by
JORGE R. TABORGA
(Computing Science)

[95]
e
o
;'%
I__l;
ot
ot
D
Q.
F

=
'»lJ

in Partial

=

ulfillment of the Rsquirements c¢f

University Undergraduate Fellows Prograr

f=]

1979-1980

=
o)

L]

l-l

Je
'— 2
e
Q0
(@)

iii

ABSTRACT

The sharply rising cost incurred in the production cof

quality software has brought with it the need for the de-

velopment of techniques used during program design and
implementation. The two most efficient techniques for the

preduction of software are top-down design and structured
programming.
The differences of these techniques and other software

production methods can be quantitatively measured using the
concepts of software science. Conclusions can then be made
based on these measures, regarding the efficiency and the

economic advantages of such techniques.

This paper is divided in two parts. The firs

Gl

part is
ign and structured programming. The
second part introduces the concepts of software science and

discusses in detalil the structured-unstructured vrogram

0q

study. This study has as an objective to measure the
differences of structured and unstructured programs in
regard to their size, amount of information contained, and

programming effort.

ACKNOWLEDGMENTS

The author is deeply indebted to his parents for their
tremendous help and encouragement. He also wishes to thank

Dr., William M. Lively for his time and ideas.

This paper was typed by Charlene Helton.

-

PROGRAM DESIGN PRINCIPLES

INTRODUCTION . . . « « « « &
PROGRAM DESIGN« . . .

Design Representations
Top-Down Program Design

STRUCTURED PROGRAMMING . . .
Program Structures
Advantages

PART II

THE STRUCTURED-UNSTRUCTURED

(@)

SRS S & =
SOFTWARE SCIEN

Measurable Prorperties of

INTRCDUCTION TO THE PROGRAM S

o

THE PROCESS OF TRANSLATION AND
COMPUTATION OF PROPERTIES

PROGRAM STUDY

E AND ITS ELZMENTS

The Translation of the Programs
The uomputatlon of the Measurable

Properties

THE MEASURES OF COMPLEXITY !
MEANING IN THE STUDY

Conclusions

ON

13

)
[3V)

L2

vi

APPENDICES
A THE FORTRAN PROGRAMS 49
B THE PL/1 PROGRAMS . v v v v v & o « . 101
C FORTRAN MEASURABLE PROPERTIES 149

D PL/1 MEASURABLE PROPERTIES 173

o
=)

LIST O ABLES

OPERATORS OF AN EXAMPLE PROGRAM
OPERANDS OF AN EXAMPLE PROGRAM

THE MEASURABLE PROPERTIES OF THE
PROGRAMS oo a ¢

MEASURES OF COMPLEXITY OF THE PROGRAMS

AVERAGE OF THE MEASURES OF COMPLEXITY

COMPARISON OF STRUCTURED AND UNSTRUCTURED

PROGRAMS

HARDWARE/SOFTWARE COST TRENDS

STRUCTURED CHART WITH INPUT/CUTPUT TABLE
VISUAL TABLE OF CONTENTS

OVERVIEW AND DETAIL DIAGRAM

A TOP-DOWN PROGRAM DESIGN

STRUCTURED FLOWCHART E=XAMPLE

(@9

O O

PART I

1. INTRODUCTIOYN

The two components of computers sgye hardware and

software. The hardware is the actual device, composed of
circuits and electro-mechanical parts, that make a computer
work. Software, on the other hand, ig the application

programs and system control programs that we feed into the
computer.

In the last decade, software engineering has emerged
as a discipline concerned with the development and utili-

zation of systematic methodologi

10
w0
Y
15
.
p
®
0
5
s
'_J
0
=
®
)
.
®
1)
)

methodologies and techniques are used for designing,
and

implementing, maintaining software systems. Software
systems can be divided into two categories: those due to
the nature of the computer (system programs), and those

1 \

generated by the user community (application programs).

A study on information processing and data automation

5

™

implications made by the Air Force Systems command [Boehm

e

)

19731, shows that for almost all applications software will
have, as opposed to hardware, the biggest cost. Figure 1-1
shows the cost of software as compared to hardware for a

span of 30 years. As exhibited in Figure 1-1, the

estimated software expenditure in the Air Force and

similar organization will go over 90% of the tota

cost by 1985.

)]
Gt
o
3

1007
F
2 80 —
@ 1 OO N N N N N N
o Hardware AN NON NN NN
© A N0\ N\ N N N
= NN N AN N N N N
.S NS \\ \\\ \ \\‘\ NN N
2 S AN Y
S NN N SO\
“5 \\\\\\\\\ \\\\\ :’\
g e N\ \
- Software = ,\‘\ N
- NN \ \ \ . %
0 NN NN WY N
o N N N N N N
[NG NN N B\ N
a NG NN NN N
N AN N N NN N N |
N\ SN R R RS NN N
1955 1970 1985
Year
Figure 1-1. Hardware/software cost trends.
Software is big business. The overall software costs
in the United States are probably over 10 billion dollars
ver year, over 1% of the gross national product. Consider
what will happen in the years ahead when hardware gets
less expensive because of a more-advanced technology, and
the software (people) costs go up. The relationship of
software and hardware costs will then be even more dramati
Big as the direct costs of software are, the indirect
costs are even bigger, because software generally 1is a
ma jor portion of the critical path in the overall system

~
~

o

relopment. Consequently,

schedule represent delays 1

in software development?

people in hopes

quickly overcome the problem.

usually make things worse
There are sever

minimize delays and to

These measures can
[Boehm 1973]:
1. Increasing

2. Improving prc]
management.

3., Initiating sof
in the system

What can be done

that a numan

rather
al other measures
take softw

e divided

deve

lopment
evelopment cycle.

the overall complet

(W8}

e delays
add more
wil
1s kind
oks 19717.
n t
lcal »nath.
2s
re
indi-

vidual's software productivity by means of software
strategies and structured programming. The other
measures to minimize delays and to take software
critical path will not be developed here.

There are many factors influence
ductivity. One factor is computer response time.

nducted in

the subject show a 20%

software pro-

Many

improvement

programming languages. Comparisons of high
level languages have resulted in si
development time for the same program. The most important
factor in software productivity is the selection of the
right people to do the job. This task is not easy; con-
sequently further work in the areas of personnel selection,
training, and evaluation should be closely followed.

Now comes the problem of how to improve software pro-
ductivity. Significant opportunities exist. The main one

is concerned with the awareness of eacn individual pro-

grammer in regard to where his time 1s reallj

<

aq
o
},_J
o

(18}
]
5
®

programmer should plan his design and develop thoughtful
tests for the software he produces. Another ooporturl*"
to improve software productivity lies in the grea o
gramming languages. As mentioned earlier, high level
languages provide fast and accurate results; therefore

their use 1s highly recommended. Tools and technigues are

also very valuable in increasing software productivity,

fx’)
”)

especially in the designing phase. The top-down appr
in the design and structured programming in the implemen-
tation of a program constitute the most valugple c¢f those

&

tools and techniques.

The following two sections develop the ideas of top-

down design and structured programming.

n

The program design begins once the problem is thor-
oughly defined. Actually, the distinction between the
definition and the design is not sharp. Both activities

are processes of discovery and resolution. As these

[@)N

processes advance, the designer discovers new requirements,

irregularities in the system structure, errors in the work

done so far, and opportunities for tradeoffs in cost,
performance, and other types of measures. As the problem
is defined and the major tradecffs are made, the document
of objectives is created. The definition phase is con-
cluded when this document 1s complete and has been agreed
to by the user and the developer.

The design phase is complete when the specification
document of the design is finished. This is a document
describing nhow the program was built. It 1s necessary to
document the specification, in order to record the many
details that could be lost otherwise. ZEqually important,
the document serves as the basis for discussion with the
user and the operators. It is also the only material

back-up if, for any reason, the designer must be replaced

by a substitute during the job. Finally, the specification
document is the baseline against which the final program
should be tested to verify that it does the things it is

supposed to do.

In the design of a program, the representational scheme
is of fundamental importance. Good notation can clarify the

<+
n tn

o

pregram, where

[N

interrelationships and interactions

Q.

as poor notation can complicate the design. The commonly
used representations for specifying the design of a program
include structure charts, HIPOs, pseudocode, and siructured
flowcharts [Fairley 1976]. The first three design repre-
sentation schemes are discussed in this section. The
discussion on structured flowcharts is left for section

three.

Structured Charts

Structure charts are useful during general program
design as an aid in determining the functions, parameters,
and interfaces of the system. A structure chart is
different from a flowchart, because the former does not

have decision boxes; nor does 1t have sequential ordering

of tasks.

(@8]

5 .

Figure 2-1. Structured chart with input/output table.

Figure 2-1 shows the application of structure charts to
describe the structure of a hierarchical system. The chart
can be augmented with a module by module description of the

input and output parameters.

HIPOs

Hierarchy plus Input-Process-Output diagrams are for-
malized structure charts. As such, they emphasize the
functional aspects of the design rather than the internal
control flow mechanisms of a system.

A typical set of HIPO diagrams consists of a visual
table of contents, overview dlagrams and detail diagrams.
The visual table of contents is a directory to the set of

diagrams in the package. It consists of a tree structured

0y

table of contents, a summary of the contents of each of the

th

overview dlagrams, and a legend of symbol definitions

(see Figure 2-2). Overview and detail diagrams describe the
inputs, the process to support the function being described,
and the outputs for the process. The format of an overview

and detail diagram is represented in Figure 2-3.

LEGEND | N

A ‘ 1 |

co_________ 5 |

R | 2 | | 3 | 4

 CONTENTS S

1;:'.:::::: :;:::_‘_‘:_‘:_’__I |

: 2::::::::: ST‘.—_t:::::_“ ;

| 3:::::?____: o %

L |

Figure 2-2. Visual table of contents.
|
| INPUTS PROCESS OQUTPUTS
‘ — r i
’ | L
! | { i
i N L)>
A | |
. — —/
: 1 | [
| o |
| | | | |
| | I i |
! { | :
Figure 2-3. Overview and detall diagramn.

Pseudocode

Using this notation, the designer describes the design

1]

using short concise English phrases that are structured by

10

key words such as READ, INCREMENT, and DO WHILE. Key words

>
H.

and indentation d

[

scribe the flow of controcl, while the
English phrases describe the processing function.

As an example of pseudocode, assume that a sorting
algorithm will be described. A list of numbers is sorted
from smallest to largest. The pseudococde description of
this algorithm might have the following form:

DC WHILEZ Advancing position one by one until next to last
record.
INITIALIZE Interchange flag to no interchange.

DO WHILE Advancing position one by one until next to
last record.

IF First record greater or equal to second record
THEN Set interchange flag to interchange.
Perform interchange of records.
IF Interchange flag is set to no interchange

THEN Exit,
END IOQP

END LOOQOP

TOP-DOWN PRCGRAM DESIGN

There are basically two approaches to the design of a

+

program: the bottom-up approach and the top-down apprcach.

In the bottom-up approach, implementation begins after

an initial design which identifies the tasks. T

=)
oy
)
8
(@]
9]
GE

elementary level functions are implemented first and then

used as building blocks to compose more complicated tasks.
One major advantage of the bottom-up approach is the con-
centration of effort in the high-risk, low-level components
during the early development phase to determine whether or
not they can be performed as specified. The major problem
with the bottom-up approach is its lack of attention to the
integration, verification, and validati
modules [Ramamcorthy, Ho 1G677].
op-down design is considered one of the design
methodolcgies for reducing the complexity of design and
program analysis. The main idea of top-down design is to
minimize logical errors and inconsistencies by having a
structural specification of the development process.

The top-down approach begins by determining what over-
all functions will be performed by the program, in what
order, and under what conditions. The design then continues
with the development of a top-level mcdule, containing all
the logic controlling the sequencing between functions
introducing dummy subprograms for the functions not yet
implemented. These dummy subprograms are referred to as
stubs. The succeeding steps consist of expanding the
dummy subprograms into a lower-level sequence of control
logic, computation, and subfunctions. As each subprogram
is developed to replace a stub, 1t can be tested immedi-

ately; not only by itself, but also as part of the whole

12

program. Figure 2-4 shows the graphical representation o

a top-down design [Aron 1974].

L
l
,___J__-_—,‘ l 1] |
1 i | Stub |
R L=
| | | meme——
r——i— r—l—1 froe———— = e —.
; E | ‘ 1 5 Stub
n____[___.\ ‘___T._.__L ; ————— -
7 7 Fomt T R
| ! |
R SR N

| [Stub |

_—
w
(o d
c
o
w
. o
c

Figure 2-4, A top-down program design.
i s § [

3. STRUCTURED PRCGRAMMING

Structured programming is a coding technique that

enables programs to be written in execution sequenc

permits a visible relationshi

Vo)
o’
()
ct
=
()
O]
s
ct
5
4]

o)
D}
O
Q
2}
[8Y)
53

and the dynamic executlion of the pro

structures. These structures are: sequences, choices or
selections, and loops or repetitions. It has teen shown t

sequence, choice, and repetition structures are sufficien

to solve any logic problem. The result is based on a

theoretical foundation defined by Bohm and Jacopini

This proof only applies to proper programs. Proper

have the following characteristics:
1. They have one entry point.

2. They have one exit point.
3. They do not have unreachable cocde.

L., They dc not have infinite loops.

Structured programs are proper programs in the sens:

they also have these characteristics,

FROGRAM STRUCTURES

The symbols used tTo describe the program struc

13

@)

}-—l
=

include: process, decision, connector symbols, and
connector lines [Hughes, Michtom 19777.

1

Process Block. This symbol represents an operation

that is to be performed. It consists of a rectangle with

one control path leading into it and one leading out.

The process X may be a single executable statement, a
call to and return from a subroutine, another logic struc-
ture, or a number of logic structures forming a subprogram
or subroutine.

Decision Symbol. The decision symbol specifies a test

operation. It consists of a decision box and is character-
ized by one control path leading in and two paths leading
out. The specification t represents the expression to be

tested. One or the other output path is taken as a result

[N
Ut

Collector Symbol. The collector symbol is a circle
where control paths converge. No operation is performed
here. It is simply a Junction which typically has two

entries and one exit. J
|
|

A

i a -
’T\H/f
Connector Lines. Connector lines represent the passing
of control from one of the above symbols to another in the
direction indicated by the arrow.
— »
-
A. Sequence Structure
This structure indicates the flow of control from one
process block to the next in sequence.
I i
i |
| |
e — I

|
|
L |

=
O\

B. Choice Structure

This program structure is also referred to as ifthen-
else. It provides for a choice between two alternatives.
In the s

evaluaticn results in a single binary condition. This

resulting condition. The expression t could be a
variable or a combination of variables. If the expression
is true, then process A is executed. If it is false,
process B is executed. 3Both processes A and B flow to a
common point.
[
true |
e —p A ‘
1 1 .
[| |
! ! 1‘ !
/\ ;
N pa
- / \
> N, t \ / B
\\ %
\\\f/// A
— B 4
false | |
L i
The two flow lines emerging from the process blocks
meet at the collector node. The logic continues along the
same line. The process blocks can be expanded to include

to have an i1ifthenelse structure

Ture.

Repetition

This structure, also referr

P
I
+

the repetitive execution o

(RN

ot

(@]

Se

(]

within an i1fthene

ed to as dowhile, provides

process blocks.

true

false

In this structure the

node to the decision symbol wher

logical expression t is evaluate

evaluation is true, then process

evaluated again. If it is false

If t contains a variable which w

the execution of the block, this

e a
d.

A is executed and t is

A

A n

Ll

Gt

then is not executed.

’

=

ould be initialized bef

ore

variable would then be

The modif

icatiocn

(RN
[00]

iTtnm

0
i}

Figure 3-1 shows a structured flowchart of an algo
that finds the largest number in a set of 100 numbers, and
the position of that number in the set. The set of numbers

is a vector array called A. The variable M points to the

argest value of the set is found.
ENTER

},._l

position in A where the

sequence < y

N
y
v

e S
< false

)———»EXIT

\\400(//

N
/’true
// \
o

CAMMI—A() N true i M=
~

<
N0 7
S

false

: o
O®W—O® 3® I+~

dowhile

.

N

Figure 3-1. Structured flowchart example.

[ERN
O

Using the basic structures just defined, it 1s possible
to write programs that have no GO TC statements. For this
reason, structured programming is sometimes referred to as
GO TO less programming. However, this is a too narrow

definition and impossible in some programming langua

ZeS.
Structured programming is not merely GO TO less programming.

N

ine approach that encompasses a number of

}-J

It is a discip

techniques in an effort to produce clear readable code

2y

[Hughes, Michtom 1977]. Structured programs that do not

bottom. The specified program statements will be executed

[

n the order in which they appear in the source program

1 sk

(=]
D

g.

ADVANTAGES

When a program is designed and coded using the basic

ShE

o

structures described in this section, the benefits are

fourfold [Aron 197L4]:

1. The program will contain fewer codin
errors.

2. It will be easy to read.

3. It will be easy to debug.

=
H
ct

will be easy to maintain and modify.

Once the structured approach is mastered, it is

(@]

possible to produce code

ot

hat has few or no errcrs. The

20

need for detailed flowcharts to explain a program is re-

(¢}
(O}

so reduc

(=

duced or eliminated. Documentation time is a
because the programs tThemselves are self-doccumented. Pro-
grammer productivity is increased, thereby reducing

personnel costs,

Y]
ok

programs has increased the need for objective measures of
the quality and complexity of software. To satisfy this
need, a theory known as software science has been dsveloved

and refined by Maurice Halstead [1G77]. Software science

©
[6)]
O
h
ct
o
@
(@)
O
=]
o]
)
D
»3
'J
t
<
o
)

provides precise, objective measur
the programs. It predicts the length of programs, and
estimates the amount of time an average programmer would
spend in the implementation of a given algorithm. Numercus

statistical studies have shown very high correlations

between the theory's predictions and the actual measures

C

such as programming time. Software science does all these

ey

measures by simply counting the number of operators an
operands in a program.

2s of

[

Halstead undertook a series of empirical stud

algorithms in order to prove the correlation of the count

of operators and operands to the number of bugs encountered
in a program. The correlation found was surprisingly
strong. From this finding, Halstead hypothesized that algo-

rithms may be characterized by a set of invariant laws.

22

3

The theory of sofiware science has grown
quantitative measures of:
1. Program level.

2. Intelligence content of a

e,
H

ogram.

. Programming effort.

=W

Language level.

n

. Program purity.
. Program clarity.

The effect of modularizaticn.

@ ~2 O

. Programming time.
In this section only the program length, volume, level,
intelligence content, and effort are discussed. The re-

maining sections deal specifically with these five measures.

MEASURABLE PROPERTIES OF ALGORITHMS

An algorithm is a fixed, step by step procedure for
accomplishing a given result. A program is an implemen-
tation of an algorithm using a list of coded instructions in
a computer language.

The operands of a program, which are the variables and
constants, can be identified and tabulated. The operators
of a program, which affect the value or the ordering of
operands, can be tabulated similarly. Halstead [1977]

defined four basic measures which can be determined from

23

these tabulations:

4

cors

1]

n The numbér of distinct opera

1 : :
apprearing in a program.

n, = The number of distinct operands
appearing in a program.

N, = The total number of occurrences of
the operators in a program.

N, = The total number of occurrences of
the operands in a progran.

The size of the vocabulary is defined to be:

nn = I’ll =7 -12
To illu ate these metrics, a2 small subroutine written
in FORTRAN is analyzed. Display 1 shows this program, and

Tables 1 and 2 show the counts of operators and operands
for the program. This example will be used throughout this

L O

section.

Display 4-1

SUBROUTINE 3ORT (X,N)
DIMENSION X(N)
IF (N.LT.Z) RETURN
DO 20 I = 2,N
Do 10 J = 1,1
F (X(I).GE.X(J)) cO TO 10
SAVE = X(I)
X(I) = X(J)
X(J) SAVE

10 CONTINUE
20 CONTINUE
RETURN

END

24

Table 4-1. Operators of the Program of Display L4-1.
Operator Count
1 End of statement 7
2 Array subscript 6
3 = 5
L IF () Z
£ DO 2
6 . 2
7 End of program 1
8 L 1
g +GE 1
ny = 10 GO TO 10 1
2o = L

Table 4-2. Operands of the Program of Display 4-1.

Operand Count
1 X 6
2 I 5
3 J 4
4 N 2
5 2 2
6 SAVE 2
N, = 7 1 1
22 = N

The concept that an algorithm consists of operators and

operands only 1s most easily verified by considering simple

()

digital computers whose instruction format consists of only

8]

B

dress.

§

two parts: an operation code and an operand a
Generalization of these concepts to computer languages 1is

simply by induction [Halstead 1977].

The program length can be obtained by simply adding

ot

the total number of operators and the total number of
operands in a program. The program length equation is

given by:

=
1

N, + N

For our example, the program length will be:

Program Volume

O
!
1
e
i
=
} iy
)

The volume of an implementation of an al

o

defined as:

This definition comes abcut, because for each of the

N elements of a program, log, n bits must be specified to

2
choose one of the operators or operands for that element.
Thus, V measures the number of bilts required to specify a
program. I1f a program 1s translated into another language,
its volume will change. For example, if a program is trans-

lated from PL/1 to assembler language, its volume will

|

ncrease. It requires more operators and operands to express

the same algorithm in assembler language than in a higher-

N

O\

level language.

Because of differences in the program volume of im-

is the most compact (highest-level) representation of an

algorithm. It only considers the distinct number of
operators and operands. The formula of the potential volum

has the following configuration:

Going back to our example, th

it =]

0]

program volume and the

votential volume are:

v 204 bits
V¥ = 69 bits

Program Level

The program level indicates now concise a pro
The implementation of a program in a high-level language
produces a high program level.

Halstead hypothesized a conservaticn law between the

level of a precgram and 1ts volume:

LV = constant

From this hypothesis Halstead concluded that the program

27

level L is the ratio of its potential volume to its actual

volume.

L = V&N

In our example, we find that the program level is

equal to:

Intelligence Content

I}

The intelligence content measure was develope
specify quantitatively how much detail was used in a pro-
gram.

ntuitively clear that 2 program written in

[=H

It is
machine language requires a greater amount of detail to say
the same thing that it does in FORTRAN. In the past there

was no way to measure how much has been said in either case.

Y]
=

The intelligence content of a program answers the "how
much" question.

Halstead defined the intelligence content as:

Referring back to our example, the resulting intelligenc

content for that particular program is:

23

Programming Effort

The difficulty of programming increases as the volume
of a program increases, and decreases as the program level

5 oy S
ractio

5
()

increases. Thus, Halstead suggested t

“s
E=V/L

as a measure of the mental effort required to create a

program. For the FORTRAN example,

2. INTRODUCTION TO THE PROGRAM STUDY

Before algorithms could be measured, a comparative
analysis of different implementations could not be performed
Differences between implementaticns was only a matter of
speculation. For example, the length of a program could

5

have been estimated by the number of statements in that

program. However, this estimation was not accurate because
some programming languages allow multiple instructions in
a statement while some others do not.

Thanks to Maurice Halstead, who developed the concepts
of software science, today it is rossible to analyze
different implementations of algorithms and to compare them
numerically.

Many studies on the differences of implementations of
algerithms have been conducted using the software science
approach. Most of these studies were conducted in the area
of programming languages. In these studies, the same al-
gorithm was implemented in different languages, and the

measuring equations of software science were applied to

each implementatio

In this research, I followed these studies with

30

)

introduction of programming structures. The objective of

my research was to measure the differences of structured
and unstructured programs using the concepts of software

science. The measures used in this study were:

1. the program length;

o

the program volume;
. the program level;

. the intelligence content of a program;

= W

the programming effort.

U

5
g
O
Q)
&3]
i
93|
[

For the structured-unstructured program study it was
important to find well coded structured and unstructured
programs that were implementations of the same algorithms.
Because of the lack of resources and the time constrain
imposed on this research, 1t was impossible to find a con-
siderable number of programmers who could implement algo-
rithms in both forms. For this reason, I have selected the
option of finding unstructured algorithms already imple-

mented, and converting these algorithms tc structured code.

For this purpose, I obtained 15 algorithms from the ACM

communications written in unstructured FORTRAN, and trans-
lated these programs to structured PL/l. I kept the

translation strictly oriented to the structure of the

1

programs, not letting the differences of the languages

31

interfere with the conversion. Then, I tabulated the
measurable properties of each of the programs. The last
vart of the study consisted in the application of the
software sclence equations and in the evaluation of the
results.

This procedure was selected because FORTRAN does not

support structured programmi

0y
’_1
i3
H
ct
10)]
O
v
n
’_l
@]

PL/1 does. Therefore, a comparative analysis of program

tructures was possible using these two languages.

0

The next two sections explain in detail the procedure

)

}._‘

ollowed in the structured-unsiructured program study.

W
N

1

This section explains in detail the process of trans-
lation of thel5 unstructured FORTRAN programs to structured
PL/1. The computation of the measurable properties of both

versions of the 135 programs is also described here.

The 15 FORTRAN programs selected for this study were
programs which allowed a structured translation without tco
much complication.

The translation of the programs was based on three
objectives:

1. To maintain the flow of
structured versions sequ

2. To use the three basic structures of
structured programming at all times.

3. To avold redundancies and unnecessary
repetitions of statements.

In the translation of the programs, none of the state-
ments were modified. Only their flow of control was altered

with the introduction of the program structures of structured

programming. When an IF statement was encountered in the

33

FORTRAN version of a program, it was replaced by the IF-THEN
instruction of PL/1. When the true exit of the FORTRAN IF
statement involved a GO TO instruction, tThe statements
referred by that GO TO operator were attached to the THEN

exit in the translation by means of a DO-END instruction.

=
(> F
',_J .
0
o]

rocedure was followed only when the false exit of the
FORTRAN IF statement was another GO TO instruction, or when
the statements referred by the true exit of the FORTRAN IF

statement involved some kind of program terminaticn, suc!

as a RETURN instruction. Display 3-1 shows this situation:

Display 3-1

FORTRAN

=
eS|
i]
>~
(53]
O
=
P
(@]
H
O
[y
(@)

102 =X +Y

In cases where the statements that followed the false

S L

X1l7v¢

(¢]

of the FORTRAN IF statement met with the statements referred

~

by the GO TO instruction in the true exit of t
the following procedure was taken: The test o
the FORTRAN IF statement were changed in order
exits of this statement. Then the instruction
exit of the FORTRAN IF statement were placed 1
part of the PL/1 translation, and the statemen
the GO TO instruction were placed after the IF
ture. In display 3-2 we can see an example of
procedure.

Display 3-2
FORTRAN
IF (X.GT.Y) GO TC 10
Y=Y +1
102 =X +Y
PL/1
IF (X <= Y) THEN
DO;
Y=Y +1
END;
Z =X +Y

ne FORTRAN IF
perator(s) of
to alter the
s in the fals
n the THEN

T3 referr.ed wc
-THEN struc-

this

Another situation encountered with FORTRAN IF st
ments was when both exits involved GO TO instructions
the translation of these type of structures, the ELSE
operator was introduced. Display 3-3 shows 2 typical

example of this situation.

Display 3-3

FORTRAN
IF (X.EQ.Y) GO TO 1i0¢
Y =Y +1

[N
!
>
t
H<

D
ct
L}
oY
D
[}
P._J
N
G
r 1
(@]

More complex cases came across in th

ct
]
Lo
(@]
ct
|,J
(@]
n
3
(@)
ot
Hy
O
o
@
oy

programs. For example, GO TO ins

statements, that referred to statements later in the program.
To solve this situation, 1t was necessary to rewrite sets of
statements several times where these statements were in-
voked. This measure was necessary in order to maintain a
sequential flow of control. Another complex case encoun-

tered was when a GO TO instruction referred to statement

ct
[0)]

earlier in the program. The procedure followed in this cir-

cumstance involved the creaticon of a dowhile structure

this purpcse, every time a dowhile structure was created, a

—

new ccontrol variable was introduced. Some additiona
instructions that changed the value of the control variable
were added inside the dowhile gtructure for a proper exit
of the loop. A visual representation of this case is found

in Display 3-4.

Display 3-4

10 X =X + 1

Display 3-4 (Continued)

IFr X > 10 THEN KX = 0
EISE

DO;

END;
END 1P 1;

+

=
o
®
B
D
=
o
}.J
o)
I
=
(8]
0

C

ituations that required changes in the

o

translation of the programs were combinations of the pre-

e

viously described cases.

As mentioned before, the objectives of the translation
were to use the three bvasic structures of structured
programming (sequence, ifthenelse, dowhile), to keep the
programs sequential, and to avoid the repetition of state-
ments whenever possible. A less ilmportant objective of the

translation of the FORTRAN programs to structured PL/1 was

the elimination of GO TO0 instructions. In some instances
however, this objective was not fulfilled. Some of the

programs contained GO TO instructions which exit loop
structures, and whose elimination would have only prcduced

long repetitions of statements and more unreadable code.

L
o

In any respect, the references of those GO TO instructicns

which were not eliminated corresponded t

O
0]

in the program, thus the flow of control of the pro
remained sequential,
The 15 FORTRAN programs can be found in Appendix A.

Their translation to structured PL/1 are in Appendix B.

THE COMPUTATION OF THE MEASURAB

es]
—
1
o)
os
O
b
L
=
-
{1
wn

The measurable properties

o
Hy
v

lgorithms consist of the

number of distinct operators (n,), the number of distinct

1
operands (nz), the total number of operators (N,), and the
total number of operands (N The manner in which these
properties were computed for both versions of each of the
15 programs is the topic of this subsection.

All the operators and operands of the 30 programs were
computed by inspection. That<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>