
MOTION PLANNING IN INDUSTRIAL DESIGN

A Senior Thesis

By

Darek VanToom

1996-97 University Undergraduate Research Fellow

Texas A&M University

Group: ELECTRICAL ENGINEERING/COMPUTER SCIENCE

Motion Planning In Industrial Design
- Preliminary Version -

To be updated with final version in Fall 1997

Darek VanToom

University Undergraduate Research Fellow, 1996-97
Texas A&M University

Department ofComputer Science

APPROVED

Undergraduate Advisor

Honors ProgramQjuuu c^^jT > t, (1^(7Exec. Dir.,

Motion Planning In Industrial Design. Darek VanToom (Dr. Nancy Amato), Computer
Science, Texas A&M University.

Automation of the design and manufacturing process of complex mechanical systems could save
countless man-hours and reduce costs. The development of practical motion planning algorithms
could aid this automation by increasing the power of computer-aided design tools so that they
can be used to perform manufacturability and maintainability studies. In this paper we present a
new motion planning method called single-shot obstacle-based probabilistic roadmap method, or
ssOBPRM. This new method is based on previous motion planning methods but addresses
observed weaknesses in these methods for the industrial applications we consider. This new
method is aimed at efficiency, only performing enough processing to obtain a collision-free path
from one robotic configuration to another or else to determine that a path cannot be computed in
a reasonable amount of time. A description of this algorithm is provided along with insight into
its performance and possible future improvements and directions upon this project. From our
experimental results we hope to establish that this new planning method is indeed successful and
more efficient than existing ones, and therefore a viable motion planning algorithm for use in
computation intensive design and manufacturing studies necessary in industry.

1

Table of Contents

1.Introduction 32.Preliminaries and previous Related Work on Motion Planning 42.1Complexity ofMotion Planning 4

2.2C-Space 52.3Planning Methodologies
2.3.1 Probabilistic Roadmap Method (PRM)

6
72.4Object Based Probabilistic Roadmap Method (OBPRM) 93.Single Shot OBPRM 11

3.1 Overview of ssOBPRM 12

3.2 Detailed Description of ssOBPRM
3.2.1 Planning on a Single C-Obstacle
3.2.2 Planning on Multiple Obstacles .

13
14
15

3.3 Pseudo-Code Description of ssOBPRM 17

4. Implementation and Experimental Results 19

5. Conclusion and Future Research 19

6. Acknowledgements 20

2

Implementation ofMotion Planning in Industrial Design

1. Introduction

Companies involved in the design and manufacture of complex mechanical systems (e.g.,

passenger jets, spacecraft, automobiles, and engines) could save countless man-hours ifmotion

plans could be automatically generated from geometric, kinematic, and dynamic models of the

system. In particular, the development of practical planning algorithms could lead to the
automation of assembly and other fine motion tasks and to the design ofpart-removal and other
maintenance operations to be carried out in highly cluttered environments (e.g., under the hood
of a car, inside the walls of an aircraft fuselage).

For example, suppose a maintenance requirement for a mechanical system is that a
certain part can be removed from the system without disassembly. In the past, such requirements
were often tested by building a physical mock-up of the system, and then attempting to remove

the part manually. More recently, as computer-aided design (CAD) tools have gained wide-

spread use, attempts have been made to test such maintainability requirements using CAD
models. In this situation, the engineer will usually specify a potential removal path for the part,
and then automated techniques can be used to determine whether the removal path is feasible,

e.g., collision-free. In addition to reduced costs, CAD-based maintainability studies are superior
to physical mock-up since, once it is determined, the removal path can be archived for use in

developing, e.g., maintenance procedures. However, there are still problems with the CAD-
based approach. Most importantly, the engineer is required to determine the removal path to be
tested (at least roughly), and the automated system can only test the feasibility of this path. In

mechanical systems, however, the determination of such a path can be very difficult since, for

space efficiency, the designs are often very compact and crowded. Thus, automated motion

planning methods for finding a removal path, if one exists, are needed.

Motivated by the needs described above, our research focuses on automated methods for

analyzing product designs for manufacturability and maintainability. In particular, we are

studying how motion planning methods developed in the field of robotics can be adapted to

3

perform such tasks. While there are many similarities between robotic path planning and the
industrial design problems we are considering, there are also a number of differences which

require new techniques. For example, many robotic path planning methods spend a large amount
of computation pre-processing the environment so that later, planning queries can be answered

quickly. However, such methods are most useful for static environments, which is not the case

for these applications since each design change corresponds to a new environment. Another

difference is that mechanical systems are typically more crowded than environments encountered

in robotic path planning. Thus, although our research builds on robotic motion planning, these
methods must be modified and new techniques developed that are suitable for analyzing designs
ofmechanical systems. Before describing our research in more detail, a review of related work

in robot motion planning is necessary.

2. Preliminaries and Previous Related Work on Motion Planning

The basic motion planning problem can be stated as follows: it must be determined
whether there exists a path such that a robot (a single rigid object or a number of rigid objects
connected by joints which can move independently) can be moved in a two or three dimensional

workspace from a start position and orientation to some goal position and orientation without

colliding with any objects, and if so, to find one such path [2,4].

2.1 Complexity ofMotion Planning

Recent research in motion planning has generated numerous methods, most ofwhich
work only in specific cases and have a number of limitations. Part of the difficulty in finding an

efficient algorithm is that most planning problems are at least PSPACE-hard. A problem is said
to be in P if there is a polynomial-time algorithm to solve it. A problem is in NP (non-

deterministic polynomial time) if its solution can be checked by an algorithm in polynomial time.
An NP-hard problem is at least as difficult as any NP problem. The NP-complete problems are

those that are NP-hard and contained in NP. It is possible that P=NP, but nobody knows since no

exponential lower bound has been found for an NP problem [8]. A problem is in PSPACE if it

requires space (for memory) that is polynomial in the problem size. Definitions are similar for

4

PSPACE-hard/complete problems. The motion planning problem for a robot ofpolyhedral parts
connected by joints in a 3-D workspace ofpolyhedral obstacles is PSPACE-hard [6]. The

problem for a planar arm robot with non-extensible links serially connected by revolute joints in
a plane with polygonal obstacles is also PSPACE-hard [5]. Furthermore, the problem of finding
the shortest path between two points in a space ofpolyhedral obstacles is NP-hard; however, in
the plane this problem is simply polynomial [2]. So it can be seen that these few seemingly

simple problems actually have high complexity.

2.2 C-Space

Before continuing, the notion of Configuration Space (C-Space) must be defined. The
basic idea is to represent a robot as a point in the appropriate space, called C-Space, in which

workspace obstacles have been mapped into objects called C-obstacles. A simple example is

shown in Figure 1 below. The C-Space is the set of all possible configurations of the robot, each

configuration being represented by a d-tuple in which each variable specifies one of the d degrees
of freedom (dof) of the robot [1]. The dof of a robot is the number of parameters necessary to

uniquely specify a configuration of the robot. For example, a point in space would require three
dof: X, Y, and Z coordinates, while a solid object in space requires six dof: X, Y, and Z

coordinates as well as ©x, ©y, and ©z to uniquely specify its location and orientation.

This transformation from the actual workspace to C-Space changes the problem of

planning for a multi-dimensioned robot into that of simply planning the motion of a point [2].
We represent the start and goal configurations as two points (s and g) in C-Space and try to find a

path that connects s and g while avoiding C-obstacles. This approach makes the constraints on
the robot more explicit, yet there are still difficulties with the method. First, C-Space will often

have high dimension and complexity for even simple problems, due to the relation to the number
of dofof the robot. C-obstacles also tend to have very irregular surfaces which are difficult to

accurately map into C-Space. Further, the C-Space is not a Euclidean space and therefore joint

angles of a robot may wrap around the C-Space, like connecting opposite edges of a piece of

paper to form a continuous cylinder.

5

Workspace C-Space
360 (0)

cl

- i fP -■ ’ '

obstacle
I . - . ■ -

c2

0 360 (0)
Figure 1: A sample mapping from a Workspace to a C-Space

2.3 Planning Methodologies

There is no general solution to the motion planning problem, however many methods
have been developed. Most of these are for specific cases with certain limitations, and can be

categorized into several basic approaches to the problem [2,3]: cell decomposition, potential

field, mathematical programming, and skeleton or roadmap methods.

The cell decomposition approach breaks the free C-Space, where the robot and obstacles
do not overlap, into a set of disjoint cells [2]. Adjacency relationships between cells are found,
then a path of cells is found between those containing the start and goal configurations. In an

obstacle-dependent (exact) decomposition of the C-Space, boundaries of C-obstacles are used as

cell boundaries, resulting in irregularly shaped and sized cells. The set of cells is hard to

compute, but it exactly covers the free C-Space. An obstacle-independent (approximate)

decomposition uses a grid to partition the cells [2]. Those cells that are not collision-free are

further partitioned, and this process continues to a desired resolution of cells. This approach is
easier to compute and the cells are simpler with more regular boundaries, but the entire free C-

Space is not guaranteed to be covered. Finer global partitioning could be used, but this requires
extra time in computation and collision detection. In theory this method can be resolution

complete; if the resolution is not limited, then cells may be infinitely partitioned and ultimately

approach an exact decomposition of the C-Space.

6

A potential field method constructs a vector function, called the potential function, such
that its value decreases monotonicly toward the goal, where a minimum value exists, but it
increases monotonicly as obstacles approach [2]. The robot begins at the starting configuration
and moves along a decreasing gradient towards the goal. Planning becomes an iterative process

in that the force is computed from the potential function at the current configuration, a small step
is taken in the direction indicated by the force, then the process is repeated until the goal

configuration is reached. The main difficulty with this method is defining a potential function
for which the global minimum is also the only local minimum. The attractive goal force must be

global; conic, sphere, and hybrid functions are often used for this. Yet the obstacle repulsive
forces must be limited to act only near those obstacles so that local minima do not occur; local
functions inversely proportional to the distance between the robot and obstacle are often used.

Mathematical programming methods represent boundaries of obstacles as a system of

equations or inequalities. The problem becomes one ofmathematical non-linear optimization,

finding a curve between the start and goal configurations that minimizes some scalar quantity.
Numerical methods are usually required to generate optimal solutions for this technique [1].

In skeleton or roadmap methods the connectivity of the robot’s free C-Space is

represented by a graph or network. Examples of skeletons include the visibility graph, the
Voronoi diagram, Canny's silhouette, and the subgoal network [1, 2]. Connectivity information
about the free C-Space is extracted and placed into a graph of one-dimensional curves. Planning
is carried out by connecting the start and goal configurations to the network, and then a simple

graph search determines if a solution exists. Since representatives of all topologically distinct
feasible paths in C-space must be contained in the network for it to be complete, complete
methods are not feasible for high-dimensional C-space. Probabilistic methods, however, often

generate acceptable results. Below we describe two such methods, PRM [7] (Probabilistic

Roadmap Method) and OBPRM [1] (Obstacle-Based Probabilistic Roadmap Method), on which
our work is based.

2.3.1 Probabilistic Roadmap Method (PRM)

7

The Probabilistic Roadmap Method (PRM) proposed by Kavraki, Latombe, Overmars,
and Svestka [7] avoids explicitly constructing C-obstacles by merely sampling the C-Space. The

two-step method used is a basic subgoal network approach. This strategy provides a small

response time after initial preprocessing of the environment. The first step (preprocessing)
includes node generation and roadmap connection. A set of roadmap candidate nodes is

randomly generated, for example, by using points on a uniform grid over C-Space as in Figure 2.
Collision checking is used to determine those points which are in free C-Space, and those points
are retained as vertices of the roadmap. Valid points are interconnected to form a roadmap or
network using a simple, fast, deterministic local planner, an example being a straight line
between points in C-Space that is checked for collision at discrete intervals. Processing on the

roadmap, such as analysis of connectivity, also occurs in this stage. After preprocessing, a

roadmap is constructed and ready for planning. The second step involves planning queries in
which a feasible path between the start and goal configurations is sought. It is carried out as in
other roadmap methods. Namely, a local planner connects the start and goal configurations to a

connected component of the roadmap if possible, then a graph search finds a path in the roadmap
between these two connection points.

Figure 2: A roadmap in C-Space that might be obtained using PRM

Probabilistic methods, unlike many others, are applicable to high-dimensional C-Space
and are practical. They are also probabilistically complete, meaning they would be complete if
run for a long enough time (during preprocessing). Running time depends on the application, but

preprocessing consumes the majority of the time, ranging from several minutes to many hours.

8

By adjusting and fine tuning the parameters of the method this time can be altered. On the other

hand, it generally takes less than a second to answer a planning query, so it can be seen that the

preprocessing step deserves greater attention. This method operates very fast in many situations,
but difficulties arise in cluttered C-Spaces and long, narrow passages between C-obstacles, and

planning must be done on C-obstacle surfaces for contact tasks.

2.4 Object Based Probabilistic Roadmap Method (OBPRM)

Figure 3: A roadmap in C-Space that might be obtained using OBPRM

In an attempt to overcome those difficulties faced by PRM, a new method was proposed

by Amato and Wu [1]. Here follows an overview ofOBPRM as developed for motion planning
for robots with many dof. The approach follows PRM and traditional roadmap methods. A

roadmap (graph) is built in C-space during preprocessing. Each vertex of the graph corresponds
to a collision-free configuration of the robot, and vertices are connected if a path between them
can be found by a simple, local planner. Planning consists of connecting the initial and goal
vertices to the roadmap, then finding a path between these two connection points. The new idea
is how roadmap candidate points are generated. As shown in Figure 3, points are randomly
distributed on the surface of each obstacle. In this way, high quality roadmaps can be obtained

even in a crowded C-Space with long, narrow passages.

The general strategy of the node generation process is to construct a set of candidate

nodes for each object such that each point lies on the surface of an obstacle and is not contained
in the interior of any other obstacle. The set of roadmap candidate nodes is the union of all nodes

9

computed for each object. For a high quality roadmap, it is desirable to distribute nodes

uniformly on the surfaces that delineate the robot’s free space; for simplicity, Euclidean distance
in C-space is the metric used. For each object a set of points is computed that is randomly
distributed on its surface, and then all points internal to any other C-object are discarded. The
number ofpoints generated depends on the size and shape of each object, and thus may vary
from object to object. Collision detection determines which points must be removed from the
set. To avoid computing the constraint surfaces, the following point generation heuristic is used:
Determine a point inside an object. Select a number (depending on the size and shape of an

object) of rays with origin at that point, and directions randomly distributed. For each ray, use a

binary search to locate a point of the ray on the object boundary. This method works best when

objects are roughly spherical. Oblong shaped objects and objects which fold over themselves
can cause problems, but this problem is being addressed. Figure 4 below demonstrates this point

generation scheme.

A

eMill

-M 1; lipfl I 1\ / .\ / ’ A
iSISSiii®jr\ X \

■ *

t . A?

k

<- >

A
: IAAppAA.

A A
NX

Figure 4: Generating points uniformly on a C-object in two-dimensional C-Space. Note on the
oblong object how additional points (non-solid) improve the uniform distribution on its surface.

Now consider how to connect the candidate nodes to create a roadmap. The idea is to use

simple, fast, deterministic, local planners to connect pairs of nodes. In trying to connect only
those nodes which have a high probability of connection, the planner attempts to connect the
closest roadmap nodes. To save space, paths found in this stage are not recorded since they can

be re-generated quickly. The method uses two common local planners to find and connect nodes
so they are not explained in detail here. It is hoped that the roadmap constructed includes paths

10

through all corridors in C-space. The paths obtained at this point are not smooth, so standard

smoothing techniques are applied to the paths. For example, mathematical functions can be used
to extract a smooth curve from a straight line path. It is necessary to keep in mind that

manipulation planning requires contact between the robot and objects and thus restricts the

smoothing techniques that can be applied.

This new randomized roadmap method for motion planning is applicable for both
collision-free path planning and manipulation planning of contact tasks. The concept was tested

by implementing the method for path planning of various segmented robots in 2-D environments
and CAD problems in 3-D. The method was shown to perform well, even in crowded C-space.
Additional optimizations and experiments are being planned and tested, including methods by
which nodes are generated on surfaces of C-obstacles, use of various local planners, and

improving the speed of the planner mainly through a single shot planning method. Our work has
concentrated on this last point.

3. Single Shot OBPRM

Computation intensive preprocessing only makes sense if an environment is static, or

non-changing, and one expects to perform multiple motion planning queries. Traditional
methods and PRMs work well in these instances. In those methods a roadmap is initially

generated for an environment, and then many different queries may be performed on the one

roadmap. However, for our intended uses for manufacturability and maintainability studies in

industrial CAD applications, changes often occur as products are altered and improved, designed

incrementally, and components are replaced or repaired. Each change in design corresponds to a

new environment and designs are altered too frequently for the preprocessing requirements on
each update to be acceptable. Also, multiple queries are seldom performed for industrial

purposes. Designs are usually only checked once for feasibility then either implemented or
altered. A method by which new environments could be analyzed as quickly as possible is very

desirable for this type of implementation. In order to address these weaknesses, there is a need
for this new Single Shot OBPRM. By single shot, it is meant that this method is performed only
once for a particular start-goal pair, and only enough processing is done, and time consumed, to

11

find a path or determine that one cannot be computed in a reasonable amount of time. There will
not be multiple queries upon the same roadmap for multiple start-goal pairs.

The need for the single shot planning method arises from the nature of the two-step

planning method: nearly all the execution time of the algorithm is consumed in the

preprocessing step. The Single Shot OBPRM eliminates the preprocessing time by only

generating enough nodes as is necessary to obtain a path, rather than generating enough nodes to
form a well connected roadmap. Since a path is to be found for only one start-goal pair, the path

may be found with fewer nodes that are specifically generated for this pair. This new method
does not explicitly do any preprocessing as in PRM or OBPRM, but rather actively performs all

operations for a start-goal configuration pair on-line.

3.1 Overview of ssOBPRM

As stated above, the single shot planner is intended to only perform enough processing as

necessary to find a path between specified start and goal configurations. The driving idea is to
find a path as fast as possible with as little computation as possible. Following this strategy, this

method begins by attempting to find a straight-line path between the start and goal

configurations. In this simple case, the path is very quickly found and returned, and the process

is finished. Most environments, however, will have numerous obstacles between the two

specified configurations. In this case, ssOBPRM determines whether there are multiple

obstacles, or only one, blocking the straight-line path between start and goal. If only one

obstacle is in the path, nodes are generated on it, as in OBPRM, and the planner attempts to find
a path around it. Points are only generated on this one obstacle in order to keep the number of

roadmap points low and to try to find the straightest possible path. If there are multiple obstacles

blocking the desired path, the planner will generate roadmap points on those outermost obstacles

along the straight path between start and goal. If a direct path can be found between these two
outer obstacles, then it is returned, along with the path from start to its closest obstacle and goal
to its closest obstacle, and the process is finished. When no direct path is possible between those
two outer obstacles, the algorithm will attempt to find a path around each obstacle, then it will

12

recurse upon the space between the two obstacles. This process of recursion continues until the

path is completed or else some predefined threshold is reached. A detailed description of this

algorithm follows.

3.2 Detailed Description of ssOBPRM

The single shot planner first attempts to find a straight-line path in C-Space between the
start (S) and goal (G) configurations of the robot using a simple local planner, and returns the

path if one is found. This is an attempt to find a path very quickly in the event that there are no

obstacles directly in the path from S to G, which embodies the basic principle of the single shot

planner in that a path is to be found quickly with as little processing as possible. The exclusion
ofpreprocessing eliminates the bulk of the time required in the PRM and OBPRM methods.

In the event that the first attempt at a path fails, a more complex local planner is used.
This planner also uses the straight-line path between S and G, but it determines where this path
intersects the outermost obstacle(s), the obstacle(s) nearest S and G that is also in the path. This

process is illustrated in Figure 5. We say obstacle(s) because it is possible for one or more

objects to intersect the straight path from S to G. This more complex planner begins an iterative

process: beginning at S and G, it finds feasible parts of a path and some new points along the

path, and then repeats the process with those new points. The process works inward from S and

G. The complex planner determines the points (S’ and G’) where the straight-line path, between
S and G, intersects the outer edges (with respect to S and G) of the obstacles nearest S and G

respectively. The path from S to S’ and from G to G’ is saved, as well as the points SI and G1.
SI and G1 are also points on the outermost obstacles along the straight-line path from S to G, but
on the side of the obstacle opposite S’ and G\

13

Figure 5: ssOBPRM attempts to connect S and G with a straight-line path in C-Space

3.2.1 Planning on a Single C-Obstacle

At this point it is determined whether or not the points generated are on the same object,

indicating only one object between S and G. It is very easy to test this, because S’ and G1 will

correspond to the same point, as will G’ and SI as shown in Figure 6. In the event that there is

only one object between S and G, but this object folds over itself or is shaped such that S’ and
G1 do not represent the same point, nor G’ and SI, then the object is treated as if there were

multiple objects intersecting the path. If it is found that there is only one object intersecting the

straight-line path between S and G, then nodes are generated on the surface of this obstacle using
the same method as in the OBPRM planner. Once a set of nodes on the obstacle is available, a

roadmap is constructed and a path is found, as in the PRM, that traverses around the object from
S’ to G\ If a path is found at this point then it is returned and the query is over. Otherwise a

random walk is performed from points S’ and G’ and the process is attempted again to try to find
a path around the object. This random walk process will repeat until a path is found around the

object or else a specified amount of time or number of repetitions has passed. If a path is still not
found then the algorithm returns failure.

14

s

Figure 6: ssOBPRM when only one object lies between S and G

3.2.2 Planning on Multiple C-Obstacles

If it is determined that those points S’ and G’ are not on the same object, there is more
than one object between S and G. This is the case when S’ and G1 do not represent the same

point, and the same for G5 and SI. Figure 7 demonstrates this instance. Two sets of nodes are

then generated, one set on the surface of each of the two obstacles, by the same method as the

OBPRM planner. Once these two sets of nodes are generated, we attempt to find a path

connecting the two, which connects the two objects. This process is similar to a bipartite search
in which we try to find any connection between the two sets. Attempting to connect these two

objects addresses the possibility that a path may be found that avoids other objects between the
two current ones. This attempts to reduce the amount of processing and thus time required for
the algorithm. There may be other objects that lie along the straight-line path from S to G, yet
are small or shaped such that a path may be found between two outer objects that avoids those
internal ones. If a connection is found between the two outer objects, those two points which
connected are returned as S” (on the object nearest S) and G” (on the object nearest G), and the

path between those two points is saved. In this case the planner attempts to connect S’ to S”, and
G’ to G”, exactly as on the single object above when connecting S’ and G’ to move around the
obstacle. Upon connection of S’ to S” and G’ to G”, the planning is complete and the path is
returned.

15

Figure 7: ssOBPRM when multiple obstacles lie between S and G

If it is the case that no connection is found between the two outer obstacles, meaning
there is no possible direct connection between the two, then the planner attempts to connect S’ to

SI, and G’ to G1 as on the single object previously. In this case there are objects between the
outer objects that are large enough or positioned such that they block any straight-line path
between the two as seen in Figure 8. As in the case of the single object, upon failure to connect

around either obstacle, a random walk is performed and the planner again tries to move around
the object until a path is found or a specified limit of time or repetitions is reached. Provided the

planner succeeds in connecting around each obstacle, the paths found from S to S’, S’ to SI, G to

G’, and G’ to G1 are saved, and the algorithm recurses on itself.

When the algorithm recurses, it now uses the current points SI and G1 as the next S and
G respectively. The algorithm repeats, this time operating on the interior portion of the path.

Basically, the method begins with the outermost obstacles, finds a path around them if possible,
then recurses on the interior obstacles to find a path around them. If allowed to run long enough
a path will eventually be found or else some predefined threshold will be reached and the planner
will halt. We use the idea that a straight-line path will be close to, if not, the most efficient path
between a start and goal configuration. Also, an attempt to avoid interior obstacles along the

path improves the straightness of the path while reducing the processing required to deal with
more objects. The result is a new algorithm that builds on PRM and OBPRM to eliminate their

16

shortcomings, especially for industrial and CAD purposes. A pseudocode outline of the

algorithm follows, along with brief descriptions of the subroutines used.

->

Figure 8: Recursion of ssOBPRM on the interior path

3.3 Pseudo-Code Description of ssOBPRM

FindPath (S, G, path); /* main routine */

int success /* success = 1 if a path is found from S -» G */
Start

/* SI & G1 = path points on opposite side of obstacle */
/* S’ & G’ = path points on S & G side of obstacle */

/* path is a datatype with path information */
/* try to find a path from S —» G with local

success:=0;

connected-simple (S, G, success,path);
planner*/
if (not success)

begin
/* but don’t save the path.. .easily regenerated */

connected-complex (S, G, SI, Gl, S’, G’, path); /* returns path info, and points */
/* ifpoints are on the same object */if (SI = G’)

then
node (object-of-Sl) /* generate points on object */
connectl (S’, SI, success, path) /* connect S’ & G’ on same object */
(if connect fails, perform a random walk and repeat up to specified limit)
ifnot success

then return (failure-to-connect)
else return (path); /* return entire path around object */

/* points are on different objects */
/* generate points on object near S */
/* generate points on object near G */

else
node (object-of-Sl)
node (object-of-Gl)

17

connect2 (SI, Gl, success, path) /* try to connect the 2 objects */
ifnot success

then connectl (S’, SI, success, path)
if not success

then return (failure-to-connect)
else connectl (G9, Gl, success, path) /* get around object */

ifnot success
then return (failure-to-connect)
else FindPath (SI, Gl, path); /* recurse */

else connectl (S’, SI, success, path)
ifnot success

then return (failure to connect)
else connectl (G9, Gl, success, path)
if not success

then return (failure-to-connect)
else return (path) /* path found between 2 objects - */

/* return the entire path */

/* get around object */

/* 2 objects did connect */
/* get around objects to connection path */

end;
End.

At every connection attempt, failure is returned (path = nil) or success is returned along with the
new parts of the path, so that path = path + newpart-of-path (path = path + connect/()).

Connected-simple (S, G, success, path)
Input: S and G of type node, they represent the start and goal configurations

Success is a boolean type indicating a path is found or not
Path is a list of nodes making up a path if one is found

Output: Success, true if a path is found
Path, the list of nodes in the path

A dumb local planner tries to find a straight-line path between S & G, and returns success
if one is found. Does not return path because path is easily regenerated.

Connected-complex (S, G, SI, Gl, S’, G9, path)
Input: S, G, SI, Gl, S9, G9 of type node, represent various configurations

Path, the list of nodes in the path
Output: Returns S..G9, necessary path points to find a path
A more complex local planner returns part of path from S & G to first intersected
obstacles from each point. It also returns in S’/G9 the points where the straight-line path
intersects the obstacles on the side of S/G, and in Sl/Gl the points where the
straight-line path intersects the obstacles on the side opposite of S/G.

Node (object)
Input: Object, a pointer to an object
Output: A list of nodes generated on the surface of the object
Generates points on the object surfaces to be used for connection points.

18

Connectl (S’, SI, success, path)
Input: S’ and SI, two configurations

Success, variable that indicates ifpath is found
Path, list to return a path in

Output: Success, true if S’ and SI are connected
Path, the list of nodes in the path connecting S’ and SI

Tries to connect the points S’ & SI on the same object using the points generated. It's
just trying to connect two points using some generated nodes. If they connect, success =
true and the path is returned, otherwise success = false and the returned path = nil.

Connect2 (SI, Gl, success, path)
Input: S1, G1, two robot configurations

Success, variable that indicates ifpath is found
path, list to return a path in

Ouput: Success, true if SI and Gl are connected
Path, the list of nodes in the path connecting SI and Gl

Tries to connect two objects using points generated on the surfaces of each object, it is a

bipartite search where one set consists of the points on one object, and the other set
consists of those points on the other object. If a possible connection is found, SI and Gl
return the endpoints of the path connecting the two objects so that the planner can try to
connect this portion with the rest of the path. If no connection is found, then the original
SI and Gl are returned unchanged so the planner can try to get around each object and
recurse on FindPath.

4. Implementation and Experimental Results

This algorithm will be further developed, details added, new subprograms developed and

existing ones altered as needed, and eventually its performance tested. This will involve

updating and re-testing of the algorithm as it is discovered which methods work best. New or

altered subprograms will be tested and developed also, for example different node generation

techniques and local planners within the planning algorithm. Our implementation and

experimental results will be discussed in detail in the final version of this thesis.

5. Conclusion and Future Research

Implementation of ssOBPRM will identify future problems and guide future directions of

this project. We believe our experimental results will show ssOBPRM to be a faster and more

19

efficient planning method that may be implemented in industry and any other use of robotic
motion planning.

Future improvements envisioned at this stage include, but are not limited to, the use of
fast algorithms to compute the convex hull (cone) of the outermost objects in the single shot
method (those closest to S and G), and using those points to try to connect the outer objects.

Again, this is another attempt to find a better path quicker by avoiding possibly smaller inner

objects that may intersect the straight-line path from S to G, but do not intersect a path between
the convex hulls of the outermost objects. Additionally, points may be generated just off the
surfaces of objects in order to use more free space in trying to find a better path. This will work
fine for motion planning, but manipulation tasks require contact between robots and obstacles
and therefore points for manipulation must be generated on object surfaces.

6. Acknowledgments

Our general research goal is to develop an automated method for analyzing product

designs for manufacturability and maintainabililty. This work is being carried out with the help
ofDr. Nancy Amato (Department ofComputer Science, Texas A&M University) and her
students. We plan to implement this new method within Product Vision, a CAD package

developed by researchers at GE’s Corporate Research Center. This project has benefited from
collaboration with GE. In particular, Dr. Hsuan Chang, formally ofGE, has provided general

guidance and a strong base for our work. Additionally, GE will provide tested applications (e.g.,

assembly maintainability studies) for our method.

20

References

Nancy Amato and Yan Wu, A Randomized Roadmap Method for Path and Manipulation
Planning. Proceedings of1996 IEEE International Conference on Robotics and
Automation (ICRA), pages 802-827, 1996.

[i]

Jean-Claude Latombe, RobotMotion Planning, Kluwer Academic Publishers, 1991.[2]

Hsuan Chang and Tsai-Yen Li, Assembly Maintainability Study with Motion Planning.
Proceedings of1995 IEEE International Conference on Robotics andAutomation, pages
1012-1019, 1995.

[3]

Yong K. Hwang and Narendra Ahuja, Gross Motion Planning-A Survey. ACM
Computing Surveys, pages 219-291, Vol. 24, No.3, Sept. 1992.

[4]

D.H. Joseph and W.H. Plantiga, On the Complexity ofReachability and Motion Planning
Questions. Proceedings ofthe ACMSymposium on Computational Geometry, pages 62-
66, 1985.

[5]

J. Reif, Complexity of the Mover’s Problem and Generalizations. Proceedings of the
20*h Annual Symposium on the Foundations ofComputer Science, pages 421-427, 1979.

[6]

L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars Probabilistic Roadmaps for Path
Planning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics
andAutomation, pages 566-580, 1996.

[7]

Sara Baase, Computer Algorithms, Addison Wesley Publishing, 1988.[8]

21

