
ROUTING AS A FLOW CONTROL STRATEGY

WITHIN AN

INTEGRATED CIRCUIT/PACKET-SWITCHED

COMMUNICATIONS NETWORK

A Dissertation

by

KENNETH RAY HEBERT

Submitted to the Graduate College of
Texas A&M University

in partial fulfillment of the degree of

DOCTOR OF PHILOSOPHY

May 1986

Major Subject: Computing Science

ROUTING AS' A FLOW CONTROL STRATEGY

WITHIN AN

INTEGRATED CIRCUIT/PACKET-SWITCHED

COMMUNICATIONS NETWORK

A Dissertation

by

KENNETH RAY HEBERT

Bruce McCormick

(Head of Department)

May 1986

iii

ABSTRACT

Routing as a Flow Control Strategy

Within an

Integrated Circuit/Packet-Switched

Communications Network. (May 1986)

Kenneth Ray Hebert, B.S., University of Southwestern

Louisiana;

M.S., University of Southwestern Louisiana

Chairman of Advisory Committee: Dr. Udo Pooch

The introduction of economical voice digitization

techniques and dramatic increases in the speed of

electronic switching systems have now made possible the

integration of voice and data traffic over the same

communications network. Known as an "integrated" network,

such a combined facility possesses characteristic

advantages which make this technology the wisest choice

for future communications systems. Recognizing this,

researchers are pursuing design questions relevant to the

integrated environment. Analysis of alternative

architectures has not only convinced many of these

researchers that integration of voice and data is a viable

technique, but has also caused them to conclude that the

Slotted Envelope Network (SENET) system described by

Coviello and Vena is one of the most promising

alternatives offered thus far.

This research accepts the premise that the SENET-type

integrated environment will eventually become commonplace.

Leaping forward into that timeframe, however, one finds

that many of the questions central to effective management

of scarce communications resources remain unanswered. One

of these is how to reduce congestion in this type of

environment.

Focusing on that question, this effort extends

current research by investigating the viability of routing

strategy as a mechanism for reducing congestion in the

integrated communications environment. In doing so, it

exploits the notion that congestion occurs when an

excessive volume of traffic is channelled down a given

communications link.

A FORTRAN-based simulation of the integrated SENET

environment is developed and then used to examine the

characteristics of seven alternative routing strategies.

The performance of these strategies is compared both

amongst themselves and with "optimality”. Performance is

measured in terms of user-visible metrics.

Based on the experimental results obtained, this

research concludes that fixed routing, the technique

assumed by most models examined in the literature, is not

as effective a tool for reducing congestions as would be a

V

strategy based on link utilization. The research further

concludes that minimization of congestion can be realized

only if the routing strategy is adjusted as workload

varies. Detailed experimental data supporting these

conclusions is presented. Finally, the dissertation

concludes with an outline of related topics which merit

further attention.

vi

DEDICATION

This document is dedicated to the two people whose support

made it possible, my wife, Pat, and son, Doug.

vii

ACKNOWLEDGEMENTS

It is impossible to properly thank the many people

who have touched my life over the last four years. To all

of them I say "Thank you" and trust that each know it is

truly heartfelt. There are, however, certain people

without which this effort would not have come to fruition

and whom deserve special thanks.

Dr. Udo Pooch, my major professor, who was always

there when I needed direction and support but was astute

enough to recognize my need for independence.

Colonel Robert Feingold..,.. the man who made this effort

possible and who has provided -me with the best example of

character and personal integrity I could have hoped for.

Michael and Carol Masser, two close friends who

provided the sanity checks so often needed along the way.

Pat and Doug Hebert, my wife and son, who were always

there to provide the support I needed and who kept me in

touch with reality.

To these, and to the ones unmentioned but remembered,

I say "Thank you" . ~~

V 1 1 1

TABLE OF CONTENTS

CHAPTER Page

1. INTRODUCTION 1

1.1. Computer-Communications Networks 1

1.2. Historical Development 3

1.3. The Case for an Integrated Network 6

1.4. The Next Step 7

1.5. Research Objectives 9

2. LITERATURE SURVEY 10

2.1. Overview 10

2.2. Switching Technologies 10

2.2.1. Circuit Switching 11
2.2.2. Message Switching 13
2.2.3. Packet Switching 15

2.3. The Case for an Integrated Environment 16

2.4. SENET - An Integrated Environment 17

2.5 Flow Control Strategies. 18

2.6. Routing Classifications 23

2.6.1. Deterministic Algorithms 23
2.6.1.1. Flooding . . . - 23
2.6.1.2. Fixed Techniques 25
2.6.1.3. Split Traffic Techniques 26
2.6.1.4. Ideal Observer 27
2.6.2. Stochastic Algorithms 27
2.6.2.1. Random Techniques 28
2.6.2.2. Isolated Techniques 29
2.6.2.3. Distributed Techniques 30

2.7. Summary 31

IX

3. EXPERIMENTAL DESIGN 32

3.1. The Rejsearch Ujpothesis 32

3.2. Measures of Congestion 33

3.3. The Experiment 35

4. The NETWORK SIMULATION MODEL 42

4.1. Introduction 42

4.2. The Research Model 43

4.3. The Queuing Model. 47

4.3.1. Incoming Links 49
4.3.2. Circuit Switches 51
4.3.3. Packet Switches 52
4.3.4. Acknowledgements 53
4.3.5. Model Complexity 53

4.4. The Network Simulator 54

4.4.1. FLO 54
4.4.2. DEFMOD 57
4.4.3. DEFRTE 58
4.4.4. SIMINT 60
4.4.5. SIMULA ' 61
4.4.5.1 . Event 64
4.4.5.2. Route and SGLSTP 65

4.5. Summary 66

5. EXPERIMENTAL RESULTS 67

5.1. Introduction 67

5.2. Routing Strategies Explored 67

5.2.1. Fixed (RTPRBK and SSPRBK) 69
5.2.2. Random (RTRAND and SSRAND) 72
5.2.3. Adaptive Procedures 73
5.2.3.1. Link Utilization (RTUTIL and SSUTIL. ... 74
5.2.3.2. Queue Count (RTQCNT and SSQCNT) 78
5.2.3.3. Link Utilization Limit (RTLIMT and SSLIMT) 79

X

5.3. Resource Constraints •

5.4. Experimental Data 83

5.4.1. Packet Delay 83
5.4.1.1. Average Packet Delay ... 84
5.4.1.2. Excessive Delay 88
5.4.2. Blocking Factor 91
5.4.3. Throughput 95
5.4.4. Average Queue Size 96

5.5. Summary 100

6. CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE RESEARCH 101

6.1. Overview 101

6.2. Conclusions 106

6.3. Recommendations for Future Research 108

6.4. Summary. 110

REFERENCES Ill

APPENDIX

A SOURCE LISTING FOR FLO 122

B DESCRIPTION OF TABLES 236

C DATA TABLES 250

D MINIMUM AVERAGE PACKET DELAY ANALYSIS 255

VITA 259

xi

LIST OF FIGURES

FIGURE Page

2-1 SENET Structure 19

2-2 Flow Control Levels 222-3 Routing Classifications 243-1 Generic Routing Strategies 38

3-2 Original Topology 403-3 Optimized Topology 414-1 Circuit/Packet Switched Network 44

4-2 Queuing Model 48

4-3 Calling Hierarchy of FLO 554-4 Calling Hierarchy of SIMULA 635-1 Progressive Alternate Routing 71

5-2 Effect of Power on Link Utilization Scores . . 77

5-3 Average Packet Delay - Graphical 85

5-4 Average Packet Delay - Tabular . . 86

5-5 Percentage Delay > One Second - Graphical. . . 89

5-6 Percentage Delay > One Second - Tabular. ... 90

5-7 Blocking Factor - Graphical . 93

5-8 Blocking Factor - Tabular 94

5-9 Throughput 97

5-10 Average Queue Size - Graphical 98

5-11 Average Queue Size - Tabular 99

1

CHAPTER 1

_INTRODUCTION

1.1 Computer-Communications Networks

A computer-communications network can be described as

an interconnected group of independent computer systems

capable of communicating with one another [16]. This

definition is extremely broad and includes equipment

configurations which run the gambit from pairs of

micro-computers that occasionally exchange data to airline

reservation systems linking thousands of real-time

computers and terminals. It includes configurations where

all components are located in the same room and those

where the components are spread out around the world. The

definition encompasses both systems designed for leisure

and systems which transmit time-critical military command

and control information.

In spite of their many varieties and diverse

applications, all computer-communication networks possess

two characteristic features. First, the component

computer systems communicate with each other and second,

the systems are independent.

The Communications of the ACM has been used as a pattern
for both format and style.

Media commonly used to accomplish computer

communications include twisted wire pairs, coaxial cable,

microwave links, optical fiber and satellites. The

combination of transmission media, the nodes which they

connect and the necessary hardware/software needed to

control them is commonly referred to as the

’’communications subnet” or the ’’data network" [88].

"Communications backbone" is another term sometimes used

to refer to this combination [64].

The second characteristic feature of a

computer-communications network, independence, is

particularly significant. This characteristic not only

distinguishes computer-communications networks from

multiprocessor computing environments, but also has

important implications concerning the volume and timing

requirements of data flows between the component computer

systems. Specifically, the cooperative nature of the

multiprocessor environment would typically force a much

larger flow of data to support task/job coordination.

Further, depending on the extent of processor

synchronization, the multiprocessor environment might

require message response times measured in milliseconds or

even microseconds.

Some authors have found it necessary to draw a

distinction between the terms "computer-communications

network" and "computer network." Elovitz and Heitmeyer

3

[30] distinguish the two by noting that in the former the

user is responsible for managing the computer resources,

while in the latter the resources are managed

automatically by a network operating system. Since this

research will focus on the management decisions which

govern the network and not their origin, such distinctions

become irrelevant and the above two terms will be used

interchangeably along with the terms "communications

network" and "network." For the purposes of this

dissertation these terms will be taken to mean the

communications subnet and all facilities necessary to gain

access to it.

1.2 Historical Development

The last two decades have witnessed three

developments destined to drastically change the

telecommunications environment in this country. The first

was political in nature and has been called the

Carterphone Decision [74]. This Federal Communications

Commission (FCC) ruling gave both common and non-common

carriers the right to freely connect third party devices

to common carrier lines, thereby dramatically expanding

the types of services^carriers could offer their customers

[60, 118]. One such service was computer support with

carriers immediately recognizing the potential for

offering shared time on computer systems and specialized

4

peripherals to geographically dispersed users via common

carrier lines [5, 32],

The second was an almost unbelievable drop in the

cost of computers. Prior to 1970, the dominant model for

computer support was a central computer supporting

dispersed terminals. This configuration was motivated by

the high cost of computer equipment and the relatively low

cost of communications. However, since 1970, falling

computer prices have caused designers to re-examine that

common configuration. Medium, large and now very-large

scale integration technologies have reshaped the economics

of computer support, providing powerful desktop computer

systems which often cost less than one tenth of the

persons using them. Technological advances, making

computers such inexpensive tools, have forced the old

configuration to yield to a configuration where large

numbers of computers are used, and are often essential to,

the day-to-day operations of modern business. To be most

effective, these computers (often geographically separate)

must exchange data either periodically or continuously.

Thus, the last few years have seen computer communications

become an operational necessity for both industry and

government [67, 111].

The third major development, also technological in

nature, was the development of ARPANET, considered by many

to be the father of modern computer networks [108]. Named

for its sponsor, the Defense Advanced Research Projects

Agency (DARPA), ARPANET differed from previous

communications networks in that it used a technique called

"packet switching" to transfer data from one location to

another. In the packet switching environment,

transmissions between two locations are broken into small,

typically fixed sized segments (1000 bits for ARPANET)

called packets. Each packet is then individually routed

to its destination where the packets are reassembled to

form the original message. ARPANET has grown from its

original 4-node experimental implementation to a mature

operational network with well over 200 nodes scattered

across three continents [2, 108, 111]. Today, ARPANET

allows data and specialized equipment to be shared among

hundreds of universities, research centers and government

agencies. ARPANET has proved that packet switching is an

important technology that is superior to circuit switching

technology for certain classes of transmissions [41, 92].

Circuit switching is the older of the two techniques,

developed to service voice calls when the telephone

network was first implemented. It is used by all

computer-communications networks which pre-date ARPANET.

In the circuit switched environment, a complete path is

established between the source and destination nodes for

their entire session. This path is used to carry all

transactions between the communicating nodes.

6

1.3 The Case for an Integrated Network

Experimentation with ARPANET and the many networks

which have followed yielded a wealth of data about

computer communications. In particular, packet switching

has clearly demonstrated its advantages over circuit

switching for the bursty traffic typical of human-computer

interactions in a real-time environment [88]. Circuit

switching has not been relegated to history, however,

since it still seems to be the methodology best suited for

high-data rate, steady-flow applications [12, 17, 18, 63,

111, 120, 122].

Current communications systems are generally designed

to handle either voice or data traffic, but not both.

Operational systems typically use separate facilities for

these two traffic classes. Clearly this approach

represents a duplication of effort and resources. In the

early-1970's it was recognized that an integration of

voice and data traffic into the same system would reap

significant benefits from economies of scale, commonality

of equipment and more efficient utilization of bandwidth

[42, 52, 59, 61, 72, 75, 93, 95, 103].

The clear advantages of an integrated environment

plus advances in technology which eliminate barriers to

implementation of such a network have prompted many

researchers to study techniques for implementing an

integrated circuit/packet switched communications network.

Analyses of alternative architectures have been

extensively reported in the literature [8, 23, 24, 28, 29,

33, 43, 44, 53, 55, 58, 81, 84, 94, 97, 99, 110, 114].

One of the most technically viable proposals appears

to be the Slotted Envelope Network (SENET) proposed by

Coviello and Vena [24], The viability of an integrated

network has been demonstrated by several authors and it is

the general consensus in both industry and government that

the computer-communications networks of the future will

integrate both packet and circuit switching techniques [9,

13, 21, 31, 34, 54, 73, 83, 95, 96, 100, 111].

1.4 The Next Step

Researchers have demonstrated both the wisdom and

feasibility of pursuing a SENET-type communications

network. They have also investigated the critical issues

of optimal topological design and link capacity

assignment. Thus, previous research provides the tools

necessary to design and implement an integrated

circuit/packet switched communications network [4, 11, 15,

19, 25, 38, 40, 64, 68, 70, 71, 95, 117].

Once built, such a network will have a built-in limit

to the amount of traffic it can carry. If demand should

ever exceed this limit, data packets and/or voice calls

will be delayed or rejected. Any network experiencing

this condition is said to be "congested” [80, 104].

Clearly, congestion could be eliminated if enough

resources were dedicated to the communications network.

Such a network would, however, be prohibitively expensive.

Realistically, computer-communications networks must be

designed to accommodate peak traffic requirements and

absorb reasonable load fluctuations, but must do so within

the constraints of cost-effective operation. However,

even in networks designed with substantial excess

capacity, higher than expected traffic demands,

unfavorable load patterns, component failures or any

combination thereof, can create situations where the

network becomes congested. Whatever the reason,

congestion is clearly unacceptable and procedures must be

developed to prevent or at least forestall this condition.

These procedures are generally referred to as "flow

control strategies” [56, 104].

This research investigates the utility of routing as

a mechanism for implementing the network flow control

strategy. Routing policy determines the path information

(either voice or data) will follow in traversing the

network. This research effort exploits the notion that

congestion results when an excessive volume of traffic is

channeled down a given communications link. The research

will determine whether certain routing strategies are

superior to others in preventing and/or forestalling

congestion in a SENET-type network environment.

1.5 Research Objectives

The specific objectives of this research are to:

(1) Investigate existing routing strategies

available for use in a circuit/packet

switched communications network.

(2) Identify those routing strategies which

will maximize throughput and reduce

congestion under varying traffic conditions

and response constraints.

(3) Simulate an implementation of routing which

will demonstrate improved throughput and

hold congestion to a minimum.

This dissertation summarizes the results of the stated

objectives.

A survey of the relevent literature is presented in

Chapter II. It serves to highlight applicable research

and to provide the reader with an appropriate background.

The experimental design is described, in detail, in

Chapter III. The simulation model used to accomplish the

stated objectives is described in the next chapter, while

the results of the simulation experiments and analysis of

the obtained results are given in Chapter V. Finally, in

Chapter VI, the conclusions drawn from the simulation

results are presented and recommendations for further

study provided.

10

CHAPTER II

LITERATURE SURVEY

2.1 Overview

Technology has advanced to the point where it is now

economically feasible to integrate voice and data

communications over the same network. This research

investigates questions relevant to that type of

environment. Chapter II sets the stage for a discussion

of the research and its conclusions by providing the

reader with a review of previous research and necessary

background material. The chapter begins with a

description of the three communications technologies in

widespread use today. Then a discussion of why an

integrated network is both technically feasible and

economically desirable is presented. SENET, one of the

prime architectures for integrating voice and data

traffic, is described. Finally it addresses the role of

flow control in a computer-communications network and

summarizes the principal routing strategies available,

setting the stage for a discussion of the experimental

effort.

2.2 Switching Technologies

In order for two nodes to communicate, three distinct

steps are necessary. First, a physical path must be

11

established between the two; second, information must be

transferred; and third, the path must be disconnected.

The process of establishing and disconnecting the physical

path is known as switching.

The three switching technologies currently in use can

be distingushed by the methodology used to allocate and

deallocate network resources [65]. The three technologies

ar e :

(1) circuit switching,

(2) message switching, and

(3) packet switching

The following paragraphs describe each of these techniques

in some detail.

2.2.1 Circuit Switching [51, 65]

In a circuit switched network, resources are

allocated at the beginning of a user’s session and

reserved throughout its duration. When a request for

service is received, a physical path (circuit) is located

which connects the source -and destination nodes. This

path is retained until all communication is completed.

This arrangement, motivated by the telephone network,

uses circuit switching exclusively. When the telephone

plant was first installed the only way to transmit voice

was via analog signals, which are not easily stored.

This, plus slow switching times, forced design engineers

12

to use circuit switching techniques.

This system has both advantages and disadvantages.

Clearly, it minimizes the effort needed to establish and

disconnect the circuit, an operation which occurs only

once for each session. Its biggest drawback is that

expensive communications resources are tied up regardless

of whether they are needed. During normal conversations

each telephone link is idle, on average, fifty percent of

the time. When this lack of utilizatation is combined

with "idle periods," the result is a significant amount of

wasted capacity. Some researchers have estimated this

unused capacity as high as 60% [51]. Reservation prevents

communications links from being used by other traffic

during periods of inactivity.

The utilization problem is amplified when computers

enter into the picture. Because computer communications

are normally "bursty," i.e., the proportion of idle to

busy time was much higher than that of voice traffic, the

amount of wasted capacity increased dramatically.

At this juncture it is important to note that circuit

switching does not have any inherent inefficiencies.

Given the right application, namely a steady flow of data

or voice traffic, it is the most efficient of the three

switching techniques available. Circuit switching

advantages include:

13

(1) Resources to establish and disestablish

circuits are minimal.

(2) Traffic is delayed only by the time to

propogate through the communication subnet.

There are no additive accounting or

switching delays.

(3) Only information (voice or data) need be

transferred. There is no need for traffic

management information.

(4) Congestion is impossible because there is

only one user trying to tranfer data over

each half duplex (HDX) line.

2.2.2 Message Switching [50, 85]

Message switching was proposed as a refinement to

circuit-switching. Message switched networks address the

inefficiencies of the first approach by dividing the user

session into "messages,” where each message is a logical

unit of information from the viewpoint of the user [65].

Conceptually, messages should correlate with the "bursts"

of data typically found in computer communications. Since

a "message" is defined from the user’s perspective it can

vary in size from onebit to an entire textbook, depending

on the application.

The principal idea behind this technique calls for

each "message" to be transmitted individually, i.e.,

14

treated as a complete session. This implies that paths

are to be established and disestablished for each message.

This workload, plus the accounting necessary to keep user

sessions together, creates a significant burden on the

network switching systems. In return, however, costly

network resources are no longer allocated for the entire

user session, and can be shared by many users.

Because of variability in the size and number of

messages to be routed over a given path, message switching

can not guarantee that a path will be available when

needed and messages may have to be stored at their origin.

Variants of this technique, called store-and-forward

systems, allows messages to be sent as far along their

desired route as possible. If a desired link is already

being used, the message is stored at the intermediate node

until the desired link becomes free.

Message switching is clearly a tradeoff technique.

In exchange for not holding network resources over

(possibly long) idle periods, message switching gives up

guaranteed message arrival times and adds a significant

workload in terms of both switching and session

management. It also opens the door to network congestion

by allowing multiple users to compete from the same

communications links. Finally, it artifically increases

message delay since switching time, possibly as high as

ten seconds [111], is added to each message.

15

2.2.3 Packet Switching [65, 88, 111]

Packet switching is the newest of the three available

switching technologies. Introduced in the late 1960’s and

motivated by the Department of Defense and its Advanced

Research Projects Agency, packet switching quickly gained

acceptance.

Conceptually, packet switching is a further

refinement of message switching. It attempts to address

the problems associated with variable message size by

arbitrarily breaking each message into smaller,

equal-sized "packets11. One of the best known computer-

communications networks, ARPANET, uses this technique,

dividing messages into 1000-bit packets. By breaking

messages down even further, packet switched networks add

an additional layer of overhead to the data transfer

system since individual packets must be coordinated and

reassembled into their original message format. The

packet approach also dramatically increases the number of

paths to be established and disestablished since this task

must be accomplished for each packet.

In spite of the extra workload generated, packet

switching, has been shown to be superior to both circuit

and message switching,_for handling bursty traffic,

especially in those applications where transmission errors

are common [91].

16

2.3 The Case for an Integrated Environment

Until recently technological barriers have forced

voice networks to be distinct from those designed to

handle data traffic. The voice networks, using circuit

switching, often paralleled those carrying data via

message or packet switching, neither system capable of

accommodating the workload of the other. Obviously this

represented an inefficient use of resources. Gruber [47]

stated:

"Perhaps the ultimate objectives of

integration are ... to realize the

economies of equipment commonality,

..., higher resource utilization and

combined network operations,

maintenance and administration."

Technological advances on two fronts have now made

integration a realistic alternative. First, economical

voice encoders (vocoders) have been developed which allow

voice traffic to be digitized. This is typically

accomplished by using PuJ.se Code Modulation (PCM) to

convert voice samples into binary codes [48, 76, 82, 87,

101]. In this form, voice can be transmitted over the

Bell System’s T-carrijar family of digital links. The

second development, switching equipment which allow

nanosecond switching times, allows lines to be shared

among users without making conversations discontinuous [7,

17

87]. Taken together, these advances make it possible to

integrate data and voice traffic into the same network.

According to Dysert et al [29]:

"The future for fully integrated voice

and data transmissions is very

promising.”

As evidence, consider recent Defense Communications

Agency studies which show that the Department of Defense

intends to implement an all-digital, integrated network

that would be operational early in the next decade [8, 23,

72] .

2.4 SENET - An Integrated Environment

Researchers have examined numerous scenarios for

integrating voice and data. Of those examined, the one

which appears to be the most technically viable is the

Slotted Envelope Network (SENET), proposed by Vena and

Coviello [61, 81].

SENET integrates voice and data traffic over the same

network by packetizing all traffic. Voice is packetized

via vocoders while data is accommodated through standard

packet techniques. In the SENET-approach, a digital link

is divided into fixedduration envelopes, each of which

can accommodate a constant number of slots. The slots are

partitioned into three traffic classes. The first

partition is reserved for voice traffic, while the second

18

is used to carry data packets. The final partition is the

unused capacity which results when there is insufficient

data and/or voice traffic to fill the envelope. Envelopes

begin with a header field to aid in synchronization and

finish with a trailer field which is used to mark the end

of the envelope. Either of these two fields might contain

network management information. Figure 2-1 provides a

conceptual view of the SENET approach. In this

abstraction, envelopes are represented by three "wheels"

each symbolizing a SENET partition and each subdivided

into the number of "wedges" needed to accommodate the

available traffic.

2.5 Flow Control Strategies

From a user perspective, the computer-communications

network is a "black box," to satisfy the needs for

transmitting information. Other than that, it serves no

useful purpose. Consequently, the user evaluates the

network in just those terms. Either it satisfies the

requirement to communicate within an acceptable time frame

or it does not. If the "black box" does not respond in

the expected manner, it is labeled "congested". From this

vantage point, "flow control strategies" would be defined

as those procedures which are used to prevent or minimize

congestion.

19

SENET Structure

Figure 2-1

20

From a network design perspective, flow control has

grown to take on a slightly different meaning, with flow

contol being distinguished from "congestion control." The

former is normally considered to be more inclusive since

it would include those procedures/techniques aimed at

insuring that offered traffic successfully traverses the

network, and not simply those strategies which interact

when a problem occurs.

This research proposes the idea that these concepts

are essentially the same, differing only in viewpoint.

The user viewpoint is motivated by the fact that flow

controls are unimportant until they become either (a)

restrictive or (b) ineffective. The second viewpoint is

motivated by the fact that network designers and engineers

use controls to prevent problems from occurring.

In view of this, it is appropriate to accept the

first definition, i.e. flow control strategies are those

procedures designed to prevent or forestall congestion.

However, it must be clearly understood that this

definition includes all procedures designed to insure the

successful traversal of the network by offered traffic,

since when these fail, congestion inevitably results.

Experience with ARPANET and other packet switched

networks has shown that flow contol is a complex subject

which can only be successfully addressed by a layered

approach [3, 6, 39, 102, 106, 113, 115]. These layers

21

must work together in a synergistic fashion if problems

are to be avoided. Gerla [39] identifies the four levels

of flow control shown in Figure 2-2.

The first level, node-to-node, is the most basic. It

involves the coordination of message traffic between two

adjacent nodes of the communications subnet. Its

objective is the prevention of buffer congestion and nodal

deadlocks.

The second layer, source-node-to-destination-node, is

an end-to-end approach to flow control. Its objective is

to insure that traffic entering a source node is

successfully transported to a destination node.

The third layer, host-to-node, deals with those

controls necessary to insure that traffic is successfully

transferred from the host (user) to the network access

point (node). The final level, host-to-host, encompasses

protocols between network users to insure the safe

transmission of traffic.

Routing falls into the second category of flow

control techniques. When used as a flow control strategy

the objective of routing becomes the direction of traffic

so congested links or nodes are avoided. Routing is

unique among other flow control mechanisms in that it is

not traffic constraining. Other mechanisms try to resolve

congestion by reducing the flow of traffic between nodes

and/or users. Routing attempts to alleviate congestion by

FlowControlLevels
SLevelIV- Host-to-Host

LevelIII Host-to-Node

LevelII Source-Node-to- Destination-Node LevelI• Node-to- Node

Figure2-2

*

■I•

to to

23

redirecting traffic to less frequently used paths. This

is sometimes referred.to as "load leveling."

2.6 Routing Classifications [1, 20, 37, 69, 98, 105, 121]

A great deal of effort has gone into the design and

modeling of routing algorithms. Some of the authors to

have considered this subject are Prosser [89, 90], Boehm

and Mobley [10], Metcalfe [79], McQuillan [77], Kleinrock

[66], and Greene [45]. Fultz [35] provides an excellent

classification scheme. The descriptions that follow are

based primarily on his research, as summarized by Greene

[45]. The classification scheme (Figure 2-3) broadly

categorizes routing strategies into deterministic and

stochastic algorithms.

2.6.1 Deterministic Algorithms

Deterministic algorithms derive routes based on a

predefined set of static rules. This category, the

simplest to implement, requires no information on the

state of the network. Four basic strategies are

described.

2.6.1.1 Flooding ~

Flooding is the simplest of all deterministic routing

strategies [10]. It calls for all nodes to blindly

transmit incoming messages over all outgoing

24

Routing Classifications

Class Algorithm Variant

Deterministic Flooding All

Selective

Fixed Routing

Split Traffic

Ideal Observer

Stochastic Random Routing

Isolated Routing Local Delay Estimate

Shortest Queue+Bias

Distributed Routing Periodic Update

Asynchronous Update

Figure 2-3

25

links. Some variations of this strategy call for the link

over which the message arrived to be exempted while others

call for flooding to occur over only a portion of the

outgoing links. The latter technique is referred to as

"Selective Flooding." Under all of these variants,

messages are removed from the system after some time

quantum based on the assumption that at least one of the

duplicate copies must have reached its destination.

Flooding has been proposed by some authors as a

solution to information transfer problems in a hostile

environment, e.g. military command and control information

under wartime conditions [45]. It also has been proposed

as a way to identify the shortest path to a destination

node since flooding all paths guarantees that the shortest

path will be selected. However, the duplication of

traffic inherent in the strategy causes flooding to be

quickly overcome by congestion, making it useless as a

practical approach to routing.

2.6.1.2 Fixed Techniques

This approach to routing (called deterministic by

some authors) calls for messages to follow a predetermined

path between source and destination nodes. The

predetermined routes, usually stored in tables at each

node, are based upon an assumed network configuration and

known traffic patterns. This allows the definition of

26

optimal routes to be reduced to a multi-commodity flow

problem, solutions to which are well known [36, 86].

This approach works well as long as the configuration

and traffic assumptions remain valid. Unfortunately, this

strategy is unable to adapt itself to changes in the

network or its offered workload.

Some authors have proposed a tiered approach whereby

alternative tables are made available. When the primary

route is busy/unavailable, the alternative route is

selected. Though better than the single table scenario,

this approach suffers from two significant weaknesses.

First, the "fallback positions" are usually limited to one

or possibly two backup tables. Thus, even the tiered

approach is limited in its ability to adapt to changes in

network status. The second drawback is that the

assumptions for making the backup routes optimal may not

be valid and could cause more problems than they solve.

Since a node receives no information regarding network

status, it has no way of determining whether the secondary

or tertiary route is superior to the primary and must base

the alternative path selection on nonavailability of

primary routes.

2.6.1.3 Split Traffic Techniques

Split traffic techniques, also called traffic

bifurcation techniques, are similar to the fixed

27

techniques just discussed in that alternate tables exist.

The difference between the two techniques lies in the fact

that all tables are used on a continuous basis. Tables

are selected randomly with each table having a predefined

probability of being selected. The selection

probabilities are established ahead of time based on

experience. Compared to fixed strategies, split

techniques typically maintain a better balance of traffic

throughout the network. However, the technique suffers

from the same two drawbacks noted for the fixed

techniques. Further, random selection makes performance

heavily dependent on the probabilities selected.

2.6.1.4 Ideal Observer

This approach envisions a network overseer which has

total knowledge of the entire network and its current

status and workload. Each time a message enters a node,

its route is recomputed to determine the optimal path to

its destination. Investigated as an "ideal" situation, it

is used primarily as a standard against which to compare

other techniques.

2.6.2 Stochastic Algorithms

Stochastic algorithms operate on probabilistic

decision rules rather than deterministic ones. Routes are

selected based on an evaluation of network status

28

information. Some of the network measures used include

current configuration, previous delay metrics and current

workload. These techniques appear to have the greatest

potential for accommodating network instabilities since

they try to assess network status when determining routes.

As a class, these techniques suffer from the overhead

problems associated with exchanging status information on

a timely basis. This becomes less of a problem with

Common Channel Interswitch Signaling (CCIS) which provides

for the constant exchange of network status and control

information. This capability is rapidly being added to

the current telecommunication system. A CCIS system could

be implemented in a SENET-type environment by reserving

the first few slots of the each envelope for information

exchange [26, 45, 62, 107, 109].

2.6.2.1 Random Techniques

Random routing techniques assume that the node

transmitting a message knows of only its own existence.

Messages are sent out over a randomly selected link,

following what Davies and Barber [27] call a "drunkard’s

walk." The central idea behind this approach is that

random selections will eventually cause the message to

arrive at its destination. Variants of this policy

include incorporation of a "bias" to guide the message in

the general direction of its destination and end-to-end

29

approaches where one of the multiple paths available from

the source to the destination are selected. Random

approaches suffer from inefficient path selection but are

beneficial in networks where there is a high probability

of node or link failure [10, 14, 89].

2.6.2.2 Isolated Techniques

Sometimes referred to as "Backward Learning

techniques," isolated techniques are the local analog of

the ideal observer strategy. Rather than rely on the

network overseer, isolated techniques rely on information

available to them locally, either from observed message

delays or from local metrics such as queue length. As

information is gathered, it is used to update a routing

table which is then used to select paths for outgoing

traffic [10].

The principle advantage and disadvantage of this

approach stem from its local nature. Because all

information is locally observed, there is no network

overhead associated with information transfer.
_

Conversely, the local visibility implies that adjustments

cannot usually be made to non-local network failures. For

example, assume node A. desires to transmit data to node C.

Its current routing table indicates the optimum path is

via node B, therefore packets are sent to that node first.

If the link from node B to C is out of order, node A would

30

have no way of knowing and data would simply stack up at

node B.

2.6.2.3 Distibuted Techniques

Distibuted techniques are also related to the ideal

observer technique discussed earlier. These techniques

base routing decisions on either periodically or

continuously exchanged data designed to reflect the status

of the network. Types of data which might be exchanged

include queue lengths, delay metrics, link and node

status, and link utilization information.

When first devised this class of techniques was

considered to involve too much overhead to be useful.

Several authors have proposed variants which yield a

compromise between the burden of information broadcasts

and the weaknesses of isolated strategies. Fultz [35]

proposed the use of a "minimum delay vector” which is

continuously exchanged between adjacent nodes. McQuillan

[78] proposed a partitioned approach where status

information is only exchanged between small groups of

nodes, with information routed between the groups as if

they were single units.

This approach becomes more viable with the

incorporation of CCIS techniques. By providing a

convenient mechanism for distributing traffic management

information, CCIS forces a re-evaluation of routing

31

strategies previously investigated and the tradeoffs

characteristic of them.

2.7 Summary

As the above review demonstrates, routing strategy

has been the subject of intense interest. A great deal

has been learned about the tradeoffs involved in devising

a routing strategy. Unfortunately, previous work has been

focused primarily on the pure packet environment. This

research extends these studies into the integrated

environment where the added complexities of combined voice

and data traffic make direct application of earlier

results questionable. So far, research in the integrated

environment has been limited to fixed routing strategies.

32

CHAPTER III

EXPERIMENTAL DESIGN

3.1 The Research Hypothesis

The literature survey in Chapter II clearly

demonstrates both the wisdom and technical feasibility of

constructing an integrated circuit/packet switched

computer communications network. As a result of the

research effort previously expended, network designers

have the tools and techniques needed to build such a

network. The dawning capability to build an integrated

network combined with the benefits many expect to derive

forces the conclusion that it is only a matter of time

before integrated circuit/packet switched communications

networks become commonplace.

Leaping forward into that timeframe, however, the

researcher finds that the added complexities of the

integrated environment bring into question many of the

conclusions previously drawn with respect to purer

environments. One area which merits further study and

analysis is routing strategy and, in particular, the

effect routing strategy has on congestion in an integrated

circuit/packet switched communications network. This

research effort is aimed at that topic.

Specifically, this research addresses the utility of

routing as a flow control strategy in a SENET-type

33

integrated environment. Stated more formally, this

research question becomes:

Given: (1) a SENET-type integrated circuit/packet

switched communications environment

exists, and

(2) that this environment was initially

optimized to a specific traffic flow

pattern using progressive alternate

(fixed) routing.

Question: Can an alternative routing strategy be

identified which reduces congestion as

offered workload varies?

3.2 Measures of Congestion

In order to pursue this question it becomes necessary

to clearly define the meaning of "reduced congestion" and

to identify a means of measuring it. For the reasons

cited in Chapter II, this research proposes to view these

terms from a user’s viewpoint. _

From a user perspective, the details of how data and

voice messages are transmitted are unimportant. The user

is concerned only with two things: the cost to build the

communications network and the performance it offers.

These two features, unfortunately, are usually in direct

conflict with the typical user striving to minimize cost

34

while staying within an acceptable performance threshold.

At some point, however, cost/benefit studies are

completed, management decisions are made, and the network

resources are acquired. From that point on, the user’s

only concern is end-to-end performance with performance

typically being measured in terms of volume or response

time. Common measures include:

(1) Throughput - the number of messages or

packets which successfully traverse the

network during a given time quantum.

(2) Average message delay - the average length

of time it takes for a message or packet to

traverse the network.

(3) Blocking - the percentage of time voice

calls are attempted but cannot be completed

because resources are unavailable.

These metrics provide the user with a quantitative

assessment of how well the network satisfies communication

requirements .

Alternative measures of both congestion and

performance have been proposed (e.g. relative queue sizes

and line utilization figures). Researchers have also

proposed combinations of the three metrics noted above

[49, 57, 109, 112], However, these measures are the ones

which "stare the user in the face." These are the metrics

which the user must contend with on a day-to-day basis and

35

these are the measures which must meet the specified

"grade-of-service" around which the network was designed

and built.

Congestion in the integrated environment can thus be

defined as a network condition where throughput and/or

average message delay rise above a specified standard or a

condition where blocking rises above a specified

acceptable minimum. The specific values for the

performance standards should be established by management

and should form a key design constraint for the network.

3.3 The Experiment

In order to accomplish the research objectives, it

was necessary to develop a mechanism for studying routing

strategy in an integrated circuit/packet switched

communications environment. Clearly, the most direct

approach would have been to build an integrated network,

install it in a operational environment and study the

impact of alternative routing strategies. This idea is

obviously unrealistic on both economic and practical

grounds. Given that an experimental system could not be

built, the only option left was modeling, either

mathematical or simulation.

Of the two remaining options, the most satisfying

approach would have been to develop a mathematical model

which succinctly expresses the relationships of the

36

network components. Unfortunately, the large number of

components and their myriad interactions and

inter-relationships made such an effort impossible, at

least practically, if not theoretically [39, 119]. This

leaves computer simulation as the only viable alternative

and the avenue pursued by this research.

The research was given a boost by Carroll Clabaugh

when he developed a simulator for a circuit/packet

switched network as part of his dissertation [22], The

simulator was insufficient in its original form to

accomplish the objectives of this research but did form

the building block for a much more elaborate simulator

developed as a part of this research. The new simulator,

called FLO, is an extensively enhanced version of

Clabaugh’s simulator and is considerably more flexible in

the problem range it can address. The simulator is

described in detail in Chapter IV. Though originally

envisioned as an "administrative effort," the enhancement

of the simulator became one of the major focuses of

attention and as implemented provides a powerful jtool for

network investigation.

Having established a suitable environment for

experimentation, the jiext step was to specify the routing

strategies to be examined. The literature survey turned

up several routing algorithms, and classification schemes,

one of which was described in Chapter II. Of those

37

presented, flooding and its variants were quickly

eliminated when analysis showed them to cause, rather than

avoid, congestion. Variants of the ideal observer

techniques were rejected on the premise that complete

re-evaluation of packet routes at every node would

overload system resources. Traffic bifurcation techniques

were eliminated on the grounds that these techniques were

essentially the same as fixed methods when node/link

failures and variable nodal arrival rates were ignored.

Even after elimination of these categories, a host of

routing strategies and their variants were left. Closer

analysis showed that the policies were quite similar and

that an alternative classification, one focusing on the

type of data used to evaluate routing alternatives, would

reduce the strategies under consideration to a more

workable number. The end result was the implementation of

five ’’generic” routing strategies, each of which were

examined experimentally. The five strategies, listed in

Figure 3-1, are described in Chapter V along with the

experimental results obtained from each. _

Strategies using delay statistics were originally

considered as a sixth alternative but were later dismissed

since research in the_..pure packet environment has shown

these strategies to be equivalent to those based on line

utilization [67]. Dismissal of this category was further

supported by the observation that delay statistics

Generic Routing

Strategies

/ a

Fixed (deterministic)

- Random

Adaptive (based on)

-- Queue Size

Line Utilization (Minimum)

Line Utilization (Less than a Limit)

s ,

Figure 3-1

39

represent historical data rather than current network

status.

An optimized network environment was then created via

CIRPAC [64], a tool developed by Mark Kiemele as part of

his dissertation. CIRPAC uses a progressive refinement

technique to find the optimal network topology, i.e. least

cost, satisfying a fixed set of performance constraints.

This tool was used to optimize the 10-node network shown

in Figure 3-2. This network configuration is based on the

CYBERNET network [88]. The base network (before

optimization) used 11 links to connect ten nodes, each of

which was composed of a packet and a circuit switch.

After several iterations, CIRPAC identified a refined

topology which used 12 links to meet the specified grade

of service (less than one minute average packet delay and

less than ten percent blocking). The refined

configuration, shown at Figure 3-3, then became the

starting point for routing analyses.

Finally, the generic strategies were exercised

against the established environment under varying workload

conditions. The results of these experiments and their

comparative analysis appears in Chapter V.

40

Original Topology

Figure 3-2

41

Optimized Topology

Figure 3-3

42

CHAPTER IV

THE NETWORK SIMULATION MODEL

4.1 Introduction

The simulator used in this research is based on one

developed by Carroll Clabaugh as part of his dissertation,

retaining the key simulation concepts but significantly

enhancing its capabilities and flexibility [22], This

description is based on Clabaugh with changes made where

appropriate .

The simulator is implemented on the Texas A&M

University AMDAHL/470 computer system in VS FORTRAN.

Optimization was used to obtain the maximum run-time

efficiency. It is an event-oriented simulation with state

changes occurring at zero-time events and the system clock

advancing between these events. The permanent entities

simulated include packet and circuit switching nodes and

the T1 digital links connecting them. Temporary entities

include voice calls and data packets. The original

simulator was validated by' Clabaugh [22] and Kiemele [64]

via extensive sensitivity analysis. The enhanced version

was validated by establishing identical outputs between

the two versions for .equivalent parameter settings. A

listing of the enhanced simulator, FLO, is included in

Appendix A.

43

4.2 The Research Model

The research model is based on the SENET

circuit/packet switched network depicted in Figure 4-1.

The principal model features include:

(1) Digital network composed of T1 carriers and

digital switching nodes.

(2) Circuit switched backbone nodes (CS) with

peripheral packet switched nodes (PS).

(3) Two classes of traffic:

(a) Class I - time-critical traffic

requiring uninterrupted service,

e.g. voice, video, facsimile and

sensor .

(b) Class II - non-time critical

traffic which can withstand

reasonable delays such as

interactive, query/response, and

bulk data.

(4) Variable data rates.

(5) Switchable store-and-forward, furthest

possible, or end-to-end operation.

(6) Checkpoint and restart capability.

(7) Alternative routing strategies.

(8) Flexible configuration definiton.

(9) Common channel interoffice signalling.

(10) Flexible routing definitions.

44

Circuit/Packet Switched Network

Figure 4-1

Network nodes are composed of Circuit Switches (CS)

with peripheral Packet Switches (PS). Class I users are

directly connected to the CS nodes while Class II users

terminate at the PS nodes. The PS nodes queue all

subscriber traffic until it can be serviced by the

associated CS node. If the offered traffic can be handled

immediately, the queuing mechanism is by-passed. For the

purposes of the research model, the queues are considered

to be infinite. In reality, they are sized appropriately

by setting bounds on the FORTRAN arrays which hold them.

The nodes are inter-connected by digital T1 carriers

with a SENET-type switching superstructure. The carriers

are synchronously clocked into "envelopes," each of which
is composed of header fields, trailer fields, and a series
of time division multiplexed slots. The two traffic

classes compete for these slots on a ’’first come, first

served” basis.

Class I traffic (voice, sensor, etc.) requires

uninterrupted full duplex service. This traffic class is
accommodated by reserving a slot in each envelope along
the route selected. When there are insufficient resources

to accommodate a Class I call, it is "blocked” and the

user is notified that service is unavailable. Queueing is

not allowed for this traffic class.

The mechanisms available to handle class II traffic

(interactive, query, etc.) are more varied since traffic

46

of this sort can withstand reasonable interruptions

(delays) in service. Further, class II traffic is

uni-directional, therefore, it only requires a half duplex

line. Acknowledgements are either Mpiggybacked" on return

traffic or carried by special purpose "ack packets.”

Transactions (or messages) are broken into fixed sized

packets each of which is routed over the network. One of
three routing philosophies can be selected by the user:

(1) end-to-end,

(2) furthest possible, or

(3) store-and-forward.

In the first mode, routes are selected only if they

form a complete path from the source to the destination
node. If a complete path is unavailable, traffic is

queued at the source node.

Under the second philosophy, packets are transmitted

as far along their selected path as possible. When

packets reach an unavailable link, they are queued at the
intermediate node. The packets are then granted priority

service on future route selections.

The final mode of operation calls for packets to be

transmitted only to the first node of their selected route

where they are then queued for further service. The user

can select one of two "visibility” levels to support the

routing decision. The first causes the route selection to
be based solely on locally available data, while the

second level bases route evaluation on global data.

In all cases, routes are evaluated and selected based

on the strategy chosen by the user. The five "generic"

strategies available are listed in Chapter III.

There are no explicit flow controls implemented in

the model. Node-to-node controls become unnecessary

because of the circuit switched backbone. Host-to-node

controls are unnecessary because of the unlimited storage

capacity of the PS nodes as are host-to-host controls.

Finally, end-to-end flow control is realized via the

routing strategy.

4.3 The Queuing Model

The myriad complexities and nodal interactions of

integrating voice and data traffic within the same

computer-communications network make an analytic solution

impractical [39]. By decomposing the network, however,

each node can be viewed as the queuing process shown in

Figure 4-2 [46].

Each node can be visualized as a multi-server system

with K sets of C independent parallel servers. The values

of K and C are fixed for each node at network definition

time. The first value., K, indicates the number of

outgoing links attached to the node. The second value, C,

varies for each of the outgoing links and reflects the

capacity assigned to each of those outgoing links, i.e.

QueuingModel Figure4-2.

-p>
oo

49

the number of slots in each SENET envelope.

Each server is assumed to have a constant service

time which reflects the time required to properly build

and forward a SENET envelope. In actuality, the envelopes

are not handled as a group. Rather, each slot is handled

as it arrives (sequentially). Making this assumption

helps to simplify the queuing model. The model is further

simplified by assuming that all envelopes are

synchronized, i.e. all envelopes exit the node

simultaneously.

The server must satisfy the requirements of the

following four service.classes.

(1) Incoming links

(2) Circuit Switches

(3) Packet Switches

(4) Acknowledgements

4.3.1 Incoming links

The number of incoming links is a function of the

network configuration and tan vary from one to the size of
the network. In the experimental case chosen each node

has two. Each incoming link possesses a fixed number of

slots, based on its defined capacity. For model

simplicity, it is assumed that the incoming links are also
synchronized. Letting J represent the total number of
incoming slots, this subelement would be modeled as a bulk

50

input system with the random variable ranging between 1
and J. Unfortunately, the arrival process is not

Markovian. Though it carries poisson generated packets,

the random variable is heavily dependent upon the routing

philosophy/strategy chosen and the network status. This
significantly complicates the queuing model.

Incoming packets are handled by the node in one of

three ways depending on the routing philosophy selected.

If the packets are to be immediately forwarded, the nodal

process places it on the correct link, i.e. acquires the
appropriate server. If the packet is to be queued, it is
entered into an infinite queue along with other packets

that share its destination. The final option occurs when

the current node is the destination for the traffic. In

this case, packets are removed from the system. For

modeling purposes, it is assumed that this decision occurs
in a negligible amount of time.

This handling procedure further complicates the

model. First, packets will be removed from the network

only if the current node is their destination. The
probability that a given packet is destined for the
current node must reflect the probability that other nodes

will generate packets destined for the current node, the
routing philosophy/strategy in effect, and the status of
the network.

51

Second, the queuing mechanism for incoming packets is

not first-in, first-out (FIFO). Because packets are

queued based on their original creation time, they could
end up virtually anywhere in the queue depending on the

decisions which were made at previous nodes. Finally, the

immediate forwarding of certain packets causes this

subelement to act like a priority-based system with

incoming packets taking precedence over queued traffic.

4.3.2 Circuit Switches

The ciruit switch (CS) is the concentrator for all

class I traffic, i.e. that requiring uninterrupted

service. Because queuing delays are unacceptable, the hub

has no storage capacity. Class I service requests are

assumed to have a poisson distribution and exponential

interarrival times and lengths. Since the CS hub can only

satisfy users when a slot is available, it can be viewed
as having a capacity of L slots. The added constraint of
limited server capacity, however, causes the value of L to

vary from 0 to the total number of slots on the

appropriate outgoing link. The value of L is determined
by the formula:

L = C - P

where C = the number of slots available
on the proper link.

P = the number of incoming packets
to be immediately forwarded

52

The destination of each service request is a random

variable with each network node having equal selection

probability. The outgoing link required is determined by
the routing strategy based on the destination and network

status .

4.3.3 Packet Switches

The third server category, the Packet Switch (PS), is

assumed to have an infinite storage capacity and is fed

from two sources. The first source is the collection of

all class II subscribers terminated at the current node.

Transactions are assumed to arrive according to a poisson

distribution and to have exponential inter-arrival times.

Transaction lengths (number of packets) are assumed to be

geometrically distributed [35]. The second source of
class II traffic is the set of the incoming links.

Depending on the routing philosophy selected, incoming
class II packets are removed and queued to their

appropriate destination along with nodal subscriber
traffic. The queues are assumed to have infinite lengths.

However, as mentioned above, the sorting mechanism is
based on the packet’s entry into the system. Thus,

incoming packets cou111 easily advance to the front of a

queue if it entered the network prior to entries already
queued. Note also that each destination and, thus, each
subset of servers has its own queue. Entries from the

53

Class II queue are accepted for service whenever there is

available capacity in the appropriate outgoing SENET

envelope.

4.3.4 Acknowledgements

The final service category is called acknowledgement

packets or "ackpacs." Since class II traffic is

unidirectional, there is no need to reserve a full duplex

line to support it. Rather, a half duplex line is

adequate. The only exception to this rule is the

"overhead” required to acknowledge successful

transmission. Normally ackpacs can be "piggybacked" on

packets traveling to the original source. If there is no

traffic available to "piggyback" on, however, a single

packet message called an ACKPAC will be generated and sent

from the destination to the source.

4.3.5 Model Complexity

Clearly, even a simplified version of the nodal

process is difficult to model analytically. In lieu of a

closed-form solution, a simulation model has been used to

examine the network. The next section describes the

simulator in detail.

54

4.4 The Network Simulator

The modified simulation model, hereafter referred to

as FLO, is hierarchically structured into four major

functional modules. This section describes each of these

modules and its major subelements.

4.4.1 FLO

As the driver for the simulator, FLO is responsible

for the three global management functions of model

definition/initialization, simulation execution and

experiment termination. FLO accomplishes these duties via

subroutine calls to one or more support procedures, the

calling hierarchy of which is depicted in Figure 4-3.

At the highest level of abstraction, FLO is designed

to accept as input a network configuration, a routing

strategy, and the parameters needed to control the

experimental run. FLO will then configure the network as

requested and, applying the selected strategy, determine

the largest workload which the network can accommodate

without exceeding a specified grade of service. FLO

achieves this objective by using the input control

parameters to systematically increment offered workload

until a suitable termination condition is reached.

FLO views initialization as a three-phase process,

each of which is accomplished by a different subroutine.

CallingHierarchyof FLO

Figure4-3.

SIMULA

56

DEFMOD implements the first phase by defining the network

configuration to be used in the experimental run. Phase

II is realized by a call to DEFRTE which accepts as input,

the routing strategy definition data and control

parameters. The last phase of the initialization is

accomplished by a call to SIMINT. This subroutine is

charged with using the previously input definition and

control data to initialize the tables and variables needed

to support simulation execution. On the intial pass,

initialization is restricted to copying permanent data

into temporary tables. On subsequent passes, however,

SIMINT is charged with using the control parameters to

increment the offered workload.

Having initialized the necessary variables and

tables, FLO requests simulation of the defined network

environment via a call to SIMULA. This subroutine will

execute until its parametrically defined termination

condition is reached. During execution, network

performance metrics are captured for analysis. One aspect
of that analysis is the determination of whether the

network has become overloaded or if the network has become

unstable, i.e. summary performance measures do not

indicate steady state is reached. Either of these

conditions would cause FLO to halt the experimental run.

The experimental run will also be halted if it exceeds the
iteration limit. The following sections describe each of

57

these modules.

4.4.2 DEFMOD

DEFMOD realizes the first portion of the three-phase

initialization process required to support simulation

execution. As mentioned earlier, this subroutine collects

the information which defines the network configuration to

be used for the experimental run. Flexibility is provided

by allowing this data to take two forms, either a standard

configuration definition or a snapshot from an earlier

experimental run. The variable RESTRT is used to

distinguish between these two cases and if set forces a

subroutine call to SSREAD thereby bypassing the standard

initialization process.

If RESTRT is not set, DEFMOD proceeds to fill the

various arrays and tables needed to support the simulation

process. A detailed description of each array/table can

be found at Appendix B. The first array to be filled is

ORPRMS. This is a seventeen element array containing the

initial parameter settings required by SIMULA. These
values are used to initiate the simulation process and

then form the basis for the systematic increase in offered

workload .

The second array filled is ORSDTB. This array

contains the seeds used to support independent pseudo

random number generation for each node.

58

The third array filled is KONECT, a square matrix

which details the connectivitity of the experimental

nodes. The link between any two nodes X and Y is

described by the matrix with a -1 indicating there is no

link from X to Y, a 0 indicating that it is illegal to

connect nodes X to Y, and a positive value indicating the

number of the link which connects them.

The last four arrays read by DEFMOD are all linear

arrays which describe the characteristics of the channels

which make up the network configurations. The first,

SORCHL, identifies the node at which each channel

originates while NODCHL provides the node at which each

channel terminates. PARM3 specifies the number of slots

available over each link while JARM3 contains the total

number of slots available in the first n circuits.

Taken together, these tables give the user the

flexibility to define virtually any network configuration
conceivable.

4.4.3 DEFRTE

The second phase of the initialization process is

accomplished by DEFRTE, a subroutine responsible for
gathering both the parameters which control the

experimental run and the data needed to define and support

the routing strategy used. The control parameters

gathered are described below.

59

(1) STOFWD - A switch indicating whether class II
traffic is to use end-to-end or

store-and-forward techniques in

traversing the network.

(2) WCINCR - The factor by which class I workload is
to be incrementally advanced through

experimental runs.

(3) WPINCR - The factor by which class II workload
is to be incrementally advanced through

experimental runs.

(4) SWITCH - A variable used to select the routing
routine to be used.

(5) GLOBAL - A switch defining the "visibility" to
be used in routing strategy analysis.

If the switch is "off" then only

information from directly connected

nodes is used in the analysis. If "on"

then data from the entire network is

made available.

(6) STPPRI - A switch used in conjunction with
STOFWD to achieve the "furthest

possible" routing philosophy.

Specific data items must also be collected to support
the routing alternative chosen. These include:

(1) DESTAB - The primary routing table, DESTAB is
used for fixed routing strategies. It

60

contains in matrix form the primary

link choice for traffic which is to be

routed from any node, X, to any other

node, Y.

(2) DSTALT - The secondary routing table; it is used

by fixed routing strategies whenever

the primary route is unavailable.

(3) NMTRYS - A variable supporting the random

routing technique which determines how

many randomly selected routes will be

tried before the strategy indicates

that no route is available.

4.4.4 SIMINT

The final phase of the initialization process is

accomplished by SIMINT, a procedure which initializes the

global variables and arrays used by SIMULA. This step is

necessary because these variables/arrays will change over

the course of a simulation run. SIMINT resets these to

their appropriate values for incrementing the offered

workload and then reinitializes the simulation for the

next experimental cycle.

The variable/arrays initialized include:

(1) PARAM - A copy of the parameters stored in

ORPRMS.

(2) SEEDTB - A copy of the seeds used to randomly

61

generate traffic.

(3) NLINES - An array showing the number of slots

available on each channel.

(4) WCFACT - The factor used to increment the class

I traffic.

(5) WPFACT - The factor used to increment class II

traffic.

4.4.5 SIMULA

SIMULA realizes the simulation of the experiment

defined by the previous three modules. It is an enhanced

version of the simulator implemented by Clabaugh [22] and

it simulates the SENET-type environment described earlier.

The main routine (SIMULA) initiates the simulation by

performing necessary initialization and echoing the

network configuration and parameter settings. The

initialization is accomplished by a subroutine call to

BDATA and a sequence where the initial class I and II

arrivals are generated for each node. SIMULA then enters

a tight loop where repeated calls are made to EVENT which
selects and handles the next simulation event, causing the

simulation to advance. The loop is interrupted

periodically to recor_d. performance statistics for later

analysis and summary. The loop stops at an experimentally
determined point.

SIMULA then proceeds to analyze the performance

statistics captured to determine whether the network over

stabilized or has become overloaded. This information is

returned to FLO for appropriate action. At specified

intervals SIMULA will capture snapshots of the network

operation to support later restarts if needed. The

calling hierarchy for SIMULA is shown in Figure 4-4.
The simulator is table-driven in that all pertinent

data is held in system tables (arrays). Changes in state

are realized by updating these tables. The tables are

described in detail in Appendix B. The major tables

include the following.

(1) CHANTB - An array reflecting current status of

all network channels including ones

which are occupied/free, the class

I/class II traffic carried, and its

utilization.

(2) EVTBL - An array showing the next event

scheduled to occur for each switch.

(3) QUEUE1 - An array containing data associated
with all class II transactions queued

for service or scheduled to occur in

the future.

(4) QUEUE2 - An extension of QUEUE1.

63

Calling Hierarchy
of

SIMULA

STATX

SIMULA

EVENT

ARRIVE

\
UPDATE REMOVE

SSLIMT ssqICNT

Figure 4-4.

64

(5) CALQ1 - An array containing data associated

with each class I transaction queued

for service or scheduled to occur in

the future.

(6) CALQ2 - An extension of CALQ1.

4.4.5.1 EVENT

This procedure is responsible for determining which

system event is next, advancing the system clock to that

event, handling it properly, and then generating the next

event if appropriate. EVENT first examines system

counters to determine if one of the periodic data

recording points has been reached. If so, a call is made

to STATK which examines current performance metrics and

saves selected information. EVENT also determines whether

the experimentally determined steady state point has been

reached. If so, various summary values are re-initialized

for data collection.

EVENT'S second major task is to select the next

system event. This is accomplished by perusing EVTBL.

Once found,EVENT updates summary statistics and then

handles the event via a call to ARRIVE (to handle

transaction arrivals) __or DEPART (to handle transaction

departures). These routines are responsible for updating
the system tables to reflect either an arrival or a

departure. Manipulation of these tables is based on the

65

path selected by ROUTE, if the end-to-end routing

philosophy is being enforced. Updates are based on the

path selected by SGLSTP if the furthest-possible or

store-and-forward philosophies are in effect.

Finally, EVENT completes the simulation cycle by

generating a replacement for the system event which was

just handled.

4.4.5.2 ROUTE and SGLSTP

One of the key features of the enhanced simulator is

the isolation of the routing strategy into a common set of

routines. ROUTE and SGLSTP form the central access points

for those routines. ROUTE accepts as input a set of

control parameters defining the path needed and the

evaluation strategy to be used in selecting it. ROUTE

returns the selected path via the global arrays TCHNLS,

FTRACE, and RTRACE.

The routing routines implemented include the

following :

(1) RTUTIL

(2) RTPRBK

(3) RTRAND

(4) RTQCNT,_.

(5) RTLIMT

Each of these are associated with a specific generic

strategy. Detailed descriptions of each are provided in

66

the next chapter.

SGLSTP is functionally equivalent to ROUTE. The

difference between the two is that SGLSTP is designed for

use when store-and-forward routing is in effect. SGLSTP

accesses the following subroutines, each of which apply a

"generic" technique to the store-and-forward or

furthest-possible mode of operation.

(1) SSUTIL

(2) SSPRBK

(3) SSRAND

(4) SSQCNT

(5) SSLIMT

4.5 SUMMARY

The enhanced simulator is an extremely complex

facility, comprising just over 5,000 lines of FORTRAN code

(as opposed to 1800 for the original version). With this

complexity comes a flexible capability to experiment with

routing and flow control issues in an integrated

environment. The next chapter details the results of the

experiments conducted.

67

CHAPTER V

EXPERIMENTAL RESULTS

5.1 Introduction

The network simulation model described in Chapter IV

was used to investigate the generic routing strategies

identified in Figure 3-1. These basic strategies and

three of their variants were examined under progressively

increasing workloads. This chapter contains detailed

descriptions of the routing strategies explored, the

conditions under which they were exercised, and the

experimental results obtained.

5.2 Routing Strategies Explored

The ability to investigate alternative routing

strategies is enhanced by the structure of FLO. During
the initialization phase, all potential paths are

generated and stored in a path table, P, along with
characteristic information such as source node,

destination node and path length. Whenever a route is

required, alternative paths connecting the desired source

and destination nodes are evaluated and the ”best” route

is chosen. The path Jtable index which references the
selected route is used as a label and is associated with

the transaction requesting service via either CALQ2 for

class I traffic or QUEUE2 for class II traffic. The

68

label, and hence the selected path, is retained until the

routing philosophy determines that the choice should be

re-examined. To support transaction processing, the path

selected is also returned via the global arrays TCHNLS,

FTRACE, RTRACE. These arrays support simulation

management functions and are reset for each route request.

Specifying the route a transaction will follow via a

reference into the path table is essential to the flexible

and efficient operation of the network simulation model.

Since the definition of "best” can easily vary with

network conditions, the choice of an optimal route becomes

a "point in time" decision, with no guarantee that later

evaluations will yield the same result. The reference

approach allows the routing decision to be retained

without vastly increasing the simulation storage

requirements.

The evaluation of alternative routes and the decision

as to which to select is the responsibility of either

ROUTE or SGLSTP depending on the routing philosophy under

consideration. These procedures select the optimal path

based upon the desired source and destination nodes, the

condition of the network, and the routing stategy opted

for. Detailed descriptions of the routing strategies

examined follow.

69

5.2.1 Fixed (RTPRBK and SSPRBK)

The fixed routing strategy was implemented as the

standard by which to judge the relative merits of the

other strategies. The specific routing tables used were

those for which the network was optimized via CIRPAC.

RTPRBK selects a route by perusing the DESTAB and

ALTCHN tables. Defined at initialization and fixed for

the duration of the experiment, these square arrays

identify both a primary (DESTAB) and secondary (ALTCHN)

route from any source node to any destination node. The

(x,y) coordinates of these tables reference link

identifiers. Traversing the indicated link will cause a

transaction to reach either node Y or some intermediate

node, I. If the identified link does not terminate at the

desired destination, the link at coordinates (i,y) is

investigated. Repeated examinations will eventually yield

a link connected to the ultimate destination. At each

stage, the available capacity of the selected link is

examined. If there is insufficient capacity to

accommodate the requested traffic, the link identified by

the ALTCHN table is examined for potential use. If

neither of the tables can provide a suitable link, a

bottleneck condition i-s noted and returned in lieu of the

requested route. Alternatively, if a route with
sufficient capacity is identified a reference to that
route is returned.

70

The fixed strategy outlined above, called

"Progressive Alternate Routing" by Clabaugh [22], is

significantly more robust than fixed strategies which

choose a path from one or more pre-defined alternatives.

Since each link of a path can take on at least two values,

as demonstrated by Figure 3-3, the number of possible

paths which are considered during route selection is at

least 2n where n is the number of links in a route.

Consider the example depicted in Figure 5-1. Assume that

a message is to travel from node A to node D with the

primary and secondary routing tables defined as shown.

Depending on the availability of the links at the time

service is requested any of the eight routes listed in the

figure might be selected.

SSPRBK follows a procedure analogous to that used by

RTPRBK for selecting the "best" route. The principal

difference between the two procedures is that the

evaluation process is limited to the first step of the

route since this is the only element which will be used.

A variant of the progressive alternate routing

technique, called "Primary-Only Routing" was also

considered. Identified as RTPRON and SSPRON in the

discussion of experimental results, this variant was

implemented by resticting the progressive alternate

strategy to the primary routing table (DESTAB).

71

Progressive Alternative

Routing

1 2 3

O—0m£D—0
4 5 6

A B C D A B C D

A
B
C
D

0 111
10 3 3
2 2 0 3
3 3 3 0

0 4
4 0
5 5
6 6

4 4
6 6
0 6
6 0

1-2-3
1-2-6
1-5-3
1-5-6
4-2-3
4-2-6
4-5-3
4-5-6

Figure 5-1.

72

5.2.2 Random (RTRAND and SSRAND)

Conceptually, random route selection is made in the

complete absense of information, including the desired

destination. This strategy is possible in FLO’s

"single-step" mode of operation, where routes are

re-evaluated at each intermediate node. Under this

routing philosophy, transactions repeatedly request routes

until the desired destination is reached. However, the

"end-to-end" routing philosophy has, as a basic tenet, the

notion that traffic will reach its destination and be

removed from the system after traversing the selected

route. Thus, application of random routing concepts to

the alternative philosophies afforded by FLO yields two

variants of this basic strategy.

RTRAND represents the directed variant of random

routing. When a request to traverse the network is

received RTRAND randomly selects one of the routes which

connect the desired source and destination nodes.

Selection is based on a uniformly distributed random

variable therefore all paths connecting the requested

endpoints have an equal chance of being selected. Once

selected, the route is evaluated to see if it possesses

sufficient available <2apacity to handle the offered

traffic. If there is, the index of the selected path is

returned. If not, the variable NMTRYS is examined to see

if an alternate route should be examined. NMTRYS is a

user-specified parameter fixed at system initialization

time. It indicates the number of routes to be examined

before RTRAND returns a bottleneck condition. For the

experiments supporting this analysis, NMTRYS was assigned

the value one (1).

SSRAND represents the second variant of random

routing and realizes a true "drunkards walk". When asked

to identify the "best route", or in this case, the "best

next step", this procedure randomly selects one of the

links emanating from the source node as the next link to

traverse. SSRAND then ensures that there is sufficient

available capacity on the selected link and, if there is,

returns that "route". If there is insufficient capacity

available, SSRAND examines NMTRYS to determine whether

alternative routes should be examined before a bottleneck

condition is noted.

5.2.3 Adaptive Procedures

Adaptive procedures share a common approach to route

selection. These strategies periodically examine network

status information, using it to guide the route selection

process in an effort to adjust to network conditions.

An important fea_Lure of any routing strategy is its

ability to adapt to ever changing network conditions.
This capability, sometimes called "adaptiveness", is a

function of both the routing strategy under consideration

74

and the routing philosophy in effect. While the former

identifies the data and logic to be used in evaluating

alternative paths, the latter determines the frequency

with which route selections are re-examined. As the

frequency of re-evaluations increases, so does the

capability of the routing strategy to react to changes in

network status.

5.2.3.1 Link Utilization (RTUTIL and SSUTIL)

Link utilization procedures evaluate alternative

paths based on the percentage of link capacity currently

in use. RTUTIL responds to a service request by

identifying all paths which connect the desired source and

destination nodes and then evaluating them according to

the formula shown below:

where: k = length of the path

u. = percentage of available capacity in use

p = user specified exponent

This procedure calls for the percentage utilization
of each link along a candidate path to be computed and
then raised to a user specified exponent, provided via the

variable POWER. The resultant values are then summed to

75

form a "utization metric” for that path. This metric

forms the basis for path selection with the path with the

lowest metric being selected.

This algorithm is varied slightly for those

situations where one of the component links of a path does

not have sufficient available capacity to accommodate the

requested workload. This situation is resolved by

assigning that link an arbitrarily high value, one which

is large enough so that the any route using that link is

unlikely to be selected.

The utilization metric reflects several key features

of a given path. Certainly, it reflects the relative line

utilization of competing routes. Given two paths, both of

length one, the route with the lowest utilization will be
chosen. If two routes of unequal length are compared, the

situation becomes more complex, with the shortest

typically being selected. This rule of thumb fails,

however, whenever the combined utilization of the longer

route is less than that of the shorter one. For example

if a route of length one has a link utilization of 75% and
is compared to a route of length two where each link is
40% used, the first route would be chosen. However, the

second route would be selected if the utilization of each

of its links were 37% or less.

The above weighting technique becomes even more

complex when the effects of unequal link utilization along

76

a path are considered. One could easily postulate

examples where it would be imprudent to blindly select the

path with the lowest utilization metric. This realization

prompted the use of exponentiation to aid in path

discrimination. Experimentally, it was determined that

exponents greater than one (1) yield essentially the same

relative values, therefore only one (1) and two (2) were

used as exponents in the experimental runs supporting this

analysis. These variants are identified as UTIL-1 and
UTIL-2 in the discussion of experimental results. Figure

5-2 gives an example of how exponentiation can effect
route selection.

The logic used by SSUTIL is analogous to that just

described for RTUTIL. SSUTIL differs, however, from its

counterpart in two ways. First, as do all route selection
procedures which support "single-step” operation, SSUTIL
returns only the first step of the selected route. The
second difference is more significant and deals with the

amount of data available to SSUTIL during route selection.

Based o^i the user-provided setting for GLOBAL, SSUTIL will

adjust its ’’visibility”. If GLOBAL is set to one (1),
SSUTIL will select a route based on link utilization data

for all remaining links between the current node and the
desired destination. If GLOBAL is set to zero (0), SSUTIL
will base its decision on only the status of links

directly connected to the current node.

77

Effect of Power
on

Link Utiization Scores

0%

.00

.00
+ .64
.64

.09

.09
+ .09

. 27

.00

.00
+ .80
.80

.30

. 30
+ .30
.90

If POWER = 1, select upper route

If POWER = 2, select lower route

Figure 5-2

78

5.2.3.2 Queue Count (RTQCNT and SSQCNT)

RTQCNT and SSQCNT base their evaluation of

alternative routes on the size of the queues which have

built up at intermediate nodes along a given path. Using

an evaluation mechanism similar to that described for the

link utilization procedures, RTQCNT evaluates each link

based on the queue size at the link’s source as a

percentage of that link’s capacity.

When a route request is received, RTQCNT first

identifies all potential paths connecting the desired

source and destination nodes. A queuing metric for each

candidate path is then computed by summing the individual
values for each of the path’s component nodes. The

individual values are computed by dividing the queue size

by the capacity of the link to be used. This weighted
value is then raised to the power provided in the

variable, POWER. The path with the minimum queuing metric
is then selected.

Just as in the link utilization procedures, the

evaluation mechanism used i:o support routing decisions

based upon queue size must resolve several important
factors. Analyzing an increasingly complex sequence of

examples, the resolution techniques become more apparent.
Consider first the case where two paths of equal

length (assume one) are compared. If the links have the
same capacity, the path with the smaller queue will be

79

favored. If, however, the queues are of the same size, it

will be the link with the largest capacity which is deemed

optimal. As the simplifying assumptions of equal capacity

and queue size are withdrawn the possible comparison

scenarios mushroom.

Further complexity is added by eliminating the

assumption of equal path length. As in the link

utilization procedures, the queuing metric for each path

is a summation of the individual link values. In general,

this comparison technique favors the shorter paths,

however examples can be constructed which cause the longer

path to be selected. Exponentiation was again used to

help resolve situations analagous to that demonstrated by

Figure 5-2. One (1) and two (2) were the exponents used
in this series of experiments. The results are

distinguished in the discussion of experimental results by
the labels "QCNT-l" and "QCNT-2".

The workings of SSQCNT closely parallels that of
SSUTIL. It also differs from its counterpart, described

above, by first, providing' only the first "step" of the
route selected, and second, allowing the restriction of
its visibility based upon the value found in GLOBAL.

5.2.3.3 Link Utilization Limit (RTLIMT and SSLIMT)

The basis for analysis in the limiting procedures is
also link utilization. However a significant difference

80

exists in the way in which the raw link utilization data

is combined. Rather than pursue the path with the lowest

weighted utilization, these procedures select the shortest

path such that all component links possess a progressively
increasing quantum of excess capacity.

Upon receipt of a request for routing service, RTLIMT

first identifies candidate paths and then examines these

paths from shortest to longest, investigating the
utilization of each link. The first path to be identified

with utilization factors of 85% or less for all its

component links is selected. If all candidate routes are

examined and none meets the "less than 85%" criteria, the

procedure will start over with 90% being used as the
comparison figure. Assuming no routes are identified, the
comparison figure would progressively increase to first
95% and then 100%. This last figure would simply cause

the shortest path to be selected.

The motivation for this technique stems from a desire

to retain open capacity on lines as long as possible. The
tradeoff, in__this case, concerns by-passing shorter paths
with high utilization factors (though possibly sufficient
capacity to handle the requested traffic) to use a longer
path with lower utilization metrics.

Again, SSLIMT is analogous to RTLIMT, differing from
the latter in the ability to forward only the first step

of the selected route, and the capacity to limit its

81

visibility to only information available about directly

connected nodes.

5.3 Resource Constraints

The flexibility of FLO provides the analyst with a

virtually unlimited capability to investigate the

integrated network environment. Not only can any network

configuration be realized but given a particular

configuration, the possible combinations of traffic

arrival patterns/rates, routing philosophies and routing

stategies are endless. These features, taken together,

imply that experimentation is bounded only by the

analyst’s imagination and curiosity.

Unfortunately, the reality of limited computer

resources and time quickly forces compromises in an effort

to obtain the most cost-effective information. In this

project, four major compromises were made to reduce the

computing budget.

The first two were introduced in Chapters III and IV.

They involve the use of ’’generic" routing strategies to

reduce the number of alternative stategies to be tested

and restriction of the experiment to the 10-node

configuration shown in Figure 3-2.

The third compromise was a restiction of the workload
settings to be examined. This was accomplished in three
ways. First, only balanced workload conditions were

82

examined even though FLO allows the analyst to vary the

arrival rate of voice (Class I) and data (Class II)

traffic independently.

Secondly, FLO was not allowed to iterate until it

identified the largest workload which could be

accommodated by a given routing strategy. Rather, a more

economical approach was taken, whereby each strategy was

examined under several smoothly increasing workload

settings. Kiemele’s sensitivity analysis [64]
demonstrated that the simulation model yields accurate

results for workloads ranging from one to six Class I

transactions per minute and from 100 to 600 Class II

packet arrivals per second. Based on a desire to examine

the alternative routing strategies over the widest

possible conditions, it was decided that both Class I and
Class II workload settings should be varied over their

entire range. The requisite number of experimental runs

was then reduced by spanning these ranges in increments of

one Class I transaction per minute and 100 Class II packet

arrivals per second. Thislresulted in six workload

settings abbreviated 1/10 through 6/60.

Finally, workload settings which provided only

marginal information -were eliminated. This resulted in
the elimation of the first two workload settings for all

stategies (1/10 and 2/20) and the elimination of all
workload settings for the random strategy. The result was

83

a significant reduction in the required number of

simulation runs.

The final compromise called for the experimental runs

to be limited to only one routing philosophy, even though

FLO makes it possible to examine three different

philosophies. The philosophy examined was "end-to-end"
routing, where routes are determined based on an

evaluation at the source node and then remain constant for

the duration of the voice call or message. This

philosophy is the one closest to the fixed routing stategy

under which the network configuration was optimized via

CIRPAC and thus represents the most difficult scenario

under which to demonstrate the advantages of alternative

routing strategies.

5.4 Experimental Data

This section contains a comparative analysis of the

data collected during the experimental runs. Each

subsection addresses a different perspective for comparing

the data along with appropriate summary statistics. The

complete set of collected data can be found in Appendix C.

5.4.1 Packet Delay

Chapter III motivates an analysis based on

"user-visible11 performance metrics. In the data
transmission world, one of the most readily visible

84

metrics is packet delay. Two forms of this metric are

available for consideration. The first, average packet

delay, estimates the amount of time it will take a packet

to traverse the network. The second metric could easily

be termed the "aggravation factor" since it represents the

percentage of packets which experience excessive delay.

Though potentially more meaningful, the second form is

less precise since the definition of excessive will often

vary among users and even among applications.

5.4.1.1 Average Packet Delay

Figures 5-3 and 5-4 present the average packet delay

(APD) statistics observed during the experimentation. The
data is presented in both graphical and tabular form for
each of the routing strategies^ examined.

There are three readily available points of reference

from which to evaluate the observed data. The first is

the performance observed for PRBK, Clabaugh’s Progressive
Alternate Routing strategy. This is the strategy around
which the network configuration was optimized.

A second frame of reference is the design criteria

used by CIRPAC in optimizing the network configuration.

During optimization, XIRPAC used one (1) second as the
maximum allowable delay.

A third basis for comparison is optimality, i.e. what

is the best average packet delay statistic a user can

Average Packet Delay - Graphical

Figure 5-3

86

Average Packet Delay - Tabular

Workload

Strategy 3/30 4/40 5/50 6/60

PRBK 0.106 0.160 0.391 0.799

PRON 0.117 0.194 0.394 0.711

LIMT 0.105 0.172 0.616 1.131

QCNT-1 0.119 0.210 0.431 0.775

QCNT-2 0.158 0.361 0.655 1.073

UTIL-1 0.104 0.121 0.536 1.467

UTIL-2 0.104 0.119 0.485 1.375

Figure 5-4

87

expect. Appendix D contains the details of an analysis

which demonstrates that, given the nodal processing times

and the modelled network configuration, the best possible

average packet delay statistic is 0.103.

At the initial workload setting, 3/30, the average

packet delay observed for four strategies approaches the

optimum. UTIL-1 and UTIL-2 both recorded the lowest

packet delay at 0.104, only 1 percentage point over the

optimum value. The metrics observed for two others, LIMT

and PRBK, were also extremely close to the optimum with

the former 2 percent above and the latter 3 percent above.

The other strategies did not fare as well, recording

average packet delays from 12% to 52% higher than that of

UTIL-2.

For the next workload setting, the smallest average

packet delay observed was that of UTIL-2 at 0.119, with

UTIL-1 yielding approximately the same value at 0.121.

The performance of the utilization strategies indicates an

effective use of network resources since the 25% increase

in workload only resulted in a 15% increase in average

delay. This compares to a 50% increase for the next best

strategy, PRBK, which recorded an average packet delay of
0.160. The four other strategies yielded values from 45%

(LIMT) to 203% (QCNT-2) higher than that observed for
UTIL-2.

88

At a workload setting of 5/50, PRBK demonstrated the

best performance, recording an average packet delay of

0.391. It variant, PRON, yielded similar results with an

observed metric of 0.393. The remaining strategies turned

in performances ranging from 24% (UTIL-2) to 58% (QCNT-2)

worse than that for PRBK.

For the final workload setting tested, PRON

demonstrated its superiority with an observed packet delay

of only 0.711. The next best statistic observed was that

for QCNT-1, which was 9% higher at 0.775, followed by PRBK

which was 13% higher at 0.799. These were the only

strategies which satisfied the design criteria at this

workload. LIMT, UTIL-1 and UTIL-2, which demonstrated

excellent performance at lower workloads, all recorded

delay statistics significantly larger than the one (1)

second criterion.

5.4.1.2 Excessive Delay

The most readily available statistic for defining

"excessive" is the one (1) second average packet delay

criterion used by CIRPAC to optimize the network. Using

this criterion as a basis for analysis, Figures 5-5 and

5-6 present in both graphic and tabular form the

percentage of packets taking longer than 1 second to
traverse the network.

89

Percentage Delay > One Second - Graphical

Figure 5-5

90

Percentage Delay) One Second — Tabular

Workload

Strategy 3/30 4/40 5/50 6/60

PRBK 0.001 0.025 0.116 0.243

PRON 0.007 0.040 0.116 0.216

LIMT 0.000 0.025 0.198 0.365

QCNT-1 0.007 0.046 0.129 0.237

QCNT-2 0.018 0.104 0.209 0.321

UTIL-1 0.000 0.005 0.171 0.438

UTIL-2 0.000 0.004 0.154 0.420

Figure 5-6

91

Review of the data shows that at the 3/30 workload

setting, excessive packet delay is negligible with the

worst case 1.8% and the majority of strategies recording

no excessive delay at all. At the 4/40 workload setting

the superiority of the utilization strategies begins to

accentuate itself. At that setting, less that 1% of all

packets experienced excessive delay (.4% and .5%) under

the utilization strategies. By comparison, the next best

performance was recorded by LIMT and PRBK at 2.5% followed

by PRON and QCNT-1 at approximately 4%.

At the 5/50 workload setting, the best performance

was jointly recorded by PRBK and PRON. Although a 12%

statistic is not exceptional, it is clearly superior to

the 15% and 17% figures experienced by the utilization

strategies.

At the last workload level, PRON had the best

performance just as it did with respect to average packet

delay. Reporting an "aggravation factor" of 22%, this

strategy performed at least 12% better than any other

strategy and almost twice bs well as UTIL-2_.

5.4.2 Blocking Factor

Blocking factor is defined as the percentage of class

I service requests which are rejected due to insufficient
resources along the path selected by the routing strategy

under consideration. This traffic class prohibits

92

queuing, therefore service requests cannot be stored until

resources are freed. The analog of a class I rejection in

the telephone network is a "busy signal".

The optimum value for blocking factor is 0, i.e. no

class I service requests are rejected. Such a figure is

highly optimistic and either indicates a large reserve of

communications facilities or exceptional management of

resources. In practice, a communications network would be

designed to keep the blocking factor below some threshold.

The threshold used by CIRPAC in optimizing the network was

10%.

Figures 5-7 and 5-8 summarize the blocking factors

observed during the experimental runs. Review of the data

clearly points out two facts. First, as would be

expected, the blocking factor increases with traffic flow.

Second, the observed data shows that an alternative

strategy, specifically one based on utilization yields a

significantly lower blocking factor.

At the 3/30 workload level, there is virtually no

blocking. Four of the seven strategies junder

consideration observed .1% or less blocking. The other

three strategies experienced between .6% and 1.5%

blocking, significantly worse than the first four, but far
less than the criteria for which the network was designed.

At the 4/40 workload setting, blocking is still not a

significant problem, but the statistics observed for the

93

Blocking Factor - Graphical

Figure 5-7

Blocking Factor - Tabular

Workload

Strategy 3/30 4/40 5/50 6/60

PRBK 0.001 0.018 0.074 0.162

PRON 0.007 0.031 0.097 0.166

LIMT 0.000 0.009 0.101 0.205

QCNT-1 0.006 0.042 0.120 0.203

QCNT-2 0.015 0.086 0.180 0.271

UTIL-1 0.000 0.000 0.043 0.154

UTIL-2 0.000 0.001 0.042 0.149

Figure 5-8

95

different routing strategies are diverging. For example,

the blocking factor for the utilization strategies are

still .1% or less, but that for PRBK is now 1.8% and that

for QCNT-2 is at 86% of the design criterion.

At the 5/50 workload level, blocking has become a

significant factor. At this level, the two queue-based

strategies are well over the 10% design criterion(12% for

QCNT-1 and 18% for QCNT-2) and two others are at the

design criterion (LIMT and PRON). The blocking factor for

PRBK has reached 0.074, approximately three-quarters of

the design criter ion,while the utilization strategies are

at 4.2% and 4.3%, clearly superior to all other

strategies .

At the 6/60 workload setting, all strategies have

exceeded the network design criterion. At this workload,

the most desireable blocking factor is demonstrated by the

utilization strategies with both yielding approximately

15% blocking. PRBK and PRON experienced approximately 16%

blocking at this workload. Blocking factors for the other
three strategies were significantly higher.

5.3.3 Throughput

The third "user-visible" metric identified in Chapter

III is throughput. Throughput is a measure of the volume
of traffic which successfully traverses the network over a

set time period. The emphasis here is on the word

96

’’traverse” since the typical user only views the

end-to-end results.

The throughput statistics collected during the

experimental runs are presented in Figure 5-9. These

statistics take two forms. The first, link throughput,

must be cautiously interpreted since this figure reflects

the average number of packets flowing through a node

during a given time period. Though this value would rise

with increased ”end-to-end” throughput, it would also rise

if the routing strategy under consideration selected

extremely long routes.

The second form, message throughput, reflects the

average number of messages (Class II transactions) which

successfully traverse the network per second. Analysis of

the data does not however, demonstrate significant

differences between the alternative strategies.

5.4.4 Average Queue Size

As noted above, Chapter III motivates the notion that

the performance of flow control mechanisms shouLd be

judged based on ’’user-visible" performance metrics.

Diverging slightly from this concept, average queue size

is examined. Though not directly available to the user,

it is important since it is a key influences on packet

delay and blocking factor.

Throughput

Workload

PRBK

PRON

LIMT

QCNT-1

QCNT-2

UTIL-1

UTIL-2

3/30

643.

640.

649.

651.

743.

644.

646.

4/40

868.

851.

967.

865.

982.

907.

907.

Link Thru- put

5/50

1,113.

1,064.

1,344.

1,080.

1,232.

1,327.

1,319.

6/60

1,347.

1,275.

1,611.

1,295.

1,483.

1,658.

1,669.

3/30

2,686.821
2,686.013
2,688.358
2,685.397
2,687.376
2,688.358
2,688.358

4/40

3,580.856
3,582.875
3,583.154
3,966.497
3,579.925
3,582.536
3,582.297
Pkt Thru- put

5/50

4,474.478
4,474.840
4,475.972
4,472.276
4,473.924
4,471.745
4,475.481

6/60

5,357,443
5,357.671
5,360.960
5,365.313
5,359.349
5,362.365
5,363.899

Figure5-6

98

Average Queue Size - Graphical

Figure 5-10

99

Average Queue Size - Tabular

Strategy

Workload

3/30 4/40 5/50 6/60

PRBK 5.4 44.0 129.9 201.5

PRON 16.0 52.3 108.7 157.5

LIMT 4.3 61.2 223.7 285.7

QCNT-1 15.7 63.3 128.3 173.3

QCNT-2 44.2 132.5 184.5 211.6

UTIL-1 4.3 19.7 195.4 273.9

UTIL-2 4.3 18.2 191.4 282.9

Figure 5-11

100

Review of the data presented in Figures 5-10 and 5-11

demonstrates that packet delay and average queue size are

strongly related. At the lowest workload level, the

minimal queueing found under four of the strategies is

consistent wth the extremely low average queue size found

under these strategies. The only strategy with a large

queue size is QCNT-2 which was also noted earlier as

having excessive packet delay statistics. This

correlation is consistent for all workload levels tested.

5.5 Summary

The experimental effort described here produced a

significant volume of technical data. This chapter

described the origins of that data and summarized into a

concise format, comparing the data observed for each of

the alternative routing strategies investigated. The last

chapter presents the conclusions which can be drawn from

the experimental results described here.

101

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE RESEARCH

6.1 Overview

The introduction of economical voice digitization

technologies combined with dramatic increases in the speed

of electronic switching systems has opened the door to the

creation of an environment long recognized for its

characteristic advantages, the "integrated” communications

network. Such an environment integrates both voice and

data traffic over the same communications network,

allowing the implementor to reap the benefits of equipment

commonality, more efficient resource utilization and

streamlined operations, maintenance and administration.

Recognizing the substantial advantages of an integrated

communications environment and technology’s relentless

progress toward it, researchers have examined the benefits

of alternative network architectures. The conclusion

reached by many is that the Slotted Envelope Network

(SENET) proposed by Coviello and Vena is one of the most

promising approaches offered thus far. Researchers have
also investigated the critical issues of optimal

topological design and link capacity asssignment. Thus,

previous research provides the tools necessary to design
and implement an integrated communications network. This

102

research accepts the premise that a SENET-type integrated

environment will eventually become commonplace.

Once built, such a network will have a built-in limit

to the amount of traffic it can carry. If demand should

ever exceed this limit, data packets and/or voice calls

will be delayed or rejected. Any network experiencing

this condition is said to be "congested".

Clearly, congestion could be eliminated if enough

resources were dedicated to the communications network.

Such a network would, however, be prohibitively expensive.

Realistically, computer-communications networks must be

designed to accommodate peak traffic requirements and
absorb reasonable load fluctuations, but must do so within

the constraints of cost-effective operation. However,

even in networks designed with substantial excess

capacity, higher than expected traffic demands,
unfavorable load patterns, component failures or any

combination thereof, can create situations where the

network becomes congested. Whatever the reason,

congestion is clearly unacceptable and procedures must be
developed to prevent or at least forestall this condition.
These procedures are generally referred to as "flow
control strategies".

This research investigates the utility of routing as

a mechanism for implementing the network flow control

strategy. Routing policy determines the path information

103

(either voice or data) will follow in traversing the

network. This research effort exploits the notion that

congestion results when an excessive volume of traffic is

channeled down a given communications link. It

investigates the characteristics of alternative routing

strategies with respect to preventing and/or forestalling

congestion in a SENET-type network environment.

Specifically, this research effort poses the

following research question:

Given: (1) a SENET-type integrated circuit/packet

switched communications environment

exists, and

(2) that this environment was initially

optimized to a specific traffic flow

pattern using progressive alternate

(fixed) routing.

Question: Can an alternative routing strategy be
identified which reduces congestion as

offered workload varies?

Pursuit of this question requires a clear definition

of the phrase "reduced congestion" and identification of a

procedure for measuring it. This research opts to view
these terms from a user's viewpoint.

From a user perspective, the details of how data and
voice messages are transmitted are unimportant. The user
is concerned only with two things: the cost to build the

104

communications network and the performance it offers.

These two features, unfortunately, are usually in direct

conflict with the typical user striving to minimize cost

while staying within an acceptable performance threshold.

At some point, however, cost/benefit studies are

completed, management decisions are made, and the network

resources are acquired. From that point on, the user's

only concern is end-to-end performance with performance

typically being measured in terms of volume or response

time. Common measures include:

(1) Throughput - the number of messages or

packets which successfully traverse the

network during a given time quantum.

(2) Average message delay - the average length

of time it takes for a message or packet to

traverse the network.

(3) Blocking - the percentage of time voice

calls are attempted but cannot be completed

because resources are unavailable.

These metrics provide the user with a quantitative

assessment of how well the network satisfies his

communications requirements. They are the ones he must

contend with on a daily basis and are the ones fostered by

this research as most appropriate for measuring network

performance.

105

Congestion in the integrated environment is thus be

defined as a network condition where throughput and/or

average message delay rise above a specified standard or a

condition where blocking rises above a specified

acceptable minimum. The specific values for the

performance standards are established by management and
form a key design constraint for the network.

Simulation was the vehicle selected for investigating

the research question. A FORTRAN-based simulator which

models the integrated SENET environment was developed and

then used to examine the effect of seven alternative

routing strategies on network congestion. The strategies
were examined at progressively increasing workloads

against a sample network which was based on the CYBERNET
system. The sample network was originally optimized via
CIRPAC, a network topology optimization tool which assumes

the use of progressive alternate (fixed) routing.

The experimental results obtained were examined from
two perspectives. The first one, proximity of observed
metrics to "optimality”, provides the reader with insight
into how well each strategy performs with respect to a

network blessed with unlimited communications resources.

The second perspective, proximity of observed metrics to
that experienced by progressive alternative routing,
provides the reader with a comparison of how well each
strategy performs relative to the one for which the

106

network was originally optimized.

6.2 Conclusions

The results obtained via experimentation conclusively

demonstrate that the research question should be answered

affirmatively. The results clearly show that there are

routing strategies which reduce congestion as workload is

varied. Unfortunately, the results also show that none of

the strategies investigated yield consistently superior

performance over all workloads. Rather, it appears that

the routing strategy should be adjusted as workload

varies. Finally, the data indicates that a strategy based

on link utilization outperforms other strategies in most

cases. Specifically, the following conclusions can be

drawn.

Based on a throughput analysis, all strategies

performed essentially the same. Though, throughput for

the utilization strategies, UTIL-1, UTIL-2 and LIMT, were

slightly better than that for other strategies, the

percentage improvement demonstrated was so small that any

claim to congestion reductions is at best dubious.

Based on an analysis of the blocking characteristics

demonstrated by the alterative strategies, UTIL-2 is

clearly the superior strategy. At all workload levels

this strategy resulted in significantly reduced blocking.
At the final workload level, the benefits of UTIL-2 appear

107

to fade, as the blocking metrics converge. However, even

at this workload, UTIL-2 offers substantially less

blocking than other alternatives considered.

If packet delay is the figure of merit to be used in

judging network performance, the recommended routing

strategy must change with workload. Below the 5/50

setting, UTIL-2 is clearly superior. However, at 5/50 and

6/60, PRON yields superior performance. These results are

consistent for both excessive delay and average packet

delay. The results are further supported by the average

queue size statistics gathered.

6.3 Recommendations for Future Research

The stated goal of this project was to determine

whether routing could be used to reduce congestion in an

integrated circuit/packet-switched computer communications

network. This objective was clearly satisfied with the

affirmative answer to the research question posed. In the

course of addressing that question an extremely powerful

experimentation facility was produced. This facility __

opens the way for further investigation into the

characteristics of the integrated environment. This

researcher recommends that the following areas be pursued

in future efforts.

108

(1) Queue priority schemes. One of the

simplifying assumptions of FLO is that

queues will always be handled first-in,

first-out. There are applications, such as

military command and control systems, where

this is not only undesirable but

potentially disastrous. The effect of

queue prioritization on network performance

should be addressed.

(2) Security issues. There are no provisions

in the current model to effect network

security except through encrytion of data.

The network model further assumes that data

can and will flow between any nodal pair

and can take any route. Transmission of

classified data often must be accomplished

without encrytion. Known as "RED”

networks, various techniques are used to

insure that data is not tapped from the

transmission media. The end result is a

system which funnels specific data classes

over specialized links, i.e. those which

are suitably protected. The effect of

security issues on network performance is

an increasingly relevant topic.

109

(3) Routing disciplines. This project merely

scraped the surface of the capabilities of

FLO. One of the major capabilities not

fully investigated, but deserving

attention, is the effect of alternative

routing disciplines on network performance.

(4) Strategy Adjustment. This research effort

concluded that to keep congestion minimal,

the routing strategy must be adjusted as

workload increases. A key topic for future

exploration centers around the issues

associated with altering the routing

strategy. Open questions include: When

should the strategy be changed? How often

should changes occur? How long will the

system take to stabilize? Will performance

be degraded in the interim? Each of these

questions merit further study.

6.4 Summary

The clear advantages of an integrated communications

environment have motivated a general consensus among

industry and government experts that future communications

systems will combine voice and data traffic over the same

network. Technology is steadily progressing toward the

realization of this environment. The research summarized

no

here extends previous efforts by investigating the use of

routing as a flow control strategy within the integrated

environment, concluding that congestion can be reduced by

the judicious selection of routing strategies.

Ill

REFERENCES

1. Agnew, C.E. On quadratic adaptive routing
algorithms. Communications of the ACM 19. 1 (January-
1976), 118-122.

2. Ahuja, V. Design and Analysis of Computer
Communication Networks. McGraw-Hill, Inc., New York, NY,
1982 .

3. Andrews, Frank B., and Cooper, Chris G. Probing
NCR’s distributed network architecture. Data
Communications. (April 1978), 49-59.

4. Avellaneia, O.A., Hayes, J.R., and Nassehi, M.M. A
Capacity Allocation Problem in Voice-Data Networks. IEEE
Transactions on Communications (Com-30), 7 (July 1982),
1967-1772.

5. Bell, G.C. More power by networking. IEEE Spectrum
11, 2 (February 1974), 40-45.

6. Belsnes, D. Flow control in the packet switching
networks. Ccmmunications Networks, (1975), 349-361.

7. Berberi, N. VLSI pares T1 problems down to size.
Data Communications, 7 (June 1984), 133-140.

8. Bially, T., and McLaughlin, A.J. Voice
communications in integrated digital voice and data
networks. IEEE Transactions on Communications (Com-28), 9
(September 1930), 1478-1488.

9. Black, P. How ISDN services could make or break the
big network. Data Communications, 7 (June 1984), 247-252.

10. Boehm, B.W., and Mobley, R.L. Adaptive routing
techniques for distributed communications systems. IEEE
Transactions on Communications (Com-17), 3 (June 1969),
340-349.

11. Boorstyn, R.R. and Frank, H. Large-scale network
topological optimization. IEEE Transactions on
Communications (Com-25), 1 (January 1977), 29-47.

12. Boorstyn, R.R., and Livne, A. A Technique for
Adaptive Routing in Networks. IEEE Transactions on
Communications (Com-29), 4 (April 1981) 474-480.

112

13. Bourgonje W. Twisted-pair bus carries speech, data,
text and images. Electronic Design, (July 26, 1984),
171-178

14. Chatterjee, A., Georganas, N.D., and Verma, P.K.
Analysis of a packet-switched network with end-to-end
congestion control and random routing. IEEE Transactions
on Communications (Com-23), 12 (December 1977), 1485-1489.

15. Chou, W. ACK/TOPS - an integrated network design
tool. 1981 IEEE International Conference on

Communications (ICC-81), Denver, CO (June 14-18, 1981),
4.1.1-4.1.7.

16. Chou, W. (Ed.). Computer Communications, Volume If
Principles. Prentice-Hall, Inc., Englewood Cliffs, NJ,
1983.

17. Chou, W., Bragg, A.W., and Nilsson, A.A. The need
for adaptive routing in the chaotic and unbalanced traffic
environment. IEEE Transactions on Communications
(Com-29), 4 (April 1981), 481-490.

18. Chou, W., Nilsson, A.A., and Bragg, A.W. The need
for dynamic routing in a network spanning several time
zones. 1981 IEEE National Telecommunications Conference,
New Orleans, LA, (November 29 - December 3), 3.1.1-3.1.5.

19. Chou, W., and Sapir,D. A generalized cut-saturation
algorithm for distributed computer communications network
optimization. IEEE 1982 International Conference on
Communications (ICC-82), Philadelphia, PA (June 13-17,
1982), 4C.2.1-4C.2.6

20. Chu, P.H.N., Boorstyn, R.R., and Kershenbaum, A. A
simulation study of a dynamic routing scheme. 1981 IEEE
National Telecommunications Conference, New Orleans, LA,
(November 29 - December 3), 3.4.1 - 3.4.11.

21. Cicchetti, G.B., and Lubarsky, A.R. Hybrid
integrated digital network. World Telecommunications
Forum, Geneva, Switzerland, (1975), 2.3.7.1-2.3.7.5.

22. Clabaugh, C.A. Analysis of flow behavior within an
integrated computer-communication network. Ph.D.
dissertation, Texas A&M University (May 1979).

23. Coviello, G.J., and Lyons, R.E. Conceptual
approaches to switching in future military networks. IEEE
Transactions on Communications (Com-28), 9 (September
1980), 1491-1498.

113

24. Coviello, G.J., and Vena, P.A. Integration of
circuit/packet switching by a SENET (Slotted Envelope
Network) concept. 1975 IEEE National Telecommunications
Conference (NTC-75), New Orleans, LA (December 1-3, 1975),
42.12-42.17.

25. Cravis, H. Communications Network Analysis. D.C.
Heath and Co., Lexington, MA, 1981.

26. Dahlbom, C.A., and Ryan, J.S. History and
description of a new signalling system. Bell System
Technical Journal, 2 (February 1978), 225-250.

27. Davies, D.W., and Barber, D.L.A. Communications
Networks for Computers. John Wiley and Sons, London,
England , 1973.

28. Dejean, J.H., and Campagno, H. Packet switching
multiservice network. 1981 International Switching
Symposium, Montreal, Canada (September 21-25, 1981),
Session 32-C, Paper 1.

29. Dysart, H., Krone, M., and Fielding, J. Integrated
voice/data private network planning. 1981 IEEE
International Conference on Communications (ICC-81),
Denver, CO (June 14-18, 1981), 4.2.1-4.2.5.

30. Elovitz, H.S., and Heitmeyer, C.L. What is a
computer network? 1974 IEEE National Telecommunications
Conference (NTC-74)~ San Diego, CA (December 2-4, 1974),
1007-1014.

31. Esterling, R., and Hahn, P. A comparison of digital
data network switching alternatives. 1975 IEEE National
Telecommunications Conference (NTC-75), New Orleans, LA
(December 1-3, 1975), 42.8-42.11.

32. Farber, D.J. Networks: an introduction. Datamation
1_8, 4 (April 1972), 36-39.

33. Forgie, J.W. Voice conferencing in packet networks.
1980 IEEE International Conference on Communications
(IEEE-80), Seattle, WA (June 12-18,1980), 21.3.1-21.3.4.

34. Frank, H. Plan today for tomorrow's data/voice nets.
Data Communications 7, 9 (September 1978), 51-62.

35. Fultz, G.L. Adaptive routing techniques for message
switching computer-communications networks, Ph.D.
Disseration, University of California, Los Angeles, CA,
June 1972, 256-257.

114

36. Fultz, G.L., and Kleinrock, L. Adaptive routing
techniques for store-and-forward computer communications
networks. 1971 IEEE International Conference on

Communications (ICC-71), Montreal, Canada (June 14-16,
1971), 39.1-39.8.

37. Gallagher, R.G. A minimum delay routing algorithm
using distributed computation. IEEE Transactions on
Communications (Com-25), 5 (May 1977), 73-85.

38. Gallagher, R.G. Distributed network optimization
algorithms. IEEE 1979 International Conference on
Communications (ICC-79), Boston, MA (June 10-14, 1979),
43.2.1-43.2.2.

39. Gerla, M., and Chou, W. Flow control strategies in
packet switched computer networks. 1974 IEEE National
Telecommunications Conference (NTC-74), San Diego, CA
(December 2-4, 1974), 1032-1037.

40. Gerla, M., and Kleinrock, L. On the topological
design of distributed computer networks. IEEE
Transactions on Communications (Com-25), 1 (January
1977),48-60.

41. Gerla, M., and Mason, D. Distributed routing in
hybrid packet and circuit data networks. IEEE Conference
on Computer Communications Networks (C0MPC0N-78),
Washington, DC (September 5-8, 1978), 125-131.

42. Gitman, I., Hsieh, W., and Occhiogrosso, B.J.
Analysis and design of hybrid switching networks. IEEE
Transactions on Communications (Com-29), 9 (September
1981), 1290-1300.

43. Gitman, I., Occhiogrosso, B.J., Hsieh, W., and Frank,
H. Sensitivity of integrated voice and data networks to
traffic and design variables. Sixth IEEE Data
Communications Symposium, Pacific Grove, CA (November
1979), 181-192.

44. Gordon, R.D., Alles, H.G., and Bergland, G.D. An
experimental digital switch for data and voice. 1981
International Switching Symposium, Montreal, Canada
(September 21-25, 1981), Session 21-B, Paper 3.

45. Greene, W.H. Optimal routing within large scale
distributed computer-communications networks. Ph.D.
dissertation, Texas A&M University (May 1978).46.Gross, D., and Harris, C.M. Fundamentals of Queueing
Theory. John Wiley & Sons, Inc. , New York, NY, 1974.

115

47. Gruber, J.G. Delay related issues in integrated
voice and data networks. IEEE Transactions on

Communications (Com-29), 6 (June 1981), 786-800.

48. Gruber, J.G., and Strawczynski, L. Subjective
effects of variable delay and speech clipping in
dynamically managed voice systems. IEEE Transactions on
Communications (Com-33), 8 (August 1985), 801-808.

49. Haenschke, D.G., Kettler, D.A., and Oberer, E.
Network management and congestion in the U.S.
telecommunications network. IEEE Transactions on

Communications (Com-29), 4 (April 1981), 376-385.

50. Hasegawa, Hideo, Miyahara, Teshigawara, Tushihara,
and Yoshimi. A comparative evaluation of switching
methods in computer communications networks. 1975 IEEE
International Conference on Communications (ICC-75), San
Francisco, CA (June 16-18, 1975), 6.6-6.10.

51. Heggestad, H. M. An overview of packet-switching
communications. IEEE Communications Magazine, 4 (April,
1984), 24-31.

52. Hilal, W., and Liu, M.T. Local area networks
supporting speech traffic. Computer Networks, 8 (August
1984), 325-337.

53. Hiramatsu, Y., Mase, K, and Kajiwara, M. A packet
transfer control method using circuit switching function.
Electronics and Communications in Japan, 7 (July 1983),
44-53.

54. Hoard, B. Integrating voice and data - sharing the
lines. ComputerworId 15, 52 (December 28, 1981), 33-35.

55. Hsieh, W., and Gitman, I. How good is your network
routing protocol? Data Communications, (May 1984),
231-248.

56. Hsieh, W., and Gitman, I. How to prevent congestion
in computer networks. Data Communications, 7 (June 1984),
209-216.

57. Hsieh, W., and Gitman, I. Routing strategies in
computer networks. Computer, June 1984, 46-56.

58. Hsieh, W., Gitman, I., and Occhiogrosso, B.J. Design
of hybrid-switched networks for voice and data. IEEE 1978
International Conference on Communications (ICC-78),
Toronto, Canada (June 4-7, 1978), 20.1.1-10.1.9.

116

59. Ilyas, M., and Mouftah, H.T. Quasi cut-through: new
hybrid switching technique for computer communication
networks. IEE Proceedings, Part. E, 1 (January 1984) 1-8.

60. James, R.T., and Muench, P.E. AT&T facilities and
services. Proceedings of IEEE-60, 11 (November 1972),
1342-1349.

61. Janakiraman, N., Pagurek, B., and Neilson, J.E.
Performance analysis of an integrated switch with fixed or
variable frame rate and movable voice/data boundary. IEEE
Transactions on Communications (Com-32), 1 (January 1984),
34-39.

62. Joffe, J.M., and Moss, F.H. A responsive distributed
routing algorithm for computer networks. IEEE
Transactions on Communications (Com-30), 7 (July 1982),
1758-1762.

63. Kermani, P., and Kleinrock, L. A tradeoff study of
switching systems in computer communication networks.
IEEE Transactions on Computers (Com-29), 12 (December
1980), 1052-1060.

64. Kiemele, M. Adaptive topological configuration of an
integrated circuit/packet-switched computer network.
Ph.D. Dissertation, Texas A&M University, 1984.

65. Kimbleton, S.F., and Schneider, M.G. Computer
communication networks: Approaches, objectives, and
performance considerations. ACM Computing Surveys, 3
(Sept. 1975), 129-179.

66. Kleinrock, L. Analytic and simulation methods in
computer network design. 1970 AFIPS Spring Joint Computer
Conference (SJCC), Atlantic City, NJ (May 5-7, 1970,
569-579.

67. Kleinrock, L. A decade of network development.
Journal of Telecommunications Networks, 1 (Spring, 1982),
1-11.

68. Kleinrock, L., and Kamoun, F. Optimal clustering
structures for hierarchical topological design of large
computer networks. Networks 10, 3 (Fall 1980),221-248.

69. Komatsu, M., and Mayeda, W. Usage Characteristics of
detour routes in store-and-forward switching networks.
Electronics and Communications in Japan, 1 (January
1983), 78-85.

117

70. Konheim, A.G., and Pickholtz, R.L. Analysis of
integrated voice/data multiplexing. IEEE Transactions on
Communications (Com-32), 2 (February 1984) 140-147.

71. Kozicki, Z., and McGregor, P.V. An approach to
computer-aided network design. IEEE 1981 International
Conference on Communications (ICC-81), Denver, CO (June
14-18, 1981, 4.4.1-4.4.7.

72. Li, S., and Majithia, J.C. Performance analysis of a
DTDMA local area network for voice and data. Computer
Networks, 8 (August 1984), 81-91.

73. Li, S., and Mark, J.W. Performance of voice/data
integration in a TDM system. IEEE Transactions on
Communications (Com-33), 12 (December 1985), 1265-1273

74. Mathison, S.L., and Walker, P.M. Regulatory and
economic issues in computer communications. Proceedings
of IEEE-60, 11 (Nov. 1972), 1254-1272.

75. McAuliffe, D.J. An integrated approach to
communications switching. 1978 IEEE International
Conference on Communications (ICC-78), Toronto, Canada
(June 4-7, 1978), 20.4.1-20.4.5.

76. McDonald, J. C. Local digital switching - a
successful new technology. Telecommunications 10, 4
(April 1976), 43-48.

77. McQuillan, J.M. Adaptive routing algorithms for
distributed computer networks. Report AD-781467, NTIS
(May 1974).

78. McQuillan, J.M. Routing algorithms for computer
networks - a survey. 1977 IEEE National
Telecommunications Conference (NTC-77), (December 1977).

79. Metcalfe, R.M. Packet communications. Report
AD-771-430, NTIS (Dec. 1973).

80. Niznik, C.A. Performance evaluation of the computer
network dynamic congestion table algorithm. IEEE
Transactions on Communications (Com-33), 2 (February
1984), 150-159.

81. Occhiogrosso, B.J., Gitman, I., Hsieh, W., and Frank,
H. Performance analysis of integrated switching
communications systems. 1977 National Telecommunications
Conference (NTC-77), Los Angeles, CA (December 5-7, 1977),
12:4.1-12:4.13.

118

82. Ogino, N., Numao, M., Saito, T., and Inose, H.
Design of time division switching networks considering
amount of control. Electronics and Communications in
Japan, 3 (March 1983), 43-51.

83. Okada, H. Delay behavior of data traffic in an
integrated voice/data multiplex structure:
multi-capacity-limits (MCL) property. IEEE Transactions
on Communications (Com-34), 3 (March 1986), 300-307.

84. Ozarow, L., and DeRosa, J. A combined packet and
circuit-switched processing satellite system. IEEE 1979
International Conference on Communications (ICC-79),
Boston, MA (June 10-14, 1979), 24.5.1-24.5.5.

85. Paoleth, L.M. AUTODIN. Computer Communications
Networks, Noordhoff International Publication, Leyden, The
Netherlands, 1975, 345-372.

86. Phillips, D.T., and Garcia, A. Fundamentals of
Network Analysis. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1981.

87. Pitroda, S.G. A review of telecommunications
switching concepts - part two. Telecommunications 10, 3
(March 1976), 24-30.

88. Pooch, U.W., Greene, W.H., and Moss, G.G.
Telecommunications and Networking. Little, Brown, and
Company, Boston, MA, 1983.

89. Prosser, R.T. Routing procedures in communications
networks - part I: Random procedures. IRE Transactions
on Communications Systems (December 1962), 322-329.

90. Prosser, R.T. Routing procedures in communications
networks - part II: Directory procedures. IRE
Transactions on Communications Systems (December 1962),
329-335 .

91. Roberts, L.G. The evolution of packet switching.
Proceedings of IEEE-66, 11 (November 1978), 1307-1313.

92. Rosner, R.D. Packet switching and circuit switching:
a comparison. 1975 IEEE National Telecommunications
Conference (NTC-75), New Orleans, LA, (December 1-3,
1975), 42.1-42.7.

93. Ross, M.J. System engineering of integrated voice
and data switches. 1978 IEEE International Conference on

Communications (ICC-78), Toronto, Canada (June 4-7, 1978),
20.5.1-20.5.4.

119

94. Ross, M.J. Alternatives for integrating voice and
data. 1981 International Switching Symposium (ISS-81),
Montreal, Canada, (September 21-25, 1981), Session 41-B,
Paper 4.

95. Ross, M.J., and Mawafi, O.A. Performance analysis of
hybrid (circuit/packet) switching concepts. 1981 IEEE
National Telecommunications Conference (NTC-81), New
Orleans, (November 29 - December 4, 1981), 4.2.1-4.2.5.

96. Ross, M.J., and Sidlo, C. Approaches to the
integration of voice and data telecommunications. 1979
IEEE National Telecommunications Conference (NTC-79),
(November 1979) .

97. Ross, M.J., Tabbot, A.C., and Waite, J.A. Design
approaches and performance criteria for integrated
voice/data switching. Proceedings of IEEE-65, 9
(September 1977), 1283-1295.

98. Rudin, H. On routing and ’’delta-routing": a
taxonomy and performance comparison of techniques for
packet switched networks. IEEE Transactions on
Communications (Com-24), 1 (January 1976).

99. Rudin, H. Studies on the integration of circuit and
packet switching. 1978 IEEE International Conference on
Communications (ICC-78), Toronto, Canada (June 4-7, 1978),
20.2.1-20.2.7.

100. Rudov, M.H. Marketing ISDNs: reach out and touch
someone’s pocketbook. Data Communications, 7 (June 1984),
239-245.

101. Saint-Remi, J. The many sounds of voice
digitization. Data Communications, 1 (January 1984),
169-170.

102. Schneider, G.M. The VANS system. 1978 IEEE
Conference on Computer Communications Networks (C0MPC0N
78), Washington, DC (September 5-8, 1978), 166-174.

103. Schneider, K.S. Integrating voice and data on
circuit-switched networks. IEEE Transactions on Aerospace
Electronic Systems (AES-15), 4 (July 1979), 481-493.

104. Schwartz, M. Computer-communication network design
and analysis, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1977 .

120

105. Schwartz, M., and Cheung, C.K. The gradient
projection algorithm for multiple routing in
message-switched networks. IEEE Transactions on
Communications (Com-24), 4 (April 1976), 449-456.

106. Schwartz, M. , and Soad, S. Analysis of congestion
control techniques in computer communication networks.
Proceedings on flow control in computer networks, IFIP
North-Holland, 1979, 113-130.

107. Segall, A. Advances in verifiable fail-safe routing
procedures. IEEE Transactions on Communications (Com-29),
4 (April 1981), 491-497.

108. Sharma, R.L., de Sousa, P.T., and Ingle, A.D.
Network Systems. Van Nostrand Reinhold Company, New York,
NY, 1982.

109. Sproule, D.E., and Mellor, F. Routing, flow, and
congestion control in the DATAPAC network. IEEE
Transactions on Communications (COM-29), 4 (April 1981).

110. Takehiko, Y., and Shimasaki, N. A study of future
integrated service digital networks. 1975 IEEE National
Telecommunications Conference (NTC-75), New Orleans, LA
(December 1-3, 1975), 7.1-7.6.

111. Tanenbaum, A.S. Computer Networks. Prentice-Hall,
Inc., Englewood Cliffs, NJ, 1981.

112. Tanno, K., Hidekazu, T., Nakamura, T., and Sato, R.
A flow control analysis based on a measure of power in
packet switching networks. 1981 IEEE National
Telecommunications Conference (NTC-81), New Orleans, LA
(November 29 - December 3, 1981), E5.7.1-E5.7.6.

113. Thaker, G.H., and Cain, J.B. Interactions of routing
and flow control. IEEE Transactions on Communications
(Com-34), 3 (March 1986), 269-277.

114. Thurber, K.J. Circuit switching technology: a
state-of-the-art survey. 1978 IEEE Conference on Computer
Communications Networks (C0MPC0N 78), Washington, DC
(September 5-8, 1978), 116-124.

115. Tymes, L.R.W. Routing and flow control in tymnet.
IEEE Transactions on Communications (Com-29), 4 (April
1981), 392-398.

116. Wang, J.W., Queueing network modeling of computer
communications networks. Computing Surveys, 10, 3
(September 1978), 343-352.

121

117. Weinstein, C., McLaughlin, A., and Bially, T.
Efficient multiplexing of voice and data in integrated
digital networks. 1980 IEEE International Conference on
Communications (ICC-80), Seattle, WA (June 8-12, 1980),
21.1.1-21.1.7

118. Worley, A.R. The DATRAN system. Proceedings of
IEEE-60, 11 (November 1972), 1357-1368.

119. Wunderlich, E.F. An analysis of dynamic virtual
circuit routing. 1981 National Telecommunications
Conference (NTC-81), New Orleans, LA, (November 29 -

December 4, 1981), 3.3.1-3.3.6.

120. Yum, T. The design and analysis of a semidynamic
deterministic routing rule. IEEE Transactions on
Communications (Com-29), 4 (April 1981), 498-504.

121. Yum, T., and Schwartz, M. The join-biased queue rule
and its application to routing in computer communication
networks. IEEE Transactions on Communications (Com-29), 4
(April 1981), 505-511.

122. Yum, T.S., and Schwartz, H. Comparison of adaptive
routing algorithms in computer communication networks.
1978 IEEE National Telecommunications Conference (NTC-78),
Birmingham, AL.

122

APPENDIX A

SOURCE LISTING FOR FLO

The following pages contain the source listing for the

enhanced simulator, FLO. FLO is implemented in VS/FORTRAN

on the AMDAHL 470 at Texas A&M University.

onno

123

C
C
C
C
C
C

C
c
c

c
c

c
c
c
c

c
c
c
c
c

c
c
c
c
c

**

* FLO *
* THIS IS THE MAIN ROUTINE FOR A SIMULATION TO STUDY THE *
* EFFECT OF ROUTING STRATEGIES ON FLOW IN AN INTEGRATED *
* CIRCUIT/PACKET SWITCHED NETWORK ENVIRONMENT. *
**

INTEGER IPASS,OVRLOD,STABLE

**

* SET THE FLAG VALUES NEEDED TO CONTROL REPITITIONS. *
**

IPASS=1

STABLE=1
OVRLOD=0

**

* CALL THE MAJOR MODULES ITERATIVELY UNTIL ONE OF THREE *
* TERMINATION CONDITIONS IS REACHED. TERMINATION CONDITIONS*
* INCLUDE: *
* (A) TOO MANY ITERATIONS (OVER 20 PASSES). *
* (B) NETWORK WILL NOT STABILIZE (REACH STEADY STATE). *
* (C) NETWORK HAS EXCEEDED MINIMUM PERFORMANCE CRITERIA. *
**

CALL DEFMOD
CALL DEFRTE

100 CALL SIMINT
CALL SIMULA(IPASS,STABLE,OVRLOD)
STOP

200 IPASS=IPASS+1
IF (IPASS.GT.20) GOTO 999
IF (OVRLOD.EQ.l) GOTO 998
IF (STABLE.EQ.l) GOTO 100
WRITE(6,1000) IPASS
STOP

998 WRITE(6,1050) IPASS
STOP

999 WRITE(6,1100)
STOP

1000 FORMAT (’ SIMULATION HAS BECOME UNSTABLE AT IPASS=',I2)
1050 FORMAT (' NETWORK HAS BECOME OVERLOADED AT IPASS=',I2)
1100 FORMAT (’ SIMULATION PASS LIMIT REACHED')

END

noonnoonnnnn

124

C
c
c
c
c
c
c
c
c
c
c
c
c
c
c

**

* SUBROUTINE DEFMOD WILL READ IN THE VALUES NEEDED TO DEFINE *
* NETWORK CONFIGURATION. THESE VALUES WILL NOT CHANGE FROM *
* ITERATION TO ITERATION. THE VALUES TO BE READ IN INCLUDE: *
* (A) ORPRMS — THE INITIAL PARAMETER SETTINGS FOR SIMULA*
* (B) KONECT — SHOWS NODE TO NODE CONNECTIONS *
* (C) ORSDTB — THE INITIAL SEED TABLES FOR EACH ITER. *
* (D) SORCHL — THE BEGIN POINT OF EACH CHANNEL *
* (E) NODCHL — THE END POINT OF EACH CHANNEL *
* (F) PARM3 — THE NUMBER OF SLOTS IN EACH CHANNEL *
* (G) JARM3 — THE TOTAL SLOTS IN ALL PRIOR CHANNELS *
**

SUBROUTINE DEFMOD

IMPLICIT INTEGER (A-S)

COMMON/AREA1/EVTBL(52 , 5),PKLINK(26)fPARAM(17),CHANTB{1170,11),
1 QUEUE1U0,1800) ,CALQ1(10, 50),CUMTM(26,13) ,QCNT(52),
1 CALLS(26 r 3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26),TDEL(26),SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA7/KONECT(52,52),ORPRMS(17),ORSDTB(52,4)
C
C

C
c **
C * READ IN THE RESTART FLAG. IF IT IS ON (1) THEN THE DATA *
C * WHICH FOLLOWS REPRESENTS A SNAPSHOT OF THE NETWORK AT *
C * STEADY STATE. ALSO READ IN THE NEW SETTINGS FOR CERTAIN *
C * CONTROL VARIABLES. *
£ **
c

READ(5,1012) RESTRT,NUSTFD,NUPOWR,NUSWCH,NUGLOB,NUSTPP

125

READ(5,1013) WCFCNUf WPFCNU
IF (RESTRT.EQ.l) CALL SSREAD
IF (RESTRT.EQ.l) RETURN

C
0 **
C * READ THE VALUES FOR THE SEVEN ARRAYS LISTED ABOVE. THESE *
C * VALUES ARE NOT CHANGED ON EACH OF SIMULA’S ITERATIONS. *
0 **
C

READ(5,1010) (ORPRMS(I),1=1,10)
READ(5,1011) (ORPRMS(I),1=11,16)
ORPRMS(17)=0
NODES=ORPRMS(1)
CHNLS=ORPRMS(2)
DO 79 1=1,NODES

READ(5,1012) (KONECT(I,J),J=1,NODES)
79 CONTINUE

DO 80 1=1,NODES
READ(5,1015) (ORSDTB(I,J),J=1,4)

80 CONTINUE
DO 81 I=1,CHNLS

READ(5,1020) SORCHL(I),NODCHL(I),PARM3(I),JARM3(I)
81 CONTINUE

C
**

C * ESTABLISH THE ASSUMED RELATIONSHIP BETWEEN PACKET NODES *
C * (1 THRU N) AND THE CIRCUIT NODES. *
q **
C

Sl=NODES/2
DO 82 1=1,SI

PKLINK(I)=I+S1
PKLINK(I+S1)=0
CSLINK(I+S1)=I
CSLINK(I)=0

82 CONTINUE
C

0 **
C * ECHO THE NETWORK CONFIGURATION DATA TO INSURE ACCURACY. *
0 **
C

WRITE(6,2000)
WRITE(6,2011)
WRITE(6,2012)
WRITE(6,2015) (ORPRMS(I),1=1,16)
WRITE(6,2020)
DO 300 1=1,NODES

WRITE(6,2100) (KONECT(I,J),J=1,NODES)
300 CONTINUE

WRITE(6,3001)
WRITE(6,3002) ((ORSDTB(I,J),J=1,4),1=1,NODES)
WRITE(6,3006)

nonnonnon
126

DO 400 I=1,CHNLS
WRITE(6,3007) I,S0RCHL(I),N0DCHL(I),PARM3(I)fJARM3(I)

400 CONTINUE

WRITE(6,3008)
DO 500 1=1,NODES

WRITE(6,3009) I,PKLINK(I),CSLINK(I)
500 CONTINUE

1010 FORMAT
1011 FORMAT
1012 FORMAT
1013 FORMAT
1015 FORMAT
1020 FORMAT

(8(14,IX),2(110,IX))
(2(15,IX),17,IX,13,IX,14,IX,12)
(5212)
(2F6.3)
(4(15,IX))
(4(110,IX))

2000 FORMAT
2011 FORMAT

1
2

2012 FORMAT
1

2015 FORMAT
1

2
2020 FORMAT
2100 FORMAT
3001 FORMAT
3002 FORMAT
3006 FORMAT

1
2

3007 FORMAT
3008 FORMAT
3009 FORMAT

('11,4OX,*SYSTEM PARAMETERS')
('O',IX,'NODES LINKS SLOTS RATIO SLOT NODE CS’,6X,
'PS MSG START TIME END TIME PACKET VDR RATES ',
'Q SIZE CS PACKET PACKETS')
(' ',25X,'TIME DELAY ARRIVAL ARRIVAL',21X,
'LOADING',19X,'SERVICE SIZE PER MSG')
(’ ',IX,3(15,IX),12,2X,14,’MS ’,12,' MS’,3X,I2,
'MIN',3X,12,'SEC',2X,15,' MS',18,'MS ’,17,IX,
15,'KBS ',I7,3X,I3,'SEC ',14,'B',2X,12)
(///,' NETWORK CONNECTION TABLE',///)
(’ ',2013)
('1',///,5X,'SEED TABLES:’)
(4(1X,115))
('1',/,5X,'SOURCE, DESTINATION, AND CAPACITY (IN SLOTS)',
'FOR EACH CHANNEL:'//5X,'CHAN SORCHL(I) NODCHL(I) ',
'PARM3(I) JARM3(I)')
(5X,14,4(17,4X))
(///,' I PKLINK(I) CSLINK(I)')
(' ',’ ',12,16,111)

RETURN
END

nooonnnoonnnnnon

127

Q **
c * SUBROUTINE DEFRTE WILL READ IN THE VALUES NEEDED TO DEFINE *

c * THE ROUTING STRATEGY TO BE USED. THESE VALUES WILL NOT *

c * OVER SIMULA'S ITERATIONS AND INCLUDE: *

c * (A) STOFWD *

c * (B) PRINCR *

c * (C) WKINCR *

c * (D) WPINCR *

c * (E) POWER *

c * (F) SWITCH *

c * (G) GLOBAL *

c * (H) STPPRI
.*

c * (I) DESTAB
*

c * (J) DSTALT
*

c * (K) NMTRYS
*

c * (L) RANDSD
*

**

c

c
c

SUBROUTINE DEFRTE

IMPLICIT INTEGER (A-S)

C0MM0N/AREA1/EVTBL (52,5) , PKL INK (26), PARAM (17), CHANTB (1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 S0RCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT (26,26), ROUT(160) , APCKTS (26), TDEL (26), SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26), BTLNCK(52) , LSTBTL, CALQ2 (10,50)

COMMON/AREA4/DESTAB(52,52), DSTALT(52,52), ALTCH(160)

COMMON/AREA7/KONECT (52,52), ORPRMS (17) , ORSDTB (52,4)

COMMON/AREA8/XS(501, 8), SSC, PRINCR, LSTSTP,

nonnnnnnoonnnnnnonnnonnononno
128

8 WCFACT fWCINCR,WPFACT,WPINCR,LSTEVT

COMMON/AREAA/P(800,10),S(800), F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

IF (RESTRT.EQ.l) RETURN

**

* READ IN THE ROUTING DEFINITION DATA *
**

NODES=ORPRMS(1)
READ(5,1000) STOFWD
READ(5,1001) PRINCR
READ(5,1002) WCINCR,WPINCR
READ (5,1000) POWER, SWITCH,GLOBAL, STPPRI
READ(5,1004) ((DESTAB(I,J),J=1,NODES),1=1,NODES)
READ(5,1004) ((DSTALT(I,J),J=l,NODES),1=1,NODES)
READ(5,1005) NMTRYS,(RANDSD(I),1=1,NODES)

WCFACT=1.0-WCINCR
WPFACT=1.0-WPINCR

**
* SOME STRATEGIES PERFORM ANALYSIS ON THE FEASIBLE ROUTES *
* BETWEEN TWO NODES. SUBROUTINE PATHS WILL GENERATE THOSE *
* ROUTES FOR LATER ANALYSIS. *
**

CALL PATHS

* IF SWITCH = 6 THEN CREATE THE PRIMARY ONLY STRATEGY BY *
* MAKING THE TWO ROUTING TABLES (DESTAB AND DSTALT) THE SAME.*
**

IF (SWITCH.NE.6) GOTO 200
SWITCH=2
DO 160 1=1,NODES

DO 150 J=l,NODES
DSTALT(I,J)=DESTAB(I,J)

150 CONTINUE
160 CONTINUE
200 CONTINUE

nonnnnnonnon
IF (STOFWD.EQ.O) WRITE(6,2050)
IF (ST0FWD.EQ.1) WRITE(6,2051)

129

WRITE(6,3001)
WRITE(6,3002)
WRITE(6,3003)
WRITE(6,3004)
WRITE(6,3005)
WRITE(6,3004)

POWER,SWITCH,GLOBAL,STPPRI
NMTRYS,(RANDSD(I),1=1,NODES)

((DESTAB(I,J),J=l,NODES),1=1,NODES)

((DSTALT(I,J),J=l,NODES),1=1,NODES)

1000 FORMAT
1001 FORMAT
1002 FORMAT
1004 FORMAT

1005 FORMAT

(12)
(110)
(2F6.3)
(13(12,IX))
(16)

2050 FORMAT
2051 FORMAT

3001 FORMAT

3002 FORMAT
*

3003 FORMAT
3004 FORMAT
3005 FORMAT

(' 1,///,5X,'STORE AND FORWARD MODE FOR PACKETS IS OFF’)
(1H0,///,5X,'STORE AND FORWARD MODE FOR PACKETS IS ON')
(///,5X,'POWER IS EQUAL TO ',13,
///,5X,'SWITCH IS EQUAL TO ',13,
///,5X,'GLOBAL IS EQUAL TO ',13,
///,5X,'STPPRI IS EQUAL TO ’,13)
(’1',///,5X,'RANDOM TRIES =',13,
///,5X,'RANDOM SEEDS ARE',52(/,10X,110))
C1',///,5X,'PRIMARY ROUTING TABLE:')
(' ',2013)
(///,5X,'ALTERNATE ROUTING TABLE:')

RETURN
END

C>a
CM
CM
CM

130

C **
C * THIS ROUTINE WILL GENERATE ALL POSSIBLE PATHS BETWEEN ANY *
C * TWO NODES. THE PATHS WILL BE PLACED IN THE TABLE P AND *
C * THE ARRAYS FSTPTH AND LSTPTH WILL POINT TO THE FIRST AND *
C * LAST ELEMENTS OF A LIST OF PATHS BETWEEN ANY TWO NODES. *
£ **
c
c
c

SUBROUTINE PATHS
C
C
c

IMPLICIT INTEGER (A-S)
C
C
C

COMMON/AREA1/EVTBL (52,5), PKLINK(26) , PARAM(11), CHANTB (1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

C
C

COMMON/AREA2/CUMCNT(26,26),ROUT(160), APCKTS(26), TDEL (26), SWITCH,
ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

C
C

COMMON/AREA3/ACKPAC (26), BTLNCK(52) , LSTBTL, CALQ2 (10,50)
C
C

COMMON/AREA4/DESTAB (52,52), DSTALT (52,52), ALTCH (160)
COMMON/AREA7 /KONECT (52,52), ORPRMS (17), ORSDTB(52,4)

C
C

COMMON/AREAA/P (800,10), S (800) , F (800), L (800) , SELCNT(800), NMTRYS,
A FSTPTH (26,26), LSTPTH(26,26),RANDSD(52) , POWER, PTHCNT

C
C
C

DO 50 1=1,800
DO 40 J=l,10

P(I,J)=0
40 CONTINUE

F(I)=0
L(I)=0
S(I)=0
SELCNT(I)=0

50 CONTINUE

nonnnonnnonnnnnnn
131

ND=0RPRMS(1)
CT=0

200 DO 300 1=11, ND
DO 250 J=ll, ND

IF (KONECT(I,J).LE.0) GOTO 250
CT = CT+1

P(CT,1) = I
P(CT,2) = J
F(CT) = I
L(CT) = J
S(CT) = 2

250 CONTINUE
300 CONTINUE

K=1
400 CALL EXPAND(K,CT)

K=K+1
IF (K.LE.CT) GOTO 400

DO 500 1=1,CT
DO 450 J=I,CT

IF (F(I).LE.F(J)) GOTO 450
CALL SWAP(I,J)

450 CONTINUE
500 CONTINUE

OLDTOP = 1
DO 610 K=1,CT

IF (K.EQ.CT) GOTO 540
IF (F(K).EQ.F(K+1)) GOTO 610

540 DO 600 I=OLDTOP, K
DO 550 J=I,K

IF (L(I).LE.L(J)) GOTO 550
CALL SWAP(I,J)

550
600

CONTINUE
CONTINUE

610
OLDTOP = K+l
CONTINUE

nonnonnonono
132

OLDTOP = 1
DO 810 K=1,CT

IF (K.EQ.CT) GOTO 740
IF (L(K).EQ.L(K+1)) GOTO 810

740 DO 800 I=0LDT0P, K
DO 750 J=I,K

IF (S(I).LE.S(J)) GOTO 750
CALL SWAP(I, J)

750 CONTINUE
800 CONTINUE

OLDTOP = K+l
810 CONTINUE

DO 850 1=1,ND
DO 840 J=1,ND

FSTPTH(I#J)=0
LSTPTHCI,J)=0

840 CONTINUE
850 CONTINUE

FSTPTH(11,12)=1
S1=CT-1
DO 900 1=1,SI

IF (L(I).EQ.L(I+1)) GOTO 900
LSTPTH(F(I),L(I))=I
FSTPTH(F(I+1),L(I+1))=I+1

900 CONTINUE
LSTPTH(F(CT),L(CT))=CT

Sl=ND/2
DO 960 1=1,SI

DO 950 J=1,S1
T1=FSTPTH(I+Sl,J+Sl)
T2=LSTPTH(I+Sl,J+Sl)
FSTPTH(I,J)=T1
LSTPTHCI,J)=T2
FSTPTH(I,J+S1)=T1
LSTPTHCI,J+Sl)=T2
FSTPTH(I+S1,J)=T1
LSTPTH(I+Sl,J)=T2

950 CONTINUE
960 CONTINUE

non

133

PTHCNT=CT
DO 980 K=1,CT

LIM=S(K)
DO 970 J=2,LIM

P(K,J-l)=KONECT(P(K,J-l),P(K,J))
970 CONTINUE

P(K,LIM)=0
S(K)=S(K)-1

980 CONTINUE

RETURN
END

ononnnnonnn
134

Q **
C * THIS ROUTINE WILL GENERATE THE LEGAL PATHS FROM SOME ROOT *
C * (P(Ir*)). PATHS GENERATED WILL BE STORED IN P WITH CT *
C * POINTING TO THE LAST VALID ONE. *
Q **
C
C
C

SUBROUTINE EXPAND(K,CT)

IMPLICIT INTEGER (A-S)

COMMON/AREA7/KONECT(52,52),ORPRMS(17),ORSDTB(52,4)

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

LST=0
END=10
DO 100 1=1,9

IF (P(K,11-I).NE.O) GOTO 110
LST=P(K,10-I)
END=10-I

100 CONTINUE
110 IF (END.EQ.l) STOP

IF (END.EQ.10) RETURN

DO 200 1=1,10
CND = I+10
IF (KONECT(LST,CND).LE.O) GOTO 200
DO 125 J=l,END

IF (CND.EQ.P(K,J)) GOTO 200
125 CONTINUE

CT = CT+1
F(CT) = F(K)
L(CT) = CND
S(CT) = END+1
DO 150 J=1,END

P(CT,J) = P(K,J)
150 CONTINUE

P(CT,END+1) = CND
200 CONTINUE

C
RETURN
END

nnnnonnonnnnnnn
135

Q **
C * THIS ROUTINE WILL EXCHANGE THE CONTENTS OF THE ITH AND JTH *
C * ELEMENTS OF THE THREE ARRAYS WHICH DEFINES/DESCRIBE EACH *
C * POTENTIAL PATH. *
Q **
c
c
c

SUBROUTINE SWAP (I,J)

IMPLICIT INTEGER (A-S)

COMMON/AREAA/P(800,10)fS(800),F(800),L(800),SELCNT(800)f NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

TMP = F(I)
F(I) = F(J)
F(J) = TMP

TMP = L(I)
L(I) = L(J)
L(J) = TMP

TMP = S(I)
S(I) = S(J)
S(J) = TMP

DO 425 K=l,10
TMP - P(I,K)
P(I,K) = P(J,K)
P(J,K) = TMP

425 CONTINUE

RETURN
END

totowto

136

C **
C * *
C * SUBROUTINE SIMINT - OBTAINS INITIAL VALUES FOR SIMULA *
C * *
Q **
C
c
c

SUBROUTINE SIMINT
C
c
c

IMPLICIT INTEGER (A-S)
C
C
C

COMMON/AREA1 /EVTBL (52,5), PKLINK(26) r PARAM(17),CHANTB(1170,11) ,
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

C
C

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26) ,TDEL(26),SWITCH,
ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

C
C

COMMON/AREA3/ACKPAC(26), BTLNCK(52), LSTBTL, CALQ2 (10,50)
C
C

COMMON/AREA7/KONECT (52,52), ORPRMS (17), ORSDTB(52,4)
C
C

COMMON/AREA8/XS(501,8) , SSC, PRINCR, LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR,LSTEVT

C
C
C

IF (RESTRT.EQ.l) RETURN
C
c **
C * INITIALIZE/MODIFY THE PARAMETERS WHICH DRIVE THE SIMULATION*
£ **
C

DO 10 1=1,17
PARAM(I)=ORPRMS(I)

10 CONTINUE
C
C

nnnnnnn
137

NODES=PARAM(1)
DO 30 1=1,NODES

DO 20 J=l,4
SEEDTB(If J)=ORSDTB(I, J)

20 CONTINUE
30 CONTINUE

NCHNLS=PARAM(2)
DO 80 1=1,NCHNLS

NLINES(I)=PARM3(I)
80 CONTINUE

WCFACT=WCFACT+WCINCR
WPFACT=WPFACT+WPINCR

RETURN
END

tON)DOtO

138

C
C
C
C
C
c
c
c
c
c
c
c
c

c
c
c

c
c
c

c
c
c

c
c

c
c

c
c

c
c
c

**

* *

* SUBROUTINE SIMULA DRIVES THE NETWORK SIMULATION ROUTINES. *
* THIS IS THE DRIVER-IT BUILDS USER DEFINED TABLES, *
* INITIALIZES ACTIVITY AT EACH NODE, AND EMPLOYS A TIGHT *
* DO LOOP, CALLING THE EVENT MODULE UNTIL THE RUN TIME *
* SPECIFICATION IS EXCEEDED. AT THIS POINT THE STATISTICS *
* SUBROUTINE IS CALLED, FOLLOWED BY PROGRAM TERMINATION. *
* *

**

SUBROUTINE SIMULA(IPASS,STABLE,OVRLOD)

IMPLICIT INTEGER (A-S)

REAL CNFINT

COMMON/AREA1/EVTBL (52,5), PKLINK (26), PARAM(17) , CHANTB (1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160), APCKTS (26), TDEL (26) , SWITCH,
ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26), BTLNCK (52), LSTBTL, CALQ2 (10,50)

COMMON/AREA8/XS(501,8),SSC,PRINCR,LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR,LSTEVT

IF (RESTRT.EQ.l) GOTO 20
WRITE(6,3999) IPASS,WCFACT,WPFACT
ALLDST=PARAM(1)
NDEST-ALLDST/2
PARAM(17)=0

139

EVTX(5)=0
CALL BDATA
CLASS=2

C
0 **
C * CREATE AN INITIAL EVENT TABLE ENTRY FOR EACH NODE. *
0 **
C

DO 10 1=1,ALLDST
IF (I.GT.NDEST) CLASS=1
CALL NEWMSG(I,CLASS)
CALL NUEVNT(I,CLASS)

10 CONTINUE
C
0 **
C * START THE SIMULATION *
0 **
C
c

BOUND=500
C

20 CALL EVENT
IF (EVTX(5).LE.BOUND) GOTO 20

C
CALL SSTDMP
BOUND=BOUND+500
SSMBND=(BOUND-500)/10000
SSMBND=SSMBND *10000
IF (SSMBND.NE.(BOUND-500)) GOTO 20

C
SOURCE=l
CALL SSMARK(SOURCE)
IF (BOUND.LT.50500) GOTO 20

C
0 **
C * SEE IF THE NETWORK HAS STABILIZED. *
0 **
C

STABLE=1
CNFINT=.01
CALL SSANAL (SSFLAG,CNFINT)
IF (SSFLAG.EQ.l) GOTO 40
CNFINT=.025
CALL SSANAL(SSFLAG,CNFINT)
IF (SSFLAG.EQ.l) GOTO 40
CNFINT=.05
CALL SSANAL(SSFLAG,CNFINT)
IF (SSFLAG.EQ.l) GOTO 40
CNFINT=.1
CALL SSANAL(SSFLAG,CNFINT)
IF (SSFLAG.EQ.l) GOTO 40
STABLE=0

nonnon

140

**

* PRINT STATISTICS *
**

40 PARAM(10)=PARAM(9)
PARAM(9)=PARAM(17)
CALL STATX
CALL STATS

**

* SEE IF THE NETWORK HAS BECOME OVERLOADED. *
**

IF (XS(SSC,2).GT.l.) OVRLOD=l.
IF (XS(SSC#3).GT..l) OVRLOD=l

**

* STOP THE SIMULATION. *
**

999 RETURN

3999 FORMAT (///, 'SIMULA PASS=',I5,* WORK FACTORS=', 2F6.3,///)

END

nonnonnnnnnonnonno
141

C **
C * THIS ROUTINE WILL ANALYZE THE DATA IN THE COMMON ARRAY SS *
C * TO SEE IF THE SIMULATION IS IN A STEADY STATE CONDITION. *
£ **
c
c
c

SUBROUTINE SSANAL(SSFLAG,CNFINT)

IMPLICIT INTEGER (A-S)

REAL CNFINT

COMMON/AREA8/XS(501,8),SSC,PRINCR,LSTSTP,
8 WCFACT fWCINCR,WPFACT,WPINCR,LSTEVT

IF (SSC.LE.l) RETURN

DO 100 1=1,2
SSFLAG=1
XLAST=XS(SSC,I)
XDELT=XLAST*CNFINT
LIM=SSC-1

10
20

100

M=SSC
DO 10 J=l,LIM

K=SSC~J

X=XS(K,I)-XLAST
IF (X.LT.O) X=(-1)*X
IF (X.GT.XDELT) GOTO 20
M=K

CONTINUE
M=(M-1)*1.25
IF (M.GT.SSC) SSFLAG=0
IF ((SSFLAG.EQ.O).AND.(I.EQ.2)) WRITE(6,2001) CNFINT
IF ((SSFLAG.EQ.O).AND.(I.EQ.l)) WRITE(6,2002) CNFINT
IF ((SSFLAG.EQ.l).AND.(I.EQ.2)) WRITE(6,2003) CNFINT
IF ((SSFLAG.EQ.l).AND.(I.EQ.l)) WRITE(6,2004) CNFINT
CONTINUE

2001 FORMAT (///,6X,'PACKET DELAY IS UNSTABLE AT CNFINT -',F6.3)

non

2002 FORMAT (///,6X,’UTILIZATION IS UNSTABLE AT CNFINT
2003 FORMAT (///,6X,'PACKET DELAY IS STABLE AT CNFINT =
2004 FORMAT (///,6X,‘UTILIZATION IS STABLE AT CNFINT = '

RETURN
END

='fF6.3)
’,F6.3)
,F6.3)

nonnonnonnnnnnn
143

C **
C * THIS ROUTINE WILL PRINT THE DETAILED STEADY STATE DATA. *
Q **
C
C
c

SUBROUTINE SSTDMP

IMPLICIT INTEGER (A-S)

C0MM0N/AREA8/XS (501,8), SSC, PRINCR, LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR,LSTEVT

IF (SNAPON.EQ.l) LSTSTP=1
IF ((SNAPON.EQ.0).AND.(LSTSTP.EQ.l)) WRITE(6,2025) LSTSTP,SSC
IF ((SNAPON.EQ.O).AND.(LSTSTP.EQ.l)) WRITE(6,2030)
IF (SNAPON.EQ.l) WRITE(6,2025) LSTSTP,SSC
IF (SNAPON.EQ.l) WRITE(6,2030)
DO 200 I=LSTSTP,SSC

WRITE(6,2040) I,(XS(I,J),J=l,8)
200 CONTINUE

LSTSTP=SSC+1

2025 FORMAT (’1',10X,'STEADY STATE VALUES FROM',15,' TO',15)
2030 FORMAT (///,6X,'STEADY STATE TABLE’)
2040 FORMAT (' ',5X,110,5F10.3,2F20.1,F10.3)

RETURN
END

nonnononoononnoonno
144

C **
C * SUBROUTINE BDATA WILL INITIALIZE NECESSARY ARRAYS TO ZERO *
C * SO THAT THEY DO NOT HAVE TO BE READ IN. *
£ **
c
c
c

SUBROUTINE BDATA

IMPLICIT INTEGER (A-S)

COMMON/AREA1/EVTBL (52,5), PKLINK(26), PARAM(17),CHANTB(1170,11) ,

1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160) ,

1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26) , TDEL(26), SWITCH,
2 ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA4 /DESTAB (52,52), DSTALT (52,52), ALTCH (160)

COMMON/AREA8/XS(501,8),SSC,PRINCR,LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR,LSTEVT

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

DO 10 1=1,52
QCNT(I)=0
BTLNCK(I)=0
IF (I.GT.20) GOTO 6

6 DO 8 J=l,5
EVTBL(I,J)=0

8 CONTINUE
DO 9 J=l,52

nonnon
145

LINKTB(I,J)=0
9 CONTINUE

10 CONTINUE

13
14

SNAPON=0
LSTBTL=0
LSTSTP=1
RTFREE=1
RTSTRT=1
RSFLAG=0
SSC=0
DO 14 J=l,501

DO 13 1=1,8
XS(J,I)=0.0
CONTINUE

CONTINUE

15

16

17

18

LSTEVT=0
PAKAVG=0.0
UAVG=0.0
PAKTHR=0.0
ZDAVG=0.0
ZBLOCK=0.0
DO 20 1=1,26

APCKTS(I)=0
TDEL(I)=0.0
ZDBLK(I,1)=0.0
ZDBLK(I,2)=0.0
ACKPAC(I)=0
DO 15 J=l,26

DSTLOD(I,J)=0
DSTCNT(I,J)=0
CUMLOD(I,J)=0
CUMCNT(I,J)=0
CONTINUE

DO 16 J=l,3
CALLS(I,J)=0
CSARV(I,J)=0
NODLOD(I,J)=0
CONTINUE

DO 17 J=l,13
CUMTM(I,J)=0
CONTINUE

DO 18 J=l,50
CALQKI, J)=0
CALQKI, J)=0
CONTINUE

IF (I.GT.10) GOTO 21

non

146

DO 19 J=l,1800
QUEUEKI, J)=0

19 CONTINUE
20 CONTINUE
21 DO 30 1=1,1170

DO 30 J=l,ll
CHANTB(I,J)=0

30 CONTINUE
DO 40 1=1,6

EVTX(I)=0
40 CONTINUE

DO 50 1=1,160
ROUT(I)=0
ALTCH(I)=0
THRUTL(I,1)=0.0
THRUTL(I,2)=0.0

50 CONTINUE

RETURN
END

onnnonnonononnoonnonnon
147

Q **
C * SUBROUTINE SSREAD WILL INITIALIZE THE SYSTEM VAIRABLES SO *
C * THAT THEY REPRESENT A STEADY STATE CONDITION. *
C **
C
c

c
SUBROUTINE SSREAD

IMPLICIT INTEGER (A-S)

C0MM0N/AREA1/EVTBL(52,5),PKLINK(26),PARAM(17),CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26),TDEL(26),SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA4/DESTAB(52,52), DSTALT (52,52), ALTCH(160)

COMMON/AREA5/FTRACE(26), RTRACE (26), FLGTH, RLGTH, SNAPON

COMMON/AREA7 /KONECT (52,52), ORPRMS (17), ORSDTB (52,4)

COMMON/AREA8/XS(501,8),SSC,PRINCR,LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR,LSTEVT

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

C
CALL BDATA

nonno
148

READ(5
READ(5
READ(5
READ(5
READ(5
READ(5
NODES=
CHANS=
SLOTS=

,1500)
,1500)
,1500)
,1500)
,1500)
,1500)
PARAM(l)
PARAM(2)
PARAMO)

(PARAM(I),1=1,6)
(PARAM(I),1=7,12)
(PARAMO), 1=13,17)
(ORPRMS(I),1=1,6)
(0RPRMS(I),1=7,12)
(ORPRMS(I),1=13,17)

DO 200 1=1,SLOTS
READ(5,1500) (CHANTB(I,J),J=l,6)
READ(5,1500) (CHANTB(I,J),J=7,ll)

200 CONTINUE
C

DO 300 1=1,CHANS
READ(5,1000) SORCHL(I),NODCHL(I),BTLNCK(I),ACKPAC(I)
READ(5,1000) PARM3(I),JARM3(I),NLINES(I),ALTCH(I)

300 CONTINUE
C

DO 400 1=1,NODES
READ(5,1500) (EVTBL(I,J),J=l, 5)
READ(5,1500) PKLINK(I),CSLINK(I)
READ(5,1500) (SEEDTB(I,J),J=l,4),RANDSD(I)
READ(5,2500) (LINKTB(I,J),J=l,NODES)
READ(5,2500) (DESTAB(I,J),J=l,NODES)
READ(5,2500) (DSTALT(I,J),J=1,NODES)
READ(5,2500) (KONECT(I,J),J=l,NODES)
READ (5,1500) QCNT(I),(ORSDTB(I,J),J=1,4)

400 CONTINUE

PACSIT=NODES/2
DO 500 1=1,PACSIT

READ(5,1000) (DSTCNT(I,J),J=l,PACSIT)

500

READ(5,1000)
READ(5,1000)
READ(5,1000)
READ(5,1500)
READ(5,1005)
READ(5,1000)
READ(5,1000)
READ(5,1500)
READ(5,1500)
CONTINUE

(DSTLOD(I,J),J=l,PACSIT)
(CUMLOD(I,J),J=l,PACSIT)
(CUMCNT(I,J),J=1,PACSIT)
(CALLS(I,J),J=l,3),(CSARV(I,K),K=1,3)
(NODLOD(I,J),J=l,3),APCKTS(I),TDEL(I)
(FSTPTH(I,J),J=1,PACSIT)
(LSTPTH(I,J),J=1,PACSIT)
(CUMTM(I,J),J-1,6)
(CUMTM(I,J),J=7,13)

ITOP=PARAM(13)
DO 600 J=l,ITOP

READ(5,1000) (QUEUE1(I,J),1=1,PACSIT)

nonnonno

149

READ(5,1000) (QUEUE2(I,J),1=1,PACSIT)
600 CONTINUE

C
ITOP=400
DO 700 J=l,ITOP

READ(5,1000) (CALQ1(I,J),I=1,PACSIT)
READ(5,1000) (CALQ1(I,J),1=1,PACSIT)

700 CONTINUE
C

READ(5,1000) PTHCNT
DO 900 1=1,PTHCNT

READ(5,2000) (P(I,J),J=1,10),S(I),F(I),L(I),SELCNT(I)
900 CONTINUE

C
DO 910 1=1,501

READ(5,1100) (XS(I,J),J=l,8)
910 CONTINUE

READ (5,1000) (EVTX(I), 1=1, 6) , SWITCH, STOFWD, GLOBAL, STPPRI
READ(5,1010) PRINCR,WCFACT,WCINCR,WPINCR,WPFACT,LSTEVT,SSC
READ(5,1000) LSTBTL,NMTRYS,POWER,BOUND,RTSTRT,RTFREE,LSTSTP
READ(6,1000) RSFLAG

SWITCH=NUSWCH
POWER=NUPOWR
STOFWD=NUSTFD
GLOBAL=NUGLOB
STPPRI=NUSTPP
WCFACT=WCFCNU
WPFACT=WPFCNU

WRITE(6,500) SWITCH,STOFWD,GLOBAL,STPPRI,POWER
WRITE(6,501) WCFACT,WPFACT

C
£ **
C * IF SWITCH = 6 THEN CREATE THE PRIMARY ONLY STRATEGY BY *
C * MAKING THE TWO ROUTING TABLES (DESTAB AND DSTALT) THE SAME.*
Q **
c

IF (SWITCH.NE.6) GOTO 990
SWITCH=2
DO 960 1=1,NODES

DO 950 J=l,NODES
DSTALT(I,J)=DESTAB(I,J)

950 CONTINUE
960 CONTINUE
990 CONTINUE

u
o
o

u
o
u

150

1000 FORMAT(5114,/,5114)
1005 FORMAT(4110,F20.3)
1010 FORMAT(110,4F10.3,2110)
1100 FORMAT(4F15.3,/,4F15.3)
1500 FORMAT(8110)
2000 FORMAT(1313,14)
2500 FORMAT(20I3)
4000 FORMAT('1',20X,’THE NEW CONTROL SETTINGS ARE:',/,

* 25X,'SWITCH =',14,/,
25X,’STOFWD =',14,/,
25X,’GLOBAL =',14,/,
25X,'STPPRI =',14,/,
25X,’POWER =',14)
,25X,’WCFACT =',F6.3,/,
25X,’WPFACT =',F6.3)

4001 FORMAT(
*

RETURN
END

tototON)

151

C
C
c
c
c
c
c

c
c
c

c
c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c
c

**

* SUBROUTINE SSMARK WILL INITIALIZE THE SYSTEM VAIRABLES SO *
* THAT THEY REPRESENT A STEADY STATE CONDITION. *
**

SUBROUTINE SSMARK(SOURCE)

IMPLICIT INTEGER (A-S)

COMMON/AREA1/EVTBL (52,5) , PKL INK (26), PARAM (17), CHANTB (1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26), ROUT(160), APCKTS(26), TDEL (26) , SWITCH,
ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
THRUTL (160,2), PARM3 (160), JARM3 (160) , STOFWD, EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA4/DESTAB (52,52), DSTALT (52,52), ALTCH (160)

COMMON/AREA5/FTRACE (26), RTRACE (26), FLGTH, RLGTH, SNAPON

COMMON/AREA7 /KONECT (52,52), ORPRMS (17), ORSDTB (52,4)

COMMON/AREA8/XS (501, 8), SSC, PRINCR, LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR,LSTEVT

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

IF (SOURCE.EQ.O) GOTO 90
PASS=1

non

152

GOTO 190
C
Q **
C * WE HAVE REACHED STEADY STATE. INITIALIZE COUNTERS AFTER *
C * DUMPING THE CURRENT STATE. *
£ **
c

90 WRITE(6,2010) PARAM(9),EVTX(5)
PASS=0
GOTO 190

100 CONTINUE
C

SAVE09=PARAM(9)
SAVE10=PARAM(10)
SAVE17=PARAM(17)

C
PARAM(10)=PARAM(9)
PARAM(9)=PARAM(17)
CALL STATX
CALL STATS

C

PARAM(9)=SAVE09
PARAM(10)=SAVE10
PARAM(17)=SAVE17

C

NDEST=PARAM(1)/2
ALLDST=PARAM(1)
ITOP=PARAM(3)
DO 130 1=1,ITOP

CHANTB(I,6)=0
CHANTB(If 9)=0
CHANTB(I,10)=0
CHANTB(I,11)=0

130 CONTINUE

NCHAN=PARAM(2)
DO 135 I=1,NCHAN

ACKPAC(I)=0
135 CONTINUE

DO 140 I=1,NDEST
DO 140 J=l,13

CUMTM(I,J)=0
140 CONTINUE

DO 150 1=1,NDEST
DO 150 J=l,2

CALLS(I,J)=0
150 CONTINUE

DO 165 1=1,52
BTLNCK(I)=0

165 CONTINUE

nononn
153

DO 168 1=1,800
SELCNT(I)=0

168 CONTINUE

PARAM(17)=PARAM(9)

190 IF (SNAPON.EQ.O) GOTO 995
WRITE(6,3500)
WRITE(6,1500) (PARAM(I),1=1,6)
WRITE(6,1500) (PARAM(I),1=7,12)
WRITE(6,1500) (PARAM(I),1=13,17)
WRITE(6,1500) (ORPRMS(I),1=1,6)
WRITE(6,1500) (ORPRMS(I),1=7,12)
WRITE(6,1500) (ORPRMS(I),1=13,17)
NODES=PARAM(1)
CHANS=PARAM(2)
SLOTS=PARAM(3)

DO 200 1=1,SLOTS
WRITE(6,1500) (CHANTB(I,J),J=l,6)
WRITE(6,1500) (CHANTB(I,J) , J=7,11)

200 CONTINUE
C

DO 300 1=1,CHANS
WRITE(6,1000) SORCHL(I),NODCHL(I),BTLNCK(I),ACKPAC(I)
WRITE(6,1000) PARM3(I),JARM3(I),NLINES(I),ALTCH(I)

300 CONTINUE
C

400

DO 400 1=1,NODES
WRITE(6,1500)
WRITE(6,1500)
WRITE(6,1500)
WRITE(6,2500)
WRITE(6,2500)
WRITE(6,2500)
WRITE(6,2500)
WRITE(6,1500)
CONTINUE

(EVTBL(I,J),J=l,5)
PKLINK(I),CSLINK(I)
(SEEDTB(I,J),J=l,4),RANDSD(I)
(LINKTB(I,J),J=l,NODES)
(DESTAB(I,J),J=l,NODES)
(DSTALT(I,J),J=1,NODES)
(KONECT(I,J),J=1,NODES)
QCNT(I),(ORSDTB(I,J),J=l, 4)

C

PACSIT=NODES/2
DO 500 1=1,PACSIT

WRITE(6,1000) (DSTCNT(I,J),J=1, PACS IT)
WRITE(6,1000) (DSTLOD(I,J),J=1,PACSIT)
WRITE(6,1000) (CUMLOD(I,J),J=1,PACSIT)
WRITE(6,1000) (CUMCNT(I,J),J=1,PACSIT)
WRITE(6,1500) (CALLS(I,J),J=l,3),(CSARV(I,K),K=1,3)
WRITE(6,1005) (NODLOD(I,J),J=l,3),APCKTS(I),TDEL(I)
WRITE(6,1000) (FSTPTH(I,J),J=l,PACSIT)
WRITE(6,1000) (LSTPTH(I,J),J=1,PACSIT)

nononnon

WRITE(6,1500)
WRITE(6,1500)

500 CONTINUE
C

ITOP=PARAM(13)
DO 600 J=l,ITOP

WRITE(6,1000)
WRITE(6,1000)

600 CONTINUE
C

ITOP-400
DO 700 J=l,ITOP

WRITE(6,1000)
WRITE(6,1000)

700 CONTINUE

(CUMTM(I,J),J=l,6)
(CUMTM(I,J),J=7,13)

(QUEUE1(I,J),I=1,PACSIT)
(QUEUE2(I,J),1=1,PACSIT)

(CALQ1(I,J),I=1,PACSIT)
(CALQ1(I,J),1=1,PACSIT)

WRITE(6,1000) PTHCNT
DO 900 1=1,PTHCNT

WRITE(6,2000) (P(I,J),J=l,10),S(I),F(I),L(I),SELCNT(I)
900 CONTINUE

DO 950 1=1,501
WRITE(6,1100) (XS(I,J),J=l,8)

950 CONTINUE

WRITE(6,1000)(EVTX(I),1=1,6),SWITCH,STOFWD,GLOBAL,STPPRI
WRITE(6,1010) PRINCR,WCFACT,WCINCR,WPINCR,WPFACT,LSTEVT,SSC
WRITE(6,1000) LSTBTL,NMTRYS,POWER,BOUND,RTSTRT,RTFREE,LSTSTP
WRITE(6,1000) RSFLAG
WRITE(6,3600)

995 PASS=PASS+1
IF (PASS.EQ.1) GOTO 100

1000
1005
1010
1100
1500
2000
2010

FORMAT(' ’,5114,/,’ ’,5114)
FORMAT(' ',4I10,F20.3)
FORMAT(' ',I10,4F10.3,2I10)
FORMAT(' ',4F15.3,/,' \4F15.3)
FORMAT(' ',8110)
FORMAT(' ',1313,14)
FORMAT (///,' TRANSIENTS COMPLETED AT TIME =

' WITH EVTX(5) =',110)
2500 FORMAT(' ',2013)
3500 FORMAT(' SSMARK - START')
3600 FORMAT(' SSMARK - END')

',110,

RETURN
END

onnonoonnononnnooononn
155

Q **
C * SUBROUTINE NEWMSG GENERATES VOICE AND PACKET ARRIVALS. *
C * INFORMATION RELATING TO EACH ARRIVAL RESULTS IN *
C * A QUEUE ENTRY BEING BUILT. IF THE CURRENT LOAD EXCEEDS *
C * A USER SPECIFIED STEADY-STATE LOAD, CHANNEL TABLE *
C * STATISTICAL GATHERING ENTRIES ARE ZEROED OUT. *
£ **
c
c
c

SUBROUTINE NEWMSG(NODE,CLASS)

IMPLICIT INTEGER (A-S)

REAL CNFINT

REAL*4 ALOG
REAL*4 RN

COMMON/AREA1/EVTBL (52,5) , PKLINK(26) , PARAM(17) , CHANTB (1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 N0DL0D(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26),TDEL(26),SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA8/XS(501,8),SSC,PRINCR,LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR,LSTEVT

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

156

C

C
C
c
c
c
c
c
c
c

c
c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

c
c
c
c
c

DATA FLAG/1/

**

* KNODE IS USED WITH CIRCUIT SWITCH NODES TO ALLOW *
* PROPER SUBSCRIPTING TO OCCUR OF THE CIRCUIT SWITCH TABLES. *
**

IF ((CLASS.EQ.l).AND.(PARAM(7).EQ.O)) GOTO 170
IF ((CLASS.EQ.2).AND.(PARAM(8).EQ.O)) GOTO 170
IF (RESTRT.EQ.l) FLAG=0
IF (CLASS.EQ.l) KNODE=CSLINK(NODE)
IY=0
RN=0.0
STIME=PARAM(9)

**

* RANDOMLY GENERATE A DESTINATION NODE UNTIL ONE DIFFERENT *
* FROM THE SOURCE IS FOUND. *

10 IX=SEEDTB(NODE,3)
CALL RANDOM(IX,IY,RN)
SEEDTB(NODE,3)=IY
DEST=PARAM(1)*RN+1
IF (DEST.EQ.NODE) GOTO 10

* BRANCH TO THE PROPER HANDLER BASED ON TRANSACTION CLASS. *
A***

IF (CLASS.EQ.2) GOTO 20

**

* CIRCUIT HANDLER - CLASS =1. *
**

IF (DEST.LE.(PARAM(l)/2)) GOTO 10
CSARV(KNODE,3)=DEST
IX=SEEDTB(NODE,1)
CALL RANDOM(IX,IY,RN)
SEEDTB(NODErl)=IY

**
* GENERATE ARRIVAL TIME *
vt***

ARV= (60000* (-1.0/(PARAM(7) *WCFACT) *ALOG(RN))) +PARAM(9)
IX=SEEDTB(NODE,2)

onoo

157

CALL RANDOM(IX,IY,RN)
SEEDTB(NODE, 2)=IY
DEP=-1000.0*PARAM(14) *ALOG(RN) +ARV
CSARV(KNODE f1)=ARV
CSARV(KNODE,2)=DEP

100 QCNT(NODE)=QCNT(NODE)+l
170 RETURN

C
C **
C * PACKET HANDLER - CLASS =2. *
Q **
C

20 IF (DEST.GT. (PARAM(1) /2)) GOTO 10
X=0.0
XLAMDA=PARAM (8) *WPFACT
CALL POISSN(XLAMDA,X,NODE)
NMSGS=X

IX=SEEDTB(NODEr1)
CALL RANDOM(IX,IY,RN)
SEEDTB(NODE,1)=IY
KEY=0

LIMIT=QCNT(NODE)
ITOP=PARAM(13)-5
DO 40 1=1,ITOP,6

IF (QUEUE1(N0DE,I).EQ.O) GOTO 40
IF (QUEUE1(N0DE,I).EQ.100) GOTO 46
IF (QUEUEKNODE, I) .EQ.999999999) GOTO 46
IF (QUEUEKNODE, 1+1) .LE.KEY) GOTO 40
KEY=QUEUE1(NODE, I+1)

46 LIMIT=LIMIT-1
IF (LIMIT.EQ.O) GOTO 50

40 CONTINUE
50 IF (KEY.GT.STIME) STIME=KEY

C
Q **
C * GENERATE ARRIVAL TIME AND NUMBER OF PACKETS. *
Q **
c

ARV= (1000* (-1.0*AL0G(RN))) +STIME
XPROB=PARAM(16)/100.0
LENGTH=0
NUM=0
IF (NMSGS.EQ.O) NMSGS=1
DO 25 K=l,NMSGS

CALL GEOM(XPROB,NUM,NODE)
LENGTH=LENGTH+NUM

25 CONTINUE
IF (LENGTH.EQ.0)LENGTH=1

onn

158

C
C
C
C
C
C
C
C
C
C
c
c
c
c
c
c
c
c
c
c

* HAVING GENERATED THE TRANSACTION DATA, COMPOSE THE QUEUE *
* ENTRY(S) AS APPROPRIATE. THE DATA STORED IN THE QUEUES *
* WILL BE AS FOLLOWS. *
* *

* -- QUEUEl(l)
* -- QUEUE1(2)
* -- QUEUE1(3)
* — QUEUE1(4)
* -- QUEUE1(5)
* __ QUEUE1(6)

==> PRIORITY INDICATOR.
==> TRANSACTION ARRIVAL TIME.
==> TRANSACTION DEPARTURE TIME.
==> SIZE (IN PACKETS) OF THE TRANSACTION
==> INTERMEDIATE DESTINATION.
==> NUMBER OF MESSAGES.

*

*

* -- QUEUE2(1)
* -- QUEUE2(2)
* -- QUEUE2(3)
* — QUEUE2(4)
* — QUEUE2(5)
* __ QUEUE2(6)

==> SOURCE NODE OF TRANSACTION. *
==> FINAL DESTINATION. *
==> PERC. OF MESSAGE ALLOCATED TO TRANSACT.*
==> TOTAL DELAY FOR TRANSACTION.
==> ROUTE POINTER *
==> DEPARTURE TIME + ROUTING DELAY. *
**

ITOP=PARAM(13)
SIZE=LENGTH
PASS=1
IF (STOFWD.EQ.l) GOTO 26
DEP=ARV+LENGTH*PARAM(5)
NMSGS=NMSGS*10000

QCNT(NODE)=QCNT(NODE)+1
GOTO 27

C
C
C
C
C
C
c

c

26 DEP=ARV+PARAM(5)
NMSGS=1.0*NMSGS/LENGTH*10000.0+.5
QCNT(NODE)=QCNT(NODE)+LENGTH

**

* IF IN STORE AND FORWARD MODE GENERATE A QUEUE ENTRY FOR *
* EACH PACKET SO THAT EACH CAN BE HANDLED SEPERATELY. *
* IF NOT, GENERATE ONE ENTRY FOR THE ENTIRE MESSAGE. *
**

27 DO 29 K=l,PASS
DO 28 1=1,ITOP,6

IF (QUEUE1(N0DE,I).NE.O) GOTO 28

QUEUE1(N0DE,I)=l
QUEUE1(NODE,I+1)=ARV
QUEUE1(NODE,I+2)=DEP
QUEUEMNODE, I+3)=SIZE
QUEUE1CNODE,I+4)=DEST
QUEUE1(NODE,1+5)=NMSGS

C

non

159

QUEUE2(NODE,I)=NODE
QUEUE2(NODE,I+1)=DEST
QUEUE2(NODE,1+2)=0
QUEUE2(NODE,1+3)=0
QUEUE2(NODE,1+4)=0
QUEUE2(NODE,I+5)=DEP

C
ARV=DEP

DEP=DEP+PARAM(5)
GOTO 29

28 CONTINUE
CALL ERRMSG(20)

29 CONTINUE
IF (STOFWD.EQ.O) RETURN
IF (SIZE.EQ.l) RETURN
SIZE=1
PASS=LENGTH-1
IF (PASS.LE.O) RETURN
GOTO 27

9999 STOP
END

nonnnonnonnon
160

Q **
C * SUBROUTINE POISSN WILL GENERATE A RANDOM POISSON VALUE *
C * WHERE XLAMDA IS THE MEAN AND SEEDTB(NODE, 2) IS THE CURRENT *
C * SEED VALUE. *

Q **
C
C
C

SUBROUTINE POISSN(XLAMDA,X,NODE)

IMPLICIT INTEGER (A-S)
REAL*4 RN
REAL*4 EXP

COMMON/AREAl/EVTBL (52,5), PKLINK(26), PARAM(17), CHANTB (1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26), ROUT(160),APCKTS(26) , TDEL (26) , SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX (6),
2 BOUND,GLOBAL, STPPRI,AVLTST, RESTRT, NUSWCH, NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC (26), BTLNCK (52) , LSTBTL, CALQ2 (10,50)

X=0.0
T=EXP(-XLAMDA)
Tl=1.0
IY=0

4 IX=SEEDTB(NODE,2)
CALL RANDOM(IX,IY,RN)
SEEDTB(NODE,2)=IY
T1=T1*RN
IF (Tl-T)9,7,7

7 X=X+1.0
GOTO 4

9 RETURN
END

nnnononnonnon
161

C **
C * THIS ROUTINE GENERATES THE NUMBER OF PACKETS *
C * FOR A DATA TRANSACTION. *
C **
C
C
c

SUBROUTINE GEOM(XPROB,NUM,NODE)

IMPLICIT INTEGER (A-S)
REAL*4 ALOGIO
REAL*4 RN

COMMON/AREA1/EVTBL(52,5) f PKLINK(26) , PARAM(17) rCHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26) ,ROUT(160) ,APCKTS(26) ,TDEL(26) , SWITCH,
2 ZDBLK(26,2) , PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
2 THRUTL(160,2), PARM3(160), JARM3 (160) , STOFWD,EVTX(6) ,
2 BOUND, GLOBAL, STPPRI, AVLTST,RESTRT, NUSWCH, NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC (26), BTLNCK (52), LSTBTL, CALQ2 (10,50)

NUM=0
IY=0

10 IX=SEEDTB(NODE,4)
CALL RANDOM(IX,IY,RN)
SEEDTB(NODE,4)=IY
IF (RN.LE.XPROB) GOTO 20
NUM=NUM+1
GOTO 10

20 RETURN
END

nonono

162

Q if***
C * THIS IS THE RANDOM NUMBER GENERATOR. *
Q **
c
c
c

SUBROUTINE RANDOM(IX,IY,RN)

IMPLICIT INTEGER (A-Q)

IY=IX*65539
IF (IY)3,4,4

3 IY=IY+2147 483647+1
4 RN=IY

RN=RN*.4656613E-9
IX=IY

RETURN
END

nnnnonnnnoooono
163

C **
C * THIS ROUTINE IS RESPONSIBLE FOR SELECTING THE NEXT *
C * ACTIVITY AT A NODE. ONCE AN EVENT IS SELECTED *
C * (ARRIVAL OR DEPARTURE), INFORMATION PERTAINING TO IT *
C * IS PLACED IN THE EVENT TABLE ENTRY FOR THAT NODE. *
£ **
c
c
c

SUBROUTINE NUEVNT(NODE,CLASS)

IMPLICIT INTEGER (A-S)

COMMON/AREA1/EVTBL (52,5), PKLINK(26), PARAM(17), CHANTB(1170,11),
1 QUEUE1(10,1800) ,CALQ1(10,50) ,CUMTM(26,13) ,QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26), ROUT (160), APCKTS (26) , TDEL (26), SWITCH,
2 ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
2 THRUTL (160,2), PARM3 (160), JARM3 (160), STOFWD, EVTX(6),
2 BOUND, GLOBAL, STPPRI,AVLTST, RESTRT, NUSWCH, NUPOWR,
2 NUSTFD, NUGLOB, NUSTPP,WCFCNU,WPFCNU, QUEUE2 (10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA7/KONECT(52,52),ORPRMS(17),ORSDTB(52,4)

C
C
C
C
C

c
c
c
c
c

IDELAY=0
IYESNO=0

LIMIT=QCNT(NODE)

**
* BRANCH TO THE PROPER HANDLER BASED ON TRANSACTION CLASS. *
**

IF (CLASS.EQ.2) GOTO 110

**
* CIRCUIT HANDLER - CLASS =1. *
**

nnn

164

KNODE=CSLINK(NODE)
C
Q **
C * SET DEP TO THE MAXIMUM POSSIBLE VALUE AND THE SEARCH THE *
C * CALQ TABLES FOR THE SMALLEST ENTRY (SOONEST ACTIVITY). *
C **
C

DEP=999999999
DO 20 1=1,50,4

IF (CALQ1(KN0DE,I).EQ.O) GOTO 20
IF (CALQ1(KN0DE,I).GE.DEP) GOTO 15
DEP=CALQ1(KNODE,I)
INDEX=I

15 LIMIT=LIMIT-1
IF (LIMIT.EQ.O) GOTO 5

20 CONTINUE
5 IF (DEP.EQ.999999999) GOTO 25
IF (CSARV(KNODE,1).GE.DEP) GOTO 30

C
C **
C * NOW PLACE THE CIRCUIT SWITCH INFORMATION IN EVENT TABLE. *
Q **
C

25 EVTBL(NODE, 1)CSARV(KNODE, 1)
EVTBL(NODE,2)=3
EVTBL(NODE,3)=CSARV(KNODE,2)
EVTBL(NODE,4)=CSARV(KNODE,3)
GOTO 100

30 EVTBL(NODE,1)=DEP
EVTBL(NODE,2)=4
EVTBL(NODE,4)=CALQ1(KNODE,(INDEX+1))
EVTBL(NODE,5)=INDEX
GOTO 100

C
C
C
C
C

110

C
C
c
c
c

c
c

**
* PACKET HANDLER - CLASS =2. *
**

IF (PARAM(8).EQ.O) GOTO 100
KEY=999999999
ITOP=PARAM(13)-5
DO 40 1=1,ITOP,6

* IF QUEUEl(l) EQUAL ZERO, THEN SKIP IT. *
* IF QUEUEl(l) EQUAL 100, SKIP IT BECAUSE IT IS THE *
* RETURN PATH FOR A CONNECTION. *
it**

165

C
C
c
c
c
c

c
c
c
c
c

c
c
c
c
c

IF (QUEUE1(NODE,I).EQ.O) GOTO 40
IF (QUEUE1(N0DE,I).EQ.100) GOTO 40
IF (QUEUE1(N0DE,1+2).GE.KEY) GOTO 41
IF (QUEUE1(N0DE,I).NE.999999999) GOTO 41
KEY=QUEUE1(NODE,I+2)
FLAG=2
INDEX=I

41 LIMIT=LIMIT-1
IF (LIMIT.EQ.O) GOTO 45

40 CONTINUE

**

* THIS LOGIC CHECKS TRAFFIC THAT HAS BEEN ON QUEUE FOR *
* SOME TIME TO SEE IF IT CAN BE SENT YET. *
**

45 PRIORY=0
KK=6
DO 55 KKK=1,5

K=KK-KKK

LIMIT=QCNT(NODE)
IF (PRIORY.NE.O) GOTO 75
ITOP=PARAM(13)-5
DO 50 1=1,ITOP,6

IF (QUEUE1(NODE,I).EQ.O) GOTO 50
IF (QUEUE1(N0DE,I).EQ.999999999) GOTO 46
IF (QUEUE1(N0DE,I).EQ.100) GOTO 46
IF (QUEUE1(N0DE,I+1).GE.KEY) GOTO 46
IF (QUEUE1(N0DE,I).NE.K) GOTO 46
DEST=QUEUE1(NODE,1+4)

**

* HAVING FOUND THE OLDEST TRAFFIC, CHECK THE PATH BY *
* CALLING ROUTE. IF EITHER A 0 OR 3 IS RETURNED VIA *
* IYESNO THEN THE PATH IS LEGAL AND AVAILABLE. NOTE *
* THAT ROUTE IS USED TO CHECK FOR THESE CHARACTERISTICS *
* EVEN THOUGH THE AVAILABILITY COULD CHANGE BY THE TIME *
* THE EVENT IS SELECTED BY NUEVNT. *
**

44 PASS=1
AVLTST=1
IF (STPPRI.EQ.l) GOTO 80
IF (STOFWD.EQ.O) GOTO 82
CALL SGLSTP(NODE,DEST,ACHAN,ANODE,AAVL,CLASS,ALSTND)
DEST=ANODE

82 CALL ROUTE(NODE,DEST,IYESNO,IDELAY,CLASS,PASS)
IF (IYESNO.EQ.l) GOTO 46
IF (IYESNO.EQ.2) GOTO 46

80 KEY=QUEUE1(N0DE,1+1)
FLAG=1
INDEX=I

166

PRIORY=K
46 LIMIT=LIMIT-1

IF (LIMIT.LE.O) GOTO 55
50 CONTINUE
55 CONTINUE

IF (KEY.NE.999999999) GOTO 75
IF (KKK.LT.5) GOTO 75
LIMIT=QCNT(NODE)
FLAG=1

ITOP=PARAM(13)-5
KEY=QUEUE1(NODE,2)

C
C **
C * SCAN THE QUEUE TO FIND THE SOONEST DEPARTURE. *
C **
C

DO 35 I=l,ITOP,6
IF (QUEUE1(N0DE,I).EQ.O) GOTO 35
IF (QUEUE1(N0DE,I).LT.6) GOTO 36

35 CONTINUE
36 KEY=QUEUE1(NODE,1+1)

INDEX=I

C
Q **
C * SCAN THE QUEUE TO FIND THE SOONEST ARRIVAL. *
C I****************************-**********************************
C

DO 60 1=1,ITOP,6
IF (QUEUE1(N0DE,I).EQ.O) GOTO 60
IF (QUEUE1(N0DE,I).EQ.100) GOTO 65
IF (QUEUE1(N0DE,I).EQ.999999999) GOTO 65
IF (QUEUE1(N0DE,1+1).GT.KEY) GOTO 85

86 IF (QUEUE1(N0DE,I).LT.5) GOTO 65
QUEUE1(N0DE,I)=l

65 LIMIT=LIMIT-1
IF (LIMIT.EQ.O) GOTO 75
GOTO 60

8 5 KEY=QUEUE1(NODE,I+1)
INDEX=I
IF (QUEUE1(N0DE,I+1).LE.PARAMO)) GOTO 86
GOTO 75

60 CONTINUE
C
C **
C * SELECT FROM ARRIVAL OR DEPARTURE, AND PLACE INFORMATION *
C * RELATING TO IT ON EVENT TABLE. *
^ **
C

75 EVTBL(NODE,1)=QUEUE1(NODE,(INDEX+1))
IF (FLAG.EQ.2)EVTBL(NODE,1)=QUEUE1(NODE,(INDEX+2))
EVTBL(NODE,2)=FLAG+4
IF (STOFWD.EQ.O) GOTO 76

nonnon

167

SIZE=QUEUE1(NODE,INDEX+3)
IF (SIZE.EQ.l) EVTBL(NODE,2)=FLAG-4
QUEUE1(NODE,INDEX+3)=1

76 EVTBL (NODE, 3) =QUEUE1 (NODE, (INDEX+3))
EVTBL(NODE,4)=QUEUE1(NODE,(INDEX+4))
EVTBL(NODE,5)=INDEX

100 RETURN

END

nnnnnnnoonnnono
168

C * THIS ROUTINE SCANS THE EVENT TABLE ENTRIES LOOKING FOR *
C * THE NEXT SYSTEM EVENT. IT THEN BRANCHES TO THE *
C * APPROPRIATE ROUTINE TO SERVICE THE EVENT. *
C ********'***********'************★★*****★***********************
C
C
C

SUBROUTINE EVENT

IMPLICIT INTEGER (A-S)

REAL CNFINT

COMMON/AREA1/EVTBL(52,5) ,PKLINK(26) ,PARAM(17) ,CHANTB(1170,11) ,
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26), ROUT(160), APCKTS (26), TDEL (26), SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC (26) , BTLNCK(52) , LSTBTL, CALQ2 (10,50)

C
C
C
C
C
C
C
C
C
c
c

COMMON/AREA8/XS(501,8),SSC,PRINCR,LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR,LSTEVT

**

* IF THE NEXT MULTIPLE OF PRINCR HAS BEEN REACHED BY *
* EVTX(5) COLLECT THE INTERMEDIATE STATISTICS. *
**

N=EVTX(5)/PRINCR
N=N*PRINCR

nonnononnononnnnnnonon
169

IF (N.NE.EVTX(5)) GOTO 4
IF (N.EQ.LSTEVT) GOTO 4
CALL STATK
LSTEVT=EVTX(5)

4 IF (RSFLAG.EQ.l) GOTO 5
IF (EVTX(5).LT.40000) GOTO 5
CALL SSTDMP
SOURCE=0
CALL SSMARK(SOURCE)
RSFLAG=1

★★Hr***

* SCAN THE EVENT TABLE TO FIND THE SOONEST ACTIVITY. *
**

5 NOROUT=0
BEST=999999999

ALLDST=PARAM(1)
DO 10 1=1,ALLDST

IF (EVTBL(1,1).EQ.0) GOTO 10
IF (EVTBL(I,1).GE.BEST) GOTO 10
BEST=EVTBL(1,1)
NODE=I

10 CONTINUE

**

* NOW PROCESS THE EVENT OCCURRENCE TYPE BASED ON THE SECOND *
* ELEMENT OF THE EVENT TABLE ENTRY. THIS ELEMENT RANGES FROM *
* ONE TO FOUR WITH INTERPRETATIONS AS FOLLOWS. *
* (1) ==> PACKET ARRIVAL *
* (2) ==> PACKET DEPARTURE *
* (3) ==> CIRCUIT ARRIVAL *
* (4) ==> CIRCUIT DEPARTURE *
**

KEY=EVTBL(NODE,2)
OLDKEY=KEY

EVTX(KEY)=EVTX(KEY)+1
IF (KEY.LE.4) GOTO 60
KEY=KEY-4

EVTX(KEY)=EVTX(KEY)+1
60 CONTINUE

GOTO (100,200,300,50),KEY

100 CLASS=2
CALL ARRIVE(NODE,CLASS)

150 IF (OLDKEY.LE.4) GOTO 155

170

153 CALL NEWMSG(NODE,CLASS)
155 CALL NUEVNT(NODE,CLASS)
160 RETURN

C
C
C

200 CLASS=2
CALL DEPART (NODE, CLASS)
GOTO 155

C
c
c

300 CLASS=1
CALL ARRIVE (NODE, CLASS)
GOTO 153

C
c
c

400 CLASS=1
CALL DEPART (NODE, CLASS)
GOTO 155

C
C
C

END

nonnnnnnnnnnnnnn
171

C **
C * THIS SUBROUTINE WILL SELECT THE PROPER ROUTINE FOR ROUTING *
C * A TRANSACTION. *

C **
C
C
C

SUBROUTINE ROUTE(LNODE,KDEST,IYESNOfIDELAY,CLASS,PASS)

IMPLICIT INTEGER (A-S)

COMMON/AREA5/FTRACE (26), RTRACE (26), FLGTH, RLGTH, SNAPON

COMMON/AREA1/EVTBL (52,5), PKL INK(26), PARAM(17), CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160) , APCKTS (26) , TDEL (26), SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52), LSTBTL,CALQ2(10, 50)

IF

IF
IF

IF

IF

(SWITCH.EQ.l)
(SWITCH.EQ.2)
(SWITCH.EQ.3)
(SWITCH.EQ.4)
(SWITCH.EQ.5)

CALL RTUTIL(LNODE,KDEST, IYESNO, IDELAY,CLASS, PASS)
CALL RTPRBK(LNODE,KDEST, IYESNO, IDELAY,CLASS, PASS)
CALL RTRAND(LNODE, KDEST, IYESNO, IDELAY,CLASS, PASS)
CALL RTQCNT(LNODE,KDEST, IYESNO, IDELAY,CLASS, PASS)
CALL RTLIMT(LNODE,KDEST,IYESNO,IDELAY,CLASS, PASS)

RETURN
END

nnnnnnnonononnnnn
172

C **
C * THIS ROUTINE IS USED TO FIND A ROUTE THROUGH THE NETWORK. *
C * IT IS CALLED TWICE FOR EACH CIRCUIT SWITCH ROUTE. THE *
C * STRATEGY TO BE FOLLOWED IS RANDOM ROUTING THEREFORE THIS *
C * ROUTINE WIL RANDOMLY CHOOSE A ROUTE FROM THE ARRAY P. *
C * IYESNO SIGNIFIES WHETHER A GOOD ROUTE WAS FOUND. *
C **
C
C
C

SUBROUTINE RTUTIL(LNODE,KDEST,IYESNO,IDELAY,CLASS,PASS)

IMPLICIT INTEGER (A-T)

REAL SCORE(40),SCR,SGLSCR,RN
DIMENSION NTRACE(160),TCHNLS(160),PSTRYS(20)

COMMON/AREA1/EVTBL (52,5), PKLINK(26), PARAM(17) ,CHANTB(1170,11),
1 QUEUEK10,1800) ,CALQ1(10,50) ,CUMTM(26,13) ,QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK (52)

COMMON/AREA2/CUMCNT(26,26), ROUT(160),APCKTS (26) , TDEL (26), SWITCH,
2 ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND, GLOBAL, STPPRI, AVLTST, RESTRT, NUSWCH, NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA5/FTRACE(26),RTRACE(26),FLGTH,RLGTH,SNAPON

C
C
C
C
C

C
C

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

**
* INITIALIZE THE TRACE VARIABLES. *
**

nnn

173

IROUT=PARAM(2)
10 DO 84 1=1,IROUT

TCHNLS(I)=0
84 CONTINUE

TCNT=1
IF (PASS.EQ.2) GOTO 80
RLGTH=0
FLGTH=0
DO 85 1=1,IROUT

ROUT(I)=0
85 CONTINUE

DO 86 1=1,26
FTRACE(I)=0
RTRACE(I)=0

86 CONTINUE
80 NODE=LNODE

DEST=KDEST
IDELAY=0
RATI0=1

IF (CLASS.EQ.2) RATIO=PARAM(4)

ft"***

* SCORE EACH FEASIBLE PATH *
**

T1=FSTPTH(LNODE,KDEST)
T2=LSTPTH(LNODE,KDEST)
DO 505 I=T1,T2

SGLSCR=0
DO 220 J=l,10

CHAN=P(I,J)
IF (CHAN.EQ.O) GOTO 300
P3=PARM3(CHAN)
NL=NLINES(CHAN)
RQ=RATIO+ROUT(CHAN)
SCR=1.0
IF (NL.LT.RQ) SCR=600
SCR=SCR+(1.0*(P3-NL+RQ)/P3)
SGLSCR=SGLSCR+(SCR**POWER)

220 CONTINUE
300 SCORE(I-T1+1)=SGLSCR
505 CONTINUE

T3=T2-T1+1
XT=SCORE(l)
PTR=1

DO 600 1=1,T3
IF (SCORE(I).GE.XT) GOTO 600
XT=SCORE(I)

nonnononnoonnnonnon
174

PTR=I

600 CONTINUE

PTR=PTR+T1-1

TCNT=0
DO 700 1=1,10

IF(P(PTR,I).EQ.O) GOTO 800
TCNT=TCNT+1

TCHNLS(TCNT)=P(PTR,I)
700 CONTINUE

WRITE(6,2065)

800 CONTINUE

**

* WALK THE PATH SELECTED TO SEE IF IT IS AVAILABLE. IF SO, *
* TRANSFER THE PATH TO TCHNLS. IF NOT, BRANCH TO ALTERNATE *
* PATH GENERATOR. *
**

LIMIT=TCNT
IYESNO=0

CHNCNT=LINKTB(PKLINK(LNODE),DEST)
IF (CHNCNT.GT.0) IYESN0=3
DO 900 1=1,LIMIT

IDELAY=IDELAY+PARAM(6)
ROUT(TCHNLS(I))=RATIO
IF (RATIO.LE.NLINES(TCHNLS(I))) GOTO 900
IF (AVLTST.EQ.O) BTLNCK(TCHNLS(I))=BTLNCK(TCHNLS(I))+l
IYESNO=l
GOTO 200

900 CONTINUE
200 IF (PASS.EQ.2) GOTO 500

DO 400 1=1,TCNT
FTRACE(I)=TCHNLS(I)

400 CONTINUE
FLGTH=TCNT
RETURN

500 DO 510 1=1,TCNT
RTRACE(I)=TCHNLS(I)

510 CONTINUE
RLGTH=TCNT

ononon
RETURN

175

2065 FORMAT (' TRANSFER ERROR')

END

nnonnoononnonnon
176

C ***'*******
C * THIS ROUTINE IS USED TO FIND A ROUTE THROUGH THE NETWORK. *
C * IT IS CALLED TWICE FOR EACH CIRCUIT SWITCH ROUTE. NTRACE *
C * IS A TABLE USED TO INSURE NO LOOPS OCCUR IN THE ROUTING *
C * PROCESS. IYESNO SIGNIFIES WHETHER OR NOT A GOOD *
C * ROUTE WAS FOUND. *

C **
C

C
C

SUBROUTINE RTPRBK(LNODE,KDEST,IYESNO,IDELAY,CLASS,PASS)

IMPLICIT INTEGER (A-T)
DIMENSION NTRACE(160),TCHNLS(160)

COMMON/AREA1/EVTBL (52,5) , PKLINK(26), PARAM(17), CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26), TDEL (26), SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26), BTLNCK(52), LSTBTL, CALQ2 (10,50)

COMMON/AREA4/DESTAB(52,52) ,DSTALT(52,52) ,ALTCH(160)

COMMON/AREA5/FTRACE (26), RTRACE (26), FLGTH, RLGTH, SNAPON

IROUT=PARAM(2)
DO 84 1=1,IROUT

TCHNLS(I)=0
84 CONTINUE

TCNT=1
IF (PASS.EQ.2) GOTO 80
RLGTH=0
FLGTH=0
DO 85 1=1,IROUT

ALTCH(I)=0

177

ROUT(I)=0
85 CONTINUE

DO 86 1=1,26
FTRACE(I)=0
RTRACE(I)=0

86 CONTINUE
80 DO 90 1=1,IROUT

NTRACE(I)=0
90 CONTINUE

NODE=LNODE
DEST=KDEST
INODE=NODE
NCOUNT=l
PRBTL=0
ITYPE=0
IDELAY=0
RATI0=1
ALT=0
IF (CLASS.EQ.2) RATI0=PARAM(4)
NTRACE(NCOUNT)=INODE
IYESNO=0

C
C **.********
C * BRANCH TO THE PROPER HANDLER BASED ON TRANSACTION CLASS. *
Q **
c

IF (CLASS.EQ.l) GOTO 10
INODE=DESTAB(NODE,DEST)
IDELAY=0
NCOUNT=NCOUNT+l
NTRACE(NCOUNT)=INODE

C
C **
C * SEE IF A PATH ALREADY EXISTS FOR THIS TRANSACTION. *
Q **
C

CHNCNT=LINKTB(INODE,DEST)
IF (CHNCNT.LE.O) GOTO 10
ITYPE=1

10 IF (INODE.EQ.DEST) GOTO 60
ICHAN=DESTAB(INODE,DEST)

C

Q **
C * SEE IF THERE ARE SLOTS AVAILABLE ON THE SELECTED CHANNEL. *
C * IF NOT, BRANCH TO THE ALTERNATE CHANNEL SELECTOR. IF SO, *
C * THEN RESERVE THEM BY DECREMENTING THE SLOT COUNT. *
£ **
c

25 IF (RATIO.GT.NLINES(ICHAN)) GOTO 20
ROUT (ICHAN) =RATIO+ROUT (ICHAN)
IF ((NLINES(ICHAN)-ROUT(ICHAN)).LT.O) GOTO 50
ALT=0

nonnon

178

INODE=NODCHL(ICHAN)
DO 30 K=1,NC0UNT

IF (INODE.EQ.NTRACE(K)) GOTO 50
30 CONTINUE

NC0UNT=NC0UNT+1

NTRACE(NCOUNT)=INODE
TCHNLS (TCNT)=ICHAN
TCNT=TCNT+1

C
Q **
C * ADD THE DELAY TIME FOR SIGNALLING THROUGH THIS NODE. *
C **
C

IDELAY=PARAM(6)+IDELAY
IF (DESTAB(INODE,DEST).EQ.O) GOTO 60
GOTO 10

C
q **
C * ALTERNATE CHANNEL SELECTOR. *
Q **
c

20 IF (ALT.EQ.l) GOTO 50
PRBTL=ICHAN
ALT=1
IF (ALTCH(ICHAN).EQ.l) GOTO 50
ALTCH(ICHAN)=1 '
ICHAN=DSTALT(INODE,DEST)
GOTO 25

50 IYESNO=l
IF (PRBTL.NE.O.AND.AVLTST.EQ.O) BTLNCK(PRBTL)=BTLNCK(PRBTL)+1

60 TCNT=TCNT-1
IF (ITYPE.EQ.IYESNO) GOTO 70
IF (ITYPE.EQ.O) IYESNO=2
IF (ITYPE.EQ.l) IYESNO=3

70 IF (PASS.EQ.2) GOTO 500
DO 400 I=1,TCNT

FTRACE(I)=TCHNLS(I)
400 CONTINUE

FLGTH=TCNT
RETURN

500 DO 510 I=1,TCNT
RTRACE(I)=TCHNLS(I)

510 CONTINUE
RLGTH=TCNT

C
RETURN

179

END

nnnoonnoononnonnonnonnon
180

C **
C * THIS ROUTINE IS USED TO FIND A ROUTE THROUGH THE NETWORK. *
C * IT IS CALLED TWICE FOR EACH CIRCUIT SWITCH ROUTE. THE *
C * STRATEGY TO BE FOLLOWED IS RANDOM ROUTING THEREFORE THIS *
C * ROUTINE WIL RANDOMLY CHOOSE A ROUTE FROM THE ARRAY P. *
C * IYESNO SIGNIFIES WHETHER A GOOD ROUTE WAS FOUND. *
C **
C
C
c

SUBROUTINE RTRAND(LNODE , KDEST, IYESNO, IDELAY, CLASS , PASS)

IMPLICIT INTEGER (A-T)

DIMENSION NTRACE(160)#TCHNLS(160)r PSTRYS(20)

REAL RN

COMMON/AREAl/EVTBL(52,5) ,PKLINK(26) ,PARAM(17) ,CHANTB(1170,11),
1 QUEUE1 (10,1800), CALQ1 (10,50), CUMTM (26,13), QCNT (52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL (160), NODCHL (160), CUMLOD(26,26), CSARV (26,3),
1 NODLOD (26,3),DSTLOD(26,26), DSTCNT (26,26), CSLINK(52)

COMMON/AREA2/CUMCNT(26,26), ROUT (160), APCKTS(26) , TDEL (26), SWITCH,
2 ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK,RSFLAG,
2 THRUTL (160,2), PARM3 (160), JARM3 (160), STOFWD, EVTX(6) ,
2 BOUND, GLOBAL, STPPRI, AVLTST, RESTRT, NUSWCH, NUPOWR,
2 NUSTFD, NUGLOB, NUSTPP,WCFCNU,WPFCNU, QUEUE2 (10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52), LSTBTL, CALQ2 (10,50)

COMMON/AREA5/FTRACE (26),RTRACE (26), FLGTH,RLGTH, SNAPON

COMMON/AREAA/P(800,10) ,S(800) ,F(800) ,L(800) ,SELCNT(800) ,NMTRYS,
A FSTPTH(26,26), LSTPTH(26,26),RANDSD(52), POWER, PTHCNT

nonnonnnnoonnnn
181

1e*'k'le****l*ik**t*it1t1c'k,k1cieie?cie4'1t'kic1eicik,k1c1t'k1t1e'k4iieic1cic1eikit1c1c1c1fk,tcicikik1t4eicik1c&,te?e

* INITIALIZE THE TRACE VARIABLES. *
**

IROUT=PARAM(2)
TRYS=NMTRYS
PASSES=0

10 DO 84 1=1,IROUT
TCHNLS(I)=0

84 CONTINUE
TCNT=1
IF (PASS.EQ.2) GOTO 80
RLGTH=0
FLGTH=0
DO 86 1=1, 26

FTRACE(I)=0
RTRACE(I)=0

86 CONTINUE
80 NODE=LNODE

DEST=KDEST
IDELAY=0
RATI0=1
IF (CLASS.EQ.2) RATIO=PARAM(4)

**

* RANDOMLY SELECT A PATH TO BE FOLLOWED. *
**

30 *IX=RANDSD (NODE)
CALL RAND0M(IX, IY,RN)
RANDSD(NODE)=IY
NUMPTH=LSTPTH(NODE,DEST)-FSTPTH(NODE,DEST)+1
NUMPTH= (RN*NUMPTH) +FSTPTH (NODE, DEST)

JNODE=LNODE
JDEST=KDEST
IF (CLASS.EQ.2) JNODE=PKLINK(JNODE)
IF (CLASS.EQ.2) JDEST=PKLINK(JDEST)
IF (F(NUMPTH).NE.JNODE) GOTO 30
IF (L(NUMPTH).NE.JDEST) GOTO 30

IF (PASSES.EQ.O) GOTO 89
DO 88 1=1, PASSES

IF (NUMPTH.EQ.PSTRYS(I)) GOTO 30
88 CONTINUE
89 PASSES=PASSES+1

PSTRYS(PASSES)=NUMPTH

182

C **
C * WALK THE PATH SELECTED TO SEE IF IT IS AVAILABLE. IF SO, *
C * TRANSFER THE PATH TO TCHNLS. IF NOT, BRANCH TO ALTERNATE *
C * PATH GENERATOR. *

C **
C

ITOP=PARAM(l)/2
TCNT=0
DO 90 1=1, ITOP

IF (P(NUMPTH,I).EQ.O) GOTO 95
IDELAY=IDELAY+PARAM(6)
IF (RATIO.GE.NLINES(P(NUMPTH,I))) GOTO 100
TCHNLS(I)=P(NUMPTH,I)
TCNT=TCNT+1

90 CONTINUE
95 IYESNO=0

CHNCNT=LINKTB(PKLINK(LNODE),DEST)
IF (CHNCNT.GT.O) IYESNO=3
GOTO 200

C
£ **
C * PATH IS NOT AVAILABLE SO CHECK TO SEE IF AN ALTERNATE IS *
C * TO BE TRIED. *
C **
C

100 TRYS=TRYS-1
IF (PASSES.EQ.l) PRBTL=P(NUMPTH, I)
IF (TRYS.GT.O) GOTO 10
IYESNO=l
IF (PRBTL.EQ.O) RETURN
IF (AVLTST.EQ.l) RETURN
BTLNCK(PRBTL)=BTLNCK(PRBTL)+1
RETURN

C
£ **
C * SINCE IYESNO IS 0 THE PATH EXISTS.
£ **
C

200 IF (PASS.EQ.2) GOTO 500
DO 400 1=1, TCNT

FTRACE(I)=TCHNLS(I)
400 CONTINUE

FLGTH=TCNT
RETURN

C
500 DO 510 1= 1, TCNT

RTRACE(I)=TCHNLS(I)
510 CONTINUE

RLGTH=TCNT
C

RETURN
END

nonoonnononnnnnnn
183

C **
C * THIS ROUTINE IS USED TO FIND A ROUTE THROUGH THE NETWORK. *
C * IT IS CALLED TWICE FOR EACH CIRCUIT SWITCH ROUTE. THE *
C * STRATEGY TO BE FOLLOWED IS RANDOM ROUTING THEREFORE THIS *
C * ROUTINE WIL RANDOMLY CHOOSE A ROUTE FROM THE ARRAY P. *
C * IYESNO SIGNIFIES WHETHER A GOOD ROUTE WAS FOUND. *
C **
C
C
C

SUBROUTINE RTQCNT(LNODE,KDEST,IYESNO,IDELAY,CLASS,PASS)

IMPLICIT INTEGER (A-T)

REAL SCORE(40),SCR,SGLSCR,RN
DIMENSION NTRACE(160),TCHNLS(160),PSTRYS(20)

COMMON/AREA1/EVTBL (52,5),PKLINK(26), PARAM(17),CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26),TDEL(26),SWITCH,
2 ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND, GLOBAL, STPPRI,AVLTST, RESTRT, NUSWCH, NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA5/FTRACE (26), RTRACE (26), FLGTH, RLGTH, SNAPON

C
C
C
C
C
C
C

COMMON/AREAA/P(800,10), S(800) ,F(800),L(800),SELCNT(800) ,NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

**
* INITIALIZE THE TRACE VARIABLES. *
**

onnnon

184

10 DO 84 1=1,160
TCHNLS(I)=0

84 CONTINUE
TCNT=1
IF (PASS.EQ.2) GOTO 80
RLGTH=0
FLGTH=0
DO 85 1=1,160

ROUT(I)=0
85 CONTINUE

DO 86 1=1,26
FTRACE(I)=0
RTRACE(I)=0

86 CONTINUE
80 NODE=LNODE

DEST=KDEST
IDELAY=0
RAT10=1
IF (CLASS.EQ.2) RATIO=PARAM(4)

C
Q **
C * SCORE EACH FEASIBLE PATH *
£ **
C

T1=FSTPTH(LNODE,KDEST)
T2=LSTPTH(LNODE,KDEST)
DO 505 I=T1,T2

SGLSCR=0
DO 220 J=l,10

CHAN=P(I,J)
IF (CHAN.EQ.O) GOTO 300
SOURCE=SORCHL(CHAN)
SCR=1.0*QCNT(SOURCE)/PARM3(CHAN)
SGLSCR=SGLSCR+(SCR**POWER)

220 CONTINUE
300 SCORE(I-T1+1)=SGLSCR
505 CONTINUE

T3=T2-T1+1
XT=SCORE(l)
PTR=1

DO 600 1=1,T3
IF (SCORE(I).GE.XT) GOTO 600
XT=SCORE(I)
PTR=I

600 CONTINUE

nononnononnnnnonon
185

PTR=PTR+T1-1
TCNT=1
DO 700 1=1,10

IF(P(PTR,I).EQ.0) GOTO 800
TCHNLS(TCNT)=P(PTR,I)
TCNT=TCNT+1

700 CONTINUE

WRITE(6,2065)

800 CONTINUE
TCNT=TCNT-1

**

* WALK THE PATH SELECTED TO SEE IF IT IS AVAILABLE. IF SO, *
* TRANSFER THE PATH TO TCHNLS. IF NOT, BRANCH TO ALTERNATE *
* PATH GENERATOR. *
**

LIMIT=TCNT
IYESNO=0
CHNCNT=LINKTB(PKLINK(LNODE),DEST)
IF (CHNCNT.GT.O) IYESNO=3
DO 900 1=1,LIMIT

IDELAY=IDELAY+PARAM(6)
ROUT(TCHNLS(I))=RATIO
IF (RATIO.LT.NLINES(TCHNLS(I))) GOTO 900
IF (AVLTST.EQ.O) BTLNCK(TCHNLS(I))=BTLNCK(TCHNLS(I))+l
IYESNO=l
GOTO 200

900 CONTINUE

200 IF (PASS.EQ.2) GOTO 500
DO 400 1=1,TCNT

FTRACE(I)=TCHNLS(I)
400 CONTINUE

FLGTH=TCNT
RETURN

500 DO 510 1=1,TCNT
RTRACE(I)=TCHNLS(I)

510 CONTINUE
RLGTH=TCNT

2065 FORMAT (' TRANSFER ERROR')
C

186

END

ononnonoooooooooo
187

C **
C * THIS ROUTINE IS USED TO FIND A ROUTE THROUGH THE NETWORK. *
C * IT IS CALLED TWICE FOR EACH CIRCUIT SWITCH ROUTE. THE *
C * STRATEGY TO BE FOLLOWED IS RANDOM ROUTING THEREFORE THIS *
C * ROUTINE WIL RANDOMLY CHOOSE A ROUTE FROM THE ARRAY P. *
C * IYESNO SIGNIFIES WHETHER A GOOD ROUTE WAS FOUND. *
q **
C
C
C

SUBROUTINE RTLIMT(LNODE,KDEST,IYESNO,IDELAY,CLASS,PASS)

IMPLICIT INTEGER (A-T)

REAL SCORE(40),SCR,SGLSCR,RN
DIMENSION NTRACE(160),TCHNLS(160),PSTRYS(20)

COMMON/AREA1/EVTBL (52,5), PKLINK(26) , PARAM(17) ,CHANTB(1170,11),
1 QUEUEK10,1800) ,CALQ1(10,50) ,CUMTM(26,13) ,QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160), APCKTS (26), TDEL (26), SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC (26), BTLNCK(52), LSTBTL, CALQ2 (10,50)

COMMON/AREA5/FTRACE (26), RTRACE (26), FLGTH,RLGTH, SNAPON

C
C
C

C
c
c
c

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

**
* INITIALIZE THE TRACE VARIABLES. *
**

non

188

10 DO 84 1=1,160
TCHNLS(I)=0

84 CONTINUE
TCNT=1
IF (PASS.EQ. 2) GOTO 80
RLGTH=0
FLGTH=0
DO 85 1=1,160

ROUT(I)=0
85 CONTINUE

DO 86 1=1,26
FTRACE(I)=0
RTRACE(I)=0

86 CONTINUE
80 NODE=LNODE

DEST=KDEST
IDELAY=0
RATI0=1
IYESNO=0
CHNCNT=L INKTB (PKL INK (LNODE),DEST)
IF (CHNCNT.GT.0) IYESNO=3
IF (CLASS.EQ.2) RATIO=PARAM(4)

C

q ***
C * SCORE EACH FEASIBLE PATH *
0 **
C

T1=FSTPTH(LNODE,KDEST)
T2=LSTPTH(LNODE,KDEST)
XFACT=.15
DO 520 K=l,3

XFACT=XFACT-.05
DO 505 I=T1,T2

DO 220 J=l, 10
CHAN=P(I,J)
IF (CHAN.EQ.O) GOTO 300
UTIL=1.0*NLINES(CHAN)/PARM3(CHAN)
IF (UTIL.LE.XFACT) GOTO 505

220 CONTINUE
300 GOTO 525
505 CONTINUE
520 CONTINUE

IYESNO=l
I=T1

525 PTR=I
TCNT=1
DO 700 1=1,10

IF(P(PTR,I).EQ.O) GOTO 800

nonnnnnonnonnnnonnonon
189

TCHNLS(TCNT)=P(PTR, I)
TCNT=TCNT+1

700 CONTINUE

WRITE(6,2065)

800 CONTINUE
TCNT=TCNT-1

**

* WALK THE PATH SELECTED TO SEE IF IT IS AVAILABLE. IF SO, *
* TRANSFER THE PATH TO TCHNLS. IF NOT, BRANCH TO ALTERNATE *
* PATH GENERATOR. *
**

LIMIT=TCNT
IYESNO=0
DO 900 1=1,LIMIT

IDELAY=IDELAY+PARAM(6)
ROUT (TCHNLS (I)) =RATIO
IF (RATIO.LE.NLINES(TCHNLS(I))) GOTO 900
IF (AVLTST.EQ.O) BTLNCK(TCHNLS(I))=BTLNCK(TCHNLS(I))+l
IYESNO=l
GOTO 200

900 CONTINUE
200 IF (PASS.EQ.2) GOTO 500

DO 400 I=1,TCNT
FTRACE(I)=TCHNLS(I)

400 CONTINUE
FLGTH=TCNT
RETURN

500 DO 510 I=1,TCNT
RTRACE(I)=TCHNLS(I)

510 CONTINUE
RLGTH=TCNT
RETURN

2065 FORMAT (' TRANSFER ERROR')

END

onononnonoonnonnonnonnon
190

C **
C * THIS ROUTINE WILL IMPLEMENT THE STORE AND FORWARD ROUTING *
C * STRATEGY BY EITHER CALLING ROUTE AND USING ONLY A PART OF *
C * THE INFORMATION RETURNED OR BY CALLING THE APPROPRIATE *
C * SINGLE STEP ROUTINE. *
C **
C
C
C

SUBROUTINE SGLSTP(NODE,DEST, NXCHAN, NXNODE, AVAIL, CLASS, LSTNOD)

IMPLICIT INTEGER (A-S)

INTEGER ONESTP(IO)

REAL CNFINT,UTLSTP(10)

COMMON/AREA1/EVTBL (52,5), PKL INK (26), PARAM (17) , CHANTB (1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26), TDEL (26), SWITCH,
2 ZDBLK(26,2), PAKAVG,UAVG, PAKTHR, ZDAVG, ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26), BTLNCK(52), LSTBTL, CALQ2 (10,50)

COMMON/AREA4/DESTAB(52,52) ,DSTALT(52,52) ,ALTCH(160)

COMMON/AREA5/FTRACE(26), RTRACE (26), FLGTH,RLGTH, SNAPON

COMMON/AREA7/KONECT(52,52), ORPRMS (17),ORSDTB(52,4)

COMMON/AREAA/P(800,10) ,S(800) ,F(800) ,L(800) ,SELCNT(800) ,NMTRYS,

nnnnnnnonnonnon
FSTPTH (26,26), LSTPTH(26,26), RANDSD(52) , POWER, PTHCNT

191

A

IF (STPPRI.EQ.l) GOTO 800
100 IF (GLOBAL.EQ.O) GOTO 600

IYESNO=0
IDELAY=0
PASS=1
AVLTST=1
CALL ROUTE(NODE,DEST,IYESNO,IDELAY,CLASS,PASS)
NXCHAN=FTRACE(1)
NXNODE=NODCHL(NXCHAN)
AVAIL=1
IF (IYESNO.EQ.l) AVAIL=0
IF (IYESNO.EQ.2) AVAILO
RETURN

600 IF (SWITCH.EQ.l)
IF (SWITCH.EQ.2)
IF (SWITCH.EQ.3)
IF (SWITCH.EQ.4)
IF (SWITCH.EQ.5)
RETURN

CALL SSUTIL (NODE, DEST, NXCHAN, NXNODE,AVAIL, LSTNOD)
CALL SSPRBK(NODE, DEST, NXCHAN, NXNODE, AVAIL, LSTNOD)
CALL SSRAND(NODE,DEST,NXCHAN,NXNODE,AVAIL,LSTNOD)
CALL SSQCNT(NODE,DEST,NXCHAN,NXNODE,AVAIL, LSTNOD)
CALL SSLIMT(NODE, DEST, NXCHAN, NXNODE,AVAIL, LSTNOD)

800 FSTNOD=NODE
LSTNOD=DEST
INTNOD=DEST
AVLTST=1
IYESNO=0
IDELAY=0
PASS=1
CALL ROUTE(FSTNOD,INTNOD,IYESNO,IDELAY,CLASS,PASS)
IF (IYESNO.EQ.O) GOTO 840
IF (IYESNO.EQ.3) GOTO 840
LIMT=FLGTH-1
DO 810 1=1,LIMT

IF (NLINES(FTRACE(I)).LT.PARAM(4)) GOTO 812
810 CONTINUE

GOTO 840

812 INTNOD=SORCHL(FTRACE(I))

840 NXCHAN=FTRACE(1)

non

192

NXNODE=INTNOD
AVAIL=1
IF (NODE.EQ.NXNODE) AVAIL=0
RETURN

END

nononnonnnoonnonnonnonnon
193

C **
C * THIS ROUTINE APPLIES THE UTILIZATION (WEIGHTED) ROUTING *
C * STRATEGY TO FINDING THE NEXT STEP IN THE PATH FROM NODE *
C * TO DEST. *
Q **
c
c
c

SUBROUTINE SSUTIL (NODE,DEST, NXCHAN, NXNODE,AVAIL, LSTNOD)

IMPLICIT INTEGER (A-S)

INTEGER ONESTP(IO)

REAL CNFINT,UTLSTP(10)

COMMON/AREA1/EVTBL (52,5), PKLINK(26), PARAM(17) fCHANTB(1170,11),
1 QUEUE1 (10,1800), CALQ1 (10,50), CUMTM<26,13) , QCNT(52) ,
1 CALLS(26,3), LINKTB(52,52), SEEDTB(52,4) ,NLINES(160),
1 SORCHL (160), NODCHL (160), CUMLOD (26,26), CSARV (26,3),
1 NODLOD(26,3), DSTLOD(26,26),DSTCNT(26,26), CSLINK(52)

COMMON/AREA2/CUMCNT(26,26), ROUT(160), APCKTS(26), TDEL (26), SWITCH,
2 ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
2 THRUTL(160,2), PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND, GLOBAL, STPPRI, AVLTST, RESTRT, NUSWCH, NUPOWR,
2 NUSTFD, NUGLOB, NUSTPP,WCFCNU,WPFCNU, QUEUE2 (10,1800)

COMMON/AREA3/ACKPAC (26), BTLNCK(52), LSTBTL, CALQ2 (10,50)

COMMON/AREA4/DESTAB (52,52), DSTALT (52,52),ALTCH (160)

COMMON/AREA7/KONECT (52,52), ORPRMS (17), ORSDTB (52,4)

COMMON/AREAA/P(800,10) ,S(800) ,F(800), L(800) ,SELCNT(800) ,NMTRYS,
k FSTPTH (26,26), LSTPTH (26,26), RANDSD (52), POWER, PTHCNT

noonnonnon

194

N0DES=PARAM(l)/2
CSNODE=PKLINK(NODE)
CNT=0
DO 100 1=1,NODES

IF (KONECT(CSNODE,I).LE.0) GOTO 100
IF (I.EQ.LSTNOD) GOTO 100
CNT=CNT+1

ONESTP(CNT)=I
100 CONTINUE

IF (CNT.GT.0) GOTO 200
150 WRITE(6,1000)

SSFLAG=0
CNFINT=.01
CALL SSANAL(SSFLAG,CNFINT)
PARAM(10)=PARAM(9)
PARAM(9)=0
CALL SSTDMP
CALL STATX
CALL STATS
STOP

200 DO 250 1=1,CNT
CHAN=KONECT(CSNODE,ONESTP(I))
P3=PARM3(CHAN)
NL=NLINES(CHAN)
UTLSTP(I)=1.0*(P3-NL-PARAM(4))/P3

250 CONTINUE
UTLBST=100
BSTPTR=0
DO 275 1=1,CNT

IF (UTLSTP(I).GE.UTLBST) GOTO 275
UTLBST=UTLSTP(I)
BSTPTR=I

275 CONTINUE
IF (BSTPTR.EQ.O) GOTO 150

NXNODE=ONESTP(BSTPTR)
AVAIL=1
NXCHAN=KONECT (NODE, NXNODE)
IF (PARAM(4).GT.NLINES(NXCHAN)) AVAIL=0
RETURN

1000 FORMAT (///,’ DEAD END - ROUTING ERROR ')

END

nonoooonooonnnnnnn
195

C **
C * THIS ROUTINE WILL DETERMINE THE NEXT STEP TO BE TAKEN IN *
C * THE ROUTE BETWEEN NODE AND DEST. *
C **
C
C
C

SUBROUTINE SSPRBK(NODE,DEST,NXCHANrNXNODEfAVAIL,LSTNOD)

IMPLICIT INTEGER (A-S)

COMMON/AREA1/EVTBL(52,5)f PKLINK(26),PARAM(17)r CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26),TDEL(26),SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA4/DESTAB(52,52),DSTALT(52,52),ALTCH(160)

CSNODE=PKLINK(NODE)
NXCHAN=DESTAB(CSNODE,DEST)
NXNODE=NODCHL(NXCHAN)
LINLFT=NLINES(NXCHAN)-PARAM(4)
NXNODE=CSLINK(NXNODE)
IF (LINLFT.LT.0) GOTO 100
AVAIL=1
RETURN

100 NXCHAN=DSTALT(CSNODE,DEST)
NXNODE=NODCHL(NXCHAN)
NXNODECSLINK(NXNODE)
LINLFT=NLINES(NXCHAN)-PARAM(4)
IF (LINLFT.LT.O) GOTO 200

non

196

AVAIL=1

RETURN

200 AVAIL=0
RETURN
END

tototo

197

C
C

c

c

c
c
c

c
c
c

c
c

c

c

c
c

c
c
c

c

c

c

c

c
c

c

c
c

ft**'**'*********'

* THIS ROUTINE WILL DETERMINE THE NEXT STEP TO BE TAKEN IN *
* THE ROUTE BETWEEN NODE AND DEST. *
**

SUBROUTINE SSRAND(NODE f DEST,NXCHAN,NXNODE,AVAIL,LSTNOD)

IMPLICIT INTEGER (A-S)

INTEGER ONESTP(IO)

REAL CNFINT

COMMON/AREA1/EVTBL (52,5), PKL INK(26) , PARAM(17) r CHANTB(1170,11) ,
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26),TDEL(26),SWITCH,
ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,

2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC (26), BTLNCK (52), LSTBTL, CALQ2 (10,50)

COMMON/AREA4/DESTAB (52,52), DSTALT (52,52), ALTCH (160)

COMMON/AREA7 /KONECT (52,52), ORPRMS (17) , ORSDTB (52,4)

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
L FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

C
C
C

TRYS=NMTRYS
NODES=PARAM(l)/2

noonnonnonnon
198

CSNODE=PKLINK(NODE)
CNT=0
DO 100 1=1rNODES

IF (KONECT(CSNODE,I).LE.0) GOTO 100
CNT=CNT+1

ONESTP(CNT)=I
100 CONTINUE
10 IF (CNT.GT.0) GOTO 200

WRITE(6,1000)
SSFLAG=0
CNFINT=.01
CALL SSANAL(SSFLAG,CNFINT)
PARAM(10)=PARAM(9)
PARAM(9)=0
CALL SSTDMP
CALL STATX
CALL STATS
STOP

200 IX=RANDSD(NODE)
CALL RANDOM(IX, IY,RN)
RANDSD(NODE)=IY
NEXDEX=(RN*CNT)+1

AVAIL=1

NXNODE=ONESTP(NEXDEX)
NXCHAN=KONECT(NODE,NXNODE)
IF (PARAM(4).GT.NLINES(NXCHAN)) AVAIL=0

IF (AVAIL.EQ.l) RETURN
TRYS=TRYS-1
IF (TRYS.LE.O) RETURN
NEXDEX=NEXDEX+1
IF (NEXDEX.GT.CNT) GOTO 400
DO 300 I=NEXDEX, CNT

ONESTP(I-1)=ONESTP(I)
300 CONTINUE
400 CNT=CNT-1

GOTO 10

1000 FORMAT (///,' DEAD END - ROUTING ERROR ')

END

tM
CM
CM

199

c
C
C
C
C
C
C

C
C
C

C
C
c

c

c
c

c
c
c

c

c

c
c

c
c

c
c

c
c

**

* THIS ROUTINE WILL DETERMINE THE NEXT STEP TO BE TAKEN IN *
* THE ROUTE BETWEEN NODE AND DEST. *

SUBROUTINE SSQCNT(NODE,DEST, NXCHAN,NXNODE,AVAIL r LSTNOD)

IMPLICIT INTEGER (A-S)

INTEGER ONESTP(IO)

REAL CNFINT,UTLSTP(10)

COMMON/AREA1 /EVTBL (52,5) r PKL INK (26) , PARAM (17), CHANTB (1170,11),
1 QUEUEK10,1800) ,CALQ1(10,50) ,CUMTM(26,13) ,QCNT(52) ,
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160) ,
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26) , ROUT(160),APCKTS(26), TDEL (26), SWITCH,
ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND, GLOBAL, STPPRI, AVLTST, RESTRT, NUSWCH, NUPOWR,

2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC (26), BTLNCK(52), LSTBTL, CALQ2 (10,50)

COMMON/AREA4/DESTAB (52,52), DSTALT (52,52), ALTCH (160)

COMMON/AREA7/KONECT (52,52), ORPRMS (17), ORSDTB (52,4)

COMMON/AREAA/P (800,10), S (800), F (800) , L (800), SELCNT(800) ,NMTRYS,
k FSTPTH(26,26), LSTPTH(26,26),RANDSD(52) , POWER, PTHCNT

C
c

c

NODES=PARAM(l)/2

200

CSNODE=PKLINK(NODE)
CNT=0
DO 100 1=1,NODES

IF (KONECT(CSNODE, I).LE.0) GOTO 100
IF (I.EQ.LSTNOD) GOTO 100
CNT=CNT+1

ONESTP(CNT)=I
100 CONTINUE

IF (CNT.GT.O) GOTO 200
150 WRITE(6,1000)

SSFLAG=0
CNFINT=.01
CALL SSANAL(SSFLAG,CNFINT)
PARAM(10)=PARAM(9)
PARAM(9)=0
CALL SSTDMP
CALL STATX
CALL STATS
STOP

C
C
C

200 BSTPTR=0
LOQCNT=10000
DO 250 1=1,CNT

CURNOD=ONESTP(I)
IF (QCNT(CURNOD).GT.LOQCNT) GOTO 250
LOQCNT=QCNT(CURNOD)
BSTPTR=I

250 CONTINUE
IF (BSTPTR.EQ.O) GOTO 150

C
C
C

AVAIL=1
NXNODE=ONESTP(BSTPTR)
NXCHAN=KONECT (CSNODE, NXNODE)
IF (PARAM(4).GT.NLINES(NXCHAN)) AVAIL=0
RETURN

C
C
C
1000 FORMAT (///,' DEAD END - ROUTING ERROR ')

C
C
C

END

fOIN)MN)

201

C
C
C
C
C
C
c

c
c
c

c
c
c

c
c
c

c
c
c

c
c

c
c

c
c

c
c

c
c

Hr***

* THIS ROUTINE WILL DETERMINE THE NEXT STEP TO BE TAKEN IN *
* THE ROUTE BETWEEN NODE AND DEST. *

SUBROUTINE SSLIMT(NODE,DEST,NXCHAN,NXNODE,AVAIL,LSTNOD)

IMPLICIT INTEGER (A-S)

INTEGER ONESTP(IO)

REAL CNFINT,UTLSTP(10)

COMMON/AREA1/EVTBL(52,5),PKLINK(26),PARAM(17)#CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26) ,ROUT(160),APCKTS(26) ,TDEL(26),SWITCH,
ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA4 /DESTAB (52,52), DSTALT (52,52), ALTCH (160)

COMMON/AREA7 /KONECT (52,52), ORPRMS (17) , ORSDTB (52,4)

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

C
C
C

NODES=PARAM(l)/2

202

CSNODE=PKL INK (NODE)
CNT=0
DO 100 1=1,NODES

IF (KONECT(CSNODE,I).LE.0) GOTO 100
IF (I.EQ.LSTNOD) GOTO 100
CNT=CNT+1

ONESTP(CNT)=I
100 CONTINUE

IF (CNT.GT.O) GOTO 200
150 WRITE(6,1000)

SSFLAG=0
CNFINT=.01
CALL SSANAL(SSFLAG,CNFINT)
PARAM(10)=PARAM(9)
PARAM(9)=0
CALL SSTDMP
CALL STATX
CALL STATS
STOP

C
C
C

200 DO 250 1=1,CNT
CHAN=KONECT(CSNODE,ONESTP(I))
P3=PARM3(CHAN)
NL=NLINES(CHAN)
UTLSTP(I)=1.0*(P3-NL-PARAM(4))/P3

250 CONTINUE
XFACT=.15
DO 290 K=l,3

XFACT=XFACT-.05
UTLBST=100
BSTPTR=0
DO 275 1=1,CNT

IF (UTLSTP(I).LE.XFACT) GOTO 275
IF (UTLSTP(I).GE.UTLBST) GOTO 275
UTLBST=UTLSTP(I)
BSTPTR=I

275 CONTINUE
IF (BSTPTR.NE.O) GOTO 295

290 CONTINUE
GOTO 150

C
C
C

295 NXNODE=ONESTP(BSTPTR)
AVAIL=1
NXCHAN=KONECT (NODE, NXNODE)
IF (PARAM(4).GT.NLINES(NXCHAN)) AVAIL=0
RETURN

C
C

non

203

C
1000 FORMAT (///,' DEAD END - ROUTING ERROR ')

END

N)toto

204

C ***
C * THIS ROUTINE WILL UPDATE THE ROUTE TABLE REFLECT THE PATH
C * TAKEN BY A PACKET OR CIRCUIT.
C ***
C
C
C

SUBROUTINE UPROUT(NODE,DEST,FQADDR,RQADDR,CLASS)
C
C
C

IMPLICIT INTEGER (A-S)
C
C
C

REAL CNFINT

C
C
c

COMMON/AREA1/EVTBL(52,5),PKLINK(26),PARAM(17),CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

C
C

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26), TDEL(26),SWITCH,
2 ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,

THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

C

C

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)
C
C

COMMON/AREA5/FTRACE(26),RTRACE(26),FLGTH,RLGTH,SNAPON
C
C

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

C
C
C
£ **
C * FIND THE PATH IN ARRAY P WHICH MATCHES THE SELECTED ROUTE *
£ **
C

IBOT=FSTPTH(NODE,DEST)
ITOP=LSTPTH(NODE,DEST)
NUMNOD=PARAM(1)/2
KNODE-NODE-NUMNOD

nonnonnnon
205

KDEST=DEST-NUMNOD

DO 100 PTHPTR=IBOT,ITOP
SIZERS(PTHPTR)
IF (FLGTH.NE.SIZE) GOTO 100
DO 50 C0LUMN=1,SIZE

IF (P(PTHPTR,COLUMN).NE.FTRACE(COLUMN)) GOTO 100
50 CONTINUE

GOTO 200
100 CONTINUE

CALL ERRMSG(15)

200 IF (CLASS.EQ.2) QUEUE2(NODE,FQADDR+4)=PTHPTR
IF (CLASS.EQ.l) CALQ2(KNODE,FQADDR)=PTHPTR
SELCNT(PTHPTR)=SELCNT(PTHPTR)+1
IF (CLASS.EQ.2) RETURN

IBOT=FSTPTH(DEST,NODE)
ITOP=LSTPTH(DEST , NODE)

DO 300 PTHPTR=IBOT,ITOP
SIZE=S(PTHPTR)
IF (RLGTH.NE.SIZE) GOTO 300
DO 250 COLUMN=l,SIZE

IF (P(PTHPTR,COLUMN).NE.RTRACE(COLUMN)) GOTO 300
250 CONTINUE

CALQ2(KDEST,RQADDR)=PTHPTR
SELCNT(PTHPTR)=SELCNT(PTHPTR)+1
RETURN

300 CONTINUE
CALL ERRMSG(16)
STOP

END

cm
cm
cm

206

C *******’********************★**********★**************★********
C * THIS ROUTINE IS THE DRIVER FOR DATA/VOICE TRANSACTION *
C * TERMINATIONS. IT FINDS THE CHANNEL ENTRY TO START THE *
C * REMOVAL PROCESS. IT THEN CALLS REMOVE TO ACTUALLY PURGE *
C * TABLE ENTRIES. TRAFFIC LOAD STATISTICS ARE THEN *
C * UPDATED BY THIS MODULE. *
C ***
C
C
C

SUBROUTINE DEPART (LNODE, CLASS)
C
C
C

IMPLICIT INTEGER (A-T)
DIMENSION INDEX(2)

C
C
C

COMMON/AREA1/EVTBL (52,5), PKLINK(26) , PARAM(17) , CHANTB(1170,11) ,
1 QUEUEM10,1800) ,CALQ1(10,50) f CUMTM(26f 13) ,QCNT(52),
1 CALLS(26, 3), LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

C
C

COMMON/AREA2/CUMCNT (26,26), ROUT (160), APCKTS (26), TDEL (26), SWITCH,
ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,

2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)
C
C

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)
C
C

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

C
C
C

NODE=LNODE
DEST=EVTBL(NODE,4)

70 QADDR=0
CHPTR=0
PASS=1

C

q **
C * GO FIND STARTING POINT FOR REMOVAL OF THIS TRANSACTION. *
Q **
C

CALL GETQ(NODE,DEST,CLASS,QADDR,CHPTR,PASS)

non

207

C
C
C
C
C

C
C
C
C
C

C
c
c
c
c
c
c

c
c
c
c
c

IF (QADDR.EQ.O) GOTO 200
INDEX(1)=QADDR
IF (CLASS.EQ.2) GOTO 71
PASS=2
CALL GETQ(DEST,NODE,CLASS,QADDR,CHPTR,PASS)
IF (QADDR.EQ.O) GOTO 200
INDEX(2)=QADDR

**

* REMOVE FORWARD HALF OF CONNECTION AND THEN REVERSE HALF *
**

71 PASS=1
CALL REMOVE(NODE,DEST,CLASS,PASS,INDEX(1))
IF (CLASS.EQ.2) GOTO 72
PASS=2
CALL REMOVE(DEST,NODE,CLASS,PASS,INDEX(2>)

**

* BRANCH TO PROPER HANDLER BASED ON CLASS OF TRANSACTION. *
**

IF (CLASS.EQ.l) GOTO 20

**

* IF IN STORE AND FORWARD MODE FOR PACKETS, CREATE A QUEUE *
* ENTRY AT THE INTERMEDIATE DESTINATION FOR FORWARDING THE *
* PACKETS AND UPDATE STATISTICS ACCORDINGLY. *
**

72 IF (STOFWD.EQ.0) GOTO 25

**
* FIND A FREE QUEUE ENTRY FOR THE STEP. *
**

ITOP=PARAM(13)
DO 90 1=1,ITOP,6

INDEX(2)=I
IF (QUEUE1(DEST,I).EQ.O) GOTO 95

90 CONTINUE
CALL ERRMSG(13)

95 I1=INDEX(1)
I2=INDEX(2)
NOTTHR=0

LAST=QUEUE2(NODE,I1+1)
IF (DEST.EQ.LAST) GOTO 25
NOTTHR=l

QCNT(DEST)=QCNT(DEST)+1

non

208

LAPSE=QUEUE2(NODE,11+5)-QUEUE1(NODE,11+1)
C

QUEUE1(DEST,I2)=1
QUEUE1(DEST,12+1)=QUEUE2(NODE,11+5)
QUEUE1(DEST,12+2)=QUEUE2(NODE,11+5)+LAPSE
QUEUE1(DEST,12+3)=QUEUE1(NODE,11+3)
QUEUE1(DEST,12+4)=0
QUEUE1(DEST,12+5)=QUEUE2(NODE,11+5)

C

QUEUE2(DEST,I2)=QUEUE2(NODE, II)
QUEUE2(DEST,12+1)=QUEUE2(NODE,11+1)
QUEUE2(DEST,12+2)=QUEUE2(NODE,11+2)
QUEUE2(DEST,12+3)=QUEUE2(NODE,11+3)
QUEUE2(DEST,12+4)=QUEUE2(NODE,11+4)
QUEUE2(DEST,12+5)=0

C

NODLOD(DEST,1)=NODLOD(DEST,1)+QUEUE1(NODE ,11+3)
NODLOD(DEST,2)=NODLOD(DEST,2)+QUEUE1(NODE,11+3)
NODLOD(DEST,3)=NODLOD(DEST,3)+QUEUE1(NODE,11+5)

C

FINDST=QUEUE2(NODE,11+1)
LSTNOD=NODE
CALL SGLSTP(DEST,FINDST,ICHAN,INDEST,AVAIL,CLASS,LSTNOD)
QUEUE1(DEST,I2+4)=INDEST

C

DSTCNT(DEST,INDEST)=DSTCNT(DEST,INDEST)+QUEUE1(NODE,11+5)
DSTLOD(DEST,INDEST)=DSTLOD(DEST,INDEST)+QUEUE1(NODE,11+3)
CUMLOD(DEST,INDEST)=CUMLOD(DEST,INDEST)+QUEUEl(NODE,11+3)
CUMCNT(DEST,INDEST)=CUMCNT(DEST,INDEST)+QUEUE1(NODE,11+5)

CALL NUEVNT(DEST,CLASS)
C
q **
C * UPDATE THE PACKET NODE STATISTICS AND THEN PURGE THE *
C * DATA QUEUE OF THE FORWARD LINK. IF STORE AND FORWARD *
C * MODE IS ON THEN THIS LINK WILL BE THE LAST STEP TAKEN *
C * AND THE NEXT STEP WILL REMAIN INTACT. *
Q **
c

25 QCNT(NODE)-QCNT(NODE)-1
K=INDEX(1)
IF (DSTLOD(NODE,DEST)-QUEUEl(NODE,(K+3)).LT.O) GOTO 29
DSTLOD (NODE,DEST)=DSTLOD(NODE,DEST)-QUEUE1(NODE,(K+3))
DSTCNT (NODE,DEST)=DSTCNT(NODE,DEST)-QUEUEl(NODE,(K+5))
NODLOD (NODE,1)=NODLOD(NODE,1)-QUEUE1(NODE,(K+3))

29 ITOP=K+5
DO 40 M=K,ITOP

QUEUE1(NODE,M)=0
QUEUE2(NODE,M)=0

40 CONTINUE

nonnonnonnnnnnnnnnnn
35 PARAM(9)=EVTBL(LNODE,1)

209

80 RETURN

20 KN0DE=CSLINK(NODE)
KDEST=DEST-(PARAM(l)/2)

a***

* REMOVE CIRCUIT SWITCH TRANSACTION FROM CALQ TABLES. *
**

CALQ1(KNODE r(INDEX(1)))=0
CALQ1(KNODE, (INDEX(l)))=0
CALQ1(KDEST,(INDEX(2)))=0
CALQ1(KDEST,(INDEX(2)))=0
KNODE=CALQl(KDEST,(INDEX(2)+3))-(PARAM(1)/2)
CALLS(KNODE,3)=CALLS(KNODE , 3) -1
CALL NUEVNT(DEST,CLASS)
GOTO 35

50 K=EVTBL(LNODE,5)
ITOP=K+5
DO 60 M=K,ITOP

QUEUE1CLNODE,M)=0
QUEUE2CLNODE,M)=0

60 CONTINUE
CALL ERRMSGC9)
GOTO 80

200 KNODE=CSLINK(NODE)
IF (CLASS.EQ.2) GOTO 50
CALQ1(KNODE,EVTBL(NODE,5))=0
CALQ1(KNODE f EVTBL(NODE,5))=0
CALL ERRMSG(8)
RETURN

END

nonnonnnnonononnon
210

C ***
C * THIS ROUTINE RIPPLES THROUGH ALL CHANNEL ENTRIES, *
C * ZEROING OUT ENTRIES PERTAINING TO THIS ROUTE. *

c
c
c

SUBROUTINE REMOVE (LNODE, KDEST, CLASS, PASS, QADDR)

IMPLICIT INTEGER (A-T)

COMMON/AREA1/EVTBL (52,5), PKLINK (26), PARAM(17), CHANTB (1170,11),
1 QUEUE1(10,1800) ,CALQ1(10,50) ,CUMTM(26,13) ,QCNT(52) ,
1 CALLS (26,3), LINKTB (52,52), SEEDTB(52, 4),NLINES(160),
1 SORCHL (160), NODCHL (160), CUMLOD (26,26), CSARV (26,3),
1 NODLOD(26,3),DSTLOD(26,26), DSTCNT(26,26), CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26), TDEL (26), SWITCH,
2 ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK,RSFLAG,
2 THRUTL (160,2), PARM3 (160), JARM3 (160), STOFWD, EVTX(6) ,
2 BOUND,GLOBAL, STPPRI,AVLTST,RESTRT, NUSWCH, NUPOWR,
2 NUSTFD, NUGLOB, NUSTPP,WCFCNU,WPFCNU, QUEUE2 (10,1800)

COMMON/AREA3/ACKPAC (26), BTLNCK (52) , LSTBTL, CALQ2 (10, 50)

COMMON/AREAA/P(800,10),S(800),F(800) , L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26), LSTPTH (26,26), RANDSD(52) , POWER, PTHCNT

JNODE=PKLINK(NODE)
LINKTB(JNODE,KDEST)=LINKTB(JNODE,KDEST)-1

NODE=LNODE
DEST=KDEST
IF (CLASS.EQ.l) KNODECSL INK (NODE)
ILIM=1
IF (CLASS.EQ.2) ILIM=PARAM(4)

INDEXQ=QADDR
IF (CLASS.EQ.l) PTHPTRS=CALQ2(KNODE, INDEXQ)
IF (CLASS.EQ.2) PTHPTR=QUEUE2(NODE,INDEXQ+4)
SIZE=S(PTHPTR)+1

non

211

COLUMN=0
C

10 SIZE=SIZE-1
IF (SIZE.EQ.O) GOTO 50
COLUMN=COLUMN+l

ICHAN=P(PTHPTR,COLUMN)
C

IF (ICHAN.EQ.O) CALL ERRMSG(14)
C
C ** ******
C * LOOP THROUGH THIS SEQUENCE FOR EACH CHANNEL IN THE ROUTE. *
C **
C

JCHNL=JARM3(ICHAN)-PARM3(ICHAN)+1
ITOP=JARM3(ICHAN)
I=JCHNL-1
IF (PASS.EQ.l) TIME=EVTBL(NODEf1)
IF (PASS.EQ.2) TIME=EVTBL(DEST,1)

C
C
C
C
c

c
c
c
c
c

DO 15 J=l,ILIM
JCHNL=I+1
DO 20 I=JCHNL,ITOP

**
* CHECK FOR MATCH BY SOURCE, DEST, AND TIME. *
**

IF (CHANTB(I,7).NE.NODE) GOTO 20
IF (CHANTB(I,1).NE.DEST) GOTO 20
IF (CHANTB(1,3).NE.TIME) GOTO 20

**
* HAVING FOUND CHANNEL MATCH, PURGE CHANNEL ENTRIES. *
**

60 IF (CLASS.EQ.l) DIF=CHANTB(I,3)-CHANTB(I,2)
BEGIN=QUEUE1(NODE,INDEXQ+1)
IF (CLASS.EQ.2) DIF=QUEUE2(NODE,INDEXQ+5)-BEGIN
MAX=PARAM(9)-PARAM(17)
CHANTB(1,6)=CHANTB(I,6)+DIF
IF (DIF.LE.MAX) GOTO 61
CHANTB(1,6)=CHANTB(1,6)-DIF+MAX

61 CONTINUE
CHANTB(I,1)=0
CHANTB(I,2)=0
CHANTB(I,3)=0
CHANTB(I,4)=0
CHANTB(I,5)=0
CHANTB(I,7)=0
NLINES(ICHAN)=NLINES(ICHAN)+1

non

212

GOTO 70
20 CONTINUE

ERRTYP=1

CALL ERRMSG(ERRTYP)
70 IF (CLASS.EQ.l) CHANTB(I,11)=CHANTB(I,11)+1

IF (CLASS.EQ.l) GOTO 15
PTR=CHANTB(I,8)
CHANTB(If 9)=CHANTB(1,9)+QUEUE1(NODE,(PTR+5))
CHANTB(1,10)=CHANTB(1,10)+QUEUE1(NODE,(PTR+3))

15 CONTINUE
30 GOTO 10

50 RETURN
END

NJfOtOtO

213

C **
C * THIS PROCEDURE WILL PRINT ERROR MESSAGES FOR SELECTED *
C * ERROR CONDITIONS THAT COULD OCCUR IN THE SIMULATION. *
C **
C
C
C

SUBROUTINE ERRMSG (ERRTYP)
C
C
C

IMPLICIT INTEGER (A-S)
C
C
C

REAL CNFINT
C
C
C

COMMON/AREA1/EVTBL (52,5), PKLINK(26), PARAM(17),CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

C
C

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26),TDEL(26),SWITCH,
ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

C
C

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)
C
C
c

IF (ERRTYP.EQ.3) WRITE(6,1003)
IF (ERRTYP.EQ.5) WRITE(6,1005)
IF (ERRTYP.EQ.6) WRITE(6,1006)
IF (ERRTYP.EQ.8) WRITE(6,1008)
IF (ERRTYP.EQ.9) WRITE(6,1009)
IF (ERRTYP.EQ.10) WRITE(6,1010)
IF (ERRTYP.EQ.il) WRITE(6,1011)
IF (ERRTYP.EQ.12) WRITE(6,1012)
IF (ERRTYP.EQ.13) WRITE(6,1013)
IF (ERRTYP.EQ.14) WRITE(6,1014)
IF (ERRTYP.EQ.15) WRITE(6,1015)
IF (ERRTYP.EQ.16) WRITE(6,1016)
IF (ERRTYP.EQ.20) WRITE(6,1020)
IF (ERRTYP.EQ.21) WRITE(6,1021)
SSFLAG=0

nonnon
214

CNFINT=.01
CALL SSANAL(SSFLAG,CNFINT)
PARAM(10)=PARAM(9)
PARAM(9)=0
CALL SSTDMP
CALL STATX
CALL STATS
STOP

1003 FORMAT C
1005 FORMAT C
1006 FORMAT C
1008 FORMAT (’
1009 FORMAT (’
1010 FORMAT C
1011 FORMAT c
1012 FORMAT c
1013 FORMAT c
1014 FORMAT c
1015 FORMAT c
1016 FORMAT (’
1020 FORMAT c
1021 FORMAT c

COULD NOT FIND NODE IN CHANTB - GETQ')
CALQ2 QUEUE IS FULL - ARRIVE')
CALQ2 QUEUE IS FULL - ARRIVE')
COULD NOT FIND CS ENTRY IN CHANTB - DEPART’)
COULD NOT FIND PS ENTRY IN CHANTB - DEPART')
PASS = 2 FOR A PS ENTRY - UPDATE')
PTHPTR OR COLUMN WRONG - POINTS TO 0 CHANNEL - UPDATE')
NO CAPACITY TO ALLOCATE - UPDATE')
QUEUE FULL - DEPART')
PTHPTR OR COLUMN WRONG - POINTS TO 0 CHANNEL - REMOVE’)
COULD NOT FIND FORWARD PATH IN P TABLE - UPROUT')
COULD NOT FIND REVERSE.PATH IN P TABLE - UPROUT')
QUEUE FULL - NEWMSG')
CHANTB FULL - UPDATE')

END

N>tOtOtO

215

C **
C * THIS ROUTINE IS RESPONSIBLE FOR ARRIVAL OF A DATA/VOICE *
C * TRANSACTION AT THIS NODE. IT IS THE DRIVER-WITH *
C * RESPONSIBILITY FOR GETTING A ROUTE, UPDATING CHANNEL *
C * TABLES AND GENERATING PACKET DELAY INFORMATION. *
q **********A*****************-**********************************
C
C
C

SUBROUTINE ARRIVE(LNODE,CLASS)
C
C
C

IMPLICIT INTEGER (A-S)
DIMENSION LDELAY(12)

C
C
C

COMMON/AREA1/EVTBL (52,5), PKLINK(26) , PARAM(17), CHANTB(1170,11) ,
1 QUEUE1(10,1800) , CALQ1(10, 50) ,CUMTM(26,13) ,QCNT(52) ,
1 CALLS(26,3),LINKTB(52,52) , SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 N0DLQD(26,3) ,DSTLOD(26,26) ,DSTCNT(26,26) ,CSLINK(52)

C
C

COMMON/AREA2/CUMCNT (26,26), ROUT (160), APCKTS (26), TDEL (26), SWITCH,
ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
THRUTL(160,2), PARM3(160), JARM3(160), STOFWD, EVTX(6) ,
BOUND,GLOBAL, STPPRI, AVLTST,RESTRT, NUSWCH, NUPOWR,
NUSTFD, NUGLOB, NUSTPP,WCFCNU,WPFCNU, QUEUE2 (10,1800)

C
C

COMMON/AREA3/ACKPAC(26) , BTLNCK(52), LSTBTL, CALQ2 (10,50)
C
C

COMMON/AREA4 /DESTAB (52,52), DSTALT (52,52),ALTCH(160)
C
C
C

DATA LDELAY/101,201,301,401,501,601,701,801,901,1001,2001,5001/
C
C
C

FDELAY=0
RDELAY=0
NPCKTS=0
IDELAY=0
FLAG=1
NODE=LNODE
IF (EVTBL(NODE, 1) ,GT.PARAM(9)) PARAM(9)=EVTBL(NODE, 1)
STIME=PARAM(9)
INDEXQ=EVTBL(NODE,5)

nno

216

DEST=EVTBL(NODE,4)
IF (CLASS.EQ.l) GOTO 45
FSTARV=1
LSTARV=1
IF (STOFWD.EQ.O) GOTO 45
LSTNOD=0
CALL SGLSTP(NODE,DESTfNXCHAN,NXNODE ,AVAIL fCLASS,LSTNOD)
DEST=NXNODE

EVTBL(NODE f 4)=DEST
QUEUE1(NODE,INDEXQ+4)=DEST
IF (NODE.NE.QUEUE2(NODE,INDEXQ)) FSTARV=0
IF (DEST.NE.QUEUE2(NODE,INDEXQ+1)) LSTARV=0

C
C
C
C
C

C
C
C
C
C
C
C
C
C

C
C
C
c
c

45 IYESNO=0
PASS=1
AVLTST=0
CALL ROUTE(NODE,DEST,IYESNO,IDELAY,CLASS,PASS)
FDELAY=IDELAY

**

* BRANCH IF CS TRANSACTION *
c

IF (CLASS.EQ.l) GOTO 30

**
* BRANCH TO PROPER CASE HANDLER BASED ON VALUE OF IYESNO *
* O-NO EXISTING ROUTE, PATH AVAILABLE *
* 1-EXISTING ROUTE AVAILABLE, NO PATH *
* 2-NO EXISTING ROUTE AVAILABLE, NO PATH *
* 3-EXISTING PATH AVAILABLE, PATH AVAILABLE *
**

IF (IYESNO.EQ.2) GOTO 10
IF (IYESNO.EQ.3) GOTO 20
IF (IYESNO.EQ.O) GOTO 20
IF (IYESNO.EQ.l) GOTO 10

**
* NOW ADD DELAY TO CUMULATIVE TIME TABLE. *
**

75 QDELAY=STIME-EVTBL(NODE,1)
QUEUE2(NODE,INDEXQ+2)=QUEUE2(NODE,INDEXQ+2)+FDELAY+QDELAY
IF (FSTARV.NE.l) GOTO 79
QUEUE2(NODE,INDEXQ+2)=FDELAY

79 IF (LSTARV.NE.l) GOTO 71
FDELAY=QUEUE2(NODE,INDEXQ+2)
ORGSRC=QUEUE2 (NODE, INDEXQ)
APCKTS(ORGSRC)=APCKTS(ORGSRC)+NPCKTS

nonnnonon
217

TDEL(ORGSRC)=TDEL(ORGSRC)+1.*FDELAY*NPCKTS/1000.
DO 70 1=1,12

IF (FDELAY.GT.LDELAY(I)) GOTO 70
CUMTM(ORGSRC,I)=CUMTM(ORGSRC,I)+NPCKTS
GOTO 71

70 CONTINUE

CUMTM(ORGSRC,13)=CUMTM(ORGSRC,13)+NPCKTS

71 IF ((STOFWD.EQ.0).OR.(STPPRI.EQ.1)) GOTO 72
DEST=PKLINK(DEST)
NODE=PKLINK(NODE)
ICHAN=DESTAB(DEST,NODE)
IF (NLINES(ICHAN).NE.PARM3(ICHAN)) GOTO 180
ICHAN=DSTALT(DEST,NODE)
IF (NLINES(ICHAN).NE.PARM3(ICHAN)) GOTO 180
ACKPAC(ICHAN)=ACKPAC(ICHAN)+1
GOTO 180

72 IF (LINKTB(DEST,NODE).GT.O) GOTO 180
DEST=PKLINK(DEST)
NODE=PKLINK(NODE)

73 ICHAN=DESTAB(DEST,NODE)
IF (ICHAN.LE.O) GOTO 180
IF (NLINES(ICHAN).EQ.PARM3(ICHAN)) ACKPAC(ICHAN)=ACKPAC(ICHAN)+1
DEST=NODCHL(ICHAN)
IF (DEST.EQ.NODE) GOTO 180
GOTO 73

180 RETURN
C
£ **
C * NO PATH IS AVAILABLE (IYESNO = 1 OR 2). *
£ **
c

10 INDEXQ=EVTBL(NODE,5)
QUEUE1(NODE,INDEXQ)=QUEUE1(NODE,INDEXQ)+1
GOTO 180

C
£ **
C * A HALF DUPLEX CONNECTION IS AVAILABLE FOR THE PS PATH *
C * THEREFORE PROCEED TO BUILD A NEW PS PATH. *
£ **
c

20 IF (EVTBL(NODE,1).GE.STIME) GOTO 25
IDELAY=IDELAY+STIME-EVTBL(NODE,1)
FDELAY=FDELAY+STIME-EVTBL(NODE,1)

218

INDEXQ=EVTBL(NODE,5)
NPCKTS=QUEUE1(NODE,(INDEXQ+3))
NMSGS=QUEUE1(NODE,(INDEXQ+5))

**

* UPDATE NODE COUNTERS *
**

DEST1=DEST
LENGTH=NPCKTS

DSTCNT(NODE,DEST1)=DSTCNT(NODE,DEST1)+NMSGS
DSTLOD(NODE,DEST1)=DSTLOD(NODE,DEST1)+LENGTH
CUMLOD(NODE ,DEST1)=CUMLOD(NODE,DEST1)+LENGTH
CUMCNT(NODE,DEST1)=CUMCNT(NODE,DEST1)+NMSGS
NODLOD(NODE,1)=NODLOD(NODE,1)+LENGTH
NODLOD(NODE,2)=NODLOD(NODE,2)+LENGTH
NODLOD(NODE,3)=NODLOD(NODE,3)+NMSGS

C
Q **
C * UPDATE QUEUE ENTRIES WITH INFORMATION IN CHANNEL TABLES *
C **
c

QUEUE1(NODE,INDEXQ)=999999999
QUEUEKNODE, (INDEXQ+1))=QUEUEl(NODE, (INDEXQ+1))+IDELAY
QUEUE2(NODE,(INDEXQ+5))=QUEUE1(NODE,(INDEXQ+2))+IDELAY

C
Q **
C * GO ACTUALLY UPDATE CHANNEL TABLES. *
Q **
C

35 CALL UPROUT(NODE,DEST,INDEXQ,RINDEX,CLASS)
PASS=1
CSDEX=INDEXQ
CALL UPDATE(NODE,DEST,CLASS,IDELAY,PASS,CSDEX)
IF (CLASS.EQ.2) GOTO 75
PASS=2
CSDEX=RINDEX
CALL UPDATE(DEST,NODE,CLASS,IDELAY,PASS,CSDEX)
GOTO 180

C
Q **
C * CIRCUIT HANDLER - CLASS =1. *
£ **
C

30 NDEST=PARAM(l)/2
IF (IYESNO.EQ.l) GOTO 40
IF (IYESNO.EQ.2) GOTO 40
IYESNO=0
IDELAY=0
PASS=2
AVLTST-0
CALL ROUTE(DEST,NODE,IYESNO,IDELAY,CLASS,PASS)

non

219

IF (IYESN0.EQ.1) GOTO 40
IF (IYESN0.EQ.2) GOTO 40
ERRTYP=3
KNODE=NODE - NDEST
DO 432 1=1,50,4

IF (CALQ1(KN0DE,I).EQ.O) GOTO 436
432 CONTINUE

CALL ERRMSG(5)
436 INDEXQ=I

KNODE=DEST - NDEST
DO 442 1=1,50,4

IF (CALQ1(KN0DE,I).EQ.O) GOTO 446
442 CONTINUE

CALL ERRMSG(6)
446 RINDEX=I

KNODE=NODE - NDEST

CALLS(KNODE,1)=CALLS(KNODE,1)+1
CALLS(KNODE,3)=CALLS(KNODE,3)+1
GOTO 35

C

q **
C * THE CALL TO ROUTE RETURNED EITHER A 1 OR 2, THUS THE *
C * CIRCUIT SWITCHED ROUTE CANNOT BE USED AND WE MUST *
C * INCREMENT THE COUNTER AT CALLS (KNODE, 2) . *
0 **
C

40 KNODE=NODE - NDEST
CALLS(KNODE,2)=CALLS(KNODE,2)+1
GOTO 180

END

MtON3N)

220

C ***
C * THIS ROUTINE UPDATES CHANTB FOR THE ROUTE SELECTED. *
C ********************************* it***************************
C
C
c

SUBROUTINE UPDATE(LNODE,LDEST,CLASS,IDELAY f PASS f CSDEX)
C
C
C

IMPLICIT INTEGER (A-S)
C
C

COMMON/AREA1/EVTBL(52,5),PKLINK(26),PARAM(17)#CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

C
C

COMMON/AREA2/CUMCNT(26,26),ROUT(160), APCKTS (26), TDEL (26) , SWITCH,
ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

C
C

COMMON/AREA3/ACKPAC(26),BTLNCK(52) ,LSTBTL,CALQ2(10, 50)
C
C

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

C
C

C
NODE=LNODE
DEST=LDEST
INDEX=EVTBL(NODE,5)
INODE=NODE
RATI0=1
IF (CLASS.EQ.2) RATI0=PARAM(4)
FLAG=1
IF (CLASS.EQ.l) KN0DE=INODE-(PARAM(1)/2)
IF (CLASS.EQ.2) IN0DE=PKLINK(NODE)

C
£ ***********.***
C * BRANCH TO CIRCUIT HANDLER IF CLASS =1. *
_ **
v

C
IF (CLASS.EQ.l) GOTO 70
IF (PASS.EQ.2) CALL ERRMSG(IO)

C

nonnonnonon
221

PTHPTR=QUEUE2(NODE,INDEX+4)
SIZE=S(PTHPTR)+1
COLUMN=0

10 C0LUMNC0LUMN+1
SIZE=SIZE-1
IF (SIZE.EQ.O) GOTO 50
ICHAN=P(PTHPTR,COLUMN)
IF (ICHAN.EQ.O) CALL ERRMSG(ll)

35 NLINES(ICHAN)=NLINES(ICHAN)-RATIO
IF (NLINES(ICHAN).LT.0) CALL ERRMSG(12)

C
C
C

C
c

c
c
c
c
c

c
c
c
c
c
c

JCHNL=JARM3 (ICHAN) -PARM3 (ICHAN) +1
IT0P=JARM3(ICHAN)
I=JCHNL-1

**

* EXECUTE THIS LOOP FOR EACH SLOT NEEDED ON THIS CHANNEL. *
**

DO 15 J=l,RATIO
JCHNL=I+1

* FIND A FREE CHANNEL ENTRY IN THE TABLE. *

DO 20 I=JCHNL,ITOP
IF (CHANTB(I,4).EQ.0) GOTO 25

20 CONTINUE
CALL ERRMSG(21)

* HAVING FOUND AN EMPTY TABLE ENTRY UPDATE THE ENTRIES *
* BASED ON WHETHER IT IS A FORWARD OR REVERSE PATH. *

25 IF (FLAG.EQ.O) GOTO 40
IF (CLASS.EQ.l) GOTO 26
LINKTB(INODE,DEST)=LINKTB(INODE,DEST)+1
GOTO 27

80 IF (PASS.EQ.2) CHANTB(1,3)=CSARV(KDEST,2)+IDELAY
IF (PASS.EQ.l) CHANTB(1,3)=CSARV(KNODE,2)+IDELAY

nonnnnnonno

222

IF (PASS.EQ.1) CHANTB(1,2)=EVTBL(NODE,1)+IDELAY
IF (PASS.EQ.2) CHANTB(I,2)=EVTBL(DEST,1)+IDELAY
GOTO 90

26 CSCHNL=JCHNL
27 FLAG=0
40 CHANTB(1,1)=DEST

IF (CLASS.EQ.l) GOTO 80
IF (PASS.EQ.l) CHANTB(1,2)=QUEUE1(NODE,INDEX+1)
IF (PASS.EQ.2) CHANTB(I,2)=QUEUE1(DEST,INDEX+1)
IF (PASS.EQ.l) CHANTB(1,3)=QUEUE1(NODE,(INDEX+2))
IF (PASS.EQ.2) CHANTB(If3)=QUEUE1(DEST,(QADDR+2))

90 CHANTB(If 4)=RATIO
CHANTB(1,5)=NODCHL(ICHAN)
CHANTB(1,7)=NODE
CHANTB(I,8)=INDEX
IF (CLASS.EQ.l) GOTO 16

15 CONTINUE
16 INODE=NODCHL(ICHAN)

GOTO 10

50 RETURN

**
* CIRCUIT HANDLER - CLASS =1. *
**

70 I=CSDEX
IF (I.EQ.O) CALL ERRMSG(3)
COLUMN=0

130 IF (PASS.EQ.2) GOTO 140
110 CALQ1(KNODE,I)=CSARV(KNODE,2)+IDELAY

CALQKKNODE, I+3)=LNODE
170 CALQKKNODE, I+1)=LDEST

CALQKKNODE, 1+2)=I
INDEX=I

PTHPTR=CALQ2(KNODE,I)
SIZE=S(PTHPTR)+1
GOTO 10

140 KDEST=DEST-(PARAM(1)/2)
CALQ1 (KNODE, I) =CSARV (KDEST, 2)+IDELAY
CALQKKNODE, I+3)=LDEST
GOTO 170

END

CM
CM
£M
£M

223

£ **
C * SUBROUTINE GETQ IS USED WHEN IT IS NECESSARY TO TERMINATE A *
C * ROUTE. IT WILL FIND THE STARTING CHANNEL ADDRESS FOR THE *
C * REMOVAL PROCESS. TO DO SO, IT WILL SCAN ALL POSSIBLE FIRST *
C * LINKS, I.E. ALL NODES THAT ARE DIRECTLY CONNECTED TO THE *
C * SOURCE NODE (LNODE). *
C **
C
C
c

SUBROUTINE GETQ (LNODE,LDEST,CLASS,QADDR,CHPTR,PASS)
C
C
C

IMPLICIT INTEGER (A-T)
C
C
C

COMMON/AREA1/EVTBL(52,5) ,PKLINK(26) , PARAM(17),CHANTB(1170,11),
1 QUEUE1 (10,1800), CALQ1 (10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3) ,DSTLOD(26,26) ,DSTCNT(26,26) ,CSLINK(52)

C
C

COMMON/AREA2/CUMCNT(26,26),ROUT(160), APCKTS(26), TDEL (26), SWITCH,
ZDBLK(26,2) , PAKAVG,UAVG, PAKTHR, ZDAVG, ZBLOCK,RSFLAG,
THRUTL (160,2), PARM3 (160), JARM3 (160), STOFWD, EVTX(6),
BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

C
C

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)
C
C

COMMON/AREA7/KONECT(52,52),ORPRMS(17),ORSDTB(52,4)
C
C
C

QADDR=0
NODE=LNODE
DEST=LDEST
IF (PASS.EQ.l) TIME=EVTBL(NODE,1)
IF (PASS.EQ.2) TIME=EVTBL(DEST,1)
ATOP=PARAM(1)
DO 100 K=l,ATOP

IF (KONECT(LNODE,K).LE.O) GOTO 100
ICHAN=KONECT(LNODE,K)
JCHNL=JARM3(ICHAN) - PARM3(ICHAN)+1
ITOP=JARM3(ICHAN)
DO 10 J=JCHNL, ITOP

C

nnnn

224

it***

* TRY TO MATCH UP SOURCE, DEST, AND TIME. *
**

IF (CHANTB(J,7).NE.NODE) GOTO 10
IF (CHANTB(J,1).NE.DEST) GOTO 10
IF (CHANTB(J,3).NE.TIME) GOTO 10
QADDR=CHANTB(J,8)
CHPTR=J
GOTO 30

10 CONTINUE
100 CONTINUE

C
Q **
C * THE RETURN STATEMENT AT LINE 30 CAN BE REACHED IN TWO WAYS.*u
C * IF IT IS REACHED BY A BRANCH, THEN A QUEUE ADDRESS WAS *
C * FOUND AND THE ADDRESS IS TO BE RETURNED VIA QADDR. IF IT IS*
C * REACHED BY THE TERMINATION OF THE ABOVE DO LOOP, NO QUEUE *
C * ADDRESS WAS FOUND. IN THIS CASE THE CALLING PROCEDURE WILL *
C * RECOGNIZE THAT QADDR HAS NOT BEEN CHANGED BY GETQ. *
Q **
C
C

30 RETURN
END

nnnnnonnnnnn
225

C **
c * *
C * THIS ROUTINE CAPTURES THE PERFORMANCE STATISTICS IN THE *
C * GLOBAL TABLE YS FOR LATER ANALYSIS. *
C * *
C **
C
c
c

SUBROUTINE STATK

IMPLICIT INTEGER (A-S)

COMMON/AREA1/EVTBL(52,5),PKLINK(26)#PARAM(17),CHANTB(1170,11),
1 QUEUEK10,1800) ,CALQ1(10,50) ,CUMTM(26,13) ,QCNT(52) ,
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160),APCKTS(26),TDEL(26),SWITCH,
2 2DBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
2 THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
2 BOUND, GLOBAL, STPPRI, AVLTST, RESTRT, NUSWCH, NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA8/XS(501,8),SSC,PRINCR,LSTSTP,
8 WCFACT,WCINCR,WPFACT,WPINCR, LSTEVT

C
C
C
C
Q **
C * CALCULATE THE THROUGHPUT AND UTILIZATION. *
Q **
c

IF (PARAMO) ,EQ.PARAM(17)) RETURN
SSC=SSC+1
ILIM=PARAM(2)
NSITES=PARAM(l)/2
UTOT=0.0
UTIL3=0.0
DO 10 1=1,ILIM

JCHNL=JARM3(I)-PARM3(I)+1

226

ITOP=JARM3(I)
UTIL1=0.0
PSENT1=ACKPAC(I)
DO 20 J=JCHNL,ITOP

DUMMY=CHANTB(J, 6)
IF (CHANTB(J,4).EQ.O) GOTO 80
IF (CHANTB(J,2) .GE.PARAMO)) GOTO 80
DUMMY=DUMMY+PARAM(9)-CHANTB(J,2)
IF (CHANTBCJ,2).GE.PARAM(17)) GOTO 80
DUMMY=DUMMY-(PARAM(17)-CHANTB(J,2))

80 PSENT=CHANTB(J,10)
PSENT1=PSENT1+PSENT
UTIL=1.0*DUMMY/(PARAM(9)-PARAM(17))
UTIL1=UTIL1+UTIL

20 CONTINUE
UTOT=UTOT+UTIL1
UTIL3=UTIL3+(PARM3(I)-NLINES(I))

10 CONTINUE
UAVG=UTOT/JARM3(ILIM)
XS(SSC,1)=UAVG
XS(SSC,5)=UTIL3/JARM3(ILIM)

C
Q **
C * CALCULATE THE PACKET NODE STATISTICS. *
£ **
c

ITOP=PARAM(l)/2
IF (PARAM(8).EQ.O) GOTO 31
SUMPAK=0
TOTDEL=0.0
DO 30 1=1,ITOP

SUMPAK=SUMPAK+APCKTS (I)
TOTDEL=TOTDEL+TDEL(I)
IF (APCKTS(I).EQ.O) GOTO 30
ZDELAY=TDEL(I)/APCKTS(I)

30 CONTINUE
IF (SUMPAK.EQ.O) GOTO 35
ZDAVG=TOTDEL/SUMPAK
GOTO 35

31 ZDELAY=0.0
ZDAVG=0.0

35 XS(SSC,6)=SUMPAK
XS(SSC,7)=PARAM(9)
IF (SSC.EQ.l) GOTO 37
C1=XS(SSC,6)-XS(SSC-1,6)
C2=XS(SSC,7)-XS(SSC-1,7)
XS(SSC,8)=1.0*C1/C2

37 CONTINUE
XS(SSC,2)=ZDAVG
CURBTL=0
DO 36 1=1,ILIM

CURBTL=CURBTL+BTLNCK(I)

227

36 CONTINUE
XS(SSC,4)=CURBTL-LSTBTL
LSTBTL=CURBTL

C
£ **
C * CALCULATE THE CS NODE STATISTICS. *
C **
C

BIGTOT=0
ALOST=0
DO 40 I=l#ITOP

IT0T=CALLS(I,1)+CALLS(I,2)
ILOST=CALLS(Ir 2)
IF (ITOT.EQ.O) GOTO 50

50 CONTINUE
BIGTOT=BIGTOT+ITOT
ALOST=ALOST+ILOST

40 CONTINUE
IF (BIGTOT.EQ.O) GOTO 71
ZBLOCK=l.0*ALOST/BIGTOT
GOTO 72

71 ZCALLS=0.0
ZBLOCK=0.0

72 CONTINUE
XS (SSC,3)=ZBLOCK
RETURN

END

tototo

228

C **
C * THIS ROUTINE IT IS RESPONSIBLE FOR OUTPUT GENERATION OF *
C * STATISTICAL INFORMATION. *
C **
C
C
C

SUBROUTINE STATS
C
C
C

IMPLICIT INTEGER (A-S)
C
C
C

COMMON/AREA1/EVTBL(52,5),PKLINK(26),PARAM(17),CHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13),QCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

C
C

COMMON/AREA2/CUMCNT(26,26), ROUT(160), APCKTS (26), TDEL (26), SWITCH,
ZDBLK(26,2),PAKAVG,UAVG,PAKTHR,ZDAVG,ZBLOCK,RSFLAG,
THRUTL(160,2),PARM3(160),JARM3(160),STOFWD,EVTX(6),
BOUND,GLOBAL, STPPRI,AVLTST, RESTRT, NUSWCH, NUPOWR,

2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)
C
C

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)
C
C

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26),LSTPTH(26,26),RANDSD(52),POWER,PTHCNT

C
C
C

NODES=PARAM(1)
C
£ **
C * WRITE THE PACKET NODE INFORMATION. *
^ * it **
C

WRITE(6,2005)
WRITE(6,2006)
ITOP=PARAM(l)/2
DO 30 1=1,ITOP

WRITE(6,2007) I,(CUMTM(I,K),K=1,13)
30 CONTINUE

DO 50 1=2,ITOP
DO 40 K=l,13

CUMTM(I,K)=CUMTM(I-1,K)+CUMTM(I,K)

non

229

40 CONTINUE
50 CONTINUE

CUMTOT=0
DO 52 1=1,13

CUMTOT=CUMTOT+CUMTM(ITOP, I)
52 CONTINUE

WRITE(6,2010) (1.0*CUMTM(ITOP,I)/CUMTOT,1=1,13)
WRITE(6,2013)
IUP=PARAM(13)-4
DO 60 1=1,ITOP

DO 90 J=2,IUP,6
IF (QUEUEKI, J) .LE.PARAM(IO)) GOTO 90
JPTR=QUEUE1(I,J+3)
NODLOD(1,1)=NODLOD(1,1)-100000
DSTLOD(I,JPTR)=DSTLOD(I,JPTR)-10
DSTCNT(I,JPTR)=DSTCNT(I,JPTR)-10000

90 CONTINUE
WRITE(6,2014) I,((NODLOD(I,K)/10000),K=1,3)

60 CONTINUE

WRITE(6,2015)
ALLDST=PARAM(l)/2
SUMCUM=0
SUMDST=0
DO 70 1=1,ALLDST

DO 70 J=l,ALLDST
IF (I.EQ.J) GOTO 70
WRITE(6,2016) I,J,DSTLOD(I,J),(DSTCNT(I,J)/10000),

* CUMLOD(I,J),(CUMCNT(I,J)/10000)
SUMCUM=SUMCUM+(CUMCNT(I,J)/10000)
SUMDST=SUMDST+(DSTCNT(I,J)/10000)

70 CONTINUE
WRITE(6,7000)SUMDST,SUMCUM
WRITE(6,8010)
DO 38 1=1,ILIM

WRITE(6,8015) I,BTLNCK(I)
38 CONTINUE

WRITE(6,8020)
DO 39 1=1,784

WRITE(6,8025) I,S(I),F(I),L(I),SELCNT(I)
39 CONTINUE

WRITE(6,8030)
RETURN

2005 FORMAT (' 1' ,40X,'PACKET NODE STATISTICS')
2006 FORMAT ('0','NODE',5X,'DELAY(SECS)',4X,'<.1',4X,'<.2',4X,

1 '<.3',4X,'<.4',4X,'<.5',4X,'<.6',4X,'<.7',4X,'<.81,4X,
2 '<.9',4X,’< 1',4X,'< 2',4X,'< 5',4X,’> 5')

2007 FORMAT (' ',2X,12,14X,19,1117,19)
2010 FORMAT (' ',21X,13F7.4)
2013 FORMAT ('-','NODE CURRENT PACKET LOAD CUMULATIVE PACKET ' ,

non

230

1 'LOAD CUMULATIVE TRANSACTIONS')
2014 FORMAT (' ',2X,I2f10X,110,13X,110,14X,110)
2015 FORMAT ('-','NODE DEST CURRENT PACKET LOAD CURRENT

1 ’TRANSACTION LOAD CUMULATIVE PACKET LOAD CUMULATIVE'r
2 ' TRANSACTION LOAD')

2016 FORMAT (' 'f2X,I2f3Xr12,10X#110,15X,110,13X,110,18X,110)
7000 FORMAT(45X, ’ ' ,41X, ’ ’ ,/,45X,110,41X,110)
8010 FORMAT (///,' BOTTLNECKS')
8015 FORMAT (14,110)
8020 FORMAT (///,' I SIZE FIRST LAST SELCNT')
8025 FORMAT (14,316,110)
8030 FORMAT (/////,' ')

END

nonnnnnonooooo
231

Q **
c * *
C * THIS ROUTINE PRINTS OUT PERFORMANCE STATISTICS IN AN *
C * ABBREVIATED FORM. *
C * *
Q **
c
c
c
c

SUBROUTINE STATX

IMPLICIT INTEGER (A-S)

COMMON/AREA1/EVTBL(52,5),PKLINK(26),PARAM(17)rCHANTB(1170,11),
1 QUEUE1(10,1800),CALQ1(10,50),CUMTM(26,13)rQCNT(52),
1 CALLS(26,3),LINKTB(52,52),SEEDTB(52,4),NLINES(160),
1 SORCHL(160),NODCHL(160),CUMLOD(26,26),CSARV(26,3),
1 NODLOD(26,3),DSTLOD(26,26),DSTCNT(26,26),CSLINK(52)

COMMON/AREA2/CUMCNT(26,26),ROUT(160), APCKTS (26), TDEL (26), SWITCH,
2 ZDBLK (26,2), PAKAVG, UAVG, PAKTHR, ZDAVG, ZBLOCK, RSFLAG,
2 THRUTL(160,2), PARM3(160), JARM3(160), STOFWD, EVTX(6),
2 BOUND,GLOBAL,STPPRI,AVLTST,RESTRT,NUSWCH,NUPOWR,
2 NUSTFD,NUGLOB,NUSTPP,WCFCNU,WPFCNU,QUEUE2(10,1800)

COMMON/AREA3/ACKPAC(26),BTLNCK(52),LSTBTL,CALQ2(10,50)

COMMON/AREA4/DESTAB(52,52),DSTALT(52,52),ALTCH(160)

COMMON/AREAA/P(800,10),S(800),F(800),L(800),SELCNT(800),NMTRYS,
A FSTPTH(26,26), LSTPTH(26,26),RANDSD(52), POWER, PTHCNT

C
C
C
^ **
C * WRITE THE FINAL PARAMETERS. *
Q **
c

WRITE(6,3000)
WRITE(6,3011)
WRITE(6,3012)
WRITE(6,3015) (PARAM(I),1=1,16)

C

non

232

Q **
C * CALCULATE THE THROUGHPUT AND UTILIZATION. *
C **
C

PASS=1

WRITE(6,7001)
1 WRITE(6f7002)

ILIM=PARAM(2)
NSITES=PARAM(l)/2
PAKTOT=0
UTOT=0.0
DO 10 I=1,ILIM

JCHNL=JARM3(I)-PARM3(I)+1
ITOP=JARM3(I)
UTIL1=0.0
PSENT1=ACKPAC(I)
DO 20 J=JCHNL,ITOP

DUMMY=CHANTB(J,6)
IF (CHANTB(J,4).EQ.0) GOTO 80
IF (CHANTB(J,2).GE.PARAM(IO)) GOTO 80
DUMMY=DUMMY+PARAM(10)-CHANTB(J,2)

80 PSENT=CHANTB(J#10)
PSENT1=PSENT1+PSENT
UTIL=1.0*DUMMY/(PARAM(10)-PARAM(17))
UTIL1=UTIL1+UTIL

20 CONTINUE
UTIL1=UTIL1/PARM3(I)
NS=SORCHL(I)-NSITES
ND=NODCHL(I)-NSITES
WRITE(6,7003) I,PSENT1,UTIL1,NS,ND,PARM3(I)
THRUTL(1,1)=PSENT1
THRUTL(If 2)=UTIL1
PAKTOT=PAKTOT+PSENTl
UTOT=UTOT+UTIL1

10 CONTINUE
PAKAVG=PAKTOT/1LIM
UAVG=UTOT/ILIM
XSECS=(PARAM(10)-PARAM(17))/1000.
PAKTHR=PAKAVG/XSECS+0.5
WRITE(6,7004) PAKAVG,UAVG,PAKTHR

IF (PASS.GT.l) GOTO 28
WRITE(6f7014)
ACKTOT=0
DO 27 1=1,ILIM

WRITE(6,7015) I,ACKPAC(I)
ACKTOT=ACKTOT+ACKPAC(I)
ACKPAC(I)=0

27 CONTINUE
PASS=PASS+1

233

C
C
c
c
c

c
c
c
c
c

WRITE(6,7017) ACKTOT
WRITE(6,7016)
GOTO 1

**
* CALCULATE THE PACKET NODE STATISTICS. *
**

28

30

31

32

35

WRITE(6,7005)
WRITE(6,7006)
ITOP=PARAM(l)/2
IF (PARAM(8).EQ.O) GOTO 31
QTOT=0
SUMPAK=0
TOTDEL=0.0
DO 30 1=1,ITOP

QTOT=QTOT+QCNT(I)
SUMPAK=SUMPAK+APCKTS(I)
TOTDEL=TOTDEL+TDEL(I)
ZDELAY=TDEL(I)/APCKTS(I)
WRITE(6,7007) I,ZDELAY,QCNT(I)
ZDBLK(I,1)=ZDELAY
CONTINUE

ZQAVG=1.0*QTOT/ITOP
ZDAVG=TOTDEL/SUMPAK
GOTO 35
ZDELAY=0.0
DO 32 1=1,ITOP

WRITE(6,7007) I,ZDELAY,QCNT(I)
ZDBLK(1,1)=ZDELAY
CONTINUE

ZDAVG=0.0
ZQAVG=0.0
CONTINUE
WRITE(6,7008)ZDAVG,ZQAVG

**
* CALCULATE THE CS NODE STATISTICS. *
**

53 WRITE(6,7009)
WRITE(6,7010)
BIGTOT=Q
ALOST=0
AKEPT=0
DO 40 1=1,ITOP

K=ITOP+I
ITOT=CALLS(1,1)+CALLS(1,2)
ILOST=CALLS(I,2)
IKEPT=CALLS(I,3)
UTIL=0.0
IF (ITOT.EQ.O) GOTO 50

non

234

UTIL=1.0*CALLS(1,2)/ITOT
50 WRITE(6,7011) K,ITOT,ILOST,UTIL,IKEPT

ZDBLK(1,2)=UTIL
BIGTOT=BIGT0T+ITOT
ALOST=ALOST+ILOST
AKEPT=AKEPT+IKEPT

40 CONTINUE
IF (BIGTOT.EQ.O) GOTO 71
ZCALLS=1.0*BIGTOT/ITOP
ZBLOCK=l.0*ALOST/BIGTOT
ZSYS=1.0*AKEPT/ITOP
GOTO 72

71 ZCALLS=0.0
ZBLOCK=0.0
ZSYS=0.0

72 WRITE(6,7012)ZCALLS,ZBLOCK,ZSYS
C
Q **
C * WRITE OUT THE EVENT TYPE FREQUENCIES. *
q **
C

73 WRITE(6,7013) (EVTX(I),1=1,4)
RETURN

3016 FORMAT
3000 FORMAT
3011 FORMAT

1

2
3012 FORMAT

1

3015 FORMAT
1

2
7001 FORMAT
7002 FORMAT

1

7003 FORMAT
7004 FORMAT

1
2

7005 FORMAT
7006 FORMAT

1

7007 FORMAT
7008 FORMAT

1

7009 FORMAT
7010 FORMAT

1

(' ’ ,2X,I2,3X,I2,10X,I10,15X,I10,13X,I10,18X,I10)
('1',4OX,1 SYSTEM PARAMETERS')
('O',IX,'NODES LINKS SLOTS RATIO SLOT NODE CS',6X,
’PS MSG START TIME END TIME PACKET VDR RATES ’,
'Q SIZE CS PACKET PACKETS')

(1 1,25X,'TIME DELAY ARRIVAL ARRIVAL',21X,
'LOADING',19X,'SERVICE SIZE PER MSG')
(' ',IX,3(15,IX),12,2X,14,'MS ',12,' MS’,3X,I2,
'MIN',3X,12,'SEC',2X,15,' MS',18,'MS ',17,IX,
15,’KBS \I7,3X,I3, 'SEC ', 14,'B’,2X, 12)
(///,5X,'PASS=1 ACKPACS COUNTED',///)
(1H0,5X,'CHAN',3X,'THROUGHPUT',3X,'UTILIZATION',
IX,'SOURCE',3X,'DEST',3X,'SLOTS')

(1H ,5X,13,3X,I10,4X,F8.3,3(4X,I4))
(1H0,9X,'AVG NO OF PACKETS PER LINK=',I10/10X,

'AVG LINK UTILIZATION =',F6.3/10X,
’AVG LINK THROUGHPUT (PACKETS/SEC)=’,110//)

(1H0,4OX,'PACKET NODE SUMMARY’//)
(1H ,5X,'NODE',3X,'AVG PACKET DELAY (SEC)’,3X,
’DATA TRANSACTIONS IN SYSTEM’/)

(1H ,5X,13,8X,F10.3,15X,110)
(1H0,9X,'AVG PACKET DELAY (SEC)=',F8.3/10X,
’AVG NO OF DATA TRANSACTIONS AT A NODE=',F8.1//)
(1H0,40X,'CS NODE SUMMARY'//)
(1H ,'NODE',5X,'TOTAL CALLS',5X,'CALLS LOST’,9X,
'BLOCKING',5X,'CALLS IN SYSTEM’)

nno

235

7011 FORMAT (1H ,2X#12,11X,15,10X,15,12X,F5.3,10Xf15)
7012 FORMAT (1H0,9X,'AVG NO OF CALLS PER NODE=1,F8.1/10X,

1 'FRACTION OF CALLS BLOCKED='fF9.3/10Xr
2 'AVG NO OF CALLS IN SYSTEM PER NODE=’,F8.1)

7013 FORMAT (1H0,19X,'CLASS 2 (DATA) ARRIVALS =',I10/20X,
1 'CLASS 2 (DATA) DEPARTS =',I10/20X,
2 'CLASS 1 (CS) ARRIVALS =',I10/20X,
3 'CLASS 1 (CS) DEPARTS =',I10)

7014 FORMAT (///,' CHANNELS ACKPACS')
7015 FORMAT (' ',2110)
7016 FORMAT (///,' PASS=2 ACKPACS NOT COUNTED’,///)
7017 FORMAT (/,' TOTAL = ',110)

END

236.

APPENDIX B

DESCRIPTION OF TABLES

The following diagrams present the structure of the major

tables used by FLO and describe the components of each.

Many of the tables used by FLO are the same as those used

by Clabaugh's original simulation [22] and, as such, the

descriptions which follow are based on his dissertation

and that of Kiemele [65].

237

Table B-l. Parameter Table (PARAM [X])

This single dimension array contains the basic parameters

used to control SIMULA execution. The values are set by

FLO prior to initiating SIMULA.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Total number of PS and CS nodes

Total number of HDX channels

Total number of slots in the network

Ratio of packet to voice slots

Frame time duration

Fixed time routing delay per node

Circuit switch voice arrival rate

Packet switch transaction arrival rate

Start time for simulation run

Ending time for simulation run

Packet switch saturation level

Voice digitization rate

Buffer size at each packet switch

Average voice call service time

Number of bits per packet

Average number of packets per message

System error run time17

Table B-2. Slot Table (PARM3 [X])

This single dimension array contains the number of

slots allocated to HDX channel X, where X = 1, 2, 3, ...

PARAM(2).

1

2

3

PARAM(2)

The relationship between PARM3 and PARAM(3) is:

PARAM(3) =

PARAM(2)
'

PARM3(i)

i = l
1

239

Table B-3. Event table (EVTBL[Node.Entry])

This table maintains the next event occurrence at each

node. The [Node, Entry] table entries are:

1 2 3 4 • 5

1

2

3

PARAM(l)
1

Entry Definition

1 Time (Msec)
2 Type:

1 = Class II (data) arrival
2 = Class II (data) departure
3 » Class I (voice) arrival
4 « Class I (voice) departure

3 Message length if Class II or
time of departure if Class I

4 Final destination -

5 Queue address (pointer into
QUEUE1 and QUEUE2)

240

Table B4. Destination Table (DESTAB [Node.Dest])

This table gives the primary routing channel between each
node pair [Node,Dest]. If the source node is a packet

node, the [Node,Dest] entry contains the number of the

directly connected circuit switch node instead of a

channel number.

241

Table B5. Alternate Destination Table (DSTALT[Node,Dest])

Similar to table B4, this table provides an alternate

channel between each nodal pair [Node,Dest].

242

Table B6. Channel Table (CHANTBfChannel,Entry])

Each row of this table represents a particular slot in the

network. For each slot, this table maintains the 11

attributes shown.

Entry Definition

1 Final destination
2 Time slot is active
3 Time slot is available
4 Number of slots used for transaction
5 Intermediate destination
6 Cumulative time in use
7 Source node
8 Queue address
9 Cumulative number of transactions

10 Cumulative number of packets
11 Cumulative number of voice calls

243

Table B7. Queue Tables (QUEUE1[Node,Entry] and
QUEUE2[Node,Entry])

This table exists for packet switched nodes only. Each

row corresponds to a packet switch node and maintains a

record of data transactions at that node. Each data

transaction requires twelve entries, six in QUEUE1 and six

in QUEUE2. By convention, the first six entries of both

tables are associated with the first transaction, the

second six with the second transaction and so on. Both

tables are dimensioned appropriately based on the user

specified arrival rate.

12345678... 1800

1

2

3

PARAM(1)/2

QUEUE1 Definition

1
2
3
4
5
6

Priority
Transaction arrival time
Transaction departure time
Total packet length
Intermediate Destination
Number of messages

QUEUE2 Definition

1
2
3
4
5
6

Source Node
Final Destination
Percentage of Message Allocated
Total delay
Route pointer
Departure Time + Routing Delay

245

Table B8. Call Queue Tables (CALQ1[Knode,Entry])

This table exists for circuit switched nodes only. Each

row corresponds to a cicuit switch node and contains a

record of all departing calls at that node. Each call
%

requires four entries each of which is described below.
By convention, the first four entries are associated with
the first transaction, the second four with the second

transaction and so on.

12345 ... 200

Entry Definition
1 Departure Time
2 Destination _

3 Channel address pointer
4 Source or Destination node

Table B9. Circuit Switch Arrival Table
(CSARV[Knode,Entry])

This table exists for circuit switched nodes only and

contains information relating to the next voice call

arrival at a node.

1 2 3

Entry Definition

1 Time of Arrival
2 Time of Departure
3 Destination

247

Table BIO. Link Availability Table (NLINES[Channel])

Each independent half duplex channel can be thought of as

consisting of a number of slots. This table is a working
table which shows the current count of the number of

available slots for each channel.

Initially, all slots are available and the table is
initialized to be equal to PARM3.

248

Table Bll. Path Tables (P[Path,Param(1)/2],
FSTPTHfNode,Dest], LSTPTHfNode,Dest])

These three tables combine to present the valid paths

which connect any pair of nodes. FSTPTH provides the
first row in table P connecting Node to Dest, while LSTPTH

provides the last row. All rows in table P between the
two identified and including them are valid paths

connecting these two nodes. Each row contains the link
identifiers which compose the valid path. P is

dimensioned to PARAM(l)/2 since this is the maximum size

of a valid path. The rows connecting any pair of nodes
are sorted from shortest to longest. P is sized to

include enough rows to contain all valid paths.

P

1 2 3 PARAM(1)

FSTPTH

123... PARAM(l)

LSTPTH

250

APPENDIX C

DATA TABLES

The following tables present summary statistics for

the experimental runs completed. For all runs, data

was collected when the number of packets which had

entered the system reached 40,000.

Workload=3/30

Metric

Prbk

Pron

Limt

Qcnt-1

Qcnt-2

Util-1

Util-1

EndTime(Secs)
4,020.764
4,012.422
4,020.239
4,012.270

3,981.289
4,020.239

4,020.239

Pktssent(kpkt)
10,803.075

10,777.419
10,807.841

10,774.539
10,699.222

10,807.841
10,807.841

PktThru-put

2,686.821
2,686.013
2,688.358
2,685.397

2,687.376
2,688.358

2,688.358

LinkThru-put

643.

640.

649.

651.

743.

644.

646.

AvgPktdel

0.106

0.117

0.105

0.119

0.158

0.104

0.104

Blkfact

0.001

0.007

0.000

0.006

0.015

0.000

0.000

Departs/sec

9.937

9.917

9.941

9.933

9.938

9.941

9.941

Departs(%)

0.999

0.996

0.999

0.996

0.989

0.999

0.999

%del>5sec

0.000

0.000

0.000

0.000

0.000

0.000

0.000

%del>2sec

0.000

0.002

0.000

0.001

0.004

0.000

0.000

%del>1sec

0.001

0.007

0.000

0.007

0.018

0.000

0.000

AvgTrans/node

5.4

16.0

4.3

15.7

44.2

4.3

4.3

251

Workload=4/40

Metric

Prbk

Pron

Limt

Qcnt-1

Qcnt-2

Util-1

Util-1

EndTime(Secs)
3,984.461
3,975.458
3,964.963
3,966.497
3,897.955

4,008.829
4,010.057

Pktssent(kpkt)
14,267.780
14,243.568
14,207.071
14,203.206
13,954.388
14,361.776
14,365.210

PktThru-put

3,580.856
3,582.875
3,583.154
3,966.497
3,579.925
3,582.536
3,582.297

LinkThru-put

868.

851.

967.

865.

982.

907.

907.

AvgPktdel

0.160

0.194

0.172

0.210

0.361

0.121

0.119

Blkfact

0.018

0.031

0.009

0.042

0.086

0.000

0.001

Departs/sec

9.930

9.933

9.936

9.927

9.924

9.931

9.932

Departs(%)

0.989

0.987

0.985

0.984

0.967

0.995

0.996

%del>5sec

0.000

0.001

0.000

0.001

0.002

0.000

0.000

%del>2sec

0.009

0.016

0.007

0.018

0.043

0.001

0.001

%del>1sec

0.025

0.040

0.025

0.046

0.104

0.005

0.004

AvgTrans/node
44.4

52.3

61.2

63.3

132.5

19.7

18.2

Workload*5/50

Metric

Prbk

Pron

Limt

Qcnt-1

Qcnt-2

Util-1

Util-1

EndTime(Secs)
3,901.527

3,923.684
3,806.923

3,905.863
3,847.765

3,832.970
3,839.137

Pktssent(kpkt)
17,457.296

17,557.856
17,039.680

17,468.096
17,214.608

17,140.064
17,181.984

Pktthru-put

4,474.478
4,474.840

4,475.972
4,472.276

4,473.924
4,471.745

4,475.481

LinkThru-put
1,113.

1,064.

1,344.

1,080.

1,232.

1,327.

1,319.

AvgPktdel

0.391

0.394

0.616

0.431

0.655

0.536

0.485

Blkfact

0.074

0.097

0.101

0.120

0.180

0.043

0.042

Departs/sec

9.922

9.920

9.922

9.915

9.919

9.929

9.923

Departs(%)

0.968

0.973

0.944

0.968

0.954

0.951

0.952

%del>5sec

0.004

0.004

0.006

0.004

0.010

0.005

0.003

%del>2sec

0.056

0.060

0.098

0.067

0.114

0.081

0.071

%del>1sec

0.116

0.116

0.198

0.129

0.209

0.171

0.154

AvgTrans/node
129.9

108.7

223.7

128.3

184.5

195.4

191.4

253

Workload=6/60

Metric

Prbk

Pron

Limt

Qcnt-1

Qcnt-2

Util-1

Util-1

EndTime(Secs)
3,838.013
3,882.102
3,748.305
3,860.758
3,825.951

3,759.711
3,748.825

Pktssent(kpkt)
20,561.936

20,799.024
20,094.512

20,714.176
20,504.608

20,160.944
20,107.712

PktThru-put

5,357.443
5,357.671
5,360.950

5,365.313
5,359.349
5,362.365

5,363.899

LinkThru-put
1,347.

1,275.

1,611.

1,295.

1,483.

1,658.

1,669.

AvgPktdel

0.799

0.711

1.131

0.775

1.073

1.467

1.375

Blkfact

0.162

0.166

0.205

0.203

0.271

0.154

0.149

Departs/sec

9.899

9.901

9.912

9.914

9.904

9.913

9.918

Departs(%)

0.950

0.961

0.929

0.957

0.947

0.932

0.930

%del>5sec

0.019

0.015

0.025

0.018

0.031

0.045

0.039

%del>2sec

0.145

0.132

0.220

0.144

0.204

0.289

0.274

%del>1sec

0.243

0.216

0.365

0.237

0.321

0.438

0.420

AvgTrans/node
201.5

157.5

285.7

173.3

211.6

273.9

282.9

255

APPENDIX D

MINIMUM AVERAGE PACKET DELAY ANALYSIS

Packet delay takes two forms, queuing delay and

processing delay. The former is variable and, as

noted in the main text of this document, is heavily

dependent on network conditions and routing options

selected. The latter is a function of the path

selected for a given transaction and reflects the time

necessary to process a packet at each "step" along

that path. The minimum average packet delay can be

determined by eliminating the first component and

concentrating on the second under steady state

conditions.

The simulation model assumes that Class II

service requests occur at all nodes with the same

arrival rate and distribution. While the arrival rate

is a user-specified parameter, the distribution is

assumed to be Poisson. The model further assumes that

all nodes are equally likely to be the destination for

an arriving Class II transaction. These assumptions

imply that at steady state, the expected number of
service requests from node a to node b will be k, some

value which is constant for all node pairs (a,b) and

is proportional to the arrival rate.

256

Assuming a steady state condition also allows
conclusions to be reached regarding the length of

Class II transactions. At steady state, the average

length of these transactions, i.e. the average number
of packets, will stabilize to a second constant, 1.

Finally, the fact that ”end-to-end" routing was

selected for this experiment implies that all packets

of a given message follow the same route and

experience the same packet delay.

Taken together, the above arguments indicate that

the number of packets traversing the experimental

network between any pair of nodes, a and b, is some

constant n where n=y*l. Further, each of the packets

traversing a particular path experience the same

delay .

Reducing these constants, it can be concluded

that the average packet delay for the experimental

network is equal to the average delay which can be

expected for a single packet traversing the network
from any node a to any node b. Further, this value is

equal to the number of links the packet can expect to
traverse multiplied by the minimum time to traverse a

link. A user-specified parameter assumed to be 50

milliseconds for this experiment, the link traversal

time includes both the signal propogation time and the

time to process the packet at the originating node.

257

Inspection of Figure 3-3 indicates that the

minimum number of links which must be traversed in

travelling between any nodal pair is as indicated
below.

1 2 3 4 5 6 7 8 9 10

1 0 1 2 2 3 3 1 4 3 1

2 1 0 1 2 3 2 1 3 2 2

3 2 1 0 2 3 1 2 2 3 1

4 2 2 2 0 3 1 1 2 2 3

5 3 3 3 3 0 2 2 1 1 4

6 3 2 1 1 2 0 2 1 3 2

7 1 1 2 1 2 2 0 3 1 2

8 4 3 2 2 1 1 3 0 2 3

9 2 2 3 2 1 3 1 2 0 3

10 1 2 1 3 4 2 2 3 3 0

Review of this table shows that there are the

longest individual path is of length 4 with the
following table showing the frequency with which each

path length occurs.

FrequencyLength

26
36
24
4

1
2
3
4

The weighted average of these values is 2.066667,
which is the number of links a packet travelling from

any node a to any other node b can expect to traverse.

This value can be converted to an average packet delay

258

by multiplying it times the assumed link traversal
time of 50 milliseconds, yielding a minimum average

packet delay of 0.1033333 seconds or approximately
0.103 seconds.

