# AN INVESTIGATION OF COSMIC RAY

### SCINTILLATIONS IN MUONS NEAR SEA LEVEL

A Dissertation

by

# ROBERT HENRY BENSON

# Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of

.

#### DOCTOR OF PHILOSOPHY

August 1985

Major Subject: Physics

# AN INVESTIGATION OF COSMIC RAY SCINTILLATIONS IN MUONS NEAR SEA LEVEL

A Dissertation

by

ROBERT HENRY BENSON

Approved as to style and content by:

(Chairman of Committee)

Nelson M. Duller

(Head of Department) Robert E. Tribble

191 (Member)

Philip J. Green

(Member) George W. Kattawar (Member)

Davis A. Fahlquist

August 1985

#### ABSTRACT

An Investigation of Cosmic Ray Scintillations in Muons Near Sea Level (August 1985) Robert Henry Benson, B.S., Southwest Texas State University Chairman of Advisory Committee: Dr. N. M. Duller

An investigation of scintillations in ground-level cosmic ray muons has been conducted using a muon telescope constructed at Texas A&M University. The power density spectrum of the muon counting rate was calculated and the resultant slope of -1.36 is in excellent agreement with accepted theory.

#### ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to Professor Nelson M. Duller for his unfailing support during my years at Texas A&M. I would also like to thank Professors Philip Green and Dr. George W. Kattawar for their help and guidance during this project. This work could not have been done without the support and encouragement of my wife Ramona and my children Debra, Eric, and Michael.

# TABLE OF CONTENTS

|          |     |      |       |     |     |            |     |     |     |     |     |            |     |     |     |     |     |     |    |    | ł | age |
|----------|-----|------|-------|-----|-----|------------|-----|-----|-----|-----|-----|------------|-----|-----|-----|-----|-----|-----|----|----|---|-----|
| ABSTRACI | •   | •    | ••    | •   | •   | •          | •   | •   | •   | •   | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | iii |
| ACKNOWLE | DGE | MEI  | NTS   | •   | •   | •          | •   | •   | •   | •   | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | iv  |
| LIST OF  | FIG | UR   | ES.   | •   | •   | •          | •   | •   | •   | •   | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | vii |
| CHAPTER  |     |      |       |     |     |            |     |     |     |     |     |            |     |     |     |     |     |     |    |    |   |     |
| I        | INJ | ROI  | יסטכי | TIC | ON  | •          | •   | •   | •   | •   | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | 1   |
|          |     | Ba   | ckg:  | roi | זמנ | 1.         | •   | •   | •   | •   | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | 1   |
|          |     | A    | sho   | rt  | hj  | İst        | or  | Y   | of  | c   | :05 | sm i       | lc  | ra  | чy  | pł  | iys | sic | s  | •  | • | 3   |
|          |     | Br   | ief   | de  | esc | ri         | lpt | ic  | n   | of  | : t | :he        | e E | pro | b]  | len | n . | •   | •  | •  | • | 8   |
| II       | THE | E E  | XPE.  | RII | MEI | 1 <b>T</b> | •   | •   | •   | •   | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | 10  |
|          |     | De   | scr   | ip  | tic | on         | of  | t   | :he | e ċ | let | :ec        | cto | or  | •   | •   | •   | •   | •  | •  | • | 10  |
|          |     | 0p   | tic   | s ( | of  | tł         | ıe  | ir  | nst | ru  | ime | ent        | Ξ.  | •   | •   | •   | •   | •   | •  | •  | • | 17  |
|          |     | Me   | teo   | ro  | 109 | gio        | al  | . ċ | lat | a   | cc  | )]]        | leo | ti  | Lor | ı.  | •   | •   | •  | •  | • | 23  |
|          |     | Ca   | lib   | ra  | tic | n          | of  | : t | :he | e j | ins | sti        | cui | neı | nt  | •   | •   | •   | •  | •  | • | 24  |
| III      | THE | EOR  | ч.    | •   | •   | •          | •   | •   | •   | •   | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | 26  |
|          |     | Th   | eor   | et  | ica | <b>1</b>   | pr  | e   | lic | ti  | lor | ns         | •   | •   | •   | •   | ٠   | ٠   | •  | •  | • | 26  |
| IV       | AN  | ALY. | SIS   | •   | •   | •          | •   | •   | •   | •   | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | 36  |
|          |     | De   | scr   | ip  | ti  | on         | of  | 5 0 | lat | :a  | •   | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | 36  |
|          |     | Co   | rre   | ct  | inq | g a        | atn | nos | sph | nei | rio | 5 I        | pre | es  | su  | re  | va  | alı | le | 5. | • | 37  |
|          |     | Re   | mov   | al  | o   | E :        | Lor | ng. | -te | eri | n t | tre        | enc | d.  | •   | •   | •   | •   | •  | •  | • | 38  |
|          |     | Pr   | ess   | ur  | e d | 200        | eff | Eid | cie | ent | t.  | •          | •   | •   | •   | •   | •   | •   | •  | •  | • | 44  |
|          |     | Te   | mpe   | ra  | tu  | re         | cc  | bei | Efj | lci | Lei | nt         | •   | •   | •   | •   | •   | •   | •  | •  | • | 54  |
|          |     | St   | ati   | st  | ica | <b>a</b> 1 | ir  | nfo | orn | nat | tic | o <b>n</b> | •   | •   | •   | •   | •   | •   | •  | •  | • | 60  |
|          |     | Po   | wer   | d   | en  | si         | ty  | S   | peo | cti | rur | n a        | ana | al  | ys: | is  | •   | •   | •  | •  | • | 61  |

.

| 65  | • | • | • | •  | • | • | • | • | • | • | • | •   | •   | •  | • | •   | •   | ON  | SIC         | JSS | SCU | DIS | I    | V     |    |
|-----|---|---|---|----|---|---|---|---|---|---|---|-----|-----|----|---|-----|-----|-----|-------------|-----|-----|-----|------|-------|----|
| 65  | • | • | • | •  | • | • | ٠ | • | • | • | s | ılt | ອຣເ | re | f | n c | lor | ssi | cus         | isc | Di  |     |      |       |    |
| 72  | • | • | • | •  | • | • | • | • | • | • | • | •   | •   | •  | • | •   | 5.  | ONS | 310         | 205 | NCI | 201 | (    | VI    | ٢  |
| 72  | • | • | • | •  | • | • | • | ٠ | • | • | • | •   | •   | •  | • | •   | •   | ry  | naı         | ımn | Su  |     |      |       |    |
| 73  | • | • | • | •  | • | • | ٠ | • | • | • | • | •   | •   | •  | • | າຣ  | lor | ısi | <b>:</b> lı | ond | Сс  |     |      |       |    |
| 75  | • | • | ٠ | .• | • | • | ٠ | ٠ | • | • | • | •   | •   | •  | • | •   | •   | •   | •           | ٠   | •   | ES  | ENCI | EFERI | RI |
| 78  | • | • | ٠ | •  | • | • | • | • | • | • | • | •   | •   | •  | • | •   | •   | •   | •           | •   | •   | A   | DIX  | PPENI | AJ |
| 80  | • | • | • | •  | • | • | • | • | • | • | • | •   | •   | •  | • | •   | •   | •   | •           | •   | •   | В   | DIX  | PPENI | A  |
| 85  | • | • | • | •  | • | • | • | • | • | • | • | •   | •   | •  | • | •   | •   | •   | •           | •   | •   | С   | DIX  | PPENI | A] |
| 105 | • | • | • | •  | • | • | • | • | • | • | • | •   | •   | •  | • | •   |     | •   | •           | •   | •   | •   |      | 'ITA  | V  |

Page

# LIST OF FIGURES

| Figur | ce la     | pa | ıge |
|-------|-----------------------------------------------|----|-----|
| 1.    | A diagram showing a top and side view         |    |     |
|       | of the telescope                              | •  | 14  |
| 2.    | A schematic diagram of the telescope          |    |     |
|       | showing major electronic parts                | •  | 16  |
| 3.    | A diagram illustrating the geometry used      |    |     |
|       | in the calculation of the G factor            | •  | 22  |
| 4.    | Predicted PSDF for a purely polar telescope . | •  | 31  |
| 5.    | Predicted PSDF for a purely equatorial        |    |     |
|       | telescope                                     | •  | 33  |
| 6.    | Predicted PSDF for the Texas A&M University   |    |     |
|       | campus                                        | •  | 35  |
| 7.    | Counting rate vs. time before trend removal . | •  | 41  |
| 8.    | Counting rate vs. time after trend removal .  | •  | 43  |
| 9.    | A plot of uncorrected counting rate vs.       |    |     |
|       | atmospheric pressure                          | •  | 47  |
| 10.   | A plot of counting rate after trend removal   |    |     |
|       | vs. atmospheric pressure                      | •  | 49  |
| 11.   | A plot of counting rate after trend removal   |    |     |
|       | and after pressure correction vs. time        | •  | 51  |
| 12.   | A plot of counting rate after trend removal   |    |     |
|       | and after pressure correction vs. atmospheric |    |     |
|       | pressure                                      | •  | 53  |
| 13.   | Final corrected counting rate vs.             |    |     |
|       | temperature                                   | •  | 57  |

# LIST OF FIGURES - Continued

.

| Figur | ce .                                     | page |
|-------|------------------------------------------|------|
| 14.   | Final corrected counting rate vs. time   | . 59 |
| 15.   | A comparison of muon PSDF at TAMU with   |      |
|       | the theory using data by Hedgecock       | . 69 |
| 16.   | A comparison of muon PSDF at TAMU with   |      |
|       | the theory using data by Quenby and Sear | . 72 |

.

•

#### CHAPTER I

#### INTRODUCTION

#### Background

A considerable body of research has been done on the subject of intensity variations in the primary and secondary cosmic rays arriving at the earth. Unlike photon astronomy, cosmic ray astronomy utilizes charged particles as information carriers, and consequently cosmic ray observations are subject to the influences of magnetic fields and to a smaller degree, electric fields. In many ways this dependence on fields complicates the study of cosmic rays. Conversely, this very dependence can be used as a tool with which to investigate the electromagnetic structure of interplanetary space.

Until quite recently, most investigators were concerned with large-amplitude periodic variations or conspicuous discrete events found in the cosmic radiation (Kohlhorster et al. 1923; Lindholm 1928; Compton et al. 1932; Hess et al. 1936; Schonland et al. 1937; Lange and Forbush 1948; Alfven and Malmfors 1943; Elliot and Dolbear 1950; Sandstrom and Lindgren 1959; Pomerantz et al. 1962; and Kane 1962. However, inspection of a record of

The citations in this dissertation follow the style of the Astrophysical Journal.

cosmic ray intensity as a function of time invariably reveals a continuous spectrum of statistically significant smaller-amplitude variations. These fluctuations have a broad-band spectrum and are not directly connected with regular periodic variations such as the diurnal anisotropy. These aperiodic fluctuations are best characterized by their power spectral density function (PSDF). The PSDF (also called the autospectral density function) of random data (e.g., intensity data) describes the frequency composition of an intensity-time record in terms of the spectral density of the mean square value of the record. The PSDF of a record of cosmic ray intensity as a function of time shows a broad continuum of variations from the mean value on all scales from minutes to weeks. These variations are called "cosmic ray scintillations" and are believed to be related to magnetic fluctuations and cosmic ray gradients in the interplanetary medium.

In the nineteen-seventies, J. R. Jokipii and A. J. Owens developed a body of theory which sought to explain cosmic ray scintillations by bringing together modern particle diffusion theory and the hypothesis that the phenomenon was due to the interactions of cosmic ray particles with various magnetic fields (Owens and Jokipii 1972; Owens 1974; Owens and Jokipii 1974; Jokipii and Owens 1976). The theory successfully predicts results obtained with certain low-energy components of the cosmic

ray flux but has not been carefully tested in higherenergy ranges such as the secondary muon component or extensive air showers. The subject of this thesis is to report the results of one such experimental study done at Texas A&M University. In the A&M study, cosmic ray scintillations were observed using ground-level muons in an energy range above that used by Jokipii and Owens and below the range of extensive air showers.

#### A short history of cosmic ray physics

The discovery of cosmic rays came by chance, as did the discovery of many other physical phenomena. The beginning of the science is marked by the early observation in Germany by Elster (1900) and Geitel (1900) of a strange source of ions in the air while they were investigating atmospheric electricity. Independently, C. T. R. Wilson (1900) discovered an ionizing agency capable of penetrating thick layers of earth. Wilson speculated that the new radiation might emanate from extraterrestrial sources, but no investigation to test the idea was done for at least a decade.

Hess (1912) carried pressurized electroscopes to altitudes of five kilometers. Hess found a rapid increase in the intensity of the radiation as a function of altitude. Shortly after Hess' work, Kolhorster (1913), using improved equipment, confirmed Hess' results to an altitude of nine kilometers.

After the First World War, advances in technology improved the data considerably. While on a voyage from Amsterdam to Java, Clay (1927) noticed a systematic variation in the intensity of cosmic radiation with changes in latitude. This variation was called the latitude effect. The latitude effect was not explained until Störmer (1930) undertook detailed theoretical calculations of the trajectories of charged particles in the earth's magnetic field. His calculations indicated that there were disallowed orbits for incoming particles and that the resulting selection of orbits by the earth's magnetic field could explain the latitude effect.

Quantum theory was being developed at this time, but few people believed the new theory could possibly apply to cosmic rays. The startling discovery of the positron (Andersson 1932) increased interest in cosmic rays as a tool for studying sub-atomic particles.

Two important developments in the early thirties advanced cosmic ray research. Bruno Rossi invented the fast coincidence counting method and for the first time was able to gather directional information about the radiation. He used two Geiger-Müller tubes separated spatially and required that pulses occur in both tubes simultaneously to signal the passage of a single particle.

Blackett and Occhialini (1933) improved the Wilson

He used a Geiger-Müller counter to trigger the expansion of the chamber thus synchronizing chamber expansion to allow observation of individual cosmic ray particle tracks. Earlier cloud chambers were expanded at random and, once they were expanded, the sensitive times for track formation were short. Sometimes many expansions were required before a track happened to appear. Blackett was able to improve the data collection process by this method.

Rossi (1935) discovered that the cosmic radiation was characterized by a soft and a hard component. The soft component had far less penetrating power than the hard component. He reported to the amazed scientific world that some cosmic rays could penetrate as much as three feet of lead.

Rossi (1933) also discovered cosmic ray air showers. An air shower is a cascade process in the atmosphere where many secondary particles are produced. These particles come streaming down after high-energy collisions between the primary cosmic ray particles and atoms in the upper atmosphere.

The cascade problem was analyzed in detail by several theorists, a few of which were Bhabha (1937), Heitler (1937), Carlson and Oppenheimer (1937), and Oppenheimer and Serber (1937). Cascade theory successfully explained the soft component of the cosmic radiation as electrons

and photons in self-regenerative equilibrium.

Once it was realized that most of the particles seen at the surface of the earth are secondaries, researchers turned their attention to the study of the primary radiation. Rossi (1934) and Johnson (1938) discovered an eastwest asymmetry in the ground-level radiation. This was a clue that the primary particles were positively charged. The asymmetry was found to be greater for the hard component than for the soft component.

The meson was first predicted by Yukawa (1935) in Japan. He worked out a model of the nuclear force in which the meson played the role of the photon in electromagnetic theory. The mass of a newly discovered particle suspected to be that hypothesized by Yukawa (but later found not to be) was determined to be about 200 times the mass of the electron. This mass information was gathered from particle tracks in the Wilson cloud chamber. The experimental work was done by Street and Stevenson (1937) and Nishina, Takeuchi, and Ichimiya (1937).

Euler and Heisenberg (1938) and Heisenberg (1938) pieced together an over-all picture of the cosmic radiation as it was understood at that time. They pointed out a conspicuous problem associated with the meson theory. A large nuclear interaction cross section was expected when, in fact, the observed cross section was very small.

To resolve the problem with the meson theory, Sakata (1940) and later Tanikawa devised a two-meson theory. The two became known as the pi meson and the mu meson, later shortened to pion and muon. This work resolved most of the problems associated with the meson theory but because of World War II, the work was not well known outside of Japan. The eventual "two-meson" picture emerged clearly after the discovery of the pion in nuclear emulsion studies (Powell et al. 1946).

A fairly complete picture of cosmic rays and their interaction with the earth's atmosphere could now be drawn from the preceding work. The primary radiation is extraterrestrial and is composed of mostly protons. The primary radiation strikes the top of the atmosphere with extremely high energy setting off a cascade of complex secondary interactions which result in three main components at ground level. These are the electromagnetic or "soft" component, the meson or "hard" component, and the nucleonic component.

One product resulting from the interaction of the primary cosmic rays with the upper atmosphere is the neutral pion, which decays into gamma rays. These photons give rise to fast positrons and electrons which in turn create by bremsstrahlung additional positrons and electrons. As a result, a cascade or shower occurs in the atmosphere and this is called the soft component. The

soft component can generally be absorbed completely by 10 cm of lead.

Another product from the initial primary interaction is the charged pion. Charged pions decay into positive and negative muons. Muons interact weakly with the atmosphere and can travel quite easily to the ground. Muons constitute most of what is called the hard component. The experiment discussed here is concerned with the hard component of the ground-level cosmic radiation.

The primary interaction may also produce disintegration fragments and neutrons. These fragments and slow neutrons are called the nucleonic component.

# Brief description of the problem

Owens and Jokipii (1974) completed a theory that sought to explain cosmic ray scintillations based on purely field-aligned diffusion of primary cosmic ray particles and predicted that the cosmic ray PSDF would simply be a constant times the magnetic-field PSDF. This theory was in conflict with observation in that it predicted a flat spectrum while observation indicated the spectrum was an inverse power law. By including cosmic ray particle drifts in their model, Jokipii and Owens (1976) were able to predict the required spectrum at least in the primary particle energy range detected indirectly by ground-based neutron monitors. The same conclusion regarding the importance of particle drift terms and the shape of the PSDF was reached by Toptygin and Vasilejev (1976).

Most of the experimental work done thus far has used data recorded with long-running neutron monitor stations. The theory seems to be in good agreement with these observations; however, the nucleonic component of the cosmic rays is only part of the secondary radiation arriving on earth. As has been explained, another important part of the ground-level cosmic radiation is the muon component. Very little has been done to test the Owens and Jokipii scintillation theory using the hard component of cosmic Most work with muons utilizes data from deeprays. underground stations (Attolini 1978) where the energy range is much higher than the range of neutron monitors. Some work has been done in Hungary (Erdos et al. 1977) using "extensive air shower" (EAS) data but these data are statistically so poor that any conclusions drawn are quite tenuous.

It appeared that no experiment utilizing the cosmic ray hard component at ground-level had been designed and built with the express purpose of testing the scintillation theory. The implementation and completion of such an experiment would result in testing the theory in an energy range not previously investigated, and such an experiment is the subject of this work.

#### CHAPTER II

#### THE EXPERIMENT

## Description of the detector

In order to test the Owens-Jokippi theory using the hard component of the cosmic radiation, it was necessary to design and build an instrument which could efficiently detect ground-level muons while rejecting the photonelectron cascade or soft component. The experiment required high counting rates which meant relatively large detectors were needed. The entire system had to be electronically stable over periods of several weeks. Organic plastic scintillators were chosen as the primary detectors in this experiment because they combine many favorable properties. Plastic scintillators have extremely fast response times and they are easy to cast into large-area detectors.

Two large slabs of plastic scintillator were placed in light-tight wooden boxes (see page 14). The slabs were 182.9 cm X 91.5 cm X 2.54 cm in size and were of the highest quality clear plastic casting. The slabs were doped with organic materials that emit UV light when struck by high energy cosmic ray particles. A wavelength shifter was also included in the plastic which shifted the UV radiation to the optical. These two detectors were separated in the vertical dimension by 51.5 cm. Each scintillator was viewed by four 12.7 cm photomultiplier (PM) tubes optically coupled to the scintillators by acrylic light pipes. The boundaries between the scintillator and the light pipes and the surface of the PM tubes and the light pipes were cemented with a silicon rubber compound which properly matched the respective indices of refraction.

The pulse output from each PM was fed into a lownoise preamplifier attached directly to the base of each tube. Aluminum foil was wrapped around the surfaces of both the scintillator and the light pipes. To some degree, the foil reflected escaping light back into the scintillator, thus improving the efficiency of the system. Each box was sealed and carefully checked to assure there were no light leaks.

One box was placed directly on the floor of the laboratory and then covered with a layer of lead 10 cm thick. This thickness of lead is sufficient to shield the bottom detector from well over 99% of all cosmic ray electrons found in the soft component. The second detector was placed on top of the lead shield and was aligned to cover over the bottom detector. In order to register an event as the passage of a cosmic ray muon, it was required that a particle be detected first in the top scintillator, pass through the lead shield, and then be detected in the bottom detector within the small

resolving time of 0.2 microseconds.

The output signals from the four preamplifiers in each box were fed through RG-58 coaxial cable to an 8input voltage adder. The four signals from the bottom detector were added and the four signals from the top detector were added, yielding two pulses, one from each box. These two signals were then passed to pulse shaping amplifiers with discriminators. After pulse shaping and discrimination, the output signals were fed to a highspeed coincidence module which gave an output pulse only when a pulse from the bottom and the top detectors arrived within 0.2 microseconds. The output pulse from the coincidence module was accepted as a muon event and the time of its occurrence was recorded.

A multichannel analyzer (MCA) with 1024 channels was set to operate in the scaler mode so that counts could be accumulated in each channel for preset times. The data discussed in this thesis were muon counts accumulated over one hour periods for 1024 hours. With this arrangement, data can be collected for more than 42 days. After collection, the data were transferred to the disk storage device of a microcomputer. Subsequent data analysis was accomplished using only microcomputer technology. Fig. 2 is a block diagram of the experiment.

Fig. 1. A diagram showing a top and side view of the telescope.

•

.



Fig. 2. A schematic diagram of the telescope showing major electronic parts.

•



### Optics of the instrument

The coincidence counting rate of any particle telescope depends upon the effective dimensions and relative positions of the telescope particle detectors as well as the incident intensity of radiation and the sensor efficiencies. The factor of proportionality relating the counting rate C to the isotropic intensity I is defined by the geometric factor G (Sullivan 1971). That is

# C = GI.

In order to have confidence that the telescope is functioning correctly, it is necessary to calculate the expected counting rate of the instrument. In the absence of the earth's atmosphere and magnetic field, the trajectories of cosmic ray particles can be modeled as straight lines stretching from their origins isotropically to a ground-based cosmic ray telescope. In this idealistic approximation, the optics of the instrument would be determined by simple geometry because of the purely random directions of incidence characteristic of isotropic radiation.

With the introduction of the earth's and other magnetic fields, particles with sufficient momentum would continue to reach the instrument. However, certain anisotrophies would now appear because of the interaction of the cosmic rays with these fields. When the earth's atmosphere is added to make the model more nearly complete, the primary cosmic radiation is also transformed into secondary components, a process which involves a spatial distribution of abrupt changes in directions of particle trajectories. It becomes clear that a ground-based cosmic ray telescope must involve a complex set of factors consisting of the pure geometry of the instrument, the atmosphere, and the various magnetic fields present along the particle trajectories.

A completely analytical description of a ground-based cosmic ray telescope is very complicated in all but the simplest configurations (e.g., extremely small total solid angle), and it is necessary to resort to numerical methods for large telescope arrays. A numerical calculation to determine the geometric factor of the wide-angle telescope used in this experiment is described below.

A computer program was written which computed the counting rate contributed by each 5 cm square block of detector surface in the lower sensitive area. A block was chosen on the bottom detector and all the contributions from the 5 cm blocks in the top detector were added to an accumulator after which another block was chosen on the bottom and the process continued until all the blocks on the bottom were taken into account. The vertical intensity I of cosmic ray muons at sea-level is approximately 0.008 particles/cm<sup>2</sup>/sec/sterad and the zenith angle

T dependence is approximately COS<sup>2.6</sup> T. This directional intensity was used in the calculation. Refer to page 22 for details.

In the analysis the following notation is convenient: r = radius from exit of cosmic ray at the bottom detector to the entrance at the top detector. X<sub>t</sub>, Y<sub>t</sub> = position of entry block on top detector X<sub>b</sub>, Y<sub>b</sub> = position of exit block on bottom detector 1 = normal distance between the two large detectors

The following relations result from application of simple geometry:

 $X = X_{t} - X_{b}$   $Y = Y_{t} - Y_{b}$   $R = (X^{2} + Y^{2})^{1/2}$   $r = (R^{2} + 1^{2})^{1/2}$   $T = \arctan (R / 1)$   $A = \arctan (X / 1)$   $B = \arctan (Y / 1)$ 

The projected area of the block is given by

$$S = ab cos(A) cos(B)$$

where a and b are the horizontal linear dimensions of the block.

The solid angle  $\prod$  is then

 $\int = s/r^2$ 

and the contribution to the counting rate C' from one pair of blocks is

 $C' = \prod Iab$ 

where I is the vertical intensity of the cosmic radiation. The total counting rate is the sum of the contributions over the entire detector surface multiplied by the zenith angle dependence. The calculated result for this experiment is 137.2 per second. This is in excellent agreement with the observed average counting rate of 119.7 per second. A listing of program GFACTOR.BAS, which was written to make this calculation, is given in Appendix A. Fig. 3. A diagram illustrating the geometry used in the calculation of the G factor.



# Meteorological data collection

The influence of atmospheric pressure and temperature changes on the cosmic ray counting rate as seen in a ground-level instrument such as the one described here are factors that cannot be ignored. Since muons are the only particles which are detected in the present experiment, it is important, at least in principle, to take account of the fact that they result from the decay of pions produced by primary cosmic ray particles as they interact at various depths in the earth's atmosphere. The height of production of pions and the competition between decay and nuclear interaction of these pions make the structure (density vs. altitude) of the atmosphere relevant to the ground-level muon intensity.

The Federal Aviation Administration maintains a Flight Service Station on the Texas A&M campus. This station is part of the data collection system of the National Weather Service. Several meteorological measurements, including temperature and atmospheric pressure, are made each hour. Temperature and pressure readings over the data collection period were obtained from this reporting station. For aviation purposes, atmospheric pressures recorded at the station are reported as equivalent sealevel pressures. It was necessary to convert these sealevel readings to true pressures at the laboratory elevation. The conversion was done using a standard isothermal model for the atmosphere.

# Calibration of the instrument

The output of a cosmic ray telescope using thin detectors and photomultiplier tubes exhibits a complex pulse height distribution. The area under a typical output pulse is proportional to the quantity of light received by the photomultipliers from the scintillator. The amount of light received from the scintillator depends on factors like the coupling between the photomultiplier tubes and the scintillator, Landau fluctuations, and inhomogeneities in the light-transmitting materials. When the pulse height distribution of such a system is observed with a pulse height analyzer, the result is the superposition of the noise output from the photomultiplier tubes and the pulses generated by cosmic ray muons. Because the muons are essentially all at kinetic energies well in excess of several times their relativistic rest energy, this pulse height distribution is called the minimum ionization curve. The task of calibrating the instrument involved adjusting the outputs from each of eight photomultiplier tubes so that the muon minimum ionization This calibration was accomplished in curves were similar. the following way. Each slab of scintillator was viewed by four photomultiplier tubes. The output of the first tube was fed to the low-voltage input of a CANBERRA Series 30 multichannel analyzer. The remaining three tubes were summed with a pulse adder. The output from the pulse adder was fed to an ORTEC Model 463 constant-factor discriminator where it was shaped and used to gate the multichannel analyzer. The minimum ionization curve of the first tube was then plotted and the channel number in which the curve had a maximum was noted.

The arrangement was then changed to observe the second tube's minimum ionization curve. The peak of the second curve was adjusted to fall in the same channel as the peak of the first tube by adjusting the high voltage on the second tube. This procedure was carried out for all four tubes in the top detector. Once the top detector was completed, the output of all four tubes was used to gate the multichannel analyzer while the tubes in the bottom detector were adjusted in the same fashion.

In actual operation of the telescope during data collection, the four outputs from the top detector and the four outputs from the bottom detector were fed to two separate pulse adders, yielding one pulse from the top detector and one pulse from the bottom detector. These two pulses were then fed to the input of two ORTEC Model 463 discriminators and the discrimination level adjusted to block most of the noise from the photomultiplier tubes but accepting most pulses generated by the passage of muons through the telescope.

#### CHAPTER III

#### THEORY

#### Theoretical predictions

During the first half of the 1970's, two researchers developed a theory of cosmic ray scintillations in a series of 4 papers (Owens and Jokipii 1972; Owens 1974; Owens and Jokipii 1974; Jokipii and Owens 1976).

In the first paper, a simplified approach called the "Thin-Slab" model was presented. The idea was to model the earth's magnetosheath as a thin slab of irregular magnetic field. This model followed earlier reasoning used to study scintillations or "twinkling" in the optical and radio spectrum. The model was tested using low-energy (1 to 40 MeV) particle data from experiments aboard satellites, and the predictions were in fair agreement with theory. However, when the model was tested using data from neutron monitors in the range of 1 GeV, the model failed.

The failure of the thin-slab model gave rise to speculations that the scintillations observed in neutron monitor data were related to irregularities in the interplanetary magnetic fields. In paper 2, Owens presents the General Theory of Interplanetary Scintillations in which a quasi-linear expansion of Liouville's equation is used. The general result requires relating cosmic ray scintillations to magnetic field fluctuation and to cosmic ray gradients in interplanetary space. This general theory was in fair agreement with observation from at least one neutron monitor.

In paper 3, Owens and Jokipii develop a simplified solution to the general equation for the special case of the low-frequency limit. They also took into account the modulating effect of the earth's rotation.

Finally, in paper 4 Owens and Jokipii discuss the effects of non-field aligned diffusion. Predictions of PSDF made with the model were in good agreement with observations at several neutron monitors. The theory developed in the series of papers referred to above is used below to predict the PSDF of cosmic ray scintillations at a location on the Texas A&M campus.

The normalized PSDF for a polar observing station, where the earth's rotation does not play a part, is given by

 $P_{pol}(f) = a^2 P_B$ ,

where

PB = normalized power spectrum of the magnetic field a = cosmic ray anisotropy.

For the case of an equatorial station, the result is

$$P_{eq.} = a^{2/4}[P_B(f - f_e) + P_B(f + f_e)]$$

where  $f_e$  = rotational frequency of the earth.

The PSDF for a station at some viewing latitude L is then given by

$$P(f) = P_{pol_*}(f) \sin^2 L + P_{eq_*}(f) \cos^2 L$$

The PSDF of the interplanetary magnetic field has been empirically determined by at least two groups (Hedgecock 1975; Quenby and Sear 1971) and those results are

$$P_B(f) = 1.55 \times 10^4 / (1 + (f/10^{-5})^{1.5})$$
 after

Hedgecock, and

 $P_{B}(f) = 4.10^{-3} f^{-1.2}$  after Quenby and Sear.

Fig. 4 is a plot of the PSDF predicted for a polar observing station and Fig. 5 is the PSDF for an equatorial observing station. Fig. 6 is the prediction for an observing station at geographic latitude 30 N using the Hedgecock determination of  $P_B(f)$ . The present experiment can be regarded as 75% equatorial and 25% polar. This assumption is justified because at very high rigidity,
cosmic rays arrive at the earth at about the same angle as would be the case in the absence of a geomagnetic field. Fig. 4. Predicted PSDF for a purely polar telescope. Frequency is in Hz.

.

.



Fig. 5. Predicted PSDF for a purely equatorial telescope. Frequency is in Hz.



Fig. 6. Predicted PSDF for the Texas A&M University campus. Frequency is in Hz.



#### CHAPTER IV

#### ANALYSIS

#### Description of data

The data collection phase of the experiment was started on March 22, 1983, at 18:00 hours. Cosmic ray muons were counted for one hour periods and stored in ascending channels of the Canberra Series 30 Multichannel Analyzer. Care was taken to control all photomultiplier supply voltages at constant levels. The data collection was continued for 1024 hours, or until May 4, 1983. At the end of the collection period, the data were transferred to a microcomputer floppy disk.

Since the data taken in this experiment do not constitute a continuous random record but a sampling at interrupted one-hour intervals, it is not possible to retain information in the frequency domain beyond the Nyquist folding frequency. The Nyquist folding frequency is defined as

# $f_c = 1/2h$

where h is the sampling interval (Bendat and Piersol 1971). The Nyquist folding frequency for data taken in this experiment is  $1.39 \times 10^{-4}$  Hz.

Atmospheric data collected at the Federal Aviation Administration, Flight Service Station at Easterwood Airport on the Texas A&M University campus, consisting of pressure and temperature readings, were entered into the computer and organized in such a way as to be associated with the hourly muon counting data.

# Correcting atmospheric pressure values

Atmospheric pressure readings reported from the Flight Service Station are given after being corrected to sea level. This means the reported values for pressure are values that would be read by a barometer placed in a local well at a depth equal to sea level. In order to determine the effects of the changes in atmospheric pressure on the cosmic ray counting rate, it was first necessary to convert the sea-level pressures to equivalent pressures at the altitude of the laboratory. A simple isothermal model was use to obtain the corrections (Haymes 1971).

$$P = P_{ne} - h/H$$

h = height of lab above sea-level
H = scale height of earth's atmosphere
P<sub>0</sub> = sea-level pressure
P = laboratory pressure

The scale height is defined as

H = kT/mg,

where k = Boltzmann's constant T = temperature in degrees Kelvin m = average mass of air (29 amu) g = acceleration due to gravity.

For each hour during the experiment, the temperature at the beginning of the hour was used to determine the scale height and each pressure reading was then corrected to laboratory elevation.

## Removal of long-term trend

Many times a special correction is needed to remove a long-term trend in the data, defined as any frequency component whose period is longer than the record length (Bendat & Piersol 1971). In particular, this type of component cannot be removed by highpass digital filtering. Hence some special trend removal technique must be The counting data taken in this experiment conapplied. tained a very gradual linear trend toward lower counting rates over the collection period probably caused by slowly changing values for the electrical components in the cir-It was necessary to remove this trend before cuits. further analysis was possible because the trend would have The two generally biased the results at low frequencies. accepted methods used to remove trends from counting rate

data are the average slope method and the least squares method. The least squares method was chosen here because it is the more accurate. Fig. 7 shows a plot of counting rate vs. time before trend removal. The least squares method involved finding the slope of the best straight line through the points by a least squares fit and then adjusting all points relative to a line with zero slope. Fig. 8 shows a plot of the counting rate vs. time after the removal of the long-term trend.

Trend removal is an important intermediate step in the digital processing of random data and should be given due consideration. If trends are not eliminated in data, large distortions can occur in the later processing of correlation and spectral quantities. In particular, trends in data can completely mullify the estimation of low frequency spectral content.

Fig. 7. Counting rate vs. time before trend removal.

.

•

-

•



Fig. 8. Counting rate vs. time after trend removal.

.

.



#### Pressure coefficient

Early measurements concerning the variation of the cosmic ray intensity with altitude (Pfotzer 1936) indicated that the number of particles increased with altitude to a maximum called the Pfotzer maximum. After passing this maximum, the intensity decreased and finally became constant at the top of the atmosphere. This structure is a consequence of the production of secondary particles in the atmosphere and the Pfotzer maximum is associated with the altitude in the atmosphere below which the loss of secondary particles through various interactions with the atmosphere dominates production.

The number of secondary particles lost by nuclear reactions and electromagnetic scattering depends on the cross sections for these processes in the atmosphere. The spatial rates of these losses, as well as losses due to ionization, are functions of the air density. The counting rate is correlated to the integrated effect of the density variations in the atmosphere above the instrument. Consequently the counting rate will correlate with atmospheric pressure. According to empirically determined relations, the intensity as a function of atmospheric pressure can be described by an exponential law (Sandstrom 1965). The counting rate N recorded at a given altitude, can be corrected for variations of pressure by the formula

| where | B              | = | is the deviation from the mean barometric pressure. |
|-------|----------------|---|-----------------------------------------------------|
|       | N              | = | uncorrected counting rate                           |
|       | N <sub>c</sub> | = | corrected counting rate                             |
|       | a              | = | pressure coefficient.                               |

If this equation is cast in linear form by taking logarithms on both sides, the pressure coefficient can be identified as the slope and is found by a least squares method. By this procedure, the pressure coefficient at the laboratory site was found to be  $-1.132 \times 10^{-3} \pm 0.055$ %/mbar.

 $N_{C} = Ne^{-aB}$ ,

Fig. 9 is a plot of the uncorrected counting rate vs. pressure. Fig. 10 is a plot of the counting rate after trend removal vs. pressure. That variations in atmospheric pressure have a major influence on cosmic ray counting rates is obvious in this graph. Fig. 11 shows a plot of counting rate after trend removal and after pressure correction vs. time. Fig. 12 shows a plot of the counting rate after trend removal and after pressure correction vs. pressure.

Fig 9. A plot of uncorrected counting rate vs. atmospheric pressure.

.`



Fig. 10. A plot of counting rate after trend removal vs. atmospheric pressure.

(

•

•



Fig. 11. A plot of counting rate after trend removal and after pressure correction vs. time.



Fig. 12. A plot of counting rate after trend removal and after pressure correction vs. atmospheric pressure.

•



## Temperature coefficient

The number of muons lost in the atmosphere by decay is a function of the distances they have travelled from their points of origin. The same applies to the parent pions. Consequently the counting rate of an instrument at ground level will vary with the average height of pion production. The height of the pion producing layer depends on the average atmospheric depth to which the primary protons penetrate. If it is assumed that the primary spectrum does not vary, this depth is a constant when expressed in  $g/cm^2$ . From the thermodynamics of the atmosphere it follows that the height of the pion producing layer is temperature dependent and is given by the following expression (Sandstrom 1965).

|       | $dH = (1/g)R_0 \log_e(B_1/B_2) dT$                                                              |
|-------|-------------------------------------------------------------------------------------------------|
| where | H = the height to be considered<br>in the earth's atmosphere                                    |
|       | T = the mean absolute temperature<br>of a layer between the levels<br>defined by the pressures. |
|       | $R_{O}$ = the specific gas constant of air                                                      |
|       | B <sub>1</sub> = pressure at bottom of layer                                                    |
|       | B <sub>2</sub> = pressure at top of layer                                                       |

The total cross section per unit volume for the capture of pions decreases with increasing temperature. Thus, at this stage, the number of parent particles for negative muons increases with temperature.

As can be seen, the effect of temperature on counting rate is complicated. Modern theory predicts a slight positive coefficient for muons; experimental results vary from about 0.04% per degree C to -0.05% per degree C. (Sandstrom 1965). It is generally accepted that the proper form of the required correction is linear.

A linear regression was performed on the pressure corrected data and the temperature coefficient was found to be -.017 ± 0.0062% per degree C for this experiment. Using this value, the data were corrected using a least squares fit method similar to that discussed in the section on trend removal. The final corrected counting rate data vs. temperature is shown in Fig. 13. Fig. 14 is a plot of the final corrected counting rate vs. time. A listing of the data is given in appendix C. Fig. 13. Final corrected counting rate vs. temperature.

•

•

•

•

-



Fig. 14. Final corrected counting rate vs. time.

.

•



#### Statistical information

The Poisson distribution represents an approximation to the binomial distribution for the special case when the average number of events is very much smaller than the possible number of events and is generally appropriate for counting experiments such as a cosmic ray telescope. With high counting rates, the shape of the Poisson distribution is similar to the normal distribution.

It is interesting to compare the observed frequency distribution with the normal distribution. One way of achieving a comparison is by determining curve type criteria after Pearson (Arkin and Colton, 1970). Parameters calculated for this experiment were mean, standard deviation, kurtosis, and skewness.

The kurtosis of a frequency distribution is a measure of its peakedness. If kurtosis is greater than 3, then the curve is said to be leptokurtic or more peaked than the normal curve. If kurtosis is less than 3, then the curve is said to be platykurtic or more flat-topped than the normal curve.

Skewness is a term for the degree of distortion from symmetry exhibited by a frequency distribution. It is a measure of the difference between the mean and the mode of a distribution. When a distribution is perfectly symmetrical, the skewness is zero.

The results found for these counting data are:

| Mean               | = | 430730.7 counts/hr |
|--------------------|---|--------------------|
| Standard deviation | = | 3367.5 counts/hr   |
| Kurtosis           | = | 0.12899            |
| Skewness           | = | 0.1437.            |

#### Power spectral density analysis

Although power spectral analysis has been a tool in engineering for years (Blackman and Tukey 1958), its use in cosmic ray research has closely followed the development of the digital computer. With both high-energy and low-energy cosmic rays, the PSDF tends to be broadbanded and featureless and is well approximated by a power law of the form

| P(f) | = | Af-a       | (1) |
|------|---|------------|-----|
| A    | = | a constant |     |
| a    | = | a constant |     |
| f    | = | frequency. |     |

where

For this kind of spectrum, a log-log graph gives the best representation. However, spectra calculated by the commonly used correlation function (CF) or the Fast Fourier transform (FFT) techniques (Blackman and Tukey 1958; Bendat and Piersol 1971) give estimates linearly spaced in frequency. For this reason, most recent investigators has chosen the lesser known Nested Variance (NV) method (Owens 1977). The Nested Variance algorithm for

calculating the PSDF is superior to the CF and FFT methods for cosmic ray time series because it gives spectral estimates spaced logarithmically in frequency, it takes less computing time, and it easily accommodates data gaps. For these reasons, this method of analysis was chosen for this investigation.

Consider a time series of a stationary Gaussian random variable x(t) with zero mean. The average value of x(t), calculated over a time t, is

$$\bar{x}_{t} = (1/t) \int_{0}^{t} x(t') dt'$$
 (2)

and the variance of the sample mean is

$$V_{t} = \langle \overline{X}_{t}^{2} \rangle \tag{3}$$

where brackets indicate an ensemble average. Let x(t') be represented by a Fourier-Stieltjes integral of the form (Yaglom 1962)

$$x(t') = \int_{-\infty}^{\infty} e^{iwt'} \hat{x}(w) dw/6.283 \qquad (4)$$

After replacing x(t') in (2) with (4) one obtains  $X_t$  in terms of  $\tilde{x}(w)$ . Putting this result into (3) and using the Wiener-Khintchine theorem (Bendat and Piersol 1971) we have

$$\langle \hat{\mathbf{x}}(\mathbf{w}) \, \hat{\mathbf{x}}^{*}(\mathbf{w}') \rangle = 6.283 \, (\mathbf{w} - \mathbf{w}') \, \mathbf{P}(\mathbf{w})$$
 (5)

where P is the PSDF of x(t). The resulting variance is

$$V_{t} = \int_{-\infty}^{\infty} P(w)G(w;t) dw/6.283$$
 (6)

where the filter G(w;t) in the frequency domain is given by

$$G(w;t) = \sin^2(wt/2)/(wt/2)^2$$
 (7)

Now consider the variance calculated over some time T greater than t. Since (6) is linear in P, the difference  $V_t - V_T$  will be a relation similar to (6) with the filter G'(w't,T) = G(w;t) - G(w;T). Choosing T = 2t and defining the PSDF as a function of positive frequency f = w/6.283, we have

$$V_{t} - V_{2t} = \int_{0}^{\infty} P(f)h(f;t)df \qquad (8)$$

where

$$h(f;t) = sin^4(3.145ft)/(3.145ft)^2$$
 (9)

The filter h(f;t) gives a fair representation of an ideal band pass filter with limits 1/4t and 1/2t. Since

the integral of h(f;t) over frequency is  $(4t)^{-1}$ , we have the estimate

$$P[(1/4t) \leq f \leq (1/2t)] = 4t[vt - v^{2}t] \quad (10)$$

Equation (10) is the basis of the nested variance method. During calculation, the estimates are obtained over the range 1/4t to 1/2t for times t and 2t. Next the variance of data averaged over 4t is obtained and subtracted from the variance over 2t. Equation (10) is applied and this process is continued until the final variance is obtained with an averaging time that is half the record length. The estimates are over ranges decreasing by powers of 2 starting at the Nyquist folding frequency.

The spectral estimates have a chi-squared distribution with N/2 degrees of freedom where N is the number of observations. This result gives good statistical accuracy at high frequencies and less accuracy at lower frequencies. The standard error for the k<sup>th</sup> estimate is given by (Bendat and Piersol 1971) as

$$P^{k} = [1 + (2/f)^{0.5}]$$
(11)

A listing of the computer program used to do Nested Variance analysis is given in Appendix B.
## CHAPTER V

## DISCUSSION

## Discussion of results

The PSDF for the data obtained in this experiment was calculated by the Nested Variance methods outlined in Chapter IV. The maximum number of estimates possible by this method is nine and the results are listed in Table I below.

| TABLE I      |  |  |  |  |  |  |  |  |
|--------------|--|--|--|--|--|--|--|--|
| Log of power |  |  |  |  |  |  |  |  |
| -1.555       |  |  |  |  |  |  |  |  |
| -1.209       |  |  |  |  |  |  |  |  |
| -0.706       |  |  |  |  |  |  |  |  |
| -0.294       |  |  |  |  |  |  |  |  |
| 0.293        |  |  |  |  |  |  |  |  |
| 0.493        |  |  |  |  |  |  |  |  |
| 0.920        |  |  |  |  |  |  |  |  |
| 1.260        |  |  |  |  |  |  |  |  |
| 2.026        |  |  |  |  |  |  |  |  |
|              |  |  |  |  |  |  |  |  |

The average counting rate during the data collection phase of the experiment was 400730.72 counts/hour. The standard deviation was calculated to be 3362.28 counts/hour. The expected power level from a purely random Poisson noise is  $10^{-1.777}$  Hz<sup>-1</sup>. In order to avoid the effects of aliasing, calculation of the spectrum was terminated at the Nyquist folding frequency. For an experiment with a sampling rate of 1/hour, the Nyquist folding frequency is  $10^{-3.857}$ . A regression analysis was performed on logarithms of the estimates of the PSDf with the resultant slope and Y-intercept being -1.360 and -6.951 respectively.

Fig. 15 and Fig. 16 are graphs of the estimates to the PSDF as described above. The vertical bars represent standard errors based on the degrees of freedom for each estimate (Bendat and Piersol 1971). Horizontal bars indicate the width of each frequency band from which estimates were derived. The bold dashed line is the result of the linear regression analysis and the solid curve is the predicted cosmic ray muon PSDF for the Texas A&M University campus site. The horizontal dashed line shows the power due to Poisson noise and the vertical dotted line shows the Nyquist folding frequency. Fig. 15 uses interplanetary magnetic field data by Hedgecock (1975) and Fig. 16 uses interplanetary magnetic field data by Quenby and Sear (1971). As can be seen from the two graphs, the results of this experiment are in better agreement with the work of Hedgecock. Even though the resolution of this analysis is low, there is little indication of a sharp peak in the PSDF at the earth's rotational frequency as is predicted using the Quenby and Sear data. Also the slope of the Quenby and Sear data is steeper than the slope calculated in this experiment. This is not to say that the Quenby and Sear result should be disregarded. Their

prediction is never more than one order of magnitude from the estimates obtained in this experiment. In astrophysics, that is still a good fit. Implications of these results are discussed in Chapter VI. Fig. 15. A comparison of the muon PSDF at TAMU with the theory using data by Hedgecock. Frequency is in Hz.



Fig. 16. A comparison of the muon PSDF at TAMU with the theory using data by Quenby and Sear. Frequency is in Hz.



### CHAPTER VI

### CONCLUSIONS

# Summary

During the last decade, A. J. Owens and J. R. Jokipii along with several other researchers, developed a theory which sought to explain recently observed scintillation in the secondary cosmic radiation. After several years, the theory developed to the extent that predictions drawn from the work were in good agreement with observations using ground-level neutron monitors. The theory had not been tested using the "hard" component of the secondary cosmic radiation.

A cosmic ray muon telescope was designed, built, and calibrated at Texas A&M University with the aim of testing the theory using the hard component of cosmic radiation.

Counting data were collected between March 22, 1983, and May 4, 1983. In addition, atmospheric pressure and temperature data were obtained from the Federal Aviation Administration's Flight Service Station at Easterwood Airport on the Texas A&M campus.

The output of the experiment was an hourly record of cosmic ray muon counting rate and, therefore, the output constituted a time series. Long-term trends were removed from the time series. Corrections were made to compensate for the effects of atmospheric pressure and temperature. Certain statistical parameters were calculated for the time series.

Estimates of the PSDF were calculated by the Nested Variance method and results of this analysis were compared to predictions of the Owens and Jokipii theory using two different empirical formulas for the PSDF of the interplanetary magnetic field. The PSDF for the time series recorded at Texas A&M was in good agreement with both predictions. Agreement was better for the formula published by Hedgecock.

## Conclusions

The Owens and Jokipii theory is in very good agreement with observations made in the 5.6 GV range at Texas A&M University with the cosmic ray muon telescope described here.

Muon telescopes can be used to observe changes in the PSDF of the interplanetary magnetic field through which the primary cosmic ray must pass.

With independent data on the interplanetary magnetic field PSDF, a cosmic ray muon telescope can be used to measure the cosmic ray anisotropy.

Large improvements in the resolution and frequency range could be expected by increasing the effective sensitive area of the telescope. This is especially important

#### REFERENCES

- Alfven, H., and Malmfors, K. G., 1943, <u>Astr. Fys</u>., <u>29</u>, 24
- Andersson, C. P., 1932, <u>Science</u>, <u>76</u>, 692
- Arkin, H., and Colton, R. R., 1970. <u>Statistical Methods</u>, Barns and Noble, New York.
- Attolini, M. P., Cecchini, S., and Guidi, I., 1978, <u>Nuoyo</u> <u>Cim</u>, <u>Cl</u>, 275
- Bendat, J. S., and Piersol, A. G., 1971, <u>Random Data:</u> <u>Analysis and Measurement Procedures</u>, Wiley-Interscience, New York.
- Bhabha, H. J., 1937, <u>Proc. Roy. Soc</u>. London, <u>A159</u>, 432
- Blackett, P. M. S., and Occhialini, G. P. S., 1933, Proc. Royal. Soc. London, A139, 699
- Blackman, R. B., and Tukey, J. W., 1958, <u>The Measurement</u> of <u>Power Spectra</u>, Dover Publications, New York.
- Carlson, J. F., and Oppenheimer, H. R., 1937, <u>Phys. Rev.</u>, <u>51</u>, 220
- Clay, J., 1927, Proc. Amsterdam, <u>30</u>, 1115
- Compton, A. H., Bennett, R. D., and Stearns, J. C., 1932, <u>Phys. Rev. 41</u>, 119
- Elliot, H., and Dolbear, D. W. N., 1950, <u>Proc. Phys. Soc.</u>, <u>63</u>, 137
- Elster, J., 1900, Phys. Zeits, 2, 560
- Erdős, G., Gombosi, I., Köta, J., Owens, A. J., Somogyi, A. J., Varga, A., 1977, <u>15th Int. Cosmic Ray Conf</u>., Paris, France, Paper T-445
- Euler, H., and Heisenberg, W., 1938, Erg. Exakt. Naturwi., 17,
- Geitel, H., 1900, Phys. Zeits, 2, 116
- Haymes, R. C., 1971, <u>Introduction to Space Science</u>, John Wiley and Sons, Inc., New York.
- Hedgecock, P. C., 1975, Solar Phys., 42, 497

- Heisenberg, W., 1938, Physik., 101, 533
- Heitler, W., 1937, Proc. Roy, Soc. London, Al61, 261
- Hess, V. F., 1912, Phys. Zeits, 13, 1084
- Hess, V. F., and Graziadei, H. T., 1936, <u>Terr. Mag. Atmos.</u> <u>Elect.</u>, <u>41</u>, 9
- Johnson, T. H., 1938, <u>Phys. Rev.</u>, <u>43</u>, 3811
- Jokipii, J. R., and Owens, A. J., 1976, <u>J. Geophys. Res</u>, <u>81</u>, 2094
- Kane, R. P., 1962, <u>J. Geophys. Res.</u>, <u>67</u>, 1295
- Kohlhorster, W., 1913, Phys. Zeits, 14, 1153
- Kohlhorster, W., and Salis, G. V., 1923, <u>Naturwiss</u>, <u>14</u>, 936
- Lange, I., and Forbush, S. E., 1948, <u>Carnegie Institute of</u> <u>Washington Publications</u>, <u>175</u>
- Lindholm, F., 1928, <u>Gerl. Beitr. Geophys., 20</u>, 12
- Nishina, Y., Takeuchi, M., and Ichimiya, T., 1937, <u>Phys.</u> <u>Rev.</u>, <u>52</u>, 1198
- Oppenheimer, R. J., and Serber, R., 1937, <u>Phys. Rev., 51</u>, 1113
- Owens, A. J., and Jokipii, J. R., 1972, <u>J. Geophys. Res</u>., <u>77</u>, 6639
- Owens, A. J., and Jokipii, J. R., 1974, <u>J. Geophys. Res</u>., <u>79</u>, 907
- Owens, A. J., 1974, <u>J. Geophys. Res., 79</u>, 895
- Owens, A. J., 1977, J. Geophys. Res., 82, 3315
- Pfotzer, G., 1936, <u>Z. Phys.</u>, <u>23</u>, 102
- Pomerantz, M. A., Duggal, S. P., and Nagashima, K., 1962, J. Phys. Soc. Japan, 17, Suppl. A-II 464
- Powell, C. F., Occhialini, G. P. S., and Chilton, 1946, Journ. Sci. Inst., 23, 102
- Quenby, J. J., and Sear, J. F., 1971, <u>Int. Conf. Cosmic</u> <u>Rays</u>, 2, 771

- Rossi, B., 1933, <u>A. Physik</u>, <u>82</u>, 151
- Rossi, B., 1934, <u>Ric. Sci., 5</u>, 569
- Rossi, B., 1935, Proc. Int. Conf. Phys., Vol. 1, 238
- Sakata, S., and Tanikawa, Y., 1939, Phys. Rev., 57, 548
- Sakata, S., 1940, Phys. Rev., 58, 576
- Sandstrom, A. E., 1965, <u>Cosmic Ray Physic</u>, North-Holland Publishing Company, Amsterdam.
- Sandstrom, A. E., and Lindgren, S., 1959, <u>Ark. Fys</u>., <u>16</u>, 137
- Schonland, B. F. J., Delatizky, B., adn Gaskell, J., 1937, Terr. Mag. Atmos. Elect., 42, 137
- Serber, R., and Oppenheimer, R. J., 1938, Phys. Rev., 54, 317
- Stormer, C., 1930, <u>Z. Astrophys., 1</u>, 2371
- Street, J. C., and Stevenson, E. C., 1937, Phys. Rev., 52, 1003
- Sullivan, J. D., 1971, Nucl. Instr. and Meth., 95, 5
- Toptygin, I. N., Vasilijev, V. N., 1976, <u>Astro. Phys. and</u> Space Sci., <u>48</u>, 267
- Wilson, C. R. T., 1900, Pro. Camb. Phil. Soc., 11, 52
- Yaglom, A. M., 1972, <u>An Introductions to the Theory of</u> <u>Stationary Random Functions</u>, Prentice-Hall, New York.
- Yukawa, H., 1935, Proc. Phys. Math. Soc. Japan, 17, 48

## APPENDIX A

#### PROGRAM GFACTOR

```
1 +
1*
     Program - GFACTOR.BAS
• *
۱ 🛨
     Written by - ROBERT BENSON
1 *
1 *
1 *
     Last Modified - 11/3/84
1 *
     Purpose
1 *
     To calculate, by numerical integration, the
1 *
     geometric factor of a simple retangular cosmic
1 ★
     ray telescope
1 *
1 *
     Description of parameters
1 *
               - length of detector
     а
1 *
               - width of detector
     b
1 *
               - vertical spacing of detectors
     1
     intensity - vertical intensity
1 *
     exponent - zenith angle dependence
1 *
1 *
               - step size
     inc
1 *
1
t.
        cls
        a = 180
        b = 90
        1 = 50.1
        intensity = 8.0e-3
        exponent = 2.6
        inc = 5
        for i% = 1 to a step inc
        for j% = 1 to b step inc
        for k = 1 to a step inc
        for n_{\theta} = 1 to b step inc
        \mathbf{x} = \mathbf{k} \mathbf{\hat{s}} = \mathbf{I} \mathbf{\hat{s}}
        y = n - j 
        rsq = x^2 + x^2
        r = sqr(rsq)
        the = atn(r/1)
        xp = cos(atn(x/1))
        yp = cos(atn(y/1))
        area = xp * yp * inc^2
        roe = sqr(r^2 + 1^2)
        sang = area/roe<sup>2</sup>
```

## APPENDIX B

## PROGRAM PILOTA - Nested Variance Method

```
1 +
1 *
         PILOTA BAS
1 +
1 *
1 *
         Written by Robert Benson 02/06/85
1 *
1 +
         Last Revision - 02/15/85
1 +
1 +
1 *
1 *
          PROGRAM DESCRIPTION
1 +
1.
          This program calculates the power density
          spectrum by the "Nested Variance Method"
1 *
1 *
          The user must setup the following items
1 +
1 *
1 +
          x() = array of input data
               = time between observations
1 *
          t
1 *
              = number of observations
          n &
1 *
          if iave = 0 then the power spectrum of
1 *
                      x - \langle x \rangle is calculated
1 *
1 *
1 *
          if iave = 1 then the power spectrum of
                      (x - \langle x \rangle) / \langle x \rangle is calculated
1 +
1 +
          for details of method see:
1 +
          (Owens, A. J., J. Geophys. Res., 82, 3315, 1977)
1 +
1*
1 *
1 +
          1 *
          :: INCLUDE FILES ::
1 *
          1 *
                NONE
1 +
1 +
*****
     dim x(1024), xig(1024)
     def fnlg(z)=log(z)/2.30259
     f$ = "##.###"
     t=3600
```

```
n%=1024
     iave%=1
     gosub 1100 : '<---- Routine to read in data
     xave=0
     sig2=0
     rn=0
     fc=1/(2*t)
     for i%=1 to n%
     xig(i\vartheta)=0
     if abs(x(i%))<.000001 then 10
     xiq(i) = 1
     rn=rn+l
     xave=xave+x(i%)
     sig2=sig2+x(i)^2
10
     next i%
     j%=2^(int(log(n%)/log(2)+.99))
     for i = n + 1 to j +
     x(i) = 0
     xiq(i) = 0
     18
     xave=xave/rn
     sig2=sig2/rn-xave^2
     sig=sqr(sig2)
     log.pnoise = fnlg(2/(xave/t))
     loq.nyquist = fnlg(1/(2*t))
     qosub 1400 : '<---- Print routine
     for i%=1 to n%
     x(i) = x(i) - xave
     if iave%<=0 then 20
     x(i) = x(i) / xave
     next i%
20
     if iave%<=0 then 30
     siq2=siq2/xave^2
30
     1%=1
     n%=j%
1000 rnn=0
     sig2n=0
     for i%=2 to n% step 2
     j%=i%/2
     xig(i) = .5*(xig(i) + xig(i))
      if xiq(j%)<=.000001 then 40
```

```
x(j%)=.5*(x(i%-1)*xig(i%-1)+x(i%)*xig(i%))/xig(j%)
40
   rnn=rnn+xiq(j%)
   sig2n=sig2n+xig(j%)*x(j%)^2
   next i%
   sig2n=sig2n/rnn
    fl=fc/2^{1}
    fu=f1*2
    p=(siq2-siq2n)/(fu-fl)
    d=rn-rnn
    pe=p*sqr(2/d)
    gosub 1200 : '<---- Go do calculations
    18=18+1
    n_{n=n_{2}/2}
    rn=rnn
    sig2=sig2n
    if n%>3 then 1000
    gosub 1300 : '<---- Print routine
    end
Routine to read in data
    input"Enter the file name for data ";filename$
    open"i",1,filename$
    for i%=1 to 1024
    input#1,x(i%)
    next i%
    close
    return
Routine to calculate power
    1
    low.freq = fl
    high.freg = fu
    cent.freq = fl + (fu-fl)/2
    log.low.freq = fnlg(low.freq)
    log.high.freg = fnlg(high.freq)
    log.cent.freq = fnlg(cent.freq)
    low.pow = p-pe
    high.pow = p+pe
    cent.pow = p
```

```
if low.pow = 0 then log.low.pow = 0 : goto 100
    log.low.pow = fnlg(low.pow)
    log.high.pow = fnlg(high.pow)
100
    log.cent.pow = fnlg(cent.pow)
    count = count + 1
    sum.freq.pow = sum.freq.pow + log.cent.pow * _
         log.cent.freq
    sum.freq = sum.freq + log.cent.freq
sum.pow = sum.pow + log.cent.pow
    sum.freq.sqr = sum.freq.sqr + log.cent.freq * _
         log.cent.freq
     lprint using f$; log.low.freq; : lprint tab(10);
    lprint using f$; log.cent.freq; : lprint tab(19);
    lprint using f$; log.high.freq; : lprint tab(30);
    lprint using f$; log.low.pow; : lprint tab(39);
     lprint using f$; log.cent.pow; : lprint tab(48);
     lprint using f$; log.high.pow; : lprint tab(67);
     lprint using"#####"; d
     return
Print routine
     lprint:lprint:lprint
     lprint "Mean value of data is ";tab(35)_
                :lprint using "##########"; xave
     lprint "Standard deviation is ";tab(35)_
                :lprint using"##########;sig
     lprint "Log of Poisson noise level is ";tab(40)_
                :lprint using f$;log.pnoise
     lprint "Log of Nyquist folding frequency is "; .
          tab(40) : lprint using f$;log.nyquist
     slope = (count% * sum.freq.pow - sum.freq * _
          sum.pow)/(count% * sum.freq.sqr - _
          (sum.freq)<sup>2</sup>)
     yint = sum.pow/count% - slope * sum.freq/count%
     lprint
     lprint "Slope is ";tab(40);:lprint using f$;slope
     lprint "Y intercept is ";tab(40);: _
```

# APPENDIX C

# SCINTILLATION DATA

| DATE         | HOUR | TEMP   | PRESS<br>CORR | COUNT<br>RAW | COUNT<br>DT | COUNT<br>PCTC |
|--------------|------|--------|---------------|--------------|-------------|---------------|
| 03-22-83     | 18   | 286.49 | 1010.09       | 446821       | 435127      | 436375        |
| 03-22-83     | 19   | 285.94 | 1010.97       | 446916       | 435245      | 437043        |
| 03-22-83     | 20   | 285.94 | 1011.27       | 448104       | 436456      | 438432        |
| 03-22-83     | 21   | 285.94 | 1012.16       | 448028       | 436402      | 438892        |
| 03-22-83     | 22   | 285.38 | 1012.45       | 448411       | 436808      | 439511        |
| 03-22-83     | 23   | 285.38 | 1013.05       | 445948       | 434368      | 437402        |
| 03-22-83     | 24   | 285.38 | 1013.05       | 445848       | 434291      | 437324        |
| 03-23-83     | 1    | 285.38 | 1014.04       | 446964       | 435430      | 439044        |
| 03-23-83     | 2    | 284.27 | 1014.03       | 444732       | 433221      | 430890        |
| 03-23-83     | 3    | 284.27 | 1013.53       | 443556       | 432068      | 435445        |
| 03-23-83     | 4    | 283.72 | 1013.53       | 443521       | 432055      | 4334/4        |
| 03-23-83     | 5    | 283.16 | 1014.02       | 443439       | 432010      | 435/59        |
| 03-23-83     | 6    | 282.60 | 1014.51       | 443923       | 432303      | 430570        |
| 03 - 23 - 83 | /    | 203.10 | 1015.00       | 443313       | 432122      | 436176        |
| 03 - 23 - 83 | 0    | 203.12 | 1016.01       | 442/12       | 431330      | 437765        |
| 03-23-03     | 10   | 203.30 | 1016.62       | 444057       | 432000      | 436481        |
| 03-23-03     | 10   | 287.05 | 1016 35       | 442000       | 432188      | 436894        |
| 03-23-83     | 12   | 280.10 | 1015.98       | 443397       | 432114      | 436479        |
| 03-23-83     | 13   | 290.94 | 1015.00       | 446350       | 435090      | 438833        |
| 03-23-83     | 14   | 290.94 | 1014.20       | 446931       | 435694      | 438979        |
| 03-23-83     | 15   | 290.94 | 1013.21       | 447371       | 436157      | 438872        |
| 03-23-83     | 16   | 292.05 | 1013.02       | 446215       | 435024      | 437537        |
| 03-23-83     | 17   | 291.49 | 1012.62       | 446987       | 435819      | 438149        |
| 03-23-83     | 18   | 290.94 | 1013.01       | 446381       | 435236      | 437830        |
| 03-23-83     | 19   | 288.16 | 1013.28       | 445050       | 433927      | 436880        |
| 03-23-83     | 20   | 285.38 | 1013.55       | 444424       | 433324      | 436638        |
| 03-23-83     | 21   | 284.27 | 1014.23       | 444267       | 433190      | 436979        |
| 03-23-83     | 22   | 284.27 | 1014.23       | 442898       | 431844      | 435621        |
| 03-23-83     | 23   | 283.16 | 1014.51       | 442739       | 431708      | 435729        |
| 03-23-83     | 24   | 283.16 | 1014.21       | 442511       | 431503      | 435350        |
| 03-24-83     | l    | 282.05 | 1014.50       | 442632       | 431647      | 435746        |
| 03 - 24 - 83 | 2    | 281.49 |               | 443570       | 432007      | 436970        |
| 03 - 24 - 83 | 3    | 202.05 | 1014.20       | 443971       | 433352      | 437294        |
| 03 - 24 - 83 |      | 282.00 | 1014.21       | 442329       | 431435      | 435324        |
| 03-24-03     | 5    | 281.49 | 1014.49       | 443226       | 432355      | 436498        |
| 03 - 24 - 83 | 7    | 280.38 | 1015.08       | 444054       | 433206      | 437781        |
| 03-24-83     | 8    | 283.16 | 1015.70       | 441490       | 430665      | 435359        |
| 03-24-83     | 9    | 288.16 | 1016.35       | 442335       | 431532      | 436230        |
| 03-24-83     | 10   | 290.94 | 1016.38       | 444628       | 433848      | 438377        |
| 03-24-83     | 11   | 292.05 | 1016.00       | 443524       | 432767      | 436981        |
| 03-24-83     | 12   | 293.16 | 1015.32       | 444364       | 433630      | 437376        |
| 03-24-83     | 13   | 293.72 | 1013.94       | 446509       | 435798      | 438721        |

| 03-24-83     | 14             | 294.83 | 1013.25 | 447138        | 436450 | 438893 |
|--------------|----------------|--------|---------|---------------|--------|--------|
| 03-24-83     | 15             | 294.83 | 1012.66 | 447190        | 436525 | 438627 |
| 03-24-83     | 16             | 295.38 | 1011.38 | 447554        | 436911 | 438232 |
| 03-24-83     | 17             | 294.27 | 1011.16 | 447207        | 436587 | 437865 |
| 03-24-83     | 18             | 293.16 | 1011.15 | <b>447759</b> | 437162 | 438520 |
| 03-24-83     | 19             | 290.94 | 1011.62 | 445326        | 434752 | 436542 |
| 03-24-83     | 20             | 289.83 | 1011.91 | 446731        | 436180 | 438229 |
| 03-24-83     | 21             | 287.60 | 1012.28 | 445357        | 434829 | 437253 |
| 03-24-83     | 22             | 287.05 | 1012.97 | 446882        | 436377 | 439252 |
| 03-24-83     | 23             | 286.49 | 1012.96 | 444417        | 433934 | 436829 |
| 03-24-83     | 24             | 285.38 | 1012.55 | 444480        | 434020 | 436764 |
| 03-25-83     | 1              | 284.83 | 1015.62 | 445261        | 434824 | 439390 |
| 03-25-83     | 2              | 283.16 | 1012.63 | 446232        | 435818 | 438789 |
| 03-25-83     | 3              | 283.16 | 1012.63 | 446446        | 436055 | 439027 |
| 03-25-83     | 4              | 280.94 | 1012.01 | 446603        | 436235 | 439019 |
| 03-25-83     | 5              | 280.94 | 1011.61 | 446561        | 436216 | 438768 |
| 03-25-83     | 6              | 281.49 | 1011.62 | 446784        | 436461 | 438978 |
| 03-25-83     | 7              | 281.49 | 1011.62 | 448025        | 437725 | 440249 |
| 03-25-83     | 8              | 284.83 | 1011.95 | 446880        | 436603 | 439058 |
| 03-25-83     | 9              | 288.72 | 1012.99 | 445691        | 435437 | 438190 |
| 03-25-83     | 10             | 290.94 | 1012.71 | 446826        | 436595 | 439023 |
| 03-25-83     | 11             | 293.16 | 1014.03 | 445730        | 435522 | 438537 |
| 03-25-83     | $\frac{1}{12}$ | 292.60 | 1013.33 | 447088        | 436903 | 439565 |
| 03-25-83     | 13             | 292.05 | 1012.63 | 446700        | 436537 | 438834 |
| 03-25-83     | 14             | 292.60 | 1011.94 | 448709        | 438569 | 440433 |
| 03 - 25 - 83 | 15             | 292.60 | 1011.34 | 448786        | 438669 | 440186 |
| 03 - 25 - 83 | 16             | 292.60 | 1010.85 | 448277        | 438183 | 439414 |
| 03-25-83     | 17             | 292.60 | 1010.65 | 447982        | 437911 | 439025 |
| 03-25-83     | 18             | 291.49 | 1011.23 | 447313        | 437265 | 438798 |
| 03-25-83     | 19             | 287.60 | 1012.98 | 446143        | 436118 | 438954 |
| 03-25-83     | 20             | 287.05 | 1012.97 | 444780        | 434778 | 437642 |
| 03-25-83     | 21             | 287.05 | 1013.27 | 444255        | 434275 | 437308 |
| 03-25-83     | 22             | 286.49 | 1013.95 | 444649        | 434692 | 438163 |
| 03-25-83     | 23             | 287.05 | 1013.96 | 443319        | 433385 | 436809 |
| 03-25-83     | 24             | 287.05 | 1013.96 | 442047        | 432136 | 435551 |
| 03-26-83     | 1              | 287.05 | 1013.96 | 441125        | 431237 | 434644 |
| 03 - 26 - 83 | 2              | 287.05 | 1013.66 | 439035        | 429170 | 432391 |
| 03-26-83     | 3              | 287.05 | 1013.66 | 440901        | 431059 | 434293 |
| 03-26-83     | 4              | 287.05 | 1013.27 | 440926        | 431106 | 434117 |
| 03-26-83     | 5              | 286.49 | 1012.96 | 440751        | 430954 | 433829 |
| 03-26-83     | 6              | 286.49 | 1012.96 | 440710        | 430936 | 433811 |
| 03-26-83     | 7              | 286.49 | 1013.66 | 442095        | 432344 | 435630 |
| 03 - 26 - 83 | 8              | 288.72 | 1013.68 | 439166        | 429438 | 432547 |
| 03-26-83     | 9              | 289.83 | 1013.99 | 440005        | 430300 | 433508 |
| 03 - 26 - 83 | 10             | 290.94 | 1014.00 | 438723        | 429041 | 432161 |
| 03-26-83     | 11             | 292.60 | 1013.63 | 437772        | 428112 | 430890 |
| 03-26-83     | 12             | 294.27 | 1012.95 | 438568        | 428931 | 431203 |
| 03-26-83     | 13             | 295.94 | 1012.18 | 439409        | 429795 | 431508 |
| 03-26-83     | 14             | 295.38 | 1010.88 | 440569        | 430978 | 431996 |
| 03-26-83     | 15             | 296.49 | 1009.80 | 440042        | 430474 | 430793 |
| 03-26-83     | 16             | 295.38 | 1009.09 | 442335        | 432790 | 432790 |
| 03-26-83     | 17             | 295.38 | 1008.90 | 448234        | 438712 | 438602 |

•

| 03-26-83 | 18 | 294.83 | 1009.29 | 441445 | 431945                 | 432101         |
|----------|----|--------|---------|--------|------------------------|----------------|
| 03-26-83 | 19 | 293.16 | 1008.87 | 443358 | 433881                 | 433923         |
| 03-26-83 | 20 | 292.60 | 1009.26 | 443179 | 433725                 | 434032         |
| 03-26-83 | 21 | 291.49 | 1009.65 | 441146 | 431715                 | 432327         |
| 03-26-83 | 22 | 290.38 | 1010.23 | 441316 | 431908                 | 432934         |
| 03-26-83 | 23 | 289.27 | 1010.22 | 440862 | 431477                 | 432580         |
| 03-26-83 | 24 | 289.27 | 1010.22 | 441140 | 431778                 | 432882         |
| 03-27-83 | 1  | 289.83 | 1010.22 | 441728 | 432388                 | 433451         |
| 03-27-83 | 2  | 289.83 | 1009.53 | 440960 | 431643                 | 432311         |
| 03-27-83 | 3  | 289.83 | 1009.23 | 441022 | 431728                 | 432225         |
| 03-27-83 | 4  | 288.16 | 1008.82 | 441612 | 432341                 | 432730         |
| 03-27-83 | 5  | 287.05 | 1009.20 | 440903 | 431655                 | 432344         |
| 03-27-83 | 6  | 287.60 | 1009.21 | 442301 | 433076                 | 433731         |
| 03-27-83 | 7  | 288.16 | 1009.21 | 440713 | 431511                 | 432122         |
| 03-27-83 | 8  | 289.27 | 1009.92 | 439430 | 430250                 | 431179         |
| 03-27-83 | 9  | 291.49 | 1009.94 | 441036 | 431879                 | 432656         |
| 03-27-83 | 10 | 293.16 | 1009.76 | 439329 | 430195                 | 430742         |
| 03-27-83 | 11 | 294.83 | 1009.48 | 437754 | 428643                 | 428905         |
| 03-27-83 | 12 | 295.94 | 1009.20 | 442616 | 433528                 | 4335 <b>49</b> |
| 03-27-83 | 13 | 297.60 | 1008.42 | 439601 | 430536                 | 429989         |
| 03-27-83 | 14 | 298.16 | 1007.44 | 438737 | 429695                 | 428554         |
| 03-27-83 | 15 | 298.72 | 1006.85 | 439254 | 430234                 | 428716         |
| 03-27-83 | 16 | 298.72 | 1006.85 | 439782 | 430785                 | 429264         |
| 03-27-83 | 17 | 297.05 | 1006.83 | 438823 | 429849                 | 428445         |
| 03-27-83 | 18 | 295.94 | 1007.61 | 438981 | 430030                 | 429149         |
| 03-27-83 | 19 | 294.27 | 1007.59 | 438096 | 429168                 | 428402         |
| 03-27-83 | 20 | 293.16 | 1007.88 | 437809 | 428904                 | 428385         |
| 03-27-83 | 21 | 292.05 | 1008.46 | 438537 | 429655                 | 429547         |
| 03-27-83 | 22 | 291.49 | 1008.85 | 437745 | 428886                 | 429041         |
| 03-27-83 | 23 | 290.94 | 1008.85 | 438619 | 429782                 | 429978         |
| 03-27-83 | 24 | 290.94 | 1008.45 | 439605 | 4307 <b>91</b>         | 430760         |
| 03-28-83 | 1  | 290.94 | 1008.15 | 439391 | 430600                 | 430399         |
| 03-28-83 | 2  | 291.49 | 1007.56 | 438682 | 429914                 | 429338         |
| 03-28-83 | 3  | 292.05 | 1006.58 | 438358 | 429613                 | 428442         |
| 03-28-83 | 4  | 292.05 | 1005.98 | 439287 | 430565                 | 429052         |
| 03-28-83 | 5  | 292.60 | 1005.99 | 438949 | 430250                 | 428702         |
| 03-28-83 | 6  | 292.05 | 1005.98 | 438846 | 430169                 | 428657         |
| 03-28-83 | 7  | 292.05 | 1005.98 | 438707 | 430053                 | 428541         |
| 03-28-83 | 8  | 292.60 | 1006.29 | 437735 | 429104                 | 427729         |
| 03-28-83 | 9  | 293.16 | 1006.19 | 438724 | 430116                 | 428640         |
| 03-28-83 | 10 | 294.27 | 1006.21 | 441684 | <b>4</b> 330 <b>99</b> | 431541         |
| 03-28-83 | 11 | 293.72 | 1006.50 | 439880 | 431318                 | 429972         |
| 03-28-83 | 12 | 293.16 | 1005.80 | 439199 | 430660                 | 428961         |
| 03-28-83 | 13 | 293.72 | 1004.81 | 440117 | 431600                 | 429295         |
| 03-28-83 | 14 | 296.49 | 1004.25 | 439663 | <b>4</b> 31169         | 428343         |
| 03-28-83 | 15 | 295.94 | 1003.74 | 439865 | 431394                 | 428320         |
| 03-28-83 | 16 | 296.49 | 1003.65 | 439908 | 431460                 | 428293         |
| 03-28-83 | 17 | 295.38 | 1003.34 | 440743 | 432318                 | 429052         |
| 03-28-83 | 18 | 294.27 | 1003.33 | 440296 | 431894                 | 428709         |
| 03-28-83 | 19 | 294.27 | 1003.63 | 439441 | 431062                 | 428053         |
| 03-28-83 | 20 | 294.27 | 1003.33 | 441091 | 432734                 | 429543         |
| 03-28-83 | 21 | 293.72 | 1003.32 | 442313 | 433979                 | 430815         |

| 03-28-83     | 22 | 293.72 | 1002.73 | 441345 | 433034 | 429542 |
|--------------|----|--------|---------|--------|--------|--------|
| 03-28-83     | 23 | 293.72 | 1002.43 | 443135 | 434847 | 431170 |
| 03-28-83     | 24 | 290.94 | 1002.40 | 443440 | 435175 | 431686 |
| 03-29-83     | 1  | 293.16 | 1003.02 | 440641 | 432399 | 429118 |
| 03-29-83     | 2  | 293.72 | 1003.72 | 440716 | 432497 | 429569 |
| 03-29-83     | 3  | 287.60 | 1004.05 | 442547 | 434350 | 432057 |
| 03-29-83     | 4  | 286.49 | 1003.74 | 441167 | 432993 | 430615 |
| 03-29-83     | 5  | 286.49 | 1004.04 | 441376 | 433225 | 431015 |
| 03-29-83     | 6  | 285.94 | 1004.13 | 443135 | 435007 | 432882 |
| 03-29-83     | 7  | 285.94 | 1003.14 | 444401 | 436296 | 433598 |
| 03-29-83     | 8  | 287.05 | 1003.15 | 444324 | 436242 | 43346/ |
| 03-29-83     | 9  | 288.16 | 1002.87 | 444732 | 436673 | 433651 |
| 03-29-83     | 10 | 288.72 | 1002.57 | 445820 | 43//83 | 434539 |
| 03-29-83     | 11 | 288.16 | 1002.87 | 446112 | 438098 | 435000 |
| 03-29-83     | 12 | 288.16 | 1002.27 | 445523 | 43/532 | 434100 |
| 03-29-83     | 13 | 289.83 | 1001.40 | 4463/8 | 438410 | 434400 |
| 03-29-83     | 14 | 292.60 | 999.34  | 448104 | 440219 | 434000 |
| 03-29-83     | 15 | 294.27 | 998.27  | 44/308 | 439430 | 433293 |
| 03-29-83     | 16 | 294.83 | 99/.08  | 44//44 | 439045 | 433320 |
| 03-29-83     | 1/ | 295.38 | 99/.39  | 44//32 | 439633 | 433121 |
| 03-29-83     | 10 | 294.83 | 99/.00  | 440042 | 430100 | 433078 |
| 03 - 29 - 83 | 19 | 292.05 | 99/.90  | 44/003 | 439232 | 433193 |
| 03 - 29 - 83 | 20 | 290.94 | 990.95  | 440505 | 438330 | 433381 |
| 03-29-83     | 21 | 200.12 | 000 00  | 440113 | 430350 | 432600 |
| 03 - 29 - 03 | 22 | 200.12 | 1000 28 | 443131 | 437003 | 432540 |
| 03-29-03     | 23 | 207.00 | 1000.20 | 443619 | 435903 | 431638 |
| 03-29-03     | 24 | 285 94 | 1000.00 | 445102 | 437408 | 433113 |
| 03-30-83     | 2  | 285 38 | 1000.36 | 443102 | 437045 | 432795 |
| 03-30-83     | 2  | 284.27 | 1000.05 | 444093 | 436445 | 432108 |
| 03-30-83     | 4  | 284.83 | 1000.15 | 443181 | 435556 | 431242 |
| 03-30-83     | 5  | 284.27 | 1000.64 | 443064 | 435462 | 431470 |
| 03-30-83     | 6  | 284.83 | 1001.24 | 443397 | 435818 | 432122 |
| 03-30-83     | 7  | 285.38 | 1001.84 | 441852 | 434296 | 430912 |
| 03-30-83     | 8  | 288.16 | 1002.47 | 441630 | 434096 | 430864 |
| 03-30-83     | 9  | 292.60 | 1003.11 | 442904 | 435393 | 432182 |
| 03-30-83     | 10 | 296.49 | 1003.45 | 442433 | 434945 | 431639 |
| 03-30-83     | 11 | 299.83 | 1003.39 | 442203 | 434738 | 431148 |
| 03-30-83     | 12 | 301.49 | 1003.11 | 443514 | 436072 | 432186 |
| 03-30-83     | 13 | 301.49 | 1002.42 | 443536 | 436117 | 431838 |
| 03-30-83     | 14 | 302.60 | 1001.73 | 444297 | 436901 | 432138 |
| 03-30-83     | 15 | 303.16 | 1000.95 | 442955 | 435581 | 430347 |
| 03-30-83     | 16 | 302.60 | 1000.74 | 442598 | 435247 | 429940 |
| 03-30-83     | 17 | 303.16 | 1000.45 | 443764 | 436436 | 430907 |
| 03-30-83     | 18 | 300.94 | 1000.43 | 443498 | 436193 | 430823 |
| 03-30-83     | 19 | 295.38 | 1000.66 | 442614 | 435332 | 430519 |
| 03-30-83     | 20 | 295.94 | 1001.26 | 441932 | 434673 | 430167 |
| 03-30-83     | 21 | 294.83 | 1002.05 | 442049 | 434813 | 430837 |
| 03-30-83     | 22 | 292.60 | 1002.62 | 442145 | 434931 | 431444 |
| 03-30-83     | 23 | 291.49 | 1002.60 | 439852 | 432001 | 429205 |
| 03-30-83     | 24 | 288.72 | 1002.57 | 440996 | 455828 | 430014 |
| 03-31-83     | 1  | 287.60 | 1002.26 | 441412 | 45420/ | 430930 |

| 03-31-83 | 2  | 286.49          | 1002.25 | 440129 | 433007 | 429783 |
|----------|----|-----------------|---------|--------|--------|--------|
| 03-31-83 | 3  | 284.83          | 1002.83 | 440693 | 433594 | 430820 |
| 03-31-83 | 4  | 284.83          | 1002.53 | 440784 | 433708 | 430763 |
| 03-31-83 | 5  | 284.83          | 1002.83 | 440181 | 433127 | 430356 |
| 03-31-83 | 6  | 285.94          | 1003.54 | 440963 | 433932 | 431476 |
| 03-31-83 | 7  | 287.05          | 1004.34 | 440874 | 433866 | 431782 |
| 03-31-83 | 8  | 287.05          | 1005.04 | 441965 | 434980 | 433290 |
| 03-31-83 | 9  | 288.72          | 1006.14 | 439938 | 432976 | 431795 |
| 03-31-83 | 10 | 28 <b>9.</b> 83 | 1007.15 | 440004 | 433065 | 432376 |
| 03-31-83 | 11 | 289.83          | 1007.74 | 442066 | 435150 | 434796 |
| 03-31-83 | 12 | 289.83          | 1007.74 | 439074 | 432180 | 431829 |
| 03-31-83 | 13 | 289.83          | 1006.85 | 440010 | 433139 | 432279 |
| 03-31-83 | 14 | 290.94          | 1006.47 | 442000 | 435152 | 433987 |
| 03-31-83 | 15 | 290.94          | 1006.07 | 440859 | 434034 | 432643 |
| 03-31-83 | 16 | 294.27          | 1005.81 | 440793 | 433991 | 432202 |
| 03-31-83 | 17 | 294.83          | 1005.82 | 440932 | 434153 | 432327 |
| 03-31-83 | 18 | 295.38          | 1006.32 | 439160 | 432404 | 430827 |
| 03-31-83 | 19 | 294.27          | 1006.90 | 438322 | 431588 | 430426 |
| 03-31-83 | 20 | 291.49          | 1007.17 | 439002 | 432291 | 431490 |
| 03-31-83 | 21 | 290.38          | 1008.05 | 438125 | 431437 | 431221 |
| 03-31-83 | 22 | 289.27          | 1008.63 | 435895 | 429230 | 429426 |
| 03-31-83 | 23 | 287.60          | 1008.61 | 438562 | 431920 | 432231 |
| 03-31-83 | 24 | 287.60          | 1009.21 | 436628 | 430009 | 430659 |
| 04-01-83 | 1  | 286.49          | 1009.69 | 438274 | 431678 | 432688 |
| 04-01-83 | 2  | 286.49          | 1009.69 | 436198 | 429625 | 430630 |
| 04-01-83 | 3  | 286.49          | 1009.99 | 436825 | 430274 | 431452 |
| 04-01-83 | 4  | 286.49          | 1010.68 | 436645 | 430117 | 431687 |
| 04-01-83 | 5  | 284.27          | 1010.66 | 436442 | 429937 | 431661 |
| 04-01-83 | 6  | 284.83          | 1011.36 | 438827 | 432345 | 434438 |
| 04-01-83 | 7  | 287.05          | 1012.08 | 438322 | 431863 | 434198 |
| 04-01-83 | 8  | 287.05          | 1011.78 | 438900 | 432464 | 434630 |
| 04-01-83 | 9  | 289.27          | 1013.19 | 437694 | 431281 | 434080 |
| 04-01-83 | 10 | 295.38          | 1013.56 | 438702 | 432311 | 434866 |
| 04-01-83 | 11 | 298.72          | 1013.59 | 437245 | 430877 | 433189 |
| 04-01-83 | 12 | 300.94          | 1013.32 | 437560 | 431215 | 433207 |
| 04-01-83 | 13 | 302.05          | 1012.64 | 436845 | 430523 | 432041 |
| 04-01-83 | 14 | 302.60          | 1011.95 | 436638 | 430339 | 431422 |
| 04-01-83 | 15 | 302.60          | 1011.26 | 438113 | 431837 | 432530 |
| 04-01-83 | 16 | 302.60          | 1010.56 | 437620 | 431367 | 431660 |
| 04-01-83 | 17 | 302.60          | 1011.55 | 436691 | 430460 | 431315 |
| 04-01-83 | 18 | 300.94          | 1010.74 | 436498 | 430290 | 430809 |
| 04-01-83 | 19 | 298.16          | 1010.71 | 436202 | 430017 | 430728 |
| 04-01-83 | 20 | 292.60          | 1010.95 | 434652 | 428490 | 429750 |
| 04-01-83 | 21 | 290.38          | 1011.22 | 433723 | 427584 | 429160 |
| 04-01-83 | 22 | 28 <b>9.</b> 83 | 1011.91 | 433614 | 427498 | 429505 |
| 04-01-83 | 23 | 290.38          | 1011.92 | 433439 | 42/346 | 429317 |
| 04-01-83 | 24 | 288.16          | 1011.89 | 434205 | 428134 | 430258 |
| 04-02-83 | 1  | 287.05          | 1011.38 | 432754 | 426706 | 428617 |
| 04-02-83 | 2  | 285.38          | 1010.77 | 433876 | 42/851 | 429546 |
| 04-02-83 | 3  | 284.83          | 1010.46 | 434020 | 428018 | 4295/9 |
| 04-02-83 | 4  | 283.16          | 1010.15 | 434240 | 428261 | 429//3 |
| 04-02-83 | 5  | 282.60          | 1010.14 | 433876 | 42/920 | 429466 |

| 04-02-83 | 6  | 285.38 | 1010.17 | 431736   | 425803                  | 427152        |
|----------|----|--------|---------|----------|-------------------------|---------------|
| 04-02-83 | 7  | 285.94 | 1010.48 | 431867   | 425956                  | 427439        |
| 04-02-83 | 8  | 288.72 | 1010.51 | 430639   | 424751                  | 426040        |
| 04-02-83 | 9  | 291.49 | 1010.54 | 432337   | 426472                  | 427578        |
| 04-02-83 | 10 | 293.16 | 1010.86 | 432397   | 426555                  | 427717        |
| 04-02-83 | 11 | 294.27 | 1010.57 | 434729   | 428910                  | 429831        |
| 04-02-83 | 12 | 295.94 | 1010.19 | 436551   | 430755                  | 431339        |
| 04-02-83 | 13 | 295.38 | 1009.29 | 437647   | 431874                  | 431988        |
| 04-02-83 | 14 | 297.05 | 1008.22 | 439441   | 433690                  | 433067        |
| 04-02-83 | 15 | 296.49 | 1006.63 | 43 87 80 | 433052                  | 431566        |
| 04-02-83 | 16 | 295.94 | 1005.83 | 439710   | 434005                  | 432101        |
| 04-02-83 | 17 | 295.38 | 1005.52 | 440894   | 435212                  | 433168        |
| 04-02-83 | 18 | 295.38 | 1005.23 | 440078   | 434419                  | 432213        |
| 04-02-83 | 19 | 294.83 | 1005.22 | 444562   | 438926                  | 436734        |
| 04-02-83 | 20 | 294.83 | 1005.22 | 439366   | 433753                  | 431587        |
| 04-02-83 | 21 | 294.83 | 1004.92 | 440155   | 434564                  | 432223        |
| 04-02-83 | 22 | 294.83 | 1004.92 | 439218   | 433650                  | 431313        |
| 04-02-83 | 23 | 294.83 | 1004.13 | 437895   | 432350                  | 429573        |
| 04-02-83 | 24 | 294.83 | 1004.13 | 432608   | 427086                  | 424342        |
| 04-03-83 |    | 294.83 | 1004.13 | 430074   | 424575                  | 421848        |
| 04-03-83 | 2  | 293.16 | 1003.22 | 429740   | 424264                  | 421155        |
| 04-03-83 | 3  | 293.72 | 1003.22 | 429957   | 424504                  | 421353        |
| 04-03-83 | 4  | 293.72 | 1002.33 | 431773   | 426343                  | 422682        |
| 04-03-83 | 5  | 294.27 | 1000.85 | 431522   | 426114                  | <b>421591</b> |
| 04-03-83 | 6  | 293.16 | 1000.84 | 432873   | 427488                  | 423026        |
| 04-03-83 | 7  | 293.72 | 1001.14 | 434859   | 429497                  | 425141        |
| 04-03-83 | 8  | 293.72 | 1001.74 | 435428   | 430089                  | 426064        |
| 04-03-83 | 9  | 294.83 | 1001.35 | 434308   | 428992                  | 424677        |
| 04-03-83 | 10 | 297.05 | 1000.88 | 436300   | 431007                  | 426242        |
| 04-03-83 | 11 | 298.72 | 999.81  | 435767   | 430497                  | 425013        |
| 04-03-83 | 12 | 299.27 | 999.12  | 437238   | <b>4</b> 319 <b>9</b> 0 | 426058        |
| 04-03-83 | 13 | 300.38 | 997.84  | 438852   | 433627                  | 426870        |
| 04-03-83 | 14 | 300.94 | 996.46  | 440225   | 435023                  | 427423        |
| 04-03-83 | 15 | 300.94 | 995.66  | 442603   | 437424                  | 429333        |
| 04-03-83 | 16 | 300.38 | 995.66  | 442824   | 437668                  | 429610        |
| 04-03-83 | 17 | 299.83 | 995.95  | 444915   | 439782                  | 431893        |
| 04-03-83 | 18 | 298.72 | 995.64  | 444149   | 439039                  | 431071        |
| 04-03-83 | 19 | 297.05 | 996.52  | 444093   | 439005                  | 431661        |
| 04-03-83 | 20 | 295.94 | 997.10  | 441845   | 436780                  | 429887        |
| 04-03-83 | 21 | 295.38 | 997.99  | 439605   | 434563                  | 428247        |
| 04-03-83 | 22 | 294.83 | 999.77  | 437688   | 432669                  | 427423        |
| 04-03-83 | 23 | 294.27 | 999.16  | 435051   | 430055                  | 424545        |
| 04-03-83 | 24 | 293.72 | 999.16  | 432657   | 427684                  | 422241        |
| 04-04-83 | 1  | 293.72 | 999.85  | 432796   | 427846                  | 422788        |
| 04-04-83 | 2  | 294.27 | 1000.55 | 433461   | 428533                  | 423817        |
| 04-04-83 | 3  | 293.72 | 1000.55 | 432619   | 427714                  | 423047        |
| 04-04-83 | 4  | 294.27 | 999.46  | 434378   | 429496                  | 424159        |
| 04-04-83 | 5  | 294.27 | 999.86  | 435629   | 430770                  | 425640        |
| 04-04-83 | 6  | 293.16 | 1000.74 | 435378   | 430542                  | 425992        |
| 04-04-83 | 7  | 293.16 | 1002.03 | 433221   | 428408                  | 424602        |
| 04-04-83 | 8  | 293.72 | 1003.22 | 433729   | 428939                  | 425755        |
| 04-04-83 | 9  | 293.16 | 1004.31 | 433868   | 429100                  | 426569        |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 28104  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 27954  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 29393  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 29527  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 30453  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 32823  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 31612  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 31406  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 32264  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 30575  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 31033  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 29622  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 29137  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 127820 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 29376  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 128709 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 29311  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 130770 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 131677 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 431014 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 130575 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 129069 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 130717 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 130426 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 130134 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 130010 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 129796 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 129472 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 130272 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 428281 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 129891 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 429922 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 129578 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 429349 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 430257 |
| 04-05-8322285.941020.104280144240924304-05-8323285.941020.104272784233794304-05-8324286.491020.104282474243714304-06-831284.831019.794278094239564304-06-832284.831019.794265634227334204-06-833283.721020.074270724232654304-06-834283.721019.084254254216404204-06-835283.161019.474275254237634304-06-836281.491019.754257384219994204-06-837280.381020.434250194213034204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043 | 429675 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 431001 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                 | 430276 |
| 04-06-831284.831019.794278094239564304-06-832284.831019.794265634227334204-06-833283.721020.074270724232654304-06-834283.721019.084254254216404204-06-835283.161019.474275254237634304-06-836281.491019.754257384219994204-06-837280.381020.434250194213034204-06-838287.601020.514251954215024204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043                                                                            | 431243 |
| 04-06-832284.831019.794265634227334204-06-833283.721020.074270724232654304-06-834283.721019.084254254216404204-06-835283.161019.474275254237634304-06-836281.491019.754257384219994204-06-837280.381020.434250194213034204-06-838287.601020.514251954215024204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043                                                                                                                | 430770 |
| 04-06-833283.721020.074270724232654304-06-834283.721019.084254254216404204-06-835283.161019.474275254237634304-06-836281.491019.754257384219994204-06-837280.381020.434250194213034204-06-837280.381020.434251954215024204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043                                                                                                                                                    | 429527 |
| 04-06-834283.721019.084254254216404204-06-835283.161019.474275254237634304-06-836281.491019.754257384219994204-06-837280.381020.434250194213034204-06-838287.601020.514251954215024204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043                                                                                                                                                                                        | 430310 |
| 04-06-835283.161019.474275254237634304-06-836281.491019.754257384219994204-06-837280.381020.434250194213034204-06-838287.601020.514251954215024204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043                                                                                                                                                                                                                            | 428098 |
| 04-06-836281.491019.754257384219994204-06-837280.381020.434250194213034204-06-838287.601020.514251954215024204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043                                                                                                                                                                                                                                                                | 430517 |
| 04-06-837280.381020.434250194213034204-06-838287.601020.514251954215024204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043                                                                                                                                                                                                                                                                                                    | 429008 |
| 04-06-838287.601020.514251954215024204-06-839289.831020.444261334224634204-06-8310292.601020.4742739742375043                                                                                                                                                                                                                                                                                                                                        | 428767 |
| 04-06-83 9 289.83 1020.44 426133 422463 42<br>04-06-83 10 292.60 1020.47 427397 423750 43                                                                                                                                                                                                                                                                                                                                                            | 428476 |
| 04-06-83 10 292.60 1020.47 427397 423750 43                                                                                                                                                                                                                                                                                                                                                                                                          | 429248 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 430364 |
| 04-06-83 11 293.72 1020.28 426651 423026 42                                                                                                                                                                                                                                                                                                                                                                                                          | 429438 |
| 04-06-83 12 295.38 1019.71 426932 423330 42                                                                                                                                                                                                                                                                                                                                                                                                          | 429300 |
| 04-06-83 13 294.83 1018.41 426885 423306 42                                                                                                                                                                                                                                                                                                                                                                                                          | 428582 |

| 04-06-83 | 14 | 296.49          | 1017.44 | 427505             | 423949        | 428559           |
|----------|----|-----------------|---------|--------------------|---------------|------------------|
| 04-06-83 | 15 | 297.05          | 1016.06 | 430427             | 426894        | 430710           |
| 04-06-83 | 16 | 297.60          | 1014.87 | 429071             | 425561        | 428650           |
| 04-06-83 | 17 | 295.94          | 1013.86 | 430059             | 426572        | 429221           |
| 04-06-83 | 18 | 295.94          | 1013.46 | 430517             | 427052        | 429478           |
| 04-06-83 | 19 | 293.72          | 1013.74 | 431813             | 428371        | 431131           |
| 04-06-83 | 20 | 292.60          | 1013.43 | 430562             | 427143        | 429802           |
| 04-06-83 | 21 | 291.49          | 1013.42 | 430504             | 427108        | 429845           |
| 04-06-83 | 22 | 291.49          | 1013.42 | 429864             | 426491        | 429224           |
| 04-06-83 | 23 | 289.83          | 1013.69 | 42959 <del>9</del> | 426249        | 429257           |
| 04-06-83 | 24 | 288.16          | 1013.68 | 430487             | 427160        | 430293           |
| 04-07-83 | 1  | 287.60          | 1013.77 | 431552             | 428247        | 431481           |
| 04-07-83 | 2  | 287.05          | 1013.17 | 431481             | 428199        | 431134           |
| 04-07-83 | 3  | 286.49          | 1012.57 | 431439             | 428180        | 430815           |
| 04-07-83 | 4  | 286.49          | 1012.57 | 430654             | 427418        | 430048           |
| 04-07-83 | 5  | 287.05          | 1011.38 | 430716             | 427503        | 429417           |
| 04-07-83 | 6  | 287.60          | 1010.59 | 431582             | 428392        | 429821           |
| 04-07-83 | 7  | 288.16          | 1010.90 | 431329             | 428162        | 429725           |
| 04-07-83 | 8  | 289.83          | 1011.41 | 431576             | 428432        | 430160           |
| 04-07-83 | 9  | 293.16          | 1011.45 | 432828             | 429706        | 431211           |
| 04-07-83 | 10 | 294.83          | 1011.77 | 433212             | 430113        | 431677           |
| 04-07-83 | 11 | 295.38          | 1011.57 | 432722             | 429646        | 431053           |
| 04-07-83 | 12 | 295.94          | 1011.18 | 43 27 86           | 429733        | 430877           |
| 04-07-83 | 13 | 297.60          | 1009.12 | <b>4</b> 38159     | 435129        | <b>43 4 97</b> 8 |
| 04-07-83 | 14 | 295.38          | 1008.50 | 435916             | 432909        | 432572           |
| 04-07-83 | 15 | 298.16          | 1007.84 | 437021             | 434037        | 433113           |
| 04-07-83 | 16 | 298.16          | 1006.84 | 437144             | 434182        | 432686           |
| 04-07-83 | 17 | 296.49          | 1007.12 | 437845             | 434906        | 433694           |
| 04-07-83 | 18 | 296.49          | 1007.12 | 435725             | 432809        | 431603           |
| 04-07-83 | 19 | 295.38          | 1007.51 | 434702             | <b>431809</b> | 430910           |
| 04-07-83 | 20 | 293.72          | 1007.79 | 433871             | 431001        | 430387           |
| 04-07-83 | 21 | 293.16          | 1009.17 | 432281             | 429434        | 429645           |
| 04-07-83 | 22 | 292.05          | 1009.75 | 430800             | 427976        | 428597           |
| 04-07-83 | 23 | 292.05          | 1009.16 | 429467             | 426665        | 426952           |
| 04-07-83 | 24 | 291.49          | 1009.25 | 429320             | 426541        | 426920           |
| 04-08-83 | 1  | 292.05          | 1008.16 | 430131             | 427375        | 427098           |
| 04-08-83 | 2  | 290.94          | 1008.15 | 431810             | 429077        | 428877           |
| 04-08-83 | 3  | 291.49          | 1007.17 | 431340             | 428630        | 427836           |
| 04-08-83 | 4  | 291.49          | 1006.87 | 430307             | 427620        | 426659           |
| 04-08-83 | 5  | 291 <b>.4</b> 9 | 1006.87 | 431124             | 428460        | 427497           |
| 04-08-83 | 6  | 291.49          | 1007.17 | 431703             | 429061        | 428266           |
| 04-08-83 | 7  | 292.05          | 1007.47 | 431905             | 429286        | 428618           |
| 04-08-83 | 8  | 292.05          | 1007.67 | 431596             | 429000        | 428446           |
| 04-08-83 | 9  | 292.05          | 1008.16 | 432287             | 429/14        | 429436           |
| 04-08-83 | 10 | 292.60          | 1008.77 | 432808             | 430258        | 430284           |
| 04-08-83 | 11 | 293.16          | 1008.77 | 431326             | 428/99        | 428/84           |
| 04-08-83 | 12 | 294.27          | 1010.17 | 433442             | 430938        | 431636           |
| 04-08-83 | 13 | 295.94          | 1008.11 | 431890             | 429408        | 428812           |
| 04-08-83 | 14 | 298.72          | 100/.54 | 433033             | 4303/4        | 423443           |
| 04-08-83 | 15 | 299.83          | 1006.46 | 4321/2             | 429/30        | 42/310           |
| 04-08-83 | 16 | 298./2          | 1006.15 | 432919             | 430300        | 420391           |
| 04-08-83 | 17 | 299.27          | T002°2\ | 4341U9             | 431/19        | 42 7427          |

| 04-08-83 | 18 | 298.16 | 1005.55 | 433437 | 431070 | 428855         |
|----------|----|--------|---------|--------|--------|----------------|
| 04-08-83 | 19 | 294.27 | 1006.40 | 432719 | 430375 | 428934         |
| 04-08-83 | 20 | 296.49 | 1007.02 | 431791 | 429469 | 428216         |
| 04-08-83 | 21 | 295.94 | 1008.21 | 429558 | 427259 | 426722         |
| 04-08-83 | 22 | 294.83 | 1008.49 | 430467 | 428191 | 427893         |
| 04-08-83 | 23 | 294.83 | 1009.48 | 429286 | 427033 | 427294         |
| 04-08-83 | 24 | 294.27 | 1008.78 | 431443 | 429213 | 429120         |
| 04-09-83 | 1  | 294.27 | 1009.08 | 429398 | 427191 | 427268         |
| 04-09-83 | 2  | 294.27 | 1009.08 | 429224 | 427040 | 427117         |
| 04-09-83 | 3  | 294.27 | 1008.69 | 428587 | 426425 | 426282         |
| 04-09-83 | 4  | 294.27 | 1009.08 | 429431 | 427292 | 427369         |
| 04-09-83 | 5  | 293.72 | 1009.37 | 430464 | 428348 | 428631         |
| 04-09-83 | 6  | 294.27 | 1010.17 | 429916 | 427823 | 428515         |
| 04-09-83 | 7  | 294.27 | 1010.87 | 430607 | 428537 | 429627         |
| 04-09-83 | 8  | 294.83 | 1011.27 | 428791 | 426744 | 428013         |
| 04-09-83 | 9  | 295.94 | 1011.58 | 429218 | 427194 | 428557         |
| 04-09-83 | 10 | 298.16 | 1011.90 | 428908 | 426907 | 428284         |
| 04-09-83 | 11 | 299.27 | 1011.91 | 428096 | 426117 | 427414         |
| 04-09-83 | 12 | 300.94 | 1011.14 | 427908 | 425952 | 426691         |
| 04-09-83 | 13 | 300.94 | 1010.34 | 428646 | 426713 | 427004         |
| 04-09-83 | 14 | 300.94 | 1009.75 | 428645 | 426735 | 426693         |
| 04-09-83 | 15 | 300.94 | 1009.35 | 430458 | 428571 | 428303         |
| 04-09-83 | 16 | 301.49 | 1008.96 | 431250 | 429386 | 428855         |
| 04-09-83 | 17 | 300.94 | 1009.35 | 431330 | 429489 | 429220         |
| 04-09-83 | 18 | 299.83 | 1009.34 | 430989 | 429170 | 428979         |
| 04-09-83 | 19 | 298.72 | 1009.63 | 429365 | 427569 | 427624         |
| 04-09-83 | 20 | 297.05 | 1010.01 | 430446 | 428673 | 429068         |
| 04-09-83 | 21 | 295.94 | 1010.98 | 428154 | 426404 | 427427         |
| 04-09-83 | 22 | 294.83 | 1011.96 | 427041 | 425314 | 426968         |
| 04-09-83 | 23 | 294.27 | 1011.96 | 429006 | 427302 | 429005         |
| 04-09-83 | 24 | 294.27 | 1011.96 | 428790 | 427109 | 428811         |
| 04-10-83 | 1  | 297.60 | 1011.80 | 428693 | 427034 | 428397         |
| 04-10-83 | 2  | 293.72 | 1011.75 | 428431 | 426795 | 428419         |
| 04-10-83 | 3  | 293.72 | 1011.36 | 429871 | 428258 | 429666         |
| 04-10-83 | 4  | 293.16 | 1011.35 | 430239 | 428649 | 430095         |
| 04-10-83 | 5  | 292.60 | 1011.34 | 428813 | 427246 | 428723         |
| 04-10-83 | 6  | 292.60 | 1011.34 | 428850 | 427306 | 428783         |
| 04-10-83 | 7  | 292.60 | 1011.64 | 430352 | 428831 | 430483         |
| 04-10-83 | 8  | 294.27 | 1012.06 | 429474 | 427975 | <b>429</b> 737 |
| 04-10-83 | 9  | 295.38 | 1012.57 | 430250 | 428774 | 430746         |
| 04-10-83 | 10 | 296.49 | 1013.17 | 429931 | 428478 | 430706         |
| 04-10-83 | 11 | 299.27 | 1012.81 | 431153 | 429723 | 431544         |
| 04-10-83 | 12 | 300.38 | 1011.73 | 430999 | 429592 | 430714         |
| 04-10-83 | 13 | 300.94 | 1010.74 | 432217 | 430833 | 431354         |
| 04-10-83 | 14 | 302.05 | 1009.76 | 433221 | 431860 | 431740         |
| 04-10-83 | 15 | 300.94 | 1009.35 | 432217 | 430878 | 430609         |
| 04-10-83 | 16 | 301.49 | 1008.76 | 432217 | 430901 | 430255         |
| 04-10-83 | 17 | 300.38 | 1008.75 | 431190 | 429897 | 429330         |
| 04-10-83 | 18 | 299.83 | 1009.14 | 430531 | 429261 | 428957         |
| 04-10-83 | 19 | 298.16 | 1009.52 | 430195 | 428948 | 428983         |
| 04-10-83 | 20 | 297.60 | 1009.81 | 429002 | 427778 | 428018         |
| 04-10-83 | 21 | 295.94 | 1010.19 | 428998 | 427797 | 428376         |

| 04-10-83                 | 22 | 295.38 | 1010.19 | 428583 | 427404 | 428024 |
|--------------------------|----|--------|---------|--------|--------|--------|
| 04-10-83                 | 23 | 294.83 | 1010.48 | 428559 | 427403 | 428228 |
| 04-10-83                 | 24 | 294.27 | 1010.17 | 430369 | 429236 | 429931 |
| 04-11-83                 | 1  | 294.27 | 1010.77 | 429959 | 428849 | 429883 |
| 04-11-83                 | 2  | 293.72 | 1010.76 | 429814 | 428727 | 429796 |
| 04-11-83                 | 3  | 293.16 | 1010.46 | 430091 | 429027 | 429969 |
| 04-11-83                 | 4  | 292.60 | 1009.56 | 431114 | 430073 | 430547 |
| 04-11-83                 | 5  | 292.60 | 1009.86 | 432562 | 431543 | 432190 |
| 04-11-83                 | 6  | 292.60 | 1009.86 | 431570 | 430574 | 431219 |
| 04-11-83                 | 7  | 292.60 | 1009.86 | 433116 | 432143 | 432791 |
| 04-11-83                 | 8  | 293.16 | 1010.46 | 432110 | 431160 | 432106 |
| 04-11-83                 | 9  | 294.27 | 1010.67 | 432119 | 431192 | 432175 |
| 04-11-83                 | 10 | 295.38 | 1011.08 | 433026 | 432122 | 433257 |
| 04-11-83                 | 11 | 295.38 | 1011.08 | 432338 | 431457 | 432591 |
| 04-11-83                 | 12 | 298.16 | 1010.71 | 433610 | 432752 | 433467 |
| 04-11-83                 | 13 | 299.27 | 1010.03 | 433421 | 432585 | 432828 |
| 04-11-83                 | 14 | 299.83 | 1010.04 | 432847 | 432034 | 432241 |
| 04-11-83                 | 15 | 299.27 | 1009.34 | 431188 | 430398 | 430249 |
| 04-11-83                 | 16 | 298.72 | 1009.03 | 430861 | 430094 | 429810 |
| 04-11-83                 | 17 | 298.16 | 1009.03 | 429703 | 428959 | 428718 |
| 04-11-83                 | 18 | 297.60 | 1008.72 | 429459 | 428738 | 428363 |
| 04 - 11 - 83             | 19 | 297.05 | 1008.12 | 428568 | 427870 | 427199 |
| 04-11-83                 | 20 | 295.38 | 1009.29 | 428884 | 428208 | 428321 |
| 04-11-83                 | 21 | 294.83 | 1009.88 | 427762 | 427109 | 427595 |
| 04-11-83                 | 22 | 293.72 | 1009.77 | 427943 | 427313 | 427820 |
| 04 - 11 - 83             | 23 | 292.60 | 1009.66 | 427432 | 426825 | 427352 |
| 04-11-83                 | 24 | 292.05 | 1010.15 | 426917 | 426333 | 427177 |
| 04 - 12 - 83             | 1  | 292.60 | 1010.45 | 427159 | 426598 | 427570 |
| 04 - 12 - 83             | 2  | 291.49 | 1010.14 | 426788 | 426250 | 427130 |
| 04 - 12 - 83             | 3  | 292.60 | 1009.76 | 427156 | 426640 | 427223 |
| 04-12-83                 | 4  | 293.16 | 1009.47 | 428809 | 428316 | 428696 |
| 04-12-83                 | 5  | 292.60 | 1010.35 | 427437 | 426967 | 427884 |
| 04-12-83                 | 6  | 293.16 | 1010.16 | 427537 | 427090 | 427858 |
| 04 12 03<br>04 - 12 - 83 | 7  | 293.72 | 1010.07 | 427871 | 427447 | 428124 |
| 04 - 12 - 83             | 8  | 294.27 | 1010.57 | 425904 | 425503 | 426416 |
| 04 - 12 - 83             | ğ  | 295.94 | 1010.79 | 425497 | 425119 | 426032 |
| 04 - 12 - 83             | 10 | 298.16 | 1010.81 | 425529 | 425173 | 425932 |
| 04 - 12 - 83             | 11 | 298.16 | 1011.21 | 425238 | 424905 | 425888 |
| 04 - 12 - 83             | 12 | 298.72 | 1010.62 | 425709 | 425399 | 426011 |
| 04 - 12 - 83             | 13 | 299.83 | 1010.23 | 424742 | 424455 | 424765 |
| 04 - 12 - 83             | 14 | 299.83 | 1009.64 | 424007 | 423743 | 423722 |
| 04 - 12 - 83             | 15 | 302.05 | 1008.37 | 425730 | 425489 | 424591 |
| 04-12-83                 | 16 | 300.94 | 1007.67 | 426348 | 426130 | 424921 |
| 04-12-83                 | 17 | 301.49 | 1007.28 | 425520 | 425324 | 423859 |
| 04-12-83                 | 18 | 301.49 | 1007.38 | 422805 | 422632 | 421231 |
| 04-12-83                 | 19 | 298.72 | 1007.74 | 421338 | 421188 | 420195 |
| 04-12-83                 | 20 | 296.49 | 1008.31 | 420875 | 420748 | 420234 |
| 04-12-83                 | 21 | 296.49 | 1009.11 | 422213 | 422109 | 422038 |
| 04-12-83                 | 22 | 295.38 | 1009.39 | 420330 | 420249 | 420415 |
| 04-12-83                 | 23 | 293.72 | 1009.37 | 421510 | 421452 | 421729 |
| 04-12-83                 | 24 | 293.16 | 1009.66 | 422126 | 422090 | 422571 |
| 04-13-83                 | 1  | 293.16 | 1009.66 | 424626 | 424613 | 425096 |

|              | •  |        | 1000 66 | 400507        | 400507          | 424020 |
|--------------|----|--------|---------|---------------|-----------------|--------|
| 04-13-83     | 2  | 293.16 | 1009.66 | 42352/        | 423537          | 424020 |
| 04-13-83     | 3  | 293.72 | 1009.97 | 424544        | 424577          | 425193 |
| 04-13-83     | 4  | 293.16 | 1009.66 | 425838        | 425894          | 4263/9 |
| 04-13-83     | 5  | 293.16 | 1009.66 | 425514        | 425593          | 426078 |
| 04-13-83     | 6  | 292.60 | 1009.96 | 425291        | 4253 <b>9</b> 3 | 426087 |
| 04-13-83     | 7  | 292.60 | 1010.55 | 427348        | 427472          | 428503 |
| 04-13-83     | 8  | 294.83 | 1010.77 | 426598        | 426745          | 427732 |
| 04-13-83     | 9  | 295.94 | 1011.38 | 425959        | 426129          | 427376 |
| 04-13-83     | 10 | 297.60 | 1011.70 | 427241        | 427434          | 428741 |
| 04-13-83     | 11 | 299.83 | 1011.42 | 427529        | 427745          | 428729 |
| 04-13-83     | 12 | 300.38 | 1010.74 | 425752        | 425991          | 426547 |
| 0413-93      | 12 | 300 94 | 1011.04 | 426878        | 427140          | 427825 |
| 04-12-03     | 11 | 302.05 | 1009 37 | 428344        | 428629          | 428289 |
| 04 - 13 - 03 | 15 | 202.03 | 1009.37 | 120344        | 429410          | 428617 |
| 04 - 13 - 03 | 15 | 202.72 | 1008./9 | 429103        | 429410          | 427252 |
| 04-13-83     | 10 | 302.00 | 1000.40 | 42/004        | 420134          | 129112 |
| 04-13-83     | 1/ | 302.00 | 1000.10 | 427143        | 429490          | 420442 |
| 04-13-83     | 18 | 300.94 | 1008.40 | 4200/4        | 429250          | 4204/0 |
| 04-13-83     | 19 | 297.60 | 1008.42 | 42/442        | 42/841          | 42/290 |
| 04-13-83     | 20 | 297.60 | 1009.32 | 428148        | 428570          | 428533 |
| 04-13-83     | 21 | 295.94 | 1010.19 | 426708        | 427153          | 42//32 |
| 04-13-83     | 22 | 294.83 | 1010.38 | <b>425327</b> | 425794          | 426560 |
| 04-13-83     | 23 | 294.27 | 1010.47 | 425928        | 426418          | 427277 |
| 04-13-83     | 24 | 293.72 | 1011.06 | 426013        | 4265 <b>26</b>  | 427759 |
| 04-14-83     | 1  | 294.27 | 1012.26 | 427740        | 428276          | 430153 |
| 04-14-83     | 2  | 294.27 | 1012.65 | 425503        | 426062          | 428150 |
| 04-14-83     | 3  | 293.16 | 1012.64 | 426569        | 427151          | 429321 |
| 04-14-83     | 4  | 293.72 | 1013.74 | 425996        | 426601          | 429349 |
| 04-14-83     | 5  | 292.60 | 1013.23 | 425140        | 425767          | 428305 |
| 04-14-83     | 6  | 292.05 | 1013.22 | 422926        | 423576          | 426136 |
| 04-14-83     | 7  | 291.49 | 1014.61 | 424487        | 425160          | 428556 |
| 04-14-83     | 8  | 294.27 | 1014.64 | 423880        | 424576          | 427777 |
| 04-14-03     | ġ  | 296.49 | 1015.95 | 422122        | 422841          | 426600 |
| 04-14-93     | 10 | 208 16 | 1015.97 | 422336        | 423078          | 426727 |
| 04-14-03     | 11 | 200.10 | 1015.97 | 422420        | 423185          | 426794 |
| 04-14-03     | 12 | 290.72 | 1015 19 | 421517        | 422304          | 425385 |
| 04-14-03     | 12 | 299.03 | 1011 00 | 421317        | 424260          | 427242 |
| 04 - 14 - 03 | 14 | 299.03 |         | 423450        | 424200          | 427205 |
| 04 - 14 - 83 | 14 | 200.94 |         | 423303        | 125193          | 427531 |
| 04-14-83     | 10 | 302.05 | 1014.13 | 424337        | 425195          | 427062 |
| 04-14-83     | 10 | 302.60 |         | 424444        | 425525          | 128231 |
| 04-14-83     | 1/ | 301.49 | 1012.03 | 423077        | 420373          | 420231 |
| 04-14-83     | 18 | 300.38 | 1013.12 | 424275        | 425200          | 42/093 |
| 04-14-83     | 19 | 296.49 | 1014.26 | 424022        | 424909          | 44//93 |
| 04-14-83     | 20 | 294.83 | 1014.74 | 423859        | 424829          | 428047 |
| 04-14-83     | 21 | 293.72 | 1015.72 | 422962        | 423955          | 42/801 |
| 04-14-83     | 22 | 293.16 | 1016.31 | 422110        | 423126          | 42/339 |
| 04-14-83     | 23 | 294.27 | 1016.92 | 422433        | 423472          | 427950 |
| 04-14-83     | 24 | 294.27 | 1016.92 | 422884        | 423946          | 428428 |
| 04-15-83     | 1  | 293.16 | 1017.10 | 422082        | 423167          | 427825 |
| 04-15-83     | 2  | 292.60 | 1017.10 | 423276        | 424383          | 429097 |
| 04-15-83     | 3  | 292.05 | 1017.09 | 423032        | 424162          | 428909 |
| 04-15-83     | 4  | 292.05 | 1017.09 | 423048        | 424201          | 428948 |
| 04-15-83     | 5  | 292.05 | 1017.39 | 422658        | 423834          | 428746 |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |     |        |         |        |        |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----|--------|---------|--------|--------|--------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 6   | 291.49 | 1017.68 | 422537 | 423736 | 428853 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 7   | 291.49 | 1018.28 | 421942 | 423164 | 428613 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 8   | 291.49 | 1017.68 | 420349 | 421594 | 426685 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 9   | 294.27 | 1019.30 | 422805 | 424072 | 429903 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 10  | 295.38 | 1019.71 | 421920 | 423210 | 429178 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 11  | 297.60 | 1019.33 | 422413 | 423726 | 429320 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 12  | 295.38 | 1018.52 | 424438 | 425774 | 431101 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 13  | 299.27 | 1017.87 | 430154 | 431513 | 436242 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 14  | 299.83 | 1017.47 | 424375 | 425757 | 430154 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 15  | 300.38 | 1016.49 | 425501 | 426906 | 430716 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 16  | 300.94 | 1016.20 | 424966 | 426394 | 429994 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 17  | 299.83 | 1016.48 | 424927 | 426377 | 430219 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 18  | 298.72 | 1016.47 | 424431 | 425904 | 429819 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 19  | 297.60 | 1016.85 | 424284 | 425780 | 429993 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 20  | 297.05 | 1017.25 | 423709 | 425228 | 429703 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 - 15 - 83             | 21  | 296.49 | 1017.64 | 423269 | 424811 | 429545 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 22  | 295.38 | 1017.92 | 422327 | 423892 | 428856 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 - 15 - 83             | 23  | 294.83 | 1018.31 | 422296 | 423884 | 429111 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-15-83                 | 24  | 294.27 | 1018.60 | 422003 | 423613 | 429041 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 1   | 293.16 | 1017.90 | 421710 | 423343 | 428455 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 2   | 292.60 | 1017.59 | 421418 | 423074 | 428049 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | วิ  | 292.60 | 1017.30 | 420754 | 422433 | 427237 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 4   | 292.05 | 1017.29 | 421970 | 423672 | 428526 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 5   | 291.49 | 1017.28 | 421659 | 423384 | 428271 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 6   | 291.49 | 1017.28 | 421422 | 423170 | 428055 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 10 03<br>04 - 16 - 83 | 7   | 291.49 | 1017.88 | 421860 | 423630 | 428859 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 8   | 292.05 | 1018.18 | 419686 | 421479 | 426808 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | ğ   | 293.72 | 1018.40 | 419733 | 421549 | 426879 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 10  | 294.27 | 1018.41 | 420218 | 422057 | 427358 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 10 03<br>04 - 16 - 83 | 11  | 295.94 | 1018.42 | 420727 | 422589 | 427778 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 12  | 297.60 | 1017.65 | 421332 | 423217 | 427855 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 - 16 - 83             | 13  | 298.16 | 1016.66 | 421112 | 423020 | 427057 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $04 \pm 16 = 03$         | 14  | 300.38 | 1015.50 | 422688 | 424618 | 427849 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 - 16 - 83             | 15  | 300.94 | 1014.71 | 424437 | 426390 | 429146 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 16  | 301.49 | 1013.72 | 423547 | 425523 | 427673 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 - 16 - 83             | 17  | 300.94 | 1013.42 | 424398 | 426397 | 428423 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 18  | 299.83 | 1013.11 | 424533 | 426555 | 428490 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 19  | 299.27 | 1013.00 | 425621 | 427666 | 429585 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 20  | 297.60 | 1013.58 | 423648 | 425716 | 428078 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 - 16 - 83             | 21  | 297.05 | 1013.87 | 423698 | 425788 | 428356 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 22  | 295.38 | 1014.55 | 423563 | 425676 | 428751 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 23  | 294.27 | 1014.54 | 422578 | 424714 | 427860 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-16-83                 | 24  | 293.72 | 1014.53 | 423592 | 425751 | 428941 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 - 17 - 83             | - 1 | 293.72 | 1014.23 | 423654 | 425836 | 428856 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04-17-83                 | 2   | 294.27 | 1013.64 | 425674 | 427879 | 430537 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 04 = 17 = 83             | 3   | 294.27 | 1013.64 | 424965 | 427193 | 429847 |
| 04-17-83       5       293.16       1013.63       424481       426754       42948         04-17-83       6       292.60       1013.63       424550       426846       42961         04-17-83       7       292.60       1013.92       424695       427014       42994         04-17-83       7       292.60       1013.92       424695       427014       42994         04-17-83       8       294.27       1013.94       426171       428513       43134         04-17-83       9       295.38       1014.35       426844       429209       43219 | 04-17-83                 | 4   | 293.72 | 1013.64 | 425628 | 427878 | 430577 |
| 04-17-83 6 292.60 1013.63 424550 426846 42961<br>04-17-83 7 292.60 1013.92 424695 427014 42994<br>04-17-83 8 294.27 1013.94 426171 428513 43134<br>04-17-83 9 295 38 1014.35 426844 429209 43219                                                                                                                                                                                                                                                                                                                                                    | 04 - 17 - 83             | 5   | 293.16 | 1013.63 | 424481 | 426754 | 429482 |
| 04-17-83 7 292.60 1013.92 424695 427014 42994<br>04-17-83 8 294.27 1013.94 426171 428513 43134<br>04-17-83 9 295 38 1014.35 426844 429209 43219                                                                                                                                                                                                                                                                                                                                                                                                     | 04-17-83                 | 6   | 292.60 | 1013.63 | 424550 | 426846 | 429617 |
| 04-17-83 8 294.27 1013.94 426171 428513 43134<br>04-17-83 9 295 38 1014.35 426844 429209 43219                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 04-17-83                 | 7   | 292.60 | 1013.92 | 424695 | 427014 | 429949 |
| 0.4 - 17 - 93 9 295 38 1014.35 426844 429209 43219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04-17-83                 | 8   | 294.27 | 1013.94 | 426171 | 428513 | 431345 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04-17-83                 | 9   | 295.38 | 1014.35 | 426844 | 429209 | 432196 |

| 04-17-83 | 10 | 297.05 | 1014.37 | 427991 | 43037 <b>9</b>   | 433259         |
|----------|----|--------|---------|--------|------------------|----------------|
| 04-17-83 | 11 | 297.60 | 1013.98 | 427871 | 430281           | 432897         |
| 04-17-83 | 12 | 298.72 | 1013.40 | 429397 | 431830           | 434038         |
| 04-17-83 | 13 | 300.94 | 1012.73 | 430398 | 432854           | 434515         |
| 04-17-83 | 14 | 300.94 | 1011.34 | 432312 | 43 47 91         | 435660         |
| 04-17-83 | 15 | 300.38 | 1009.35 | 433564 | 436066           | 435835         |
| 04-17-83 | 16 | 300.38 | 1009.74 | 431564 | 43408 <b>9</b>   | 434083         |
| 04-17-83 | 17 | 300.38 | 1009.35 | 429534 | 432082           | 431854         |
| 04-17-83 | 18 | 300.38 | 1009.74 | 430107 | 432678           | 432671         |
| 04-17-83 | 19 | 299.27 | 1009.73 | 429563 | 432156           | 432228         |
| 04-17-83 | 20 | 297.60 | 1010.01 | 427723 | 430339           | 430694         |
| 04-17-83 | 21 | 296.49 | 1010.89 | 426891 | 429530           | 430467         |
| 04-17-83 | 22 | 294.27 | 1011.46 | 426468 | 429130           | 430556         |
| 04-17-83 | 23 | 294.27 | 1011.46 | 427695 | 430380           | 431811         |
| 04-17-83 | 24 | 293.72 | 1011.16 | 427215 | 429923           | 431223         |
| 04-18-83 | 1  | 293.72 | 1011.46 | 428161 | 430892           | 432366         |
| 04-18-83 | 2  | 293.72 | 1011.06 | 425727 | 428480           | 429719         |
| 04-18-83 | 3  | 294.27 | 1011.07 | 426701 | 429477           | 430683         |
| 04-18-83 | 4  | 294.27 | 1010.67 | 427167 | 429966           | 430946         |
| 04-18-83 | 5  | 294.27 | 1010.37 | 427071 | 429893           | 430702         |
| 04-18-83 | 6  | 294.27 | 1011.07 | 428273 | 431118           | <b>4</b> 32329 |
| 04-18-83 | 7  | 294.27 | 1011.46 | 427651 | 430519           | 431950         |
| 04-18-83 | 8  | 294.27 | 1011.76 | 429343 | 432234           | 433842         |
| 04-18-83 | 9  | 295.38 | 1011.87 | 426678 | 429591           | 431169         |
| 04-18-83 | 10 | 296.49 | 1011.69 | 428756 | 431692           | 433090         |
| 04-18-83 | 11 | 297.05 | 1011.69 | 429013 | 431972           | <b>4</b> 33329 |
| 04-18-83 | 12 | 294.83 | 1011.47 | 428943 | 431925           | 433324         |
| 04-18-83 | 13 | 291.49 | 1011.73 | 429673 | 432678           | 434481         |
| 04-18-83 | 14 | 292.05 | 1011.74 | 428940 | 431968           | 433732         |
| 04-18-83 | 15 | 293.72 | 1010.86 | 429694 | 432745           | 433882         |
| 04-18-83 | 16 | 293.72 | 1010.07 | 428974 | 432047           | 432731         |
| 04-18-83 | 17 | 294.27 | 1010.07 | 429849 | 432945           | 433589         |
| 04-18-83 | 18 | 294.27 | 1009.18 | 430139 | 433258           | 433393         |
| 04-18-83 | 19 | 293.72 | 1008.98 | 430367 | 43350 <b>9</b>   | 433572         |
| 04-18-83 | 20 | 293.16 | 1009.27 | 428823 | 431988           | 432257         |
| 04-18-83 | 21 | 292.60 | 1009.56 | 428594 | 431782           | 432258         |
| 04-18-83 | 22 | 292.60 | 1009.86 | 428535 | 4317 <b>46</b>   | 432393         |
| 04-18-83 | 23 | 293.16 | 1009.86 | 428111 | 431344           | 431949         |
| 04-18-83 | 24 | 293.16 | 1009.57 | 427879 | 431135           | 431574         |
| 04-19-83 | 1  | 293.16 | 1009.57 | 428930 | 432209           | 432650         |
| 04-19-83 | 2  | 293.16 | 1009.17 | 429664 | 432966           | 433179         |
| 04-19-83 | 3  | 293.16 | 1008.77 | 429850 | 433175           | 433160         |
| 04-19-83 | 4  | 293.16 | 1008.47 | 429419 | 43 27 6 <b>7</b> | 432580         |
| 04-19-83 | 5  | 293.16 | 1008.18 | 430660 | 434031           | 433678         |
| 04-19-83 | 6  | 293.72 | 1008.18 | 430647 | 434040           | 433645         |
| 04-19-83 | 7  | 293.72 | 1008.78 | 431309 | 434725           | 434673         |
| 04-19-83 | 8  | 294.83 | 1008.79 | 431007 | 434446           | 434316         |
| 04-19-83 | 9  | 297.05 | 1008.81 | 431519 | 434981           | 434694         |
| 04-19-83 | 10 | 297.60 | 1009.12 | 430593 | 434078           | 433927         |
| 04-19-83 | 11 | 298.16 | 1009.42 | 431640 | 435148           | 435126         |
| 04-19-83 | 12 | 299.27 | 1008.34 | 433162 | 436693           | 435966         |
| 04-19-83 | 13 | 300.94 | 1007.77 | 433361 | 436914           | 435732         |

|                          |    |        |         |               |                 | 40 40 1 0              |
|--------------------------|----|--------|---------|---------------|-----------------|------------------------|
| 04-19-83                 | 14 | 302.05 | 1007.18 | 432344        | 435920          | 434318                 |
| 04-19-83                 | 15 | 302.60 | 1006.40 | 432345        | 435944          | 433854                 |
| 04-19-83                 | 16 | 303.16 | 1005.71 | 431983        | 435605          | 433081                 |
| 04-19-83                 | 17 | 303.16 | 1005.31 | 431660        | 435305          | 432554                 |
| 04-19-83                 | 18 | 301.49 | 1004.90 | 431467        | 435135          | 432277                 |
| 04-19-83                 | 19 | 299.83 | 1004.88 | 431177        | 434868          | 432126                 |
| 04-19-83                 | 20 | 298.72 | 1005.56 | 430775        | 434489          | 432220                 |
| 04-19-83                 | 21 | 297.05 | 1006.14 | 430034        | 433770          | 431961                 |
| 04-19-83                 | 22 | 296.49 | 1006.43 | 429571        | 433330          | 431729                 |
| 04-19-83                 | 23 | 295.38 | 1006.42 | <b>429815</b> | 4335 <b>9</b> 7 | 432073                 |
| 04-19-83                 | 24 | 294.83 | 1006.11 | 430660        | 434465          | 432802                 |
| 04-20-83                 | 1  | 295.38 | 1006.81 | 428957        | 432785          | 431485                 |
| 04-20-83                 | 2  | 294.83 | 1006.51 | 430442        | 434293          | 432859                 |
| 04-20-83                 | 3  | 295.38 | 1006.81 | 431359        | 435233          | 433926                 |
| 04-20-83                 | 4  | 295.38 | 1006.81 | 430467        | 434363          | <b>4</b> 3305 <b>9</b> |
| 04-20-83                 | 5  | 295.38 | 1006.81 | 430564        | 434483          | 433178                 |
| 04-20-83                 | 6  | 295.38 | 1006.81 | 431235        | 435177          | 433871                 |
| 04-20-83                 | 7  | 295.38 | 1007.11 | 430907        | 434872          | 433738                 |
| 04-20-83                 | 8  | 295.94 | 1007.41 | 429547        | 433535          | 432534                 |
| 04-20-83                 | ē  | 296.49 | 1007.42 | 431919        | 435930          | 434887                 |
| 04-20-83                 | 10 | 297.60 | 1007.43 | 430719        | 434753          | 433634                 |
| 04-20-83                 | 11 | 298.16 | 1007.74 | 434784        | 438840          | 437847                 |
| 04-20-83                 | 12 | 299.27 | 1007.45 | 435695        | 439774          | 438526                 |
| 04-20-83                 | 13 | 300.38 | 1006.77 | 434823        | 438925          | 437203                 |
| 04-20-83                 | 14 | 302.05 | 1009.17 | 436196        | 440321          | 439856                 |
| 04-20-83                 | 15 | 302.60 | 1005.20 | 436383        | 440531          | 437726                 |
| 04-20-83                 | 16 | 303.72 | 1004.32 | 436188        | 440359          | 436962                 |
| 04-20-83                 | 17 | 303.16 | 1004.02 | 436288        | 440482          | 436955                 |
| 04-20-83                 | 18 | 301.49 | 1004.30 | 436001        | 440217          | 436980                 |
| 04 - 20 - 83             | 19 | 299.83 | 1004.28 | 436848        | 441087          | 437959                 |
| 04-20-83                 | 20 | 298.72 | 1004.96 | 436576        | 440838          | 438189                 |
| 04 - 20 - 83             | 21 | 297.05 | 1005.34 | 436090        | 440375          | 438076                 |
| 04 - 20 - 83             | 22 | 297.05 | 1006.63 | 434212        | 438520          | 436973                 |
| 04 20 03<br>04 - 20 - 83 | 23 | 296.49 | 1006.63 | 433349        | 437680          | 436178                 |
| 04 20 03<br>04 - 20 - 83 | 24 | 295.94 | 1006.32 | 433270        | 437624          | 435986                 |
| 04 20 03<br>04 - 21 - 83 | 1  | 294.83 | 1005.72 | 433246        | 437622          | 435724                 |
| 04 21 03<br>04 - 21 - 83 | 2  | 294.27 | 1005.71 | 432954        | 437353          | 435492                 |
| 04 21 03<br>04 - 21 - 83 | รี | 294.27 | 1005.71 | 429079        | 433501          | 431657                 |
| 04-21-83                 | 4  | 294.27 | 1006.01 | 428614        | 433059          | 431387                 |
| 04-21-83                 | 5  | 294.27 | 1006.01 | 428381        | 432849          | 431178                 |
| 04-21-83                 | 6  | 294.27 | 1006.11 | 428784        | 433275          | 431659                 |
| 04 - 21 - 83             | 7  | 294.27 | 1007.20 | 426683        | 431197          | 430207                 |
| 04-21-83                 | 8  | 296.49 | 1007.22 | 426849        | 431385          | 430239                 |
| 04 21 03<br>04 21 - 83   | ğ  | 297.60 | 1007.33 | 427558        | 432117          | 430948                 |
| 04-21-83                 | 10 | 299.27 | 1007.35 | 427836        | 432418          | 431134                 |
| 04-21-83                 | 11 | 299.83 | 1007-06 | 428402        | 433007          | 431515                 |
| 04-21-83                 | 12 | 300.94 | 1006.67 | 427767        | 432395          | 430600                 |
| 04-21-83                 | 12 | 300.94 | 1005-68 | 427702        | 432353          | 429997                 |
| 04-21-83                 | 14 | 301-49 | 1004.99 | 427355        | 432029          | 429242                 |
| 04-21-83                 | 15 | 301.49 | 1004.10 | 428290        | 432986          | 429689                 |
| 04-21-83                 | 16 | 301.49 | 1003.71 | 428592        | 433311          | 429789                 |
| 04-21-83                 | 17 | 300.94 | 1003.70 | 426225        | 430967          | 427501                 |
|                          |    |        | -       |               |                 |                        |

| 04-21-83 | 18 | 300.38 | 1003.40 | 427698 | 432463   | 428856         |
|----------|----|--------|---------|--------|----------|----------------|
| 04-21-83 | 19 | 299.27 | 1003.68 | 426008 | 430796   | 427444         |
| 04-21-83 | 20 | 298.16 | 1004.76 | 427995 | 432806   | 430134         |
| 04-21-83 | 21 | 297.05 | 1006.04 | 426751 | 431585   | 429728         |
| 04-21-83 | 22 | 296.49 | 1007.02 | 426363 | 431220   | 429961         |
| 04-21-83 | 23 | 295.94 | 1005.73 | 425429 | 430308   | 428364         |
| 04-21-83 | 24 | 295.38 | 1004.73 | 426684 | 431586   | <b>4291</b> 12 |
| 04-22-83 | 1  | 294.83 | 1004.43 | 426684 | 431609   | 429007         |
| 04-22-83 | 2  | 294.27 | 1004.12 | 426839 | 431787   | 429049         |
| 04-22-83 | 3  | 294.27 | 1004.12 | 425983 | 430954   | 428222         |
| 04-22-83 | 4  | 294.27 | 1004.42 | 427439 | 432433   | 429862         |
| 04-22-83 | 5  | 294.27 | 1004.12 | 426926 | 431943   | 429204         |
| 04-22-83 | 6  | 294.27 | 1004.12 | 427599 | 432638   | 429895         |
| 04-22-83 | 7  | 294.27 | 1004.12 | 427326 | 432388   | 429647         |
| 04-22-83 | 8  | 294.83 | 1004.43 | 424958 | 430043   | 427449         |
| 04-22-83 | 9  | 295.94 | 1004.93 | 426492 | 431600   | 429197         |
| 04-22-83 | 10 | 296.49 | 1005.04 | 425643 | 430774   | 428397         |
| 04-22-83 | 11 | 297.05 | 1006.34 | 425476 | 430630   | 428947         |
| 04-22-83 | 12 | 296.49 | 1005.63 | 425375 | 430552   | 428509         |
| 04-22-83 | 13 | 296.49 | 1004.94 | 425976 | 431175   | 428739         |
| 04-22-83 | 14 | 297.05 | 1004.55 | 425451 | 430673   | 427978         |
| 04-22-83 | 15 | 297.05 | 1003.06 | 427362 | 432607   | 429056         |
| 04-22-83 | 16 | 297.05 | 1003.46 | 426523 | 431791   | 428473         |
| 04-22-83 | 17 | 297.05 | 1002.47 | 426805 | 43 20 96 | 428216         |
| 04-22-83 | 18 | 297.05 | 1002.07 | 426501 | 431815   | 427712         |
| 04-22-83 | 19 | 297.05 | 1002.57 | 426418 | 431755   | 427934         |
| 04-22-83 | 20 | 297.05 | 1002.07 | 425559 | 430918   | 426824         |
| 04-22-83 | 21 | 297.05 | 1003.16 | 425457 | 430839   | 427359         |
| 04-22-83 | 22 | 293.72 | 1003.42 | 426729 | 432134   | 429040         |
| 04-22-83 | 23 | 294.27 | 1004.22 | 426457 | 431885   | 429203         |
| 04-22-83 | 24 | 294.27 | 1004.32 | 426951 | 432402   | 429774         |
| 04-23-83 | 1  | 293.16 | 1004.31 | 428155 | 433629   | 431071         |
| 04-23-83 | 2  | 293.72 | 1003.32 | 429669 | 435166   | 431992         |
| 04-23-83 | 3  | 293.16 | 1003.32 | 430189 | 435708   | 432573         |
| 04-23-83 | 4  | 293.16 | 1003.32 | 429271 | 434813   | 431684         |
| 04-23-83 | 5  | 293.16 | 1003.32 | 430463 | 436028   | 432890         |
| 04-23-83 | 6  | 293.16 | 1003.71 | 429153 | 434741   | 431834         |
| 04-23-83 | 7  | 292.60 | 1004.70 | 429306 | 434917   | 432616         |
| 04-23-83 | 8  | 291.49 | 1004.99 | 429349 | 434983   | 432931         |
| 04-23-83 | 9  | 290.94 | 1004.98 | 429346 | 435003   | 432986         |
| 04-23-83 | 10 | 290.94 | 1004.09 | 429491 | 435170   | 432644         |
| 04-23-83 | 11 | 290.94 | 1002.60 | 429253 | 434955   | 431582         |
| 04-23-83 | 12 | 292.05 | 1003.21 | 430605 | 436330   | 433211         |
| 04-23-83 | 13 | 293.16 | 1003.22 | 429870 | 435618   | 432426         |
| 04-23-83 | 14 | 293.16 | 1004.71 | 428880 | 434651   | 432315         |
| 04-23-83 | 15 | 293.16 | 1005.10 | 429388 | 435182   | 433066         |
| 04-23-83 | 16 | 293.72 | 1004.81 | 428842 | 434659   | 432338         |
| 04-23-83 | 17 | 293.16 | 1004.81 | 427678 | 433517   | 431243         |
| 04-23-83 | 18 | 293.16 | 1004.81 | 427666 | 433528   | 431254         |
| 04-23-83 | 19 | 292.60 | 1005.20 | 426605 | 432490   | 430485         |
| 04-23-83 | 20 | 291.49 | 1005.78 | 425220 | 431128   | 429541         |
| 04-23-83 | 21 | 289.83 | 1006.16 | 427165 | 433096   | 431843         |

| 04-23-83                 | 22           | 290.94 | 1006.17 | 425971 | 431925 | 430598 |
|--------------------------|--------------|--------|---------|--------|--------|--------|
| 04-23-83                 | 23           | 289.83 | 1006.55 | 426507 | 432484 | 431455 |
| 04-23-83                 | 24           | 289.27 | 1006.84 | 425741 | 431741 | 430920 |
| 04-24-83                 | 1            | 288.16 | 1007.03 | 426762 | 432784 | 432152 |
| 04-24-83                 | 2            | 287.60 | 1006.33 | 426356 | 432401 | 431413 |
| 04-24-83                 | 3            | 287.05 | 1006.32 | 428037 | 434105 | 433149 |
| 04-24-83                 | 4            | 287.60 | 1005.64 | 427968 | 434059 | 432674 |
| 04-24-83                 | 5            | 287.05 | 1005.63 | 428705 | 434819 | 433468 |
| 04-24-83                 | 6            | 286.49 | 1006.32 | 427356 | 433493 | 432581 |
| 04-24-83                 | 7            | 287.05 | 1007.61 | 426948 | 433108 | 432891 |
| 04-24-83                 | 8            | 289.83 | 1007.35 | 428040 | 434222 | 433645 |
| 04-24-83                 | 9            | 292.60 | 1007.38 | 428698 | 434903 | 434134 |
| 04-24-83                 | 10           | 295.94 | 1008.11 | 428315 | 434543 | 433940 |
| 04-24-83                 | 11           | 297.05 | 1007.82 | 428582 | 434833 | 433980 |
| 04-24-83                 | 12           | 298.16 | 1007.44 | 428997 | 435271 | 434114 |
| 04-24-83                 | 13           | 298.16 | 1007.44 | 428527 | 434824 | 433669 |
| 04-24-83                 | 14           | 297.60 | 1006.74 | 428030 | 434350 | 432839 |
| 04-24-83                 | 15           | 297.60 | 1005.75 | 427752 | 434094 | 432019 |
| 04-24-83                 | 16           | 297.60 | 1005.45 | 429625 | 435990 | 433734 |
| 04-24-83                 | 17           | 297.60 | 1004.85 | 427041 | 433429 | 430846 |
| 04 - 24 - 83             | 18           | 295.38 | 1004.83 | 426141 | 432552 | 430129 |
| 04 - 24 - 83             | 19           | 293.72 | 1005.80 | 425058 | 431492 | 429748 |
| 04-24-83                 | 20           | 293.16 | 1006.59 | 423474 | 429931 | 428681 |
| 04-24-83                 | $\tilde{21}$ | 290.94 | 1007.26 | 423971 | 430451 | 429745 |
| 04-24-83                 | 22           | 289.83 | 1007.55 | 424644 | 431146 | 430687 |
| 04-24-83                 | 23           | 289.27 | 1007.54 | 424192 | 430717 | 430295 |
| 04-24-83                 | 24           | 288.72 | 1006.74 | 424980 | 431528 | 430692 |
| 04-25-83                 | i            | 287.60 | 1006.03 | 424779 | 431350 | 430195 |
| 04-25-83                 | 2            | 286.49 | 1005.43 | 425545 | 432139 | 430724 |
| 04 - 25 - 83             | 3            | 285.94 | 1004.92 | 425091 | 431708 | 430047 |
| 04-25-83                 | 4            | 286.49 | 1005.72 | 426756 | 433396 | 432142 |
| 04-25-83                 | 5            | 287.05 | 1006.03 | 425235 | 431897 | 430781 |
| 04 - 25 - 83             | 6            | 287.60 | 1006.33 | 425931 | 432616 | 431627 |
| 04 - 25 - 83             | 7            | 288.16 | 1006.83 | 425433 | 432141 | 431397 |
| 04-25-83                 | 8            | 289.83 | 1007.15 | 425073 | 431804 | 431118 |
| 04 25 05<br>04 - 25 - 83 | ğ            | 292.60 | 1007.18 | 424610 | 431364 | 430487 |
| 04-25-83                 | 10           | 294.27 | 1007.30 | 424481 | 431258 | 430324 |
| 04-25-83                 | 11           | 295.38 | 1007.80 | 425768 | 432568 | 431832 |
| 04-25-83                 | 12           | 294.83 | 1007.80 | 425770 | 432592 | 431898 |
| 04 - 25 - 83             | 13           | 296.49 | 1007.42 | 427594 | 434439 | 433399 |
| 04-25-83                 | 14           | 295.94 | 1006.92 | 427399 | 434267 | 432984 |
| 04 - 25 - 83             | 15           | 296.49 | 1005.93 | 426495 | 433386 | 431500 |
| 04-25-83                 | 16           | 297.05 | 1006.24 | 427723 | 434637 | 432881 |
| 04-25-83                 | 17           | 296.49 | 1006.53 | 427438 | 434375 | 432828 |
| 04 - 25 - 83             | 18           | 295.94 | 1006.52 | 428182 | 435142 | 433628 |
| 04-25-83                 | 19           | 294.27 | 1006.50 | 427120 | 434102 | 432705 |
| 04-25-83                 | 20           | 291.49 | 1007.07 | 426503 | 433508 | 432648 |
| 04-25-83                 | 21           | 291.49 | 1006.97 | 427033 | 434061 | 433143 |
| 04-25-83                 | 22           | 290.94 | 1007.26 | 426643 | 433694 | 432983 |
| 04-25-83                 | 23           | 290.38 | 1007.25 | 426302 | 433376 | 432702 |
| 04-25-83                 | 24           | 289.83 | 1007.25 | 425745 | 432842 | 432211 |
| 04-26-83                 | 1            | 289.83 | 1007.45 | 425329 | 432449 | 431932 |
| 04-26-83                 | 2                | 288.16 | 1007.13 | 420440 | 427583 | 427015 |
|--------------------------|------------------|--------|---------|--------|--------|--------|
| 04-26-83                 | 3                | 288.16 | 1007.13 | 421059 | 428224 | 427655 |
| 04-26-83                 | 4                | 288.16 | 1007.43 | 424528 | 431716 | 431314 |
| 04-26-83                 | 5                | 287.60 | 1007.42 | 423220 | 430431 | 430065 |
| 04-26-83                 | 6                | 288.72 | 1008.33 | 422194 | 429428 | 429496 |
| 04-26-83                 | 7                | 290.94 | 1009.14 | 423589 | 430846 | 431207 |
| 04-26-83                 | 8                | 292.05 | 1009.55 | 424093 | 431373 | 431885 |
| 04-26-83                 | 9                | 292.05 | 1010.15 | 422378 | 429681 | 430532 |
| 04-26-83                 | 10               | 294.27 | 1010.47 | 422101 | 429426 | 430292 |
| 04-26-83                 | 11               | 296.49 | 1010.49 | 422164 | 429512 | 430222 |
| 04-26-83                 | 12               | 296.49 | 1009.90 | 420169 | 427540 | 427914 |
| 04-26-83                 | 13               | 299.27 | 1010.43 | 421632 | 429026 | 429494 |
| 04-26-83                 | 14               | 298.72 | 1008.83 | 420319 | 427736 | 427341 |
| 04-26-83                 | 15               | 294.83 | 1007.80 | 422064 | 429504 | 428816 |
| 04-26-83                 | 16               | 300.94 | 1007.37 | 422986 | 430449 | 429058 |
| 04-26-83                 | 17               | 300.38 | 1006.87 | 422384 | 429869 | 428239 |
| 04-26-83                 | 18               | 299.83 | 1006.86 | 423812 | 431320 | 429721 |
| 04-26-83                 | 19               | 297.05 | 1006.83 | 423420 | 430951 | 429544 |
| 04-26-83                 | 20               | 295.94 | 1007.51 | 423743 | 431297 | 430357 |
| 04-26-83                 | 21               | 294.27 | 1008.19 | 423193 | 430770 | 430342 |
| 04-26-83                 | $\frac{1}{22}$   | 294.27 | 1008.88 | 421847 | 429447 | 429411 |
| 04-26-83                 | 23               | 293.72 | 1008.88 | 422269 | 429892 | 429897 |
| 04-26-83                 | 24               | 292.60 | 1008.87 | 422353 | 429998 | 430081 |
| 04 - 27 - 83             | - i              | 292.05 | 1008.56 | 422242 | 429910 | 429859 |
| 04-27-83                 | 2                | 291.49 | 1008.26 | 423167 | 430858 | 430678 |
| 04-27-83                 | 3                | 290.94 | 1008.25 | 424192 | 431906 | 431761 |
| 04 - 27 - 83             | 4                | 290.94 | 1008.55 | 423816 | 431553 | 431579 |
| 04 - 27 - 83             | 5                | 290.94 | 1008.85 | 423014 | 430774 | 430970 |
| 04-27-83                 | 6                | 289.27 | 1008.83 | 421890 | 429673 | 429983 |
| 04-27-83                 | 7                | 292.05 | 1009.16 | 420728 | 428533 | 428821 |
| 04-27-83                 | 8                | 293.72 | 1009.37 | 421190 | 429018 | 429300 |
| 04 27 03<br>04 - 27 - 83 | ğ                | 295.38 | 1009.39 | 421212 | 429063 | 429233 |
| 04 - 27 - 83             | 10               | 295.94 | 1010.09 | 422564 | 430438 | 430964 |
| 04 - 27 - 83             | 11               | 298.72 | 1009.43 | 422647 | 430544 | 430487 |
| 04 - 27 - 83             | 12               | 299.27 | 1008.84 | 425872 | 433792 | 433355 |
| 04 - 27 - 83             | 13               | 299.83 | 1008.05 | 425909 | 433852 | 432922 |
| 04 - 27 - 83             | 14               | 299.27 | 1007.35 | 425784 | 433749 | 432462 |
| 04 - 27 - 83             | 15               | 300.94 | 1006.97 | 426635 | 434623 | 432990 |
| 04 - 27 - 83             | 16               | 302.05 | 1006.39 | 433216 | 441227 | 439149 |
| 04 - 27 - 83             | 17               | 301.49 | 1006.09 | 425884 | 433918 | 431745 |
| 04 - 27 - 83             | 18               | 300.38 | 1006.07 | 425330 | 433387 | 431289 |
| 04 - 27 - 83             | 19               | 297.60 | 1006.04 | 424733 | 432813 | 430909 |
| 04 - 27 - 83             | 20               | 296.49 | 1006.33 | 423092 | 431195 | 429546 |
| 04 27 03<br>04 - 27 - 83 | 21               | 295.94 | 1006.92 | 422292 | 430417 | 429145 |
| 04-27-83                 | 22               | 295.94 | 1007.51 | 421843 | 429991 | 429055 |
| 04-27-83                 | 22               | 295.94 | 1007.51 | 419675 | 427846 | 426914 |
| 04 27 03                 | 22               | 295.38 | 1007.51 | 421272 | 429466 | 428572 |
| 04-28-83                 | - <del>-</del> - | 295.38 | 1007-21 | 418814 | 427031 | 425973 |
| 04-28-83                 | 2                | 295-38 | 1007.21 | 418785 | 427025 | 425967 |
| 04-28-83                 | ว้               | 284 27 | 1006.79 | 418698 | 426961 | 426492 |
| 04-28-83                 | ر<br>۲           | 295.38 | 1006-91 | 416886 | 425172 | 423952 |
| 04-28-83                 | 5                | 294.83 | 1006.51 | 417709 | 426017 | 424611 |
|                          | -                |        |         |        |        |        |

.

•

| 04-28-83     | 6  | 294.83 | 1006.91 | 419048 | 427379 | 426193 |
|--------------|----|--------|---------|--------|--------|--------|
| 04-28-83     | 7  | 294.83 | 1007.30 | 416418 | 424772 | 423812 |
| 04-28-83     | 8  | 295.94 | 1007.31 | 418236 | 426613 | 425571 |
| 04-28-83     | 9  | 296.49 | 1008.02 | 418527 | 426927 | 426242 |
| 04-28-83     | 10 | 297.60 | 1008.03 | 419500 | 427923 | 427160 |
| 04-28-83     | 11 | 298.72 | 1008.04 | 420176 | 428622 | 427780 |
| 04-28-83     | 12 | 299.27 | 1007.35 | 421286 | 429754 | 428479 |
| 04-28-83     | 13 | 299.83 | 1006.76 | 423084 | 431575 | 429918 |
| 04-28-83     | 14 | 300.38 | 1006.27 | 424522 | 433036 | 431053 |
| 04-28-83     | 15 | 300.38 | 1005.68 | 425507 | 434044 | 431721 |
| 04-28-83     | 16 | 300.94 | 1005.39 | 426626 | 435186 | 432648 |
| 04-28-83     | 17 | 300.94 | 1005.39 | 425927 | 434510 | 431977 |
| 04-28-83     | 18 | 299.83 | 1004.78 | 424000 | 432606 | 429821 |
| 04-28-83     | 19 | 298.16 | 1004.46 | 425812 | 434440 | 431586 |
| 04-28-83     | 20 | 297.60 | 1005.35 | 424358 | 433009 | 430/12 |
| 04-28-83     | 21 | 298.72 | 1005.96 | 421354 | 430028 | 428008 |
| 04-28-83     | 22 | 296.49 | 1006.23 | 419973 | 428670 | 4269/4 |
| 04-28-83     | 23 | 295.94 | 1006.52 | 419617 | 428337 | 426846 |
| 04-28-83     | 24 | 295.38 | 1006.52 | 420212 | 428955 | 42/504 |
| 04-29-83     | 1  | 295.94 | 1006.72 | 420883 | 429649 | 428267 |
| 04-29-83     | 2  | 295.38 | 1006.02 | 421968 | 430/56 | 429010 |
| 04-29-83     | 3  | 295.94 | 1006.32 | 422156 | 430967 | 429354 |
| 04-29-83     | 4  | 297.60 | 1006.04 | 423263 | 432097 | 430190 |
| 04-29-83     | 5  | 295.38 | 1006.32 | 422432 | 431289 | 429/1/ |
| 04-29-83     | 5  | 295.38 |         | 422343 | 431423 | 430241 |
| 04-29-83     | /  | 295.94 | 1007.41 | 423434 | 432397 | 431333 |
| 04-29-83     | 8  | 290.49 | 1008.02 | 422142 | 431000 | 429935 |
| 04-29-03     | 10 | 297.05 | 1008.32 | 421340 | 431283 | 430642 |
| 04-29-03     | 10 | 290.10 | 1008.35 | 422312 | 433190 | 432433 |
| 04-29-83     | 12 | 300 94 | 1007.57 | 425229 | 434246 | 432957 |
| 04-29-03     | 13 | 302.05 | 1006.98 | 426721 | 435761 | 434046 |
| 04-29-03     | 10 | 302.00 | 1006.40 | 427341 | 436404 | 434311 |
| 04-29-03     | 15 | 302.00 | 1005.61 | 427524 | 436610 | 433981 |
| 04-29-03     | 16 | 302.60 | 1005.01 | 428883 | 437991 | 435093 |
| 04-29-83     | 17 | 303.16 | 1004.62 | 427688 | 436819 | 433663 |
| 04-29-83     | 18 | 301.49 | 1004.30 | 428958 | 438112 | 434891 |
| 04-29-83     | 19 | 299.83 | 1004.58 | 427525 | 436702 | 433777 |
| 04-29-83     | 20 | 298.72 | 1004.96 | 428546 | 437746 | 435116 |
| 04 - 29 - 83 | 21 | 297.05 | 1005.64 | 426799 | 436022 | 433917 |
| 04-29-83     | 22 | 297.05 | 1005.94 | 426450 | 435696 | 433764 |
| 04-29-83     | 23 | 295.94 | 1005.93 | 428449 | 437717 | 435854 |
| 04-29-83     | 24 | 297.05 | 1005.94 | 424365 | 433656 | 431733 |
| 04-30-83     | 1  | 296.49 | 1006.23 | 424635 | 433949 | 432232 |
| 04-30-83     | 2  | 295.94 | 1006.22 | 423172 | 432509 | 430833 |
| 04-30-83     | 3  | 295.94 | 1006.22 | 422170 | 431530 | 429858 |
| 04-30-83     | 4  | 295.38 | 1006.22 | 423754 | 433137 | 431500 |
| 04-30-83     | 5  | 294.83 | 1006.51 | 424061 | 433467 | 432037 |
| 04-30-83     | 6  | 294.27 | 1006.80 | 422778 | 432207 | 430987 |
| 04-30-83     | 7  | 294.27 | 1007.10 | 422565 | 432016 | 430967 |
| 04-30-83     | 8  | 295.38 | 1007.71 | 424016 | 433490 | 432702 |
| 04-30-83     | 9  | 299.27 | 1008.14 | 424440 | 433937 | 433100 |

| 04-30-83                 | 10      | 301.49   | 1008.17 | 424983   | 434503                                | 433514 |
|--------------------------|---------|----------|---------|----------|---------------------------------------|--------|
| 04-30-83                 | 11      | 302.60   | 1007.59 | 425632   | 435175                                | 433768 |
| 04-30-83                 | 12      | 304.27   | 1006.61 | 425242   | 434808                                | 432717 |
| 04-30-83                 | 13      | 304.83   | 1005.53 | 424865   | 434454                                | 431708 |
| 04-30-83                 | 14      | 304.83   | 1005.33 | 427297   | 436908                                | 434032 |
| 04-30-83                 | 15      | 303.16   | 1004.32 | 426965   | 436599                                | 433274 |
| 04-30-83                 | 16      | 300.38   | 1003.99 | 426187   | 435844                                | 432546 |
| 04-30-83                 | 17      | 296.49   | 1003.35 | 426299   | 435979                                | 432608 |
| 04-30-83                 | 18      | 300.38   | 1003.40 | 426395   | 436098                                | 432462 |
| 04-30-83                 | 19      | 299.83   | 1003.69 | 425317   | 435043                                | 431622 |
| 04-30-83                 | 20      | 298.72   | 1004.27 | 424177   | 433926                                | 430926 |
| 04-30-83                 | 21      | 298.72   | 1004.57 | 422313   | 432084                                | 429266 |
| 04-30-83                 | 22      | 297.05   | 1004.85 | 421548   | 431342                                | 428813 |
| 04-30-83                 | 23      | 297.05   | 1004.85 | 420176   | 429993                                | 427471 |
| 04-30-83                 | 24      | 297.60   | 1004.85 | 419022   | 428862                                | 426306 |
| 05-01-83                 | 1       | 296.49   | 1005.14 | 419304   | 429167                                | 426855 |
| 05-01-83                 | 2       | 295.38   | 1004.43 | 418799   | 428685                                | 426059 |
| 05-01-83                 | 3       | 295.94   | 1004.44 | 420591   | 430500                                | 427826 |
| 05-01-83                 | 4       | 294.83   | 1005.12 | 419893   | 429824                                | 427621 |
| 05 - 01 - 83             | 5       | 294.27   | 1005.71 | 418959   | 428913                                | 427088 |
| 05 - 01 - 83             | 6       | 294.27   | 1005.71 | 419420   | 429397                                | 427570 |
| 05 - 01 - 83             | 7       | 294.83   | 1006.11 | 418765   | 428765                                | 427125 |
| 05 01 03<br>05 - 01 - 83 | 8       | 298.72   | 1005.86 | 420747   | 430770                                | 428690 |
| 05 01 03                 | ğ       | 299.27   | 1005.86 | 420610   | 430656                                | 428535 |
| 05 01 03<br>05 - 01 - 83 | 10      | 300.38   | 1005.88 | 421252   | 431321                                | 429125 |
| 05 01 03<br>05 - 01 - 83 | 11      | 302-05   | 1005.99 | 420902   | 430993                                | 428737 |
| 05-01-83                 | 12      | 300.38   | 1005.68 | 422767   | 432881                                | 430564 |
| 05 01 03<br>05 - 01 - 83 | 13      | 298.72   | 1004.96 | 424779   | 434916                                | 432303 |
| 05-01-83                 | 14      | 302.05   | 1005.00 | 424685   | 434845                                | 432004 |
| 05-01-83                 | 15      | 301.49   | 1004.70 | 423108   | 433291                                | 430332 |
| 05-01-83                 | 16      | 302.05   | 1003.91 | 425860   | 436066                                | 432595 |
| 05-01-83                 | 17      | 301.49   | 1003.51 | 424564   | 434793                                | 431146 |
| 05-01-83                 | 18      | 300.94   | 1004.10 | 424802   | 435053                                | 431782 |
| 05-01-05                 | 19      | 299.83   | 1004.08 | 423752   | 434026                                | 430834 |
| 05-01-83                 | 20      | 298.72   | 1004.96 | 422005   | 432302                                | 429705 |
| 05-01-83                 | 21      | 298.72   | 1005.56 | 421812   | 432132                                | 429876 |
| 05 01 03                 | 22      | 297.60   | 1006.14 | 421630   | 431973                                | 430130 |
| 05 01 03<br>05 - 01 - 83 | 23      | 297.05   | 1006.14 | 419711   | 430077                                | 428283 |
| 05-01-83                 | 24      | 295.94   | 1007.02 | 420116   | 430505                                | 429289 |
| 05-01-05                 | 27      | 295.94   | 1007.02 | 420472   | 430883                                | 429667 |
| 05-02-03                 | 2       | 295.94   | 1006.03 | 420506   | 430940                                | 429163 |
| 05-02-03                 | 2       | 294.83   | 1005.72 | 421262   | 431719                                | 429846 |
| 05-02-83                 | 4       | 294.83   | 1006.01 | 421009   | 431489                                | 429781 |
| 05-02-03                 | 5       | 294.27   | 1006.01 | 420324   | 430827                                | 429164 |
| 05-02-03                 | 6       | 294.27   | 1006.30 | 418861   | 429387                                | 427893 |
| 05-02-03                 | 7       | 294.27   | 1006.70 | 418811   | 429360                                | 428092 |
| 05-02-03                 | 2<br>2  | 297 05   | 1006.93 | 418348   | 428920                                | 427576 |
| 05-02-03                 | 0       | 297.00   | 1007 21 | 41 82 49 | 428843                                | 427781 |
| 05-02-03                 | 9<br>10 | 295.30   | 1007-22 | 417371   | 427988                                | 426851 |
| 05-02-03                 | 10      | 290 . 79 | 1007.25 | 417348   | 427988                                | 426661 |
| 05-02-03                 | 10      | 298 72   | 1006.65 | 418627   | 429290                                | 427662 |
| 05-02-03                 | 13      | 298.72   | 1006.06 | 419740   | 430426                                | 428460 |
| JJ JL JJ                 |         |          |         |          | · · · · · · · · · · · · · · · · · · · |        |

| 05-02-83 | 14 | 299.27 | 1005.76 | 421594   | 432303 | 430118 |
|----------|----|--------|---------|----------|--------|--------|
| 05-02-83 | 15 | 298.16 | 1005.45 | 419044   | 429776 | 427511 |
| 05-02-83 | 16 | 297.05 | 1005.15 | 420420   | 431174 | 428815 |
| 05-02-83 | 17 | 296.49 | 1004.74 | 420402   | 431179 | 428629 |
| 05-02-83 | 18 | 295.94 | 1003.74 | 419203   | 430003 | 426939 |
| 05-02-83 | 19 | 294.83 | 1004.13 | 417621   | 428444 | 425692 |
| 05-02-83 | 20 | 294.27 | 1003.43 | 419507   | 430353 | 427236 |
| 05-02-83 | 21 | 294.27 | 1003.73 | 419825   | 430694 | 427744 |
| 05-02-83 | 22 | 294.27 | 1003.73 | 419036   | 429928 | 426982 |
| 05-02-83 | 23 | 294.27 | 1003.73 | 419231   | 430145 | 427198 |
| 05-02-83 | 24 | 293.72 | 1003.13 | 419021   | 429958 | 426715 |
| 05-03-83 | 1  | 293.72 | 1003.13 | 41 90 92 | 430052 | 426809 |
| 05-03-83 | 2  | 293.72 | 1002.83 | 417935   | 428918 | 425515 |
| 05-03-83 | 3  | 293.72 | 1002.23 | 419955   | 430961 | 427204 |
| 05-03-83 | 4  | 293.72 | 1001.93 | 418307   | 429336 | 425425 |
| 05-03-83 | 5  | 293.16 | 1001.93 | 41 90 93 | 430145 | 426268 |
| 05-03-83 | 6  | 293.16 | 1001.93 | 419382   | 430456 | 426576 |
| 05-03-83 | 7  | 293.16 | 1001.93 | 419000   | 430097 | 426220 |
| 05-03-83 | 8  | 293.16 | 1001.93 | 418902   | 430022 | 426146 |
| 05-03-83 | ğ  | 293.16 | 1002.62 | 418518   | 429661 | 426176 |
| 05-03-83 | 10 | 293.72 | 1002.13 | 418930   | 430096 | 426291 |
| 05-03-83 | 11 | 294.27 | 1001.64 | 418630   | 429819 | 425700 |
| 05-03-83 | 12 | 294.83 | 1002.15 | 418303   | 429515 | 425644 |
| 05-03-83 | 13 | 295.94 | 1001.07 | 420133   | 431367 | 426787 |
| 05-03-83 | 14 | 295.94 | 1001.07 | 421998   | 433255 | 428656 |
| 05-03-83 | 15 | 295.38 | 999.28  | 422889   | 434169 | 428586 |
| 05-03-83 | 16 | 295.94 | 999.68  | 424007   | 435310 | 429899 |
| 05-03-83 | 17 | 297.05 | 999.69  | 425095   | 436421 | 430920 |
| 05-03-83 | 18 | 296.49 | 999.68  | 423871   | 435220 | 429772 |
| 05-03-83 | 19 | 294.83 | 1000.26 | 423863   | 435235 | 430238 |
| 05-03-83 | 20 | 294.27 | 1000.25 | 422850   | 434244 | 429295 |
| 05-03-83 | 21 | 294.27 | 1000.25 | 422461   | 433878 | 428933 |
| 05-03-83 | 22 | 294.27 | 1000.55 | 424015   | 435455 | 430662 |
| 05-03-83 | 23 | 294.27 | 1000.55 | 423720   | 435183 | 430393 |
| 05-03-83 | 24 | 294.27 | 1000.55 | 422992   | 434478 | 429696 |
| 05-04-83 | 1  | 294.27 | 999.56  | 423331   | 434840 | 429493 |
| 05-04-83 | 2  | 294.27 | 999.26  | 425384   | 436916 | 431374 |
| 05-04-83 | 3  | 294.27 | 998.87  | 424519   | 436073 | 430316 |
| 05-04-83 | 4  | 294.27 | 999.26  | 424278   | 435855 | 430326 |
| 05-04-83 | 5  | 293.72 | 999.26  | 425167   | 436767 | 431266 |
| 05-04-83 | 6  | 293.72 | 999.26  | 425077   | 436700 | 431200 |
| 05-04-83 | 7  | 293.72 | 999.26  | 424911   | 436557 | 431058 |
| 05-04-83 | 8  | 294.27 | 1000.25 | 426241   | 437910 | 432918 |
| 05-04-83 | 9  | 294.27 | 1000.65 | 425836   | 437528 | 432769 |
|          |    |        |         |          |        |        |