
APPLICATION OF NEURAL NETWORKS TO

COMPUTER-AIDED DESIGN OF

ELECTRONIC CIRCUITS:

Solution of Linear Equations

Jill R. Minick

University Undergraduate Fellow, 1989-90
Texas A & M Universi ty

Department of Electrical Engineering

APPROVED

�ro���IQ
Honors Dit etorcY,)
�-cY, \ I



I. Introduction

The objective of this research is to investigate the application of Artificial Neural Network tech

niques to the area of computer-aided design of electronic circuits. A major problem in this area is

the analysis (especially statistical) of large integrated circuits, taking a substantial amount of the

CPU time even on the most powerful computers available today. Two most time consuming tasks

responsible for this situation are: calculation of model parameters of semiconductor devices, and

solving systems of linear equations (required for all types of analyses available from such circuit

analysis programs as, e.g., SPICE). Therefore, it is very important to look for methods of improving

the efficiency of performing these two major tasks.

In the development of this project, the main emphasis has been directed toward solving a system

of linear equations. ANNs are applicable because optimization can be used to obtain a solution to

these equations. Currently, solving a system of linear equations usually involves iterative numerical

techniques in the form of an algorithm implemented in a computer program. The time needed for

the computer to yield an exact solution can grow exponentially with the number of equations for

which the solution is desired. With ANNs, a good approximation to the solution can be obtained

directly in hardware (an electrical circuit) in a parallel architecture. With a parallel architecture,

operations are performed simultaneously in parallel rather than serially. As a result, expanding the

number of equations to solve in parallel does not increase the time required to reach a solution. Thus

the efficiency in solving a large system of linear equations is much greater with the parallel ANN.

Applying Artificial Neural Networks to the solution of a system of linear equations provides a new

hardware approach which is faster and more efficient than conventional iterative implementations

in software programs. One obvious disadvantage is that the accuracy of the solution obtained is
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limited by the accuracy of the ANN element values and the measurements of the solution voltages,

since the ANN is an analog circuit.

II. Introduction to Artificial Neural Networks in general

Artifical Neural Networks (ANNs) have recently become a key phrase in research circles across

many disciplines because of their promising outlook and far-reaching potential. The basic concept

of an ANN has been around for many years, generating an interest from the late 1940's through the

1960's. However, the implementation of these concepts was not practical because researchers were

limited by the analog computers of the pre-VLSI era. The rejuvenated interest in ANN concepts

is a result of the tremendous advances in VLSI technology which, along with other technological

advances, have made implementation possible as well as feasible [1].

Artificial Neural Networks are modelled after biological neural networks. In the human brain

for example, neurons are nerve cells arranged in a network such that all thinking and learning

processes are developed. Exactly how this is accomplished has always intrigued the human race and

has led to many investigations over the course of time. ANN s apply what has been learned from

these investigations to implementations in electronic circuits in an attempt to imitate the processing

capacity of the brain. As a result, ANNs have evolved into highly interconnected, analog circuits

consisting of massively parallel processing elements (neurons).

The goal of ANN s is to perform functions that humans can do very well, bu t that modern digital

computers find very difficult. These tasks include association, classification, feature extraction,

generalization, categorization, and optimization [1]. Examples might include recognizing a familiar

face and recalling information associated with a certain smell or taste. Note that these tasks will

involve solutions that can't be computed to an exact result, but rather invol ve a closest match or
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best approximation.

The capabilities of the brain can be grouped into three general categories: searching, represen

tation, and learning. These tasks are achieved with the associative and self-organizing properties

of the brain. The associative property involves the ability to recall all relative information given a

single detail of information. The self-organizing property refers to the ability to acquire information

by a trial-and-error process which involves responding to external stimuli through organization and

reorganization [1]. These are the properties that need to be implemented into ANN s.

The methodology behind ANN s involves simple processing elements (neurons) which act on ana

log information received from other processing elements arranged in parallel in the network. Its

output, in turn, is distributed to other processing elements. The connections between elements are

weighted corresponding to the relationship between the elements, which is specific to the function

of the network. Because the neurons are arranged in parallel, many processes can be done simulta

neously. The resulting speed and efficiency is the appeal of parallel processing. The ANN has no

memory cells as a standard random access memory. The memory of the ANN resides in the state

of the system where the "strengths" of the connections in the network are the "memory elements".

As an example, the neuron element can be thought of electronically as an operational amplifier in

an integrator configuration. The ANN can be thought of as a large group of operational amplifiers

interconnected through potentiometers which act as weights ("strengths") in the connections. Other

active elements can also be used, e.g., Schmitt Trigger devices.

Several algorithms have been developed and have proved successful in applying ANN techniques.

The ANNs that have been built are application-specific, each with a separate architecture to solve

a certain problem [1]. When ANNs are expanded to solve a wide range of general problems, they
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tend to lose their efficiency. However, the motivation for USing ANNs is still strong because of

the their ability to solve problems that can't be solved effectively with modern digital computers.

With the advancement of technology, ANN theories and algorithms are moving closer to practical

implementation. Recent developments in charge-coupled devices (CCDs) allow for dynamically

reprogrammable connections which are essential in many ANN algorithms [1]. Because of the high

interconnectivity of ANNs, VLSI technology may be too limited as an avenue toward implementation.

Electro-optical advances may provide an alternate, more effective route.

III. Approach

Several possible approaches to the solution of a system of linear equations were investigated. One

such approach was to implement any iterative numerical technique and convert from the difference

equations in the z domain to differential equations in the s domain. Then the differential equations

could be implemented into an electrical circuit. It was discovered, however, that although going from

differential equations to difference equations is relatively easy, transforming difference equations to

differential equations seems to require a thorough examination into numerical methods. It was

because of this difficulty that this method was abandoned.

A second approach involved a method of Least Squares which uses linear algebra to solve systems

of equations. However, multiplication of matrices requires a number of multiplication operations,

many of which need to be done serially. As a result, this method might be just as time consuming

as the conventional software methods.

The approach used in this research is to map the Solution ofa System of Linear Equations problem

directly into the Linear Programming Problem of Tank and Hopfield. Tank and Hopfield showed

in the Linear Programming Problem that given a function to be minimized and the constraints on
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that function, a solution could be determined with a ANN implementation [2]. Tank and Hopfield's

approach involved optimizing a function similar to a (quadratic) energy function by minimizing

the square of a norm of the solution error to zero, using a modification of standard unconstrained

optimization methods. The parameters of the function to be minimized, the cost function, and the

constraint equations are mapped into a corresponding neural network. The ANN will then converge

to the minimum of the corresponding energy surface within a couple of network time constants (i.e.,

very quickly).

This optimization involves a function to be minimized (cost function) and the constraints on that

function which define the vector space where the function is to be minimized. These constraints

establish the boundaries wherein the minimum is to be obtained. This minimum will correspond to

the solution of the system according to standard numerical methods as proved by Tank and Hopfield.

IV. Tank and Hopfield Network Solution to the Linear Programming Problem

Tank and Hopfield proved that an ANN can be implemented into an electronic circuit where

optimization is achieved by supplying initial voltages and allowing the analog circuit to converge

to the point of stability. The achievement of stability implies minimization of an energy function

which can be shown to correspond to the solution of the optimization problem. Figure 4.1 shows

the organization of a network which will solve a 2-variable 4-constraint linear programming problem

[2]. For the Linear Programming Problem the function to be minimized, the cost function, is

where _A_T is the transpose of the vector matrix A containing the coefficients of the variables and

V is the vector containing the variables. The constraints are represented by the equation
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where D is a matrix containing the coefficients of the variables in the constraint equations, V is

the vector of the variables, and b is the vector containing the constants.

For the two-variable, four-constraint problem demonstrated by Tank and Hopfield the cost func-

tion to be minimized is

where VI and V2 are variables and al and a2 are the coefficients. The constraints are represented

by the following equations:

where DJi are coefficients of the variables in the constraint equations and b, are the constants.

The circuit equations for the current flowing into the 9 amplifiers can be wri t ten

6



where C1 d�i is the current across the capacitor and f( zJ) is the output voltage of the f amplifier

that when multiplied by the conductance DJi becomes the current contribution from the f ampli-

fier. These equations describe the circuit implementation of the ANN which will solve the linear

programming problem by minimizing an energy function of the form:

The time derivative of the energy equation becomes

making substitutions step by step the following equations result:

dE
L dVi L

� � Xi
- = -[A + D . f(D· . V - b) + -]dt dt

1 JZ J ) R
1 )

dE
= ""' dVi [_CdX1]dt � dt

1
dt

i

dE
= _ ""' cdVi dXi

dt � 1
dt dt

i
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Since

and

dXi
_

_ 1 ( )
dVi

- 9 V-dt
-

l

dt

then

In the above equation observe that C, is a positive number (value of the capacitance) and that

(dd;i)2 is a positive value because it is squared. Also, g-l(Vi) is defined to be a monotone increasing

function. Therefore, because of the negative sign in front of the sum of these terms,

dE
- <0
dt

-

when

Thus the network achieves a steady state when the energy function is minimized. The variables

are no longer changing and thus have achieved values such that the 4> equation is minimized.

V. Simple One-Variable Case

To illustrate the simple one variable case, let

4>( v) = v
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subject to the constraint

f(v)=v?_O

A block diagram is shown in Figure 5.1. In this block diagram, 9 is a linear amplifier such that

Vi = g( xi) and f is a non-linear (piecewise linear) amplifier such that

f(v) = { �v if v > 0

if v < 0

If we write a node-voltage equation for the voltage z, we have

dx x
C - = -1- - - w

dt R

dx 9
-1 (v)

C-=-l----f(v)dt R

Then an energy equation of the form:

1 l'v 19(V)E(v)=v+- xdv+ f(v)
Roo

[3]

can be obtained and the time derivative of the energy function is

dE -1 ( )-=l+�+f(v)dt R

Then, as the energy function is minimized (by supplying initial voltages and allowing the system

to converge), the solution to the one-variable optimization problem will be determined.
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FIGURE 5.1: ONE VARIABLE CASE
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VI. Approach for Solving a System of Linear Equations

The reason for the emphasis on the Linear Programming Problem is its direct relationship to the

problem of Solving a System of Linear Equations. Because of the similarity in the two problems,

there is a direct mapping between them.

Solving a system of linear equations requires a variation of the Tank and Hopfield approach.

In this case, the system of linear equations corresponds to the constraints on a cost function that,

when minimized subject to the constraints (the system of linear equations), would simultaneously

solve the system of linear equations. It was found that this cost function can be determined using

numerical methods and analytic geometry. Specifically, the cost function will be of the same form

as the constraint equations such that taking the gradient of the constraint equations will yield the

coefficients of the cost function.

Let the system of linear equations (the constraint equations) be represented by

f(V) = D . V - b = 0

or

Note that these constraints are now represented as an equality matrix equation as opposed to the

inequality shown in the linear programming problem. An artificial function to be minimized, a cost

function, is introduced in the form:
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The coefficients of this function need to be selected such that minimization gives the solution to

D· V = h. Let

where D, is the ith column of D, and let a Lagrange function be defined:

n

L(V, X) = Y(V) + L Ai 9i(V)
z=l

where the Lagrange multipliers A2 2: 0, i = 1,2, ... , n. Minimization is achieved when the

gradient of this Lagrange function is set equal to zero, so at the solution V s

n

V'L(Vs, X) = V'Y(Vs) + L Ai V'9i(VS) = 0

i=l

Therefore

n

V'Y(Vs) = - L A2 V'gi(VS) Ai> 0

i=l

Then

and

Therefore
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n

A = - L Ai (-Di)
1=1

n

AJ = - L Ai (-D1J)
i=1

The choice of Ai, the Lagrange multiplier, is somehow arbitrary, but should be chosen such that

the fastest convergence is achieved [4]. If the Lagrange multipliers are chosen to be 1, then

n

AJ = L DiJ
i=1

Thus, for a two-variable case:

where A IS the coefficient vector matrix of the cost function, i of D1J is the number of the

constraint equation and j is the number of the variable in the constraint equation, i.e., D12 is the

coefficient of the 2nd variable of the 1 st equation. Figure 6.1 shows a graphical representation.

VII. Two Variable Example Voltage-Controlled Current Source (VCCS) Neuron

Implementation

Upon determination of the cost function, there is a direct mapping to the Tan k and Hopfield

Linear Programming Problem. Using a specific two-variable case, the mapping was performed and
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FIGURE 6.1: GRADIENTS OF 2X2 EXAMPLE

a : V1 + 2V 2= 5

f3 :4V1+ 3V
2

10

A

Y = 5V 1+ 5V
2



the resulting neural network was simulated with the SPICE simulation program in order to check the

validity of the proposed approach. In this simulation, ideal elements were used at first to confirm

the theoretical predictions. Voltage-controlled current sources were used as connective elements

(corresponding to resistors in Tank and Hopfield's approach), diodes were used as the f amplifiers

and a diode/voltage-controlled current source combination were implemented for the 9 amplifiers.

In this two variable example a system of two equations is mapped to the constraint equations of the

linear programming problem.

Recall the method for determining the coefficients of the cost function to be minimized (for the

two-variable case)

A=

Thus, the cost function can be defined

Consider the energy function described by Tank and Hopfield in the linear programming problem:
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For this application

where

U(h) = { �J if Ij > 0

if IJ ::; 0

Recall the time derivative of the energy function

dE
=-""'C -1(v,)(dVi)2dt Ltg t

dt
t

If both sides are divided by ddt, the following result is obtained:

dE
L -1 dVi

_-- C V,_
dVi

-

.

t 9 (t) dt
t

Applying this relation to the two-variable example at hand, a circuit implementation similar to

that of the quadratic programming problem [3] can be visualized.

With the substitution of values, the energy equation becomes:
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Taking the derivative with respect to Vi

dE 1 -1
_ - = _ 5 _ U (h) . (1) _ U (h) . (4) - - 9 (VI)d� R

dE 1 -1
_- = -10 _ U(h)' (2) - U(12)' (3) - -g (V2)d� R

A circuit can then be constructed from these equations. (The actual mapping to the circuit is

shown in Appendix F.) The diagram for this two-variable VCCS ANN implementation is shown in

Figure 7.1. In Figure 7.1, the first two long horizontal lines represent the constraint equations and

the last two long horizontal lines represent the :� equations. All the trapezoidal boxes are the

voltage-controlled current sources (VCCSs) which multiply the input voltage by the gain (value of

the coefficient) and output the result as a current. The current-controlled voltage sources function

as the 9 amplifiers. The diodes correspond to constraint satisfaction, U (fJ) in the equations and the

transfer function for the diode can be described by Figure 7.2 where

U(h) = { �i if it > 0

if ii < 0

Finally, the capacitors allow for integrative analog summation of input currents from other pro-

cessors and partially define the time constants of the ANN [2].

The circuit equations for the current flowing into the 9 amplifiers can be written
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FIGURE 7.1: BLOCK DIAGRAM FOR 2X2 "VCCS" ANN
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FIGURE 7.2: COMPARISON OF AMPLIFIER TRANSFER FUNCTIONS
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These equations describe the circuit implementation of the ANN which will solve the system of

two linear equations as the energy function is minimized (by supplying initial voltages and allowing

the system to converge). In this example, the solution to the system of linear equations is at VI = 2

and V2 = 2 so that

1·2+2·2=5

4·2+ 3 . 2 = 10

The SPICE simulation reached this solution in 10 ns (lE-8 seconds) when the above ANN was

simulated. (Appendix A: SPICE File for the 2x2 VCCS ANN Implementation).

VIII. Two Variable Example: Resistor Neuron ANN Implementation

The implementation using voltage-controlled current sources can be altered by substituting re

sistors for the voltage-controlled current sources to simplify the components in the circuit. Using the

same system of equations as an example, a resistor neuron implementation was developed as shown

in Figure 8.1. The difference between Tank and Hopfield's implementation and this implementation

involves the functions of the f and 9 amplifiers. In most ANN s the processing elements require

sigmoidal functions for correct operation. However, because of the nature of this problem, piecewise

linear functions are appropriate. In Tank and Hopfield's Linear Programming Problem (Figure 4.1),

the 9 amplifier was characterized by Vi = g(Xi) where q, is a linear function. The f amplifier was

defined by

Zj = Dj . V - bj
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FIGURE 8.1: DIAGRAM FOR 2X2 RESISTOR NEURON ANN
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J(z)
if z > 0

if z < 0

[3]

Whereas, in the method of Solving a System of Linear Equations, both amplifiers have the same

function. If z equals the current flowing into the amplifier,

J{z) = { � if z > 0

if z < 0

This resistor neuron ANN implementation did not give an exact solution like the ideal VCCS im-

plementation did, but only had an error of approximately .1%. The VCCS implementation achieved

an exact solution because it was simulated with ideal voltage-controlled current sources with gains

equal to the values of the coefficients, whereas the resistor neuron implementation involves resistor

values equal to the reciprocal of the coefficient values. However, the convergence for the resistor
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neuron implementation was achieved within 10 ns, the same convergence time as the VCCS imple-

mentation. (Appendix B: SPICE File for the 2x2 Resistor Neuron Implementation)

IX. Expanding to a Twenty-Variable Example

To further test the algorithm for development of a VCCS ANN, a system of twenty linear equa-

tions with twenty unknown variables was considered. The constraints (equations) are as follows:



1. 2 VI + V2 = 4

2. 2V2+3V3-2V4=5
3. 5 VI + 7 Vs - V6 = 10

4. 3 V7 - V8 + 2 V9 = 7

5. 5 VlO + Vll - 3 Vl2 = 1

6. 8 VI3 + 2 Vl4 - VIS = 9

7. 3 VI + Vl7 + 3 Vl8 - 2 Vl9 = 4

8. 3 V3 + VIO - 2 V20 = 3

9. 6 Vs - 3 VI4 + Vl8 = 2

10. - 2 V7 + 5 Vl2 - 4 Vl3 - 2 Vl7 = 8

11. 3 V4 + V7 - Vl6 - Vl9 = 14

12. 2 V8 + 2 V9 - 3 Vl3 + V20 = 11

13. 3 V4 - 2 Vs - 6 Vll + 5 Vl9 = 7

14. 7 VI + 5 Vs - 8 V9 - 3 Vl3 + Vl7 = 2

15. V2 - V7 + VIS + V20 = 6

16. 3 V3 + Vs + 2 VI4 - 3 Vl9 = 5

17. 5 V9 - Vu + 2 Vl4 + VIS = 8

18. 3V6-V9+2VlO=9
19. - 4 V6 + 3 V7 + 4 Vl3 = 5

20. V4 + 7 V17 - 5 Vl8 = 1

From these equations, the coefficients of the cost function equation were determined as follows:

Al = 17 A2 = 4 A3 = 9 A4 = 5

As = 17 A6 =-2 A7 = 4 A8 = 1

A9 = 0 AIO = 8 All = -5 Au = 1

Al3 = 2 Al4 = 3 AIS = 1 Al6 = -1

Al7 = 7 Al8 = -1 Al9 = 1 A20 = 0

such that <P = A_T . V is the cost function to be minimized subject to the constraints (system of

twenty linear equations).

The solution to this 20x20 (twenty equations, twenty unknowns) system is as follows:

VI = 1 V2 = 2 V3 = 3 V4 = 4

Vs = 1 V6 = 2 V7 = 3 V8 = 4

V9 = 1 VlO = 2 Vll = 3 Vl2 = 4

Vl3 = 1 Vl4 = 2 VIS = 3 Vl6 = 4

Vl7 = 1 Vl8 = 2 Vl9 = 3 V20 = 4

The 20x20 ANN was simulated in the SPICE simulation program and the above solutions were

exactly determined within lIns (1.1E-8 sec). (Appendix C: SPICE File for the 20x20 VCCS ANN

Implementation).
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x. Observations

The value of the capacitors were varied during simulation of the twenty-variable example to

experiment with convergence times.

Cap.Value(F) Time(sec)
IE - 8 oscillation
IE - 11 l.1E - 8

IE - 13 l.OE - 8

IE - 16 l.OE - 8

Thus making the capacitance a little smaller makes the time constant shorter by approximately

1 ns. If the capacitance is too big, the time constant is too large for convergence to be achieved.

For simulations in which convergence was achieved the solutions were the same regardless of the

capacitor value.

Analysis of resistor values was also performed (this time in the two-variable example) to observe

the effects of inaccuracies in these components. There are inaccuracies associated with the resistor

neuron ANN implementation itself because the resistor values are reciprocals of the coefficients

values. This oftentimes results in irrational fraction values (e.g. � which can only be approximated.

Additionally, circuits were simulated in which the resistors values were altered slightly. When the

two resistors were altered by 1%, the solutions developed errors around 5%. When six resistors were

altered, the errors of the solutions varied by 13% for one and 5.8% for the other. Therefore, as more

errors were introduced in the resistors, there was a corresponding error in the solutions. However,

if there is only a small error in the resistor values, a close approximation to the act ual solution can

still be obtained.

As a final observation, note that expanding from a two variable case to a twenty variable case
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with the VCCS ANN implementation increased the convergence time by only 1 ns. Present-day

serial computers would have a much higher increase in the time needed to solve a twenty variable

case as opposed to a two variable case. Thus, the advantage of parallel processing in the ANN is

obvious. Expansion is not a problem with the parallel architecture of the ANN.

XI. Automating the Process

It is obvious that the input file for SPICE simulation is quite large for a system of twenty linear

equations and quite cumbersome to produce. Therefore, for the purpose of experimenting with the

proposed approach, a computer program was written to automatically generate the SPICE input

file given the system of equations for which solution is required. The program was written in the

"Turbo C" programming language and is listed in Appendix D. The output of the software program

(which is the input file for SPICE simulation) is shown in Appendix E.

XII. Conclusion

It is readily apparent that the solution to a system of linear equations can be determined using

Artificial Neural Networks by a direct mapping to the Linear Programming Problem done by Tank

and Hopfield. This is accomplished by using the system of linear equations as the constraints and

determining a cost function of the same form to be minimized by standard optimization methods.

The resulting Artifical Neural Network is a highly interconnected network of simple processmg

elements which can be resistors or voltage-controlled current source amplifiers.

The resulting implications are that the hardware implementation of the ANN circuitry has the

potential of providing a very quick solution to a problem that presently consumes a large amount of

CPU time. This circuitry could potentially become a section of a neural computer as well. However,

some improvements may be necessary before an ANN solution to a system of linear equations is
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fully implemented. Presently, the ANN is problem specific (i.e., a distinct ANN is required for each

system of linear equations). Implementation of reprogrammabie connections, in which the weights

of the processing elements can be altered, will expand the capabilities of the ANN to solve a variety

of systems. Also, inaccuracies in components such as voltage supplies, resistors, amplifiers, etc.

contribute to a less accurate solution. However, even if the errors are present in the solution, the

methodology can still be used for those cases were the accuracy of the solution is not critical, e.g.,

in solving certain classification and decision making problems. Therefore, further improvements III

technology are required to utilize the ANN to solve a variety of systems of linear equations.

21



Bibliography

[1] "Artificial Neural Networks: An Introduction". V. Vemuri. Artifical Neural Networks: Theo

retical Concepts. Computer Society Press Technology Series. pp. 1-7. 1988.

[2] 1.1. Hopfield and D.W. Tank. "Simple 'Neural' Optimization Networks: An AID Convertor,

Signal Decision Circuit and a Linear Programming Circuit. " IEEE Transactions on Circuits

and Systems. Vol. cas-33, no.5. pp. 533-541. May 1986.

[3] E. Sanchez-Sinencio. ELEN 489: Neural Networks and Implementations Lecture Notes. Depart

ment of Electrical Engineering. Texas A&M University. pp. A30-A40. Fall 1989.

[4] M. Styblinski (Research Advisor) . Notes. Department of Electrical Engineering. Texas A&M

University. Research advisor. Fall 1989 and Spring 1990.

22



APPENDIX A: SPICE FILE FOR THE 2X2 VCCS ANN IMPLEMENTATION

INPUT LISTING TEMPERATURE = 27.000 DEG C

***FIRST CONSTRAINT***

VS 1 0 PWL(O 0 10NS 1)
RS 1 0 1

G1 2 0 1 0 5

G2 2 0 9 0 -1

G3 2 0 13 0 -2

01 2 3 DIODE

VOFF1 3 0 DC -.7
***SECOND CONSTRAINT***

G4 4 0 1 0 10
G5 4 0 9 0 -4

G6 4 0 13 0 -3

02 4 5 DIODE

VOFF2 5 0 DC -.7
***X1 EQUATION***
G7 6 0 1 0 5

G8 6 0 2 0 1

G9 6 0 4 0 4

03 6 7 DIODE
VOFF3 7 0 DC -.7

VX1 6 8 AC 0
R 1 8 0 1

H1 9 0 VX1 100
C1 90 1E-11
***X2 EQUATION***
GlO 10 0 1 0 5

G11 10 0 2 0 2

G12 10 0 4 0 3

04 10 1 i DIODE
VOFF4 11 0 DC -.7

VX2 10 12 AC 0
R2 12 0 1

H2 13 0 VX2 100
C2 130 1E-11
**************

.MODEL DIODE 0

. WIDTH OUT =80

.TRAN 1NS 20NS

.PRINT TRAN V(9) V(13)

.END



APPENDIX A (CONTINUED) : RESULTS OF SIMULATION

TRANSIENT ANALYSIS TEMPERATURE = 27.000 DEG C

TIME V(9) V ( 13)

O.OOOE+OO -1 .OBOE-03 3.251E-03
1 . OOOE -09 9.99BE-02 2.001E-01
2.000E-09 2.000E-01 4.000E-01
3.000E-09 3.000E-01 6.000E-01
4.000E-09 4.000E-01 B.000E-01
5.000E-09 5.000E-01 1.000E+00
6.000E-09 6.000E-01 1.200E+00
7.000E-09 7.000E-01 1 .400E+00
B.000E-09 B.000E-01 1 .600E+00
9.000E-09 9.000E-01 1 . BOOE+OO
1 . OOOE -OB 1 .OOOE+OO 2.000E+00
1 . WOE-OB 1 .OOOE+OO 2.000E+00
1.200E-OB 1 .OOOE+OO 2.000E+00
1.300E-OB 1 .OOOE+OO 2.000E+00
1.400E-OB 1 .OOOE+OO 2.000E+00
1 .500E-OB 1 .OOOE+OO 2.000E+00
1 .600E-OB 1 .OOOE+OO 2.000E+00
1.700E-OB 1 .OOOE+OO 2.000E+00
1.BOOE-OB 1.000E+00 2.000E+00
1.900E-OB 1 .OOOE+OO 2.000E+00
2.000E-OB 1 .OOOE+OO 2.000E+00

JOB CONCLUDED

TIME PAGE DIRECT BUFFERED
CPU ELAPSED FAULTS I/O I/O

0: 0: 3.62 0: 0: 4.7B B4 2

TOTAL JOB TIME 3.62



Appendix B: Spice File for 2x2 Resistor Neuron Implementation

INPUT LISTING TEMPERATURE = 27.000 DEG C

VS 10 PWL(O 0 10NS -1)
***F1(X)***
R1 1 2 .2
R2 5 2 1

R3 9 2 .5
01 2 3 DIODE
VX3 2 13 AC 0
R20 13 0 1

VOFF1 30-.7
**VCVS**
H3 12 0 VX3 1E3
R17 12 0 1

***F2(X)***
R4 1 4 . 1

R5 5 4 .25
R6 9 4 .333333
02 4 3 DIODE
VX4 4 15 AC 0
R19 15 0 1

**VCVS**
H4 14 0 VX4 1E3
R18 14 0 1

***X1***

R7 1 6 .2
R8 12 6 1

R9 14 6 .25
C3 6 0 1E-11
03 6 3 DIODE
VX1 6 7 AC 0
RlO 7 0 1
H 1 5 0 VX 1 1 E 3
R15 5 0 1
***X2***

R11 18 .2
R12 12 8 .5
R13 14 8 .333333
C4 8 0 1E-11
04 8 3 DIODE
VX28 11 AC 0
R14 110 1

H2 9 0 VX2 1E3
R16 9 0 1
*******

.MODEL DIODE 0

. WIDTH OUT=80

.TRAN 1NS 20NS

.PRINT TRAN V(5) V(9)

.END



APPENDIX B (CONTINUED) : RESULTS OF SIMULATION

TRANSIENT ANALYSIS TEMPERATURE 27.000 DEG C

TIME V(5) V(9)

O.OOOE+OO -1.133E-03 3.409E-03
1.000E-09 9.904E-02 2.038E-01
2.000E-09 1.992E-01 4.042E-01
3.000E-09 2.994E-01 6.046E-01
4.000E-09 3.995E-01 8.049E-01
5.000E-09 4.997E-01 1 .005E+00
6.000E-09 5.999E-01 1.206E+00
7.000E-09 7.001E-01 1.406E+00
8.000E-09 8.002E-01 1.606E+00
9.000E-09 9.004E-01 1.807E+00
1 .000E-08 1 .001 E+OO 2.007E+00
1 . WOE-08 1 .001 E+OO 2.007E+00
1.200E-08 1 .001 E+OO 2.007E+00

1.300E-08 1 .001 E+OO 2.007E+00
1 . 400E -08 1 .001 E+OO 2.007E+00
1.500E-08 1 .001 E+OO 2.007E+00
1.600E-08 1 .001 E+OO 2.007E+00
1.700E-08 1 .001 E+OO 2.007E+00
1.800E-08 1 .001 E+OO 2.007E+00
1.900E-08 1 .001 E+OO 2.007E+00
2.000E-08 1 .001 E+OO 2.007E+00

JOB CONCLUDED

TIME PAGE
ELAPSED FAULTS

0: 0: 3.82 75

DIRECT

I/O
BUFFERED

I/OCPU

0: 0: 2.02 2

TOTAL JOB TIME 2.02



Appendix C: SPICE File for the 20x20 VCCS ANN Implementation

INPUT LI ST ING TEMPERATURE = 27.000DEG C

**** "-C" EQNS ***

G1 2 o 9 0 -2
G2 2 0 13 0 - 1

G3 4 0 13 0 -2
G4 4 0 17 0 -3

G5 4 o 21 o 2

G6 6 o 9 0 -5
G7 6 o 25 0 -7
G8 6 o 29 0 1

G9 8 0 33 0 -3
GlO 8 0 37 0 1

G 11 8 0 41 o -2
G12 10 0 45 0 -5

G13 10 0 49 0 - 1

G14 10 0 53 0 3
G15 12 0 57 0 -8

G16 12 0 61 0 -2

G17 12 0 65 0 1

G18 14 o 9 0 -3
G19 14 o 73 0 -1

G20 14 o 77 0 -3

G21 14 0 81 o 2

G22 16 0 17 o -3

G23 16 0 45 0 - 1

G24 16 0 85 0 2
G25 18 0 25 0 -6

G26 18 0 61 0 3

G27 18 0 77 0 - 1

G28 20 0 53 0 _t::
....J

G29 20 0 73 0 2
G30 20 0 33 0 2
G31 20 0 57 0 4

G32 22 0 21 0 -3

G33 22 0 81 0 - 1

G34 22 0 69 0 1
G35 22 0 33 0 - 1

G36 24 0 37 0 -2
G37 24 0 41 0 -2

G38 24 0 57 0 3
G39 24 0 85 0 - 1

G40 26 0 21 0 -3

G41 26 0 81 0 -5

G42 26 0 49 0 6
G43 26 0 25 0 2

G44 28 0 9 0 -7

G45 28 0 25 0 -5

G46 28 0 41 o 8

G47 28 0 57 0 3
G48 28 0 73 0 - 1

G49 30 0 13 0 - 1

G50 30 0 65 0 - 1



APPENDIX C (CONTINUED) :

G51 30 0 33 0 1

G52 30 0 85 0 - 1

G53 32 0 17 0 -3

G54 32 0 81 0 3

G55 32 0 61 0 -2

G56 32 0 25 0 - 1

G57 34 0 61 0 -2

G58 34 0 53 0 1

G59 34 0 41 0 -5
G60 34 0 65 0 - 1

G61 36 0 29 0 -3
G62 36 0 41 0 1

G63 36 0 45 0 -2

G64 38 0 57 0 -4

G65 38 0 29 0 4

G66 38 0 33 0 -3
G67 40 0 73 0 -7
G68 40 0 77 0 5
G69 40 0 21 0 - 1
*** 11811 EQNS ***

G70 2 0 1 o 4

G71 4 0 1 o 5
G72 6 0 1 0 10
G73 8 0 1 o 7

G74 10 0 1 0 1

G75 12 0 1 0 9

G76 14 0 1 0 4

G77 16 0 0 3
G78 18 0 0 2
G79 20 0 1 0 8

GSO 22 0 0 14

G81 24 0 0 1 1

G82 26 0 0 7
G83 28 0 0 2
G84 30 0 0 6
G85 32 0 0 5
G86 34 0 0 8
G87 36 0 0 9
G88 38 0 0 5
G89 40 0 1 0
*** IICII EQNS ***

G90 42 0 2 0 2
G91 44 0 2 0 1

G92 44 040 2

G93 46 0 4 0 3

G94 48 0 4 0 -2

G95 42 0 6 0 5

G96 50 0 6 0 7
G97 52 0 6 0 - 1

G98 54 0 8 0 3

G99 56 0 8 0 -1

G100 58 0 8 0 2



APPENDIX C (CONTINUED) :

G101 60 0 10 o 5

G102 62 0 10 0 1

G103 64 0 10 0 -3
G104 66 0 12 0 8
G105 68 0 12 o 2

G106 70 0 12 0 - 1

G107 42 0 14 0 3

G108 74 0 14 0 1

G109 76 0 14 0 3
G110 78 0 14 0 -2
G 1 1 1 46 0 16 0 3

G 112 60 0 16 0 1

G 113 80 0 16 0 -2
G 114 50 0 18 0 6
G 115 68 0 18 0 -3
G 116 76 0 18 0 1

G 117 64 0 20 0 5

G 118 74 0 20 0 -2
G 119 54 0 20 0 -2
G120 66 0 20 0 -4
G121 48 0 22 0 3
G122 78 0 22 0 1

G123 72 0 22 0 - 1

G124 54 0 22 0 1

G125 56 0 24 0 2
G126 58 0 24 0 2

G127 66 0 24 0 -3
G128 80 0 24 0 1

G129 48 0 26 0 3
G130 78 0 26 0 5
G131 62 0 26 0 -6
G132 50 0 26 0 -2
G133 42 0 28 0 7

G134 50 0 28 0 5

G135 58 0 28 0 -8
G136 66 0 28 0 -3
G137 74 0 28 o 1

G138 44 0 30 o 1

G139 70 0 30 o 1

G140 54 0 30 0 - 1

G141 80 0 30 0 1

G142 46 0 32 0 3

G143 78 0 32 0 -3
G144 68 0 32 0 2

G145 50 0 32 0 1

G146 68 0 34 0 2

G147 64 0 34 0 - 1

G148 58 0 34 0 5
G149 70 0 34 0 1

G150 52 0 36 0 3



APPENDIX C (CONTINUED):

G151 58 0 36 0 -1

G152 60 0 36 0 2

G153 66 0 38 0 4

G154 52 0 38 0 -4

G155 54 0 38 0 3
G156 74 0 40 0 7

G157 76 0 40 0 -5

G158 48 0 40 0 1
*** "A" EQNS ***

G159 42 0 1 0 17

G160 44 0 1 0 4

G161 46 0 1 0 9
G162 48 0 0 5
G163 50 0 0 17
G164 52 0 0-2
G165 54 0 1 0 4

G166 56 0 1 0 1

G167 58 0 0 0
G168 60 0 0 8

G169 62 0 1 0 -5
G170 64 0 1 0 1

G171 66 0 1 0 2
G172 68 0 1 0 3

G173 70 0 0 1

G174 72 0 0-1
G175 74 0 0 7

G176 76 0 0-1
G177 78 0 0 1

G178 80 0 1 0 0
*** OTHER INPUT INFO ***

VS 1 0 PWL(O 0 10NS 1)
RS 1 0 1
** DIODE/VOLTAGE OFFSET **

01 2 3 DIODE

VOFF1 3 0 DC -.7
02 4 3 DIODE
03 6 3 DIODE

04 8 3 DIODE
05 10 3 DIODE

06 12 3 DIODE
07 14 3 DIODE
08 16 3 DIODE
09 18 3 DIODE

010 20 3 DIODE
011 22 3 DIODE
012 24 3 DIODE
013 26 3 DIODE
014 28 3 DIODE
o 1 5 30 3 0100 E



APPENDIX C (CONTINUED) :

016 32 3 DIODE

017 34 3 DIODE
018 36 3 DIODE
019 38 3 DIODE
020 40 3 DIODE
021 42 3 DIODE
022 44 3 DIODE
023 46 3 DIODE
024 48 3 DIODE
025 50 3 DIODE

026 52 3 DIODE
027 54 3 DIODE
028 56 3 DIODE
029 58 3 DIODE
030 60 3 DIODE
031 62 3 DIODE
032 64 3 DIODE
033 66 3 DIODE
034 68 3 DIODE
035 70 3 DIODE
036 72 3 DIODE

037 74 3 DIODE
038 76 3 DIODE
039 78 3 DIODE
040 80 3 DIODE
VX1 42 82 AC 0
R 1 82 0 1

VX2 44 84 AC 0
R2 84 0 1
VX3 46 86 AC 0
R3 86 0 1
VX4 48 88 AC 0
R4 88 0 1
VX5 50 90 AC 0
R5 90 0 1

VX6 52 92 AC 0
R6 92 0 1

VX7 54 94 AC 0
R7 94 0 1

VX8 56 96 AC 0
R8 96 0 1

VX9 58 98 AC 0
R9 98 0 1

VX 10 60 100 AC 0
R 10 100 0 1



APPENDIX C (CONTINUED) :

VX 11 62 102 AC 0
R 1 1 102 0 1

VX12 64 104 AC 0
R12 104 0 1

VX13 66 106 AC 0
R13 106 0 1

VX14 68 108 AC 0
R14 108 0 1

VX15 70 110 AC 0
R15 110 0 1

VX16 72 112 AC 0
R16 1 12 0 1

VX17 74 1 14 AC 0
R17 114 0 1

VX18 76 1 16 AC 0

R18 116 0 1

VX19 78 118 AC 0

R19 118 0 1

VX20 80 120 AC 0

R20 120 0 1
*************

C1 2 0 1E-9
C2 4 0 1E-9
C3 6 0 1E-9
C4 8 0 1E-9

C5 10 0 1E-9
C6 12 0 1E-9
C7 14 0 1E-9
C8 16 0 1E-9
C9 18 0 1E-9
ClO 20 0 1E-9
C11 22 0 1E-9

C12 24 0 1E-9
C13 26 0 1E-9
C14 28 0 1E-9
C15 30 0 1E-9
C16 32 0 1E-9
cn 34 0 1E-9

C18 36 0 1E-9
C19 38 0 1E-9

C20 40 0 1E-9
C21 42 0 1E-9

C22 44 0 1E-9
C23 46 0 1E-9

C24 48 0 1E-9
C25 50 0 1E-9
C26 52 0 1E-9
C27 54 0 1E-9
C28 56 0 1E-9
C29 58 0 1E-9

C30 60 0 1E-9



APPENDIX C (CONTI NUED) :

C31 62 0 1E-9
C32 64 0 1E-9
C33 66 0 1E-9
C34 68 0 1E-9
C35 70 0 1E-9
C36 72 0 1E-9
C37 74 0 1E-9
C38 76 0 1E-9
C39 78 0 1E-9
C40 80 0 1E-9
*************

H 1 9 0 VX 1 1 E9
R21 9 0 1

H2 13 0 VX2 1E9
R22 13 0 1

H3 17 0 VX3 1E9
R23 17 0 1

H4 21 0 VX4 1E9
R24 21 0 1

H5 25 0 VX5 1E9

R25 25 0 1

H6 29 0 VX6 1E9
R26 29 0 1

H7 33 0 VX7 1E9
R27 33 0 1

H8 37 0 VX8 1E9

R28 37 0 1

H9 41 0 VX9 1E9
R29 41 0 1

H10 45 0 VX10 1E9
R30 45 0 1

H 11 49 0 VX 11 1 E9
R31 49 0 1

H12 53 0 VX12 1E9
R32 53 0 1
H13 57 0 VX13 1E9
R33 57 0 1

H14 61 0 VX14 1E9
R34 61 0 1

H15 65 0 VX15 1E9
R35 65 0 1

H16 69 0 VX16 1E9
R36 69 0 1

H17 73 0 VX17 1E9
R37 73 0 1

H18 77 0 VX18 1E9
R38 77 0 1

H19 81 0 VX19 1E9
R39 81 0 1

H20 85 0 VX20 1E9
R40 85 0 1
*** DOT COMMANDS ***

.MODEL DIODE 0

.WIDTH OUT=80

.TRANS 1NS 20NS
PRINT TRAN V(9) V(13) V(17) V(21) V(25) V(29) V(33) V(37) V(41) V(45)
PRINT TRAN V(49) V(53) V(57) V(61) V(65) V(69) V(73) V(77) V(81) V(85)

. END



APPENDIX C (CONTINUED) : RESULTS OF SIMULATION

TRANSIENT ANALYSIS TEMPERATURE 27.000 DEG C

TIME V(9) V ( 13) V ( 17 ) V(21) V(25)

O.OOOE+OO 4.180E-03 -4.061E-03 -1.344E-03 - 1 .041 E -02 -8.297E-04
1 . OOOE -09 1 . 605E -0 1 -2.090E-02 3.114E-01 2.461E-01 4.200E-02
2.000E-09 2.606E-01 1.789E-01 6.115E-01 6.460E-01 1.419E-01
3.000E-09 3.606E-01 3.788E-01 9.115E-01 1 .046E+00 2.419E-01
4.000E-09 4.604E-01 5.792E-01 1 .211 E +00 1.446E+00 3.420E-01
5.000E-09 5.604E-01 7.792E-01 1 .511 E +00 1 .846E+00 4.420E-01
6.000E-09 6.606E-01 9.789E-01 1 .811 E +00 2.246E+00 5.419E-01
7.000E-09 7.606E-01 1 . 179E+00 2 . 111 E +00 2.646E+00 6.419E-01
8.000E-09 8.604E-01 1.379E+00 2.411E+00 3.046E+00 7.420E-01
9.000E-09 9.604E-01 1.579E+00 2.711E+00 3.446E+00 8.420E-01
1 . OOOE -08 1 .061 E+OO 1.779E+00 3.011 E+OO 3.846E+00 9.419E-01
1 . WOE-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
1.200E-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
1.300E-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
1.400E-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
1.500E-08 1.000E+00 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
1.600E-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
1.700E-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
1 .800E-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
1 .900E-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO
2.000E-08 1 .OOOE+OO 2.000E+00 3.000E+00 4.000E+00 1 .OOOE+OO

TIME V(49) V(53) V(57) V (61 ) V(65)

O.OOOE+OO -1.158E-02 2.686E-03 2.632E-03 -4.740E-03 9.053E-03
1 .OOOE-09 2.145E-01 3.423E-01 1.183E-01 8.175E-02 3.101E-01
2.000E-09 5.145E-01 7.422E-01 2.183E-01 2.817E-01 6. 1 OOE -0 1

3.000E-09 8.145E-01 1 . 142E+00 3.183E-01 4.816E-01 9.101E-01
4.000E-09 1.115E+00 1.542E+OO 4.183E-01 6.818E-01 1 .2WE+00
5.000E-09 1.415E+00 1.942E+00 5.183E-01 8.819E-01 1 .5WE+00
6.000E-09 1.715E+OO 2.342E+00 6.183E-01 1 .082E+00 1 .8WE+00
7.000E-09 2.014E+00 2.742E+00 7.183E-01 1.282E+00 2.110E+00
8.000E-09 2.315E+00 3. 142E+00 8.183E-01 1.482E+00 2.410E+00

9.000E-09 2.615E+00 3.542E+00 9.183E-01 1 .682E+00 2.710E+00
1 . OOOE -08 2.914E+00 3.942E+00 1 .0 18E+00 1 .882E+00 3.01OE+00
1 . WOE -08 3.000E+00 4.000E+00 1.000E+00 2.000E+00 3.000E+00

1.200E-08 3.000E+00 4.000E+00 1 .OOOE+OO 2.000E+00 3.000E+00

1.300E-08 3.000E+00 4.000E+00 1.000E+00 2.000E+00 3.000E+00

1.400E-08 3.000E+00 4.000E+00 1 .OOOE+OO 2.000E+00 3.000E+00

1 .500E-08 3.000E+OO 4.000E+OO 1 .OOOE+OO 2.000E+00 3.000E+00

1 .600E-08 3.000E+00 4.000E+00 1 .OOOE+OO 2.000E+00 3.000E+00

1.700E-08 3.000E+00 4.000E+00 1 .OOOE+OO 2.000E+00 3.000E+00

1 .800E-08 3.000E+00 4.000E+00 1 .OOOE+OO 2.000E+00 3.000E+00
1 . 900E -08 3.000E+00 4.000E+00 1 .OOOE+OO 2.000E+00 3.000E+00

2.000E-08 3.000E+00 4.000E+00 1.000E+00 2.000E+00 3.000E+00



TIME

APPENDIX C (CONTINUED): RESULTS OF SIMULATION

V( 37)

O.OOOE+OO
1 . OOOE -09
2.000E-09
3.000E-09
4.000E-09
5.000E-09
6.000E-09
7.000E-09
8.000E-09
9.000E-09
1 .OOOE-08
1 . WOE-08
1.200E-08
1.300E-08
1.400E-08
1 .500E-08
1 .600E-08
1.700E-08
1.800E-08
1.900E-08
2.000E-08

TIME

O.OOOE+OO
1 . OOOE -09
2.000E-09
3.000E-09
4.000E-09
5.000E-09
6.000E-09
7.000E-09
8.000E-09
9.000E-09
1 .OOOE-08
1 . WOE-08
1.200E-08
1.300E-08
1 . 400E -08
1 . 500E -08
1 . 600E -08
1 . 700E -08
1 . 800E -08
1.900E-08
2.000E-08

V(29)

1 . 400E -03
1.963E-01
3.963E-01
5.963E-01
7.963E-01
9.963E-01
1 . 196E+00
1.396E+00
1.596E+00
1.796E+OO
1.996E+OO
2.000E+OO
2.000E+OO
2.000E+00
2.000E+00
2.000E+00
2.000E+00
2.000E+00
2.000E+00
2.000E+00
2.000E+00

V(69)

-4.392E-02
-7.794E-02
3.220E-01
7.219E-01
1 . 123E+OO
1.523E+00
1 .922E+00
2.322E+00
2.723E+00
3. 123E+OO
3.521E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00

JOB CONCLUDED

TIME
CPU

0: 3:22.25

V(33)

1.226E-03
2.374E-01
5.373E-01
8.373E-01
1 . 137 E +00
1.437E+00
1.737E+00
2.037E+00
2.337E+00
2.637E+00
2.937E+00
3.000E+00
3.000E+00
3.000E+00
3.000E+00
3.000E+OO
3.000E+00
3.000E+00
3.000E+00
3.000E+00
3.000E+00

V(73)

-2.021E-03
3.154E-02
1.315E-01
2.315E-01
3.316E-01
4.316E-01
5.315E-01
6.315E-01
7.316E-01
8.316E-01
9.315E-01
1 .OOOE+OO
1 .OOOE+OO
1 .OOOE+OO
1 .OOOE+OO
1 .OOOE+OO
1 .OOOE+OO
1 .OOOE+OO
1 .OOOE+OO
1.000E+00
1.000E+00

PAGE
ELAPSED FAULTS

0: 3:27.79 380

TOTAL JOB TIME 202.24

4.583E-03
3.396E-01
7.395E-01
1 . 140E+00
1.540E+OO
1 .940E+00
2.340E+00
2.740E+00
3.140E+00
3.540E+00
3.940E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+OO
4.000E+00
4.000E+00
4.000E+00
4.000E+00
4.000E+00

V(77)

-6.022E-03
9.335E-02
2.933E-01
4.933E-01
6.935E-01
8.935E-01
1 .093E+OO
1.293E+OO
1.493E+00
1 .693E+00
1 .893E+00
2.000E+OO
2.000E+OO
2.000E+00
2.000E+00
2.000E+00
2.000E+00
2.000E+00
2.000E+00
2.000E+00
2.000E+00

DIRECT

I/O
BUFFERED
I/O

8 3
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Appendix F: Mapping Equations to Circuit of Figure 7.1

In Figure 7.1 the main vertical lines represent voltages and the main hori
zontal lines represent a summation of currents. The first two horizontal lines

correspond to the constraint equations in the two-variable example. I, (V) is
the first horizontal line.

The 1 VI current is supplied by the VCCS which multiplies the VI voltage by
the gain of 1 and outputs the current. The 2V2 current is supplied by the VCCS

which multiplies the V2 voltage by the gain of 2 and outputs the current. The

-5 current results from the connection of the VCCS, with a gain of -5, to the
Lvolt vertical line. The diode function is shown in Figure 7.2 and U(fI) is the

voltage across the diode. 12(V) is represented in the same way.
To illustrate the mapping procedure for the second pair of horizontal lines,

consider the -1� equation for Figure 7.1:

dE 1 -1
-- = -5 - U(fI) . 1 - U(12) ·4- -g (VI)
d� R

Recall

Solving for VI

1

J dE
VI = - 9 (VI) . ( - -)C1 dV

or

1 J 1
VI = - (g (VI) . ( - 5 - U (fI) . 1 - U (h) . 4) - -)C1 R

The -1� equation is the summation of currents and thus is represented as

the third horizontal line. The -5 current is supplied by the VCCS connected to

the 1 volt vertical line and multiplies by the gain of -5. -U(fI)· 1 is the current

supplied by the VCCS connected to the U(fI) vertical voltage line and multiplies
by a gain of -1. Likewise for -U(12)· 4. The function g(Vt) is performed by the
diode. Finally, "* is the current through the resistor. To find the voltage, VI,
the summation of currents must be integrated (function of the capacitor) and

multiplied by a constant (function of the amplifier). V2 is represented in the

same manner.


