefficient.

Vegetation Stand Parameter
Index

CD cc Vol. Height

B4 -.48654
.0001

.07156
.5308

-.52188
.0001

-.70482
.0001

B5 -.45785
.0001

.07412
.5162

-.50589
.0001

-.68941
.0001

B6 -.40318
.0001

.03968
.7284

-.48507
.0001

-.68820
.0001

B7 -.08843
.4383

-.04339
. 7042

-.29214
.0090

-.28012
.0100

R7 .46500
.0001

-.08349
.4649

.48473
.0001

■ 66214
.0001

R6 .43306
.0001

-.07715
.4992

*48154
• 0001

.63302
.0001

ND6 .44698
.0001

-.09136
.4233

.48215
.0001

.65383
.0001

ND7 .48200
.0001

-.09765
• 3919

.48884
.0001

.68570
.0001

D7 .49051
.0001

-.12235
.2828

.39878
.0003

• 62168
.0001

D6 -.01788
.8757

-.07561
.5078

-.13723
.2278

-.10760
.3452

DD •03933
•7377

-07257
.5252

-.14920
. 1894

-.09087
.4258

G .41604
.0002

-.12461
.2739

.29252
.0089

.48634
.0001

B -.43012
.0001

.05258
.6453

-.50474
.0001

— 66039
.0001

GB .48628
.0001

-.09477
.4061

.49487
.0001

.69143
.0001

Note i See page 29 for vegetation index definitions.
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Table 10 (cont.)

Vegetation
Index

Stand Parameter

Stems BA. DBH

B4 06849 -.42512 -.5115^
.5486 .0001 .0001

B5 -.04656 -.40957 -.52528
.6837 .0001 .0001

B6 -.10320 -.39378 -.40201
.3654 .0003 .0001

B7 -.14316 -.24217 .09466
.2082 .0322 .4076

H7 .03303 • 39369 .54561
.7726 .0003 .0001

R6 .02120 •38395 .56036
.8529 .0005 .0001

ND6 .00696 .37787 .57337
.9515 .0006 .0001

ND7 .01643 .38854 .56401
.8857 .0004 .0001

D7 -.05048 .31228 .56672
. 6586 .0051 .0001

D6 -.19383 -.14278 .16430
.0870 .2094 .1502

DD -.15193 -.13196 .09178
.1813 .2463 .4211

G -.09594 .22131 .52012
.4003 .0500 .0001

B -.08488 — 40977 -.45967
.4570 .0001 .0001

GB .02469 .39833 .56246
.8290 .0003 .0001

Note t CC a canopy closure, CD = crown diameter,
BA. a basal area, DBH * average tree diameter.
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Table 11. Partial correlations between spectral
data and stand parameters, with the significance
probability of the correlation in the row
immediately below the correlation coefficient.

Vegetation
Index

CD

Stand Parameter

CC Vol Height

B4 .22568
.0470

-.08137
.4788

-.07515
.5132

-.06100
.5957

B5 .13052
.2547

-.01651
• 8859

-.05710
.6195

-.00747
• 9482

B6 .19280
.0908

-.08971
.4441

-.03631
.5723

.08850
.4410

B7 .20279
• 0750

-.09339
.4161

-.06557
.5684

-.09010
.4327

R7 -.02788
.8086

-.01855
.8719

.03430
.7656

.01361
.9059

R6 - 04573
.8086

-.00946
• 93^5

.06815
• 5533

.01708
.8820

ND6 -.03485
.7620

-.03807
.7372

.05423
.6484

.04687
.6836

ND7 -.00507
.9649

-.05717
.6191

.01291
• 9107

.06002
.6017

D7 • 14591
.2024

-.09418
.4121

-.03797
.7414

.10534
• 3587

D6 .14404
.2083

-.10155
• 3764

-.000002
.9999

.12232
.2860

DD .18284
.1091

-.09338
.4161

-.04247
.7120

.09778
.3944

G •15051
.1884

-.09338
.4161

-.02238
. 8458

.10753
.3487

B .20168
.0766

-.09398
.4131

-.05652
.6231

.06862
.5505

GB -.01583
.8906

-.05136
.6552

.02524
.8329

.04916
.6691

Notes See page 29 for vegetation index definitions, and
CD » crown diameter, CC = canopy closure,
BA. = basal area, and DBH * tree diameter.
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Table 11 (cont.)

Vegetation
Index

Stand Parameter

Stems BA. DBH

B4 -.04154 -.07491 -.11842
.7180 .5145 .3018

B5 .04689 -.02060 — 17728
.6835 .8579 .1205

B6 -.11039 -.04058 .15841
.3360 .7243 • 1660

B7 -.12858 -.05566 .18441
.2619 .6284 .1060

H7 -.06448 .02223 .24868
.5449 .8468 .0281

R6 -.07143 .03751 .28873
.53^3 .7444 .0105

ND6 -.11017 .01092 .32079
.3269 .9244 .0042

ND7 -.12039 -.01436 .30820
.2830 .9007 .0060

D7 -.17273 — 04947 •31581
.1305 .6671 .0049

D6 -.18391 -.03605 • 35566
.1070 .7540 .0014

DD -.14170 -.04489 .23964
.2159 • 6963 .0346

G -.16670 -.03876 .31848
.1447 .7362 .0045

B -.07527 -.04594 .05995
• 5125 . 6896 .6021

GB -.11456 .00090 .32193
.3179 .9994 .0040
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allowing a larger soil reflectance component to be seen. .

Canopy closure bad no candidates, among partial correlations, which
qualified as significant. A likely cause for this is understory
vegetation masking itself as overstory vegetation. This will be referred
to as the ’’disguise" effect.

Volume and height had no candidates significantly different from zero
among partial correlations. Apparently associations with spectral
signature, in a multivariate sense, cannot be drawn. Numerous
possibilities exist, however, among the pairwise simple correlations.
Stems per acre has a few, marginal, candidates qualifying as significant,
including: greenness, difference-7, and difference-6. All three reflect
the increased number of crowns visible as number of stems increase.

Basal area is too mixed among stems per acre and individual tree size
to show any significance in partial correlations. This is a reflection of
the "disguise" effect. Tree diameter, with the exception of band 4 (B4)
and brightness (B), is significantly associated with all vegetation
indices. Either this is due to a strong relationship between crown and
tree diameter, or is an anomaly of this individual data set.

In summary, a number of vegetation indices, including the raw Landsat
bands, are significantly associated with the stand parameters of interest
in this study, with useful associations being defined as a significance
probability of 0.2 or smaller. As will be shown in a later discussion,
volume, when fitted to all four bands in a multiple regression, showed a
significant association with spectral data. Either the relationship of
volume to all four bands is through an indirect interaction of other stand
parameters, or is unique to this data set.

An overriding theme, which will be repeatedly emphasized throughout
the remainder of this study, is that corroboration of these results on
other data sets, from other locations and other imagery, must preface
application of these results to operational forest management.
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Clustering/classification approach

This approach utilized the stand data, clustering them Into groups

based on natural dumpings within the data itself. Each group derived
from the clustering was used as a category around which classification
and separation analyses were done using stand concomitant spectral data.

The methodology behind clustering will be briefly outlined first. A
data point is compared with the other points in the data set. A criteria
of ''similarity’' is developed for the data points within the data set. If
the data point is closest to a certain other point, in terms of the
measure of similarity, the two points are grouped into a cluster. The
next data point is then compared with the cluster just developed, and the
remaining data points. The grouping process is repeated until the
resultant clusters are no longer sufficiently similar to group, or an

arbitrary stopping point is reached. This approach is known as an

agglcmerative one. A reverse argument, splitting the entire data set,
which is considered as a single cluster, on the basis of a measure of
"dissimilarity" is also possible. This approach is called a divisive one.
Discussions of the development and uses of clustering can be found in
Johnson and Wichem (1982), and Mardia et al. (1979) .

The algorithm used in this clustering, the FASTCLUS procedure on SAS
(SAS 1982), develops clusters by sorting on the nearest centroid using
Euclidean distances. The development of this algorithm is discussed in
Anderberg (1973).

Since a considerable amount of data was lost due to a gap between the
Landsat scenes obtained for this study, the actual classification was done
on the reduced data set of 79 stands. Two cluster types were extracted:
first, based on the field data of interest in this study, average Dbh,
volume in cords per acre, stems per acre, and basal area in square feet
per acre, referred to as cluster type 2, and second, on the principal
component loadings of the field data variables listed above, referred to
as cluster type 1. Principal component analysis rotates the axes of the
raw data, extracting uncorrelated linear combinations from the pnput data
(Tables C5 and C6, Appendix C), The actual field data means from the
reduced data set, extracted after the loss of the field data in the gap
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between Landsat scenes, were compiled for both cluster type 1 (Table 12),
and cluster type 2 (Table 13). These means provided an indication of the
stand conditions found within each cluster derived from the complete data
and summarized for the reduced data set.

An approximate stand description, based on the cluster means for the
reduced data set follows. For cluster type 1, clusters 1 and 10 represent
heavily stocked small poletimber stands, differentiated by height. A
definition for adequate stocking which will be used in this study can be
defined as that combination of average tree diameter and number of stems

per acre such that the resultant basal area will be 80 square feet per
acre. Cluster number 3 represents a slightly understocked large pole
timber stand. Cluster 9 represents a more severe degree of understocking
versus cluster 3. Clusters 6 and 7 represent differential stocking in
larger saw timber stands. Poletimber is defined as trees with a diameter
of between 5.0 and 10.9 inches, and saw timber as trees of 11.0 inches in
diameter or greater. The net breakdown based on the reduced data set is
one of relative stocking, by relative size, from understocked to either

adequately or overstocked.
Cluster type 2 breaks down into twD relative size classes: small saw

timber and small poletimber. Further cluster division is based on

stocking in an almost linear trend. The small saw timber, in order of

increasing stocking, are cluster numbers 5, 8, 3, 9, and 6, and the small
poletimber order is cluster numbers 10, 1, and 7.

Since each of the input stand variables are correlated with one

another, cluster type 1, the principal component loading scores, is a

better indication of how stands group among themselves. This is because
principal components are uncorrelated among one another, and clustering
statistics are reliable for interpretation whereas correlated clusters
are not reliable (Johnson and Wichem 1982, Mardia et al., Anderberg 1973).

Each vegetation index, the four raw Landsat bands, and the first

principal component extracted from the raw Landsat data, was used in the
classification analysis separately, by cluster type. A brief outline of
the principles of classification follows.

Suppose there are a series of categories into which the observations
from a data set containing the variables of interest are to be classified.
The purpose is to find a rule, based upon knowledge of the given data set,
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Table 12. Stand parameter means for cluster type 1,
by cluster number.

Cluster
Number

Means of Stand Parameters

Volume DBH Height Stems

1 40.22 7.17 69.14 535.45
3 15.95 8.09 71.48 165.77
4 21.13 11.66 83.80 80.89
6 27.91 9.77 87.88 157.06
7 14.24 9* 17 80.86 104.24
8 50.76 11.46 98.64 178.28
9 9.76 8.69 71.00 85.68

10 30.38 7-76 78.85 319.65

Table 13* Stand parameter means for cluster type 2,
by cluster number.

Cluster
Number

Means of Stand Parameters

Volume DBH Height Stems

1 30.38 7.76 78.85 319.65
3 17.88 9.27 7901 120.22
5 7.11 9.20 74.11 47.44
6 33.12

40.22
9.42 82.93 203.14

7 7.17 69.14 535.45
8 13.47 9.47 78.05 90.77
9 21.93 8.80 79.23 163.57

10 15.99 7.23 64.71 222.01

Notei Volume is in cords per acre, DBH is average tree
diameter in inches, average height in feet, and
stems is the number of stems per acre.



to place these observations into the categories of interest. An
observation is assigned to a category if the probability of its
membership in that category is greater than the probability of its
membership in any other category. The general development of
classification, based upon the likelihood ratio principle, is, with a

multivariate normal distributional assumption, an analog and extension of
the conventional t-test and analysis of variance. For mere complete
introductions to the development of classification, the reader is referred
to Johnson and Wichem (1982), Mardia et al. (1979), Lachenbruch (1975,

1979) , and Kshirsagar (1972) .

Classification, using a multivariate normal distributional assumption,
develops discriminant rules dependent upon the homogeneity of covariance
matrices. To this end, the application of a test of covariance matrix
homogeneity was performed using the asymptotic approximation of the
likelihood ratio test for it (Mardia et al. 1979, Muirhead 1982). This
test uses the matural logarithms of the determinants of covariance
matrices. If the matrix is scalar, 1 by 1, the determinant is simply the
log of variance, however the test is still valid. Each cluster type was
examined by vegetation index, and the natural log of its variance was
determined (Table C7, Appendix C, for cluster type 1, and Table C8,
Appendix C, for cluster type 2).

If covariance matrices proved homogeneous, a linear
classification rule was developed. If the matrices proved heterogeneous,
a quadratic classification rule was developed. Johnson and Wichem (1982)
present a development and definition of linear versus quadratic rules.

For cluster type 1, principal component loadings, the only indices
variances not significantly different from one another were the normalized
differences, ND7 and ND6. The nature of these indices is one forcing the
computed value into a range between zero and one. As a consequence, by
their properties, variances will be forced into an even smaller range.
The test statistic will then be forced away from the critical value needed
to reject the null hypothesis of homogeneity.

Cluster type 2, based on the raw data, had a larger number of linear
classification rules versus type 1. Those indices having quadratic rules
had homogeneity test statistic values with critical probability values of
between . 05 and . 01. This degree of overlapping was not surprising,
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because the clusters were oriented in an almost linear trend, as discussed
in the section on cluster means. Inspection of the spectral means for
each respective cluster type from the reduced data set will further
illustrate the relative degree of separation in cluster type 1, and
overlapping in cluster type 2. (Table C9, Appendix C) .

Classification was then performed using the spectral data for each
cluster type, using a linear or quadratic classifier, depending on the
results of the covariance homogeneity test. The results of the
classification were sunmarized as the total number of stands classified

into a cluster type category (Table 14 for cluster type 1, and Table 15
for type 2). The original cluster means, from the reduced data set (see
Tables 12 and 13) for the cluster categories into which a majority of
stands were classified, were used as an indication of the nature of stand

category into which classification happened. Means of the reclassified
categories were not taken due to time constraints, and because clustering
results are highly dependent for small sample sizes such as with this
study. Additional samples and/or data sets need to be taken in order to
verify that the clusters obtained are stable at larger sample sizes. A
number of clusters in the study data set contain a single observation that
wDuld imply that they are outliers and should be discarded. Those stands
which could be considered as outliers are the heavily stocked small pole
timber ones. If the analyst were to obtain a larger sample size, it is
likely that stands of this composition would be adequately represented.
Finally, for the results about to be discussed to be applicable, using
operational forest management categorizations is preferable to clustering
categories, which are data set dependent.

Utilizing the original means as an index of how stands are clumping
together, a number of patterns emerge. With cluster type 1, the majority
of stands appear to be driven into four of the original clusters: 3, 6, 7,
and 9. The majority of stands in cluster type 2 appear to be driven into
clusters 8 and 9, and in seme cases into number 5 as well. Cluster type
2 appears to be aligned along the stocking, and as a consequence, volume
axis. Diameter (Dbh), and height appear to be uniform across clusters.
The distinctions among cluster type 1 stands are most apparent along both
the height and stocking axes. Clusters 3 and 9 appear to be heavily and
lightly stocked poletimber, respectively. Clusters 6 and 7 appear to be



Table 14. Classification results for cluster type 1#
The number of stands classified into a particular cluster
are presented by vegetation index*

Cluster Vegetation Index
wumDer

D7 D6 DD R7 R6 OC

1 0 0 0 0 0 1
3 29 38 4l 4l 40 18
4 0 3 0 0 0 5
6 29 8 14 28 26 17
7 8 9 12 6 8 17
8 0 0 0 0 0 2
9 13 21 12 4 5 18

10 0 0 0 0 0 1

Cluster Vegetation Index
iNumoer "

ND7 ND6 g B GB 0C

1 0 0 0 0 0 1
3 30 25 26 43 39 18
4 0 0 0 0 0 5
6 27 26 8 28 34 17
7 10 10 25 4 1 17
8 0 0 0 2 0 2
9 12 18 25 2 5 18

10 0 0 0 0 0 1

Cluster Vegetation Index
is urouer

BANDSI PRIN1 OC

1 0 0 1
3 21 40 18
4 1 0 5
6 30 30 17
7 4 4 17
8 3 0 2
9 20 5 18

10 0 0 1

Notes OC denotes the original stand count*
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Table 15* Classification results for cluster type 2.
The number of stands classified into a particular cluster
are presented by vegetation index.

Cluster Vegetation Index
NumDer

- D7 D6 DD R7 R6 OC

1 0 0 0 0 0 1
3 0 0 34 0 0 19
5 0 2 2 0 0 6
6 0 0 0 0 0 5
7 0 0 0 0 0 1
8 32 31 29 20 22 22
9 47 46 14 28 34 24

10 0 0 0 0 0 1

Cluster Vegetation Index
riumoer

ND7 nd6i G B GB OC

1 0 0 0 0 0 1
3 0 0 0 0 0 19
5 0 0 0 22 30 6
6 0 0 0 0 0 5
7 0 0 0 0 0 1
8 27 24 31 25 32 22
9 52 55 48 32 17 24

10 0 0 0 0 0 1

Cluster Vegetation Index
Number 1 1 — ■■ —

BANDS PRIN1 OC

1 0 0 1
3
5

0
0

19
6

6 3 0 5
7 0 0 1
8 17 45 22
9 12 34 24

10 0 0 1

Notex OC denotes the original stand count*
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heavily and lightly stocked sawtimber, respectively. The main point to
bear in mind here is that classification did not force each of the stands

into a single category, as would be expected in a forest too spectrally

homogenous to be effectively classified.
The relative degree of separation between clustering categories is

another useful index of how stands are distributed In spectral space. The
Mahalanobis distance, D^, is a squared distance, weighted by the
covariance matrix, cctimonly used to measure the separation between
categories in classification analysis. It is defined as follows, using
matrix notation:

= (m^ - n^'S ^(m^ - n^), where: (12)
nip are the category means of interest,
and the covariance matrix inverse is S

Table C14, Appendix C, exhibits the Mahalanobis distances between
classes, by cluster type and cluster number, along with the probability of

2
a greater D . The five following vegetation index combinations were used
fro the sake of brevity, due to time constraints on this study, to
illustrate these distances: (1), the four Landsat bands (B4, B5, B6, B7),
(2), G, B, GB, (3), R7 and R6, (4), ND7 and ND6, and (5), D7, D6, and DD.

A consistent pattern of cluster separation occured within both
cluster types (Table 16). A greater degree of separation is attained
among cluster type 1 versus cluster type 2. The primary variable that
influences separation is stocking with emphasis on height and volume in a

2
joint sense. The probability of a greater D , since it is distributed as
an F statistic multiplied by the appropriate constant (Mardia et al. 1979),
is an indication of the significance of the pairwise separation between
cluster cateogries. Good separation does NOT imply good classification,
however. Nevertheless, the overall indication is that timber types in
southeastern forests can be separated using Landsat multispectral scanning
data, for which the u statistics are given as reinforcement.

To summarize, the results of the approach using clustering followed
by classification, twD main points will be reiterated. First, pairwise
cluster separation was shown for a substantial proportion of the clusters
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o

Table 16. Significantly separated cluster pairs using D ,
the Mahalanobis distance. Significance is at the .05 level.

(cluster type 1)

Vegetation Index Combinations
B4-B7 G,B,GB R7.R6 ND7.ND6 D7.D6.DD

1.3 1.3 1,3
1.4 1.4 l.^ 1.4 1,4
1,6 1,6 1.6 1,6 1.6
1,7 1.7 1,7 1,7 1.7
1,8 1,8 1.8 1,8 1.8
1.9 1.9 1.9 1.9 1.9
1,10 1,10 1,10 1,10
3.4 3,4 3.4 3,4 3,4
3,6 3.6 3.6 3.6 3.6

l\l III III III i:l
4,7 4,7 4,7 4,7 4,7
4,9 4,9 4,9 4,9 4,9
6,7 6,7 6,7 6,7 6,7
7,9 7,9 7.9 7,9 7,9
8,9 8,9 8,9 8,9 8,9

(cluster type 2)

1,3 1,3 1.3 1.3 1,3
lt5 1.5 1.5 1.5 1.5
1,6 1,6 1,6 1.6 1.6
1.8 1.8 1.8 1.8 1,8
1,9 1.9 1.9 1.9 1.9
5,9 5,9 5,9 5,9 5.9

6,8
6,9 6,9 6,9 6,9 6,9
7,8 7,8 7.8 7,8 7,8
7,9 7,9 7,9 7,9 7,9
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available, to be significant at the .05 level. Second, classification did
not force the data into a single category, as would be expected in a

spectrally homogeneous forested scene. The implication is that, using
spectral data, separation of forest stands into mensurationally based
categories is possible.

Direct regression approach

The direct regression approach used volume, in cords per acre, and
directly fitted it against spectral signature (Table 17 and Table C15,
Appendix C, present statistics for volume estimation).

The best candidate among single vegetation indices, excluding the
principal component scores and raw Landsat bands, was the Kauth and Thomas
brightness index (Figure 3 presents a scatterplot of volume versus the
brightness index). The coefficient of determination, .2548, is a good
value in terms of Landsat data, due to the coarseness of resolution and
its averaging effect across a picture element. It confirms the simple
correlation coefficient between the two (see Table 10). The brightness
index was intended as a relative index of the amount of soil visible on

an image. The interpretation of the negative slope can be viewed as an
inverse relationship between the amount of canopy foliage, and consequent
amount of volume, intercepting the soil reflectance component. The
"disguise" effect, defined earlier, probably was the main factor in not
having a higher coefficient of determination. The relative precision and
bias of the model, as reflected in the PRESS summary (Table C15, Appendix
C), was one of the best among all single vegetation indices.

The simple ratios, R7 and R6, and normalized differences, ND7 and
ND6, being designed along similar lines as brightness, can be considered
as proportionality forms of indices. As the soil component increases, the
simple ratios decrease in value, and a similar pattern of behavior
occurring with the normalized differences. Their lower coefficients of
determination, less precise and more biased PRESS summaries, when compared
with brightness, are likely due to the "disguise" effect. A similar
argument can be with the greenness index, designed to indicate the
relative amount of vegetation on a scene. The behavior of the greenness-
brightness ratio (GB) can be attributed to the disguise effect and B.
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Table 17* Direct volume regression from
spectral datas highlights of summary
statistics. Complete statistics are given
in Table C15» Appendix C.

Vegetation
Index

R2 P(1.77) Prob(F)

R7 .2376 23.995 .0001
R6 • 2319 23.245 .0001
ND7 .2390 24.178 .0001
ND6 .2325 23.332 .0001
G .0856 7.205 .0089
B .2548 26.323 .0001
GB .2485 25.429 .0001
D7 •1590 14.560 .0003
D6 .0188 1.478 .2278
DD .0223 1.758 .1894
PR INI .2474 25.308 .0001
PRIN1-PRIN4 •2919 7.627 (1) .0001
B4-B? .2919 7.627 (1) .0001

(1) Note* The F statistics for these two
regressions are with 4 and 74 d.f..



Volume
(cords
per
acre)

Figure 3. Scatterplot of volume versus the Kauth and
Thomas brightness index.
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The difference-6 index (D6) has low relative performance, likely dnp
to the ’’disguise” effect and to the location of band 6 on a typical
vegetation reflectance curve. The majority of stands in the study area
consists of a mixture of pine and hardwoods. The differential reflectance
between pine and hardwood in the individual stand, combined with the
’’disguise" effect induce additional variation not "explained” by the
regression model. The difference-7 (D7) is intermediate in behavior which
is also likely due to differential reflectance and the "disguise" effect.

Principal components were extracted from the correlation matrix of
the raw Landsat data (Table 18). The first component, accounting for over
85 percent of the sample variation, can be thought of as the data set
brightness component. The remaining components can be thought of as,
respectively, an infrared index, a red-greed contrast, and a green-
infrared contrast.

The first principal component is intermediate in behavior and was not
ranked as "best" among single indices because of relatively large bias
and inprecision from the PRESS summary, and its lower coefficient of2
determination. All four components, while having the largest R and
relatively good precision and bias characteristics, are subjectively
incorrect in interpretation. The purpose of principal component analysis
is reduction of a problems dimensionality through finding linear,
orthogonal, uncorrelated combinations of the original data while keeping
as much of the original sample variation as possible in as few linear
combinations as possible. The latter components, accounting for little
of the original variation of the sample, can induce unpredictable effects
in estimation of new independent observations. Furthermore, the use of
a particular equation, either using the original components or
transforming back to the original raw variables, is a largely judgemental
decision.

Finally, the use of all four bands is inappropriate due to the
multicollinearity effects resulting from the strong correlation among the
bands (Table 19). The high degree of correlation among each of the bands
can be attributed to their proximity to each other on the electromagnetic
spectrum. The response in one band will almost always affect the other
bands.
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Table 18. Principal components of the raw spectral data.

Component
Number Eigenvalue

Cumulative
Proportion

1
2
3
4

3.4006
0.5765
0.0177
0.0052

.850160

.994284

.998697
1.000000

Landsat Eigenvectors
Band 1 2 3 4

4 0.5161 -0.3903 -0.5291 0.5490
5 0.5223 -0.3261 0.7871 0.0358
6 0.5408 0.0345 -0.3090 -0.7816
7 0.4104 0.8603 0.0707 0.2939

Note i The coefficients of the eigenvectors form a
linear combination of the raw data. For example,
let T = the new variable created by the first
componentt then,

T a 0.5161 X Band 4 + 0.5223 X Band 5 + 0.5408 X Band 6
+ 0.4104 X Band 7-
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Table 19* Partial correlations among the raw
Landsat bands. The significance probability
of the correlation is in the row immediately
below the correlation coefficient.

Landsat Landsat Band
joanu ■

4 5 6 7

4 1.0000 0.9471 0.7027 0.5391
.0000 .0001 .0001 .0001

5 1.0000 0.6473 0.4571
.0000 .0001 .0001

6 1.0000 0.9464
.0000 .0001

7 1.0000
.0000
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To summarize, a simple linear regression formulation shows a

significant association between timber volume in cords per acre and
spectral signature, as represented by Landsat digital data. The
verification analysis, to be discussed later, predicted volume for a set

of stands reserved from the original analysis. The assertions discussed
here will be reinforced in that section.
' One point to bear in mind for this section is that the measure of
volume used in this study was a merchantable one. Merchantable volume is
that portion of total volume expected to be actually used at the saw or

paper mill. Total volume, or biomass, measures are likely to be better
associated with spectral signature.

Indirect regression approach

The oiphasis in this section was to estimate canopy closure, crown

diameter, and average stand height from spectral data, and use these
estimates as inputs for calculating volume using the aerial photo volume
table equation developed in the first analytical section.

The same procedure was used to estimate volume in the direct approach,
as was used in this section for canopy closure, crown diameter, and stand
height. The discussion will be restricted to the best five crown

diameter, two canopy closure, and five height regression models. This
was done for the sake of brevity due to the time restrictions on this
study. The indirect contribution to the verification analysis used, in
addition to the five direct regression models deemed best, the fifty
combinations of canopy closure, crown diameter, and height defined above.
The 2,202 possible volume estimation combinations proved too cumbersome
for complete discussion in this study due to time considerations. The key
points raised here are adequately demonstrated with the fifty five volume
estimation methods selected.

The results for crown diameter show the best five vegetation index
candidates to be: all four bands, D7, GB, ND7, and R7 (Table 20 and Table
C16, Appendix C, present crown diameter regression statistics). If an

analyst were interested in sidestepping multicollinearity effects, the
difference-7 (D7) index would be the preferable one (Figure 4 presents a
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Table 20. Crown diameter regression from
spectral datas highlights of summary statistics.
Complete statistics are given in Table Cl6,
Appendix C.

Vegetation
Index

R2 P(l,77) Prob(F)

R7 .2162 21.243 .0001
R6 • 1875 17.774 .0001
ND7 .2323 23.303 .0001
ND6 .1998 19.225 .0001
G • 1686 15.617 .0002
B .1850 17.849 .0001
GB .2365 23.848 .0001
D7 .2406 24.396 .0001
D6 .0003 0.025 .8757
DD .0015 0.119 .7307
PRIN1 .1632 15.109 .0002
PRIN1-PRIN4 .2984 7.53* (1) .0001
B4-B7 .2984 7.534 (1) .0001

(l) Notei The F statistics for these two
regressions are with 4 and 74 d.f..



Crown
diameter
(feet)

Figure 4. Scatterplot of crown diameter versus
the difference-7 index (D7).
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scatterplot of D7 versus crown diameter).
The D7, ND7, and R7 indices are apparently similar behaved for this

stand parameter. As the amount of foliage and infrared reflectance
component increases, crown diameter increases. The source of the low

coefficient of determination is both an extension of the ''disguise" effect
and the coarse resolution of the Landsat sensor. There is no certainty as
to whether or not crowns being viewed by the sensor are in the understory
or the overstory. Clumps of trees can be viewed as a single overly large
crown, or understory vegetation can inflate the average crown size. There
is also no certainty as to whether or not, in near completely closed
canopies, the average crown size is small as a result of numerous small
trees, or large resulting from few, large, trees. This effect will be
referred to as crown size confounding.

The greenness-brightness ratio is likely a combination of components

equally contributed by greenness and brightness rather than a predominance
of one over another. All four individual indices selected are likely to
be more reliable in estimating crown diameter when understory vegetation
is readily distinguishable from overstory, specifically in the autumn when
it is completely cured.

Another source of variation that is possible in decreasing the
coefficient of determination is due to tectural differences in an. image.
Stands having -widely disparate height classes such as a thorough mixture
of dominant through overtopped trees can be viewed through a sensor as a

uniform stand at either a large crown diameter if more dominant trees
exist, or small crown diameter if more codominant through overtopped trees

are in the stand.

Canopy closure, being subjective in nature due to the experience and
judgement of the photointerpreter, was not expected to have a good fit,
primarily due to the "disguise" effect. The two candidates selected for
use in the verification analysis were the four Landsat bands (B4, B5, B6,
B7), and the greenness index (Table 21 and Table C17, Appendix C, present
regression statistics for canopy closure). Greenness is the single index
closest to being significant in terms of regression statistics (Figure 5
presents a scatterplot of greenness versus canopy closure). The low
coefficient of determination is due to the narrow range of values
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Table 21. Canopy closure regression from
spectral datai highlights of summary statistics.
Complete statistics are given in Table Cl?*
Appendix C.

Vegetation
Index R2 F(l,77) Prob(F)

R7 .0070 0.541 .4645
R6 .0060 0.461 . 4992
ND7 .0095 0.741 .3919
ND6 .0083 0.648 .4233
G .0155 1.214 .2739
B .0028 0.213 .6453
GB .0090 0.698 .4061
D7 .0150 1.170 .2828
D6 .0057 0.443 .5078
DD .0053 0.408 .5250
PRIN1 .0018 0.143 .7067
PRIN1-PRIN4 .0174 0.328 (1) .8581
B4-B7 .0174 0.328 (1) .8581

(1) Notei The F statistics for these two
regressions are with 4 and ?4 d.f.



Canopy closure
(percent)

Greenness

Figure 5. Scatterplot of canopy closure versus
the Kauth and Thomas greenness index.
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observed In the reduced data set and the "disguise" effect. In all of
the regressions fitted to canopy closure, none were shown to be different
from zero at the .10 level of significance.

The crown size confounding effect also comes into play here in that
inflated crown size tends to inflate the canopy closure estimate.

The degree of fit for all equations estimating height was
unexpectedly good (Table 22 and Table C18, Appendix C, present regression
statistics for height). The candidates selected for use in verification
analysis were: the four Landsat bands (B4-B7), the greenness-brightness
ratio, normalized difference-7, simple band 7 to band 5 ratio, and
brightness. The best single vegetation index is the greenness-brightness
ratio (Figure 6 presents a scatterplot of greenness-brightness versus

height). The possible reasons for the good degree of fit about to be
discussed are speculative in nature, and this should be borne in mind.

Taller trees will have a larger relative volume of crown foliage
versus shorter trees, assuming that crown ratio, the proportion of tree
actually supporting foliage, is constant. A larger infrared reflectance
component would then be seen by the sensor. Changes in crown geometry as
trees age could also affect the bidirectional reflectance properties of
the canopy. Older, taller, trees are flattened into an ellipsoidal shape,
presenting more foliage to the sensor. Younger, shorter, trees, being
more conical in shape, present relatively less foliage to the sensor.
Differential crown geometries across species could also affect reflectance
properties of the canopy, and possibly bias the height estimate. Textural
differences could also be responsible for the good height estimates.
Taller trees project more shadow within a picture element, covering the
ground and understory and suppressing the soil component, thereby
enhancing the infrared and greenness components to reflectance and the
greenness-brightness ratio, respectively. Finally, physiological
differences between young and old trees could also affect their
reflectance properties, changing their tonal characteristics.

The three aerial photo volume table inputs, estimated from
multispectral imagery was an intermediate step in the preparation for the
verification analysis. Comparisons of direct, indirect, and actual field
volumes were done for a set of stands reserved from initial analysis.
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Table 22. Height regression from spectral
data« highlights of summary statistics*
Complete statistics are given in Table C18,
Appendix C.

Vegetation
Index

R2 F(1.77) Prob(F)

R7 .4384 60.115 .0001
R6 .4007 51.487 .0001
ND? .4702 68.334

57.496
.0001

ND6 .4275 .0001
G .2365 23.854 .0001
B .4361 59.552 .0001
GB .4781 70.553 .0001
D7 .3865 48.508 .0001
D6 .0116 0.902 .3452

.4528DD .0083 0.641
PRIN1 .4068 52.801 • 0001
PRIN1-PRIN4 • 5085 19.136 (1) • 0001
B4-37 • 5085 19.136 (1) .0001

(1) Notei The F statistics for these two
regressions are with k and 7^ d.f..



Average stand
height (feet)

Figure 6. Scatterplot of average stand height versus
the greenness-brightness ratio (GB).
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This was done to obtain an indication of how a spectrally derived volume
estimator would work when operationally developed.

Verification analysis

Twenty two stands were reserved from analysis for the purpose of
predicting volume based on the derived spectral regression models
developed in the previous sections. Fifty five volume estimation methods,
five direct and fifty indirect, were used to estimate volume (these are

defined in Table 23).
The comparative approach consisted of two steps. First, each

volume estimation was compared, in a pairwise manner, with the actual
field volume in a one way analysis of variance, with each estimation
technique considered as a treatment. The second step compared direct
versus indirect methods, also in a pairwise fashion, regressing the second
against the first. The coefficient of determination was used as an index
of comparison for the two methods. The General Linear Models procedure
(GLM) on SAS was used for each step in this section (SAS 1982).

The general pattern of means of each estimation method is one

of underestimation with direct patterns, and overestimation with indirect
methods (Table 24). A notable exception is that of method VA2, the direct
method using brightness, which was nearly equal to the actual field
volume.

The analysis of variance sumnary (Table 25) for each estimation
method showed, in all cases, that estimated volume was not significantly
different from actual field volume at the .10 level. At the .05 level,

VA3, VA4, VA5, V212, V213, V214, V221, V222, V223, V224, V322, V323,
V324, V422, V423, V424, V522, V523, and V524 were significantly different
from field volume. With the exception of V212, V213, and V214, the
methods of indirect estimation which were significantly different used the
second estimation method for canopy closure, greenness, which in all cases
is subject to the "disguise" and crown size confounding effects. Another
possible reason for this significance is the doubling effect to variation
encountered in the indirect method, using two methods of estimation that
have sampling and experimental errors associated with then. The analysis
of variance results also reflect same estimation behavior.
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Table 23. Volume estimation method
definitions for verification analysis.

Direct Estimation Methods

VACT = Mean Volume of the 22 reserved stands
VA1 = All four Landsat bands regression (B4-B7)
VA2 = Brightness regression (B)
VA3 = Greenness-brightness ratio regression (GB)
VA4 = Normalized difference-7 regression (ND7)
VA5 = Band 7/Band 5 ratio regression (R7)

Indirect Estimation Methods

GDI = All four bands regression (B4-B7)
GD2 = Difference-7 regression (D7)
CD3 = Greenness-brightness ratio regression (GB)
CD4 = Normalized difference-7 regression (ND7)
CD5 = Band 7/Band 5 ratio regression (R7)
CC1 = All four bands regression (B4-B7)
CC2 = Greenness regression (G)
HT1 = All four regression (B4-B7)
HT2 = Greenness-brightness ratio regression (GB)
HT3 = Normalized difference-7 regression (ND7)
HT4 = Band 7/Band 5 ratio regression (R7)
HT5 = Brightness regression (B)

Note* The APVT equation used to estimate volume is*

Vijk = l2*208?6 - 3*13304CDi + 0.203797300^
+ 0.02H5364HTk + 0.338764(CDi X CC^)
+ 2.5076 X 10**-6(cc. X CD? X HTV).

J 1 iv
Each subscript refers to an estimation method used for

the inputs to the APVT equation. For instance, Vlll refers
to the combination of CD1, CC1, and HT1, with this order of
variables used for all combinations of APVT inputs.

Note 1 Tables 17 and Cl5t Appendix C, present regression
statistics for direct volume regressions.



Table 24. Mean of field volume estimates (cords per
acre), and direct and indirect spectral volume
estimation methods.

Actual mean of the reserved stands

23.645 cords per acre

Direct Methods

Volume Volume
Estimation Mean Estimation Mean
Method Method

VA1 20.553 VA2 23.787
VA3 20.781 VA4 20.693
VA5 20.5^4

Indirect Methods -

Vlll 33.294 V112 33.175
VI13 33.141 Vll4 33.029
V115 33.421 V121 36.267
V122 36.143 V123 36.108
V124 35.990 V125 36.399
V211 31.690 V212 31.589
V213 31.559 V214 31.458
V215 31-794 V221 34.494
V222 34.390 V22 3 34.358
V224 34.252 V225 34.602
V311 32.2 72 V312 32.166
V313 32.137 V314 32.029
V315 32.416 V321 35.134
V322 35-023 V323 34.992
V324 34.880 V325 35.283
V411 33.108 V412 32.997
V4l3 32.967 V4l4 32.855
V415 33.264 V421 36.059
V422 35. 944 V423 35.913
V424 35.976 V425 36.211
V511 32.108 V512 32.006
V513 31.979 V5i4 31.875
V515 32.256 V521 34.954
V522 34.848 V523 34.819
V524 34.711 V525 35-108

Note: See table 23 for estimation method definitions.



82

Table 25* Hypothesis test results comparing
field volume and estimates derived from
spectral estimators.

Estimate
Me thod P(1.20) Prob(F) R2

Direct Methods

VA1 2.72 .1148 .11969
VA2 1.52 .2323 .07051
VA3 3.75 .0671 • 15783
VA4 3.86 .0636 .16168
VA5 4.04 .0581 .16803

Indirect Methods

Vlll 1.06 .3148
V112 1.56 .2267
V113 1.59 .2217
V114 1.62 .2178
V115 0.68 .4209
V121 1.36 .2578
V122 1.88 .1856
V123 1.92 .1815
V124 1.95 .1782
V125 0e95 • 3410
V211 2.75 .1130
V212 3.68 .0695
V213 3.79 .0657
V214 3.93 .0613
V215 2.19 .1548
V221 3.23 .0875
V222 4.12 .0555
V223 4.22 .0531
V224 4.34 .0504
V225 2.73 .1144
V311 1.97 .1754
V312 2.56 •1255
V313 2.57 .1243
V314 2.64 .1199
V315 1.34 .2602
V321 2.38 .1386
V322 2.98 .0999
V323
V324

2.99 .0992
3.06 .0957

V325
V411

1.71
2.01

.2052

.1718
V412 2.60 .1229

.05047

.07217

.07369

.07491

.03267

.06534

.08588

.08744

.08871

.04542

.12079
• 15534
.15394
.16423
.09854
.13898
.17087
.17438
.17819
.11992
.08981
.11337
.11402
.11661
.06296
.10635
•12953
.13008
.13262
.07898
.09125
.11486
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Table 25 (cont.)

Estimate
Method F(1.20) Prob(P) R2

Indirect Methods (cont.)

V413 2.61 .1221 .11592
V4l4 2.67 .1179 .11776
V4l5 1.35 .2593 .06315
V421 2.4l .1365 .10742
V422 3.00 .0985 .13056
V423 3.01 .0981 .13087
V424 3.08 .0948 .13327
V425 1.71 .2059 .07874
V511 2.06 .1670 .09324
V512 2* 66 .1188 .11723
V51?
T514

2.66 .1184 .11749
2*71 .1152 .11944

V515 1.35 .2586 .06331
V521 2.47 .1314 .11009
V522 3.08 .0947 .13332

• 133*3V523
V524

3.O8 .0947
3.13 .0923 .13519

V525 1.73 .2031 .07968

Let VAGT = field volume, and V(i) = estimated
volume, then the null hypothesis for this test
can be written as*

Hq» VACT « V(i), versus H^i VACT / V(i).
Notes See Table 23 for definitions of spectral volume
estimation methods*
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The comparison between direct and Indirect estimation methods,
using the coefficient of determination as a comparative index and derived
from simple linear regressions, shows that in all cases the correspondence
was very high, indicating potential operational applicability (Table 26).

To recapitulate the results of this section, a significant
association between spectral signature and timber volume, and those
stand parameters used as inputs to an aerial photo volume table, exists.
The direct estimation method regressed volume against a vegetation index.
The indirect method estimated canopy closure, crown diameter, and average

stand height as inputs to an APVT. Prediction of volume on a reserved set
of stands using a number of estimation techniques, both direct and
indirect, was shown not be significantly different from the actual field
volume at the .05 level. Those methods, significant at the .10 level,
are apparently at the extreme ends of underestimation for direct methods,
and overestimation for indirect methods.

Several points must be remphasized at this time. Volume, in
cords per acre, was a merchantable measure of volume. A more appropriate
measure for use with remote sensing devices is total tree volume such as

cubic feet per acre. Height was estimated using a site index based
equation developed by Schumacher and Coile (1960), from the available site
index information obtained from the cooperating landowner. A stringent
assumption of successful site tree location was made, effecting the use of
the Schumacher and Coile equation. Canopy closure and crown diameter were
measured on the only aerial photography available for the area at the time
desired. The interpretative quality of the photography was poor,
dominated by an orange caste, and with almost nonexistent tone, texture,
and contrast. The scale of the photography was at the extreme limit for
effective photo interpretation of canopy closure and crown diameter. An
inflated sampling and experimental error introduced additional variation
into the analysis. The need for corroboration of these results and that
the context of this study was to demonstrate the existence of quantitative
relationships between forest stand parameters and spectral signature
was the goal, and not the development of operational techniques, must be
kept in mind.
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Table 26. Comparison between the direct and
indirect volume estimation methods* using the
coefficient of determination as a comparative
index.

Indirect Direct Method

Me thod VA1 VA2 VA3 VA4 VA5

VU1 .92546 .91494 .90327 .88425 .89674
V112 .94529 .92872 .94491 .92837 .93945
VI13 .94752 .93879 .95257 .93949 .94547
V114 .93927 .93401 .95116 .93716 .94070
vii5 .91949 .96756 .85350 .84798 .86934
V121 .91224 .92347 .92268 .90552 .90991
V122 .91423 •91977 .95654 .94195 .94327
V123 .91215 .92641 .96206 .95122 .95225
V124 .89036 .91284 .96114 .94910 .94913
V125 .91321 .97761 .89270 .89245 .90387
V211 .9^284 .89334 .96299 .94328 .94578
V212 .95381 .83725 .98626 .97043 .97044
V213 .93*91 .87904 .99739 .98222 .98212
V214 .91212 .86422 .99433 .98162 .98157
V215 .97387 .97947 .94879 .95055 • 95835
V221 .90975 .87678 .96750 .94912 .94828
V222 .87949 .83943 •97936 .96499 .96506
V223 .87375 .83936 .98352 .97348 .97394
V224 .84418 .81787 .98254 .97106 •97339
V225 .93891 •95889 .97544 .98170 .98319
V311 .98595 .96604 .94326 .93848 .94959
V312 .97404 .96326 .94938 .95357 .95878
V313 .96512 .96827 .94139 .94969 .95419
V314 .95064 .96208 • 93736 .94881 . 95208
V315 .92229 .99506 .80961 .81294 .83205
V32i .96770 .96428 .96907 .97304 • 97473
V322 .94329 .94571 .97143 .98508 .98145
V323 .93236 .94889 .96293 .97630 .97679
V324 .91266 .93719 .96209 .97634 .97506
V325 .91531 .99676 .85095 .97095 .87671
v4li .98133 .97286 •93969 .93923 •93935
V412 .96496 .96733 .94304 .95129 .95568
v4i3 •95391 .97099 .93279 .94526 .94896
V4l4 .93819 .96409 .92793 .94401 .94474
V4l5 .90951 .99738 .79392 .80598 .82197
V421 .96409 .96769 .96441 .96945 • 97325
V422 .93204 .94286 .96313 .97660 .97708
V423 .91291 . 9^*8^'2 .95246 .97022 .97035
V424 .89838 .93596 . 94898 .96983 .96828
V425 .90041 .99627 .83572 .85917 .86417



86

Table 2 6 (cont.)

Indirect Direct Method

Method
VAl VA2 VA3 VA4 VA5

V511 •97259 .97243 •93517 •93714 .94394
V512 .94934 .96112 •93767 .94942 ■ 95070
V513 .9396? .96409 .92635 .94281 .94342
V514 .9154-6 .95176 .92108 .94165 .93898
V515 .89472 .99581 .77876 .77970 .80373
V521 .94460 .96103

.93484
.96201 .96954 .97081

V522 .90883 .95949 .97629 .97482
V523 .89473 .93408 .97485 •96935 .96760
V524 .86814 •91597 .94407 .96898 •96551
V525 .88317 .98962 . 82492 •95371 .85459

Note s See Table 23 for volume estimation
method definitions.
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Other stand parameters

In addition to volume, canopy closure, crown diameter, and
average stand height, additional stand parameters are of interest to the
forest manager. The primary ones are stems per acre, basal area, and

average tree diameter (Dbh). These parameters will be examined in a

univariate and multivariate sense. Canopy closure, crown diameter, and
height will also be examined in a multivariate sense. The multivariate
technique used here is canonical correlations, a technique that finds
relationships between two sets of variables by finding pairs of linear
combinations of these variables which are maximally correlated.

The univariate technique, regression, was done in the same

manner as was done for volume, canopy closure, crown diameter, and height.
The "best” candidates among the vegetation indices for tree diameter (Dbh)
were shown to be: all four Landsat bands, the normalized difference-6,
the difference-7, and the normalized difference-7 (Table 27 and Table C19,
Appendix C, present regression statistics for tree diameter). A strong

relationship between crown diameter and Dbh is the most likely reason for
the regression coefficients being significantly different from zero

(Figure 7 illustrates the relationship between spectral signature and Dbh
with a scatterplot of Dbh versus the normalized difference-6 index).

Alternative explanations for the strong relationship between
Dbh and spectral signature, in terms of Landsat data, are speculative in
nature. Differential crown geometry and shape presented to the sensor as

the tree ages is one possibility. The increase in Dbh as height increases
is the association effecting this. Another possibility is that this data
set is an anomalous one, with these model fittings unique to this data set
alone.

The best candidates for basal area are: all four Landsat bands,
the simple band 7 to band 5 ratio (R7), brightness, and the greenness-
brightness ratio (Figure 8 illustrates the best index, R7, with a
scatterplot of basal area versus R7. Table 28 and Table C20, Appendix C,
present regression statistics for basal area). Basal area is confounded
among stems per acre and individual tree size in a similar fashion as is
canopy closure, discussed in the canopy closure and AFVT ■ sections. The
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Table 27. Average Dbh regression from
spectral datas highlights of summary statistics*
Complete statistics are given in Table C19*
Appendix C.

Vegetation
Index R2 F(1.77) Prob(P)

R7 .298? 32.792 .0001
R6 .3140 35.245 .0001
ND7 .3181 35.921 .0001
no6 .3290 37.750 .0001
G .2705 28.566 .0001
B .2088 20.323 .0001
GB .3184 35.969 .0001
D7 .3212 36.430 .0001
D6 .0267 2.112 .1502
DD .0084 0.654 .4211
PRIN1 .1856 17.551 .0001
PRIN1-PRIN4 .3871 11.687 (1) .0001
B4-B7 • 3871 11.687 (1) . 0001

(1) Note* The P statistics for these two
regressions are with 4 and 7^ d.f.



Dbh
(inches)

Figure 7. Scatterplot of average tree diameter (Dbh)
versus the normalized difference-6 index (ND6),
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Table 28* Basal area regression from
spectral datat highlights of summary statistics*
Complete statistics are given in Table C20,
Appendix C«

Vegetation
Index

R2 F(l,77) Prob(F)

R7 .1850 14.123 .0003
R6 .1471 1301& .0005
ND7 .1510 13.691 .0004
nd6 • 1435 12.905 .0006
G .0490 3.965 .0500
B .1681 15.557 .0002
GB .1591 14.654 .0003
D7 .0975 8.320 .0051
D6 .0204 1.602 .2094
DD .0174 1.365 .2463
PRIN1 .1635 15.051 .0002
PRIN1-PRIN4 .1927 4.415 (1) .0030
B4-B7 .1927 4.415 (1) .0030

(1) Note* The F statistics for these two
regressions are with 4 and 7** d.f.



Per acre
basal area
(square feet)

R7

Figure 8. Scatterplot of per acre basal area versus the
Landsat band 7 divided by band 5 ratio (R7).
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’’disguise" effect can also play a role, inflating basal area estimates
through the sensor seeing, in effect, a "false canopy" component of
reflectance which is actually understory vegetation. Physiological
differences between larger, older, trees versus smaller, younger, trees
could alleviate the confounding effect of basal area in that the stocking
in a stand could, for instance, be separated among poletimber and saw

timber.

Stems per acre has no usable candidates (Table 29 and Table C21,
Appendix C, present stems per acre regression statistics). It is probably
not a useful parameter on Landsat due to its resolution, and the radial
crown growth phenomenon discussed in the canopy closure results (Figure
9 illustrates this with a scatterplot of stems per acre versus the D6
index).

The canonical correlation analysis reinforced the regression
results in multivariate space, providing additional insight to these
relationships. Two sets of ground parameters were used in describing the
canonical relationships: (1), stems per acre, basal area, and average tree
diameter; and (2), canopy closure, crown diameter, and height (Table CIO,
Appendix C presents the results for variable set 1, and Table C12 the
results for set 2). The most "influential" variables were also determined
and examined (Tables Cll and C13 for variable sets 1 and 2, respectively).

The pattern of behavior with stems per acre, basal area, and
Dbh, is highly significant, at the .01 level. The significant situations
arise when the most "influential" variables are either Dbh or basal area
in a single sense, or both in a joint sense. Influence of variables is
determined by the magnitude of covariance matrix eigenvector coefficients.
Those canonical correlations which cannot be shown to be significantly
different from zero are those where stems per acre is the singly or

jointly most influential variable.
A similar pattern of behavior occurs when canopy closure is the

singly or jointly most variable of set number 2. When this occurs, the
canonical correlation is not significantly different from zero. In the
case of crown diameter and height being the singly or jointly most
influential variables, canonical correlations are significantly different
from zero.

In both cases, the vegetation indices which were not different



Table 29« Stems per acre regression from
spectral datai highlights of summary statistics.
Complete statistics are given in Table C21,
Appendix C.

Vegetation
Index

_ 2
R P(l#77) Prob(F)

R7 .0011 0.084 .7726
R6 .ooo4 0.035 .8529
ND7 .0003 0.021 .8857
ND6 .000048 0.004 .9515
G .0092 0.715 .4003
B .0072 0.519 .4570
GB .0006 0.047 .8290
D7 .0025 0.197 .6586
D6 .0376 3.006 .0870
DD .0231 1.819 .1813
PRIN1 .0089 0.694 .4076
PRIN1-PRIN4 .0473 0.919 (1) • 4574
B4-B7 .0473 0.919 (1) • 4574

(1) Notei The P statistics for these two
regressions are with 4 and 74 d.f..



STPA

• Figure 9. Scatterplot of stems per acre (STPA) versus
the difference-6 index (D6).
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from zero were the difference-6 and difference-difference indices.

Likely explanations for the low correlations are the reflectance

differences between pine and hardwood, and the changes in imagery dn<=> to
the fact of the sunnier of 1980 being an extraordinarily dry one. Band 6
is located at the point where a vegetation reflectance curve approaches
the infrared plateau. Extreme drought could depress the curve for those
species that are more susceptable to drought, introducing additional
variation into their reflectance characteristics. The "disguise" effect

is another reason for the lack of correlation in the D6 and DD indices,
since these are the canonical correlations most influenced by canopy

closure and stems per acre. The radial crown growth phenomenon is an

alternative reason for the lack of correlation with stems per acre. The
detail of both of these reasons have been outlined in the previous
sections

To summarize, Dbh and basal area have a significant association
with spectral signature. When all three of these parameters are reduced
to a canonical correlation linear combination, significant correlations
were found when canopy closure or stems per acre were not the most
influential variables, in terms of eigenvector loading. The implication
is that, provided corroboration of these results, basal area and Dbh can

be estimated using spectral data, in addition to volume, crown diameter,
and average stand height. A fairly thorough enumeration of forest stands
is thus possible using spectral data.
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Chapter VII.

SUMMARY DISCUSSION

This section presents a synopsis of results obtained for each sub-
objective of this study, a general synthesis assembling each of the sub¬
objectives in terms of the overall objective, implications of these
results, and recommendations for further analysis.

Subobjective synopsis

Aerial photo volume tables

The aerial photo volume tables and equations developed for this study
(Tables 8 and 9) are statistically comparable with previous work done in
southeastern forests (Avery 1958, Avery and Miyhre 1959). In all cases,
the coefficient ofmultiple correlation ranged from 0.68 to 0.77, with the
differences accountable to photographic quality and interpretative
differences. The final model for this study was easier to interpret than
previous work in terms of the regression coefficients. Individual tree
stocking was accounted for in the model by a term directly analogous to
basal area (CDCC). Volume for individual trees was accounted directly for
by the use of a term comparable with tree diameter squared multiplied by
height (AB2C). A majority of APVTs in previous work used equations which
were selected on the basis of regression slopes and either not using
mensurational characteristics or using them only minimally. These models
developed into little more than theoretical abstractions. The use of
photographically measured variables, such as canopy closure, crown
diameter, and parallactic height, is largely subjective in nature and will
introduce bias and variable selection that will not be easily interpreted
in terms of mensurational variables within a stand. The models used in
this study represent an intermediate step in rectifying the subjectivity
inherent in AFVT development. Its regression slope coefficients are more
easily interpreted in terms of stand characteristics.

Using stems per acre to construct expected crown diameter and canopy



closure models, it was shown that canopy closure was more reliable of the
two photo measurements taken and that smaller scale photography can be
used to measure canopy closure effectively than crown diameter. Crown
diameter was consistently underestimated, because in forested stands
crowns tend toward greater overlapping as canopies become more completely
closed. On occasions, the largest crowns measured within a photo plot
were overestimated due to confusion of a group of trees with a single
crown. The expected crown diameter model (Table Cl, Appendix C) showed
that if an accurate crown diameter estimate is available, and not biased
towards smaller values due to crown overlap, the coefficient of
determination nearly doubles.

Canopy closure

Canopy closure, which is confounded among stems per acre and tree
diameter, cannot provide a reliable estimate of site occupancy. The
likely explanation is that when forest management activities occur, such
as thinning, an individual tree undergoes a period of radial crown growth,
before substantial diameter accumulation occurs, referred to as the radial
crown growth phenomenon. Due to this effect, trees in different stands
can have the same value of canopy closure for disparate stocking
conditions as well as crown diameter/Dbh ratios. As a consequence, a

single estimated value for canopy closure can be the result of a range of
differing stand stocking conditions.

Spectral analysis: clustering/classification approach

The raw stand data were shown to cluster into five relatively
distinct groups based upon stems per acre, volume, height, and Dbh (Tables
C5 and C6, Appendix C). Classification, using the spectral signatures
associated with individual stands, did not force all observed stands into
a single category as would be expected in a relatively homogenous
population. Significant separation among stand cluster types was shown
for a number of combinations of Landsat vegetation indices, as indicated
by the Mahalanobis D2 statistic (Table C14, Appendix C). For at least 50
percent of the vegetation indices used, a significant difference in



covariance matrices was shown to exist, reinforcing the separation
assertion. It was shown that forest stand types based on field measured
mensurational parameters could be separated using spectral signature on a

multispectral scanning device, Landsat, and that classification into

categories using field measured and spectral data can be done.

Spectral analysis: direct regression approach

Fbst of the vegetation indices examined have a statistically
significant, at the .05 level, association with timber stand volume using
a simple linear regression model. The best model for stand volume
estimation was the Kauth and Thomas brightness index (B). Individual,
older, trees have a larger crown volume, but a relatively lower foliage
density presented to the sensor. As a consequence, a larger soil
background component is visible to the sensor, for which the brightness
index was developed. In the case of the other indices, the "disguise"
effect, understory vegetation appearing as overstory vegetation, degraded
the overall performance of the regression models.

Spectral analysis: indirect regression approach

This analysis was preparatory to the verification analysis,
consisting of estimation of crown diameter, canopy closure, and average

stand height in separate regression analyses. The three most useful
vegetation indices for estimating crown diameter were the difference-7
(D7), the greenness-brightness ratio (GB), and the normalized difference
7 (ND7), respectively accounting for 24.06, 23.65, and 23.23 percent of
the sample variation. Each index responds to a relative increase in the
infrared component, implying a relative increase in crown diameter. The
"disguise" effect impacts estimation in that understory vegetation viewed
near a tree canopy can force overestimation of average crown diameter
across a picture element. Canopy closure had no usable candidates, due
to the strong influence of the "disguise" effect.

Height was predicted unexpectedly well by the regression models posed
for it. Four explanations can account for this good degree of fit.
First, as height increases over time, there is within the crown morfe
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foliage contributing to the infrared reflectance component viewed by the
sensor. Second, as a tree matures, crown geometry changes, presenting
different profiles to the sensor. Third, physiological changes within an

aging tree can contribute to differential spectral response across stand
age. Fourth, stand composition can affect spectral response. If a stand
has many dominant trees, additional shadow effects can be a significant
contributor to a pixel's response. Smoother textured stands can have
different spectral responses than rougher ones.

Spectral analysis: verification analysis

Direct and indirect methods were used to estimate volumes for a set

of stands reserved from initial analysis. No significant difference was

found between spectrally estimated and actual field volumes, at the .05
level. Underestimation occurred using direct methods, and overestimation
occurred when using indirect methods. The primary source for the
underestimation using direct methods was a combination of the "disguise"
effect which drove up the estimate, and the dampening effect of the
contributions from bands 4 and 5, appearing as unvegetated ground. The
primary source of overestimation using indirect methods was the inflated
values estimated for canopy closure due to the "disguise" effect.

Spectral analysis: other stand parameters

Additional stand parameters were examined in an effort to improve
enumeration of forest stands using remotely sensed data. The stand
parameters of interest were average tree diameter, per acre basal area,
and the number of stems per acre. Average tree diameter had a number of
useful candidates including all four Landsat bands, the normalized
difference-6, difference-7 and normalized difference-7 indices. Each of
these is due to the strong relationhip between crown diameter and Dbh.
The "disguise" effect affects Dbh estimation by inflating an individual
trees apparent crown diameter, if appearing as large crowns. The estimate
can also be driven down if tree crown diameter is underestimated in a

smooth textured image. Basal area in confounded in a similar manner as
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canopy closure, among stems per acre and individual tree diameter,

presenting to the sensor a value of basal area which can result from a

disparate range of stocking values. The "disguise" effect is, to a lesser
extent than with canopy closure, responsible for the relatively low degree
of fit for the models posed here. Uhderstory vegetation appearing as

false elements in the canopy can inflate a basal area estimate. Stans per

acre apparently cannot be estimated using remote sensing data.

Overall objective summary

The objective of this study was to answer the question: Is there a

quantifiable relationship between spectral signature, as represented on
the Landsat satellite, and timber stand volume or those stand parameters

that can be used to estimate volume through an aerial photo volume table
approach?

The answer is a qualified yes.

A number of approaches used in this study have shown this relation.
First, clustering of stands, based on the inherent characteristics within
the stand, showed that relatively distinct categories can be distinguished
with the field data. Separation analysis of these categories, using the
Mahalanobis distance with stand concomitant spectral data, is significant
in a large number of cases, at the .05 level (Table C14, Appendix C).
Classification analysis of these stands showed the separation to be an
effective one. Second, a regression analysis between volume and spectral
signature showed a significant relationship between the two for two of the
three AFVT inputs, crown diameter and height, and for volume itself for
a substantial number of vegetation indices. The lack in the third AFVT
input, canopy closure, is accounted for by the "disguise" effect, as is
discussed in Chapter VI, which is an unavoidable consequence when using
Landsat data. Volumes estimated for each direct and indirect method are

not significantly different from actual field volumes in a set of stands
reserved from initial analysis, and the two methods corresponded well with
one another.

Enumeration of forest stand conditions is possible using Landsat data
with a statistically significant level of accuracy. Over regional areas,
such as forest survey regions, the amount of information that is
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extractable with Landsat offsets the inherent noisiness in it. The

parameters showing the most promise are height, average tree diameter,
basal area, crown diameter, and volume. The correlations between spectral
signature and each of these stand parameters can be attributed to the
interrelationships among stand parameters, specifically the spectral
components that contribute to the estimation of one are highly influential
in estimating another. For example, the regression models predicting
crown diameter and average tree diameter are related by the strong
association between the two stand parameters. Height and its relation to
crown diameter and volume, can be related using a similar argument as with
crown diameter and average tree diameter. Basal area can be derived from
the relationship of spectral signature and crown diameter. A limitation
exists on estimating basal area, stems per acre, and crown diameter losing
Landsat imagery because of the "disguise" effect. Understory vegetation
being interpreted as overstory vegetation which can inflate or can
deflate estimates, depending on stocking conditions within a stand.

In general, it was shown that volume estimation, stand enumeration,
and classification of forest stands using field derived mapping criteria
can be done using spectral signature from remotely sensed data.

A final point must be remphasized at this time. The purpose of this
study was not to develop operational methods for use by forest managers,
but to examine whether or not the relationships sought in this study
existed. These relations were, with the qualifications discussed in
Chapter VI, shown to exist. Implications of this study will now be
discussed

Implications

Two areas of application can be directly affected by the results of
this study. The first area is in the design and implementation of forest
survey and the second is the development of geographic information
systems. Throughout both areas, the potential for using the results of
this study with alternative remote sensing devices will be discussed.
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Forest survey applications

The results of this study can have a significant impact in the area

of forest survey or inventory. Improving forest survey design is one

major area of application of these results. Stratification of the forest

population can now be performed using spectrally derived estimates of
stand parameters, as well as by forest types.

A hypothetical example helps explain how this might be accomplished.
First, satellite imagery of the area to be inventoried is obtained from
the appropriate source. Classification into descriptive categories, i.e.
pine, hardwood, and mixed, is then performed using conventional routines
for classification. Following that, a set of stand parameter estimation
equations based on spectral signature is used in the entire area or in its
component forest types, depending on inventory objectives. Then, this
"refined classification" is entered into a geographic information system

(GIS), where, for instance, ownership, soils, and topography are merged
with the "refined classification" into a single data file. Next, field
plots are assigned to each classified category according to conventional
rules of stratified sampling allocation, described by Cochran (1977).
The total number of field plots is then held in reserve until a pilot
survey is performed on a subarea of the inventory area. Preliminary
summary statistics for the pilot study area are then computed, along
with confidence levels.

Comparison of these confidence levels with those desired for the
total sample is made and then confidence levels for the pilot study area
are then obtained, based on spectral data and GIS information. If these
new confidence levels are within desired limits for accuracy, precision,
and bias, then no further field plots need be taken for the inventory
area. If greater summary statistic precision is desired, then the
allocation procedure is repeated to determine the number needed for the
ref inment in accuracy and precision desired. If the total number of plots
is less than that estimated previously for complete sampling on the
inventory area, then the appropriate subsample, equal to the number of
plots required to refine the accuracy and precision of summary statistics,
is drawn. The remaining plots are either discarded or held in reserve for
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special administrative purposes. In sunmary, the total number of field
plots required for a regional survey, when using remote sensing and GIS
information as inputs to the sampling design process, should be less than
those required for conventional surveys.

The cost of remotely sensed data, especially from spaceborne sensors

is currently prohibitive for most forest management operations. Alternate
remote sensing devices exist which could mitigate this cost barrier.

Alternative sensors and GIS potentials

A potential for alternative applications of the results of this study
concerns the direct video digitizing of aerial photography. Color or
color infrared aerial photography can be digitized using three filters:
red, green, and blue as an example. The number of gray shades desired can
be obtained, and then processed through software using the results of this
study. In addition to single perspective imagery, digitization using the
stereoscopic information on photography can incorporate the actual canopy
geometry into the image analysis process. Two images are separately
recorded, capturing the effective area in a photograph, registered and
merged into a single data file. The combined data files from stereo pairs
can then be assembled into a mosaic over the area of interest.

Incorporation if stereoscopy can greatly enhance volume estimation,
which would remove the subjectivity inherent in human photo interpretation
measurement of stand parameters. A hypothetical example of the resolution
possible follows using the parameters of the color infrared portion of the
National High Altitude Photography (NHAP) program. The nominal
representative fraction of this photography is 1:58,000. Suppose an
analyst wanted to digitize this photography into a 512 by 512 pixel
format. The size of an individual picture element would be 29 meters on
a side which is comparable with Thematic Mapper resolution. Now further
suppose that the analyst wanted to digitize a subsample of this photo
coverage to a 1024 by 1024 pixel basis. The individual pixel would be
14.5 meters on a side, small enough to partition individual patches of
even aged timber within the typical East Texas forest. The element of
steroscopy would provide an additional three channels of data, and a
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fourth channel of Information incorporating the actual stereoscopic
element from both images. The reflectance properties of an area could
then be sampled from two vantages. The total number of data channels
available on an area would then be seven. Another example of commonly
used photographic scales in forestry is U.S.D.A., Forest Service 1:15,840
color film for stand mapping. Digitization to a 512 by 512 pixel basis
would result in a picture element size of 7 meters, small enough to
detect the average crown diameter within a stand.

Two consequent image processing technique are needed. First, the
incorporation of stereoscopy into the image processing analysis would
require image registration using photogranmetric stereo model theory.
Second, a decision making process of how stereo images are to be digitized
needs developing. A systematic digitization procedure must be in place
before the digitization of large numbers of photographs can be done, lest
the sidelap portions of photos seriously distort the total results of a
project.

The use of aerial multispectral scanners is another alternative to
the use of spacebome imaging systems. A high degree of flexibility is
possible using these systems. For example, flight planning for a region
of interest can be done in such a fashion as to incorporate the element
of stereo into the actual image data output, by overlapping flight
scanning swaths. Combined with a large number of channels, for example
ultraviolet to thermal infrared, stereoscopic capability can facilitate
a more complete enumeration of the forested scene of interest. Image
processing can follow the same precepts as photo digitization, including
those aspects needing theoretical and organizational development before
actual imaging can occur. An advantage of aerial multispectral scanners
over photographic digitization is that the data is actual spectral data,
whereas photograph digitization records a '’pseudochannel" of data,
recorded under visible light.

In either case, the relationships between forest stand parameters
must be evaluated for each particular imaging system and technique. An
essential precursor to evaluation of any imaging system, including image
processing, is a field evaluation of the radiometric interrelationships
among forest stand parameters, not done in this study due to cost limits.
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Suppose an analyst were interested in working in an area where the
acquisition of satellite imagery would be the most useful. Two sensors,

one in orbit and the other scheduled for launch in the fall of 1985, offer
a substantial improvement in resolution, repetition of coverage, and
number of channels over the Landsat Multispectral Scanner (MSS). The
Thematic Mapper (TM) aboard Landsats 4 and 5, with its seven channels
and thirty meter resolution, offers the capability to evaluate the even

aged patches of timber, typical within an East Texas forest. The number
of data combinations possible with TM data exceeds that for Landsat MSS by
three orders of magnitude. Individually, Landsats 4 and 5 repeat coverage
of an area every 16 days versus 18 days with older Landsats.

The SPOT satellite, due for launching in the fall of 1985, is another
satellite meriting consideration for the application of the results of
this study. It has the capability for 10 meter resolution in its
panchromatic mode, and 20 meter resolution in its multispectral mode.
In addition to the fine level of resolution, the sensor has the capability
to pivot off of nadir, allowing multiple views of an area. This genuine
stereo capability can allow for penetration of a forest stand by sampling
the reflectance properties from multiple vantages. The net effect is to
double, treble, and even quadruple the number of channels available to
an analyst, over and above the three obtainable from one pass.

Each spacebome sensor has data which is formatted in a unique style
for which an image processing system must be compatible. This drawback
to spacebome sensors could be circumvented using the alternative sensors

just discussed.
In all of the cases discussed, the results of this study are

applicable. The airborne level approach, airborne scanners and the
digitization of aerial photography, need the necessary stereo modelling
theory development in addition to calibration of these results for their
application to alternative sensors. However, the flexibility available in
selecting coverage of an area of interest offsets the extra development
step needed for their application and should free that analyst from the
rigid schedule associated with spacebome imagery, and its consequent
gamble on image quality, cloud cover, and contrast.
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This argument must not be construed as advocacy for discontinuing the
use of satellite imagery. A study involving large regional areas, such as

East Texas, using imagery derived from the alternatives just discussed,
will encounter prohibitive costs, especially when special mission planning
is required. The cost of imagery obtained aerially versus from space

must be estimated before an inventory can proceed. In small areas, for
instance single counties or small blocks of counties, the airborne
approach would prove more cost effective, and over larger areas such as
entire forest survey regions, using spacebome imagery would prove best.

Incorporation of these results into the rapidly expanding technology
of geographic information systems can have substantial impact as well.
Forest stand parameter enumeration using the results of this study, or
refined developments from them, when incorporated into the timber layer of
a forest management GIS, can allow "in-house" examination of stand
conditions before field surveys take place. By using added layers of
spatial information available on a GIS, the design of both intensive
inventories and extensive surveys can be refined to a degree heretofore
unrealized. Ownership, topography, soils, previous timber surveys, and
other resource data can be incorporated within the design scheme. A
multivariate stratification design is thus possible with the many layers
of a GIS. When combined with estimates of stand volume, and other stand
parameters, available from remotely sensed information, field plot
allocation can proceed on the basis of seeking the appropriate subsample,
rather than a complete survey enumeration.

Graphical presentation of regional sumnary statistics could be done
using the spatial portion of the GIS data base. Conventional tabular
summaries could be extracted from the attribute portion of the data base.
Combined regional summaries could be presented graphically and in tabular
form using the spatial and attribute data files simultaneously. Forest
management scenarios can be performed within the data base as well.
Finally, the updating capability of forest stand parameter information
possible using remote sensing data can, when combined in a GIS, provide
the forest manager with a flexibility in decision making unavailable in
the past.

A last point concerns the cost analysis of whether or not a
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particular remote sensing system should be used, whether or not
alternative survey/inventory designs should be used, and whether or not
the data should be included in a GIS. Developing and testing of the nest
cost efficient combination of sensors, data bases, and survey designs is
an area of research essential to the application of the results of this
study.

The use of GIS technology, in concert with an appropriate combination
of sensors, is the most promising approach for improved survey design. In
small regional areas, such as single counties or small blocks of counties,
airborne sensing devices such as aerial multispectral scanners or photo
digitization are likely to be the cost effective approach to acquiring the
remotely sensed contribution to the geographical data base. For larger
areas such as survey regions, satellite imagery of proper timing and
qualtiy can contribute the remotely sensed part of the GIS data base.

In summary, the results of this study point towards two areas of
potential applicability: (1) utility for design and implementation of
regional forest surveys, and (2) as an input to a GIS data base, including
forest survey applications.

The major areas of research for future analysts include: (1) an

analysis of the costs and benefits of using remote sensing as a major
input to forest survey, (2), adaptation of these results to other sensors,
and (3), the potential incorporation of these results into the
development and use of operational geographic information systems. The
demonstration of a significant relationship between forest stand
parameters and spectral signature has shown the way for evaluation and
use of remote sensing technology in the quantification of forest stands
not previously available to the forest researcher.

Analytical recommendations

The model derived in the APVT analysis, which was in good agreement
with previous work in southeastern forests, can be improved. First,
measurements of crown diameter and canopy closure should be done in a

more objective manner. Crown diameter can either be measured in the field
or analyzed using digitized aerial photography. Canopy closure can be
measured on photography using a systematic method, for example a fine dot
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grid, or evaluated by digitizing aerial photography. Height, measured in
an indirect fashion in this study, should be either field measured, photo
measured or estimated in an automated manner. Alternative sensing methods
for the determination of crown diameter, height, and potentially canopy

closure are currently being investigated, including as an example the
pulsed airborne laser profiler. The stereoscopic model characteristics
available in the airborne multispectral scanner, camera digitization of
aerial photography, and the SPOT satellite can be used to estimate height
without field measurements, apart from calibrating field verification.
When combined with crown diameter and canopy closure measurements that are
available from photographic measurements, a direct volume estimate, using
an AFVT, is possible without the need for human interpretation and its
consequent potential for bias introduction. When these volume estimates
are compiled over a regional area, field plots can be drawn using a
subsampling approach rather than a stratified design. The total number of
field measurements required for implementation of the survey could be
substantially reduced over conventional techniques. A reduction of even
ten percent, on a regional area, can effect considerable cost savings.

The actual development of an aerial volume table equation should
consider as many potential dependent terms as possible. Some examples
of this include: logarithmic independent terms, higher order independent
terms such as cubic ones, and even nonlinear regression.

The use of canopy closure is, however, marginally useful with remote
sensing devices, as an estimating factor for volume and other forest stand
parameters. Its confounded nature, among stems per acre and individual
tree size, introduces additional variability not needed in the analysis.
Development of an Index of stocking which is not confounded as canopy
closure and basal area, or subject to extreme outliers as is stems per
acre, is a useful direction for research with remote sensing devices.

With respect to the spectral signature portion of the analysis,
several suggestions are in order. Higher order terms can be tried in
regressing spectral signature against forest stand parameters. Forest
stand parameters could be transformed, using logarithms for example,
before fitting them to spectral signature. Various multivariate
transformations, not attempted in this study due to time constraints, can
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be tried. Factor analysis techniques could be used to extract linear
combinations from the raw data, as an alternative to principal component
analysis or Gram-Schmidt orthogonalization (Kao 1973). Combinations of
vegetation indices can be used on the independent side of regression
models. An illustrative example of this might be band 7 to band 5 ratio
and the band 6 to band 4 ratio.

Classification of stands for field based parameter maps can be done
using operational forest management mapping categories rather than
clustering based on the inherent ’'dumpings" that occur within a given
data set. Other classification techniques can be tried for separating
stands, including those not explicitly requiring a multivariate normal
distributional assumption, such as the nearest neighbor and parallelpiped
techniques (Mardia et al. 1979, Johnson and Wichem 1982, American
Society of Photogramnetry 1983). Incorporation of the information from a

GIS data base can be used as ancillary information prior to and during
classification analysis.

Other sensing platforms can be used to evaluate the results of this
study, after applying the appropriate calibrations for a given sensor.

Those covered in the implication section include the Thematic Mapper (TM),
SPOT, airborne multispectral scanners, and the digitization of aerial
photography. Sensing in other regions of the electromagnetic spectrum
should also be explored, such as with the thermal infrared, passive, and
active microwave (radar). The thermal infrared region is sensed by band
7 on the Thematic Mapper device. Active and passive microwave have been
shown to be useful in analysis of soils properties, however their use, and
that of the thermal infrared, has only been tested for use in forests in a

cursory manner (American Society of Photogramnetry 1983).
Corroboration of these results is the essential first step before

any attempt at field applications. Since a small sample size in a limited
regional area was used in this study, replication beyond the study area is
essential before these results can be refined for operational use. The
results of this study, nevertheless, opens avenues for future research
which should be explored in depth, due to their considerable potential.
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Chapter VIII.

CONCLUSIONS

Landsat Multispectral Scanner (MSS) imagery can be used to estimate
timber volume, and other forest stand parameters, such as basal area,
average stand height, and average tree diameter, with a statistically
significant level of accuracy. The low cost of Landsat, relative to
current forest survey techniques, would allow estimation of forest stand
conditions over large areas at substantial savings.

If remotely sensed data were incorporated into the design and
implementation of forest survey, more detailed mapping of forest stands
could be done. Timber stand conditions could be used as mapping criteria
in addition to forest types. This could be done over and above the
current forest survey mapping categories of forest, nonforest, and twu
water categories.

The repetitive coverage of the Landsat satellite enables analysis of
changes at a greater frequency than is currently done. For example,
change detection can be done at a frequency greater than the five year

midcycle updates done for the U.S.D.A., Forest Service regional surveys,
and would be at little, if any, increasing in costs. The decrease in the
number of field plots required for a particular survey could be reduced
substantially, further reducing costs.

Newer sensors, such as the Thematic Mapper, can allow mapping at even
finer detail than with the Multispectral Scanner. The potential cost
savings with these finer resolution sensors can result in both finer
detailed mappings and further reduction in the number of field plots
required for the survey. The savings could easily offset the additional
costs associated with acquisition of data from these sensors.

The use of alternative sensing systems such as aerial multispectral
scanners and digitized aerial photography offer an economical alternative
to satellite systems. The results of this research are also applicable to
these systems. The use of aerial photograph digitizing will reduce the
error associated with human photo interpretation, and reduce image

processing cost. High altitude photos could be computer evaluated,



Ill

performing both the image processing and forest survey stratification
simultaneously, further reducing costs.

Incorporating geographic information systems with the results of this
study can facilitate the long term storage of survey data in a far cheaper
and less perishable form than with paper map storage. It can also
contribute to the forest survey process by allowing graphical presentation
of summary statistics, and incorporating spatial data into the survey

design process which can further reduce the number of plots required for
field implementation of the survey.

The potential of using remote sensing techniques to evaluate and
analyze forest stands promises substantial cost savings in forest survey
and inventory. Future research should be in two directions: (1),
examining and adapting the results of this study to other remote sensing
devices such as computer analysis of digitized aerial photographs, and
(2), analyzing the costs and benefits of performing a forest survey
based on remote sensing. The potential economies offered by using remote
sensing techniques in forest inventory and survey is sufficient
justification for further work in this area of research.
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APPENDIX A.

AN EXAMPLE OF THE FIELD DATA AND STAND MAPS USED IN THIS STUDY.
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Data used from this stand map

Size
Class

Volume
Cords/Acre

Stems
per Acre

Basal Area
per Acre

5-6 1.69 41.32 8.33

7-10 6.38 49.82 21.67

11-12 5.34 19.42 15.56

13-18 12.67 22.30 28.89

19-24 4.71 4.69 10.00

25+ 0.38 0.23 1.67

Site Index = 94

Figure Al. An example of stand maps and field data
used In this study.



APPENDIX B.

DETAILS OF THE TEST FOR SAMPLING ADEQUACY DONE IN IHE STUDY AREA.
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A total of 448 stands within the study area were considered as

potential candidates for selection and analysis. Since the actual
selection procedure was not done in a randomized fashion, but was based on

photographic location, a total of 146 stands, an almost one third sample,
were chosen for initial analysis.

An initial design criterion was to avoid pine plantations, their
young age and consequently low volumes. It was desired to test whether or
not the stands selected were representative of the overall population of
candidate stands.

Three steps were necessary for this test. First, selection of an
appropriate set of variables on which to test was to be done was performed.
Basal area for both pine and hardwood was the final choice. Its
confounded nature, among stems per acre and individual tree size, covers

the entire range of stand situations encountered, without extreme outliers
which can occur with other stand parameters such as stems per acre.

Second, a test for equality of covariance matrices was done. The
typical two sample test of the equality of means is predicated on the
equality of variances or covariance matrices. When a situation arises
where unequal covariance matrices exist, the mean comparison test
statistics have undetermined and vague distributional porperties known as

the Behrens-Fisher problem (Rao 1973). Third, and finally, the test for
equality of mean vectors was done.

The test for covariance matrix equality used in this analysis was the
same, asymptotic, approximation of the likelihood ratio test used in the
clustering/classification analysis. The test treated the study stands and
what will be called the remainder stands as classification categories.

The frequency of study, and remainder stands (Table Bl), the results
of the chi square test for covariance matrix homogeneity, and the results
of the stand classification in the form of a confusion matrix are

presented (Table B2). The test for homogeneity does not reject the null
hypothesis that the cavariance matrices are equal, at a large level of
significance. The vast majority of stands were classified into type one,
the remainder category, indicating that as a whole, all stands selected
for analysis are drawn from the same population.



Table Bl. Frequency of study stands with
respect to the available candidates, and
the remainder stands.

Stand
Frequency

Prior
Type Probability

1 302 .67410714
2 146 .32589286

Total 448 1.00000000

Note* Stand type 1 is the remainder category,
and stand type 2 the stands selected for
analysis.

Table B2. Test of covariance matrix homogeneity
and classification results between the study
stands and the remainder stands.

Test of covariance matrix homogeneity

Chi Square d.f. Proto(Chi2)
1.25555 3 .7397

Classification results

Stand
1 2 Total

Type

1 297 5 302
2 142 4 146

Total 439 9 448
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Since covariance matrices are equal, interpretation of the mean tests
are clearcut. Two tests on the means of basal area were done. First,

pine and hardwood basal area were jointly compared in a multivariate
analysis of variance using stand type as treatments. Stand type is
defined as: (1), the stands that were not selected for analysis, and (2),
those selected for analysis. The second test compared pine and hardwood
basal areas separately in a univariate analysis of variance.

The results of both multivariate and univariate analyses show a

significant difference between the study and remainder stands (Table B3).
When examining the individual basal area analyses, the explanation for the
difference emerges. Pine basal area is significantly different between
stand types whereas hardwood basal area is not. The selection of study
stands was designed to use natural stands wherever possible. This forced
plantation stands into the remainder category, causing the significant
difference. Industrial forest management in East Texas is proceeding in a

direction emphasizes conversion from naturally occurring mixed stands
towards pine plantations, further contributing to the difference. It was
deemed that the study stands were for practical purposes sufficiently
representative of the area to proceed with the analysis.



Table B3« Hypothesis results testing for equality
of mean basal area values for between the study and
remainder stands.

Multivariate results

Hotelling-Lawley trace = .02285756
Filial*s trace = .02234676

Wilk's criterion (U) = .97735324

Approximate ? (2 ,445 d.f.) = 5.09
Prob(F) = .0065

Univariate comparisons

Variable Mean Square
Factor Error F(1,446) Prob(F) R2

Pine BA 6639.78 706.922 9.39 .0023 .02063
Hdwd 3A 25.99 264.579 0.10 • 7541 .00022



APPENDIX C.

MISCELLANEOUS TABLES REFEREED TO FROM THE MAIN TEXT.



Table Cl. Expected crown diameter APVT models

Dependent
Variable F(5.l4l d.f.) Prob(F) Mean Square

Error

Volume 62.038 .0001 29.373
ln(Volume) 95-789 .0001 0.068

Dependent
Variable R2 Coefficient of

Variation
PRESS
mean

Volume .6875 27.674 0.0372
ln(Volume) • 772 6 9.162 0.0029

Dependent PRESS PRESS
Variable standard error variance

Volume .44199 27.7175
ln(Volume) .02225 0.0728

Regression coefficient estimates

Coefficient Volume In(Volume)

b0 -68.4212 1.3591
1.0218 0.0124

*2 0.0509 -0.0259

*3 1.6106 -0.0900

\ -0.0475 2.3469 X 10"5
b5 3.3875 X 10"6 8.8060 X 10-8

Note* The model form is the same as with the final APVT
with expected crown diameter substituted for crown
diameter. See Tables 4 and 6 for variable
definitions and the final APVT models, respectively
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Table C2. Expected canopy closure APYT models.

Dependent
Yariable F(5.l4l d.f.) Prob(F) Mean Square

Error

Volume 22.107 .0001 53.341
ln(Volume) 16.325 .0001 0.190

Dependent
Yariable R2 Coefficient of

Variation
PRESS
mean

Volume .4394 37.184 0.3191
ln(Volume) .3667 15.289 0.0228

Dependent PRESS PRESS
Yariable standard error variance

Volume 0.63670 59.6011
ln(Volume) 0.03702 0.2015

Regression coefficient estimates

Coefficient Volume In(Volume)

bo 171.0470 12.5370

bl -16.3850 -1.1360

b2 -0.9640 -0.0440

b3 8.2130 O.36OO

b4 -0.1510 0.0052
b -2.7403 X 10"5 -5.6480 X 10"6

Note: The model form is the same as with the final APYT
with expected canopy closure substituted for canopy
closure. See Tables 4 and 6 for variable
definitions and the final APYT models, respectively.



Table G3* Response surface of canopy closure
on stand parameters

Equation form: CC = Hq + b^ X Parameter + ^ X Parameter^

Regression coefficient estimates, with 144 d.f..

Parameter b0 t statistic Prob(t)

Stems per acre 317-46 2.23 .0272
Tree diameter 6.45 1.75 .0826
Height -13.29 -0.55 • 5862
Crown diameter n.56 2.57 .0111
Basal area 102.28 1.77 .0791

Parameter b^ t statistic Prob(t)

Stems per acre -8.60 -2.06 .0416
Tree diameter 0.08 0.75 .4565
Height 2.47 3.45 .0007
Crown diameter 0.09 0.20 .8453
Basal area -2.46 -1.50 .1359

Parameter b2 t statistic Prob(t)

Stems per acre 0.08 2.63 . 0095
Tree diameter -0.0005 -0.65 .5137
Height -0.016 -3.06 .0027
Crown diameter -0.00009 -0.09 .9309
Basal area 0.0256 2.14 .0341
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Table C3 (cont.)

Linear term contribution to overall regression significance

Stand
Parameter F(L) Prob(F) r2Ru>

Stems per acre 22.34 .0001 .1290
Tree diameter 0.68 .4124 .0046
Height 12.23 .0006 .0744
Crown diameter 0.87 .3538 .0060
Basal area 28.31 .0001 .1518

Quadratic contribution to the overall regression significance

Stand
Parameter F(Q) Prob(F) r2r(q)

Stems per acre 6.91 .0095 .0399
Tree diameter 0.43 .5317 .0030
Height 9.35 .0027 .0564
Crown diameter 0.01 .9309 .0000
Basal area 4.58 .0259 .0341

Note: The ? statistics are with 1 and 144 d.f..

Analysis of variance summary of stand parameter significance
across levels of canopy closure.

Stand
Parameter

F
(overall) Prob(F) R2K(overall)

Stems per acre 14.63 .0001 .1688
Tree diameter 0.55 .5769 .0076
Height 10.83 .0001 .1308
Crown diameter 0.44 .6471 .0060
Basal area 16.44 .0001 • 1859

Note: The F statistics are with 2 and 144 d.f..
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Table C4. Canonical correlations between canopy
closure and other stand parameters.

0

A. Canonical correlations of stems per acre, height,
and their crossproduct, with canopy closure.

Canonical
Correlation 3.14-3) Prob(F)

.4625033 12.9709 1.53 X io“7
Standardized canonical coefficients

P ■fprno

Coefficient 2.9698
Corr O, CC) .3591

Height
1.0849
.2727

Stems X Height
-2.3821

• 3778

B. Canonical correlations of stems per acre, tree
diameter, crown diameter, and basal area with
canopy closure.

Canonical
Correlation F(3,143) Prob(F)

• 448881 7.1160 5.79 X 10“°

Standardized canonical coefficients, listing
correlations with canopy closure on the second
line.

Stems Dbh Height CD BA
1.1374- 0.4240 0.3881 0.0841 -0.2520
•3591 .0682 .2727 .0773 .4001

Note* CD = crown diameter, and BA = basal area
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Table C5« Cluster analysis summary for the original
stand data sett principal component scores.

Principal component analysis

Eigenvector Proportion

Variable 1 2 3 4 #

DBH .383 -.618 .536 .427 1 .4999
Height • 592 -.203 -.767 .139 2 .3739
Stems .290 . 724 .143 .608 3 .1001
Volume .647 .227 .319 -.653 4 .0259

Cluster membership summary

Cluster (component 1 only)
Number Mean # of stands

1 -2.065 1
2 -5.047 1
3 -0.745 26
4 -0.339 14
5 1.015 3
6 1.329 37
7 -0.439 39
8 3.967 4
9 -1.751 20

10 -0.821 20
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Table C6. Cluster analysis summary for the
original stand data* raw data.

Cluster summary statistics

Means
uiusxer

Number Dbh Height Stems Volume # of stands

1 7.76 78.85 319.65 30.38 1
2 8.80 24.39 31.54 4.29 1
3 9.58 82.75 121.27 20.10 41
4 9.89 105.46 262.6l 55.33 1
5 10.55 76.72 43.61 8.22 13
6 9.19 84.75 200.83 31.46 8
7 7.1? 69.14 535-45 40.22 1
8 9.89 79.56 87.85 14.45 33
9 9.16 80.70 160.26 29.36 4l

10 7.63 71-55 239.34 21.23 2

Note* Volume is in cords per acre, Dbh in inches,
height in feet, and stems equals the number of stems
per acre.
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Table C7. Natural logarithms of cluster type 1 (based on
transformed data) covariance matrix determinants. Chi square
tests for covariance matrix homogeneity are with five degrees
of freedom, except all four bands which is with 50 degrees of
freedom.

Cluster
Number

Vegetation Indices

D7 D6 DD R7

3
4
6
7
8
9

0.9^75
0.9l4l
2.1620
2.3330
2.9900
1.0360

-0.2128
1.5650
1.6600
0.6790
1.5910
0.0083

2.3441
4.4752
4.9526
2.7936
4.4851
3.2379

-3.2660
-1.6370
-2.2910
-1.5610
-1.3670
-2.7620

Pooled
Covariance
Matrix

1.7940 0.8769 4.0378 -2.2170

Chi Square
Statistic 13.8170 18.7544 24.7370 13.1140

Prob(Chi2) .0168 .0021 .0001 .0223
Classification n
Rule Used y Q Q Q

Cluster
Number

Vegetation Indices

R6 ND7 ND6 G

3
4
6
7
8
9

-4.0950
-2.3110
-2.768O
-2.5310
-2.1830
-3.4380

-6.3590
-5.3640
-6.1130
-4.9320
-5.1840
-6.0450

-7.3370
-6.0540
-6.5110
-5.9910
-5.9150
-6.8690

-0.1454
0.4411
1.8270
1.1484
2.0226
-0.0013

Pooled
Covariance
Matrix

-2.9770 -5.6700 -6.5190 1.0111

Chi Square
Statistic 11.4880 10.8410 7.7977 21.8590

Prob(Chi2) .0425 .0546 .1677 .0006

Classification Q
Rule Used y L L Q

Note: Q denotes a quadratic rule, and L a linear rule.
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Table C7 (cont.)

Cluster
Number

Vegetation Indices

B GB PRIN1 BANDS

3
4
6
7
8
9

2.5933
4.3040
2.9040
4.0570

-11.3400
3.1158

-6.6880
-5-5520
-6.5780
-5.1700
-5.7200
-6.3900

-0.3550
1.4461
0.2852
1.0780
-2.6510
0.2407

-2.4790
1.9850
-1.1540
1.1800
-0.54-50 (*)
1.6510

Pooled
Covariance
Matrix

3-3990 -5.6980 0.5155 1.7298

Chi Square
Statistic 37.3920 13.6610 15.3530 115.0970

Prob(Chi2) .0001 .0179 .0090 .0001

Classification
Q

Rule used y Q Q Q

Note* Q denotes a quadratic rule, and L a linear rule.
(*) Notei Due to a degenerate covariance matrix,

only band 4 was used in this calculation.
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Table C8. Natural logarithms of cluster type 2 (based on the
raw data) covariance matrix determinants. Chi square tests
for covariance matrix homogeneity are with four degrees of
freedom, except all four bands which is with 40 degrees of
freedom.

Cluster
Number

Vegetation Indices

D7 D6 DD R7

3
5
6
8
9

2.2430
1.8510
2.9180
2.4000
2.6750

0.0845
I.2152
0.0788
0.4880
1.3030

3.1670
4.3370
3.9260
3.574-0
4.4920

-1.2700
-4.1590
-1.3130
-1.4340
-1.2130

Pooled
Covariance
Matrix

2.4720 0.8379 3.9840 -1.3690

Chi Square
Statistic 2.5080 8.5050 10.1230 11.7430

Prob(Chi^) . 6432 .0747 .0384 .0194
Classification -r

Rule used
L Q Q

Cluster
Number

Vegetation Indices

R6 ND7 ND6 G

3
5
6
8
9

-2.1160
-4.7050
-2.2140
-2.2690
-2.0020

-4.6520
-7.0130
-4.7390
-4.8390
-4.6090

-5.5190
-7.8700
-5-7260
-5.7890
-5.5020

0.7475
1.3970
1.9710
1.1734
1.7462

Pooled
Covariance
Matrix

-2.1920 -4. 7620 -5.6890 1.3960

Chi Square
Statistic 10.4470 8.9290 8.8760 5.7260

Prob(Chi2) •0335 .0629 .0667 .2205
Classification

Q
Rule used y L L L



Table C8 (cont.)

Cluster
Number

Vegetation Indices

B GB PRIN1 BANDS

3
5
6
8
9

4.2860
1.7350
3.6820
4.0470
4.2929

-4.9420
-7.5490
-4.9030
-5.0770
-4.9020

1.3090
-0.7290
0.5980
1.0650
1.3540

0.0997
-5.7250
2.7830
2.3670
3.3950

Pooled
Covariance
Matrix

4.1223 -5.0330 1.1594 3.3950

Chi Square
Statistic 10.5450 10.1240 8.3800 75-8980

Prob(Chi2) .0322 .0384 .0786 .0001

Classification
Q

Rule used y Q L Q

Note* Q denotes a quadratic rule, and L a linear rule.



Table C9* Means of vegetation indices, including
the raw Landsat data and principal component scores,
by cluster type and for the entire reduced data set.

Mean
Vegetation Index

Type B4 B5 B6 B7 R7 R6

Grand 21.00 17.84 39.88 37.74 2.23 2.31

Cluster
Number Cluster Type 1

1 26.4? 22.76 44.92 39.40 1.73 1.97
3 25-35 21.08 42.73 37.97 1.82 2.04
4 16.79 14.79 38.01 38.30 2.68 2.63
6 14.60 i3.ll 34.41 35-80 2.76 2.65
7 20.24 17-38 39.77 38.56 2.31 2.34
8 15.25 14.07 36.38 37.45 2.69 2.60
9 25.35 20.87 43.34 38.54 1.87 2.10

10 13.40 11.20 32.53 34.31 3.06 2.90

Cluster Type 2

1 13.40 11.20 32.53 34.31 3.06 2.90
3 21.08 17.75 39.52 37.23 2.22 2.31
5 26.33 21.60 45.02 39.98 1.85 2.09
6 19.68 17.11 39.79 39.15 2.37 2.38
7 26.47 22.76 44.92 39-40 1.73 1.97
8 20.44 17.50 40.02 38.42 2.30 2.35
9 20.29 17.34 38.74 36.74 2,25 2.32

10 25.71 22.04 42.93 37.69 1.71 1.95
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Table C9 (cont.)

Mean

Type

Vegetation Index

ND7 ND6 G B GB D7

Grand 0.37 0.39 19.94 54.61 0.38 19. 89

Cluster
Number Cluster Type 1

1 0.2? 0-33 18.71 62.23 0.30 16. 64
3 0.29 0.34 18.31 59.99 0.31 16.■ 89
4 0.45 0.45 22.29 50.24 0.45 23. 51
6 0.46 0.45 20.97 45.42 0.46 22. 69
7 0.38 0.40 20.72 54.22 0.39 21.,27
8 0.45 0.44 21.93 47.98 0.46 23. 38
9 0.30 0.35 19.01 60.43 0.32 17.,68

10 0.51 0.49 20.91 42.21 0.50 23.,11

Cluster Type 2

1 0.51 0.49 20.91 42.21 0.50 23.ll
3 0.36 0.39 19-58 54.20 0.37 19.49
5 0.30 0-35 19.79 62.72 O.32 18.38
6 0.40 0.40 21.30 54.31 0.40 22.04
7 0.27 0.33 18.71 63.24 0.30 16. 64
8 O.38 0.40 20.67 54.49 0.39 20.92
9 0.37 0.39 19.43 53-04 O.38 19.40

10 0.26 0.32 17-59 60.76 0.29 15.65
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Table C9 (cont.)

Vegetation Index
mean

Type D6 DD PRIN1 PR1N2 PRIN3 PRIN4

Grand 22.04 116.09 0 0 0 0

Cluster
Number Cluster Type 1

1 22.1? 119.41 1.923 -0.017 0.129 -0.049
3 21.64 114.96 1.147 -0.045 0.024 0.018
4 23.22 121.04 -0.881 0.697 -0.042 -0.071
6 21.30 112.70 -2.077 0.125 0.010 -0.003
7 22.38 119.03 -0.010 0.356 0.016 0.312
8 22.30 118.34 -1.421 0.567 0.049 -0.061
9 22.47 117.55 1.729 -0.240 -0.040 -0.016

10 21.33 109.08 -2.865 -0.151 -0.156 -0.004

Cluster Type 2

1 21.33 109.08 -2.865 -0.151 -0.156 -0.004
3 21. 78 114. 68 -0.124 -0.168 -0.017 0.007
5 23.42 122.07 1.871 0.120 -0.062 -0.023
6 22.68 121.10 0.001 0.613 0.031 0.039
7 22.17 119.41 1.923 -0.172 0.129 -0.050
8 22.52 118.93 0.029 0.290 -0.001 -0.003
9 21.39 11302 -0.410 -0.250 0.019 -0.003

10 20.89 113.50 1.277 -0.641 0.146 -0.003
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Table CIO. Canonical correlations of vegetation
indices versus the set of stems per acre, basal area,
and Dbh.

Vegetation
Index

Canonical (1)
Correlation F Prob(F)

R7 .61040 14.8450 1.11 X 10~7
R6 .61456 15.1724 8.26 X 10~8
ND7 .62304 15.8614 4.42 X 10-8
ND6 .62415 15.9547 4.06 X 10“8
G .52754 9.6410 .000019
B MISSING DATA

GB .62827 16.3031 2.98 X 10“8
D7 .59536 13- 7271 3.17 x 10"7
D6 .28106 2.1293 .1036
DD .20623 1.1105 . 3503
PRIN1 .54421 10.5197 7.50 X 10~6
PRIN1-PRIN4 .22408 1.2688 (2) .2916
B4-B7 .32770 2.1360 (2) .0852

(l) This set of canonical correlations are between
the appropriate vegetation index, and the linear
combination of stems per acre, basal area, and
Dbh, for which correlation is maximized.

(2) The F statistics for these correlations are with
3 and 72 degrees of freedom, with all of the
remaining test statistics having 3 and 75 d.f..

Note: The hypothesis that the F statistic tests is that
the canonical correlation in the first row of the
canonical coefficient matrix, and all that follow
are equal to zero.



Table Cll. Eigenvectors for the set of canonical
correlations relating vegetation indices to the
set of stems per acre, basal area, and Dbh.

Eigenvectors Most
Vegetation Influential
Index Variable 1 2 3 Variable

R 7 Stems -.00097 .00182 .00554
BA .00439 -.00041 0 Dbh
Dbh .04413 -.01500 .21195

R 6 Stems -.00079 .00382 .05231
BA .00178 -.00026 0 Dbh
Dbh .00559 .01516 .21008

ND7 Stems -.00101 .00438 .04449
BA .00556 -.01501 .21187 BA
Dbh .00176 -.00020 0

ND6 Stems -.00084 .00385 .05188
BA .00559 -.01515 .21019 BA
Dbh .00173 -.00008 0

G Stems -.00039 .00170 .07089
BA .00360 -.00534 .08648 Dbh
Dbh .00468 -.01460 .18210

GB Stems -.00104 .00453 .04320
BA .00179 -.00300 0 Dbh
Dbh .0055^ -.01496 .21232

D7 Stems -.00083 .00377 .05812
BA .00150 .00065 0 Dbh
Dbh • 00566 -.01526 .20855

D6 Stems .00246 -.00950 .15582
BA -.00203 .00735 0 Dbh, Stems
Dbh .00498 -.01001 .15030

DD Stems -.00246 .00994 -.14489
BA -.00238 .00731 0 Dbh, Stems
Dbh .00483 -.00960 .16087

PRIN1 Stems -.00162 .00677 .00922
BA .00100 .00143 -.04121 Dbh
Dbh .00560 -.01407 .21234

Notej See Table C13 for the extraction methods
involved in the estimation of the above
eigenvectors.



Table G12. Canonical correlations of vegetation
indices versus the set of canopy closure, crown
diameter, and height.

Vegetation
Index

Canonical (1)
Correlation F Prob(F)

R7 .68305 21.8650 2.82 X 10“10
R6 .65063 18.3518 5.01 X 10-9
ND7 .70975 250772 1.95 X 10“U
ND6 .67436 20.8515 6.33 X 10“10
G .53621 10.8870 1.16 X10--5

B .67120 20.4878 8.49 X 10“10
GB .71495 26.1401 1.12 X 10-11
D7 .66395 19.7088 1.61 X 10"9
D6 .13875 0.4842 . 6942
DD .15860 0.6451 . 5884
PRIN1 .64597 17.9019 7.35 x 10“9
PRIN1-PRIN4 .13036 0.4149 .7428
B4-B7 .21080 1.1161 • 3483

(1) This set of canonical correlations are between
the appropriate vegetation index, and the linear
combination of canopy closure, crown diameter, and
height, for which correlation is maximized.

(2) The P statistics for these are with 3 and 72 degrees
of freedom, with all of the remaining test
statistics having 3 and 75 d.f..

Note* The hypothesis that the F statistic tests is that
the canonical correlation in the first row of the
canonical coefficient matrix, and all that follow
are equal to zero.



Table C13 • Eigenvectors for the set of canonical
correlations relating vegetation indices to the
set of canopy closure, crown diameter, and height

Vegetation
Index

Eigenvector Most
Influential
VariableVariable 1 2 3

R7 GC .01098 -.00214 .01134 CD.HT
CD -.07577 .00107 .01100
HT .01106 .01051 0

R 6 GC .00934 -.00211 .01158 HT
CD .01098 .01051 0
HT -.07600 .00111 .01076

ND? CC .01098 .00230 .01131 HT
CD .01242 .01046 0
HT -.07556 .00123 .01103

ND6 CC .00925 -.00229 .00156 CD
CD -.07577 .OOIBO .01077
HT .01252 .01045 0

G CC .02239 -.00325 .00930 HT
CD .01811 .01018 0
HT -.07180 .00139 .01278

B CC .00463 -.00169 .01202 HT
CD .00761 .01062 0
HT -.07671 .00076 .01025

GB CC .01103 -.00225 .01132 HT
CD .01196 .01047 0
HT -.07562 .00118 .01103

D7 CC .01825 -.00277 .01012 HT
CD .01511 .01034 0
HT -.07364 .00128 .01214

D6 CC -.03025 .00520 .01310 HT,CC
CD .06177 -.00249 0
HT .03541 .00911 -.00884

DD CC -.05476 .00435 .01342 CD,CC
CD .05455 .00504 0
HT .00304 -.00847 .00835

PRIN1 CC .00478 -.00156 .01225 All three
CD .00664 .01064 0
HT .07692 -.00067 -.00998

PRIN1-4 CC .07744 -.02350 -.00895 CC,HT
CD .017^2 .01027 0
HT .00748 .00338 .01784



Table Cl3 (cont.)

Eigenvector Most
Vegetation - Influential
Index Variable 1 2 3 Variable

B4-B7 CC -.06071 .00003 .01681 CC.HT
CD .01532 .01037 0
HT .04687 - .00387 .01020

Notes Let S denote the covariance matrix of the entire set

of 1variables, vegetation indices and the sets of

canopy closure, crown diameter, and height, and stems
per acre, basal area, and Dbh. Let denote the
variance of vegetation indices, S22 the covariance
of stand parameters, and S^2 the covariance between
vegetation indices and stand parameters.
The eigenvectors presented in Tables Cll and C13 are
drawn from the matrix determinantal equations

(Cl)det(S2lS^Sl2 - 12S22) = 0> where *
det denotes the determinant of the matrix equation,
1 are the eigenvalues associated with this expression

T

S21 = S12* "the transpose of Sl2, and
-1 • 0

Sn = the inverse of S^.
The eigenvectors of these canonical correlations are
associated with the eigenvalues of the above
determinantal equation.
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Table Cl4. Mahalanobis distances between clusters, with the
significance probability of the distance in the row
immediately below the distance value. The distances are given
as the distance from a particular cluster, on the left edge,
to a corresponding cluster denoted on the top of the table*

B4-•B7i with cluster type 1

from
#

Distance to cluster number

3 4 6 7 8 9 10

1 0.9216
.0049

3.3412
.0000

3.6436
.0000

2.2490
.0000

3.3788
.0037

1.2686
.0001

4.5222
.0250

3 2.8500
.0431

3.0348
.0000

1.8296
.0001

2.1928
.6500

0.6717
.2764

3.7572
.8677

4 1*3011
.0003

1.2108
.0008

0.8071
.9477

2.5792
.0000

1.8853
.9016

6 1.5360
.0006

0.7705
.9890

3.0112
.0000

1.3811
.9914

7 1.1381
. 9662

1.7686
. 0000

2.5635
.9491

8 2.8257
.0000

1.9000
.7607

9 3.5807
.9914

Cluster type J2

from
#

Distance to cluster number

3 5 6 7 8 9 10

1 1.8562
.0000

2.7953
.0000

2.4226
.0001

3.3606
.1499

2.0863
.0000

1.8823
.0000

3.2624
.1701

3 1.3081
.4991

1.1462
.7228

1.5046
.9905

0.6386
.2071

0.2841
• 7891

1.5299
• 9901

5 1-5593
.1572

1.3394
.9691

1.1818
.0001

1.5515
.0000

1.9207
.9158

6 1.6163
• 9350

0.5778
.1314

1.2006
.0000

1.9598
.8910

7 1.4925
.0000

1.5291
.0000

0.8416
.9512

8 0.7926
.0629

1.7834
• 9873
1.4196
*9942

9
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Table Cl4 (cont.)

from
# 3

G,B,GB with cluster type 1
Distance to cluster number

4 6 7 8 9 10

1 1.3626
.0000

3.4260
.0000

3.6437
.0000

2.3926
.0000

3.4822
.0069

1.4118
.0000

4.5238
.0543

3 3.3503
. 0273

3.2034
.0000

1.8392
.0001

3.4486
. 6856

0.7737
.2827

3.8597
. 9440

4 1.4947
.0009

1.9858
.0000

0.8115
• 9853

2.9239
.0000

2.0794
.9517

6 1.7498
.0003

1.1257
.9923

3.0788
.0000

1.3883
• 9987

7 2.0117
• 9353

1.7795
.0001

2.6565
• 9841

8 3.1816
.0000

2.1298
.8348

9 3.6154
• 9555

from

_# 3
1 1.8565

.0000

3

5

6

7

8

Cluster type 2
Distance to cluster number

5 6 7 8 9 10

2.8052 2.4468
.0000 .0004

3.^991
.2222

2.0923
.0000

1.8986
.0000

3-2957
.2787

1.3242 1.2052
.6606 .8346

1.7769
• 9972

0.6513
.3193

0.3585
• 7992

1.5913
• 9982

1.6632
.2104

1.5298
.9882

1.1844
.0004

1.5516
.0000

1.9346
.9718

2.0855
.9512

0.7645
.0499

1-3383
.0000

2.1206
.9483

1.7016
.0000

1.6930
.0000

0.9829
. 0666

0.7978
.1190

1.8101
.9977

1.4364
*9992

9



146

Table Cl4 (cont.)

R7» R6 with cluster type 1

from
#

Distance to cluster number

3 4 6 7 8 9 10

1 0.2877 2.9008 3.1435
.5022 .0000 .0000

1.8182
.0000

2.9227
.0055

0.7492
.0120

4.1241
.0191

3 2.6254 2.9044
.0299 .0000

1.6080
.0001

2.6819
.4956

0.5197
.3077

3.8445
.6829

4 0.8930
.0081

1.4416
.0000

0.7943
.8376

2.3841
.0000

I.2350
.8824

6 1.3623
.0009

0.2238
.9948

2.8708
.0000

1.5493
.9364

7 1.1532
.8713

1.7094
.0000

2.6307
.8278

8 2.6477
.0000

1.6393
.6448

9 3.6120
.7140

Cluster type 2t

from
#

Distance to cluster number

3 5 6 7 8 9 10

1 1.9445 2.46l4 2.1477
.0000 .0000 .0003

2.9245
.1291

1.8779
.0000

1.9801
.0000

3.0888
.1027

3 0.8760 0.7127
.5824 .7712

1.0088
.9752

0.1790
.8304

0.1370
.8837

1.1460
.9682

5 1.5239
.0813

0.7581
.9604

1.0549
.0002

0.9857
.0003

1.0337
.9276

6 1.3343
.8642

O.5669
.0652

0.5768
.0444

1.3203
. 8668

7 1.1348
.0000

1.0270
.0000

O.2785
.9811

8 0.1089 1.2409
.9294 .9675

1.1323
• 9750

9
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Table Cl4 (cont.)

ND7» ND6 with cluster type 1

from
#

Distance to cluster number

3 4 6 7 8 9 10

1 0.3374
. 3889

3.1024
. 0000

3.3863
.0000

2.0769
.0000

3.1790
.0023

0.7424
.0129

4.1733
.0174

3 2.7656
.0207

3.0629
.0000

1.7719
.0000

2.8541
.4520

0.5042
0296

3.8369
.6839

4 0.7490
.0315

1.3464
.0000

0.6252
.8959

2.5623
.0000

1.1773
.8925

6 1.3547
.0010

0.2141
.9952

2.9717
.0000

1.5282
• 9381

7 1.1653
.8688

1.7996
.0000

2.5229
.8404

8 2.7579
.0000

1.5666
.6697

9 3* 5544
.7216

Cluster type 2►

from
#

Distance to cluster number

3 5 6 7 8 9 10

1 1.8916
. 0000

2.3724
. 0000

2.1167
.0003

2.8990
.1337

1.8528
.0000

1.9523
.0000

3.0901
.1025

3 0.8318
.6140

0.7320
.7603

1.0669
.9723

0.2432
.7100

0.1520
.8588

1.2123
.9644

5 1.4989
.0880

0.6925
.9668

1.0703
.0002

0.9420
.0005

0.9786
.9348

6 1.4541
.8409

0.5112
.1069

0.5855
.0406

1.4537
.8410

7 1.2282
.0000

1.0843
.0000

0.2939
• 9789

8 0.1454
.8778

1.3297
• 9628
1.1944
.9723

9
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Table Cl4 (cont.)

D7. :D6, DD with cluster type 1

from
#

Distance to cluster number

3 4 6 7 8 9 10

1 1.2938
. 0000

3.5425
. 0000

3.9738
. 0000

2.6625
.0000

4.1470
.0002

1.1227
.0004

4.1124
. 0499

3 3.0487
. 02 62

3.2137
.0000

1.9007
.0000

3.3590
.5370

0.4643
• 5991

3.8911
.8553

4 1.2269
.0007

1.2492
.0005

1.0305
.8984

2.7832
.0000

2.3004
.8356

6 1.6232
. 0003

0.9227
• 9815

3.H37
.0000

2.0341
• 9375

7 1.5146
.9252

1.6960
.0001

2.8911
.9271

8 3.2026
.0000

2.7808
.4792

9 3*7451
.8688

Cluster type 2>

from
#

Distance to cluster number

3 5 6 7 8 9 10

1 2.2461
.0000

3.0419
.0000

2.9893
.0000

2.7637
. 3030

2.5808
.0000

2.3869
.0000

2.9216
.2554

3 1.2649
.5281

1.2089
.6882

1.4992
.9906

0.6930
.i486

0.3633
. 6349

1.0977
.9963

5 1.5058
. 1816

0.9449
.9887

1.1706
.0002

1.5379
.0000

1-3553
.9680

6 2.2652
.8418

0.5545
.1580

1.1930
.0000

2.0392
.8790

7 1.7852
.0000

1.8171
.0000

1.2008
.8727

8 0.7909
.0637

1.5969
.9908

9 1.1910
.9966



Table C15» Direct volume regression from spectral
data* remaining summary statistics•
(Note* this is a continuation of Table 17.)

Vegetation Mean Square PRESS PRESS
Index Error mean variance

R7 70.043 -0.00300 72.6779
R6 70.567 -0.00037 73-1493
ND7 69.917 0.00010 72.5692
ND6 70.513 0.00164 73.1014
G 84. 009 0.01125 87.7007
B 68.465 -0.00198 70.8233

71.7194GB 69.043 0.00048
D7 77.261 0.00280 80.6160
D6 90.140 0.05731 94.0463
DD 89.825 0.07975 94.7900
PRIN1 69.144 -0.00009 75.1908
PRIN1-PRIN4 67.690 0.08580 75.1098
B4-3? 67.690 0.08580 75.1098

Regression coefficient estimates
Vegetation
Index bo t statistic Prob(t)

R7 -1.835 -0. 432 .6669
R6 -12.928 -1.966 .0529
ND7 0.239 0.063 .9502
ND6 -11.993 -1.882 .0636
G -8. 792 -0.862 .3913
B 50.890 7.961 .0001
GB -3.407 -0.769 .4442
D7 -3.220 -0.559 .5779
D6 36.619 2.443 .0168
DD 39.946 2.445 .0164
PRIN1 18.445 19.715 .0001
PRIN1-PRIN4 18.445 19.920 .0001
B4-37 40.593 2.842 .0058
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Table C15 (cont.)

Regression coefficients (cont.)

Vegetation
Index bl t statistic Prob(t)

R7 9.091 4.899 .0001
R 6 13.581 4.821 .0001
ND7 49.643 4.917 .0001
ND6 78.070 4.829 .0001
G 1.366 2.684 .0089
E -0.594 -5.131 .0001
GB 58.103 5.046 .0001
D7 1.089 3.816 .0003
D6 -0.825 -1.216 .2278
DD -0.185 -1.324 .1894
PRIN1 -2.587 -5.301 .0001
PRIN1-PRIN4 -2.587 -5001 .0001
B4-E7 -2.693 -1.862 . 0666

Vegetation
Index b2 t statistic Prob(t)

PRIN1-PRIN4 1.680 1.370 .1761
B4-B7 -0.118 -0.090 .9283

Vegetation
Index *3 t statistic Prob(t)

PRIN1-PRIN4 2.720 0.388 .6995
B4-B7 2.910 1.377 .1726

Vegetation
Index b4 t statistic Prob(t)

PRIN1-PRIN4 -20.960 -1.624 .1085
B4-B7 -2.140 -1.405 .1643
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Table Cl6. Crown diameter regression from spectral
data: remaining summary statistics.
(Note: this is a continuation of Table 20.)

Vegetation Mean Square
Index Error

PRESS
mean

PRESS
variance

R 7 2.567 -0.00312 2.6680
R6 2.662 -0.00038 2.7640
ND? 2.515 -0.00224 2.6130
ND6 2.621 -0.00310 2.1789
G 2.724 -O.OOI39 2.8517
B 2.669 -0.00346 2.7576
GB 2.501 -0.00190 2.6000
D7 2.488 -0.00055 2.6077
D6 3.274 0.00353 30966
DD 3.271 0.00800 3.4105
PRIN1 2.741 -0.00348 2.8275
PRIN1-PRIN4 2.422 0.00893 2.8151
B4-B7 2.422 0.00893 2.8151

Vegetation
Index

Regression

bo

coefficient estimates

t statistic Prob(t)

R7 9.110 11.208 .0001
R6 7.435 5.823 .0001
ND7 9.374 12.938 .0001
ND6 7.435 6.051 .0001
G 5*5^3 3.019 .0034
B 17.948 14.250 .0001
GB 8. 738 IO.36O .0001
D7 7.731 7.746 .0001
d6 13.211 k, 62k .0001
3D 11.693 3-765 .0001
PRIN1 12.763 68.519 .0001
PRIN1-PRIN4 12.763 72.890 .0001
B4-B7 10.834 4.010 .0001
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Table Cl6 (cont.)

Regression coefficients (cont.)

Vegetation
Index bl t statistic Prob(t)

R7 1.637 4.609 .0001
R6 2.306 4.216 .0001
ND7 9.253 4.827 .0001
ND6 13.666 4.385 .0001
G 0.362 3.952 .0002
B -0.095 -4.181 .0001
GB 10.703 4.883 .0001
D7 0.253 4.939 .0001
D6 -0.020 -0.157 .8757
DD 0.009 0.345 .7307
PRIN1 -0.394 -3.875 .0001
PRIN1-PRIN4 -0.394 -4.123 .0001
B4-B7 -0.420 -0.157 • 8755

Vegetation
Index b2 t statistic Prob(t)

PRIN1-PRIN4 0.778 3.350 .0013
B4-B7 0.186 0.750 .4572

Vegetation
Index *3 t statistic Prob(t)

PRIN1-PRIN4 1.494 1.130 .2635
B4-B7 -0.442 -1.110 .2729

Vegetation
Index t statistic Prob(t)

PRIN1-PRIN4 1.929 0.791 .4317
B4-B7 0.453 1.571 .1205



Table Cl?» Canopy closure regression from spectral
data* remaining summary statistics.
(Note* this is a continuation of Table 21.)

Vegetation 1Mean Square PRESS PRESS
Index Error mean variance

R 7 m.765 0.01463 116.4450
R6 111.880 0.02119 116.5420
ND7 111.477 0. 01200 116.0910
ND6 111.610 0.01980 116.2420
G 110.802 0.05235 115.7170
B 112.239 -0.00290 116.6180
GB 111.539 0.01189 116.1380
D7 IIO.865 0.02365 116.6046
d6 HI.9O7 0.01991 115.8880
DD 111.957 0.03366 116.1615
PRIN1 112.342 -0.00284 116.6480
PRIN1-PRIN4 115.070 0.12140 124.9540
B4-B7 115.070 0.12140 124.9540

Regression coefficient estimates
Vegetation
Index b0 t statistic Prob(t)

R7 76.650 14.292 .0001
R 6 78.368 9.466 .0001
ND7 76.380 15.925 .0001
ND6 79-189 9.876 .0001
G 85.647 7.312 .0001
B 69.064 8.439 .0001
GB 77.404 13.475 .0001
D7 80.163 11.612 .0001
D6 83.889 5.023 .0001
DD 84. 381 4. 644 .0001
PRIN1 72.806 61.053 ,0001
PRIN1-PRIN4 72.806 60.325 .0001
B4-B7 85.864 4.611 .0001



Table C17 (cont.)

Regression coefficients (cont.)

Vegetation
Index bl t statistic Prob(t)

R7 -1.723 -0.735 .4645
R6 -2.408 -0.679 .4992
ND7 -10.987 -0.861 • 3919
ND6 -16.370 -0.805 • 4233
G -0.643 -1.102 .2739
3 0.695 0.462 .6453
GB -12.227 -0.835 . 4061
D7 -0.370 -1.082 .2828
D6 -0.503 -o.665 .5078
DD -0.100 -0.639 .5250
PRIN1 0.246 0.373 .7101
PRIN1-PRIN4 0.246 0.373 .7101
B4-B7 -0.511 -0.277 .7822

Vegetation
Index b2 t statistic Prob(t)

PRIN1-PRIN4 -1.610 -1.010 .3175
34-37 0.695 0.406 . 6861

Vegetation
Index b3 t statistic Prob(t)

PRIN1-PRIN4 3.074 0.340 .7376
B4-B7 0.413 0.150 .8813

Vegetation
Index b4 t statistic Prob(t)

PRIN1-PRIN4 -3.965 -0.220 .8268
B4-B7 -0.826 -o.4l6 • 6789



Table C18. Height regression from spectral
data* remaining summary statistics.
(Note* this is a continuation of Table 22.)

Vegetation Mean Square PRESS PRESS
Index Error mean variance

R 7 44.308 -0.02111 45.9480
R6 47.283 -0.02471 49.1322
ND7 41.802 -0.01528 43.3538
ND6 45.171 -0.02230 46.9239
G 60.238 -0.03680 63.1994
B 44.490 -0.00679 46.6050
GB 41.179 -0.01510 42.7630
D? 48.405 -0.02310 50.1577
D6 77.986 0.04823 81.0482
DD 78.248 0.05544 81.3487
PRIN1 46.805 -0.00575 49.0980
PRIN1-PRIN4 4-0.356 0.00686 45.5570
B4-B7 40.356 0.00686 45.5570

Regression coefficient estimates
Vegetation
Index b0 t statistics Prob(t)

R7 52.919 15.670 .0001
R6 40.228 7.474 .0001
ND7 54.782 18.547 .0001
ND6 40.198 7.88O .0001
G 36.482 4.224 .0001
B 117.788 22.860 .0001
GB 50.359 14.720 .0001
D7 47.148 10.335 .0001
D6 91.655 6.524 .0001
DD 90.583 5-964 .0001
PRIN1 78.448 101.920 .0001
PRIN1-PRIN4 78.448 109.761 .0001
B4-B7 87.647 7.947 .0001
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Table Cl8 (cont.)

Regression coefficients (cont.)

Vegetation
Index bl t statistic Prob(t)

R7 11.445 7.753 .0001
R6 16.545 7.175 .0001
ND? 64.598 7.266 .0001
ND6 98.110 7.583 .0001
G 2.104 4.884 .0001
B -0,721 -7.177 .0001
GB 74.688 8.398 .0001
D? 1.573 6. 965 .0001
D6 -0.599 -0.950 . 3452
DD -0.104 -0.801 .4528
PRIN1 -3.052 -7.266 .0001
FRIN1-PRIN4 -3.052 -7.826 .0001
B4-B7 -1.366 -1.253 .2143

Vegetation
Index b2 t statistic Prob(t)

PRIN1-PRIN4 3.630 3.810 .0003
B4-B7 0.059 0.059 .9531

Vegetation
Index b3 t statistic Prob(t)

PRIN1-PRIN4 4.060 0.750 .4557
B4-B7 0.195 0.119 .9054

Vegetation
Index b4 t statistic Prob(t)

PRIN1-PRIN4 -4.773 -0.479 .6333
B4-B7 0.283 0.240 .8110



Table C19* Average Dbh regression from spectral
data: remaining summary statistics*
(Note: this is a continuation of Table 27.)

Vegetation Mean Square PRESS PRESS
Index Error mean variance

R7 0.965 -0.00190 1.0035
R6 0.944 -0.00230 0.9837
ND7 0.937 -0.00170 0.9572
ND6 0.924 -O.OOI90 0.9614
G 1.004 -0.00290 1.0470
B 1.089 -0.00020 1.1379
G3 0.938 -0.00120 0.9748
D7 0.934 -0.00240 0.9684
D6 1.339 0.00770 1,3985
DD 1.365 0.00780 1.4202
PRIN1 1.121 0.00035 1.1727
PRIN1-PRIN4 0.877 0.00610 0.9646
34-37 0.877 0.00610 0.9646

Regression coefficient estimates
Vegetation
Index b0 t statistic Prob(t)

R7 6.334 12.708 .0001
R 6 4. 649 6.112 .0001
ND7 6.546 14.790 .0001
ND6 4.685 6.423 .0001
G 3.189 2.860 .0054
B 12.713 15.679 .0001
GB 6.O89 11.790 .0001
D7 5.348 8.439 .0001
D6 6.468 3.450 .0007
DD 7.489 3.738 .0004
PRIN1 9.H7 76.539 .0001
FRIN1-PRIN4 9.H7 86.494 .0001
34-37 7-7^1 4.593 .0001
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Table C19 (cont.)

Regression coefficients (cont.)

Vegetation
Index bl t statistic Prob(t)

R 7 1.248 5.726 .0001
R 6 1.934 5*937 .0001
ND7 7.018 5.993 .0001
ND6 11.368 6.144 .0001
G O.297 5* 344 .0001
B -0.066 -4.508 .0001
GB 8.050 5.997 .0001
D7 0.189 6.036 .0001
D6 0.120 1.453 .1502
DD 0.014 0.809 .4211
PRIN1 -0.272 -4.189 .0001
PRIN1-PRIN4 -0.272 -4. 734 .0001
B4-B7 -0.193 -1.201 .2334

Vegetation
Index b2 t statistic Prob(t)

PRIN1-PRIN4 0.577 3.990 .0002
B4-B7 -0.412 -2.573 .0074

Vegetation
Index b3 t statistic Prob(t)

PRIN1-PRIN4 -1.667 -2.089 .0402
B4-B7 0.552 2.294 .0247

Vegetation
Index b4 t statistic Prob(t)

PRIN1-PRIN4 -2.592 -2.010 .0480
B4-B7 -O.237 -1.366 .1247
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Table C20. Basal area regression from spectral
data: remaining summary statistics.
(Note: this is a continuation of Table 28.)

Vegetation Mean Square PRESS
Index Error mean

PRESS
variance

R7 531.900 0.06600 551.2790
R6 536.670 0.01130 555.6480
ND7 534.435 0.01580 554.5240
ND6 539.107 0.02240 558.6580
G 598.628 0.06210 623.6710
3 523.662 -0.00840 542.0950
GB 529.336 0.01420 549.2840
D7 568.076 0.03220 591.7580
D6 6l6.626 0.11340 642.4830
DD 618.497 0.18180 652.8920
PRIN1 526.538 -0.00790 544.6310
PRIN1-PRIN4 528.778 0.22780 585-8730
B4-B7 528.778 0.22780 585.873°

Regression coefficient estimates
Vegetation t» ^ statistic Prob(t)Index 0

R7 16.544 1.414 .1614
R6 -6.059 -0.334 .7392
ND7 21.542 2.040 .0448
ND6 -3.187 -0.181 .8570
G 5.W 0.201 .8410
B 128.399 7.263 .0001
GB 13-564 1.113 .2692
D7 15.009 0.960 .3398
D6 108.920 2.778 .0069
DD 109.195 2.557 .0125
PRIN1 59.418 23.015 .0001
PRIN1-PRIN4 59.418 22.966 .0001
E4-B7 109.869 2.752 .0074
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Table C20 (cont.)

Regression coefficients (cont.)

Vegetation
Index bl t statistic Prob(t)

R7 19.221 3.758 .0003
R6 28.344 3.649 .0005
ND7 103.837 3.700 .0004
ND6 160.576 3.592 .0006
G 2.704 1.991 .0500
B -1.263 -3.944 .0002
GB 121.684 3.816 .0003
D7 2.232 2.884 .0051
D6 -2.246 -1.266 .2094
DD -0.428 -1.168 .2463
PRINl -5*466 -3.870 .0002
PRIN1-PRIN4 -5* 466 -3.870 .0002
B4-B7 -5.819 -1.474 .1446

Vegetation
Index b2 t statistic Prob(t)

PRIN1-PRIN4 3*330 0.970 .3348
B4-B7 1.722 0.469 .6405

Vegetation
Index b3 t statistic Prob(t)

PRIN1-PRIN4 15.960 0.814 .4180
34-B7 4.373 0.741 .4613

Vegetation
Index b4 t statistic Prob(t)

PRINl-PRIN4 -37.270 -0.929 .3047
B4-B7 -3.530 -0.829 .4090



Table C21. Stems per acre regression from spectral
data* remaining summary statistics#
(Note* this is a continuation of Table 29.)

Vegetation Mean Square PRESS PRESS
Index Error mean variance

R7 4483.300 0.08900 4668.8800
R6 4486.100 0.12090 4667.2800
ND7 4486.950 0.10280 4667.9200
ND6 4487.9^0 0.13480 4683.3900
G 4446.850 0.19580 4601.2700
B 4455.830 0.01920 4646.3900
G3 4485.420 0.08100 4667.3800
D7 4476.720 0.12740 4649.6100
D6 4319.537 0.03210 4432.6900
DD 4383.560

4448.100
0.15770 4539.7800

PRIN1 0.00780 4635.6000
PRIN1-PRIN4 4449.030 0.29040 4782.7200
B4-B7 4449.030 0.29040 4782.7200

Regression coefficient estimates
Vegetation
Index bo t statistic Prob(t)

R7 124.372 3. 662 .0005
R6 124. 322 2.371 .0202
ND7 129.701 4.238 .0001
ND6 130.907 2.575 .0120
G 196.415 2.647 .0098
B 172.113 3-338 .0013
GB 126.414 3.540 .0007
D7 153.145 3*491 .0008
D6 313.408 3.021 .0034
DD 287.008 2.524 .0137
PRIN1 133-978 17.855 .0001
PRIN1-PRIN4 133.978 17.853 .0001
B4-B7 292.054 2.538 .0140
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Table C21 (cont.)

Regression coefficients (cont.)

Vegetation
Index bl t statistic Prob(t)

R7 4.308 0.290 .7726
R6 4.179 0.186 .8529
ND7 11.675 0.144 .8857
ND6 7.876 0.061 • 9515
G -3.131 -0.846 .4003
B -0.698 -0.748 .4570
GB 20.114 0.217 .8290
D7 -0.963 -0.444 . 6586
D6 -8.143 -1.734 .0870
DD -1.315 -1.349 .1813
PRIN1 -3.410 -0.833 .4076
PRIN1-PRIN4 -3.410 -0.833 .4076
B4-B7 -7.997 -0.698 .4900

Vegetation
Index b2 t statistic Prob(t)

PRIN1-PRIN4 -9.780 -0.980 .3281
B4-B7 15.240 1.430 .1560

Vegetation
Index b3 t statistic Prob(t)

PRIN1-PRIN4 80.600 1.417 .1607
B4-B7 -4.134 -0.241 .4871

Vegetation
Index b4 t statistic Prob(t)

PRIN1-PRIN4 -8.790 -0.084 .9332
B4-B7 -2.140 -1.405 .1643



Table C22. Landsat scene identification.

Quadrangle
Scene

Identification
Number

Date
of

Imagery

New V/illard NW 30920-16015 9/10/80
New Willard NS 30920-16015 9/10/80
New V/illard SS 30920-16015, 9/10/80,

21707-16084 9/25/79
New Willard SW 30920-16015, 9/10/80,

21707-16084 9/25/79
Blanchard 21707-16084 9/25/79
Qnalaska 21707-16084 9/25/79
Livingston NW 21707-16084 9/25/79
Livingston NE 21707-16084 9/25/79



APPENDIX D.

GLOSSARY OF TERMS USED IN THE TEXT OF THIS STUDY.
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This section contains brief definitions for those terms used in this
study which may cause the reader confusion. Complete definitions can be
found in the Manual of Remote Sensing (American Society of Photogramnetry
1983).

Aerial Photo Volume Table: A table of either individual of stand
volumes, obtained through measurements from aerial photographs,
with a minimum of ground measurements. The typical photo
measurements used are canopy closure, crown diameter, and total
tree height.

Ancillary Data: Data used in remote sensing analyses, obtained from
auxiliary sources, usually not from remote sensing devices.

Asymptotic Porperties: The mathematical properties of a probability
density function, occurring at large sample sizes approaching
infinity.

Basal Area: The cross sectional area of a tree, measured at diameter
breast height, 4.5 feet above the ground.

Bias: A systematic departure from expected statistical behavior in
a measured variable.

Canonical Correlations: A multivariate statistical technique that
finds linear functions within two sets of data such that the

correlation between these functions is maximized.

Canopy Closure: The proportion of a unit area covered by tree crowns
which can also be expressed as a percentage.

Classification: A statistical rule developed to assign a data point
from a set of observations into that category, for which it is
most likely to be a member.

Cluster Analysis: A multivariate statistical technique which forms
groupings within a data set based on measures of "similarity”,
or divides a data set into groups using a measure of
"dissimilarity".

Confidence Interval: A range of data values within which a given
data observation wrill fall with a specified probability. (This
term is synonymous with confidence levels in the context of this

study.)
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Confusion Matrix: A matrix presenting, by number of observations,
the results of a classification analysis. It includes the
number of correctly classified observations on the main diagonal
and incorrect classification elsewhere.

Covariance Matrix: The multivariate analog of variances, which are

located on the main diagonal, and having covariances elsewhere.
Crown Ratio: The proportion of an individual tree's bole actually

supporting foliage.
Digital Terrain Map: Topography digitized on a U.S. Geological

Survey 1:250,000 quadrangle in a grid cell format which can be
used with remote sensing data.

Geographic Information Systems: Data bases incorporating spatial
distribution of information as a component within it.

Heteroscedasticity: The statistical property where, for instance,
the residuals in a regression analysis do not have constant
variance across the range of the data.

Land Use/Land Cover: A term used by remote sensing specialists to
account for the fact that when interpreting images, only land
cover is visible, but can be used to draw inferences concerning
land use.

Likelihood Ratio Principle: The development of test statistics using
the ratio of two probability densities as its basis.

Maximum Likelihood: The development of statistical parameter
estimators using the properties of the density functions for
which they are to be used.

Mean Vector: The mean of a set of multivariate observations.
Median: The point in a frequency distribution where fifty percent of

the observations lie above and below it.

Mosaic: The assembling of aerial photographs, over an area, into a

single, composite image by matching of visible canmon ground
points, and effective areas of photographs.

Multicollinearity: The phenomenon, occurring in regression analysis,
where independent variables are linear functions of one another.

Multispectral Scanner: A remote sensing device which is capable of
simultaneously recording data in several wavelength intervals.



Multi-temporal Data: Remotely sensed data, obtained at two or more

points in time.
Nearest Neighbor: A classification technique assigning an

observation into a descriptive category by comparison with
those observations nearest to it, either spatially or spectrally
in a pixel by pixel format.

Precision: The degree of spread in an estimate of a random variable.

Principal Components: A multivariate statistical technique which
rotates the mathematical axes of a data set. The object is to
extract linear, orthogonal combinations of the original data
that are uncorrelated and preserve as much of the original
sample variation in as few combinations as possible.

Registration: Digital techniques for matching separate images,
either spatially, spectrally, and/or geometrically.

Remote Sensing: Evaluation of an object from a distance, with a

minimum of or no contact with it.

Residual: The difference between a data observation and its

predicted value in a regression analysis.
Silviculture: The art and science of manipulating forest stands.

It includes the techniques to harvest, thin, and regenerate
forest stands.

Spectral Signature: The response of an object on the ground to solar
radiation, viewed by a remote sensing device as reflectance.

Stocking: Measures of the degree to -which a forested, or potentially
forested, area is occupied by trees.

Training Sets: Areas on a remotely sensed image which have known
ground characteristics, and are of known location on the image.
They are used as comparative indices around which classification
rules are developed.

Vegetation Index: A transformation in digital, remotely sensed, data
designed to enhance the relative contrast between vegetation and
surrounding areas on an image.


