
A PRINCIPAL COMPONENT APPROACH

TO ANALYZING SIMULATION OUTPUT

A Dissertation

by

THOMAS FREEMAN, JR.

Submitted to the Office of Graduate Studies of
Texas A&M University

partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 1992

Major Subject: Industrial Engineering

A PRINCIPAL COMPONENT APPROACH

TO ANALYZING SIMULATION OUTPUT

A Dissertation

by

THOMAS FREEMAN, JR.

Approved as to style and content by:

Lobert E. Shannon

(Chair of Committee)

X IoqvHt
Martin A. Wortman

(Member)

Jo,
Ronald R. Hocking V

(Member)
Gary IL./Hogg

(Head of Department)

August 1992

Ill

ABSTRACT

A Principal Component Approach

to Analyzing Simulation Output. (August 1992)

Thomas Freeman, Jr., B.S., United States Military Academy;

M.S., University of Southern California

Chair of Advisory Committee: Dr. Robert E. Shannon

A new procedure, called the principal component method, is developed to

handle the problem of data correlation in simulation output analysis. The method

is derived from matrix diagonalization theorems, which allow for an orthogonal

transformation of data with an estimated covariance structure into a version of the

data with uncorrelated structure. Matrix manipulation of this uncorrelated version

of the data yields a derivation of an unbiased estimate of the underlying process

mean and an estimate of the standard error of the mean. Using the Central Limit

Theorem, the confidence interval is constructed. The performance of this confidence

interval methodology is empirically tested over several independent replications of

M/M/1 queueing models set at various utilization rates and of time series models

with known correlation structures. Compared to the batched mean procedure, the

principal component method provides good coverage, acceptable half-width

information, and excellent bias information.

IV

ACKNOWLEDGEMENT

First and foremost, I thank my Lord and savior, Jesus Christ, for his blessings

and his guidance, which keeps everything that I do in this world in the proper

perspective.

I thank the members of my graduate committee who persevered through this

academic ordeal with me and provided constant support throughout.

I appreciate the efforts of my chairman, Dr. Robert E. Shannon, who took

a gamble on my academic potential, staked his professional reputation that I could

succeed, and patiently guided me to the finish.

I, also, thank Dr. Martin A. Wortman, who more than anyone else understood

what I was going through and offered the encouragement and assistance to continue

during those times when I thought all was lost.

I, also, appreciate the efforts of Dr. Gary L. Hogg, who raised my

expectations of what I thought I could do.

I owe much to Dr. Ronald R. Hocking, who provided the statistical insight

that allowed my research to progress to a successful conclusion.

I thank my wife, Georgia, and my kids, Tom and Janet for their love for me

and their independence to carry on with the family ,rbusiness" without me.

Finally, I thank my parents, Tom and Bertha, who early on instilled in me the

drive to be the first of the Freeman clan to earn a professional degree.

DEDICATION

To all who care to know the truth:

"Fear God and keep his commandments:
for this is the whole duty ofman.

For God will bring every work into judgement,
with every secret thing, whether it be good,

or whether it be evil."

-Ecclesiastes 12:13-14

To my son, Tom:

"It is only as a man puts offforeign support and
stands alone, do I see him to be strong and to prevail.

He is weaker by every recruit to his banner,
for is not a man better than a town."

—Anonymous

To my father, Tom, my wife, and the rest of my family:

"It’s never too late to start,
Never too soon to unbind,
The dreams ofyour heart,

And the visions ofyour mind "

—Tom McCauley

To my grandfather, Mr. Otis, and his father, Thomas:

Question, what’s in a name?
Answer-Only your character!

Thanks for character.

VI

TABLE OF CONTENTS

RagP

ABSTRACT iii

ACKNOWLEDGEMENT iv

DEDICATION v

TABLE OF CONTENTS vi

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER

I INTRODUCTION 1

1.1 Background 2
1.2 Statement of Need 3
1.3 Scope 4
1.4 Applications 5
1.5 Organization 5

II LITERATURE REVIEW : 6

2.1 Methods of Output Analysis 6

2.1.1 Replication/Deletion 7
2.1.2 Batch Means : 10
2.1.3 Regenerative 13
2.1.4 Time Series 14
2.1.5 Spectral 15
2.1.6 Standardized Time Series 16

2.2 State of Current Research 17

III APPROACH 18

Vll

CHAPTER Rg3

3.1 Problem Statement 19
3.2 Solution Derivation 21
3.3 Experiment Methodology 23

3.3.1 Conceptual Framework24
3.3.2 Models and Parameters 27
3.3.3 Performance Measures 29
3.3.4 Tactical Issues 32
3.3.5 Research Plan 34

IV EMPIRICAL RESULTS AND DISCUSSION 35

4.1 Pilot Studies 37
4.2 M/M/1 Queue 41
4.3 AR(1) Time Series Model 45
4.4 ARMA(1,1) Time Series Model 48
4.5 Factor Levels 51
4.6 Coverage Function 53

4.6.1 Coverage Function, M/M/1 54
4.6.2 Coverage Function, AR(1) 65
4.6.3 Coverage Function, ARMA(1,1) 72

V SUMMARY, CONCLUSIONSANDRECOMMENDATIONS 76

5.1 Summary 77
5.2 Conclusions 83
5.3 Recommendations 86

REFERENCES 88

APPENDIX A DERIVATION OF PROPOSED PROCEDURE...94

APPENDIX B DESCRIPTION OF TIMESLAB SOFTWARE 98

APPENDIX C COMPUTER PROGRAMS 103

VITA. 131

Vlll

LIST OF TABLES

Table Page

4.1 Pilot Study Results 38

4.2 Pilot Study Results (Modified) 40

4.3 M/M/1 Queue with p =.5 42

4.4 M/M/1 Queue with p =.8 43

4.5 M/M/1 Queue with p =.9 44

4.6 AR(1) Time Series with p =.5 46

4.7 AR(1) Time Series with p =.9 47

4.8 ARMA(1,1) Time Series 49

IX

LIST OF FIGURES

Figure Page

4.1 Coverage Function M/M/1, p = .5, nb= 10 55

4.2 Coverage Function M/M/1, p = .5, nb~20 56

4.3 Coverage Function M/M/1, p=.5, nb=40 57

4.4 Coverage Function M/M/1, p = .8, nb=10 58

4.5 Coverage Function M/M/1, p = .8, nb=20 59

4.6 Coverage Function M/M/1, p = .8, nb=40 60

4.7 Coverage Function M/M/1, p = .9, nb=10 61

4.8 Coverage Function M/M/1, p = .9, nb=20 62
4.9 Coverage Function M/M/1, p = .9, nb=40 63

4.10 Coverage Function AR(1), p=.5, nb=10 66
4.11 Coverage Function AR(1), p = .5, nb=20 67
4.12 Coverage Function AR(1), p=.5, nb=40 68
4.13 Coverage Function AR(1), p=.9, nb=10 69
4.14 Coverage Function AR(1), p=.9, nb=20 70
4.15 Coverage Function AR(1), p = .9, nb=40 71
4.16 Coverage Function ARMA(1,1), nb~10 73
4.17 Coverage Function ARMA(1,1), nb-20 74
4.18 Coverage Function ARMA(1,1), nb=40 75

1

CHAPTER I

INTRODUCTION

Much time and effort is spent by the simulation analyst in modeling and

generating simulation output. Too often, little effort is directed toward properly

analyzing the output. Simulation analysts may overlook the fact that a simulation is

really an experiment, and not just another computer program to be run. Therefore,

the simulation experiment contains a variety of random elements that interact in

many unexpected ways. In fact, the novice simulation analyst too often relies upon

the output of a single run as an "answer". More experienced analysts realize that a

simulation’s output is a realization of a random process and requires a confidence

interval estimate.

Often, analysts inappropriately apply classical statistical procedures to the

output when the assumptions for such procedures are not met. For example, most

classical procedures for analyzing statistical data require independent observations,

time invariance, and normality. Typically, a simulation’s output fails to satisfy one

or more of these assumptions, with failure of the independence assumption being the

most critical (Law [1977]).

This dissertation follows the style and format of Operations Research.

2

1.1 Background

Consider a simulation analyst who is asked by a bank’s officials to determine

whether or not the bank should change from an existing service teller configuration

to a proposed teller configuration. A performance measure of the existing setup that

the analyst may be interested is the average time that a customer spends waiting and

getting serviced in the bank. The analyst develops, verifies, and validates a

simulation model of the bank that accurately portrays the daily activities of the bank.

After the analyst ’’warms up" his bank simulation through the transient period, he

amasses the steady state data, Xi9 of the time that the ith customer spends in the

bank. At the end of the simulation, the analyst uses this data to calculate the

- 1 "
average time a customer spends in the system, X-- . However, the single

n i=l

number which he determines as the average does not accurately reveal how close

it is to the true mean, fi. One realization of the simulation gives an unacceptable

estimate of the true mean.

Now, if the analyst runs several independent replications of the experiment,
he will get several different batched averages Xi as estimates of the true mean.

Taking the grand average X of all of the batched averages for each replication

gives a better estimate of the true mean. It is closer to the true mean (has less bias),

yet, the analyst cannot tell how close. A measure of the variation about the grand

average, s2= V' (X-X)2 , assists the analyst in constructing a classical Student
h-1 i=l

3

t confidence interval on the true mean, X±t^n]1_ *12) This confidence
N n

interval tells how close the grand average is to the true mean. Its common, though

erroneous, interpretation is that the analyst has some designated level of confidence

that the true mean lies between the two confidence limits.

Yet, there is a troublesome situation inherent to the bank operation process

which may cause the analyst to place more confidence in the confidence interval

than he should. The inherent situation of the process is that customer waiting times

are dependent on prior customer waiting times. The strength of this dependency,

or correlation, affects the accuracy of the variation measure and, consequently, the

size of the confidence interval. If due to positive correlation, the confidence interval

is shorter than it should be, then the analyst, erroneously, interprets the estimate as

being closer to the true mean than it actually is.

1.2 Statement of Need

Much of the research work in the analysis of simulation output has been

directed toward solving the problem of data correlation. Such methods include

replication/deletion methods, batching methods, time-series approaches, spectral

approaches, regenerative, and standardized time-series approaches. Most methods

are based on the premise that some essentially uncorrelated version of the original

data can be obtained so that classical confidence interval procedures then become

applicable. However, all of the methods suffer some serious drawbacks to the

4

practical simulation analyst.

For example, the replication/deletion methods are very costly with respect to

computer time and they require multiple passes through the transient period. The

batch means methods require that the batch size be tediously and arbitrarily

determined. The time-series and spectral approaches require great statistical

knowledge and expertise on the part of the analyst. The regenerative methods are

somewhat dependent on the structure of the underlying process since the process

must have identifiable regeneration points. The standardized time-series methods

are promising, but require a strong mathematical background in order to understand

and use the derived central limit theorems necessary for constructing confidence

intervals. Therefore, a method of simulation output analysis which has a simple, yet

rigorous, theoretical framework is needed that is easy to implement, and is efficient

with respect to computer effort in application.

13 Scope

This research is exploratory in nature. It derives a fixed-sample-size method

of analyzing simulation output and tests the performance of the method against

several widely accepted models and performance measures. It is limited by the

storage and computational capacities of a stand-alone personal computer. It does

not consider the practical problems of identifying the initial transient period and of

determining the batch size required in order to ensure uncorrelated batches.

5

1.4 Applications

This research is intended for the benefit of the simulation analyst who must

take simulation output and construct an appropriate fixed-sample-size confidence

interval on the steady state mean response for a single system. The results of this

research has applications in operations research, system analysis, manufacturing, and

statistics.

1.5 Organization

The remainder of the dissertation is organized as follows. Chapter II is a

literature review, which describes the several methods of simulation output analysis

and the state of current research in the area. Chapter III describes the problem, the

research approach, and experimental methodology. Chapter IV explains the

empirical results of the performance of the proposed confidence interval method on

some well-known analytical models. Finally, conclusions and recommendations for

further research are offered in Chapter V.

6

CHAPTER II

LITERATURE REVIEW

2.1 Methods of Output Analysis

Methods of analysis to solve the problem of serial correlation are classified

into four categories (Law [1983]):

(1) those that seek independent observations;

(2) those that seek to estimate the covariance in output variables;

(3) those that exploit the probabilistic structure of the underlying process;

(4) those that are based on standardized time-series.

Such methods may be a fixed-sample-size procedure or a sequential procedure.

Fixed-sample-size procedures are those that are done on a simulation of arbitrarily

selected sample size such that the width of the resulting confidence interval is fixed.

Sequential procedures are those that allow the sample size of the simulation to be

continually increased until a confidence interval of a desired width or precision is

obtained. This research does not address sequential procedures.

Excellent surveys of the various output analysis methods are found in Law

[1983], Kelton [1983], and Law and Kelton [1984]. Briefly, each method of analyzing

simulation output is summarized and discussed.

7

2.1.1 Replication/Deletion

The method of replication/deletion involves making several independent

simulation runs, truncation of some initial portion of each simulation run, and

treating the runs as independent and identically distributed normal (NIID) random

variables. The independent runs are obtained by using different random numbers

for each run. However, there are no readily agreed upon methods for determining

how much data to delete and how long to run the simulation. If the truncation point

is not appropriately determined, either the sample mean is a biased estimate of the

true mean or too much data is wastefully discarded. Several methods to determine

the truncation point and the effectiveness of the method are discussed.

Gafarian et al. [1978] formulated a definition for the initial transient problem

and proposed a set of evaluative criteria for truncation rules. Five commonly used

rules-Conway, modified Conway, crossings-of-the-mean, cumulative mean, and

Gordon—performed poorly against their evaluative criteria. By modeling the

simulation output as an autoregressive (AR) process, Fishman [1972] determined

that ad hoc truncation of initial data reduces bias as intended, but also decreases

statistical reliability due to a sometimes significant increase in the variance.

Donnelly and Shannon [1981] developed a method based on minimizing the

mean square error to determine the number of replicates to run and the number of

observations to retain for estimation. The method works well for AR(1) models with

short transient periods, but requires a lot of computation in order to do the mean

8

square error minimization routine. By looking at an AR(1) process, Kelton and Law

[1984] quantified the effect of data truncation on the performance of the replication

method. The method is viable if there is a small number of replications, say five to

ten, and if a small undetermined portion of the data is always deleted. The question

of how much data to delete is left open.

Schruben [1982] developed an initialization bias statistical test from a

standardized time series transformation of the data into a Brownian bridge stochastic

process. The Brownian bridge process is decomposed into a signal and a noise

component. Evaluation of the signal component for peaks provides the test for

initialization bias. For five analytical models, the test proved to be valid and

reasonably powerful in detecting the presence of initialization bias. Heidelberger

and Welch [1983] developed a procedure to detect non-stationarity of the initial

transient period in order to control the run length. The procedure is likewise based

on a Brownian bridge model that detects the initialization bias and performs well if

the simulation run length is sufficiently long relative to the initial transient period.

Welch [1983] discussed graphical techniques for determining the end of the

transient period. Such techniques consist of:

(1) determining the stopping point in the simulation such that run lengths

thereafter yield essentially identical histograms;

(2) plotting the sequence of sample means versus sample size and

determining the sample size the sequence converges to;

9

(3) smoothing the above plot such that short term fluctuations are removed

without affecting the long term trend.

Kelton and Law [1983] developed a new approach to estimate when the

transient period has ended. They derive the transient expectation function (TEF)

from a plot of E(Xi) versus i. This shows the observation at which the mean has

settled down. A regression based test for "flatness" is done in order to determine

the truncation point. Schruben et al. [1983] developed a family of powerful

hypothesis tests for determining if initialization bias is present in truncated output.

The test is robust and requires little computation. Pritsker [1986] summarized some

truncation rules and identified several difficulties with using them on large-scale

models. Schruben’s technique is seen to be the solution to these difficulties.

Vassilacopoulous [1989] developed a powerful non-parametric test that

detects the initialization bias of M/M/s queues. His test has the advantage of not

involving the variance of the output and of being robust and efficient. Whitt [1991]

proposed that usually one long run, deleting an initial portion of less than 5 % of the

run, is more efficient than many replications.

The problems with some of the more promising truncation methods that are

mentioned above are detailed in Law [1983]. First Schruben’s procedure is not

really an algorithm to determine the truncation point, but rather a test for

initialization after truncation is done by some othermethod. Next, Welch’s graphical

procedures may require a lot of replications for highly variable stochastic processes.

10

Finally, Kelton and Law’s procedure works well for a variety of processes, but a

theoretical limitation of the procedure is that it assumes monotonicity of the TEF.

This assumption limits the applicability of the procedure.

2.1.2 Batch Means

The method of batch means involves dividing up the observations of one long

simulation run into n batches of length /. If the batch size l is large enough then the

means of the observations making up the batches will be essentially uncorrelated and

normally distributed. Much research work has been done to determine the batch size

necessary to ensure uncorrelated batches.

Brillinger [1973] provided the statistical justification for the use of the batch

mean method to construct a confidence interval for a mean response. The

justifications is that normally distributed and independent conditions occur as the

number of observations get larger and the batch size increases. However, the

application to simulation output is effectively described in early editions of the text

by Gross and Harris [1985], p.487. The key question in batch means approaches is

how to determine the optimal batch size that ensures uncorrelated batches, yet

provides an adequate enough number of batches to construct a valid confidence

interval.

Law and Carson [1979] gave a sequential procedure for determining the batch

size that insures uncorrelated batches. Their procedure is based on a statistical test

for independence between batches. Other algorithms which, likewise, determined

11

the batch size based on statistical tests for independence are described in Fishman

[1978], Schriber and Andrews [1979], Mechanic and McKay [1966], and Schmidt and

Ho [1988]. Adam [1983] developed a sequential procedure that out-performs Law

and Carson’s method and Fishman’s method for high utilization queueing systems.

The procedure is also efficient and easy to implement.

Kang and Schmeiser [1987] considered the properties of the batch mean

method when the underlying process is an autoregressive moving average (ARMA)

time-series. The key conclusion is that the batch means process of an ARMA

process is also an ARMA process with easily determined parameters. The variance

and covariance structure of the batched ARMA process is shown to be a function

of the batch size. This provides enough insight into the structure of the batched

process to allow the optimal batch size for uncorrelated batches to be determined

without having to use a large number of batches.

Bischak [1988] developed a weighted batch means approach that is an

improved method for small sample simulations with strong positive correlations. The

weights, however, are obtained by an extensive optimization scheme on an ARMA

representation of the simulation output.

Other directions of research in the area of batch means has followed four

directions:

(1) Seila [1984] batched discrete observations using equal time intervals;

(2) Schmidt and Ho [1988] deleted observations between batches in order to

12

decrease the correlation between batches;

(3) Kang [1984] and Chun [1989] modeled the batch mean process as an

ARMA process in order to investigate its properties;

(4) overlapping batch mean methods have been developed by:

(i) Ho [1986], who develops an algorithm for testing when the lag

correlation k between observations has died down, and derives a method that

batches observations k apart;

(ii) Damerdji [1988], who determines consistent estimators of the time-

average variance, which ensure the asymptotic validity of overlapping batch mean

methods; (iii)Schmeiser et al. [1990], who provide four test assumptions that ensure

that observations are unbiased and converge meaningfully to the variances.

Law and Kelton [1984] suggest that using batch means with five or fewer

batches for a fixed sample size gives coverages as good as any of the above methods,

and is the simplest and least expensive to implement. However, Law and Carson

[1979] determine that hundreds of batches may be needed in order to find the batch

size that ensures uncorrelated batches. Schmeiser [1982] concludes that once an

optimal batch size is determined that no more than 30 batches, and usually 10

batches, is sufficient for most simulation purposes to construct a confidence interval

with good coverage and half-width properties. Good coverage still results when less

than 10 batches are used, but at the expense of a significantly wider confidence

13

interval.

2.1.3 Regenerative

The regenerative method involves identifying regeneration points within the

simulation output where the underlying process probabilistically starts over. The

observations between any two regeneration points (called a cycle) are considered to

be independent of the other observations. A ratio estimator is developed for the

mean response based on the ratio, average number of observations to the average

cycle length. The regenerative method has the advantage of not having to deal with

the problem of the initial transient, however, the simulation must have identifiable

regeneration points and it must have enough regeneration points (greater than 5) to

provide a valid confidence interval. Law and Kelton [1979] show how the

performance of the regenerative method deteriorates when the number of

regeneration points is too small.

Both Crane and Iglehart [1974a] and Fishman [1974] are credited with

developing the regenerative approach for simulation output analysis. They both

examine estimates of queueing performance such as average number of customers

in a busy cycle, average length of a busy cycle, idle time, and waiting time. While

Fishman [1978] consolidates most of his results in an excellent text, Crane and

Iglehart [1974b] [1975a] [1975b] describe in a series of papers applications of the

regenerative approach to Markov chains and to simulation models requiring

approximations for regeneration points. Crane and Lemoine [1977] provide more

14

details of simulation applications of the regenerative method. Iglehart [1975] [1976]

[1978] provide applications of the regenerative method for statistical estimation other

than for the mean. The jackknife procedure of estimating the variance is suggested

if computational and storage capacities allow it. Finally, Iglehart and Shedler [1980]

[1983] provide application of the regenerative method to analyzing queueing

networks.

2.1.4 Time Series

Time series approaches seek to model the simulation output as AR processes

of order p or as ARMA processes of order p and q. Since the estimates of the

variance of time series models account for the correlation problem, confidence

intervals are easily constructed. However, the problem of identifying the time series

model that best fits a given output data set is a difficult one.

Fishman and Kiviat [1967] were the earliest to develop an AR approach for

estimating the variance. Fishman [1971] used AR representations in order to

determine the sample size necessary to get a confidence interval of desired precision.

Fishman [1973] provides a procedure to determine the order p and the AR model

coefficients. Schriber and Andrews [1984] extended Fishman’s method to include

determining the parameters of ARMA representation of simulation output.

Although the time series approaches provide the distinct advantage of

inherently accounting for the correlation, their performance as a confidence interval

technique has been dismal in general, especially when applied to models that are not

15

specifically time series models. Law and Kelton [1984] found that the coverages of

AR models, in general, were lower than expected.

2.1.5 Spectral

The spectral approaches are based on the idea of harmonic analysis that says

that any time-varying output can be decomposed into a sum of independent sinusoids

at various frequencies and amplitudes called its spectral density function.

Furthermore, the variance of the output is a function of the sum of the squared

amplitudes of the sinusoids. Therefore, all spectral approaches seek to determine

the value of the spectral density function at zero frequency as an estimate of the

output variance.

Duket and Pritsker [1978] were among the first to use the spectral estimate

as a variance estimate for confidence intervals. However, empirical studies with

M/M/1 queues show the variance estimates to be so large that the confidence

coverage is grossly distorted.

Moeller and Welch [1977] develop an alternate approach of estimating the

variance by fitting a low order (quadratic) polynomial to the sample spectral density,

or periodogram. The method gives valid confidence intervals comparable to the

batch mean method and even gives valid confidence intervals for cases where the

batch mean method fails to determine the proper batch size to generate a

confidence interval.

Heidelberger and Welch [1981a] improved upon the spectral estimation

procedure by doing a polynomial regression of the log averaged periodogram. This

procedure gives variance estimates that cause the coverage to be less than desired

for small sample sizes.

Heidelberger and Welch [1981b] tested other procedures for improving the

spectral estimate. Such procedures include polynomial smoothing at higher than

quadratic degrees and the use of smoothing splines. These procedures, however,

yield poorer confidence interval performance than the original spectral procedure.

2.1.6 Standardized Time Series

The standardized time-series method is based on transforming the simulation

output to a Brownian bridge stochastic process. A derived central limit theorem for

the Brownian bridge process yields the means by which a confidence interval is

constructed (see Schruben [1983]).

Goldsman and Schruben [1984] determined that the standardized time-series

confidence intervals strictly dominate the classical confidence intervals. Goldsman

and Schruben [1990] developed asymptotically valid confidence interval estimators

which are essentially weighted generalizations of Schruben’s original method.

Goldsman et al. [1990] improved upon the method by using weighted standardized

time-series variance estimates. The performance of the confidence intervals result

in the least asymptotic bias and excellent coverage.

17

2.2 State of Current Research

The state of the current research in the area of steady-state simulation

output analysis is to develop sequential procedures for many of the aforementioned

methods. Law [1983], however, makes the case for developing newer fixed-width

confidence interval procedures similar to the replication and the batch means

methods, which are both based on independent and identically distributed

observations. Because of the simplicity and ease of implementing such procedures,

simulation analysts use them more frequently than any of the sophisticated

procedures, such as time series, spectral, and standardized time series approaches.

Most analysts possess neither the time nor the expertise to use sophisticated

procedures.

Therefore, research is ongoing and much needed for addressing the still

unanswered problems of fixed-width confidence interval procedures. Such problems

that remain to be solved include:

(1) determining the optimal batch size to ensure uncorrelated batches;

(2) developing consistent estimators of the covariance;

(3) deriving more powerful tests for correlation between batches;

(4) developing a small sample confidence interval methodology that yields

good performance.

18

CHAPTER III

APPROACH

In multivariate regression analysis, much literature has been written on the

problem of multi-collinearity between variables. Similar to the problems of auto¬

correlation in the univariate case, multi-collinearity distorts the variance without

affecting the bias of estimators. This causes more confidence to be placed in the

validity of confidence intervals than should be.

Several methods exist to handle the problem of multi-collinearity. One such

method, the principal component method, seeks to obtain a more parsimonious

representation of the variance components of the regression model. This

representation of the regression model facilitates a more accurate interpretation of

the regression estimates and the relationship between the estimates.

The principal component method orthogonally transforms the symmetric

covariance structure of the regression model to a structure which contains no cross

terms. The variance component of this structure can then be more readily

determined. The orthogonal transformation has its basis in certain diagonalization

theorems of matrix algebra. One such theorem is as follows:

Diagonalization Theorem: Ann xn matrix S is diagonalizable if and only if

it has n linearly independent eigenvectors e. S is similar to a diagonal matrixD, with

PTSP = D. The diagonal elements of D are the eigenvalues X of 5, while P is a

19

matrix whose columns are the n linearly independent eigenvectors of S (p.261,

Kolman [1988]).

Various corollaries give the conditions under which a symmetric matrix S is

diagonalizable:

Corollary: If S has real and distinct eigenvalues, it is diagonalizable.

Corollary: If S is symmetric, all of its eigenvalues are real (not necessarily

distinct).

Corollary: If S is symmetric, there exists an orthogonal matrix P that

diagonalizes it (even if the eigenvalues of S are not distinct).

Ordinarily, a simulation output stream is assumed to be from a normal

population with mean y and variance cr2, both scalers. However, simulation output

is merely a realization of a time series and time series theorems are based on multi-

normal assumptions. It seems reasonable to consider simulation output under such

assumptions and to investigate the potential for the principal component method to

handle the problem of collinearity.

3.1 Problem Statement

Let a simulation output sample be defined by the sequence x(<*>) - {Xtf co),

i=l,2,...,n}, where x — iXp } is the stochastic process represented by the

simulation model. In general, the Xfs are seldom mutually independent. Most

simulation output is correlated and the classical confidence interval,

20

X±t(n-1,1-a/2)N
s2(n)
n

, is inapplicable as a measure of the precision of the sample
mean. For a correlated sample, the sample mean remains an unbiased estimate of

the mean of the underlying process; however, the sample variance s2(n) becomes a

biased estimate of the variance a2. The bias of the sample variance has the

form: 1 -2 Y' ^ p. where p. is the correlation [Law and Kelton, 1982]. If

there is positive correlation in the sample, the sample variance underestimates o2.

This causes the confidence interval to appear to be tighter than it really is with

resulting lower coverage probability due to the higher likelihood of more

independent experiments having the true mean falling outside of the tighter intervals.

Alternately, if there is negative correlation in the sample, s2(n) overestimates a2.

This causes the confidence interval to be wider than usual with less than the desired

precision obtained.

Most approaches to solving the problem of data correlation are based on the

premise that some basically uncorrelated version of the data can be obtained so that

classical confidence interval procedures then become applicable. The proposed

research attempts to do the same by using a different approach with underlying

theory taken from the principal component method for handling the multi-

collinearity problem in multivariate statistical analysis.

21

3.2 Solution Derivation

The simulation output stream, Xp...Xn , is assumed to be (either individually

or batched) from a multi-normal population with mean vector \L and covariance

matrix E . For an arbitrarily selected maximum /, all Xj observations or batch

means are assumed to be estimates of the population mean, i.e.

E[X{\

E[X2]

E[Xj\ .K/

where =m.2=- • • \ij

The covariance matrix E is assumed to be a symmetric, positive definite

matrix with the form:
°n °12 •

. a17

°21 °22 ' • ®2J

2 =

'J1 J2 oJJ

where cr. — VarXi for i=j and = Cov(Xi,X-) for i*j.

It can be shown (see p. 278, Kolman [1980]) that the eigenvalues

, i = 1, . . . , /, of E are the diagonal elements of a diagonal matrix A

that is formed by the orthogonal matrix V whose columns are the eigenvectors of

22

E , i.e.

a = vTjy.

Since X is assumed to be distributed N(jI,E), then Y=VTX will be distributed

N(V p, A) and is hypothetically an uncorrelated version of the original output

(see Chapter 5, Miller [1981]).

Suppose that the transformed data Y is distributed with mean V p . Since

the elements of p are equal,

VT jl = VT ny)r
= b VT (1, . . . , l)r
= a {Cp..., Cjf

where Ct- is the ith row sum of VT.

Therefore, Yi is distributed N (\uCi ,>.•), i—1, . . ., J, and YjCi is distributed

Here, Yi/Ci are the NIID point estimates of p . For interval estimation

of p , YJCi should be unbiased estimates and have minimum variance. If weights
J Y

ai exist such that a •— is an unbiased estimate and the variance of the unbiased
i=i ci

estimate is minimized, then

23

7 y.
-

*
»=i c.

N i=i c.

is distributed N(0,1).

The proposed 100(1-a)% confidence interval then follows as:

7 y.

i'=l S
'1-a

i=l S
The weights are determined by the Lagrangian technique for nonlinear

HV; h
optimization to be at =

E1!yi

1
where V- = —-

Ct

i= l

Simplifying yields a proposed confidence interval:

7 y.

E«,^ ± zi-«
i=l C.

N 1

7 X

E*i2— •
M ‘ C,2

See Appendix A for the details of determining the weights at.

3.3 Experiment Methodology

The proposed method to test the procedure is to select some known analytical

models. The mean of each model is known for any set of model parameters.

Tactical issues are addressed such as simulation run length, number of replicates,

and number of batches. The simulation of known analytical models is run long

enough to ensure that steady state conditions are present. The number of batches

of the simulation output is selected arbitrarily without regard for the batch size that

24

would ensure uncorrelated batches.

To ensure that the results are comprehensive and comparable with other

previous results in the area of confidence interval methodologies, the proposed

confidence interval procedure is tested against a standard set of performance

measures under a variety of model parameter, sample size, and batch size factor

combinations. No statistical tests of significance are performed on the results since

the reporting of the results follow a suggested and well-developed conceptual

framework for reporting research in the analysis of simulation output (see Schriber

and Andrews [1981]).

3.3.1 Conceptual Framework

The purpose of a conceptual framework for conducting empirical tests on and

reporting the results of a proposed confidence interval procedure is to ensure the

required uniformity needed to compare the results with the results of other

previously conceived and tested confidence interval procedures. In general, the

conceptual framework consists of running several replicates of a theoretical output

process (TOP) and constructing the proposed confidence interval procedure (CIP)

for each replicate. This is repeated for the TOP at various model parameters..

Similarly, this is repeated for at least one other TOP. The runs are examined for

performance on specific measures of effectiveness (MOE).

TOP’s are classified into- five major areas:

(1) independent and identically distributed processes, such as normally

25

distributed random variates;

(2) groupwise independent processes, such as an uncorrelated batch means

process;

(3) regenerative processes, such as Markov chains;

(4) time series models, such as ARMA processes;

(5) other output processes with known theoretical properties, such as the

M/M/1 queue.

These five classes of TOP’S serve many purposes. The primary purpose of

a TOP is to provide the output sequence to be used to test the effectiveness of the

proposed confidence interval procedure. In this research, three TOP’s are used to

generate output sequences: the M/M/1 queue, an AR(1) model, and an ARMA(1,1)

model.

Alternately, TOP’s provide the theoretical framework to suggest newer and

improved CIP’s. For example, the ARMA process have the Box-Jenkins method of

analysis to identify the model parameter estimates needed to construct a confidence

interval which is tailor-made for ARMA processes.

Finally, TOP’s serve as a basis of comparison for unknown output sequences.

Many real world simulation output sequences have eventually been identified as

similar in behavior to any one of or a combination of the above five broad classes

of TOP’s. This identification then suggests to the simulation analyst which CIP is

applicable for the unknown output process.

26

The MOE’s provide a complete set of standards to judge and compare the

performance of a given CIP on various TOP’S. Five specific MOE’s proposed under

the conceptual framework are:

(1) correct identification of model-specific parameters;

(2) coverage function;

(3) the standardized standard deviation of the standard error;

(4) relative half-width and coverage as a function of sample size;

(5) the extent of gross misinterpretation of model-specific behavior.

The first MOE confirms the credibility of using a proposed CIP for a certain

TOP. For example, a CIP is credible for an AR(p) process if it can correctly identify

the order p of the AR process. For a batch means process, a proposed CIP should

be able to identify the correct batch size to ensure uncorrelated batches.

The second MOE involves a comparison of the actual coverage at various

confidence coefficient levels versus a theoretical coverage, which follows a U(0,1)

distribution. This comparison is done graphically by noting how far from a 45 degree

line the actual coverage empirical cumulative distribution function varies. This

comparison is tested statistically by doing a chi-square or an empirical discrete test

for uniformity.

The third MOE is a measure of the stability of the CIP. Since the standard

error is the primary measure of how wide the confidence intervals are, a small

standard deviation of the standard error would indicate fairly invariant confidence

27

interval half-widths. In this research, a measure of the standard deviation of the

half-width is used in lieu of the third MOE. The measure is standardized by dividing

by the average half-width. Proportionally, the standard error and the half-width are

the same and provide the same measure of stability.

The fourth MOE primarily has the purpose of comparing the half-width and

the coverage performance of the CIP for a variety of sample sizes. This helps the

simulation analyst to determine at which sample size the simulation is to be run in

order to achieve the desired level of precision and the expected coverage. The ideal

performance on this MOE is to have the half-width decreasing as the sample size

increases and the coverage increasing to the nominal confidence level with increasing

sample size.

The fifth MOE reports the percentage of runs that the CIP grossly erred,

usually with model-specific parameter selection. For example, this research tracks

this MOE by recording the number of times the proposed CIP failed to give

uncorrelated batches. In other cases, such as with time series, this MOE is tracked

by determining the number of times an ARMA CIP incorrectly selected model

parameters p and q. Ideally, this measure should be very small.

3.3.2 Models and Parameters

Three TOP’s used in this research include an M/M/1 queueing system, an

AR(1) time series model and an ARMA(1,1) time series model. All of the models

exhibit a variety of correlation behavior from low levels of correlation to oscillatory

28

and to high levels of correlation. Yet, all of the models have a known analytical

mean regardless of the correlation behavior. Each model has been studied and used

extensively by past simulation practitioners in testing CIP’s; therefore, some historical

basis for performance comparisons already exists.

First, the M/M/1 queueing system was simulated by using a simply written

SIMAN simulation language routine for various loading factors, p. Loading factors

of .5, .8, and .9, respectively, indicate increasing levels of correlation between

observations. The observations that were collected are the customer waiting times

in the system, where the theoretical average waiting time is analytically determined

from the expression —— . Therefore, the theoretical mean waiting time, which
1-p

is the mean response that the analyst is interested in estimating, is, respectively, 1,

4, and 9 for loading factors of .5, .8, and .9.

Since this research did not investigate the problem of the initial transient, the

simulation model must warm up for a period of time prior to data actually being

collected. This warm-up period was determined by pilot runs to detect how long the

simulation must run before initial conditions no longer give a biased estimate of the

known theoretical mean. For loading factors of .5, .8, and .9, the simulation warm¬

up period was determined to be 75 thousand, 100 thousand, and 165 thousand

simulated time units, respectively.

The AR(1) output was simulated by a FORTRAN-based, time series analysis

software called Timeslab (Newton [1988]). Timeslab creates realizations of a first

29

order stationary autoregressive process given by Xt-ii-(f>(Xt_1-ii)=et . The mean

and variance of the generated process are both equal to 100. The lag one

correlation, p7, is and the lag h correlation,^, is (ft1'1 p2, for h = The model

parameter, #, was selected to be .5 and .9 in order to represent both low and high

levels of positive correlation in the data.

The ARMA(1,1) output, similarly, was generated by Timeslab. Timeslab

creates realizations of the stationary first order autoregressive moving average

process given by: Xt-p-(p1(Xt_1-p)=et-d1et_1 . The mean and the variance are

(i-hWh-Oj)
both again 100. The lag one correlation is determined as p, = and

(1 +e12-2<f>1e1)
the lag h correlations are Ph~4>ih lPi- The model parameters are 4>j = -.6 and

Qj = .6. The parameters were chosen to satisfy the requirements of an ARMA

process with an oscillatory autocorrelation function.

3.3.3 Performance Measures

The major performance measures used in this research to judge the adequacy

of the proposed CIP are the nominal coverage, the 90% coverage interval, the

standardized standard deviation of the half-width, the average mean square error,

and the number of replicates biased high/low. Each performance measure is chosen

for a specific reason. The details of how each measure is determined follows.

First, the nominal coverage tells how many replicates have confidence

intervals encompassing the known theoretical mean. The nominal coverage should

30

ideally be close to the stated 100(1-a)% confidence level of 90%. The 90% coverage

interval is a 90% confidence interval on the coverage and is a means by which the

validity of the confidence interval is determined. If the coverage interval contains

the confidence level of 90%, then the confidence interval procedure is considered

to be valid for the given model set at the given model parameters. For this research,

nominal coverages of .84 or higher will have 90% coverage intervals that encompass

the desired confidence level. Therefore, a confidence interval will be considered

valid if its nominal coverage probability is .84 or higher.

Second, the average half-width is determined from summing the half-widths,

Zi_ao-x , for each replicate where is the l-a*h entry of the standard normal

table and a- is the estimate of the standard error obtained from the proposed

CIP. In order to get the standard deviation of the half-width, the squared half-width

is, likewise, summed for each replicate. Once all replicates are run, the average half¬

width and the standard deviation of the half-width are easily determined. The

standardized estimate of the standard deviation of the half-width is obtained by

dividing the standard deviation of the half-width by the average half-width. The

smaller this number, the less variable the confidence interval half-widths and the

more stable the CIP.

Third, the mean square error (MSE) is defined as the sum of the variance

and the squared bias. The variance is obtained as an estimate from the proposed

31

CIP. The bias is obtained from the difference between the proposed CIP’s estimate

of the mean and the known theoretical mean. For each replicate, the MSE is

summed. Once the replicates are completed, the average MSE is easily determined.

Ideally, the MSE should be as low as possible.

The MSE as a strong statistical measure of estimator consistency is suggested

by Fishman [1978] forjudging confidence interval adequacy and is used extensively

in simulation transient analysis by Donnelly and Shannon [1981]. The MSE clearly

shows the contributions to sampling error that can be attributed to "closeness" of the

estimator (the bias) and "variability" of the estimator (the variance). Clearly, a

desired unbiased estimator for confidence interval construction would have the MSE

equal to the variance.

Finally, the number of replicates biased high/low is a sufficient measure

suggested by Jennings [1987] to judge whether the confidence interval procedure is

"unbiased" or whether it will be equally likely to be above or below the true mean

when it fails to encompass the mean. This measure is easily obtained with hardly

any extra work than what is required to determine the coverage. If the confidence

interval for each replicate has the lower limit higher than the true mean then it is

said to be biased high and a counter for the number of confidence intervals biased

high is incremented by one. Likewise, if the confidence interval for each replicate

has the upper limit lower than the true mean then it is biased low and the

appropriate counter is incremented. Ideally, the number of biased high and low

32

should be the same since a symmetric distribution is assumed in forming the

confidence interval.

33.4 Tactical Issues

Various sample sizes are used for all of the models tested by the proposed

CIP. In order to judge the effect that sample size has on the performance measures,

small sample sizes are initially run and doubled successively for subsequent runs.

For example, the M/M/1 queueing model set at p =.5 is run for sample sizes of n

— 320, 640, 1280, 2560, 5120, and 10240 customer waiting times. These samples

sizes are the common sample sizes used by other practitioners in testing confidence

interval procedures and easily allow comparisons of performance with the other

procedures.

In order to determine the effect that the batch size has on the performance

measures, batch sizes corresponding to 10, 20, and 40 batches from a fixed sample

size were taken for each model set at each model parameter. This arbitrary method

of batching also allows for showing the effect of correlation on the performance

measures since smaller batch sizes will tend to be more highly correlated than larger

ones.

In order to obtain the information for the coverage function, the models are

run at the largest possible sample size to ensure as close to asymptotic conditions as

possible. Then, replicates are run at various 100(1-a)% confidence levels with the

nominal coverage being the only desired performance measure that is needed for the

33

coverage function.

Overall, regardless of sample size, batch size, and model parameter factor

combinations, 100 replicates of each factor combination were run with 100

confidence intervals being constructed under the proposed confidence interval

procedure. After the replicates were completed, the desired performance measures

were calculated.

Now, the adequacy of the proposed confidence interval procedure was

compared to one other confidence interval procedure, the generic batch means

procedure. The proposed confidence interval procedure uses an arbitrary batch size

while a true batch means procedure uses a pre-determined batch size that ensures

uncorrelated batches. This pre-determined batch size is obtained by increasing the

simulation run-length and conducting statistical tests for correlation on batches of a

selected size until an optimal batch size is reached. The difficulty with this method

of obtaining the optimal batch size is that it may require more observations than the

largest stated sample size that was used for experimentation. To ensure that both

CIP’s are compared based on the same observations, the batch means procedure is

run at the arbitrary batch sizes corresponding to 10, 20, and 40 batches per sample

size. This has an effect, however, of having some confidence intervals

inappropriately constructed since the batch size will in some cases not be large

enough to ensure uncorrelated batches. To account for this discrepancy, the number

of such confidence intervals that are inappropriately constructed because of

34

correlated batches is tabulated for both procedures.

3.3.5 Research Plan

The major tasks required by this research approach are as follows:

(1) Generate a simulation output sample of size n, Xp...,Xn, from a given

factor combination. Determine the/batch means, Xv...,Xj . Determine the batch

mean confidence interval and calculate the appropriate performance measures.

(2) Form the /-dimensional covariance matrix E consisting of Cj estimates,
H

where tr£(XrX)(XH-X) .
i=l

(3) Determine the eigenvalues and eigenvectors of E. Construct the

orthogonal matrix T.

(4) Perform the orthogonal transformation, Y-=TtX- and the matrix

algebra manipulations to get an estimate of the standard error of the mean for the

proposed confidence interval procedure. Calculate the appropriate performance

measures.

(5) Repeat (1) through (4) for every factor combination.

(6) Tabulate and draw conclusions on the results.

(7) Comment on the computational environment and procedures used to

support the research which includes:

(i) describing the computer environment;

(ii) explaining the software used.

35

CHAPTER IV

EMPIRICAL RESULTS AND DISCUSSION

To compare the performance of the proposed procedure, the principal

component (PC) method, an M/M/1 queueing model with utilization rates of .5, .8,

and .9 with known theoretical mean customer flow times, an AR(1) time series

model with a known mean of 100 and positive lag-1 correlations of .5 and .9 and an

ARMA(1,1) time series model with a known mean of 100 and an oscillatory

correlation structure were used. For all models, 100 replicates at various sample

sizes, n, which are each divided into various number of batches, nb, were run. The

90% confidence intervals that are constructed by a fixed-width batch means (BM)

procedure were compared to those that are constructed by the PC method. The

measures of performance that were compared include the nominal coverage

probability, the standardized standard deviation of the half-width, the mean square

error, and the number of confidence intervals biased high and low. The descriptions

of the models, parameters, and performance measures were detailed previously in

Chapter III, Sections 3.3.1 - 3.3.3.

The results of the experiments are tabulated in respective tables in this

chapter. Since coverage probability is probably the performance measure of most

interest to the simulation analyst, it is discussed first and in far greater detail than

the other performance measures. Discussions on the half-width, the average mean

36

square error and the bias performance of the methods follow the discussion of

coverage for each model set at a particular parameter.

First, a guide to interpreting the tables is needed. The first two tables of this

chapter display the results of pilot studies. The remaining tables display the results

of the analytical models that were used to test the performance of the principal

component (PC) method and the batch means (BM) method. The tables are

somewhat self-explanatory, but the following table key is provided to assist in

interpreting the tables:

PC - principal component
BM - batch means

p - correlation level
n - fixed sample size
nb - number of batches
Cov - nominal coverage
k - number of replicates that

inappropriately used
correlated batches

HW - standardized standard
deviation of average
half-width

MSE - average mean square error
Bias - number of confidence

intervals that exceeded/fell
short of covering the mean

Table Key

37

4.1 Pilot Studies

Prior to full experimentation, pilot studies were done in order to determine

the large sample performance of the PC procedure. Using the results of Schmeiser

[1982], various batches were taken from a sample size of 10240 observations for an

M/M/1 queue at each utilization rate. In addition, various batches from a sample

size of 2560 observations were taken from an AR(1) model at various correlation

levels and an ARMA (1,1) model. A Timeslab macro was written (see Appendix B)

in order to perform the analytical steps of covariance estimation, matrix

diagonalization, matrix algebra manipulations, interval estimation, and performance

measure calculations.

The results of Table 4.1 show that the coverage of the PC method was poor

compared to the coverage of the BM procedure. The coverage seemed to peak at

about 55%, which was far short of the desired 90% level. As expected, the half¬

width performance and the bias information of the PC method were comparable to

the BM procedure since the PC method is a linear unbiased estimate with minimum

variance.

A possible explanation for the undesirable poor coverages of the PC method

is the extent to which the minimization scheme of linear unbiased estimation

determined a variance estimate that grossly underestimated the true process

variance. For example, the half-width of the PC method was about half the size of

that of the BM procedure. Therefore, a modification to the procedure was done

>2J0>

38

Table 4.1

Pilot Study Results
R = 100 Replicates

PC BM

p nb Cov (k) HW MSE Bias Cov (k) HW MSE Bias

10 .52 (10) .456 .001 17/31 .88 (9) .225 .009 3/9
.5 20 •54 (5) .451 .001 17/29 .90 (0) .180 .018 2/8

40 .55 (0) .450 .001 16/29 .90 (0) .165 .035 2/8

10 .54 (8) .490 .164 22/24 .89 (6) .357 1.370 3/8
.8 20 .52 (2) .487 .167 23/25 .88 (2) .310 2.415 3/9

40 .52 (0) .488 .162 23/25 .82 (0) .277 4.181 5/13

10 .53 (13) .721 3.278 19/28 .79 (3) .487 23.15 2/19
.9 20 .53 (7) .713 3.251 18/29 .78 (4) .416 36.34 2/20

40 .53 (2) .709 3.244 19/28 .73 (15) .346 50.47 6/21

10 .54 (12) .555 .217 21/25 .86 (10) .241 1.82 7/7
.5 20 .55 (4) .549 .216 21/24 .90 (0) .162 3.43 5/5

40 .54 (0) .549 .216 22/24 .87 (0) .113 6.51 7/6

10 .54 (4) .554 5.544 22/24 .84 (7) .240 44.04 8/8

.9 20 .54 (2) .544 5.502 22/24 .86 (1) .166 80.28 6/8
40 .54 (2) .545 5.439 22/24 .86 (0) .109 142.1 8/6

10 .49 (10) .570 .943 27/24 .84 (8) .197 7.049 10/6

20 .47 (2) .575 .926 28/25 .84 (1) .156 12.79 8/8

40 .48 (1) .575 .913 28/24 .85 (0) .115 25.19 7/8

39

in order to achieve the desired coverage.

Recall from Section 3.2, that the batched simulation output stream,Xi7i=l,...,J,

is orthogonally transformed into an uncorrelated version, Y/Q, Because this

version of the original data was highly variable, the sample mean of the data was

virtually useless as an estimate of the mean. Therefore, the linear unbiased estimate

of the mean was determined as a suitable point estimate of the mean. Theoretically,

the linear unbiased estimate of the mean has minimum variance determined by the

previously mentioned minimization scheme, which is described in detail in Appendix

A. This minimum variance estimate severely underestimated the true process

variance and, consequently, the coverage. What is needed is another estimate of the

process variance that would yield suitable coverage.

Consider estimate , which is distributed N (n, XJC2). As determined

in Appendix A, the minimum variance of this estimate is a2 XJC2. This estimate is

seen to be too small for adequate confidence interval coverage. One way to increase

the variance estimate is to decrease the size of the term in the denominator. This

is possible if C2 is replaced by its mean value, which is determined to be 1. This

allows the variance estimate to increase to a2 Xt (See Appendix A).

Table 4.2 shows how pilot studies of this adjusted procedure resulted in

comparable performance to the BM procedure. The coverage of the adjusted

procedure exceeded that of the BM procedure for all model/parameter/number of

batches factor combinations. It did so however with somewhat larger half-widths, yet

Table 4.2

Pilot Study Results (Modified)
R = 100 Replicates

PC BM

P nb Cov (k) HW MSE Bias Cov (k) HW MSE Bias

10 .90 (0) .427 .003 3/7 .88 (9) .225 .009 3/9
.5 20 .96 (0) .375 .004 1/3 .90 (0) .180 .018 2/8

40 .98 (3) .379 .006 0/2 .90 (0) .165 .035 2/8

10 .93 (0) .465 .402 2/5 .89 (6) .357 1.370 3/8
M .8 20 .96 (1) .438 .582 1/3 .88 (2) .310 2.415 3/9
M
i

40 .99 (4) .425 .857 0/1 .82 (0) .277 4.181 5/13
i

10 .83 (1) .675 8.555 3/14 .79 (3) .487 23.15 2/19
.9 20 .89 (5) .627 10.99 2/9 .78 (4) .416 36.34 2/20

40 .95 (4) .669 18.22 1/4 .73 (15) .346 50.47 6/21

10 .88 (1) .494 .528 9/3 .86 (10) .241 1.82 7/7
.5 20 .94 (5) .465 .766 4/2 .90 (0) .162 3.43 5/5

A 40 .97 (4) .451 1.291 3/0 .87 (0) .113 6.51 7/6
R
1 10 .88 (2) .486 13.09 9/3 .84 (2) .240 44.04 8/8

.9 20 .91 (0) .449 19.06 7/2 .86 (1) .166 80.28 6/8
40 .97 (3) .459 29.97 3/0 .86 (0) .109 142.1 8/6

A 10 .86 (0) .498 2.158 10/4 .84 (8) .197 7.049 10/6
R 20 .91 (6) .505 3.120 6/3 .84 (1) .156 12.79 8/8
M 40 .98 (2) .468 4.851 2/0 .85 (0) .115 25.19 7/8
A

41

with surprisingly smaller average mean square error. Amazingly, the larger half¬

width measures that were provided by the PC method are not due to larger variance

estimates than the variance estimates that are produced by the BM method. In fact,

in all cases, the average variance that is determined by the BM method exceeded

that determined by the PC method by more than two-fold. However, the standard

error estimate from the BM method is determined by dividing the variance estimate

by the number of batches, nb. The standard error for the PC method is not

likewise reduced. The remainder of this chapter will discuss the results of more

detailed experimentation of the procedure.

4.2 M/M/1 Queue

The empirical results of the proposed procedure on an M/M/1 queueing

system are shown in Tables 4.3 - 4.5. In general, the coverage of the PC method

exceeded the coverage of the BM method in all cases. Surprisingly, the coverage

was extremely good for small sample sizes of lightly utilized queues. For the smallest

sample size, n=320, Table 4.3 shows the coverages of the PC method as .87, .90, and

.95, respectively, for nb = 10, 20, and 40 batches as compared to BM coverages of .83,

.81, and .71. If the sample size is too small for more highly utilized queues, the

coverage is poor. Tables 4.4 and 4.5 show that only for sample sizes greater than

2560 observations was adequate coverage achieved by the PC method whereas the

BM method failed to provide adequate coverage even at the largest sample size that

was used.

42

Table 4.3

M/M/1 Queue with p = .5
R = 100 Replications

PC BM

n nb Cov (k) HW MSE Bias Cov (k) HW MSE Bias

10 .87 (2) .7238 .0978 4/9 .83 (4) .5669 .3183 3/14
320 20 .90 (3) .6586 .1292 4/6 .81 (3) .4244 .4146 2/17

40 .95 (6) .6913 .2050 2/3 .71 (11) .3434 .5845 7/22

10 .85 (1) .5437 .0401 2/13 .79 (4) .4405 .1376 3/18
640 20 .91 (0) .6448 .0670 0/9 .81 (0) .4245 .2669 2/17

40 .94 (1) .5231 .0860 0/6 .78 (1) .3583 .4139 4/18

10 .85 (0) .5182 .0240 3/12 .85 (4) .3483 .0791 2/13
1280 20 .94 (4) .5425 .0331 0/6 .85 (1) .3638 .1358 0/15

40 .97 (4) .5557 .0508 0/3 .84 (0) .3046 .2363 0/16

10 .92 (2) .4791 .0121 2/6 .84 (4) .2917 .0380 5/11
2560 20 .93 (1) .4870 .0167 2/5 .84 (1) .3083 .0714 5/11

40 .98 (2) .4698 .0257 0/2 .90 (0) .2689 .1359 1/9

10 .88 (0) .4223 .0054 3/9 .87 (6) .2878 .0195 3/10
5120 20 .97 (0) .4135 .0082 0/3 .89 (1) .2403 .0364 2/9

40 .98 (3) .3980 .0123 0/2 .88 (0) .2027 .0676 3/9

10 .90 (0) .4272 .0026 3/7 .88 (9) .2246 .0094 3/9
10240 20 .96 (0) .3750 .0038 1/3 .90 (0) .1801 .0178 2/8

40 .98 (3) .3792 .0062 0/2 .90 (0) .1649 .0348 2/8

43

Table 4.4

M/M/1 Queue with p = .8
R = 100 Replications

PC BM

n nb Cov (k) HW MSE Bias Cov (k) HW MSE Bias

10 .74 (i) .8808 6.832 5/21 .59 (14) .6232 12.63 8/33
320 20 .76 (i) .9278 8.739 3/21 .52 (42) .5393 14.03 12/36

40 .82 (9) .8140 8.184 0/18 .43 (73) .4179 10.98 7/50

10 .77 (2) .8428 5.167 3/20 .60 (10) .6690 10.93 6/34
640 20 .83 (1) .8522 6.498 1/16 .49 (22) .5668 12.96 14/37

40 .91 (6) .8630 6.684 1/8 .46 (49) .3836 11.05 14/40

10 .82 (1) .7091 2.721 3/15 .75 (1) .5714 6.80 4/21
1280 20 .90 (3) .6725 3.493 0/10 .73 (12) .4685 9.13 6/21

40 .89 (2) .9856 6.308 0/11 .58 (29) .4523 11.00 8/34

10 .92 (0) .6189 1.643 0/8 .83 (3) .4784 4.44 1/16
2560 20 .97 (2) .5625 2.076 0/3 .81 (5) .3915 6.67 5/14

40 .97 (5) .5850 3.139 0/3 .72 (15) .3296 9.13 6/22

10 .85 (0) .5760 .786 0/15 .78 (2) .4639 2.52 2/20
5120 20 .88 (3) .5734 1.129 0/12 .78 (2) .4093 4.20 5/17

40 .95 (3) .5223 1.629 0/5 .77 (2) .3584 6.95 5/18

10 .93 (0) .4646 .402 2/5 .89 (6) .3572 1.37 3/8
10240 20 .96 (1) .4375 .582 1/3 .88 (2) .3099 2.41 3/9

40 .99 (4) .4253 .857 0/1 .82 (0) .2773 4.18 5/13

44

Table 4.5

M/M/1 Queue with p = .9
R = 100 Replications

PC BM

n nb Cov (k) HW MSE Bias Cov (k) HW MSE Bias

10 .48 (0) .8596 67.62 12/40 .35 (29) .6222 86.60 19/46
320 20 .61 (1) .7367 51.23 7/32 .28 (71) .4387 61.96 15/57

40 .61 (6) .7962 106.9 8/31 .25 (94) .4106 63.14 17/58

10 .54 (0) .9631 54.78 7/39 .33 (19) .6745 77.16 17/50
640 20 .67 (1) .8959 56.79 3/30 .35 (51) .5010 71.90 12/53

40 .72 (4) .9170 74.15 3/25 .23 (87) .4594 74.15 15/62

10 .65 (5) .9569 58.58 6/29 .51 (16) .6953 87.57 13/36
1280 20 .63 (0) .9260 47.99 2/35 .40 (37) .5658 69.60 12/48

40 .71 (6) .9591 66.88 1/28 .35 (74) .5087 73.68 14/51

10 .74 (0) .8026 32.24 3/23 .59 (8) .6240 65.30 11/30
2560 20 .84 (2) .9296 35.39 0/16 .53 (23) .5375 63.72 12/35

40 .87 (7) .9607 55.79 0/13 .40 (57) .4739 70.89 18/42

10 .80 (5) .7520 15.62 1/19 .68 (5) .5708 39.13 3/29
5120 20 .88 (0) .7059 20.06 0/12 .65 (11) .4851 52.27 6/29

40 .92 (3) .7705 30.75 0/8 .58 (35) .4103 63.35 11/31

10 .83 (1) .6751 8.55 3/14 .79 (3) .4865 23.15 2/19
10240 20 .89 (5) .6267 11.00 2/9 .78 (4) .4159 36.34 2/20

40 .95 (4) .6687 18.22 1/4 .73 (15) .3457 50.47 6/21

45

The PC method achieved such excellent coverage because the half-widths of

the confidence intervals that are constructed by the PC method were larger than

those constructed by the BM method, especially at small sizes. The half-width

measures of the PC method were about twice as large as those of the BM method.

For example, Table 4.3 shows for n = 320 observations the half-width measures for

the PC method as .7238,.6586, and .6913 as compared to half-width measures of the

BM method of .5669, .4244, and .3434. For highly utilized queues, the difference

between the half-width measures of the two methods was less significant.

In all cases, the average MSE for the PC method was smaller than that of the

BM method. The difference became less marked as the utilization level of the

queue increased. For lightly utilized queues, the average MSE of the BM method

was from two to three times larger than that of the PC method. For highly utilized

queues, it was usually less than twice the size of the MSE measure of the PC

method.

Finally, the bias distribution of failed confidence intervals for both procedures

was asymmetrical. Both methods were biased low, which means that confidence

intervals that failed to cover the mean were more likely to fall short of rather than

exceed the mean.

4.3 AR(1) Time Series Model

The empirical results for the AR(1) time series model are shown in Tables

4.6 and 4.7. The coverage of the PC method greatly exceeded the coverage of the

46

Table 4.6

AR(1) Time Series with p = .5
R = 100 Replications

PC BM-

n nb Cov (k) HW MSE Bias Cov (k) HW MSE Bias

10 .89 (i) .4176 4.008 6/5 .81 (3) .2259 12.69 11/8
320 20 .93 (2) .4260 5.605 4/3 .79 (1) .1518 23.91 12/9

40 .97 (4) .4051 8.612 2/1 .79 (0) .1105 41.77 13/8

10 .92 (1) .3941 2.276 3/5 .88 (11) .2098 7.16 8/4
640 20 .97 (1) .3808 3.166 1/2 .85 (1) .1553 13.15 10/5

40 .98 (2) .3766 4.403 1/1 .84 (0) .1146 23.53 10/6

10 .92 (1) .4735 1.088 5/3 .88 (8) .2427 3.58 9/3
1280 20 .96 (0) .4344 1.537 2/2 .89 (3) .1696 6.57 9/2

40 .97 (3) .4510 2.559 2/1 .94 (0) .1266 12.30 6/0

10 .88 (1) .4938 .528 9/3 .86 (10) .2411 1.82 7/7
2560 20 .94 (5) .4647 .766 4/2 .90 (0) .1624 3.43 5/5

40 .97 (4) .4505 1.291 3/0 .87 (0) .1128 6.51 7/6

47

Table 4.7

AR(1) Time Series with p = .9
R = 100 Replications

PC BM

n nb Cov (k) HW MSE Bias Cov (k) HW MSE Bias

10 .87 (3) .4462 91.9 7/6 .73 (4) .2521 232.5 15/12
320 20 .91 (0) .4456 123.3 5/4 .70 (7) .1778 339.1 16/14

40 .96 (6) .4880 176.6 2/2 .57 (60) .1498 412.2 23/20

10 .90 (0) .4130 53.7 4/6 .83 (8) .2108 154.4 11/6
640 20 .94 (3) .4035 73.3 2/4 .78 (2) .1637 238.2 13/9

40 .97 (4) .4016 104.4 1/2 .68 (11) .1305 334.9 18/14

10 .91 (0) .4686 26.4 6/3 .88 (8) .2445 85.2 8/4
1280 20 .95 (4) .4625 38.0 3/2 .87 (3) .1769 143.7 9/4

40 .98 (4) .4547 57.9 1/1 .85 (0) .1320 234.3 11/4

10 .88 (2) .4862 13.1 9/3 .84 (7) .2404 44.0 8/8
2560 20 .91 (0) .4487 19.1 7/2 .86 (1) .1664 80.3 6/8

40 .97 (3) .4593 30.0 3/0 .86 (0) .1093 142.1 8/6

48

BM method at all sample sizes and at all batch sizes. In fact, the coverage of the

PC method exceeded the desired confidence level of .90 for virtually all cases. By

comparison, the BM method failed to achieve the desired nominal coverage if the

sample size was too small and rarely attained the desired confidence level of .90

even for the largest sample sizes.

The PC method attained such excellent coverage due to the tendency of the

procedure to produce confidence intervals with larger half-widths. Table 4.6 shows

that for low correlation, the half-width measure of the PC method was about twice

as large as that of the BM method. For high correlation, Table 4.7 shows that the

difference was less significant with the half-width measure of the PC method being

less than twice as large as that of the BM method.

The average MSE for the AR(1) model shows similar results as with the

M/M/1 model. The average MSE of the PC method was smaller than the average

MSE of the BM method in all cases, about one-third the size of the BM method.

However, the bias distribution of failed confidence intervals was asymmetrical for the

PC method and symmetrical for the BM method, which is different from the M/M/1

result. Failed confidence intervals of the PC method tended to exceed the mean

rather than fall short of it.

4.4 ARMA (1,1) Time Series Model

The empirical results of the ARMA(1,1) model are shown in Table 4.8. The

coverage of the PC method greatly exceeded the coverage of the BM method. The

49

Table 4.8

ARMA(1,1) Time Series
R = 100 Replications

PC BM

n nb Cov (k) HW MSE Bias Cov (k) HW MSE Bias

10 .87 (i) .4872 16.26 7/6 .81 (9) .2625 50.30 11/8
320 20 .95 (i) .4612 22.85 3/2 .82 (1) .1616 90.49 11/7

40 .98 (3) .4459 34.96 1/1 .82 (0) .1219 154.0 11/7

10 .90 (2) .3746 7.55 7/3 .83 (9) .2381 27.14 13/4
640 20 .96 (4) .3588 10.42 2/2 .87 (1) .1688 50.34 10/3

40 1.00 (2) .3378 15.52 0/0 .88 (0) .1135 91.43 9/3

10 .90 (3) .4258 4.11 7/3 .86 (10) .2476 13.76 10/4
1280 20 .96 (5) .3669 5.54 3/1 .86 (2) .1705 25.77 10/4

40 .98 (2) .3939 9.02 1/1 .87 (0) .1180 49.09 10/3

10 .86 (0) .4982 2.16 10/4 .84 (8) .1973 7.05 10/6
2560 20 .91 (6) .5053 3.12 6/3 .84 (1) .1558 12.79 8/8

40 .98 (2) .4679 4.85 2/0 .85 (0) .1151 25.19 7/8

50

coverages of the PC method ranged from .86 to .98; therefore, the desired nominal

coverage was attained at all sample sizes. Conversely, the coverages of the BM

method ranged from .81 to .88. The desired nominal coverage was obtained only

after sample sizes of 640 observations although the 90% confidence level was never

attained.

Similar to the results of previous models, the excellent coverage of the PC

method was obtained because of the larger half-widths of constructed confidence

intervals. The half-width measure of the PC method was about twice as large as

that of the BM method. The half-width measures of the PC method ranged from

.3378 to .5053 compared to those of the BM method, which ranged from .1135 to

.2625.

The average MSE for the PC method was significantly smaller than that of

the BM method, especially for smaller batch sizes corresponding to 40 batches from

a fixed sample size. This is due to a significant difference between the variance

estimates of the two methods. The variance estimate that was obtained by the BM

method is about six times as large as the variance estimate that was obtained by the

PC method.

The bias distributions of both methods tended to be slightly asymmetrical.

At large sample sizes, the confidence interval constructed by the PC method was

more likely to exceed covering the true mean when it failed to cover the mean.

However, at smaller sample sizes, the confidence interval constructed by the BM

51

method was more likely to exceed covering the mean when it failed to cover the true

mean.

4.5 Factor Levels

This section discusses the effect that different sample sizes and batch sizes has

on coverage and half-width. It is well documented for the BM procedure that as the

sample size increases, a more accurate and less variable estimate of the true mean

is obtained. This results in less biased and less variable estimates, which improves

the coverage performance of constructed confidence intervals at a smaller half-width

measure and at a smaller average MSE.

As the batch size increases, the effect of correlated batches lessens. This

causes the variance estimate to be a more accurate estimate for confidence interval

construction. Therefore, the larger batch sizes (or smaller number of batches if

sample size is fixed) should result in higher coverages, but not necessarily at lower

half-width measure or lower average MSE. Higher half-width measures may result

with the large batch sizes depending on the nature of the correlation between the

batches and the number of batches used to estimate the variance.

The nature of the correlation level affects the variance estimate of

constructed confidence intervals. As positive correlation increases, the more the

variance is under-estimated. Alternately, as negative correlation increases, the more

the variance estimate is over-estimated. For confidence interval construction,

positive correlation has a more detrimental effect on confidence interval

52

performance than negative correlation. Under-estimation of the variance caused by

positive correlation results in confidence intervals that are not wide enough to cover

the true mean at the desired confidence level. Therefore, too much confidence will

be placed in the confidence interval than there should be. There is little problem,

however, with the effect of negative correlation. Placing less confidence in a wider

confidence interval that will more likely cover the true mean more often than

expected is wasteful, yet not harmful.

From the empirical results previously discussed, it is apparent that as one

factor level was changed while holding the other factor levels constant, the

performance measures of confidence intervals constructed by the PC procedure were

affected in dramatic ways. Increasing the sample size while holding the batch size

constant, in general, increased the coverage and enhanced the half-width, average

MSE, and bias performance measures of confidence intervals that were constructed

by the BM method. However, somewhat different results occurred with the PC

method and the results were model-dependent.

Increasing the samples size for the M/M/1 model caused better coverage and

lower half-width measures, as anticipated, for confidence intervals that were

constructed by the PC method. However, for both the AR(1) model and the

ARMA(1,1) model, comparable coverages occurred regardless of sample size for

confidence intervals that were constructed by the PC method. There was no

noticeable trend in increased coverage as the sample size was successively doubled

53

for PC confidence intervals as was evident with BM confidence intervals. Also, the

half-width measure did not change drastically with increasing sample size, which

suggests that constructed confidence intervals may be indeed wider at smaller sample

sizes, yet still are rather stable. Finally, the average MSE of the PC confidence

intervals for the time series models tended to decrease as the sample size increased,

which is similar to the results of the BM confidence intervals. However, the PC

confidence intervals tended to become biased high as the sample size increased,

which is quite different from the results of the BM confidence intervals.

Increasing the batch size while holding the sample size constant, generally,

increased the coverage, increased the half-width measure, decreased the average

MSE, and decreased the bias of failed confidence intervals for BM confidence

intervals. However, increasing the batch size while holding the sample size constant

for PC confidence intervals decreased the coverage and had little or no effect on the

half-width and the bias measures. This result is typical of all models and at all

sample sizes.

4.6 Coverage Function

The coverage function is a graphical measure developed by Schruben [1980]

to test the robustness of confidence interval procedures. Typically, the coverage of

a particular confidence interval procedure is estimated by the. frequency of

constructed confidence intervals that cover the true mean at a particular confidence

level. Since many researchers use different confidence levels to test their confidence

54

interval procedure, there is no means by which comparisons of coverage

performance can be made. Therefore, the coverage function is suggested as a means

to compare the coverage of different confidence interval procedures.

The coverage function is basically a graph of the desired coverage to the

actual coverage at various confidence levels. A well-behaved confidence interval

procedure would yield a uniformly distributed coverage function that could be

graphically seen and statistically tested. Several coverage functions of analytical

models are shown in the succeeding pages of this section. The data for each

coverage function was obtained by constructing confidence intervals from 100

replicates of an analytical model, which was run at the largest possible sample size

and at each batch size corresponding to the specified number of batches.

Confidence intervals for each replicate were constructed at various confidence levels

ranging from .01 to .99. Both the BM procedure and the PC procedure have their

coverage functions for each model set at different model parameters graphically

represented together on the same figure. The basis for comparison between the two

procedures is to note how close the coverage functions are to an ideal 45 degree

line, which corresponds to an ideal uniformly distributed coverage function.

4.6.1 Coverage Function, M/M/1

Figures 4.1 through 4.9 show the coverage functions for 100 replicates of

confidence intervals that were constructed by the BM and the PC methods on an

M/M/1 queueing model with p=.5, .8, and .9, and at batch sizes corresponding to

J

ObservedConfidenceLevel

55

Figure 4.1 Coverage Function
M/M/1, p = .5, nb =10

ObservedConfidenceLevel

56

Figure 4.2 Coverage Function
M/M/1, p = .5, nb = 20

ObservedConfidenceLevel

57

Figure 4.3 Coverage Function
M/M/1, p = .5, nb = 40

ObservedConfidenceLevel
Figure 4.4 Coverage Function

M/M/1, p = .8, nb = 10

ObservedConfidenceLevel

59

Figure 4.5 Coverage Function
M/M/1, p = .8, nb = 20

ObservedConfidenceLevel

60

Figure 4.6 Coverage Function
M/M/1, p =.8, nb = 40

ObservedConfidenceLevel

61

Figure 4.7 Coverage Function
M/M/1, p = .9, nb = 10

ObservedConfidenceLevel

62

Figure 4.8 Coverage Function
M/M/1, p = .9, nb = 20

ObservedConfidenceLevel

63

Figure 4.9 Coverage Function
M/M/1, p = .9, nb = 40

64

10, 20, and 40 batches, respectively. For p = .5, the BM procedure is clearly more

robust than the PC procedure. For all batch sizes, the coverage function of the BM

procedure is closer to the ideal 45 degree line than the coverage function of the PC

procedure. As the batch size decreases, the coverage function of the PC method

departs further from the ideal, especially in the low to medium range of confidence

levels. The coverage function of the PC method suggests that the method provides

somewhat inflated confidence intervals that will exceed the desired coverage for

confidence levels of interest, such as the 75 percent and above confidence levels.

While this result is not necessarily disadvantageous, it is somewhat wasteful. There

are not many analysts who would be very disappointed if their constructed

confidence intervals tended to exceed the stated coverage. However, the analyst

may likely prefer to select a lower confidence level if it will result in a tighter

confidence interval that would yield the desired coverage.

For p = .8, the PC method inflates the coverage for all confidence levels

while the BM method under-estimates the coverage for all confidence levels. For

the higher confidence levels of interest, the coverage function of the PC method

under-estimates the desired coverage, yet it does not under-estimate by as much as

the BM method. Therefore, it is more suitable than the BM method for attaining

confidence intervals with good coverage.

For p = .9, the coverage function of the BM method severely under-estimates

the true coverage at all confidence levels. As the batch size decreases, the under-

65

estimation becomes more severe. For nb—40 batches, the coverage is so severely

under-estimated that the BM method becomes unsuitable as a confidence interval

procedure. The coverage function of the PC method exceeds the true coverage for

low to medium range confidence levels. However, at higher confidence levels of

interest, the coverage function of the PC method slightly under-estimates the true

coverage, but is still closer to the ideal than the BM method.

4.6.2 Coverage Function AR(1)

Figures 4.10 through 4.15 show the coverage functions for 100 replicates of

confidence intervals that were constructed by the BM and the PC method on an

AR(1) model with p=.5 and .9, at a fixed large-sample size and at various batch

sizes. For p=.5, the coverage function of the BM method over-estimates the

coverage for very low confidence levels and under-estimates the coverage for

medium to high confidence levels. The PC method over-estimates for low to

medium confidence levels and under-estimates for high confidence levels. However,

at higher confidence levels of interest, the PC method’s coverage function is still

closer to the ideal than the coverage function of the BM method.

For p=.9, the coverage function of the BM method for nb = 10 and 20

batches over-estimates the coverage at low confidence levels. The coverage function

of the PC method over-estimates the coverage for low to medium confidence levels

and under-estimates the coverage at high confidence levels. At high confidence

levels, however, the coverage function of the PC method is closer to the ideal than

ObservedConfidenceLevel

66

Figure 4.10 Coverage Function
AR(1), p = .5, nb = 10

ObservedConfidenceLevel

67

Figure 4.11 Coverage Function
AR(1), p = .5, nb = 20

ObservedConfidenceLevel

68

Figure 4.12 Coverage Function
AR(1), p = .5, nb = 40

ObservedConfidenceLevel
Figure 4.13 Coverage Function

AR(1), p = .9, nb = 10

ObservedConfidenceLevel
Figure 4.14 Coverage Function

AR(1), p = .9, nb = 20

ObservedConfidenceLevel

71

Figure 4.15 Coverage Function
AR(1), p = .9, nb = 40

72

the coverage function of the BM method. For batch sizes corresponding to 40

batches, the coverage function of the BM method behaves the same as it does for

10 and 20 batches; however, the coverage function of the PC method, now, exceeds

the desired coverage at all confidence levels.

4.6.3 Coverage Function ARMA(1,1)

Figures 4.16 through 4.18 show the coverage functions for 100 replicates of

confidence intervals that were constructed by the BM and the PC methods on an

ARMA(1,1) model for a fixed large-sample size and at various batch sizes. The

coverage function of the BM method under-estimates the true coverage at all batch

sizes and at all confidence levels For batch sizes corresponding to 10 and 20

batches, the PC method, however, over-estimates the true coverage at low to

medium confidence levels and under-estimates the coverage at high confidence

levels. For 40 batches, the coverage function of the PC method exceeds the desired

confidence level at all confidence levels.

ObservedConfidenceLevel

73

Figure 4.16 Coverage Function
ARMA(1,1), nb =10

ObservedConfidenceLevel
Figure 4.17 Coverage Function

ARMA(1,1), nb = 20

ObservedConfidenceLevel

75

Figure 4.18 Coverage Function
ARMA(1,1), nb = 40

76

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This research has developed a new procedure to handle the problem of data

correlation in simulation output analysis. The principal component method is

derived from matrix diagonalization theorems, which allow for an orthogonal

transformation of the original output data with an estimated covariance structure

into data with an uncorrelated structure. The performance of the PC method was

empirically tested according to an acceptable conceptual framework for analyzing

confidence interval methodologies. This framework consists of testing selected

performance measures of confidence intervals that are constructed by the proposed

confidence interval procedure and comparing them to the performance measures of

one other well-known confidence interval procedure, the batch mean procedure.

Three different theoretical output processes with known analytically determined

means were used for testing. An M/M/1 queueing model at various utilization rates,

an AR(1) time series model at various correlation levels, and an ARMA(1,1) time

series model with oscillatory correlation structure were used. For all models, 100

replicates of sample sizes ranging from as small as 320 observations to as large as

10240 observations were done. In addition, each fixed sample size was run at batch

sizes corresponding to number of batches equal to 10, 20 and 40 batches. The 90%

confidence intervals of the proposed procedure were compared to the 90%

77

confidence intervals of the batch mean procedure by calculating selected

performance measures. The performance measures used for comparing the two

methods include the nominal coverage probability, the standardized standard

deviation of the half-width, the average mean square error, the number of

confidence intervals that failed to cover the true mean by exceeding it, and the

number of confidence intervals that failed to cover the true mean by falling short of

it.

5.1 Summary

A summary of the results of this research follows. Performance of the PC

procedure as compared to the performance of the BM procedure for each

theoretical model is discussed, as measured by the coverage, the coverage function,

the half-width performance, the average MSE and the bias distribution of confidence

intervals that failed to cover the true mean.

M/M/1 Queueing Model

(1) For both methods, coverage eventually approached the desired

confidence level if the sample size was large enough. The coverage of the PC

method exceeded the coverage of the BM method for every batch size/sample size

combination. Unlike the BM method, the PC method provided confidence intervals

with excellent coverage at the smallest sample sizes.

(2) The coverage functions of both methods showed markedly different

behavior, which became more pronounced as the correlation level increased either

78

as a result of increasing the model’s utilization factor or of reducing the batch size

for a particular fixed sample size. In general, the PC method tended to provide

nominal coverages that exceeded the desired confidence level while the BM method

tended to provide nominal coverages less than the desired confidence level. As the

correlation level increased, the departure from the desired confidence level grew

stronger for both methods, with the effect being more pronounced with the PC

method than with the BM method. As previously mentioned, coverages that exceed

the stated confidence level may be wasteful, but are not harmful as when coverages

fall short of the stated confidence level. Therefore, the coverage function behavior

of the PC method suggests it to be a more robust and reliable method of providing

confidence intervals with excellent coverage than the BM method.

(3) For both methods, the half-widths of confidence intervals that were

constructed became smaller and more stable as the sample size increased. Unlike

the BM method, increasing the batch size for a fixed sample size did not significantly

change the half-width (stability) measure. The confidence intervals that were

constructed by the PC method at a particular fixed sample size remained at about

the same level of half-width stability, regardless of how many batches were used to

construct them. As expected, as the utilization rates of the queueing model

increased, which indicated increased correlation level, the half-width stability

decreased. Wider and more variable confidence intervals were required in order to

get the desired coverage. A surprising result, however, was that the half-width

79

stability measure of the PC method was significantly larger than that of the BM

method. This was due to how the two methods determine the estimate of the

standard error, which is the primary factor that affects half-width. This idea is

discussed later in more detail.

(4) Similar to the BM method, the average MSE of confidence intervals that

were constructed by the PC method decreased as the sample size increased.

Increasing sample size causes a better point estimate of the mean (thus, reduces the

bias) and reduces the variance. Also, the average MSE of PC confidence intervals

decreased as the batch size increased. This is primarily due to the decreasing

variance estimate that is obtained due to increased correlation as the batch size

decreases, since the average bias is relatively unaffected by batch size, regardless of

the utilization rate of the queueing model.

In all cases, the average MSE of the PC method was less than that of the BM

method, which suggests that confidence intervals constructed by the PC method

consistently provide better point and interval estimates of the true mean than the

BM method. An astonishing result, however, is the relationship that existed between

the variance estimates and the estimates of the standard error that both methods

determined. The standard error that is determined by the BM method results from

dividing the variance estimate by the number of batches that are used to construct

the confidence interval. The standard error that is determined by the PC method,

however, is not found in similar fashion. Therefore, the standard error of the PC

80

method was somewhat larger than that of the BM method, which alone accounted

for the significant difference in their half-width measures.

(5) The bias distribution of confidence intervals that failed to cover the true

mean show that both methods tended to be biased low. This means that of the

number of confidence intervals that failed to cover the true mean, more of them

were likely to fall short of covering the true mean than to exceed covering it.

However, the bias distribution of the PC method was closer to an ideally symmetrical

distribution than that of the BM method, which is another indication of the better

confidence interval adequacy of the PC method over the BM method.

ARfU Time Series Model

(1) Unlike the BM method, the coverages of confidence intervals that are

constructed by the PC method did not increase as the sample size increased, but

remained relatively stable for all sample sizes. The PC method provided excellent

coverage at all sample sizes, even for the smallest sample size of n=320

observations. Regardless of correlation level, the PC method provided excellent

coverage at all sample size/batch size combinations. Unlike the BM method,

decreasing the batch size by increasing the number of batches that are taken from

a fixed sample size caused the coverage to increase. This suggests that the PC

method adequately handles the problem of correlated batches in the original

simulation output data.

(2) The coverage functions of both methods exhibited a variety of behaviors.

81

In all cases of the AR(1) model, the coverage function of the BM method exceeded

the desired coverage for low confidence levels (i.e. .25 and less) and fell short of the

desired coverage for medium to high confidence levels (i.e. .50 and greater). The

coverage function of the PC method, however, exceeded the desired coverage for

low to medium confidence levels and slightly fell short of the desired coverage at

high confidence levels (i.e. .90 and greater). The PC method is preferable to the

BM method for high confidence levels, which are usually the confidence levels of

interest. The coverage function of the PC method either exceeds the stated

confidence level or falls short of the stated confidence level by less of an amount

than the BM method.

(3) Unlike the M/M/1 case, the half-width stability of both methods did not

increase as the sample size increased. However, decreasing the batch size did cause

an increase in the half-width stability with the effect being more pronounced in the

BM method than in the PC method. Half-width stability remained relatively level

although higher for the PC method when compared to that of the BM method. The

reason for the higher half-width measure of the PC method is again the difference

in the way the two methods determine the estimate of the standard error, which was

explained previously for the M/M/1 model.

(4) For both methods, the average MSE decreased with increasing sample

size and with increasing batch size. In all cases, the average MSE of the PC method

was smaller than that of the BM method, which again is the result of the smaller

82

variance estimate that the PC method provides.

(5) The bias distribution of failed confidence intervals shows that both

methods were generally biased high with the PC method showing a more significantly

higher bias than the BM method. At large sample sizes, the BM method tended to

be symmetrically biased while the PC method still showed a significantly high bias.

ARMA (T,P) Time Series Model

(1) Similar to the results of the previously discussed model, the coverage of

the PC method significantly exceeded the coverage of the BM method in all cases

and attained the desired confidence level at very small sample sizes. The coverages

of both methods tended to remain fairly consistent as the sample size increased. As

the batch size increased, the coverage of the BM method remained level, but that

of the PC method noticeably decreased.

(2) The coverage function of the two methods shows that the BM method

gave coverages that always fell short of the desired confidence level while the PC

method gave coverages that usually exceeded the desired confidence level. As the

batch size decreased, the coverage of the PC method departed more from the

desired confidence level while the coverage of the BM method remained relatively

the same. For the higher confidence levels of interest, the PC method provided

coverages that were closer to the stated confidence level than the BM method.

(3) Similar to the results of the AR(1) model, the half-width stability of both

methods did not increase significantly as the sample size increased. However,

83

decreasing the batch size did increase the half-width stability for both methods. As

stated previously, the half-width measure of the PC method was significantly greater

than that of the BM method because of the way that the two methods determine the

standard error.

(4) Similar to the results of the previous models, the average MSE of the PC

method was smaller than that of the BM method. As the sample size increased or

as the batch size increased, the average MSE’s of both methods increased.

(5) The bias distribution of failed confidence intervals show that both

methods tended to be biased high. Most of the confidence intervals that failed to

cover the true mean tended to exceed the true mean rather than fall short of the

true mean.

5.2 Conclusions

Based on the results presented previously, certain conclusions may be drawn.

Although the batch mean will still likely be one of the more popular confidence

interval procedures, the method that was developed in this research has some

distinct advantages. Some of the major conclusions are as follows:

(1) The PC method does not require an excessively large number of

simulated observations in order to determine an appropriate batch size to construct

the confidence intervals as is required by the batch means method. It uses any

arbitrary number of batches from a fixed sample size instead and requires no

statistical test for correlation to ensure that the batch size is sufficiently large enough

84

to ensure uncorrelated batches.

(2) The PC method provides higher coverage than the BM method. More

noteworthy, the PC method will usually provide a confidence interval with good

coverage for small sample sizes and for the most correlated data.

(3) The PC method considers and directly adjusts for, rather than ignores,

the effect of correlation on estimating the variance. This differs from the BM

method, which tries to obtain a batch size that eliminates correlation. This also

differs from other methods, such as time series and spectral methods, which try to

estimate the standard error of the mean by modeling the original data as some

parametric model.

(4) The PC method does not require significantly more computational effort

to be implemented since it deals directly with the given original data. It does not try

to fit an analytical model to it. It does not need to use extra data to determine the

appropriate batch size that ensures uncorrelated batches.

(5) The PC method is grounded in theoretical concepts ofmatrix algebra and

statistical estimation; therefore, unlike the procedures that are done by the batch

means method to determine the appropriate batch size that ensures uncorrelated

batches, implementation of the new method is more science than art.

(6) The best performance of the new method seems to occur when the batch

size is not too large, say, a batch size corresponding to forty batches from a fixed

sample size. The best coverages result from 40 batches of the largest possible fixed

85

sample size and the half-width stability is adequate although higher than with other

batch sizes.

(7) For a fixed sample size, the new method adequately provides an

uncorrelated version of the data since very few replicates that were used to construct

confidence intervals failed the test for correlated batches. The largest number of

replicates with correlated batches that was ever used inappropriately to construct

confidence intervals by the PC method was six out of a possible 100 replicates. The

BM method, however, typically had more than one-half of the total 100 possible

replicates failing the test for correlated batches and being inappropriately used to

construct confidence intervals. Usually, the BM method had this problem if the

batch size and the sample size were too small.

(8) The PC method provides confidence intervals that are fairly stable even

at small sample sizes. In fact, the half-width stability remains rather constant

regardless of sample size. This suggests that even for small sample sizes, confidence

intervals with good coverage are obtained without having to be significantly wider

than large-sample-size confidence intervals.

(9) . The PC method provides a framework for further investigation of

simulation output methods based on multi-normal assumptions. In most

experimentationwith simulation output analysis, the emphasis has been on univariate

normal assumptions and developing models or tools to estimate the standard error.

Future experimentation may now be developed based on the framework of this

86

research to develop other approaches to estimating the standard error.

(10) The PC method is, however, limited by the size of matrices that can be

successfully diagonalized by using current programming routines. The maximum size

of the covariance matrix that was possible for this research was 50 x 50. Most other

subroutines, in general, suffer like limitations in the size of the covariance matrix.

53 Recommendations

Several areas for further research are suggested in this section. Most work

in the area of simulation fixed-width confidence interval methodologies is usually

extended to developing sequential approaches. A sequential procedure is one that

iteratively increases the sample size until the resulting confidence interval half-width

is of a desired precision. The principal component method could very easily be

extended to a sequential procedure. However, some arbitrary number of batches

must be selected a priori since the size of the covariance matrix which is to be

diagonalized is extremely limited.

The estimate of the covariance structure is the key element of the new

method. Most estimates of the covariance require large sample sizes since the

estimates themselves are highly variable and, in fact, correlated with each other if

the sample size is too small. Therefore, another recommendation for future research

is an investigation of the effect that correlation and sample size has on estimating

the covariance matrix.

Another research topic is to develop some means other than linear unbiased

87

estimation to determine estimates of the mean of transformed data derived from a

diagonalized covariance matrix. Linear unbiased estimation gives an excellent point

estimate of the mean, but the estimate of the variance is too small to be useful or

reliable for constructing confidence intervals. Until the principal component method

was modified in its estimate of the variance, it yielded confidence intervals with

unacceptable coverage.

Another research topic is to develop a procedure based on the principal

component method which will provide confidence intervals for steady-state measures

other than the mean. Iglehart [1976] and Seila [1982] provide methods based on the

regenerative approach that give quantile estimation. This is useful because in some

cases, such as in highly skewed data, the estimate of the median may be a better

measure of central tendency than the mean.

88

REFERENCES

Adam, N.R. 1983. Achieving a Confidence Interval for Parameters Estimated by
Simulation. Mgmt. Sci. 29, 856-866.

Bischak, D.P. 1988. Weighted Batch Means for Improved Confidence Intervals for
Steady State Processes. Ph.D. Dissertation, Dept, of Industrial and Operations
Engineering, The University of Michigan, Ann Arbor.

Brillinger, D.R. 1973. Estimation of the Mean of a Stationary Time Series by
Sampling. J. Appl. Prob. 10, 419-431.

Chun, Y. 1989. Time-Series Models of Batch-Means Processes in Simulation
Analysis. Ph.D. Dissertation, Dept, of Business Administration, University of
Minnesota, Minneapolis.

Crane, M.A. and D.L. Iglehart. 1974a. Simulating Stable Stochastic Systems: I,
General Multi-Server Queues. J. ACM 21, 103-113.

Crane, M.A. and D.L. Iglehart. 1974b. Simulating Stable Stochastic Systems: II,
Markov Chains. J. ACM 21, 114-123.

Crane, M.A. and D.L. Iglehart. 1975a. Simulating Stable Stochastic Systems: III,
Regenerative Processes and Discrete Simulations. Opns. Res. 23, 33-45.

Crane, M.A. and D.L. Iglehart. 1975b. Simulating Stable Stochastic Systems: IV,
Approximation Techniques. Mgmt. Sci. 21, 1215-1224.

Crane, M.A. and A.J. Lemoine. 1977.An Introduction to the Regenerative Methodfor
Simulation Analysis. Lecture Notes in Control and Information Sciences.
Springer-Verlag, New York.

Damerdji, H. 1988. Topics in Discrete-Event Stochastic Systems. Ph.D.
Dissertation, Dept, of Operations Research, The University of Wisconsin-
Madison.

Donnelly, J.H. and R.E. Shannon. 1981. Minimum Mean-Squared Error Estimators
for Simulation Experiments. Comm. ACM 24, 253-259.

89

Duket, S.D. and A.A.B. Pritsker. 1978. Examination of Simulation Output Using
Spectral Methods. Math. Comp. Simulation XX 1, 53-60.

Fishman, G.S. and P.J. Kiviat. 1967. The Analysis of Simulation-Generated Time
Series. Mgmt. ScL 13, 525-557.

Fishman, G.S. 1971. Estimating Sample Size in Computing Simulation Experiments.
Mgmt. ScL 18, 21-38.

Fishman, G.S. 1972. Bias Considerations in Simulation Experiments. Opns. Res. 20,
785-790.

Fishman, G.S. 1973. Statistical Analysis for Queueing Simulations. Opns. Res. 20, 363-
369.

Fishman, G.S. 1974. Estimation in Multi-Server Queueing Simulations. Opns. Res. 22,
72-78.

Fishman, G.S. 1978a. Grouping Observations in Digital Simulations. Mgmt. Sci. 24,
510-521.

Fishman, G.S. 1978b. Principles of Discrete Event Simulation. Wiley, New York.

Gafarian et al. 1978. Evaluations of Rules for Detecting Steady State in Simulations.
Naval Res. Logist. Quart. 25, 511-529.

Goldsman, D. and L. Schruben. 1984. Asymptotic Properties of Some Confidence
Interval Estimators for Simulation Output. Mgmt. ScL 30, 1217-1225.

Goldsman, D. and L. Schruben. 1990. New Confidence Interval Estimators Using
Standardized Time Series. Mgmt. Sci. 36, 393-397.

Goldsman, D. et al. 1990. Properties of Standardized Time Series Weighted Area
Variance Estimators. Mgmt. Sci. 36, 602-612.

Gross D. and C.M. Harris. 1974. Fundamentals of Queueing Theory. Wiley, New
York.

Heidelberger, P. and P.D. Welch. 1981. A Spectral Method for Confidence Interval
Generation and Run Length Control in Simulations. Comm. ACM 24, 233-
245.

90

Heidelberger, P. and P.D. Welch 1981a. Regression-Adjusted Estimates for
Regenerative Simulations, with Graphics. Comm. ACM 24, 260-273.

Heidelberger, P. and P.D. Welch. 1981b. Adaptive Spectral Methods for Simulation
Output Analysis. IBM J. Res. Dev. 25, 860-876.

Heidelberger, P. and P.D. Welch. 1983. Simulation Run Length Control in the
Presence of an Initial Transient. Optis. Res. 31, 1109-1144.

Ho, C. 1986. The Method of Sequential Systematic Sampling in Digital
Simulation. Ph.D. Dissertation, Dept, of Operations Research, Virginia
Polytechnic Institute and State University, Blacksburg.

Iglehart, D.L. 1975. Simulating Stable Stochastic Systems: V, Comparison of Ratio
Estimators. Naval Res. Logist. Quart. 22, 553-565.

Iglehart, D.L. 1976. Simulating Stable Stochastic Systems: VI, Quantile Estimation.
J. ACM 23, 347-360.

Iglehart, D.L. 1978. The Regenerative Method for Simulation Analysis. In Current
Trends in Programming Methodology: Vol III. Software Engineering K.M.
Chandy and R.T. Yeh (eds.). Prentice-Hall, New Jersey, 52-71.

Iglehart, D.L. and G.S. Shedler. 1980. Regenerative Simulation of Response in
Networks of Queues. Lecture Notes in Control and Information Sciences.
Springer-Verlag, New York.

Iglehart, D.L. and G.S. Shedler. 1983. Statistical Efficiency of Regenerative
Simulation Methods for Networks of Queues. Adv. Appl Prob. 15, 183-197.

Jennings, D.E. 1987. How Do We Judge Confidence Interval Adequacy? Amen Stat.
41, 335-337.

Kang, K. 1984. Confidence Interval Estimation via Batch Means and Time Series
Modeling. Ph.D. Dissertation, Dept, of Industrial Engineering, Purdue
University, W. Lafayette, Indiana.

Kang, K. and B. Schmeiser. 1987. Properties of Batch Means from Stationary ARMA
Time Series. Opns. Res. Letts. 6, 19-24.

91

Kelton, W.D. 1983. Simulation Analysis. In Proceedings of the 1983 Winter Simulation
Conference, The Society for Computer Simulation, Arlington, Virginia, 159-
168.

Kelton, W.D. and A.M. Law. 1983. A New Approach for Dealing with Start-Up
Problem in Simulation. Naval Res. Logist. Quart. 30, 641-658.

Kelton, W.D. 1984. Steady-State Confidence Interval Methodology: A Forum on
Theory, Practice and Prospects. In Proceedings of the 1984 Winter Simulation
Conference, The Society for Computer Simulation, Dallas, Texas, 243-249.

Kelton, W.D. and A.M. Law. 1984. An Analytical Evaluation of Alternative
Strategies in Simulation. Opus. Res. 32, 169-184.

Kolman, B. 1980. Introductory LinearAlgebra withApplications. McMillan, New York.

Law, AM. 1977. Confidence Intervals in Discrete Event Simulation: A Comparison
of Replication and Batch Means. Naval Res. Logist. Quart. 24, 667-678.

Law, AM. and J.S. Carson, II. 1979. A Sequential Procedure for Determining the
Length of a Steady State Simulation. Opns. Res. 27, 1011-1025.

Law, A.M. and W.D. Kelton. 1982. Confidence Intervals for Steady State Simulations
II: A Survey of Sequential Procedures. Mgmt. ScL 28, 550-562.

Law, AM. 1983. Statistical Analysis of Simulation Output Data. Opns. Res. 31, 983-
1029.

Law, AM. and W.D. Kelton. 1984. Confidence Intervals for Steady State Simulations
I: A Survey of Fixed Sample Size Procedures. Opns. Res. 32, 1221-39.

Mechanic, H. and W. McKay. 1966. Confidence Intervals for Averages ofDependent
Data in Simulations II. Technical ReportASDD 17-202, IBM Corp. Yorktown
Heights, New York.

Miller, R. 1966. Simultaneous Statistical Inference. McGraw-Hill. New York.

Moeller, T.L. and P.D. Welch. 1977. A Spectral Based Technique for Generating
Confidence Intervals from Simulation Outputs. In Proceedings 1977 Winter
Simulation Conference, The Society for Computer Simulation, Gaithersburg,
Maryland, 177-184.

92

Newton, H.J. 1988. TIMESLAB: A Time Series Analysis Laboratory. Wadsworth and
Brooke/Cole, Belmont, California.

Pritsker, A.A.B. 1984. Introduction to Simulation and SLAM II. Systems Publishing,
W. Lafayette, Indiana.

Schmeiser, B.W. 1982. Batch Size Effects in the Analysis of Simulation Output. Opns.
Res. 30, 556-568.

Schmeiser, B.W. 1990. Overlapping Batch Statistics. In Proceedings ofthe 1990 Winter
Simulation Conference, The Society for Computer Simulation, Baltimore,
Maryland, 395-398.

Schmidt, J.W. and C. Ho. 1988. An Algorithm for Testing Serial Dependence of
Simulation Output Data. In Proceedings of1988 Winter Simulation Conference,
The Society for Computer Simulation, San Diego, California, 532-539.

Schriber, T.J. and R.W. Andrews. 1979. Interactive Analysis of Simulation Output
by the Method of Batch Means. In Proceedings of the Winter Simulation
Conference, The Society for Computer Simulation, New York, 513-525.

Schriber, T.J. and R.W. Andrews. 1981. A Conceptual Framework for Research in
the Analysis of Simulation Output. Comm. ACM 24, 218-232.

Schriber, T.J. and R.W. Andrews. 1984. ARMA-Based Confidence Intervals for
Simulation Output Analysis. Amer. J. Math. Mgmt. Sci. 4, 345-374.

Schruben, L.W. 1980. Coverage Function for Interval Estimators of Simulation
Response. Mgmt. Sci. 26, 18-27.

Schruben, L.W. 1982. Detecting Initialization Bias in Simulation Output. Opns. Res.
30, 569-590.

Schruben, L.W. 1983. Confidence Interval Estimation Using Standardized Time
Series. Opns. Res. 31, 1090-1108.

Schruben, L.W. et al. 1983. Optimal Tests for Initialization Bias in Simulations. Opns.
Res. 31, 1167-1178.

Seila, A.F. 1982. A Batching Approach to Quantile Estimation in Regenerative
Simulations. Mgmt. Sci. 28, 573-581.

93

Seila, A.F. 1984. Batch Ratios in Discrete Event Simulation. Working Paper Series
84-150, College of Business Administration, The University of Georgia,
Athens.

Vassilacopoulous, G. 1989. Testing for Initialization Bias in Simulation Output.
Simulation 52, 151-153.

Welch, P.D. 1983. The Statistical Analysis of Simulation Results. In Computer
Performance Modeling Handbook, S. Lavenberg (ed.). Academic Press, New
York, 268-328.

Whitt, W. The Efficiency of One Long Run vs Independent Replications in Stead-
State Simulations. Mgmt. Sci. 37, 645-666.

94

APPENDIX A

DERIVATION OF PROPOSED PROCEDURE

In this section, the mathematical manipulations that were used to derive the

proposed confidence interval procedure are shown. Assume that a simulation output

stream of X data values is distributed multi-normal with known mean vector of equal

components and an estimated covariance structure.

If X is distributed N(\iy S) , then Y=VTX is distributed

N(Vt p, Vt^V) , where the covariance matrix , is a symmetric,
diagonal matrix with the form:

0 . . . 0

0 X2 . . . 0

A -

0 0 . . . Xj
and Xi - Var .

Since the mean vector is assumed to have equal components, Yt is distributed

A.-) , where C, is the ith row sum of VT. Therefore, YJCi is distributed

7V(p, —L) , since Var(aY) -a2VarY .

c<2

95

Here y/Q are point estimates of the mean, each with different variances.

These point estimates are useful for confidence interval construction if some linear

combination of them can be determined such that the point estimates are unbiased

estimates of the true mean and have minimum variance. So, weights ai must be

chosen such that these useful conditions hold i.e.

J y. 3 J
We want E ft;—] = • This implies ^2ai = 1 • We a^so want

1=1 Ci i=1 i=1

3 Yi 3 y. A.-
Lhr r Ya;— 1 = Tfl.V. to be minimized, where V- = Var — = —- .

i=l S i=l Ci Cf

Therefore, the optimization problem then becomes:
J J

minimize swc/z r/iar]jP «• = 1 ,
z=l i=1

which is solved by Lagrangian relaxation.

The Lagrangian problem is solved as follows:

J J

minz = Y,a?vi + 5(1 - $>,)
1=1 1=1

Taking the derivatives with respect to a(and <5 yields:

— =2a,-b
da.

dz
dd =1T>ii=l

Setting the derivatives equal to zero yields the following:

96

ai = —'

2Vi

E ai= 1
M

Solving the above two equations yields expressions for and 6 in terms of Vi9 i.e.

6 =

E1>vi
i=l

W;
a‘ - T

E1^-
1=1

Taking the second derivatives confirm that the critical points will be minimum since

the second partials are strictly greater than 0.

Consider the estimate a^JCi9 which is distributedN (ji, A-JC2). The minimum
variance of this estimate is a?AJC?. In order to obtain a larger, more useful,

estimate of the variance that is suitable for confidence interval construction, the Ct2
term in the denominator must decrease. If the term is replaced by the average of

the C2,s then the denominator reduces to 1 for every i. The following illustrates this

finding:

Recall that the symmetric covariance matrix S is diagonalized into VrAV,

where V is the orthogonal matrix of eigenvectors. Since V is orthogonal, VT=V'1.

Therefore, the square of the orthogonal matrix is VTV = WT = W'1 = /, where

I is the identity matrix. Also, recall that Q, is a vector consisting of the ith

97

rowsums of VT, i.e.

Ci = (Cp...,Cj) = VtEt = £F
where ii = (l,l,...l). Therefore,

j

E (c1#...,c/
1-1

= (£F) (£P0r

= (£F) (Kr£r)

= £KKr£T

= £/£r

= EEt

= J.

, J
Hence, —V C,2 = 1 is the average of the C2 terms. If we replace the C2 term

J i-l

in the variance estimate by its average, then another estimate of the variance is
j

^2 ai^i » which is not minimum. The proposed confidence interval then becomes:
i=l

J

£ a,—±Z.
'C, 1 *\ Eai%i=l

where is determined as before.

98

APPENDIX B

DESCRIPTION OF TIMESLAB SOFTWARE

Timeslab, a time series analysis laboratory, is an interactive, command-driven

graphics software developed by Dr. H. Joseph Newton and detailed in his text,

Newton [1988]. The software grew out of a series of lecture notes, computer

programs and Fortran library subroutines that were done by Dr. Newton. It consists

of about 150 commands that perform various data manipulations as reading, plotting,

transforming and forecasting. It even has a built-in text editor which easily allows

for interactive commands to be entered at the keyboard or for a batched series of

commands to be written to a file called a macro. This appendix provides a guide to

the commands that were used in constructing macros needed to conduct the

research.

Timeslab requires an IBM-compatible personal computer with 640 kilobytes

of random access memory and with either a color graphics adapter or an enhanced

graphics adapter. Either a color or a monochrome monitor may be used to display

pixel graphics. For this research, an IBM-compatible computer with a Intel 486

microprocessor capable of running at speeds of 25 to 33 kilohertz and a color

monitor with graphics capability were used.

The basic rules for data are as follows:

(1) Variable names may be up to 15 characters long.

99

(2) Data may be any of four types: integer, real scaler, character, real

array. There may be a maximum of 60 variables of each type. The total number

of elements for all arrays must not be greater than 10,000.

(3) Each array may have at most a 40-character label assigned to it which

is used to identify listings and plots of arrays.

(4) Variable names beginning with the letters i through n are considered

to be integers unless such a variable is assigned a real value by including a decimal

point.

The arithmetic operations of addition, subtraction, multiplication, division, and

exponentiation are evaluated according to the following rules:

(1) Evaluate successively all expressions contained within the innermost

curly bracket first, working from left to right.

(2) After all expressions enclosed within the innermost curly brackets have

been evaluated, exponentiations, products, and additions are, respectively, done in

order from left to right.

(3) Operations on integers result in an integer. Operations on any

combination of reals and integers result in a real.

Timeslab commands consist of a command name and a number of internal

arguments enclosed within parentheses. The internal arguments are very similar to

the arguments that are passed from a Fortran subroutine to a main program.

Timeslab has commands for manipulating correlations, for varying the environment

100

of input media, for high resolution graphics, for input/output control, for displaying

and transforming data, for conducting math operations, for manipulating matrices,

and for simulating analytical models. The general format of a command is:

Y = command name(argl,...,argj [,argk,...,argn])

where the arguments in square brackets are optional arguments that are to be

included in the command’s argument listing, as needed, and without the square

brackets. Typical Timeslab commands that were used in this research are

summarized on the next page.

It is Timeslab’s useful capability of allowing a series of commands to be

written to a macro file to be executed batch-style at any desired time that makes it

a very flexible programming language. It is quite capable of performing many of the

complex, repetitive calculations that are normally associated with high level

programming languages. For example, looping constructs may be added to macros

in order to provide logical branching. Comments may be included in macros to

enhance documentation. Any word or statement that is written on a macro line and

preceded by a semi-colon is useful as a branching point for a logical branching

construct or as a documentary comment that the software will ignore when it

executes the macro.

101

B.l Summary of Timeslab Commands

This section summarizes the Timeslab commands that were used in the

research.

ABS - absolute value of a scaler or an array.

ARDT - simulate an AR process.

ARMADT - simulate an ARMA process.

CLEAN - deletes all or specified variables.

CORR - calculate the variance and correlations of a data set.

CUM - calculate cumulative sums or cumulative averages of an array.

EDIT - edit files using the text editor.

EIG - find the eigenvalues and (optional) eigenvectors of a matrix.

END IF - ends a programming logical branch or looping routine in a macro.

EXTRACT - form an array by taking from elements of another array.

GOTO - a programming branching statement.

HELP - invoke the on-line help screen.

IF - starts a programming loop.

INFO - list all variables.

LABEL - provide a label for an array.

LINE - form an array of equally spaced real numbers.

LIST - display the value of variables to an output device.

MACRO - start executing the series of commands written in a data file.

102

MCHOL - gets the modified Cholesky decomposition of a symmetric matrix.

MINV - invert a matrix.

MMULT - multiply matrices.

PAUSE - stops to await a response from the user.

PLOT - provide graphs of arrays.

PLOTOFF - switch from graphics to text mode.

PLOTON - switch from text to graphics mode.

PRINTSEL - selects a type of printer.

PROMPTOFF - after this command, do not display commands being executed.

PROMPTON - after this command, resume displaying commands being executed.

QUIT - terminate Timeslab and return to DOS.

READ - read a data set from a file.

SAVE - save an array to a file.

SUBMNS - calculate and add in seasonal means of a data set.

TOEPL - form a symmetric (Toeplitz) matrix from an array of real numbers.

TRANS - transpose a matrix.

103

APPENDIX C

COMPUTER PROGRAMS

;; MM1.MAC: A Timeslab macro to get the batch means of an MM1 process and
;; determine the proposed 90% confidence interval.

;; input: n=number of observations, seed=for random # generator

;; zval=normal table entry for confidence level
;; ro=confidence level, nb=number of batches, mu0=true mean

;; nsamps=number of replicates
yy

PAUSE

;start

INPUT VALUES

nsamps=100
zval= 1.645

ro=.9

mu0=9

n= 10240

seed=5

nb=10

;number of replicates
;for 90% conf int
;correlation level
theoretical value for rho

;sample size per replicate
;random number seed
;number of batches per sample size

xnb:=nb

mb=nb-l

PROMPTOFF

;real value for integer variable
;number of lag correlations
;turn off commands sent to screen

104

9

>

; INITIALIZATION OF VARIABLES

nskip=0 ;keeps track of where in SIMAN data file to read
data

hi=0. ;summer for # c.i.’s biased hi (BM Method)
hhi=0. ;summer for # c.i.’s biased hi (PC Method)
lo=0. ;summer for # c.i.’s biased lo (BM)
llo=0. ;summer for # c.i.’s biased lo (PC)
sum=0. ;summer to calc half-width (BM)
ssum=0. ;summer to calc half-width (PC)
sumsq=0. ;summer to calc sd half-width (BM)
ssumsq=0. ;summer to calc sd half-width (PC)
summse=0. ;summer to calc MSE (BM)
ssummse=0. ;summer to calc MSE (PC)
sumbias=0. ;summer to calc avg bias (BM)
sumvar=0. ;summer to calc avg variance (BM)
ssumbias=0. ;summer to calc avg bias (PC)
ssumvar=0. ;summer to calc avg variance (PC)
in=0. ;summer to calc # of corrl’d batches (BM)
im=0. ;summer to calc # of corrl’d batches (PC)

9

;si ;entry point for branching loop

rep=nskip+l
LIST(rep)

;counter for the # of replicates
;tell the user which sample is being done

t 2je jjt ?{< S}C SfS 9(C)fC <|« 3jC 3f» 9(c 5jtf S{C 3fC jj(3fC 5jc 3< 5< jj(5jC sfc s}C 9fc S|< 9jC 9}»9}S9{C2|C9|c${C2{g9}S3{c«f»3jc5{£9{{3|63f£2(c S|{ 9{C 5{C <)S 5|C 9(C 3$C 9f»)j» 3f» 5$C jjC Sf* ?j» 2{* 5$S !{< 3fC Sfb9f«3{»9{«#{«*{«3{«3ft«f»

105

BATCH MEANS METHOD

read(bat10295.dat,x,nb,nskip)
xmean=submns(x,nb, l,xbar)
rhox=corr(x,nb,mb,0, l,r0x,per)
rOx= {xnb/mb } * rOx
covx=rQx*rhox

rhox=abs(rhox,mb)
if(rhox[l] .gt. .5)
in=in+l

;reads from an ASCII Fortran file
;batch means of batch size nb

determines correlation between batches
;unbiased est of variance

;covariance

;Law & Carson’s check for uncorrelated batches

endif

sd={r0x/nb} ^.5
half=zval*sd

biassq={xbar-muO} ^ 2
sumbias=sumbias+biassq ^ .5
sumvar—sumvar+rOx

mse=biassq4-rOx
summse=summse+mse

sum=sum+half

sumsq=sumsq+half*half
ll=xbar-half

ul=xbar+half

if(ll .gt. muO)
hi=hi -h 1

;gets std dev
;half-width of interval

;square of bias

;calc MSE

;lower conf limit

;upper conf limit
;checks to see if limits cover true mean

endif

if(ul .It. muO)
lo=lo+l

endif

ci=<ll,ul> ;puts in array format
datal 1= <xbar,rQx,half, ci,mse >

label(datall)=’Batched, n=#n#, rho=@ro@, rep=#rep#’
;save(datall,6?test.out)

106

9

;s3
5

?

?

: PRINCIPAL COMPONENT METHOD

ax=toepl(covx,rOx,nb)
val=eig(ax,nb, 100,ier,vec)
tvec=trans(vec,nb,nb)
yl=mmult(tvec,x,nb,nb,l)
ones=line(nb,1,0)

;makes symmetrical covariance matrix
;calc eigenvalues and eigenvectors
transpose of eigenvector matrix
transform of original batched data
;an column of ones

rowsuml=mmult(tvec,ones,nb,nb,l);rowsum of eigenvector matrix-transpose
rsl=extract(rowsuml,nb,0,ne,ny) ;id’s nonzero rowsums

yll=extract(yl,rsl,ny) ;extracts xformed data for nonzero rowsums

rwsuml=extract(rowsuml,rsl,ny) ;extracts nonzero rowsums

mul=yll/rwsuml
nny=ny-l
vali=extract(val,rs 1 ,ny)
sqrwsum1—rwsum 1 *rwsum 1
vari=vali/sqrwsum 1
invari= 1/vari

sumvari=cum (invari,ny, 1)

;uncorrelated, though highly variable, est’s ofmuO
;# of lag correlations to be calculated
;extracts eigenvalues for nonzero rowsums

;rowsum squared
theoretical variance of muO est’s
;inverse of theoretical variance
;cum sum of inverse

smvari=extract(sumvari,ny,ny) ;extracts last element of previous array

ai=invari/smvari ;linear unbiased weights
muuavg2=mmult(ai,mul,l,ny,l) ;unbiased est of muO
muavg2=extract(muuavg2,l,l) ;extracts last element of previous array
zz=ai*mul ;less variable est’s of muO used for variance est

rr=corr(zz,ny,nny,0,l,variante,per) ;calc correlations of muO estimates
xny:=ny ;real value of integer variable
sqai=ai*ai
variant=mmult(sqai,vali, l,ny, 1)

107

variance=extract(variant,1,1)
rr=abs(rr,nny)
if(rr[l] -gt- -5)
im=im+l

;unbiased est of variance of muO

;checks for corrl’d batches

endif

std={variance } ^ .5

bbiasq= {muavg2-mu0} ^ 2
ssumbias=ssumbias+bbiasq ~ .5
ssumvar=ssumvar+variance

;std dev of unbiased est of mean or std error

;calc bias

mmse=bbiasq+variance
ssummse=ssummse+mmse

hhalf=zval*std

;calc MSE

;calc half-width
ssum=ssum+hhalf

ssumsq=ssumsq+hhalf*hhalf
111=muavg2-hhalf
uuu=muavg2+hhalf
if(lll .gt. muO)
hhi=hhi+l

;lower conf limit

;upper conf limit
;check to see if limits cover true mean

endif

if(uuu .It. muO)
llo=llo+l

endif

confi= < lll,uuu>
data21=<muavg2,variance,hhalf,confi,mmse>
label(data21)=’Eig mml, n=#n#, rho=@ro@, rep=#rep#’
;save(data21,6,test.out)
?

?

7

if(rep .ge. nsamps, theend)
nskip=nskip+l
goto(sl)

;check if max replicates
;if not, increase reps by 1
;and go to loop again

108

;theend ;else, do the following calc’s

y

; CALCULATE PERFORMANCE MEASURES

label(ax)=’MMl,n=#n#,nb=#nb#,rho=@ro@,reps=#rep#’
list(ax,0,’mml.out’) ;places label of previous line in output file
label(ax) =’Batched Confidence Interval Data’
list(ax,0,’mml.out’) ;places label of previous line in output file
cov={rep-hi-lo}/rep ;calc nominal coverage (BM)
ccov={rep-hhi-llo}/rep ;calc nominal coverage (PC)
hcov=zval*{cov*{l-cov}/rep} ^.5 ;calc half width of coverage int (BM)
hhcov=zval*{ccov*{l-ccov}/rep} ^ .5 ;calc half width of coverage int (PC)
datal = <cov,hcov> ;makes an array of 2 elements
label(datal)=’90% Cov Int=@cov@ +- @hcov@’
list(datal,0,’mml.out’) ;places label of previous line in output file
avghalf= sum/rep ;calc avg half-width (BM)
aavghalf=ssum/rep ;calc avg half-width (PC)
varhalf={rep*sumsq-sum*sum}/{rep*{rep-l}};calc var of half-width (BM)
warhalf=={rep*ssumsq-ssum*ssum}/{rep*{rep-l}};calc var of half-width (PC)
sdhalf=varhalf^ .5 ;calc sd of avg half-width(BM)
ssdhalf=warhalf ^ .5 ;calc sd of avg half-width (PC)
data2= <avghalf,sdhalf>
label(data2)=’Half-width is @avghalf@ +- @sdhalf@’
list(data2,0,’mml.out’)
avgbias=sumbias/rep ;calc avg bias (BM)
avgvar=sumvar/rep ;calc avg var (BM)
data21= < avgbias,avgvar>
label(data21)=’Avg Bias=@avgbias@ & Avg Var=@avgvar@’
list(data21,0,’mml.out’)

data3 = <hi,lo>

label(data3)= ’@hi@ Biased Hi and @lo@ Biased Lo’
list(data3,0,’mml.out’)
avgmse=summse/rep ;calc avg MSE (BM)
data31= < avgmse>

label(data31) = ’Avg Mse = @avgmse@ ’
list(data31,0,’mml.out’)
inn=<in>

label(inn)= ’No. Corr. Batches is @in@’
list(inn,0,’mmLout’)
label(rhox)= ’Eigvalue Conf Interval Data’
list(rhox,0/mml.out’)
data4= <ccov,hhcov>

label(data4)=’90% Cov Int=@ccov@ +- @hhcov@’
list(data4,0,’mml.out’)
data5= < aavghalf,ssdhalf>
aa=aavghalf
ss=ssdhalf

label(data5)=’Half-width is @aa@ +- @ss@’
list(data5,0,’mml.out’)
aavgbias=ssumbias/rep ;calc avg bias (PC)
aavgvar=ssumvar/rep ;calc avg var (PC)
data51 = < aavgbias,aavgvar>
label(data51)=’Avg Bias=@aavgbias@ & Avg Var=@aavgvar@’
list(data51,0,’mml.out’)
data6=<hhi,llo>
label(data6) = ’@hhi@ Biased hi and @llo@ Biased Lo’
list(data6,0, ’mm 1 .out’)
aavgmse=ssummse/rep ;calc avg MSE (PC)
ams= <aavgmse >

label(ams)=’Avg Mse = @aavgmse@ ’
list(ams,0,’mml.out’)

imm= <im>

label(imm)=’No. Corr Batches is @im@’
list(imm,0,’mml.out’)
it= < 0>

label(it)=’ ’
list(it,0,’mml.out’)

; THE END
.**

Ill

PROGRAM BATCHING

C

C This is a Fortran program to batch the flow times of customers from an
C M/M/1 queue. Given a total sample size of n, get NBATCH batches of
C size n/NBATCH each. Do this for NREPS replicates of the experiment by
C reading the flowtimes exported from a SIMAN-generated output
C file.

C

C Variables defined: MM1.90=the Siman output file of flowtimes in form (X,Y)
C

C

c

c

c

c

c

c

c

c

c

c

BAT90.DAT=the Fortran batched files to be created.

NN=a counter of the run replicates (max: 100)
NBSIZE=batch size

NBATCH=number of batches

NREPS=number of replicates
I=a counter for batches up to NBATCH
N=a counter of observations added up to NBSIZE
XN=real variable for integer N; useful for division
SUM=a variable to sum up flowtimes
X=a Siman variable for event time

Y=a Siman variable for flowtime value

AVG=batched average of NBSIZE observations

DIMENSION AVG(IOO)
OPEN (UNIT=4,FILE=’MM1.90’,STATUS=’OLD’)
OPEN (UNIT=7,FILE=’EiBAT90.DAT’)
NN=1

NBSIZE=32

NBATCH=10

NREPS=100

READ (4,8)
8 FORMAT (/,/,/)

10 WRITE (7,15) NN
15 FORMAT (IX,’M/M/1, rho=.9, N=320, Repl ’,13,/IX,TO (10F8.5) ’)
WRITE (*,*) NN,NREPS
1=1

20 N=0

SUM=0.

25 IF (N .LT. NBSIZE) THEN
READ (4,*) X,Y
IF (X .LT. 0) GO TO 25
SUM=SUM+Y

N=N+1

GO TO 25

28 ENDIF

AVG(I)=SUM/FLOAT(N)
IF (I .GE. NBATCH) GO TO 30
1=1+1

GO TO 20

30 WRITE(7,35) (AVG(I),1=1,NBATCH)
35 FORMAT(10F8.5)
IF (NN .GE. NREPS) GO TO 40
NN=NN+1

GO TO 10

40 REWIND(4)
CLOSE(4)
REWIND(7)
CLOSE(7)
STOP

END

113

! MM1.EXP: SIMAN experimental frame for M/M/1 customer waiting times
I

begin;
create:ex(l,l):mark(l);
queue, 1;
seize :server;

delay:ex(2,2);
release:server;

tally: l,int(l);
count: l,l:dispose;

end;

! MM1.MOD: SIMAN model frame for M/M/1 customer waiting times
!

begin;
project, mml, tomfree, 7/30/91;
discrete, 1000,1,1;
resources: 1,server, 1;
seeds: l,5,no:2,500,no;
parameters: 1,1:2,.9;
dstat:l,nq(l),the queue;
counters: 1,customers, 162700;
tallies: 1,flow, 90;
replicate, 100,0,162700,YES,YES, 160000;

end;

114

;; AR1.MAC: macro to generate nsamps realizations of length
;; n from an AR(1) process having coefficient alpha,
;; and find the confidence interval for mu=100 for
;; each one.

;; INPUT: n=# of observations, seed=for random # generator

;; zval=normal table entry for confidence level
;; ro=confidence level, nb=number of batches, mu0=true mean

;; nsamps=number of replicates, alpha=AR coefficient

PAUSE

;start

INPUT VALUES

alpha=<-.9>
nsamps=100
n=40

nb=40

ro=.9

mu0= 100

seed=5

zval= 1.645

x=wn(seed,100) ;warm up the rand # generator
xnb:=nb

mb=nb-l

PROMPTOFF ;turn off prompt

115

nskip=0
hi=0.

hhi=0.

lo=0.

llo=0.

sum=0.

ssum=0.

sumsq=0.
ssumsq=0.
summse=0.

ssummse=0.

sumbias=0.

sumvar=0.

ssumbias=0.

ssumvar=0.

in—0.

im=0.

7

7

;si
7

rep=nskip+l
LIST(rep)
;s2

INITIALIZATION OF VARIABLES

;keeps track of where to read in the data file
;summer for # c.i.’s biased hi (BM)
;summer for # c.i.’s biased hi (PC)
;summer for # c.i.’s biased lo (BM)
;summer for # c.i.’s biased lo (PC)
;summer to calc half-width (BM)
;summer to calc half-width (PC)
;summer to calc std dev of half-width (BM)
jsummer to calc std dev of half-width (PC)
;summer to calc avg MSE (BM)
;summer to calc avg MSE (PC)
;summer to calc avg bias (BM)
jsummer to calc avg variance (PC)
;summer to calc avg bias (PC)
;summer to calc avg variance (PC)
;summer to calc # of corrl’d batches (BM)
;summer to calc # of corrl’d batches (PC)

;entry point for branching loop

;counter for the # of replicates
;tell the user which sample is being done

.He***

116

BATCH MEANS METHOD

alpha=<-.9> ;re-define AR coefficient for each replicate
x=ARDT(alpha,l,100»0?nderT0) ;generate AR(1) realization?var=100
x=SUBMNS(x,n,l,muO,2) ;add in mean of 100
macro(batch) ;call to macro to batch AR data
rhox=corr(xbar,nb,mb,0,l,rOx,per) determines correlation between batches
r0x={xnb/mb}*r0x ;unbiased est of variance
covx=rOx*rhox ;covariance

rhox=abs(rhox,mb)
if(rhox[l] .gt. .5) ;Law & Carson’s check for uncorrelated batches
in=in+l

endif

xmu=cum(xbar,nb,2)
xmubar=extract(xmu,nb,nb)
sd={r0x/nb} ^ .5
half=zval*sd

biassq={xmubar-muO} ^ 2
sumbias=sumbias + biassq^.5
sumvar=sumvar+rOx

mse=biassq+rOx
summse=summse+mse

sum=sum+half

sumsq=sumsq+half*half
ll=xmubar-half

ul=xmubar+half

if(ll .gt. muO)
hi=hi+l

cumulative average of batch means

;extract last element of previous array

;std error

;half-width
;bias squared

;MSE

;lower conf limit

;upper conf limit
;checks to see if limits cover true mean

endif

if(ul .It. muO)
lo=lo+l

endif

117

ci= <ll,ul>
datall= <xmubar,rOx,half,ci,mse>

label(datall)=’Batched, n=#n#, rho=@ro@, rep=#rep#’
;save(datal l,6,test.out)

;s3

PRINCIPAL COMPONENT METHOD

ax=toepl(covx,rOx,nb)
val=eig(ax,nb, 100,ier,vec)
tvec=trans(vec,nb,nb)
y1=mmult(tvec,xbar,nb,nb,1)
ones=line(nb, 1,0)

;makes symmetrical covariance matrix
;calc eigenvalues and eigenvectors
transpose of eigenvector matrix
transform of original batched data
;a column of ones

rowsuml=mmult(tvec,ones,nb,nb,l);rowsum of eigenvector matrix-transpose
rsl=extract(rowsuml,nb,0,ne,ny) ;id’s nonzero rowsums

yll=extract(yl,rsl,ny) ;extracts xformed data for nonzero rowsums

rwsuml=extract(rowsuml,rsl,ny) ;extracts nonzero rowsums

mul=yll/rwsuml
nny=ny-l
vali=extract(val,rs l,ny)
sqrwsum1=rwsum 1 *rwsum 1
vari=vali/sqrwsuml
invari= 1/vari

sumvari=cum(invari,ny, 1)
smvari=extract(sumvari,ny,ny)
ai=invari/smvari

muuavg2=mmult(ai,mu1,1 ,ny, 1)
muavg2=extract(muuavg2,1,1)

;uncorrelated, though highly variable, est’s ofmuO
;# of lag correlations to be calculated
;extracts eigenvalues for nonzero rowsums

;rowsum squared
theoretical variance of muO est’s
;inverse of theoretical variance
;cumulative sum of inverse
;extracts last element of previous array

;linear unbiased weights
;unbiased est of muO
;extracts last element of previous array

118

zz=ai*mul ;less variable est’s of muO used for variance est

rr=corr(zz,ny,nny,0,l,variante,per) ;calc variance of muO estimates
xny:=ny ;real value for integer variable
sqai=ai*ai
variant=mmult(sqai,vali, l,ny, 1)
variance=extract(variant, 1,1)
rr=abs(rr,nny)
if(rr[l] .gt. .5)
im=im+l

endif

std= {variance} ^ .5

bbiasq={muavg2-mu0} ^ 2
ssumbias=ssumbias+bbiasq ^ .5
ssumvar=ssumvar+variance

mmse=bbiasq+variance
ssummse=ssummse+mmse

hhalf=zval*std

ssum=ssum+hhalf

ssumsq=ssumsq+hhalf*hhalf
111=muavg2-hhalf
uuu=muavg2+hhalf
if(lll .gt. muO)
hhi=hhi+l

endif

if(uuu .It. muO)
llo=llo+l

endif

confi=<lll,uuu>
data21=<muavg2,variance,hhalf,confi,mmse>
label(data21) = ’Eig MM1, n=#n#, rho=@ro@, rep=#rep#’
;save(data21,6,test.out)

;est of variance

;checks for corrl’d batches

;std error

;bias square

;MSE

;half-width

; lower conf limit
;upper conf limit
;check to see if limits cover true mean

119

. * *************** ********* ^^s^^*************************** * *************

if(rep .ge.nsamps, theend)
nskip=nskip+l
clean(arrays)
goto(sl)
;theend

; CALCULATE PERFORMANCE MEASURES
?

label(ax)= ’ARl,n=#n#,nb=#nb#,rho=@ro@,reps=#rep#’
list(ax,0,’arl.out’) ;places label of previous line in output file
label(ax)=’Batched Confidence Interval Data’
list(ax,0,’arl.out’) ;places label of previous line in output file
cov={rep-hi-lo}/rep ;calc nominal coverage (BM)
ccov={rep-hhi-llo}/rep ;calc nominal coverage (PC)
hcov=zval*{cov*{l-cov}/rep} ^ .5 ;calc half-width of coverage interval (BM)
hhcov=zval*{ccov*{l-cov}/rep} ^ .5 ;calc half-width of coverage interval (PC)
datal= <cov,hcov> ;makes an array of 2 elements
label(datal)=’90% Cov Int=@cov@ +- @hcov@’
list(datal,0,’arl.out’) ;places label of previous line in output file
avghalf= sum/rep ;calc avg half-width (BM)
aavghalf=ssum/rep ;calc avg half-width (PC)
varhalf={rep*sumsq-sum*sum}/{rep*{rep-l}} ;calc var of half-width (BM)
warhalf={rep*ssumsq-ssum*ssum}/{rep*{rep-l}} ;calc var of half-width (PC)
sdhalf=varhalf^ .5 ;calc sd of avg half-width (BM)
ssdhalf=warhalf^ .5 ;calc sd of avg half-width (PC)
data2= <avghalf,sdhalf>
label(data2)=’Half-width is @avghalf@ +- @sdhalf@’
list(data2,0, ’ar 1 .out’)

avgbias=sumbias/rep
avgvar=sumvar/rep

;calc avg bias (BM)
;calc avg var (PC)

data21= <avgbias,avgvar>
label(data21)=’Avg Bias=@avgbias@ & Avg Var=@avgvar@’
list(data21,0,’arl.out’)
data3= <hi,lo>

label(data3)=’@hi@ Biased Hi and @lo@ Biased Lo’
list(data3,0,’arl.out’)
avgmse=summse/rep ;calc avg MSE (BM)
data31= < avgmse >

label(data31) = ’Avg Mse = @avgmse@’
list(data31,0,’arl.out’)
inn=<in>

label(inn)= ’No. Corr. Batches is @in@’
list(inn,0,’arl.out’)
label(ax)= ’Eigvalue Conf Interval Data’
list(ax,0,’arl.out’)
data4= <ccov,hhcov>

label(data4)=’90% Cov Int=@ccov@ +- @hhcov@’
list(data4,0,’arl.out’)
data5= < aavghalf,ssdhalf>
aa=aavghalf
ss=ssdhalf

label(data5)=’Half-width is @aa@ +- @ss@’
list(data5,0,’arl.out’)
aavgbias=ssumbias/rep ;calc avg bias (PC)
aavgvar=ssumvar/rep ;calc avg variance (PC)
data51 = <aavgbias,aavgvar>
label(data51)= ’Avg Bias=@aavgbias@ & Avg Var=@aavgvar@’
list(data51,0,’arl.out’)
data6=<hhi,llo>

label(data6)=’@hhi@ Biased Hi and @llo@ Biased Lo’

121

list(data6,0,’arl.out’)
aavgmse=ssummse/rep ;calc avg MSE (PC)
ams= < aavgmse >

label(ams)=’Avg Mse = @aavgmse@’
list(ams,0,’arl.out’)
imm=<im>

label(imm)=’No. Corr. Batches is @im@’
list(imm,0,’arl.out’)
it=<0>

label(it)= ’ ’
list(it,0,’arl.out’)
y

; THE END
.sic***

122

;; ARMA.MAC: macro to generate nsamps realizations of length
;; n from an ARMA(1,1) process having coefficient alpha and beta
;; and find the confidence interval for mu= 100 for
;; each one.

yy

;; INPUT: n=number of observations, seed=for random # generator
;; zval=normal table entry for confidence level, B=confidence level
;; nb=number of batches, mu0=true mean, nsamps=number of reps
;; alpha=AR portion of ARMA coefficient, p=AR order
;; beta=MA portion of ARMA coefficient, q=MA order
y y

PAUSE

;start

y

5

y

: INPUT VALUES

alpha=<-.6>
beta=<.6>

p=l
q=l
nsamps=100
n=2560

nb=10

B=99

zval=2.576

mu0=100

seed=5

123

x=wn(seed,100)
xnb:=nb

;warm up the seed
;real value of integer variable

mb=nb-l ;number of lag correlations to be calculated
PROMPTOFF ;turn off prompt

J

5

? INITIALIZATION OF VARIABLES

?

nskip=0
hi=0.

;keeps track of where to read in data file
;summer for # c.i.’s biased hi (BM)

hhi=0. ;summer for # c.i.’s biased hi (PC)
lo=0. ;summer for # c.i.’s biased lo (BM)
llo=0. ;summer for # c.i.’s biased lo (PC)
sum=0. ;summer to calc avg half-width (BM)
ssum=0. ;summer to calc avg half-width (PC)
sumsq=0.
ssumsq=0.
summse=0.

;summer to calc sd of avg half-width (BM)
;summer to calc sd of avg half-width (PC)
;summer to calc avg MSE (BM)

ssummse=0. ;summer to calc avg MSE (PC)
sumbias=0. ;summer to calc avg bias (BM)
sumvar=0. ;summer to calc avg variance (BM)
ssumbias=0. ;summer to calc avg bias (PC)
ssumvar=0. ;summer to calc avg variance (PC)
in=0. ;summer to calc # of corrl’d batches (BM)
im=0. ;summer to calc # of corrl’d batches (PC)

;si

rep=nskip+l
LIST(rep) ;tell the user which sample is being done

124

BATCH MEANS METHOD

alpha=<-.6>
beta=<.6>

x=ARMADT(alpha,beta,p,q,100,0,n,nb,rhod,r0,ier) ;ARMA(1,1) realization, var=100
x=SUBMNS(x,n,l,muO,2) ;add in mean of 100
macro(batch) ;call to macro to batch ARMA data
rhox=corr(xbar,nb,mb,0,l,r0x,per) ;determines correlation between batches
rOx={xnb/mb } *r0x
covx=rOx*rhox

rhox=abs(rhox,mb)
if(rhox[l] .gt. .5)
in=in+l

;unbiased est of variance
;covariance

;Law & Carson’s check for uncorrelated batches

endif

xmu=cum(xbar,nb,2)
xmubar=extract(xmu,nb,nb)
sd={r0x/nb} ^ .5
half=zval*sd

biassq={xmubar-muO} ^ 2
sumbias=sumbias + biassq^.5
sumvar=sumvar+rOx

mse=biassq+rQx
summse=summse+mse

sum=sum+half

sumsq=sumsq+half*half
ll=xmubar-half

ul=xmubar+half

if(ll .gt. muO)
hi=hi+l

;cumulative averages of the batch means

;extracts last element of previous array

;std error of mean
;half-width

;bias-squared

;MSE

;lower conf limit
;upper conf limit
;checks to see if limits cover true mean

endif

if(ul .It. muO)

125

lo=lo+l

endif

ci=<ll,ul>
data 11 = <xmubar,rOx,half,ci,mse>

label(data11)=’Batch ARMA, n=#n#, nb=#nb#,rep=#rep#’
;save(datal l,6,test.out)

PRINCIPAL COMPONENT METHOD

ax=toepl(covx,rOx,nb)
val=eig(ax,nb, 100,ier,vec)
tvec=trans(vec,nb,nb)
y1=mmult(tvec,xbar,nb,nb,1)
ones=line(nb, 1,0)

;makes symmetrical covariance matrix
;calc eigenvalues and eigenvectors
transpose of eigenvector matrix
transform of original batched data
;a column of ones

rowsuml=mmult(tvec,ones,nb,nb,l) ;rowsum of eigenvector matrix-transpose
rsl=extract(rowsuml,nb,0,ne,ny) ;id’s nonzero rowsums

yll=extract(yl,rsl,ny) ;extracts xformed data for nonzero rowsums

rwsuml=extract(rowsuml,rsl,ny) ;extracts nonzero rowsums
mul=yl 1/rwsuml
nny=ny-l
vali=extract(val,rs l,ny)
sqrwsum1=rwsum1 * rwsum 1
vari—vali/sqrwsuml
invari=l/vari

sumvari=cum(invari,ny, 1)
smvari=extract(sumvari,ny,ny)
ai=invari/smvari

muuavg2=mmult(ai,mul,l,ny,l)

;uncorrelated, though highly variable, est’s ofmuO
;# of lag correlations to be calculated
;extracts eigenvalues for nonzero rowsums

;rowsum squared
theoretical variance of muO est’s
;inverse of theoretical variance

;cumulative sum of inverse
;extracts last element of previous array

;linear unbiased weights
unbiased est of muO

126

muavg2=extract(muuavg2,1,1) ;extracts last element of previous array
zz=ai*mul ;less variable est’s of muO used for variance est

rr=corr(zz,ny,nny,0,l,variante,per) ;calc variance of muO estimates
rr=abs(rr,nny)
if(rr[l] .gt. .5)
im=im+l

endif

xny:=ny

sqai=ai*ai
variant=mmult(sqai,vali, l,ny, 1)
variance=extract(variant, 1,1)
std= {variance} ^ .5

bbiasq= {muavg2-mu0} ^ 2
ssumbias=ssumbias+bbiasq ^ .5
ssumvar=ssumvar+variance

mmse=bbiasq+variance
ssummse=ssummse+mmse

hhalf=zval*std

ssum=ssum+hhalf

ssumsq=ssumsq4-hhalf*hhalf
111=muavg2-hhalf
uuu=muavg2+hhalf
if(lll .gt. muO)
hhi=hhi+l

endif

if(uuu .It. muO)
llo=llo+l

endif

confi=<lll,uuu>
data21= <muavg2,variance,hhalf,confi,mmse>
label(data21)=’Eig ARMA, n=#n#, nb=#nb#, rep=#rep#’
;save(data21,6,test.out)

;checks for cord’d batches

;real value of integer variable

;est of variance
;std error

;bias squared

;MSE

;half-width

;lower conf limit

;upper conf limit
;checks to see if limits cover true mean

127

?

if(rep .ge.nsamps, theend) ;check if max replicates
nskip=nskip+l
clean(arrays)
goto(sl)
; theend

;if not, increase reps by 1

;go to loop again
;else, do the following calculations

*

?

; CALCULATE PERFORMANCE MEASURES
y

label(ax)= ’ARMA,n=#n#,nb=#nb#,reps=#rep#’
list(ax,0,’arma.out’) ;places label of previous line in output file
label(ax)=’Batched Confidence Interval Data’
list(ax,0,’arma.out’)
cov= {rep-hi-lo}/rep
ccov={rep-hhi-llo}/rep

;places label of previous line in output file
;calc nominal coverage (BM)
;calc nominal coverage (PC)

hcov=zval*{cov*{l-cov}/rep} ^ .5 ;calc half-width of coverage interval (BM)
hhcov=zval*{ccov*{l-ccov}/rep} ^ .5 ;calc half-width of coverage interval (PC)
data 1= < cov,hcov>

label(datal)=’@B@% Cov Int=@cov@ +- @hcov@’
list(datal,0,’arma.out’)
avghalf=sum/rep
aavghalf= ssum/rep

;calc avg half-width (BM)
;calc avg half-width (PC)

varhalf={rep*sumsq-sum*sum}/{rep*{rep-l}} ;calc variance of avg half-width (BM)
warhalf={rep*ssumsq-ssum*ssum}/{rep* {rep-1}} ;calc variance of avg half-width
(PC)
sdhalf=varhalf^ .5

ssdhalf=warhalf ^ .5

;calc std dev of avg half-width (BM)
;calc std dev of avg half-width (PC)

data2= < avghalf,sdhalf>
label(data2)= ’Half-width is @avghalf@ +- @sdhalf@’

Iist(data2,0,’arma.out’)
avgbias=sumbias/rep
avgvar=sumvar/rep

;calc avg bias (BM)
;calc avg variance (BM)

data21= < avgbias,avgvar>
label(data21)=’Avg Bias=@avgbias@ & Avg Var=@avgvar@’
list(data21,0,’arma.out’)
data3=<hi,lo>

label(data3) = ’@hi@ Biased Hi and @lo@ Biased Lo’
list(data3,0,’arma.out’)
avgmse=summse/rep ;calc avg MSE (BM)
data31 = < avgmse>

label(data31) = ’Avg Mse = @avgmse@’
list(data31,0,’arma.out’)
inn=<in>

label(inn)=’No. Corr. Batches is @in@’
list(inn,0,’arma.out’)
label(ax)= ’Eigvalue Conf Interval Data’
list(ax,0,’arma.out’)
data4= <ccov,hhcov>

label(data4)=’@B@% Cov Int=@ccov@ +- @hhcov@’
list(data4,0,’arma.out’)
data5= <aavghalf,ssdhalf>
aa=aavghalf
ss=ssdhalf

label(data5)=’Half-width is @aa@ +- @ss@’
list(data5,0,’arma.out’)
aavgbias=ssumbias/rep ;calc avg bias (PC)
aavgvar=ssumvar/rep ;calc avg variance (PC)
data51= < aavgbias,aavgvar>
label(data51)=’Avg Bias=@aavgbias@ & Avg Var=@aavgvar@’
list(data51,0,’arma.out’)
data6=<hhi,llo>

129

label(data6)=’@hhi@ Biased Hi and @llo@ Biased Lo’
list(data6,0,’arma.out’)
aavgmse=ssummse/rep ;calc avg MSE (PC)
ams=< aavgmse >

label(ams)=’Avg Mse = @aavgmse@’
list(ams,0,’arma.out’)
imm=<im>

label(imm)=’No. Corr. Batches is @im@’
list(imm,0,’arma.out’)
it= <0>

label(it)=’ ’
list(it,0,’arma.out’)

; THE END

130

;; BATCH.MAC: macro to get batch means of AR1 and ARMA processes

9 9

;; input: n=sample size, nb=number of batches, x=data

;start

nz=n

xbar=line(nb,0,0)
bsize=n/nb
i=l

;loop
avgs=cum(x,bsize,2)
xbar[i]=extract(avgs,bsize,bsize)
clean(avgs)
i=i+l

if(i .gt. nb, endloop)
n=n-bsize

ni=line(n,bsize,l)
x=extract(x,ni,n)
clean(ni)
goto(loop)
;endloop

