
Jason D. Thompson
University Undergraduate Fellow, 1995-1996

Texas A&M University
Department of Computer Science

A Knowledge-Based System to Predict Software Development

,

\
"

Honors DirectordLLJ 0 y p \ " � LA. ,1 'IJ
/ "'-{

APPROVED
'

LI
'

Fellows Advisor . ,f);j(J�



A KNOWLEDGE-BASED SYSTEM TO PREDICT SOFTWARE DEVELOPMENT.
Jason D. Thompson (Dr. Dick B. Simmons), Computer Science, Texas A&M University.

Effective software development is critical in order to corporations to survive in today's
software markets. Not only do they need to produce quality software, but they need to be
able to do it on a limited budget and schedule. This problem is exacerbated by ineffective
means of measuring the software process. Models have been developed to help quantify
the intangible software process, but taken alone they are often ineffective. Manager's
estimates need to be modified by both a model and historical project analysis in order for
them to be meaningful. I have developed a software system that attempts to help
managers make. meaningful predictions about the software process in order to make better
software. It takes manager estimates on program size and type, and uses previous
projects to help the COCOMO model create a better estimate than the model could come

up with by itself

.

\
"

2



Table of Contents

Abstract
Table of Contents
List ofFigures
Introduction

Background of the Problem
Origins of Software Engineering
Problems with Software Management
The Goal - Producing Good Software
Tools to Reach the Goal - Models
The Waterfall Model
Problems with the Waterfall Model
The Spiral Model

Making Estimates About the Software Life Cycle
Current Methods Used to Make Estimates
Problems with Current Techniques
One Estimation Technique
Another Approach - Models

The COCOMO Model
The Basic Model
The Intermediate Model

Using the COCOMO Model

Program Description
The Goal
The Method
The Program
Future Improvements

Conclusion

Appendix
Bibliography

3

2

3

4

5

6
6
7

10
11
13
18
19

20
20
24
26
27

29
29
30
31

32
32
33
33
42

43

44

85

J

\
"



\
"

List of Figures

Figure-I: A Model of Software Project Management
Figure-2: The Waterfall Model
Table-I: Documents of the Waterfall Model
Table-2: Life Cycle Cost Distribution

Figure-3: Boehm's Spiral Model

Figure-4: Main Window for Software Project Estimator

Figure-5: Create Project Dialog Box

Figure-6: Open a Project Dialog Box

Figure-7: Basic COCOMO Parameters Dialog Box

Figure-8: Intermediate COCOMO Model Parameters

Figure-9: Staffing Estimation Dialog Box

Figure-l0: Project Start Date Dialog Box

Figure-Ll: Document Information Dialog Box

Figure-12: Completed Phase Dialog Box

Figure-13: Computer Predictions Dialog Box

10
13
17
17
19
34
34
35
36
37
38
38
40
41
42

4



Introduction

Since the first person opened a shop in some small village and tried to sell his

goods, competition has been the rule of the game. For every person that can produce

some good at some price, there is someone else that is trying to make the same product

better and for less money. This simple rule of the marketplace forces businesses to

constantly improve their production facilities. This includes getting the best equipment as

well as the newest ideas for management. The industry of software engineering is no

exception. In an industry where late products are delivered well over the original budget,

any type of an edge one business can achieve over another can be critical. In other

engineering fields, models and formulas have been developed that allow accurate

prediction of time and cost. However, because of the extremely fast paced development

of faster computers, the software engineering community has been unable to keep up.

Therefore, any model that could accurately predict cost and schedule before a project has

been undertaken would greatly help developers in the software industry. The COCOMO

model is one such model that attempts to predict the amount of effort that a project will

require. The manager can take this value and use it to determine staffing needs. Once

staffing has been computed, the cost and duration of the project would follow. The

COCOMO model can be an extremely accurate model that can be used to make some

accurate predictions, especially once it has been tailored to the company in which it will be

used. Before discussing one possible implementation of the COCOMO model in a

computer program, this paper will turn its discussion toward the origins of the need for

such a model.

\
"

5



Background of the Problem

Origins of Software Engineering

The term "software engineering" was first introduce in the late 1960s. It was

coined at a conference that was organized in order to discuss what was being call the

"software crisis." The crisis was simple; the creation of new technology made possible the

development of complex projects that would require large software systems. However,

early attempts at developing these large software systems showed that the existing

methods for development were insufficient to handle the new demands. Projects were

often years late, way over projected costs, unreliable, difficult to maintain, and performed

poorly. New techniques were obviously required (Sommerville 3). The phrasing of this

new term was interesting. Because it contained the word 'engineering,' developers looked

at the software process as they would look at other engineering processes. This spawned

the creation of numerous models to help organize the process. The idea of a model to

reflect the software development process was readily accepted by managers as a means of

making the operation more visible (Sommerville 5). These attempts to apply some of the

tactics of other engineering disciplines to the software production industry have caused the

creation of more advanced technology such as better compilers and computers (Abdel

Hamid 1426). So while better techniques have been developed because of the creation of

this new phrase, software engineering is not an easy concept to define. It is an extremely

complex issue and there are many different definitions for it. However, each of these

definitions has similar components. Software engineering is concerned with software built

by teams and not individuals. The teams use engineering principles while they develop the

\
"

6



software, and the projects have both technical and non-technical aspects. Software

engineers not only need to be able to communicate in computer languages, but they also

need to be able to communicate ideas orally and in written correspondence. They need to

understand the importance of good management and user involvement in the development

process (Sommerville 2). All of these ideas are very different from the methods for

developing software in earlier years. One last point that needs to be made concerning

software engineering is the use of the term 'software.' When discussing software

engineering, the term software goes far beyond the computer programs that make up the

application. Instead, the term software refers to the documentation necessary to install,

use, develop, and maintain the program. For large systems, the effort in developing these

aspects of the project may be as great as the effort to complete the coding aspect

(Sommerville 2). Obviously, the creation of this new branch of computer science has

revolutionized the software industry by changing the way that developers think about the

process.

Problems with Software Management

While a new branch of computer science was created at the "software crisis"

conference, a solution to the crisis was never found. The software industry has continued

to face its share of troubles as it has grown. The record shows that it is plagued with cost

overruns, late deliveries, poor reliability and user dissatisfaction (Abdel-Hamid 1426),

One of the key problems is management. Managing and overseeing large software

projects is extremely difficult. Today, 50-70% of software projects are still late, over

budget, and full of defects. Several attempts have been made to overcome these

\
"

7



problems, but few have been successful (Putnam 105). So while over the last 20 years,

there have been improvements in software engineering techniques, the industry is still in a

crisis. The reason is that the demand for software is increasing at a faster rate than the

techniques used to produce it. More people are being brought into the industry and many

are still repeating mistakes make in the 1970s (Sommerville 3). The problem must lie with

the people involved since the equipment has increased at a rate much higher than anyone

could have hoped. So while the tools and machines have been improving over this time,

management skills have not kept pace. Instilling new management techniques and

discipline into workers has not increased as quickly as technical improvements (Putnam

106).

The reason for this discrepancy is simple. Everyone has been focusing on the

drawn much less attention. Authors have speculated that it is due to the fact that

process itself and how to make the equipment better. Managerial techniques research has

computer scientists believe that management is not their concern. Conversely,

management professionals believe that computer scientists should have to take care of the

problem (Abdel-Hamid 1426). This separation within the field could account for the

difficulties encountered while producing software systems. A chief concern is that

software engineers still lack a basic understanding of the software development process. J
I

Without this understanding, making any gains in management is unlikely (Abdel-Hamid
\

"

1426). Managers are not completely in the dark, however. They would like to deliver/

products on-time, within the budget, and with few defects. However, it is impossible for

them to accurately steer the project in the right direction because there are no accurate

8



ways for them to measure where the project is, at a given point in time. They have no

decent metrics that can tell them when the project is going astray. Thus, they have no way

to know when to initiate corrective action until it is too late (Putnam 105).

This difficulty in quantifying software is no easy matter to resolve. Managers like

to consider such concepts as quality and productivity when developing a product.

However, these concepts are not so easy to measure when discussing computer software.

Productivity is difficult to measure in software projects. Since there are so many factors

that help determine productivity, it is almost impossible to know how productive a

software team is, at a given point in time (Abdel-Hamid 1431). The solution is intuitive

even if the way to achieveit is not. The fields of software engineering and management

need to be made more quantitative in order for them to reach the full level of maturity that

other disciplines have reached (Putnam 105). However, this level of quantification has not

yet been reached and so software managers often have no way of gauging how-far along a

project is since the software process is intangible (Abdel-Hamid 1427).

One other problem that managers face is that they have an overly simple

understanding of the software process. The model of this process can be seen in Figure-I.

Stage 1 of the model represents the resources that can be applied to the project. As these

resources are used to accomplish work (2), it is reported to some project control system

(3). These reports are analyzed to predict completion time (4). If these results differ from

the scheduled completion data (5) then resource changes are made(6) and the process
./

starts allover again (Abdel-Hamid 1427). Unfortunately, things do no work out so nicely.

\
"

9



5. Scheduled Completion Date

1
6. Resource Change and

Allocation Decision
... 110.

1. People and Other

projrt
Resources

2. Work Rate

1
4. Forecast Completion Date-"I'" -----3. Reported Progress

Figure-!: A Model of Software Project Management
Abdel-Hamid, Tarek, and Stuart E. Madnick. "Lessons Learned
from Modeling the Dynamics of Software Development."
Communications of the ACM. December,1989. p.1427

In actuality, the software development process has more complex interrelationships that

interact in non-linear ways. Such a simple model fails to take into account all necessary

information (Abdel-Hamid 1427). Additionally, the simple model depicted in Figure-l

fails to take into account scheduling pressure on developers. When a deadline,approaches,

developers will often put in longer hours to get everything finished. This often results in a

higher error rate. Therefore, more rework will be required later in the cycle (Abdel-

Hamid 1427). As can obviously be seen from the above discussion, the work of a

software manager is no easy task.

The Goal - Producing Good Software J
rWhile the task of a software manager is extremely difficult, their goal is a simple

one: to produce quality software that people will use. Good software is easy to define- It
\

"

should possess four key attributes. First, it should be maintainable. Software products are

often used for long periods of time which will cause them to require regular changes.

10



Therefore, the code should be written in such a way so as to make updating it easy and

inexpensive. Second, the software should be reliable. This means that the software

should perform as the user expects and should not fail more than is acceptable. Next, the

software should be efficient. This simply means that the product should not waste system

resources. Finally, the software should provide an appropriate interface with the user. A

lot of software is not used because it does not provide a good interface to the user

(Sommerville 3-4). The goals are simple to state, but hard to achieve. However,

companies that focus on improving the development process through education of their

employees, instillment of management techniques to measure and control the process, and

investment of money do improve the quality of their software products. They produce

products faster, cheaper, and with fewer people. However, the commitment to the new

process must be long-term (Putnam 106). The production of higher quality software in a

shorter period of time has obvious benefits. Software development is an extremely

expensive process. Precise figures are hard to gather, however it has been estimated that

in 1985, worldwide software costs were greater than $140 billion. These costs have been

growing at a rate of about 12% per year. By 1995, this would put the cost at over $445

billion. Therefore, it is obvious that even small improvements in the development process

would yield huge results (Sommerville 2). Trying to achieve these goals is something that

every software development team has tried to do.

Tools to Reach the Goal - Models

Since reaching these goals is the objective behind every software project, tools

have been created to make this task easier. One of these tools, the model, attempts to

J

\
"

11



quantify and describe the software life cycle. These software process models are

important for the guidance that they provide. They detail the order in which the steps of a

software development process should be carried out. Many software projects have failed

because they did not follow the development process in the correct order (Boehm 61).

One of the primary functions of a software model is to determine the order of the stages in

software development and evolution. It also needs to establish the transition criteria for

movement from one stage to the next. Thus a model can be thought to answer two

questions: What will we do next and how long will we continue to do it? (Boehm 61).

One of the first software life cycle models created was called the code-and-fix model.

This model was the most basic model used in the early days of software development. It

consisted of two basic steps: write some code and then fix the problems with the code.

Thus, all thought about the requirements of the system, how best to design it, how best to

test it, etc. came after the program had been written. This model had three problems.

First, after a number of fixes had been implemented into the system, the code became

poorly structured, making future fixes even more expensive. This underscored the need

for a design stage implemented prior to coding. Second, even well structured programs

often failed to meet users' needs. This caused the projects to be rejected or forced the

need for expensive rework. This underscored the need for a requirements stage prior to

coding. Finally, problems with the code were expensive to fix because of poor plans for

testing. This made it clear that a specific stage for testing with clear guidelines needed10

be established (Boehm 61-63). The next model, the stagewise model, was created in an

attempt to overcome these problems. This model was developed by large software

\
"

12



companies as early as 1956 in response to the shortcomings of the code-and-fix model.

This model established stages of software development and said that code development

should proceed from one stage to the next. The stages were: operational planning,

operational specifications, coding specifications, coding, parameter testing, assembly

testing, shakedown, and system evaluation (Boehm 63). While this model was a definite

improvement over earlier models, it still had some problems.

The Waterfall Model

The solution was the creation of the most widely used model since its inception,

the waterfall model. This model consists of five stages as seen in Figure-2. The first stage

\
"

Figure-2: The Waterfall Model

Sommerville, Ian. Software Engineering. England: Addison

Wesley Publishing Company, 1992. p.9.

13

.. --r



consists of requirements analysis and definition. During this stage the "system's services,

constraints, and goals are established by consultation with system users" (Sommerville 7).

The second stage is the system and software design stage. The system's tasks are

classified as hardware or software considerations. The software factors are then

represented in a form that is more easily converted into one or more executable programs.

The third stage is the implementation and unit testing stage. This stage has each of the

program units implemented and tested individually. Once all of the units work

independently, they are placed together in stage four, the integration and system testing

stage. This stage tests to make sure all units work as well together as they did separately.

Finally, the operation and maintenance stage is reached. Maintenance involves making

changes to the program over time and correcting errors that were previously undiscovered

(Sommerville 7). Each of these stages has been outlined so as to appear separate from

one another. However, these stages often overlap and feed each other information.

Indeed, there are frequent iterations between stages (Sommerville 7). The system testing

stage represents the final validation stage in the process. At this time, the user must be

convinced that the system that has been implemented meets his needs. However, this is

not to say that the system should not be validated at each stage of the process. Instead,

this stage is simply the ultimate realization of this process (Sommerville 7-8). During the

operation and maintenance stage, information is fed into earlier parts of the life cycle.

Errors and new functionality come to light and the system must be reworked. This

maintenance may result in changes in requirements, design, or implementation which could

\
"

14



result in more testing. Therefore, the entire process could be repeated once the

maintenance stage has been entered (Sommerville 8).

This waterfall model was created in 1970, and it was simply a modification of the

stagewise model. It had two improvements over this earlier model. First, it recognized

feedback loops between stages. It established guidelines for movement backwards, in

order to avoid the more expensive problem of having to move back several stages.

Second, it incorporated the concept of building a prototype during the life cycle. This

model helped to eliminate many of the difficulties encountered by software developers.

However, this model is not perfect. One of the problems with this model is its reliance on

documents. In the early design stages, it emphasizes the completion of elaborate

documents. This approach is well suited to some software projects, but not to others.

This document-driven approach has led to the failure of some software projects by forcing

them to complete the stages in the wrong order (Boehm 63). This iteration co�cept has

created some problems as well. Frequent iteration makes it difficult for management to

establish checkpoints to be used for planning and reporting. Therefore, managers tend to

freeze parts of the development after a small number of iterations have been completed.

Problems are either left for later, ignored, or worked around. The premature freezing of a

stage could result in a system that does not completely satisfy the user and one that is

poorly designed (Sommerville 7). However, there is no other obvious solution to this

problem.

Because of the intangibility of software, managers cannot simply look at the

program to determine the status of the project. This is different from other engineering

disciplines. Therefore, management prefers models that give them factors to measure at

.

\
"

15



each stage. They prefer a model that frequently creates visible documents and reports.

The waterfall model is well suited to be applied to this delivery-model approach. Table-1

shows one possible way of dividing the waterfall model up into deliverables (Sommerville

12-13). Another way in which the waterfall model is well suited to the needs of

management is that it allows an easy breakdown of costs. The cost of each stage can be

computed and used to predict future projects' costs. One of the aims of software

engineering is to reduce software cost. Costs could be established for each stage of the

model. However, costs can vary dramatically for different applications. It is often

difficult to get a good understanding of software costs because commercial companies are

unwilling to publish their information. Some guidelines have been established. Table-2

shows the costs of some projects, broken down by stage (Sommerville 9). This

information can be very useful to management.

\
"

16



Activity Output Documents

Requirements Analysis Feasibility Study
Outline Requirements

Requirements Definition Requirements Specification
System Specification Functional Specification

Acceptance Testing Specification
Draft User Manual

Architectural Design Design Architecture Specification
System Test Specification

Interface Design Interface Specification
Integration Test Specification

Detailed Design Design Specification
Unit Test Specification

Coding Program Code
Unit Testing Unit Test Result Report
Module Testing Mode Test Result Report
Integration Testing Integration Test Report

Final User Manual

System Testing System Test Report
Acceptance Testing Final System

Table-I: Documents From the Waterfall Model

Sommerville, Ian. Software Engineering. England: Addison-

Wesley Publishing Company, 1992. p. 13.
'

System Type Phase Costs %

RequirementslDesign Implementation Testing
Command and 46 20 34
control systems
Spaceborne 34 20 46

systems
Operating systems 33 17 50
Scientific systems 44 26 30
Business systems 44 28 28

Table-2: Life Cycle Cost Distribution

Sommerville, Ian. Software Engineering. England: Addison-· /

Wesley Publishing Company, 1992. p.9.

.

\
"

17



While the waterfall model overcomes many of the problems demonstrated by
t->.

Problems with the Waterfall Model

earlier models, it is far from perfect. It has faced a great deal of criticism. Part of the

problem is that it fails to recognize the importance of iteration by forcing premature

freezing of stages. Another related problem with the freezing of early stages is that the

software does not meet the user's needs. Other models have been developed to meet

these needs, but none is as accepted as the waterfall model (Sommerville 10). One such

model is the evolutionary model. The problems with a document-driven approach like the

waterfall modelled to the development of an evolutionary model. Its "stages consist of

expanding increments of an operational software product, with the directions of evolution

being determined by operational experience" (Boehm 63). It allows the user to rapidly see

documents from one stage for the next stage creates the flawed impression of a linear /
,

\
"

a product and make changes in it. Thus it is well suited to fourth generation languages.

However, it also has some problems. It is very similar to the code-and-fix approach of

earlier days and leads to unstructured code (Boehm 63). Document-oriented approaches

have several other drawbacks. First, management demands documents produced at

specified intervals. Since these intervals may not correspond to actual stage completion,

artificial documents could be produced. Second, since the documents needto be

approved, process iteration is constrained since costs with approval are high. Inelegant

solutions to problems are often used to avoid the hassle of iteration. Third, the use of the

system. Fourth, the time to review a document is high and so the transition between

stages is often not very smooth. Finally, some problems cannot be solved with this

18



method which does not allow much freedom for adaptation (Sommerville 14). One model

that was developed to overcome these problems is the spiral model. However, this

composite model is no where near as used as the waterfall model.

The Spiral Model

In 1987, the Defense Science Board Task Force Report on Military Software said

that traditional software process models were preventing the use of more effective

approaches to software development such as software reuse and prototyping (Boehm 61).

A new model was obviously needed. The spiral model developed out of the waterfall

model in attempt to refine this earlier model so as to apply large software projects. The

radial dimensions seen in Figure-3 represent the cumulative cost incurred to date. The

Determine objectives,
alternatives,
constraints

Evaluate alternatives;
identify. resolve risks

Service Develop, verify
next-level product

i
I

Plan next phase
\

"

Figure-3: Boehm's Spiral Model
Sommerville, Ian. Software Engineering. England: Addison

Wesley Publishing Company, 1992. p. 15.

19



angular dimension represents the progress made in completing each cycle of the model.

Each cycle begins with several considerations. First, the objectives of the cycle are

outlined. Next, the alternative means of implementing the cycle are discussed. Finally, the

20

constraints imposed on the application of the alternatives is considered. Also, the risk of

the system is measured in order to determine how well it would meet users' needs. Once

risk is within an acceptable level, the model would proceed like the waterfall model until

project completion. If risk is too high, then another cycle is undertaken. This risk-driven

approach is very helpful in meeting users' needs (Boehm 64-65). The spiral model creates

a risk-driven approach to the software process rather than relying on documents or source

code to drive it (Boehm 61). Risk measurement stated simply is an attempt to determine

what could go wrong in the upcoming cycle. At each stage a new model can be adopted

for the next stage since one model might not be good for all stages (Sommerville 15-18).

Making Estimates About the Software Life Cycle

Current Methods Used to Make Estimates

Making estimates about the software project before it has even begun is very

important to software managers. These estimates can be derived using a variety of

methods. When planning a project, the manager will first consider constraints on the

project. These constraints include the required delivery date, the staff available, and the
.

.

\
"

-

./

budget. The manager will also make estimates about such things as project size and

structure. Then he will defme the deliverables and milestones. Then a schedule is

constructed. After a few weeks, the progress is measured and the schedule is revised. As



more information becomes available, the manager will revise his initial estimates and make

them better and more accurate (Sommerville 496). Estimation techniques can require a

number of different components. First, there could be an historical database that includes

previous project data. Second, there could be an estimation model that would predict

events based upon a software model. Next, there could be an estimation process that

would run through a series of algorithms, modifying the initial estimate. On top of this

process could be a tool that would allow the user to view the database and graphically see

the estimates. Finally, a report would be created discussing the results (Lehder 12-13).

There are several different types of projects that can be considered when making

estimates. First, complete,d prototypes of the system can be used to make estimates about

the entire system. Second, similar software projects can be considered in order to make

estimates. Third, similar software projects developed by different groups using different

tools could be considered (Belova 950).

Now that a general idea about how estimates can be made has been achieved, a

more thorough understanding is necessary. There are three stages to the estimate process

and management must pass through all three stages for the estimates to be meaningful.

First, there are primary estimates very early in the process in order to estimate effort and

schedule. Once part of the project has been completed, refined estimates can be made.

Once sufficiently into the life cycle, current estimates can be taken at any time to judge

where things are in development (Belova 950). Managers often use a model such as the

COCOMO model to create an initial estimate. Then they pad their estimate with a

substantial buffer since they do not want to look bad. This makes the estimates

\
"

21



meaningless and thus useless (Abdel-Hamid 1433). Metrics are very valuable in the

software process. They can be used to develop quality models such as the COCOMO

model. They can also provide the designer with valuable information concerning the

characteristics of the software system (Khoshgoftaar 979).

Metrics can be critical to making accurate predictions. There are three different

types of metrics. Code metrics are those that measure an attribute like length to number

of tokens. Structure metrics try to determine the connectivity of program parts. Hybrid

metrics combine these two (Henry 37). Predictions can be made at the design stage by

considering these metrics in light of the design specification. Code metrics have been

found to depend strongly on the specification's refinement level. However, structure

metrics are independent of this. In this case, a highly refined specification would contain

specifications that were very code like. Low level specifications appear to be natural

language (Henry 39). Therefore, structure metrics required only low level refinement of

specifications in order to be effective. However, code metrics require at least a

moderately high level of refinement (Henry 41).

When estimating, developers often use a best-fit line to make predictions from

existing data points. However, there are many different approaches that can be used to

determine the best line that can be drawn through a series of data points (Khoshgoftaar

979). When using metrics to determine quality of a project, these types of linear fit

methods are often employed. In this case, the metrics will be the independent variable and

the measure of quality will be the dependent variable. Linear regression models try to

choose the best subset from the independent variables that explain as much variation in the

\
"

22



dependent variable as possible (Khoshgoftaar 980). In order to evaluate the fit of a line to

the data, two considerations need to be taken into account. First, the model must

accurately represent the linear dispersion of the data. Second, the model must make

meaningful predictions. It is possible to nicely fit a curve to data that has no accurate

predictive qualities (Khoshgoftaar 981-82).

Now that a precise way of measuring the accuracy of estimates has been outlined,

the usefulness of predictions will be covered. Estimates are made at the beginning of the

software project and are continuously revised. If a software project is perceived to be

late, then more people can be hired or the schedule can be slipped (Abdel-Hamid 1431).

When determining staffing needs of a project, the manager will consider project

completion date. He will then hire the correct number of people necessary to meet this

deadline (Abdel-Hamid 1430). At the early stages of development, progress is often

determined by budgetary expenditures. However, over time the project team begins to

produce tangible products, and management can use these artifacts to determine how

productive the software team has been (Abdel-Hamid 1431). It is possible to develop

systems that can help this process become automated. If human judgment calls or direct

intervention are necessary to make estimates about software projects, then an expert

system would be ideal (Abdel-Hamid 1437). Expert systems can be developed that can

learn the behavior of the system being developed as more data is entered. This will allow

the manger to predict such things as when the remaining milestones will be reached and

how many people should be assigned to the project (Putnam 107).

\
"

23



project will be completed sooner (Abdel-Hamid 1436). One factor that is important to

consider when adding people is their experience level. Newly added team members are

normally less productive (Abdel-Hamid 1429-30).

Traditionally, making estimates about software is highly inaccurate. The reason is

that the software process is very malleable and invites changes late in the design process

(Lutz 110). Few other engineering disciplines would allow changes during the

implementation stage, however this is common in software development (Lutz 110).

Additionally, managers have a limited source of information. One of their primary means

of information is the programmer. However, when asking programmers about completion

of the project, they often suffer from what is called 90% completion syndrome.

Programmers make broad jumps in the completion rate of their program until they reach

90%. Then their estimates begin to make very small jumps until the product is fmally

fmished (Abdel-Hamid 1432).

There are some problems with trying to define product quality at the beginning of

a software project and then estimating it while in the process of development. This has

resulted in large errors in planned completion dates, in estimating effort, and in projecting

cost. These all lead to considerable completion delays and cost overruns: The problem is

not due to just the subjective nature of the estimates, it depends on some objective

considerations as well (Belova 949). Designers often fail to modify their estimates even

though they are known to be wrong. The reason is that they do not want to be perceived

as doing a poor job. They do not want to have to change the numbers only to have to

change them again later. This would result in their looking bad twice (Abdel-Hamid

25



As has been demonstrated, managers have many options available to them in order

1432). The best approach might be to use independent estimators since they are not

subject to pressure to make estimates more favorable. Also they are detached from the

project and thus are not as biased (Lutz 111). It is obvious that less subjective methods

need to be developed.

One Estimation Technique

to help them make predictions. One of the keys to this type of management strategy is to

use statistical techniques coupled with metrics throughout the development process

(Putnam 106). This allows the manager to carefully monitor the progress of the project

with real project data. This notifies him immediately of a schedule slip or overrun. It

replaces the inaccurate guess work of other models with actual project statistics. By using

these techniques, unacceptable predictions can be corrected early enough in the process to

make a difference (Putnam 106). The basics of this type of software control are milestone

completion, effort expenditure, code production and defect rate. These metrics should be

gathered on a monthly basis and compared to the planned approach. Unfavorable slippage

or overruns can be gauged using adaptive forecasting (Putnam 106). In order to make it

work, the company must take quality seriously, take product improvement seriously,

measure progress with the correct metrics, and set realistic goals (Putnam 106).

Companies that make these commitments are able to reduce costs by 25% per year,
\

"

shorten schedules by 10% per year, and increase their capacity to handle complex and ./

large software projects. This allows them to produce better products that satisfy the

customer (Putnam 106). The analysis behind this method is more advanced than simple

26



extrapolation. Instead it uses curve-fitting techniques that take into account project

behavior (Putnam 107). This approach is a good one, however building upon it, a more

thorough estimate can be achieved.

Another Approach - Models

Just as models can be used to represent the software life cycle, they can also be

used to predict the software life cycle. Estimating schedules and staffing incorrectly in the

early stages of a software project can result in low quality projects and dissatisfied

customers. However, staff and cost estimation models can suggest staffing levels and

reasonable schedules (Lehder 10). There is an increasing demand to be able to quantify

software quality. Since, in most cases, quality measures cannot be taken until late in the

design process, there is increasing pressure to develop linear models that can predict

software quality from early in the software process. The idea is to base these estimates on

metrics that be gathered early in the process such as complexity (Khoshgoftaar 979).

There are several different techniques that can be used to predict cost and effort for a

software project. First, algorithmic cost modeling can be used. This involves the creation

of a model which relates project cost to a software metric such as size. Once an estimate

of the metric is received, an effort estimation can be taken from the model.
-

Second,

expert judgment can be used. Experts on similar applications are consulted and their

estimates compared. Third, estimates can be made based upon similar projects. Fourth,

Parkinson's Law says that work expands to fill the time available. This approach looks at

resources instead of an objective assessment of the project. Fifth, the cost of the project is

set to whatever the customer has to spend. Sixth, cost estimates are based upon the

\
"

27



number of functions required in the program and how complex their interaction is. Finally,

a bottom-up approach is taken in which the cost of every sub-module is computed and

then summed for the entire project (Sommerville 513). The first approach is the one that

will be discussed in this paper. There are two types of models. Micro models make

estimates starting at the bottom and work their way up. However, macro models take a

top-down approach (Lutz 111).

Estimation techniques for software products are based on a model for software

development that breaks the life cycle into several stages. A simple life cycle is three

simple stages of planning, development, and maintenance. Each of these phases is

basically independent of the other phases and concludes with the accomplishment of a

project milestone (Lehder 11). Historically, software producers have worked with the

waterfall model where the development process falls through stages of development.

Prediction techniques based on this type of model work in two parts. The first-part

creates a base estimation based upon some high level estimate such as project size. The

second part refines this estimation based upon environmental factors such as programmer

experience (Lehder 11). There are several models that can be used to predict schedule

and staffing needs. In 1981, Barry Boehm created the COCOMOmodel.- Other models

have been created by Jensen, Putnam, Rubens, and Jones. Many of these algorithms have

been commercially implemented and can be purchased. The models have continued to be

modified and adapted over time, leading to more accurate predictions. As these models

become more accurate, their use increases, leading to better estimates in the future

(Lehder 11).

\
"

28



Figures obtained from algorithmic modeling can often yield extremely diverse

answers. The discrepancies do not say that the model is bad. Instead it suggests that the

model and its parameters need to be tailored to the organization developing the software.

Thus, after a model has been tailored to the specific application for which it will be used,

the estimates are much better (Sommerville 514). The problem with these models is that

they rely on the quantification of some attribute of the completed project such as the

number of lines of code. Often, managers must makes guesses long before coding has

even started for a project. Often, these guesses can be very inaccurate(Sommerville 514-

515). Additionally, the lack of understanding of the precise relationship among the many

possible software metrics prevents their widespread use in software modeling. More

research needs to be done in this area (Khoshgoftaar 979). Continued change in the

software development process such as reusable code modules and greater use of object

oriented languages will change the way that models can be applied. Adaptation of these

models to new techniques will require newer and better models (Lehder 18).

The COCOMO Model

The Basic Model

Barry Boehm developed the COCOMO model in order to make predictions about

the software life cycle. It is an example of an algorithmic model that can be tailored to a

specific organization. This model exists in three forms: the simple, intermediate, and

detailed forms. The basic model gives an order of magnitude estimate of software effort.

It looks only at the size of the program and the type of project (Sommerville 517). The

,

\
"

29



basic COCOMO model breaks projects into three different types. The first type is the

organic mode. These are small projects in which the teams are working in familiar

environments developing well understood and familiar projects. Communication overhead

is low and efficiency is high. The second type of project is the semi-detached mode. In

these projects, the teams have both experienced and inexperienced members. Team

members are experienced with parts of the project, but not all. The final type are

embedded mode projects. These are projects in which the software will be tightly coupled

with hardware. Because of project diversity, team members will not likely have much

experience with similar projects (Sommerville 517). The formula for the basic COCOMO

model is:

Effort = A (KDSI)b

Where KDSI is the number of thousand of delivered source instructions. A and b are

constants determined by the project type. For this model, a source statement is defined as

an actual line in the program regardless of how many instructions are actually on that line.

Comment lines are excluded from consideration (Sommerville 518). The actual value of

the parameters for A and b should be tailored to the corporation using information about

previously completed applications. The Effort is computed in terms of person-months.

Boehm defined a person-month as 152 hours which takes into account employees missing

work whether for holidays or illness (Sommerville 518).

The Intermediate Model

The intermediate COCOMO model takes the rough estimate made by the basic

model and adds in other considerations in order to make the estimate more accurate.

.

\
"

30



• Product Attributes
• Reliability
• Database Size
• Product Complexity

• Computer Attributes
• Execution Time Constraints
• Storage Constraints
• Virtual Machine Volatility
• Computer Turnaround Time

• Personnel Attributes
• Analyst Capability
• Application Experience
• Virtual Machine Experience
• Programmer Capability
• Programming Language Experience

• Project Attributes
• The Use of Software Tools
• The Development Schedule
• The Use of Modem Programming Practices

(Sommerville 522-523).

These other factors are multiplied against the prediction made in the basic model. A

normal value for the multiplier is attributed a value of one. Outstanding values are less

than one and bad values are greater than one. These factors can be broken into four areas:

of several smaller systems which are not homogeneous (Sommerville 523). \
"

Since factors have changed since Boehm originally proposed the nominal values, in order

for the multipliers to be effective, they must be tailored using historical records of previous

projects. One of the problems with both this model and the basic model is that they treat

the entire software process as a single entity. However, most large systems are made up

Using the COCOMO Model

The COCOMO model can be very useful for a manager. While planning the

project, the manager establishes milestones. These are end-points in the software process

31



activity. Upon the reaching of a milestone, the manager should receive some type of

The goal of the program that I developed was to help software managers make

formal report. A good milestone is characterized by a completed document. Usually,

milestone delivery should be scheduled every two or three weeks. The waterfall model

readily lends itself to the establishment of milestones (Sommerville 497 -498). The

COCOMO model can be tailored after the fact by comparing actual cost with computed

cost and then using a least squares fit to change the parameters (Sommerville 524). In

order to make accurate estimates, data needs to be accumulated on completed software

projects. The data should be processed and analyzed to create a statistical database of

completed projects for a company (Belova 949).

Program Description

The Goal

meaningful predictions about the software that they are developing. I wanted to design a

program that could become more accurate over time, as the parameters were tuned to

meet the demands of the corporation in which they would be used. In order to realize this,

I knew that an historical database of previous projects needed to be maintained. This

\
"

database in conjunction with currently undertaken projects would allow the software to

make useful guesses. I wanted the guesses to be based on some figures that the manager
-

could estimate, but I also wanted a system that was not completely dependent on the

manager's predictions. The software should try and smooth out the error caused from

really bad estimates.

32



The Method

The program that I have developed is written for the Windows operating system.

It was developed using Borland C++. Originally, I had thought to use a knowledge based

tool called Clips in order to more effectively handle the rules for the system. However,

the project did not develop as quickly as I had hoped and so a large rule base in order for

the system to make its estimates was not needed. I started the project with the simple goal

of using the COCOMO model to make predictions about software projects. My goal was

to get a simple system working and then add more detailed analysis as time allowed. This

would allow the system to be frozen at any stage and still be functional.

The Program

The Estimation Program resembles a standard windows program when it is loaded

(Figure-4). The user is presented with several different choices. The first menu that the

user can choose from is the "Project" menu item. This will drop down a list box that

presents the user with several different choices, all concerning storing and retrieving

project information. First, the user is presented with a "New Project" option. This option

will prompt the user to enter a project name(Figure-5). If the user enters a name that has

already been entered as a project name, then an appropriate error message will inform the

user of their error and then it will allow them to correct the error. In Figure-5 a project

.

\
"

33



Figure-4: Main Window For Software Project Estimator

called "Project-Estimator" has been entered. A similar function is performed by the next

option under the "Project" menu. This second item is the "Open Project" option. This

-------_-----------

Create Project

option presents the user with a drop-down list box that contains a list of all of the projects

Enter the Project Name: I Project �stimator

Figure-5: Create Project Dialog Box

that have been created(Figure-6). As can be seen, the new project that was just created, \
"

"Project Estimator" appears in the list box. The user would then click on the item and

then choose OK. All relevant information that has already been entered about this project

would be loaded so that it could be modified. Since this project was just created, there is

34



no information to load. The next option under this menu is "Save Project." The function

that this item performs is obvious. It writes all of the information that has been entered

about the current project out to disk. This allows the information to be recalled at a later

date. The final option under this menu is to "Exit." This closes the program and saves all

current project information.

-------------

Open a Project
Select 8. Project

Project Estimator

All of the functions performed under the first menu item are pretty mundane and

Figure-6: Open a Project Dialog Box

every program has similar functions. However, the next item seen on the menu-bar,

"Manager Estimates" performs some more interesting operations. Each of the items under

this menu are concerned with gathering information from the manager. This information

will be estimates made by the manager concerning the project. For example, the first item

is called "Basic COCOMO Model Parameters." This item loads a dialog box that is

\
"

interested in gathering information about the basic COCOMO model(Figure-7). This ./

35



Number of Source Lines of Code (in thousands): 1�5_ol_�

Basic CO CO M 0 Parameters

=Proiect Type

@Organic

o Semi-detached

o Embedded

Figure-7: Basic COCOMO Parameters Dialog Box

information includes the project type. As was discussed earlier, organic projects are the

simplest, semi-detached slightly more complex, and embedded extremely difficult. This

dialog box also asks the manager to estimates the number of source lines of code. In this

case, an organic project is predicted which will generate 50,000 lines of code. This is a

relatively small project. Once the manager has entered this information then he is ready to

proceed to the Intermediate COCOMO Model Parameters screen, which is the next choice

from the main menu(Figure-8). This screen presents a list of the 15 multipliers, broken up

\
"

36



------------------------

Intermediate COCOMO Parameters
.

Product Attributes Poor Bad Normal Good Great

Reliability: @ 0 0 0 0

Database Size: 0 @ 0 0 0

Product Complexity: 0 @ 0 0 0

Computer Attributes

Execution Time Constraints: 0 @ 0 0 0

Storage Constraints: 0 0 @ 0 0
Virutal Machine Volatility: 0 0 @ 0 0

Computer Turnaround Time: 0 0 @ 0 0

Personnel Attributes

Analyst Capability: 0 0 0 @ 0

Application Experience: 0 0 @ 0 0

Virtual Machine Experience: 0 0 @ 0 0

Programmer Capability: 0 0 0 0 @

Programming Language Experience: 0 0 0 @ 0

Project Attributes

Use of Software Tools: 0 0 0 @ 0

Project Development Schedule: 0 0 @ 0 0

Use of Modern Programming Languages: 0 0 0 @ 0

I M����IIB�Qi���������I��t��1 I :�1�1�I1I�]IB1I�1�1�1�1�1����1
Figure-8: Intermediate COCOMO Model Parameters

by category. The manager would specify whether the quality of the multiplier is poor,

bad, normal, good, or great. As can be seen by the data that has been entered, this project

has some poor storage considerations. However, there are some good people working --"on

the project. The final set of data that the manager needs to estimate is the staffing needs

for each sub-cycle of the project. The menu option is called "Staffing Estimates" (Figure-

37

\
"



,/

9). This screen asks the manager to enter a value for each phase of the project. As is

typical in projects, fewer people are used on the design part of the project, and more

people are brought in for the implementation part. All of this information together is the

extent of the information that the manager is asked to guess. The rest of the information

comes for empirical observation.

-------------------------

Estimated Staffing

Specify the Number of People for Each Phase:

Requirements Analysis and Definition: EJ
System and Software Design: �
Implementation and Unit Testing: �
Integration and System Testing: ID

Figure-9: Staffing Estimation Dialog Box

The next menu option on the menu bar is called "Known Project Information."

This is empirical information about the project that becomes known as time progresses.

The first option is to enter the "Project Start Date" (Figure-lO). This dialog box is fairly

-------------- _-------------------_--------

Project Start Date

Enter the Project Start Date:

MM DO YY

§]/[!D/�
II

I ��ffftf��QiH�f��ffI���1 I �����������������_il���������I������1

Figure-tO: Project Start Date Dialog Box

38

,

\
"



self explanatory. It asks for the start date in a MMIDD/YY format. When the screen

comes up, the current date is automatically filled in. The left and right arrows decrease

and increase the date respectively by one day at a time. When the correct date has been

entered, the manager would press OK. The next menu item that deals with actual project

data is called "Document Information" (Figure-H). This screen gathers the status

information on the various documents that can be produced on a project. Ideally this

screen would be update frequently. If, when the user presses "OK", a new phase has been

entered into than previously achieved, then another screen would pop up asking for

information about the completed phase (Figure-12). This new screen gathers some

concrete information about the completed phase, so that future predictions will be more

accurate. The information that this screen asks for is similar to earlier information. First,

\
"

39



---------------------------------

Documents Information

Specify the Status of the Following Documents:

Not Startad

Feasibility Study: o

Drafting Completed

0 @

0 @

0 @

0 @

0 @

0 @

0 @

0 @

@ 0

@ 0

@ 0

@ 0

@ 0

Outline Requirements: o

o

o

o

o

o

o

o

o

Figure-11: Documents Information Dialog Box

it asks for the user to specify the number of people that actually worked on the project.

Requirements Specification:

Functional Specification:

Acceptance Test Specification:

Draft User Manual:

Design Architecture Specification:

System Test Specification:

Interface Specification;

Integration Speficiation:

Design Specification: o

o

o

This is a refinement of the earlier value which was just a guess on the part of the manager.

Unit Test

Program Coding:

It also asks for the date on which the phase was completed. According to the documents

screen, the implementation phase has been entered, even though the earlier phase still has .

\
"

some lose ends. Since, the implementation phase had not previously been entered, the

program assumes that the previous stage was just completed. It pops up the dialog box to

gather more information on this recently completed phase. The date pops up as the

40



current date, however, as this user has entered the information, the design stage was

completed two months after the start of the project. Since the document screen only goes

up until the completion of the coding phase, there is no way to tell when the integration

and testing stage has been completed. Therefore, the last dialog option on the main menu

is to enter the information on this stage. The dialog box is exactly the same as the one

seen in Figure-12.

-��-------------------

Completed Phase

Phase Completed: System and Software Design

Number ,of People who aeutally worked on it: �
Date Completed:

MM DD YY

@!J/@]/�
rill

Figure-12: Completed Phase Dialog Box

The last option on the menu bar is called "Make Estimates." This is one of the

most important buttons on the menu. This is the button that takes all of the .information

that has been gathered, and it uses it to make predictions about the software. When this

option is chosen, the program returns the screen seen in Figure-13. This screen shows the

\
"

41



,,1
<_"

----------------

Computer Estimates

Length of the Project in Person Months: '--11_55__8_3__........

Length of Each Phase in Real Months:

Requirements Analysis and Definition: 6.77
'---__---'

System and Software Design: 8.16
'---__ ---'

Implementation and Unit Testing: 3.90
'--------'

Integration and System Testing: 19.'18
'--------'

\
"

Current Project Phase: I Implementation and Unit Testing

Figure-13: Computer Predictions Dialog Box

estimated length of the project according to the COCOMO model. Then it uses staffing

information and completion dates in order to calculate the actual number of months for the

project. Finally, it shows what stage the project is in.

Future Improvements

The program has a great deal of room for improvement. The error trapping is at a

minimum. This means that the user has to know exactly what they are doing or else it

would be very easy to mess up the system. Also, there is no cost estimations involved.

The reason that management wants to be able to make estimates about a software product

is to know how much it will cost. Additionally, it is not possible to enter the date when

the manager would like to have the project complete and then have the computer tell him

how many people he should hire. All of these are features that would be easy to

implement if more time were available. Additionally, more estimates and predictions could

be built into the system.

42



One other area for improvement for the program is in how it divides work amongst

the various phases. At first, it divides the work evenly between all of the phases. As it

gathers information on projects, it looks to see how much of the time is actually spent on

each phase. The algorithm that it uses to fit this information could be modified so that an

average of all values is taken over time. Additionally, the parameters for the COCOMO

model should also be changed to reflect the needs of the company using the software.

However, right now, these values are static. They are being stored in a database, so it

would be a simple matter to have the computer modify them as needed.

Conclusion

The potential for a project like this is overwhelming. Managers understand the

importance of making accurate predictions and yet most of them fail to use even a simple

model. Instead they rely upon their own padded guesses with a huge margin for error. A

program like this would provide software managers with a tool that would allow them to

make changes in the project far enough in advance that all benefits would be collected.

For example, if it is known that five more programmers will be needed in the

implementation stage, then they can be brought in before coding even begins. This is

much better than trying to bring these programmers in once coding has started. This

creates almost as many problems as it solves. Even the simple algorithm that I have

developed is more accurate to use than a raw guess. In fact, since this system will modify

itself to meet the needs of the specific company, it is much better than a wild guess.

f

\
"

43



Appendix

Database Files

dbparam.h
#ifndef DBPARAM_H
#define DBPARAM_H

#include" .. \..\srcpooMbbase.h"

#if defined DB_DLLBUILD
#define _DBCLASS _export

#elif defined DB_DLL
#define _DBCLASS _import

#else

DBParam(char * sFile="paramtrs");

#define _DBCLASS
#endif

class _DBCLASS DBParam : public DBBase

{
public:

FIELD4 *rPROJTYPE;
FIELD4 *rCOC_A;
FIELD4 *rCOC_B;
FIELD4 *rPERPHS1;
FIELD4 *rPERPHS2;
FIELD4 *rPERPHS3;
FIELD4 *rPERPHS4;

char *ProjectTypeO
char *CocomoAO
char *CocomoBO
int PercentPhase10
int PercentPhase20
int PercentPhase30
int PercentPhase40

{return get(rPROJTYPE); };
{return get(rCOC_A); };
{return get(rCOC_B); };
{return getlnt(rPERPHS1);};
{return getlnt(rPERPHS2);} ;

{return getlnt(rPERPHS3);};
{return getlnt(rPERPHS4);};

void ProjectType(char *str)
void CocomoA(char *str)
void CocomoB(char *str)
void PercentPhase 1 (char *str)
void PercentPhase2(char *str)
void PercentPhase3(char *str)
void PercentPhase4(char *str)

{set(rPROJTYPE, str);};
{set(rCOC_A, str); };
{set(rCOC_B, str); };
{set(rPERPHS1, str); };
{set(rPERPHS2, str); };
{set(rPERPHS3, str); };
{set(rPERPHS4, str); };

};
#endif

{"PROJTYPE", 'C', 10, O},
{"COC_A", 'C', 6,0},
{"COe_B", 'C', 6,0},
{"PERPHS1", 'C', 2,0},
{"PERPHS2", 'C', 2,0},
{''PERPHS3'', 'C', 2,0},
{"PERPHS4", 'C', 2,0},
{O,O,O,O} II null entry at end

\
"

dbparam.cpp
#include "dbparam.h"

static FIELD4INFO Fields[]=
{

};

static TAG4INFO Tags[]=
{

{ ..PROJTYPE_..

,

..PROJTYPE..

,

.... ,O,O},
{O,O,O,O,O} 1* null entry at end *1

44



};

/II1111111111111/I/III/II/II/I/I/II/IIII/II/II

DBParam::DBParam(char *sFile)
:DBBase(sFile, Fields, Tags)

rPROJTYPE=fieldRef(,PROJTYPE") ;

rCOC_A =fieldRef("COC_A");
rCOC_B =fieldRef('COC_B");
rPERPHS 1 =fieldRef("PERPHS 1 " );
rPERPHS2 =fieldRef(''PERPHS2'');
rPERPHS3 =fieldRef("PERPHS3");
rPERPHS4 =fieldRef(,'PERPHS4");

dbproj.h
#ifndef DBPROJ_H
#define DBPROJ_H

#include "

.. \..\srcpool\dbbaseh"

#if defined DB_DLLBUILD
#define _DBCLASS _export

#elif defined DB_DLL
#define _DBCLASS _import

#else

#define _DBCLASS
#endif

class _DBCLASS DBProj : public DBBase

(
public:

DBProj(char * sFile="projects");

FIELD4 *rPROJNAME;
FIELD4 *rPROJTYPE;
FIELD4 *rESTMSIZE;
FIELD4 *rIN1PRMl;
FIELD4 *rIN1PRM2;
FIELD4 *rIN1PRM3;
FIELD4 *rIN1PRM4;
FIELD4 *rIN1PRM5;
FIELD4 *rIN1PRM6;
FIELD4 *rIN1PRM7;
FIELD4 *rIN1PRM8;
FIELD4 *rIN1PRM9;
FIELD4 *rIN1PRMIO;
FIELD4 *rIN1PRMll;
FIELD4 *rIN1PRM12;
FIELD4 *rIN1PRM13;
FIELD4 *rIN1PRM14;
FIELD4 *rIN1PRM15;
FIELD4 *rSTRTDTMN;
FIELD4 *rSTRTDTDY;
FIELD4 *rSTRTDTYR;
FIELD4 *rDOCl;
FIELD4 *rDOC2;
FIELD4 *rDOC3;
FIELD4 *rDOC4;
FIELD4 *rDOC5;
FIELD4 *rDOC6;
FIELD4 *rDOC7;
FIELD4 *rDOC8;
FIELD4 *rDOC9;
FIELD4 *rDOCIO;
FIELD4 *rDOCll;
FIELD4 *rDOC12;
FIELD4 *rDOC13;
FIELD4 *rPHS mONE;

45

.

\
"



char *ProjectNameO {return get(rPROJNAME);};
int ProjectTypeO {return getInt(rPROJTYPE);};
long EstimatedSizeO {return getLong(rESTMSlZE);};
int IntermediateParameter 1 0 {return getInt(rIN1PRMI);};
int IntermediateParameter20 {return getInt(rIN1PRM2);};
int IntermediateParameter30 {return getInt(rIN1PRM3);};
int IntermediateParameter40 {return getInt(rIN1PRM4);};
int IntermediateParameter50 {return getInt(rIN1PRM5);};
int Intermediatel'arametertit) {return getInt(rIN1PRM6);};
int IntermediateParameter70 {return getInt(rIN1PRM7);};
int IntermediateParameter80 {return getInt(rIN1PRM8);};
int IntermediateParameter90 {return getInt(rIN1PRM9);};
int IntermediateParameterl00 {return getInt(rIN1PRMI0);};
int IntermediateParameter110 {return getInt(rIN1PRMll);};
int IntermediateParameter120 {return getInt(rIN1PRMI2);};
int IntermediateParameter130 {return getInt(rIN1PRM13); };
int IntermediateParameter140 {return getInt(rIN1PRMI4);};
int IntermediateParameter150 {return getInt(rIN1PRMI5);};
int StartDateMonthO {return getInt(rSTRIDTMN);};
int StartDateDayO {return getlnt(rSTRIDIDy);};
int StartDateYearO {return getlnt(rSTRIDTYR);};
int Document1 0 {return getInt(rDOCl);};
int Document20 {return getInt(rDOC2);};
int Document30 {return getInt(rDOC3);};
int Document40 {return getInt(rDOC4);};
int DocumentSO {return getInt(rDOC5);};
int Document60 {return getInt(rDOC6);};
int Document70 {return getInt(rDOC7);};
int Document80 {return getInt(rDOC8);};
int Document90 {return getInt(rDOC9);};
int Documentl00 {return getInt(rDOCI0);};
int Documentll0 {return getInt(rDOCll);};
int Documentl20 {return getInt(rDOCI2);};
int Phase 1 Donet) {return getInt(rPHSlDONE);};
int Phase2DoneO {return getInt(rPHS2DONE);};
int Phase3DoneO {return getInt(rPHS3DONE);};
int Phase4DoneO {return getInt(rPHS4DONE);};
int Phase 1Staff0 {return getInt(rPHSlS1FF);};
int Phase2StaffO {return getInt(rPHS2S1FF);}; \

"

int Phase3StaffO {return getInt(rPHS3S1FF);};
int Phase4StaffO {return getInt(rPHS4S1FF);};
int PhaselMonthO {return getInt(rPHSIMNTH);};
int PhaselDayO {return getInt(rPHSlDAY);};
int PhaselYearO {return getInt(rPHS 1 YEAR);}; .

int Phase2MonthO {return getInt(rPHS2MNTH);};
int Phase2DayO {return getInt(rPHS2DAy);};
int Phase2YearO {return getInt(rPHS2YEAR);};
int Phase3MonthO {return getInt(rPHS3MNTH);};
int Phase3DayO {return getInt(rPHS3DAy);};
int Phase3YearO {return getInt(rPHS3YEAR);};
int Phase4MonthO {return getInt(rPHS4MNTH);};

46

FIELD4 *rPHS2DONE;
FIELD4 *rPHS3DONE;
FIELD4 *rPHS4DONE;
FIELD4 *rPHSlSTFF;
FIELD4 *rPHS2STFF;
FIELD4 *rPHS3STFF;
FIELD4 *rPHS4STFF;
FIELD4 *rPHS IMNTH;
FIELD4 *rPHS lDAY;
FIELD4 *rPHS 1YEAR;
FIELD4 *rPHS2MNTH;
FIELD4 *rPHS2DAY;
FIELD4 *rPHS2YEAR;
FIELD4 *rPHS3MNTH;
FIELD4 *rPHS3DAY;
FIELD4 *rPHS3YEAR;
FIELD4 *rPHS4MNTH;
FIELD4 *rPHS4DAY;
FIELD4 *rPHS4YEAR;



int Phase4DayO {return getInt(rPHS4DAy);};
int Phase4Yean) {return getInt(rPHS4YEAR);};
void ProjectName(char * str) {set(rPROJNAME, str);};
void ProjectType(int num) {set(rPROJTYPE, num);};
void EstimatedSize(long num) {set(rESTMSlZE, num);};
void IntermediateParameter1(int num) {set(rIN1PRM1, num);};
void IntermediateParameter2(int num) {set(rIN1PRM2, num);};
void IntermediateParameter3(int num) {set(rIN1PRM3, num);};
void IntermediateParameter4(int num) {set(rIN1PRM4, num);};
void IntermediateParameter5(int num) {set(rIN1PRM5, numj.}:
void IntermediateParameter6(int num) {set(rIN1PRM6, num);};
void IntermediateParameter7(int num) {set(rIN1PRM7, num);};
void IntermediateParameter8(int num) {set(rIN1PRM8, num);};
void IntermediateParameter9(int num) {set(rIN1PRM9, num);};
void IntermediateParameterlO(int num) {set(rIN1PRMI0, num);};
void IntermediateParameterll(int num) {set(rIN1PRMll, num);};
void Intermediatel'arameter.lzfiut num) {set(rIN1PRMI2, num);};
void IntermediateParameterl3(int num) {set(rIN1PRM13, num);};
void IntermediateParameterl4(int num) {set(rIN1PRMI4, num);};
void IntermediateParameterl5(int num) {set(rIN1PRMI5, num);};
void StartDateMonth(int num) {set(rSTRTDTMN, num);};
void StartDateDay(int num) {set(rSTRTDTDY, num);};
void StartDateYear(int num) {set(rSTRTDTYR, num);};
void Documentl(int num) {set(rDOC1, num);};
void Document2(int num) {set(rDOC2, num);};
void Document3(int num) {set(rDOC3, num);};
void Document4(int num) {set(rDOC4, num);};
void Document5(int num) {set(rDOC5, num);};
void Document6(int num) {set(rDOC6, num);};
void Document7(int num) {set(rDOC7, num);};
void Document8(int num) {set(rDOC8, num);};
void Document9(int num) {set(rDOC9, num);};
void DocumentlO(int num) {set(rDOCI0, num);};
void Documentll(int num) {set(rDOCll, num);};
void Documentl2(int num) {set(rDOCI2, num);};
void Document13(int num) {set(rDOC13, num);};
void PhaselDone(int num) {set(rPHSlDONE, num);};
void Phase2Done(int num) {set(rPHS2DONE, num);};
void Phase3Done(int num) {set(rPHS3DONE, num);};
void Phase4Done(int num) {set(rPHS4DONE, num);};
void PhaselStaff(int num) {set(rPHS1STFF, num);};
void Phase2Staff(int num) {set(rPHS2STFF, num);};
void Phase3Staff(int num) {set(rPHS3STFF, num);};
void Phase4Staff(int num) {set(rPHS4STFF, num);};
void PhaselMonth(int num) {set(rPHSIMNTH, num);};
void PhaselDay(int num) {set(rPHSlDAY, num);};
void Phase 1Year(int num) {set(rPHS 1YEAR, num);};
void Phase2Month(int num) {set(rPHS2MNTH, num);};
void Phase2Day(int num) {set(rPHS2DAY, num);};
void Phase2Year(int num) {set(rPHS2YEAR, num);};
voidPhase3Month(int num) {set(rPHS3MNTH, num);};
void Phase3Day(int num) {set(rPHS3DAY, num);};
void Phase3Year(int num) {set(rPHS3YEAR, num);};
void Phase4Month(int num) {set(rPHS4MNTH, num);};
void Phase4Day(int num) {set(rPHS4DAY, num);};
void Phase4Year(int num) {set(rPHS4YEAR, num);};

.

\
"

};
#endif

dbproj.cpp
#include "dbproj.h"

static FIELD4INFO Fields[]=
{

{"PROJNAME", 'C', 20,0},
{"PROJTYPE", 'C, 1,0},
{"ESTMSlZE", 'C', 7,0},
{"IN1PRM1", 'C, 1,0},
{"IN1PRM2", 'C, 1,0},

47



{"INTPRM3", 'C, 1,0},
{"INTPRM4", 'C, 1,0},
{"INTPRMS", 'C, 1,0},
{"INTPRM6", 'C, 1,0},
{"INTPRM7", 'C, 1,0},
{"INTPRMS", 'C, 1,0},
{"INTPRM9", 'C, 1,0},
{"INTPRMlO", 'C, 1,0},
{"INTPRMll", 'C, 1,0},
{"INTPRM12", 'C, 1,0},
{"INTPRM13", 'C, 1,0},
{"INTPRM14", 'C, 1,0},
{"INTPRM1S", 'C, 1,0},
{"STRIDTMN", 'C, 2,0},
{"STRIDIDY", 'C, 2,0},
{"STRIDTYR", 'C, 2,0},
{"DOC1", 'C, 1,0),
{"DOC2", 'C, 1,0},
{"DOC3", 'C, 1,0},
{"DOC4", 'C, 1,0},
{"DOCS", 'C, 1,0},
{"DOC6", 'C, 1,0},
{"DOC7", 'C', 1,0},
{"DOCS", 'C, 1,0},
{"DOC9", 'C, 1,0},
{"DOClO", 'C, 1,0},
{"DOCll", 'C, 1,0},
{"DOC12", 'C, 1,0},
{"DOC13", 'C, 1,0},
{"PHS1DONE", 'C, 1,0},
{"PHS2DONE", 'C, 1,0},
{"PHS3DONE", 'C, 1,0},
{"PHS4DONE", 'C, 1,0},
{"PHS 1 STFF" , 'C, 2,0},
{"PHS2STFF", 'C, 2,0},
{"PHS3STFF", 'C, 2,0},
{"PHS4STFF", 'C, 2,0},
{"PHS1MNTH", 'C, 2,0},
{"PHSlDAY", 'C, 2,0},
{"PHS1YEAR", 'C, 2,0},
{"PHS2MNTH", 'C, 2,0},
{''PHS2DAY'', 'C, 2,0},
{"PHS2YEAR", 'C, 2,0},
{"PHS3MNTII", 'C, 2,0},
{"PHS3DAY", 'C, 2,0},
{"PHS3YEAR", 'C, 2,0},
{"PHS4MNTH", 'C, 2,0},
{"PHS4DAY", 'C, 2,0},
{"PHS4YEAR", 'C, 2,0},
{O,O,O,O} 1/ null entry at end

};

static TAG4INFO Tags[]=
{

{"PROJNAME_", "PROJNAME", "",0, O},
{O,O,O,O,O} 1* null entry at end *1

};

/II/I/II/II1//II/II1//11/II/II/III/II1//II/11/

DBProj::DBProj(char *sFile)
:DBBase(sFile, Fields, Tags)

rPROJNAME--fieldRef("PROJNAME");
rPROJTYPE--fieldRef(,PROJTYPE") ;

rESTMSIZE=fieldRef("ESTMSlZE") ;
rINTPRMl =fieldRef("INTPRM1");
rINTPRM2 =fieldRefC'INTPRM2");
rINTPRM3 =fieldRef("INTPRM3");
rINTPRM4 =fieldRef("INTPRM4");
rINTPRMS =fieldRefC'lNTPRMS");

.

\
"

4S



rINTPRM6 =fieldRef('lNTPRM6");
rINTPRM7 =fieldRef("INTPRM7" );
rINTPRMS =fieldRef("INTPRMS");
rINTPRM9 =fieldRef('lNTPRM9");
rINTPRM 1O=fieldRef("INTPRMI0");
rINTPRM 11 =fieldRef("INTPRMII ");
rINTPRM 12=fieldRef("INTPRMI2");
rINTPRMI3=fieldRef("INTPRMI3");
rINTPRM14=fieldRef("INTPRMI4");
rINTPRM IS=fieldRef("INTPRMlS");
rSTRIDTMN=fieldRef("STRIDTMN");
rSTRIDIDY=fieldRef("STRIDIDY");
rSTRIDTYR=fieldRef("STRIDTYR");
rDOCl =fieldRef("DOCl" );
rDOC2 =fieldRef("DOC2" );
rDOC3 =fieldRef("DOC3" );
rDOC4 =fieldRef("DOC4" );'
rDOCS =fieldRef("DOCS" );
rDOC6 =fieldRef("DOC6" );
rDOC7 =fieldRef("DOC7" );
rDOCS =fieldRef("DOCS "

);
rD0C9 =fieldRef("DOC9" );
rDOClO =fieldRef('DOCI0" );
rDOCll =fieldRef('DOCll" );
rDOC12 =fieldRef(,DOC12" );
rDOC13 =fieldRef('DOC13 " );
rPHSlDONE--fieldRef(,PHSlDONE");
rPHS2DONE--fieldRef(,PHS2DONE");
rPHS3DONE=fieldRef("PHS3DONE");
rPHS4DONE=fieldRef(,PHS4DONE");
rPHS 1 S1FF=fieldRef("PHS IS1FF");
rPHS2S1FF=fieldRef("PHS2S1FF") ;

rPHS3S1FF=fieldRef("PHS3S1FF");
rPHS4S1FF=fieldRef("PHS4S1FF") ;
rPHS IMNTH=fieldRef(''PHSIMNTH'');
rPHSlDAY =fieldRef("PHSlDAY" );
rPHS 1YEAR=fieldRef("PHS 1 YEAR");
rPHS2MNTH=fieldRef("PHS2MNTH");
rPHS2DAY =fieldRef("PHS2DAY" );
rPHS2YEAR=fieldRef("PHS2YEAR");
rPHS3MNTH=fieldRef("PHS3MNTH");
rPHS3DAY =fieldRef("PHS3DAY" );
rPHS3YEAR=fieldRef("PHS3YEAR");
rPHS4MNTH=fieldRef("PHS4MNTH");
rPHS4DAY =fieldRef("PHS4DAY" );
rPHS4YEAR=fieldRef("PHS4YEAR");

dbbase.h

#ifndef DBBASE_H
#define DBBASE..JI

#define S4MDX

#include <d4al1.h>

.

\
"

#if defined DB_DLLBUILD
#define _DBCLASS _export

#elif defined DB_DLL
#define _DBCLASS _import

49

#else
#define _DBCLASS

#endif

//////1///IIIII//I//I//IIIII///I//I///III//I//III//I///I//IIII////I//I
II DBBase CLASS II
IIII///III//I//III///I//IIIII//IIIII//I//I//IIIIIII//I//I//III//I/IIII



void go(long rec);
void topO
void bottomO
void skip(long nRecs=lL) {d4skip(db,nRecs);};
int seek(char *sSearch) {return(d4seek(db,sSearch»;};
int seek(char *sSearch,char * sTagName)

{d4top(db);};
{d4bottom(db);};

class _DBCLASS DBBase

{
public:

DBBase(char *sFileParm,FIELD4INFO *FieldParm=NULL, TAG4INFO *TagParm=NULL);
DBBase(char *sDirParm, char *sFileParm,FIELD4INFO *FieldParm=NULL, TAG4INFO *TagParm=NULL);
-DBBaseO;
FIELD4 * fieldRef(char *sFieldName) {return(d4field(db,sFieldName»;};

void set(FIELD4 *field, char * str){f4memo_assign(field, str );};
void set(FIELD4 *field, char byte);
void set(FIELD4 *field, int num);
void set(FIELD4 *field, long num);

void set(char * field, char * str)
void set(char * field, char byte);
void set(char * field, int num);
void set(char * field, long num);

{f4memo_assign(d4field(db,field), sir );};

char*get(FIELD4 *field)
char getChar(FIELD4 *field)
int getlnt(FIELD4 *field)
long getLong(FIELD4 *field)

{retum(f4memo_str(field»;};
{return(*(f4str(field» );};

{return( atoi(f4str(field» );};
{retum( atol(f4str(field» );};

char*get(char * field) {retum(f4memo_str(d4field(db,field»);};
char getChar(char * field) {retum(*(f4str(d4field(db,field») );};
int getlnt(char * field) {return( atoi( f4str(d4field(db,field») );};
long getLong(char * field) {retum( atol( f4str(d4field(db,field») );};

{tag(sTagName);
retum(d4seek(db.s'Searchj); } ;
void tag(char *sTagName)

void appendt)
void saveO
void erase(long rec) {go(rec);eraseO;};
void eraseO

{ d4tag_select(db,d4tag(db,sTagNarne»;} ;

{retum(d4reccount(db»;} ;

{return(d4recno(db»;} ;

{retum(int(d4eof(db»); } ;

{retum(int(d4bof(db»);};

{ d4append_blank(db);};
{ d4write(db,d4recno(db»;};

long countt)
long recnot)
int eoft)
int bofO

int relate(void);
void query(char * expr);
int rtop(void);
int reof(int rc);
int rskip(long num = lL);
void rclose(void); \

"

{ d4delete(db) ;fDeleted=l ; } ;

void opem);
void closet) { d4close(db);};

virtual void init(CODFA *cbstruct);

protected:
DATA4 *db;
CODFAcb;
RELATEA * relation;

private:
char *psFile;
char sIntBuf[20];

50



FIELD4INFO * fields;
TAG4INFO * tags;
int fDeleted;

};

typedef DBBase* PDBBase;

#endif

dbbase.cpp
#include ",\..\srcpool�bbase.h

..

#ifdefunix
#include <unistd.h>
#else
#include <io.h>
#endif

//I//I//I//I///I////I//I///////III//I///I//IIIIIIIII//I///III//////III

DBBase::DBBase(char *sFileParrn,FIELD4INFO *FieldParrn, TAG4INFO *TagPann)
{

psFile = new char[strlen(sFileParrn)+I];
strcpy(psFile, sFileParrn);

char *psPeriodDelim = strchr(psFile, '.'); II find filename extension

if(psPeriodDelim)
*psPeriodDelim = '\0'; II cut off extension

fields=FieldPann;
tags=Tagf'arm;

fDeleted = 0; II flag to see if file needs to be packed

init(&cb); II virtual function for setting CODE4

openO;

}
//I//I//III//I///III//III//I//I//I//I//I//I//I/1/11//I//III//I//III//I

DBBase::DBBase(char *sDirPann,char *sFileParm,FIELD4INFO *FieldParm, TAG4INFO *TagParrn)
{

strcat(psFile, sFileParrn); \
"

psFile = new char[strlen(sFilePann) + strlen(sDirPann)+2];

strcpy(psFile, sDirParrn);

if( *sDirPann != NULL )
{

#ifdefunix

strcat(psFile,"f');
#else

strcat(psFile,""") ;
#endif

char *psPeriodDelim = strchr(psFile, '.'); II find filename extension
if(psPeriodDelim)

*psPeriodDelim = '\0'; II cut off extension

fields=FieldPann;
tags=TagParm;

fDeleted = 0; II flag to see if file needs to be packed

init(&cb); II virtual function for setting CODE4

51



·

\
"

opent):

///////11/11///////////11///////11///11///////11////////11/11/11//////

DBBase::-DBBaseO
{

if( fDeleted)
{
d4pack(db);
d4memo_compress(db);
}

d4close(db);
d4init_undo(&cb); // NEW LINE ADDED

delete [JpsFile;

///11////1//1/1///11//11////11/11//11/11/11/11//////11/1/11/11////////
void DBBase::set(FIELD4 *field, char byte)
{
char *str=" ";

str[O]=byte;
f4assign(field, str );

////////////////////////11///11/////11//11///1///11///////////11//11//

void DBBase::set(FIELD4 *field, int num)
{

,

sprintf(sIntBuf,"%d", num);
f4assign(field, sIntBuf);

////11/11////11//11/////11////11//////////1/////////////////////11////
void DBBase::set(FIELD4 *field, long nurn)
{

sprintf(sIntBuf,"%d", num);
f4assign(field, sIntBuf);

//////////11///11//////11///11/////11//11/11///11/11///11//11///11////
void DBBase::set(char *field, char byte)
{
char *Str=" ";

str[O]=byte;
f4assign(d4field(db,field), str);

/////11/////////1//////////////////////////////1////1//11////////11///
void DBBase::set(char *field, int nurn)
{

sprintf(sIntBuf,"%d",num);
f4assign(d4field(db,field), sIntBuf);

1///11////1/////////////11//11//////////////11///11/////1////////11///
void DBBase::set(char *field, long num)
{

sprintf(sIntBuf,"%d" ,num);
f4assign(d4field(db,field), sIntBuf);

/1//////////11//////////////1/////11/11/////////11////////////11//11//
void DBBase::go(long rec)
{

52



if(rec<l)

recel ;

d4go(db,rec);
}

else if(rec>d4reccount(db))
{
rec=d4reccount(db)+ 1 ;

d4bottom(db);
d4skip(db,lL);
}

d4go(db,rec);
else

1/11/1/11/1/1/1/1/1/1///1/1//1/1//1/1/1/1/1/11/11/1//1////1/11/1////1/
void DBBase::openO
{
char *psFileNarne = new char[strlen(psFile)+5];
int fDatabase, fIndex;

// check for dbase file and open/create
strcpy(psFileNarne, psFile);
strcat(psFileNarne, ".dbf');
fDatabase = ! access(psFileName,O);

// check for index file and open/create
*(psFileNarne+strlen(psFile)) = '\0';
strcat(psFileNarne, ".mdx");
flndex = ! access(psFileN�e,O);
delete [] psFileNarne;

//////////////////////////1//////////1/1///////1/1////////////1///////
// this is a virtual function that gets called from the constructor.
// if you want to set any of the CODFA settings, override this function
// in your derived class, call the base function and then change the
// CODFA settings.
void DBBase::init(CODFA *cbstruct)
{

\
"

// if database is gone, create new one with production index

if( ! fDatabase)
db=d4create(&cb, psFile, fields, tags);

else

if( ! flndex) // if index file is missing
cb.auto_open = 0; /I dont auto open index because it aint there

db=d4open(&cb, psFile);

if(! db)
return;

// if we have an open database, the tag information, and no index

if(tags && ! flndex)
i4create(db, NULL, tags); // create production index

d4tag_select(db, d4tag_default(db));
d4top(db);

d4init(cbstruct); // initialize codebase structure

int DBBase::relate(void)
{

relation = relate4init(db);
if (relation)

53



·

\
"

return 1;
else
return 0;

void DBBase::query(char * expr)
{

relate4query_set(relation,expr);

int DBBase::rtop(void)
{

return (relate4top(relation));

int DBBase::reof(int rc)
{

return (rc = r4eot);

int DBBase::rskip(long num)
{

return (relate4skip(relation,num));

void DBBase::rclose(void)
{

relate4unlock(relation) ;

relate4free(relation,O);

Dialog Class Files

#if !definedLtcrnpltpd_h)
#define _tcrnpltpd_h

1/ Sentry, use file only if it's not already included.

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYSTEM: fellows.apx Application
FILE: tcmpltpd.h
AU11IOR: Jason Thompson

OVERVIEW

Class definition for TCompletedPhaseDlg (TDialog).
*/

#include <owl\owlpch.h>
#pragrna hdrstop

#include "fllwsapp.rh" 1/ Definition of all resources.

I/{ {TDialog = TCompletedPhaseDlg}}
class TCornpletedPhaseDlg : public TDialog {
private:

char cBuf[100];
int

ProjectData
TEdit
TEdit
TEdit
TEdit

cDonePhase;
*cData;

*MonthEditField;
*DayEditField;
*YearEditField;
*PeopleEditField;

54



1Edit *PhaseEditField;

public:
TCompletedPhaseDlg (char *sBuf, int donephase, ProjectData *data, 1Window* parent, TResId resId = IDD_PHASE_COMPLE1E,

1Module* module = 0);
virtual - TCompletedPhaseDlg 0;

II{ {TCompletedPhaseDlgVIRTUAL_BEGIN} }
public:

virtual void SetupWindow 0;
II{ {TCompletedPhaseDlgVIRTUAL_END}}

II{ {TCompletedPhaseDlgRSP_TBL_BEGIN} }
protected:

void CmDecreaseDateHandler 0;
void CmIncreaseDateButtonHandler 0;
void CmOkButtonHandler 0;

II{ {TCompletedPhaseDlgRSP_TBL_END} }
DECLARE_RESPONSE_TABLE(TCompletedPhaseDlg);
}; II{ {TCompletedPhaseDlg} }

#endif II _tcmpltpd_h sentry.

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYSTEM: fellows.apx Application
FILE: tcmpltpd.cpp
AUTHOR: Jason Thompson

OVERVIEW

Source file for implementation of TCompletedPhaseDlg (TDialog).
*1

#include <owl\owlpch.b>
#pragma hdrstop

#include "tcmpltpd.h"
#include <time.b>

II
II Build a response table for all messageslcommands handled
II by the application.
II

DEFlNE_RESPONSE_TABLE1(TCompletedPhaseDlg, TDialog)
II{ {TCompletedPhaseDlgRSP_TBL_BEGIN}}

EV_BN_CLICKED(IDC_COMPLE1E_BDOWN, CmDecreaseDateHandler),
EV_BN_CLICKED(IDC_COMPLE1E_BUP, CmIncreaseDateButtonHandler),

EV_BN_CLICKED(IDOK, CmOkButtonHandler),
II{ {TCompletedPhaseDlgRSP_TBL_FND} }
END_RESPONSE_TABLE;

\
"

II{ {TCompletedPhaseDlg Implementation}}

TCompletedPhaseDlg::TCompletedPhaseDlg (char *sBuf, int newphase, ProjectData *data, 1Window* parent, TResId resId, 1Module*
module):

.

IDialog(parent, resId, module)

II INSERT» Your constructor code here.

strcpy(cBuf,sBuf);

55



tp = new struct tm;
tp->trn._sec=O;
tp->trn_min=O;
tp-c-tmhour=O;
MonthEditField->GetLine(sBuf, 9,1);
tp->trn_mon=atoi(sBuf)-1 ;

DayEditField->GetLine(sBuf,9, 1);
tp->trn_mday=atoi(sBuf);
YearEditField->GetLine(sBuf, 9,1);
tp->trn_year=atoi(sBuf);

.

\
"

cDonePhase = newphase;
switch(newphase)
{

case 1: strcpy(cBuf, "Requirements Analyis and Definition"); break;
case 2: strcpy(cBuf, "System and Software Design"); break;
case 3: strcpy(cBuf, "Implementation and Unit Testing"); break;
case 4: strcpy(cBuf, "Integration and System Testing"); break;

cData=data;
MonthEditField = new 1Edit(this, IDC_COMPLE1E_EMONTH);
DayEditField = new 1Edit(this, IDC_COMPLE1E_EDAy);
YearEditField = new 1Edit(this, IDC_COMPLE1E_EYEAR);
PeopleEditField = new 1Edit(this, IDC_COMPLE1E_ENUMPEOPLE);
PhaseEditField = new 1Edit(this, IDC_COMPLE1E_SPHASE);

TCompletedPhaseDlg::-TCompletedPhaseDlg 0
{

Destroyt):

/I INSERT» Your destructor code here.
delete MonthEditField;
delete DayEditField;
delete YearEditField;
delete PeopleEditField;
delete PhaseEditField;

void TCompletedPhaseDlg::SetupWindow 0
{

TDialog: :SetupWindow0 ;

1/ INSERT» Your code here.

time_t
char

now;

sBuf[10];

now = time(NULL);
strftime(sBuf, 3, "%m",localtime(&now));
MonthEditField->setText(sBuf) ;

strftime(sBuf, 3, "%d",localtime(&now));
DayEditField->SetText(sBuf);
strftime(sBuf, 3, "%y",localtime(&now));
YearEditField->SetText(sBuf) ;

PhaseEditField->SetText(cBuf);

void TCompletedPhaseDlg: :CmDecreaseDateHandler 0
{

II INSERT» Your code here.
struct trn *tp;
time_t
char

newtime;
sBuf[10];

tp->tm_mday-=1 ;
newtime = mktime(tp);

56



strftime(sBuf, 3, "%m", localtime(&newtime»;
MonthEditField->setText(sBut);
strftime(sBuf, 3, "%d", localtimefecnewtimej);
DayEditField->setText(sBut);
strftime(sBuf, 3, "%y", Iocaltimeteenewtimej);
YearEditField->SetText(sBut);
delete tp;

void TCompletedPhaseDlg: :CmlncreaseDateButtonHandler 0
{

II INSERT» Your code here.
struct tm *tp;
time_t
char

newtime;
sBuf[1O];

tp = new struct tm;
tp->tm._sec=O;
tp->tm_min=O;
tp->tm_hour=O;
MonthEditField->GetLine(sBuf,9,1);
tp->tm._mon=atoi(sBut)-1 ;

DayEditField->GetLine(sBuf,9, 1);
tp->tm._mday=atoi(sBut);
YearEditField->GetLine(sBuf,9, 1);
tp->tm_year=atoi(sBut);

tp->tm_mday+=I;
newtime = mktime(tp);

strftime(sBuf, 3, "%m", localtimetecnewtimej);
MonthEditField->setText(sBut) ;

strftime(sBuf, 3, "%d", localtimetecnewtimej):
DayEditField->SetText(sBut);
strftime(sBuf, 3, "%y" , Iocaltimefemewtimej);
YearEditField->SetText(sBut) ;
delete tp;

void TCompletedPhaseDlg::CmOkButtonHandler 0
{

II INSERT» Your code here.
char sBufl[10];
char sBuf2[10];
char sBuf3[1O];
char sBuf4[10];

PeopleEditField->GetLine(sBufl, 10, 1);
MonthEditField->GetLine(sBuf2, 10, 1);
DayEditField->GetLine(sBuf3, 10, 1);
YearEditField->GetLine(sBuf4, 10, 1);

switch(cDonePhase)
{

case 1:
cData->PhaselDone=1 ;

cData->PhaselStaff=atoi(sBufl) ;

cData->PhaselDoneMonth=atoi(sBuf2);
cData->PhaselDoneDay=atoi(sBuf3);
cData->PhaselDoneYear=atoi(sBuf4);
break;

case 2:
cData->Phase2Done=1 ;

cData->Phase2Staff=atoi(sBufl);
cData->Phase2DoneMonth=atoi(sBuf2);
cData->Phase2DoneDay=atoi(sBuf3);
cData->Phase2DoneYear=atoi(sBuf4);
break;

57

.

\
"



#if !definedLtcmptrpd_h)
#define _tcmptrpd_h

/I Sentry, use file only if it's not already included.

case 3:
cData->Phase3Done=1 ;

cData->Phase3Staff=atoi(sBufl);
cData->Phase3DoneMonth=atoi(sBuf2) ;

cData->Phase3DoneDay=atoi(sBuf3);
cData->Phase3DoneYear=atoi(sBuf4);
break;

case 4:
cData->Phase4Done=I ;

cData->Phase4Staff=atoi(sBuf1);
cData->Phase4DoneMonth=atoi(sBuf2);
cData->Phase4DoneDay=atoi(sBuf3);
cData->Phase4DoneYear=atoi(sBuf4);
break;

CmOkO;
}

/* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reser�ed.

SUBSYS1EM: fellows.apx Application
FILE: tcmptrpd.h
AUTIIOR: Jason Thompson

#include "fllwsapp.Ih" /I Definition of all resources.

OVERVIEW

Class definition for TComputerPredictionsDlg (TDialog).
*1

#include <owl\owlpch.h>
#pragma hdrstop

/I{ {TDialog = TComputerPredictionsDlg}}
class TComputerPredictionsDlg : public TDialog {
private:

ProjectData *cData;
1Edit
lEdit
lEdit
1Edit
lEdit
lEdit

*CurrentPhaseEditField;
*Phase1EditField;
*Phase2EditField;
*Phase3EditField;
*Phase4EditField;
*MonthsEditField;

public:
TComputerPredictionsDlg (ProjectData *data, 1Window* parent, TResId resId = IDD_ESTIMAlES, TModule* module == 0); ./

virtual-TComputerPredictionsDlg 0;

.

\
"

/I{ {TComputerPredictionsDlgVIRTUAL_BEGIN} }
public:

virtual void SetupWindow 0;
/I{ {TComputerPredictionsDlgVIRTUAL_END} }
}; /I{ {TComputerPredictionsDlg}}

#endif /I _tcmptrpd_h sentry.

58



/* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

OVERVIEW

SUBSYS1EM: fellows.apx Application
FILE: tcmptrpd.cpp
AUTHOR: Jason Thompson

Source file for implementation �f TComputerPredictionsDlg (TDialog).
*1

#include <owl\owlpch.h>
#pragma hdrstop

#include "tcmptrpd.h"
#include "dbparam.h"
#include <math.h>
#include <time.h>

/I{ {TComputerPredictionsDlg Implementation}}

TComputerPredictionsDlg::TComputerPredictionsDlg (ProjectData *data, TWindow* parent, TResId resld, 1Module* module):
TDialog(parent, resId, module)

/I INSERT» Your constructor code here.
cData = data;
CurrentPhaseEditField = new 1Edit(this, IDC_PREDICT_ECURREN1);
Phase1EditFieid = new 1Edit(this, IDC_PREDICT_EPHASE1);
Phase2EditFieid = new 1Edit(this, IDC_PREDICT_EPHASE2);
Phase3EditFieid = new 1Edit(this, IDC_PREDICT_EPHASE3);
Phase4EditFieid = new 1Edit(this, IDC_PREDICT_EPHASE4);
MonthsEditField = new 1Edit(this, IDC_PREDICT_EMONTII);

void TComputerPredictionsDlg::SetupWindow 0
{

\
"

TComputerPredictionsDlg::-TComputerPredictionsDlg 0
{

Destroyt);

/I INSERT» Your destructor code here.
delete CurrentPhaseEditField;
delete Phase1EditField;
delete Phase2EditField;
delete Phase3EditField;
delete Phase4EditField;
delete MonthsEditField;

TDialog::SetupWindowO;

II INSERT» Your code here.
DBParam *pdb;
double cocanswer, phasetime, timediff;

sBuf[100];
*tp1, *tp2;

endtime, starttime;
totaltime, phase1time, phase2time, phase3time, phase4time;

perce�t;

char
struct tm

time_t
double
int

59



case EMBEDDED:

pdb->seek("EMBEDDED");
break;

case ORGANIC:

pdb->seek("ORGANIC");
break;

case SEMIDETACHED:

pdb->seek("SEMIDETACH");
break;

pdb = new DBParainO;
switch(cData->ProjectType)
{

cocanswer=pow(cData->EstimatedSize, atof(pdb->CocomoBO»;
cocanswer*=atof(pdb->CocomoAO);

switch (cData->IntParam1)
{

case 1: cocanswer*=2; break;
case 2: cocanswer*=1.5; break;
case 4: cocanswer*=.75; break;
case 5: cocanswer=e.S: break;

switch (cData->IntParam2)
{

case 1: cocanswer*=2; break;
case 2: cocanswer=e l.S: break;
case 4: cocanswer=e.B; break;
case 5: cocanswer=e.S; break;

}
switch (cData->IntParam3)
{

case 1: cocanswer=ez; break;
case 2: cocanswer=e l.S: break;
case 4: cocanswer*::.75; break;
case 5: cocanswer*::.5; break;

case 1: cocanswer*::2; break;
case 2: cocanswer*::1.5; break;
case 4: cocanswer*::.75; break;
case 5: cocanswer*::.5; break;

\ '

switch (cData->IntParam4)
{

case 1: cocanswer*::2; break;
case 2: cocanswer=e l.S; break;
case 4: cocanswer*::.75; break;
case 5: cocanswer=e.S; break;

}
switch (cData->IntParam5)
{

case 1: cocanswer*::2; break;
case 2: cocanswer=el.S: break;
case 4: cocanswer*::.75; break;
case 5: cocanswer*::.5; break;

switch (cData->IntParam6)
{

switch (cData->IntParam7)
{

case 1: cocanswer=ez: break;
case 2: cocanswer*::1.5; break;
case 4: cocanswer*::.75; break;
case 5: cocanswer=e.S; break;

}
switch (cData->IntParam8)
{

case 1: cocanswer*::2; break;
case 2: cocanswer*::1.5; break;

60



case 4: cocanswer*==.75; break;
case 5: cocanswer=e.S; break;

}
switch (cData->IntParam9)
{

case 1: cocanswer=ez; break;
case 2: cocanswer=e l.S: break;
case 4: cocanswer=e.Za; break;
case 5: cocanswer=e.S; break;

}
switch (cData->IntParaml0)
{

case 1: cocanswer=ez: break;
case 2: cocanswer=e l.S: break;
case 4: cocanswer=e.Zfi; break;
case 5: cocanswer=e.S; break;

switch (cData->IntParamll)
{

case 1: cocanswer=ez; break;
case 2: cocanswer=el.S: break;
case 4: cocanswer=e.Zfi; break;
case 5: cocanswer=e.S; break;

switch (cData->IntParamI2)
{

case 1: cocanswer=ez: break;
case 2: cocanswer=e l.S; break;
case 4: cocanswer=e.Za; break;
case 5: cocanswer=e.S; break;

switch (cData->IntParam13)
{

case 1: cocanswer=ez; break;
case 2: cocanswer=e l.S: break;
case 4: cocanswer*==.75; break;
case 5: cocanswer=e.S; break;

switch (cData->IntParamI4)
{

case 1: cocanswer=ez: break;
case 2: cocanswer=e.l.S; break;
case 4: cocanswer*=.75; break;
case 5: cocanswer=e.S: break;

switch (cData->IntParamI5)
{

case 1: cocanswer*==2; break;
case 2: cocanswer*==1.5; break;
case 4: cocanswer*==.75; break;
case 5: cocanswer=e.S; break;

sprintf(sBuf, "%6.2f', cocanswer);
MonthsEditField->SetText(sBuf) ;

cocanswer*=152;
totaltime==O;

if(cData->PhaseIDone == 1)
{

.

\ '

tpl = new struct trn;
tp 1->trn._sec==O;
tpl->trn_rnin==O;
tpl->trn_hour=O;
tp1->trn_rnon=cData->PhaseIDoneMonth-l ;

tpl->trn_rnday=cData->PhaseIDoneDay;
tpl->trn._year=cData->Phase lDoneYear;
endtirne == rnktirne(tpl);
delete tpl;

tp2 = new struct trn;

61



tp2->tm_sec=O;
tp2->tm_min=O;
tp2->tm_hour=0;
tp2->tm_rnon=cData->StartDateMonth-l ;

tp2->tm_rnday=cData->StartDateDay;
tp2->trn_year=cData->StartDateYear;
starttirne = rnktirne(tp2);
delete tp2;

tirnediff = difftirne(endtirne, starttirne);
tirnediff/=360;
phase 1 tirne=tirnediff;
phasetirne=tirnediff;
phasetirne/=cData->Phase 1Staff;
phasetirne/=152;
sprintf(sBuf, "%6.2f', phasetirne);
PhaselEditField->setText(sBuf);

else

{
CurrentPhaseEditField->SetText("Requirernents Analysis and Definition");
phasetirne=cocanswer*pdb->PercentPhasel01100;
phasetirne/=cData->Phase 1Staff;
phasetirne/=152;
sprintf(sBuf, "%6.2f', phasetirne);
PhaselEditField->setText(sBuf);

if(cData->Phase2Done == 1)
{

tp 1 = new struct trn;
tp1->trn_sec=O;
tpl->trn.._min=O;
tpl->trn_hour=O;
tpl->trn.._rnon=cData->Phase2DoneMonth-l ;

tpl->trn_rnday=eData->Phase2DoneDay;
tpl->trn.._year=cData->Phase2DoneYear;
endtirne = rnktirne(tpl);
delete tpl;

tp2 = new struct trn;
tp2->trn_sec=O;
tp2->trn_min=O;
tp2->trn_hour=O;
tp2->tm_rnon=cData->PhaseIDoneMonth-l ;

tp2->trn_rnday=eData->PhaseIDoneDay;
tp2->trn.._year=cData->Phase IDoneYear;
starttirne = rnktirne(tp2);
delete tp2;

tirnediff = difftirne(endtirne, starttirne);
tirnediff/=360;
phase2tirne=tirnediff;
phasetirne=tirnediff;
phasetirne/=cData->Phase2Staff;
phasetirne/=152;
sprintf(sBuf, "%6.2f', phasetirne);
Phase2EditField->setText(sBuf);

else

{
.

\
"

if(cData->PhaseIDone == 1)
CurrentPhaseEditField->SetText("Systern and Software Design");

phasetirne=cocanswer*pdb->PercentPhase20/100;
phasetirne/=cData->Phase2Staff;
phasetirne/=152;
sprintf(sBuf, "%6.2f', phasetirne);
Phase2EditField->setText(sBuf);

if(cData->Phase3Done == 1)
{

62



tp 1 = new struct tm;
tpl->tm_sec=O;
tpl->tm_min=O;
tpl->tm_hour=O;
tp1->tm_mon=cData->Phase3DoneMonth-l;
tp1->tm_mday=cData->Phase3DoneDay;
tpl->tm_year=cData->Phase3DoneYear;
endtime = mktime(tpl);
delete tpl;

tp2 = new struct tm;
tp2->tm_sec=O;
tp2->tm_min=O;
tp2->tm_hour=O;
tp2->tm_mon=cData->Phase2DoneMonth-l ;

tp2->tm_mday=cData->Phase2DoneDay;
tp2->tm_year=cData->Phase2DoneYear;
starttime = mktime(tp2);
delete tp2;

timediff = difftime(endtime, starttime);
timediff/=360;
phase3time=timediff;
phasetime=timediff;
phasetime/=cData->Phase3Staff;
phasetime/=152;
sprintf(sBuf, "%6.2f', phasetime);
Phase3EditField->setText(sBut);

else

{
if(cData->Phase2Done == 1)

CurrentPhaseEditField->setText("Implementation and Unit Testing");
phasetime=cocanswer*pdb->PercentPhase30/100;
phasetime/=cData->Phase3Staff;
phasetime/=152;
sprintf(sBuf, "%6.2f', phasetime);
Phase3EditField->setText(sBut);

if(cData->Phase4Done == 1)
{

tpl = new struct tm;
tpl->tm_sec=O;
tpl->t:m.....min=O;
tpl->tm_hour=O;
tp1->t:m.....mon=cData->Phase4DoneMonth-l;
tpl->t:m.....mday=cData->Phase4DoneDay;
tpl->t:m.....year=cData->Phase4DoneYear;
endtime = mktime(tpl);
delete tpl;

tp2 = new struct tm;
tp2->t:m.....sec=O;
tp2->t:m.....min=O;
tp2->tm....)lour=O;
tp2->t:m.....mon=cData->Phase3DoneMonth-l ;

tp2->tm_mday=cData->Phase3DoneDay;
tp2->t:m.....year=cData->Phase3DoneYear;
starttime = mktime(tp2);
delete tp2;

.

\
"

timediff = difftime(endtime, starttime);
timediff/=360;
phase4time=timediff;
phasetime=timediff;
phasetime/=cData->Phase4Staff;
phasetime/=152;
sprintf(sBuf, "%6.2f', phasetime);
Phase4EditField->setText(sBut) ;

63



#if !definedLtestmtsd_h)
#define _testmtsd_h

II Sentry, use file only if it's not already included.

l/update percentages
totaltime=phase1time+phase2time+phase3time+phase4time;
percent=100;
sprintf(sBuf, "%2.Of', 1 OO*phase ltimeltotaltime);
percent-=100*phase1timeltotaltime;
pdb->PercentPhase1(sBuf);
sprintf(sBuf, "%2.Of', 100*phase2timeltotaltime);
percent-= 100*phase2time/totaltime;
pdb->PercentPhase2(sBuf) ;

sprintf(sBuf, "%2.Of', 100*phase3timeltotaltime);
percent-=100*phase3timeltotaltime;
pdb->PercentPhase3(sBuf) ;

sprintf(sBuf, "%2d", percent);
pdb->PercentPhase4(sBuf) ;

else

{
if(cData->Phase3Done == 1)

CurrentPhaseEditField->setText("Integration and System Testing");
phasetime=cocanswer*pdb->PercentPhase40/100;
phasetime/=cData->Phase4Staff;
phasetime/=152;
sprintf(sBuf, "%6.2f', phasetime);
Phase4EditField->setText(sBuf);

deletepdb;

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYSTEM: fellows.apx Application
FILE: testmtsd.h

AUTIIOR: Jason Thompson

OVERVIEW

Class definition for TEstimatedStaffingDlg (TDialog).
�

.

#include <owl\owlpch.h>
#pragma hdrstop

I/{ {TDialog = '!EstimatedStaffingDIg} }
class 1EstimatedStaffingDlg : public IDialog {
private:

ProjectData
TEdit
TEdit
'!Edit
'!Edit

.

\
"

#include "fllwsapp.rh" 1/ Definition of all resources.

*cData;
*Phase1EditField;
*Phase2EditField;
*Phase3EditField;
*Phase4EditField;

public:
TEstimatedStaffingDlg (ProjectData *data, TWindow* parent, TResld resld = IDD_ESTIMA1ED_STAFFING, TModule* module =

0);
virtual-1EstimatedStaffingDlg 0;

64



·

\
"

//{ {TEstimatedStaffingDIgRSP_TBL_BEGIN}}
protected:

void CmOkButtonHandler 0;
II{ {TEstimatedStaffingDIgRSP_TBL_END}}
DECLARE_RESPONSE_TABLE(TEstimatedStaffingDIg) ;

}; II{ {TEstimatedStaffingDIg}}

#endif II _testmtsd.]1 sentry.

/* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYSTEM: fellows.apx Application
FILE: testmtsd.cpp
AUrnOR: Jason Thompson

OVERVIEW

Source file for implementation of TEstimatedStaffingDlg (!Dialog).
*1

#include <owl\owlpch.h>
#pragma hdrstop

#include "testmtsd.h"

//
II Build a response table for all messages/commands handled
II by the application.
II

DEFINE_RESPONSE_TABLE1(TEstimatedStaffingDIg, TDialog)
//{ {TEstimatedStaffingDIgRSP_TBL_BEGIN}}

EV_BN_CLICKED(IDOK, CmOkButtonHandler),
II{ {TEstimatedStaffingDIgRSP_TBL_END}}
END_RESPONSE_TABLE;

II{ {TEstimatedStaffingDlg Implementation}}

TEstimatedStaffingDIg::TEstimatedStaffingDlg (ProjectData *data, lWindow* parent, lResId resId, TModule* module):
IDialog(parent, resId, module)

IIINSERT» Your constructor code here.
cData = data;

PhaselEditField = new 1Edit(this, IDe_STAFF_EPHASEl);
Phase2EditFieid = new 1Edit(this, IDe_STAFF_.EPHASE2);
Phase3EditFieid = new 1Edit(this, IDC_STAFF_.EPHASE3);
Phase4EditFieid = new TEdit(this, IDe_STAFF_EPHASE4);

TEstimatedStaffingDIg::-TEstimatedStaffingDlg 0
{

Destroyt);

II INSERT» Your destructor code here.
delete Phase1EditField;
delete Phase2EditField;
delete Phase3EditField;
delete Phase4EditField;

65



void TEstirnatedStaffingDIg::CmOkButtonHandler 0
{

II INSERT» Your code here.
char sBuf[10];

Phase1EditField->GetLine(sBuf, 10, 1);
cData->Phase 1Staff=atoi(sBuf);
cData->PhaselDone=O;
Phase2EditField->GetLine(sBuf, 10, 1);
cData->Phase2Staff=atoi(sBuf);
cData->Phase2Done=O;
Phase3EditField->GetLine(sBuf, 10, 1);
cData->Phase3Staff=atoi(sBuf);
cData->Phase3Done=O;
Phase4EditField->GetLine(sBuf, '10, 1);
cData->Phase4Staff=atoi(sBuf);
cData->Phase4Done=O;

CrnOkO;
}

#if !definedLtdcrnntsd_h)
#define _tdcrnntsd_h

II Sentry, use file only if it's not already included.

II Definition of all resources.

/* Project fellows
Texas A&M University

Copyright © 1994. All Rights Reserved.

SUBSYS1EM: fellows.apx Application
FILE: tdcrnntsd.h
AUTHOR: Jason Thompson

OVERVIEW

Class definition for TDocurnentsDlg (TDialog).
*1

#include <owl\owlpch.h>
#pragrna hdrstop

#include "f1lwsapp.Ih"

II{ {TDialog = TDocurnentsDIg}}
class TDocurnentsDlg : public TDialog {
private:

ProjectData *cData;

TRadioButton
TRadioButton
TRadioButton

TRadioButton
TRadioButton
TRadioButton

TRadioButton
TRadioButton
TRadioButton

TRadioButton
TRadioButton
TRadioButton

*DoclNotRadioButton;
*DoclStartRadioButton;
*DoclDoneRadioButton; \

"

*Doc2NotRadioButton;
*Doc2StartRadioButton;
*Doc2DoneRadioBul1on;

*Doc3NotRadioButton;
*Doc3StartRadioButton;
*Doc3DoneRadioButton;

*Doc4NotRadioButton;
*Doc4StartRadioButton;
*Doc4DoneRadibButton;

66



TRadioButton *Doc5NotRadioButton;
TRadioButton *Doc5StartRadioButton;
TRadioButton *Doc5DoneRadioButton;

TRadioButton *Doc6NotRadioButton;
TRadioButton *Doc6StartRadioButton;
TRadioButton *Doc6DoneRadioButton;

TRadioButton *Doc7NotRadioButton;
TRadioButton *Doc7StartRadioButton;
TRadioButton *Doc7DoneRadioButton;

TRadioButton *Doc8NotRadioButton;
TRadioButton *Doc8StartRadioButton;
TRadioButton *Doc8DoneRadioButton;

TRadioButton *Doc9NotRadioButton;
TRadioButton *Doc9StartRadioButton;
TRadioButton *Doc9DoneRadioButton;

TRadioButton *Doc1ONotRadioButton;
TRadioButton *DoclOStartRadioButton;
TRadioButton *Doc1ODoneRadioButton;

TRadioButton *Doc11NotRadioButton;
TRadioButton *DocllStartRadioButton;
TRadioButton *Doc11DoneRadioButton;

TRadioButton *Doc12NotRadioButton;
TRadioButton *Docl2StartRadioButton;
TRadioButton *DocI2DoneRadioButton;

TRadioButton *Doc13NotRadioButton;
TRadioButton *DocI3StartRadioButton;
TRadioButton *Doc13DoneRadioButton;

public:
TDocumentsDIg (ProjectData *data, lWindow* parent, TResld resld = IDD_KNOWNS_OOCUMENTS� TModule* module

=0);
virtual - TDocumentsDIg 0;

//{ {TDocumentsDIgRSP_TBL_BEGIN} }
protected:

void CmOkButtonHandler 0;
//{ {TDocumentsDlgRSP_ TBL_END} }
DECLARE_RESPONSE_TABLE(fDocumentsDIg);
}; //{ {TDocumentsDIg}}

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved,

.

\
"

#endif II_tdcmntsd_h sentry.

SUBSYSTEM: fellows.apx Application
FILE: tdcmntsd.cpp
AUTHOR: Jason Thompson

OVERVIEW

Source file for implementation of TDocumentsDIg (fDialog).
*1

#include <owl\owlpch.b>

67



#pragma hdrstop

#include "tdcmntsd.h"

/I
/I Build a response table for all messages/commands handled
/I by the application.
/I

DEFlNE_RESPONSE_TABLEl(TDocumentsDlg, TDialog)
/I{ {TDocumentsDlgRSP_TBL_BEGIN}}

EV_BN_CLICKED(IDOK, CmOkButtonHandler),
/I{ {TDocumentsDlgRSP_ TBL_END} }
END_RESPONSE_TABLE;

/It {TDocumentsDlg Implementation}}

Doc9NotRadioButton = new TRadioButton(this, IDC_DOC9_N01);
Doc9StartRadioButton = new TRadioButton(this, IDC_DOC9_STAR1);
Doc9DoneRadioButton = new TRadioButton(this, IDC_DOC9_DONE);

\
"

TDocumentsDlg::TDocumentsDlg (projectData *data, 1Window* parent, TResId resId, TModule* module):
TDialog(parent, resId, module)

/I INSER1'» Your constructor code here.
cData = data;

Doc1NotRadioButton = new TRadioButton(this, IDC_DOCl_N01);
Doc1StartRadioButton = new TRadioButton(this, IDC_DOCl_STAR1);
Doc1DoneRadioButton = new TRadioButton(this, IDC_DOCl_DONE);

Doc2NotRadioButton = new TRadioButton(this, IDC_DOC2_N01);
Doc2StartRadioButton = new TRadioButton(this, IDC_DOC2_STAR1);
Doc2DoneRadioButton = new TRadioButton(this, IDC_DOC2_DONE);

Doc3NotRadioButton = new TRadioButton(this, IDC_DOC3_N01);
Doc3StartRadioButton = new TRadioButton(this, IDC_DOC3_STAR1);
Doc3DoneRadioButton = new TRadioButton(this, IDC_DOC3_DONE);

Doc4NotRadioButton = new TRadioButton(this, IDC_DOC4_N01);
Doc4StartRadioButton = new TRadioButton(this, IDC_DOC4_STAR1);
Doc4DoneRadioButton = new TRadioButton(this, IDC_DOC4_DONE);

Doc5NotRadioButton = new TRadioButton(this, IDC_DOCS_N01);
DocSStartRadioButton = new TRadioButton(this, IDC_DOCS_STAR1);
Doc5DoneRadioButton = new TRadioButton(this, IDC_DOC5_DONE);

Doc6NotRadioButton = new TRadioButton(this, IDC_DOC6_N01);
Doc6StartRadioButton = new TRadioButton(this, IDC_DOC6_STAR1);
Doc6DoneRadioButton = new TRadioButton(this, IDC_DOC6_DONE);

Doc?NotRadioButton = new TRadioButton(this, IDC_DOC?_N01);
Doc?StartRadioButton = new TRadioButton(this, IDC_DOC?_STAR1);
Doc?DoneRadioButton = new TRadioButton(this, IDC_DOC?_DONE);

Doc8NotRadioButton = new TRadioButton(this, IDC_DQC8_N01);
Doc8StartRadioButton = new TRadioButton(this, IDC_DOC8_STAR1);
Doc8DoneRadioButton = new TRadioButton(this, IDC_DOC8_DONE);

Doc10NotRadioButton = new TRadioButton(this, IDC_DOCIO_N01);
DoclOStartRadioButton = new TRadioButton(this, IDC_DOCIO_STAR1);
DoclODoneRadioButton = new TRadioButton(this, IDC_DOCIO_:DONE);

Doc11NotRadioButton = new TRadioButton(this, IDC_DOCll_N01);
Doc11StartRadioButton = new TRadioButton(this, IDC_DOCll_STAR1);
Doc11DoneRadioButton = new TRadioButton(this, IDC_DOCll_DONE);

Doc12NotRadioButton = new TRadioButton(this, IDC.J)OC12_N01);
Doc12StartRadioButton = new TRadioButton(this, IDC_DOC12_STAR1);

68



Doc12DoneRadioButton = new TRadioButton(this, IDC_DOC12_DONE);

Doc13NotRadioButton = new TRadioButton(this, IDC_DOC13_N01);
Doc13StartRadioButton = new TRadioButton(this, IDC_DOC13_STAR1);
Doc13DoneRadioButton = new TRadioButton(this, IDC_DOC13_DONE);

II INSERT» Your destructor code here.

TDocumentsDIg::-TDocumentsDlg 0
{

Destroyt);

void TDocumentsDIg: :CmOkButtonHandler 0
{

II INSERT» Your code here.
if (DoclNotRadioButton->GetCheckO) cData->Document1=O;
else if (DoclStartRadioButton->GetCheckO) cData->Documentl=l;
else if (DoclDoneRadioButton->GetCheckO) cData->Documentl=2;

if (Doc2NotRadioButton->GetCheckO) cData->Document2=O;
else if (Doc2StartRadioButton->GetCheckO) cData->Document2=l;
else if (Doc2DoneRadioButton->GetCheckO) cData->Document2=2;

if (Doc3NotRadioButton->GetCheckO) cData->Document3=O;
else if (Doc3StartRadioButton->GetCheckO) cData->Document3=1;
else if (Doc3DoneRadioButton->GetCheckO) cData->Document3=2;

if (Doc4NotRadioButton->GetCheckO) cData->Document4=O;
else if (D0c4StartRadioButton->GetCheckO) cData->Document4=1;
else if (Doc4DoneRadioButton->GetCheckO) cData->Document4=2;

if (DocSNotRadioButton->GetCheckO) cData->Document5=O;
else if (Doc5StartRadioButton->GetCheckO) cData->Document5=l;
else if (Doc5DoneRadioButton->GetCheckO) cData->Document5=2;

if (Doc6NotRadioButton->GetCheckO) cData->Document6=O;
else if (D0c6StartRadioButton->GetCheckO) cData->Document6=1;
else if (Doc6DoneRadioButton->GetCheckO) cData->Document6=2;

if (Doc7NotRadioButton->GetCheckO) cData->Document7=O;
else if (Doc7StartRadioButton->GetCheckO) cData->Document7=1;
else if (Doc7DoneRadioButton->GetCheckO) cData->Document7=2;

if (DocSNotRadioButton->GetCheckO) cData->DocumentS=O;
else if (DocSStartRadioButton->GetCheckO) cData->DocumentS=l;
else if (DocSDoneRadioButton->GetCheckO) cData->DocumentS=2;

if (Doc9NotRadioButton->GetCheckO) cData->Document9=O;
else if (Doc9StartRadioButton->GetCheckO) cData->DocJlI1lent9=1;
else if (Doc9DoneRadioButton->GetCheckO) cData->Document9=2;

if (DoclONotRadioButton->GetCheckO) cData->DocumentlO=O;
else if (DoclOStartRadioButton->GetCheckO) cData->DocumentlO=l;
else if (DoclODoneRadioButton->GetCheckO) cData->Documentl0=2;

.

\
"

if (Doc 1 1 NotRadioButton->GetCheckO) cData->Documentll=O;
else if (DocllStartRadioButton->GetCheckO) cData->Documentll=l;
else if (Doc11DoneRadioButton->GetCheckO) cData->Documentll=2;

if (Doc12NotRadioButton->GetCheckO) cData->Documentl2=O;
else if (Docl2StartRadioButton->GetCheckO) cData->Documentl2=l;
else if (Doc12DoneRadioButton->GetCheckO) cData->Documentl2=2;

if (Doc13NotRadioButton->GetCheckO) cData->Document13=O;
else if (Doc 1 3StartRadioButton->GetCheckO) cData->Documentl3=1;
else if (Doc13DoneRadioButton->GetCheckO) cData->Document13=2;

69



#if !definedLtstrtdtd_h)
#define _tstrtdtd_h

II Sentry, use file only if it's not already included.

CmOkO;
}

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYSlEM: fellows.apx Application
FILE: tstrtdtd.h
AUTIIOR: Jason Thompson

OVERVIEW

Class definition for TStartDateDlg (!Dialog).
*1

#include <owl\owlpch.h>
#pragma hdrstop

#include "fllwsapp.rh" 1/ Definition of all resources.

I/{ {TDialog = TStartDateDIg}}
class TStartDateDlg : public TDialog {
private:

ProjectData
lEdit
TEdit
lEdit

*cData;
*DayEditField;
*MonthEditField;
*YearEditField;

public:
TStartDateDlg (ProjectData *data, TWindow* parent, TResld resld = IDD_KNOWNS_STARTDA1E, TModule* module = 0);
virtual - TStartDateDlg 0;

I/{ {TStartDateDIgVIRTUAL_BEGIN}}
public:

virtual void SetupWindow 0;
I/{ {TStartDateDIgVIRTUAL_END}}

I/{ {TStartDateDIgRSP_TBL_BEGIN}}
protected:

void CmDecreaseDateButtonHandler 0;
void CmIncreaseDateButtonHandler 0;
void CmOkButtonHandler 0;

1/{ {TStartDateDIgRSP_ TBL_END} }
DECLARE_RESPONSE_TABLE(TStartDateDIg);
}; I/{ {TStartDateDIg}}

#endif 1/ _tstrtdtd_h sentry.
\

"

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYS1EM: fellows.apx Application
FILE: tstrtdtd.cpp

70



OVERVIEW

AUTHOR: Jason Thompson

Source file for implementation of TStartDateDlg (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "tstrtdtd.h"
#include <time.h>

1/
1/ Build a response table for all messages/commands handled
1/ by the application.

'

1/

DEFINE_RESPONSE_TABLEI (fStartDateDIg, TDialog)
I/{ {TStartDateDIgRSP_TBL_BEGIN} }

EV_BN_CLICKED(lDC_KNOWNS_STARTDA1E_BDOWN, CmDecreaseDateButtonHandler),
EV_BN_CLICKED(IDC_KNOWNS_STARTDA1E_BUP, CmIncreaseDateButtonHandler),
EV_BN_CLICKED(IDOK, CmOkButtonHandler),

I/{ {TStartDateDIgRSP_TBL_END}}
END_RESPONSE_TABLE;

time_t
char

now; .

\
"

I/{ {TStartDateDlg Implementation}}

TStartDateDIg::TStartDateDlg (ProjectData *data, TWindow* parent, TResId resId, TModule* module):
TDialog(parent, resId, module)

1/ INSERT» Your constructor code here.
cData = data;
DayEditField = new TEdit(this, IDC_KNOWNS_STARTDA1E_EDAy);
MonthEditField = new TEdit(this, IDC_KNOWNS_STARTDA1E_EMONTH);
YearEditField = new TEdit(this, IDC_KNOWNS_STARTDA1E_EYEAR);

TStartDateDIg::-TStartDateDlg 0
{

Destroyt);

/I INSERT» Your destructor code here.
delete DayEditField;
delete MonthEditField;

delete YearEditField;

void TStartDateDIg::SetupWindow 0
{

TDialog::SetupWindowO;

1/ INSERT» Your code here.

sBuf[10];

now = time(NULL);
strftime(sBuf, 3, "%m", localtime(&now));
MonthEditField->setText(sBuf) ;

strftime(sBuf, 3, "%d", localtime(&now));
DayEditField->SetText(sBuf);
strftime(sBuf, 3, "%y", localtime(&now));
YearEditField->SetText(sBuf) ;

71



sBuf[10];

void TStartDateDIg::CmDecreaseDateButtonHandler 0
{

II INSERT» Your code here.

struct tm *tp;
time_t
char

newtime;

tp = new struct tm;
tp->tIn_sec=O;
tp->tm_min=D;
tp->tIn_hour=O;
MonthEditField->GetLine(sBuf, 9,1);
tp->tIn_mon=atoi(sBuf)-1 ;

DayEditField->GetLine(sBuf,9, 1);
tp->tm.__rnday=atoi(sBuf);
YearEditField->GetLine(sBuf,9, 1);
tp->tm.__year=atoi(sBuf);

tp->tm.__rnday-=1 ;
newtime = mktime(tp);

strftime(sBuf, 3, "%m", localtime(&newtime));
MonthEditField->setText(sBuf);
strftime(sBuf, 3, "%d" , localtime(&newtime));
DayEditField->SetText(sBuf);
strftime(sBuf, 3, "%y", localtime(&newtime));
YearEditField->SetText(sBuf);
delete tp;

void TStartDateDlg ::CmIncreaseDateButtonHandler 0
{

II INSERT» Your code here.

struct tm *tp;
time_t
char

newtime;
sBuf[10];

tp = new struct tm;
tp->tm.__sec=O;
tp->tm_min=D;
tp->t:m..)lour=O;
MonthEditField->GetLine(sBuf, 9,1);
tp->tm.__mon=atoi(sBuf)-1 ;

DayEditField->GetLine(sBuf,9, 1);
tp->tm.__rnday=atoi(sBuf) ;

YearEditField->GetLine(sBuf,9, 1);
tp->tm.__year=atoi(sBuf);

tp->tm.__mday+=1 ;
newtime = mktime(tp);

strftime(sBuf, 3, "%m" , localtime(&newtime));
MonthEditField->setText(sBuf);
strftime(sBuf, 3, "%d", localtime(&newtime));
DayEditField->SetText(sBuf) ;

strftime(sBuf, 3, "%y", localtime(&newtime));
YearEditField->SetText(sBuf) ;
delete tp;

.

\
"

void TStartDateDIg::CmOkButtonHandler 0
{

II INSERT» Your code here.
char sBuf[10];

MonthEditField->GetLine(sBuf, 9,1);
cData->StartDateMonth=atoi(sBuf);
DayEditField->GetLine(sBuf,9, 1);

72



1/ Sentry, use file only if it's not already included.

cData->StartDateDay=atoi(sBuf);
YearEditField->GetLine(sBuf,9, 1);
cData->StartDateYear=atoi(sBuf);

CmOkO;
}

#if IdefinedLtintrcpd_h)
#define _tintrcpd_h

1* Project fellows
Texas A&M University

Copyright © 1994. All Rights Reserved.

SUBSYS1EM: fellows.apx Application
FILE: tintrcpd.h
AUTHOR: Jason Thompson

OVERVIEW

Class definition for TIntermediateCocomoParameterDlg (TDialog).
*1

#include <owl\owlpch.b>
#pragma hdrstop

#include "fllwsapp.Ib." 1/ Definition of all resources.

I/{ {TDialog = TIntermediateCocomoParameterDlg}}
class TIntermediateCocomoParameterDlg : public TDialog {
private:

ProjectData *cData;
TRadioButton
TRadioButton
TRadioButton
TRadioButton
TRadioButton

TRadioButton
TRadioButton
TRadioButton
TRadioButton
TRadioButton

TRadioButton
TRadioButton
TRadioButton
TRadioButton
TRadioButton

TRadioButton
TRadioButton
TRadioButton
TRadioButton
TRadioButton

TRadioButton
TRadioButton
TRadioButton
TRadioButton
TRadioButton

TRadioButton
TRadioButton

*ParamlPoorRadioButton;
*ParamlBadRadioButton;
*ParamlNormalRadioButton;
*ParamlGoodRadioButton;
*ParamlGreatRadioButton;

*Param2PoorRadioButton;
*Param2BadRadioButton;
*Param2NormalRadioButton;
*Param2GoodRadioButton;
*Param2GreatRadioButton;

*Param3PoorRadioButton;
*Param3BadRadioButton;
*Param3NormalRadioButton;
*Param3GoodRadioButton;
*Param3GreatRadioButton;

*Param4PoorRadioButton;
*Param4BadRadioButton;
*Param4NormalRadioButton;
*Param4GoodRadioButton;
*Param4GreatRadioButton;

,

\
"

*Pararn5PoorRadioButton;
*Pararn5BadRadioButton;
*Param5NormalRadioButton;
*Pararn5GoodRadioButton;
*Param5GreatRadioButton;

*Param6PoorRadioButton;
*Param6BadRadioButton;

73



TRadioButton *Param6NormalRadioButton;
TRadioButton *Param6GoodRadioButton;
TRadioButton *Param6GreatRadioButton;

TRadioButton *Param7PoorRadioButton;
TRadioButton *Param7BadRadioButton;
TRadioButton *Param7NormalRadioButton;
TRadioButton *Param7GoodRadioButton;
TRadioButton *Param7GreatRadioButton;

TRadioButton *Param8PoorRadioButton;
TRadioButton *Param8BadRadioButton;
TRadioButton *Param8NorrnalRadioButton;
TRadioButton *Param8GoodRadioButton;
TRadioButton *Param8GreatRadioButton;

TRadioButton *Param9PoorRadioButton;
TRadioButton *Param9BadRadioButton;
TRadioButton *Param9NorrnalRadioButton;
TRadioButton *Param9GoodRadioButton;
TRadioButton *Param9GreatRadioButton;

TRadioButton *ParamlOPoorRadioButton;
TRadioButton *ParamlOBadRadioButton;
TRadioButton *ParamlONorrnalRadioButton;
TRadioButton *ParamlOGoodRadioButton;
TRadioButton *ParamlOGreatRadioButton;

TRadioButton *ParamllPoorRadioButton;
TRadioButton *Paraml1BadRadioButton;
TRadioButton *ParamllNorrnalRadioButton;
TRadioButton *ParamllGoodRadioButton;
TRadioButton *Paraml1GreatRadioButton;

TRadioButton *Param12PoorRadioButton;
TRadioButton *Param12BadRadioButton;
TRadioButton *Param12NorrnalRadioButton;
TRadioButton *Param12GoodRadioButton;
TRadioButton *Param12GreatRadioButton;

TRadioButton *Param13PoorRadioButton;
TRadioButton *Param13BadRadioButton;
TRadioButton *Param13NorrnalRadioButton;
TRadioButton *Paraml3GoodRadioButton;
TRadioButton *Param13GreatRadioButton;

TRadioButton *Paraml4PoorRadioButton;
TRadioButton *Param14BadRadioButton;
TRadioButton *Param14NorrnalRadioButton;
TRadioButton *Param14GoodRadioButton;
TRadioButton *Param14GreatRadioButton;

TRadioButton *Paraml5PoorRadioButton;
TRadioButton *Paraml5BadRadioButton;
TRadioButton *Paraml5NorrnalRadioButton;
TRadioButton *Param15GoodRadioButton;
TRadioButton *Param15GreatRadioButton;

public:
TInterrnediateCocomoParameterDlg (ProjectData *data, 1Window* parent, TResId resId = IDD_IN1ERMEDIA1E_COCOM0,

1Module* module = 0);
virtual - TInterrnediateCocomoParameterDlg 0;

//{ {TIntermediateCocomoParameterDlgRSP_ TBL_BEGIN} }
protected:

void CmOkButtonHandler 0;
//{ {TInterrnediateCocomoParameterDlgRSP_ TBL_END} }
DECLARE_RESPONSE_TABLE(TInterrnediateCocomoParameterDIg);
}; //{ {TInterrnediateCocomoParameterDlg}}

74

.

\
"



Param3PoorRadioButton = new TRadioButton(this, IDC_PARAM3_POOR);
Param3BadRadioButton = new TRadioButton(this, IDCYARAM3_BAD);
Param3NonnalRadioButton = new TRadioButton(this, IDC_PARAM3_NORMAL);
Param3GoodRadioButton = new TRadioButton(this, IDC_PARAM3_GOOD);
Param3GreatRadioButton = new TRadioButton(this, IDC_PARAM3_GREA1);

\
"

#endif /I _tintrcpd_h sentry.

/* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYS1EM: fellows.apx Application
FILE: tintrcpd.cpp
AUTIIOR: Jason Thompson

OVERVIEW

Source file for implementation of TIntennediateCocomoParameterDlg (TDialog).
*/

#include <owl\owlpch.h>
#pragma hdrstop

#include "tintrcpd.h"

/I
// Build a response table for all messages/commands handled
// by the application.

.

/I

DEFINE_RESPONSE_TABLEI (TIntennediateCocomoParameterDlg, TDialog)
/I{ {TInterrnediateCocomoParameterDlgRSP_ TBL_BEGIN} }

EV_BN_CLICKED(lDOK, CmOkButtonHandler),
/I{ {TIntennediateCocomoParameterDlgRSP_ TBL_END} }
END_RESPONSE_TABLE;

//{ {TIntennediateCocomoParameterDlg Implementation}}

TlntermediateCocomoParameterDlg::TIntennediateCocomoParameterDlg (ProjectData *data, 1Window* parent, TResId resId,
TModule* module):

IDialog(parent, resId, module)

II INSER1'» Your constructor code here.
ParamlPoorRadioButton = new TRadioButton(this, IDC_PARAMl_POOR);
ParamlBadRadioButton = new TRadioButton(this, IDCYARAM1_BAD);
ParamlNonnalRadioButton = new TRadioButton(this, IDCYARAM1_NORMAL);
ParamlGoodRadioButton = new TRadioButton(this, IDC_PARAM1_GOOD);
ParamlGreatRadioButton = new TRadioButton(this, IDC_PARAM1_GREA1);

Param2PoorRadioButton = new TRadioButton(this, IDC_PARAM2YOOR);
Param2BadRadioButton = new TRadioButton(this, IDC_PARAM2_BAD);
Param2NormalRadioButton = new TRadioButton(this, IDC_PARAM2_NORMAL);
Param2GoodRadioButton = new TRadioButton(this, IDC_PARAM2_GOOD);
Param2GreatRadioButton = new TRadioButton(this, IDC_PARAM2_GREA1);

Param4PoorRadioButton = new TRadioButton(this, IDC_PARAM4_POOR);
Param4BadRadioButton = new TRadioButton(this, IDC_PARAM4_BAD);
Param4NonnalRadioButton = new TRadioButton(this, IDC_PARAM4_NORMAL);
Param4GoodRadioButton = new TRadioButton(this, IDC_PARAM4_GOOD);
Param4GreatRadioButton = new TRadioButton(this, IDC_PARAM4_GREA1);

Param5PoorRadioButton = new TRadioButton(this, IDC_PARAM5_POOR);

75



 



1/ INSERT» Your code here.

Destroyt);

1/ INSERT» Your destructor code here.

void TIntermediateCocomoParameterDlg::CmOkButtonHandler 0
{

if(paramlPoorRadioButton->GetCheckO) cData->IntParaml=l;
else if(paramlBadRadioButton->GetCheckO) cData->IntParaml=2;
else if(paramlNormalRadioButton->GetCheckO) cData->IntParaml=3;
else if(paramlGoodRadioButton->GetCheckO) cData->IntParaml=4;
else if(paramlGreatRadioButton->GetCheckO) cData->IntParaml=5;

if(param2PoorRadioButton->GetCheckQ) cData->IntParam2=l;
else if(param2BadRadioButton-:>GetCheckO) cData->IntParam2=2;
else if(param2NormalRadioButton->GetCheckO) cData->IntParam2=3;
else if(param2GoodRadioButton->GetCheckO) cData->IntParam2=4;
else if(param2GreatRadioButton->GetCheckO) cData->IntParam2=5;

if(param3PoorRadioButton->GetCheckO) cData->IntParam3=l;
else if(param3BadRadioButton->GetCheckO) cData->IntParam3=2;
else if(param3NormalRadioButton->GetCheckO) cData->IntParam3=3;
else if(param3GoodRadioButton->GetCheckO) cData->IntParam3=4;
else if(param3GreatRadioButton->GetCheckO) cData->IntParam3=5;

if(param4PoorRadioButton->GetCheckO) cData->IntParam4=l;
else if(param4BadRadioButt9n->GetCheckO) cData->IntParam4=2;
else if(param4NormalRadioButton->GetCheckO) cData->IntParam4=3;
else if(param4GoodRadioButton->GetCheckO) cData->IntParam4=4;
else if(param4GreatRadioButton->GetCheckO) cData->IntParam4=5;

if(param5PoorRadioButton->GetCheckO) cData->IntParam5=l;
else if(param5BadRadioButton->GetCheckO) cData->IntParam5=2;
else if(param5NormalRadioButton->GetCheckO) cData->IntParam5=3;
else if(param5GoodRadioButton->GetCheckO) cData->IntParam5=4;
else if(param5GreatRadioButton->GetCheckO) cData->IntParam5=5;

if(param6PoorRadioButton->GetCheckO) cData->IntParam6=1;
else if(param6BadRadioButton->GetCheckO) cData->IntParam6=2;
else if(param6NormalRadioButton->GetCheckO) cData->IntParam6=3;
else if(param6GoodRadioButton->GetCheckO) cData->IntParam6=4;
else if(param6GreatRadioButton->GetCheckO) cData->IntParam6=5;

71

if(param7PoorRadioButton->GetCheckO) cData->IntParam7=1;
else if(param7BadRadioButton->GetCheckO) cData->IntParam7=2;
else if(param7NormalRadioButton->GetCheckO) cData->IntParam7=3;
else if(param7GoodRadioButton->GetCheckO) cData->IntParam7=4;
else if(param7GreatRadioButton->GetCheckO) cData->IntParam7=5;

if(param8PoorRadioButton->GetCheckO) cData->IntParam8=1;
else if(param8BadRadioButton->GetCheckO) cData->IntParam8=2;
else if(param8NormalRadioButton->GetCheckO) cData->InlParam8=3;
else if(param8GoodRadioButton->GetCheckO) cData->IntParam8=4;
else if(param8GreatRadioButton->GetCheckO) cData->IntParam8=5;

if(param9PoorRadioButton->GetCheckO) cData->IntParam9=l;
else if(param9BadRadioButton->GetCheckO) cData->IntParam9=2;
else if(param9NormalRadioButton->GetCheckO) cData->IntParam9=3;
else if(param9GoodRadioButton->GetCheckO) cData->IntParam9=4;
else if(param9GreatRadioButton->GetCheckO) cData->IntParam9=5;

if(paramlOPoorRadioButton->GetCheckO) cData->IntParamlO=l;
else if(paramlOBadRadioButton->GetCheckO) cData->IntParamlO=2;
else if(paramlONormalRadioButton->GetCheckO) cData->IntParaml0=3;
else if(paramlOGoodRadioButton->GetCheckO) cData->IntParamlO=4;
else if(paramlOGreatRadioButton->GetCheckO) cData->IntParamlO=5;

if(paramllPoorRadioButton->GetCheckO) cData->IntParamll=l;



·

\
"

else if(paramllBadRadioButton->GetCheckO) cData->IntParamll=2;
else if(pararn11NonnalRadioButton->GetCheckO) cData->IntParamll=3;
else if(paramllGoodRadioButton->GetCheckO) cData->IntParamll=4;
else if(paramll GreatRadioButton->GetCheckO) cData->IntParamll =5;

if(param12PoorRadioButton->GetCheckO) cData->IntParam12=1;
else if(param12BadRadioButton->GetCheckO) cData->IntParam12=2;
else if(param12NonnalRadioButton->GetCheckO) cData->IntParam12=3;
else if(param12GoodRadioButton->GetCheckO) cData->IntParam12=4;
else if(param12GreatRadioButton->GetCheckO) cData->IntParam12=5;

if(param13PoorRadioButton->GetCheckO) cData->IntParam13=1;
else if(param13BadRadioButton->GetCheckO) cData->IntParam13=2;
else if(param13NonnalRadioButton->GetCheckO) cData->IntParam13=3;
else if(param13GoodRadioButton->GetCheckO) cData->IntParam13::::;4;
else if(param13GreatRadioButton->GetCheckO) cData->IntParam13=5;

if(param14PoorRadioButton->GetCheckO) cData->IntParam14=1 ;
else if(param14BadRadioButton->GetCheckO) cData->IntParam14=2;
else if(param14NonnalRadioButton->GetCheckO) cData->IntParam14=3;
else if(pararnl4GoodRadioButton->GetCheckO) cData->IntParam14=4;
else if(param14GreatRadioButton->GetCheckO) cData->IntParam14=5;

if(pararnl5PoorRadioButton->GetCheckO) cData->IntParam15=1;
else if(param15BadRadioButton->GetCheckO) cData->IntParam15=2;
else if(param15NonnalRadioButton->GetCheckO) cData->IntParam15=3;
else if(param15GoodRadioButton->GetCheckO) cData->IntParam15=4;
else if(param15GreatRadioButton->GetCheckO) cData->IntParam15=5;

CrnOkO;
}

#if !definedLtaddnwpd_h)
#define _taddnwpd_h

II Sentry, use file only if it's not already included.

/* Project fellows
Texas A&M University

Copyright © 1994. All Rights Reserved.

SUBSYS1EM: fellows.apx Application
Fll..E: taddnwpd.h
AUTIIOR: Jason Thompson

OVERVIEW
=======

Class definition for TAddNewProjectDlg (!'Dialog).
*1

#include <owl\owlpch.h>
#pragma hdrstop

#include "fllwsapp.rh" II Definition of all resources.

II{ {TDialog = TAddNewProjectDlg}}
class TAddNewProjectDlg : public TDialog {
public:

TAddNewProjectDlg (projectData *data, TWindow* parent, TResld resld == IDD_NEW_PROJECT, TModule* module = 0);
virtual - TAddNewProjectDlg 0;

private:
'!Edit *ProjectNameEditField;
ProjectData *cData;

II{ {TAddNewProjectDlgRSP_TBL_BEGIN} }

78



#endif /I_taddnwpd_h sentry.

protected:
void CmOkButtonHandler 0;

/If {TAddNewProjectDlgRSP_TBL_END}}
DECLARE_RESPONSE_TABLE(TAddNewProjectDlg);
}; /If {TAddNewProjectDlg} }

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYS1EM: fellows.apx Application
FILE: taddnwpd.cpp
AUTHOR: Jason Thompson

OVERVIEW

Source file for implementation of TAddNewProjectDlg (TDialog).
*/

#include <owl\owlpch.b>
#pragma hdrstop

#include "taddnwpd.b"
#include "dbproj.b"

/I
II Build a response table for all messages/commands handled
II by the application.
/I

DEFINE_RESPONSE_TABLE1(TAddNewProjectDlg, TDialog)
/If {TAddNewProjectDlgRSP_TBL_BEGIN} }

EV_BN_CLICKED(IDOK, CmOkButtonHandler),
/If {TAddNewProjectDlgRSP_TBL_END}}
END_RESPONSE_TABLE;

II{ {TAddNewProjectDlg Implementation} }

TAddNewProjectDlg::TAddNewProjectDlg (ProjectData *data, 1Window* parent, TResId resId, TModule* module):
TDialog(parent, resId, module)

/I INSER1'» Your constructor code here.

ProjectNameEditField = new 1Edit(this, IDC_NEW_PROJECT_ENAME);
cData = data;

TAddNewProjectDlg::-TAddNewProjectDlg 0
{ .

\
"

Destroyt);

/I INSER1'» Your destructor code here.

void TAddNewProjectDlg::CmOkButtonHandler 0
{

/I INSER1'» Your code here.
II Check to see if the field has been entered.

79



MessageBox("You must enter a project name");

char sBuf[21];

ProjectNameEditField->GetLine(sBuf, 21, 1);
if(sBuf[O]==NULL)
{

else

{
DBProj *pdb;
int retumval,i;

for(i=strlen(sBuf);i<20;i++)
sBuf[i]=' ';

sBuf[20]=NULL;

pdb=new DBProj;
returnval=pdb->seek(sBuf);
if (returnval == 0) /lentry already exists

{
MessageBoxCA project already exits by that name");

deletepdb;

else

{
pdb-obottomt);
pdb-c-appendt);
pdb->ProjectName(sBut);
pdb-osavet);

deletepdb;
strcpy(cData->ProjectName, sBuf);

CmOkO;

#if IdefinedLtopnprjd_h)
#define _topnprjd_h

/I Sentry, use file only if it's not already included.

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYS1EM: fellows.apx Application
Fll...E: topnprjd.h
AUTHOR: Jason Thompson

OVERVIEW
=======

Class definition for TOpenProjectDlg (TDialog).
*1

#include <owl\owlpch.h>
#pragma hdrstop

\
"

#include "fllwsapp.rh"
#include "dbproj.h"

/I Definition of all resources.

/It {TDialog = TOpenProjectDlg}}
class TOpenProjectDlg : public TDialog {
public:

TOpenProjectDlg (projectData *data, 1Window* parent, TResld resld ;::; lDD_OPEN_PROJECT, TModule* module = 0);

80



virtual - TOpenProjectDlg 0;

private:
TComboBox

ProjectData
*ProjectComboBox;
*cData;

II{ {TOpenProjectDlgVIRTUAL_BEGIN}}
public:

virtual void SetupWindow 0;
II{ {TOpenProjectDlgVIRTUAL_END}}

#endif II _topnprjd_h sentry.

II{ {TOpenProjectDlgRSP_TBL_BEGIN}}
protected:

void CmOkButtonHandler 0;
II{ {TOpenProjectDlgRSP_TBL_END} }
DECLARE_RESPONSE_TABLE(TOpenProjectDlg);
}; II{ {TOpenProjectDlg} }

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYS1EM: fellows.apx Application
FILE: topnprjd.cpp
AU1HOR: Jason Thompson

OVERVIEW

Source file for implementation of TOpenProjectDlg (TDialog).
*1

#include <owl\owlpch.b>
#pragma hdrstop

#include "topnprjd.h"
#include "dbproj.h"

II
II Build a response table for all messages/conunands handled
II by the application.
II

DEFINE_RESPONSE_TABLE1(TOpenProjectDlg, TDialog)
II{ {TOpenProjectDlgRSP_TBL_BEGIN}}

EV_BN_CLICKED(IDOK, CmOkButtonHandler),
II{ {TOpenProjectDlgRSP_TBL...,END}}
END_RESPONSE_TABLE;

\
"

II{ {TOpenProjectDlg Implementation}}

TOpenProjectDlg::TOpenProjectDlg (ProjectData *data, TWindow* parent, TResId resId, TModule* module):
TDialog(parent, resId, module)

II INSERT» Your constructor code here..

ProjectComboBox = new TComboBox(this, IDC_OPEN_PROJECT_CNAME);
cData=data;

TOpenProjectDlg::-'JDpenProjectDlg 0

81



MessageBox("You must choose a project from the list box");

Destroyt);

1/ INSERT» Your destructor code here.

delete ProjectComboBox;

void TOpeoProjectDlg::SetupWindow 0
{

TDialog::SetupWindowO;

/I INSERT» Your code here.

DBProj *pdb;

pdb = new DBProjO;
ProjectComboBox->ClearListO;
fortpdb-c-topt); !pdb->eofO;pdb->skipO)

ProjectComboBox->AddString(pdb->ProjectNamefj);

void TOpeoProjectDlg: :CmOkButtonHandler 0
{

/I INSERT» Your code here.
char sBuf[21];

ProjectComboBox->GetText(sBuf,20);
if(sBuf[O]==NULL)
{

else

{
strcpy(cData->ProjectName, sBuf);

CmOkO;
}

#if !definedLtbscccpd_h)
#define _tbscccpd..)1

/I Sentry, use file only if it's not already included.

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYSTEM: fellows.apx Application
FILE: tbscccpd.h
AUTHOR: Jason Thompson

OVERVIEW

Class definition for TBasicCocomoParameterDlg (!Dialog).
*1

.

\
"

#include <owl\owlpch.h>
#pragma hdrstop

#include "fllwsapp.rh" /I Definition of all resources.

/I{ {TDialog = TBasicCocomoParameterDlg}}
class TBasicCocomoParameterDlg : public TDialog {
private:

82



TRadioButton
TRadioButton
TRadioButton

*SlocEditField;
*EmbeddedRadioButton;
*OrganicRadioButton;
*SemiDetachedRadioButton;

ProjectData
1Edit

*cData;

public:
TBasicCocomoParameterDlg (ProjectData *data, lWindow* parent, TResld resld = IDD_BASIC_COCOMO, TModule* module =

0);
virtual - TBasicCocomoParameterDlg 0;

II{ {TBasicCocomoParameterDlgRSP_TBL_BEGIN} }
protected:

void CmOkButtonHandler 0;
II{ {TBasicCocomoParameterDlgRSP_TBL_END}}
DECLARE_RESPONSE_TABLE(fBasicCocomoParameterDlg);
}; II{ {TBasicCocomoParameterDlg}}

#endif II _tbscccpd_h sentry.

1* Project fellows
Texas A&M University
Copyright © 1994. All Rights Reserved.

SUBSYSTEM: fellows.apx Application
FILE: tbscccpd.cpp

,

AUTIIOR: Jason Thompson

OVERVIEW

Source file for implementation of TBasicCocomoParameterDlg (TDialog).
*1

#include <owl\owlpch.b>
#pragma hdrstop

#include "tbscccpd.h"

II
II Build a response table for all messages/commands handled
II by the application.
II

DEFINE_RESPONSE_TABLE1(TBasicCocomoParameterDlg, TDialog)
II{ {TBasicCocomoParameterDlgRSP_TBL_BEGIN} }

EV_BN_CLICKED(lDOK, CmOkButtonHandler),
//{ {TBasicCocomoParameterDlgRSP_TBL_END} }
END_RESPONSE_TABLE;

II{ {TBasicCocomoParameterDlg Implementation}}

TBasicCocomoParameterDlg::TBasicCocomoParameterDlg (ProjectData *data, lWindow* parent, TResld resld, TModule* module):
TDialog(parent, resld, module)

,

\
"

{
II INSERT» Your constructor code here.

cData=data;
SlocEditField = new 1Edit(this, IDC_BASIC_COCOMO_ESLOC);
EmbeddedRadioButton = new TRadioButton(this, IDC_BASIC_COCOMO_RTYPE_EMBEDDED);
OrganicRadioButton = new TRadioButton(this, IDC_BASIC_COCOMO_RTYPE_ORGANIC);
SemiDetachedRadioButton = new TRadioButton(this, IDC_BASIC_COCOMO_RTYPE_SEMIDETACHED);

TBasicCocomoParameterDlg::-TBasicCocomoParameterDlg 0

83



MessageBox("You must enter the number of source lines of code");

Destroyt):

/I INSERT» Your destructor code here.

void TBasicCocomoParameterDlg: :CmOkButtonHandler 0
{

/I INSERT» Your code here.
char sBuf[l(0);

SlocEditField->GetLine(sBuf, 7, 1);
if (sBuf[O)==NDLL)
{

else if (lEmbeddedRadioButton->GetCheckO &&

!OrganicRadioButton->GetCheckO &&

!SemiDetachedRadioButton->GetCheckO)

MessageBox('You must choose a project type");

else

{
if(EmbeddedRadioButton->GetCheckO)

cData->ProjectType=EMBEDDED;
else if(OrganicRadioButton->GetCheckO)

cData->ProjectType=ORGANIC; ,

else if(SemiDetachedRadioButton->GetCheckO)
cData->ProjectType=SEMIDETACHED;

cData->EstimatedSize=atol(sBut);

CmOkO;
}

.

\
"

84



Bibliography

Abdel-Hamid, Tarek, and Stuart E. Madnick. "Lessons Learned from Modeling the

Dynamics of Software Development." Communications of the ACM. December,
1989. p.1426-1438

Belova, L. A. and V. V. Lipaev. "Cost Estimation of Complex Software Development
For Management." Automation and Remote Control. July 1988. p.949-955

Boehm, Barry W. "A Spiral Model of Software Development and Enhancement."

Computer. May 1988. p.61-72.

Henry, Sallie, and Calvin Selig. "Predicting Source-Code Complexity at the Design
Stage." IEEE Software. March, 1990. p.26-43.

Khoshgoftaar, Taghi M., John C. Munson, Bibhuti B. Bhattacharya, and Gary D.
Richardson. "Predictive Modeling Techniques of Software Quality from Software
Measures." IEEE Transactions on Software Engineering. November, 1992. p.
979-986.

Lehder, Wilfred E., D. Paul Smith, and Weider D. Yu. "Software Estimation

Technology." AT&T Technical Journal. July/August, 1988. p.lO-18.

Lutz, Martin. "Better models, better estimates." IEEE Software. July, 1988. p.110-111.

Putnam, Lawrence H. "Trends in Measurement, Estimation, and Control." IEEE

Software. March, 1991. p.105-107.

Sommerville, Ian. Software Engineering. England: Addison-Wesley Publishing
Company, 1992.

85

\
"


