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ABSTRACT

Development of a Digital Computer Model of the

Coronary Circulation.

Laurence Ray Simar jr.

Advisor: Dr. Walter Kuklinski

A model of the coronary circulation which includes the effect

of ventricular contraction is developed. A fluid/electrical analog

is used. The analog incorporates the effects of ventricular con­

traction w i th a voltage source. Collapse of the coronary arteries

during ventricular contraction is incorporated into the model. The

resulting trends in arterial flow, pressure, and cross sectional

area are reasonable and appear to be compatible with published data.
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I. INTRODUCTION

Considerable advances have been made in the area of hemodynam-

ics in the past several years. Physicians and engineers have worked

together to develop mathematical models dealing with various portions

of the circulato� system. These models have dealt with most aspects

of both venous and arterial circulation. The coronary circulation

has received far less attention. The reason for this lack of develop-

ment is due to the complexities of the coronary circulation. A well

developed model of the coronary circulation would provide the diagnos-

tician with a valuable tool. A model would allow for accurate predic-

tion of blood flow to various regions of the heart and for an accurate

description of the effect of atherosclerosis and other types of coro-

nary arterial disease on blood flow. The researcher could more accu-

rately analyze the effects of drugs on coronary blood flow by using

information the model could provide about the effects of ventricular

contraction on coronary blood flow. The purpose of this thesis is to

develop a model of the coronary circulation which takes into account

the effect of ventricular contraction on coronary blood flow.

IEEE Transactions on Biomedical Engineering was used as a pattern
for format and style.
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II. MODEL DEVELOPMENT

Morphology of Coronary Circulation

Before developing a model of the coronary circulation,it is impor­

tant to understand the morphology of the coronary circulation. Two

main coronary arteries, the left and right, arise near the aortic valve

(Fig. 1). The left coronary artery supplies the left ventricle and the

anterior half of the septum. The right coronary artery supplies the

right ventricle and the posterior half of the septum. There are many

anastomoses of the two systems at the apex. These anastomoses act as

a safety factor by reducing the area of ische�ia when one of the arter­

ies is occluded. The blood flow in the left coronary is comparable to

that in the right coronary artery, 880 ml per 100 gm of left ventricle

per minute. The total flow may amount to 5% of the resting cardiac

output (1).

The primary divisions of the left coronary artery, the anterior

descending and circumflex arteries, give rise to an anastomosing

plexus of vessels. The subepicardial networks give rise to two kinds

of vessels. First, there are vessels which form subsidiary networks

of anastomosing vessels arranged parallel to the surface of the heart.

From these arise precapillaries giving rise to the capillaries supply­

ing the outer portion of the myocardium. Secondly, there are vessels

which branch initially at an acute angle to the horizontal line of the

parent vessels then plunge vertically down through the thickness of

the myocardium. Some of these vessels have a short course and divide

within the thickness of the myocardium; others run with little

2
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Fi g. 1. The coronary vessels (1).



intermediate branching to the subendocardial surface. The subendocar­

dial branches of the perforating vessels form a complex network of

vessels. The branches may run relatively lengthy distances, branching

and giving rise to precapillary vessels en route (2).

Capillaries are distributed throughout the myocardium. The cap­

illaries form parallel sheets of anastomosing vessels in the thickness

of the myocardium. The subendocardial ·sheets of capillaries are very

similar in arrangement to the subepicardial surface (2).

The primary venule is formed by the junction of varying numbers

of venous capillaries. The venules run a very short course before

joining their neighbors and rapidly expand into veins of varying

dimension. Most veins join to form drainage veins which travel in

close relationship to the arteries, usually in a pattern of two veins

flanking one artery (2).

Effects of Ventricular Contraction

The greatest obstacle to the investigation of coronary flow has

been the very marked mechanical effect of ventricular contraction on

the cross sectional configuration of the coronary vessels that run

within the contracting muscle. Contraction is accompanied by a rise

in tissue pressure dependent upon the location of the coronary vessel

in the wall. The increase in tissue pressure surrounding the vessels

reduces their transmural pressure and in the case of the left coronary

vessels, temporary occlusion occurs. Therefore, the resistance to

flow of the coronary vascular bed changes greatly throughout the

cardiac cycle (1). The effect of transmural. pressure on the vessel

4



configuration is much more marked and of more interest in the left

ventricle.

Since the mechanism resulting in changes in cross sectional con­

figuration is the same in the wall of the left ventricle as in the wall

of the right ventricle, it is sufficient to initially examine only what

occurs in either the wall of the left or right ventricle. Because of

its great importance to the systemic circulation, the left ventricle

has been extensively analyzed in the areas of left coronary arterial

flow and wall stresses. For these reasons, the model developed will

deal only with the portion of the coronary circulation supplying the

left ventricle.

The development of stress in the myocardium has been studied

by a number of investigators. The main problem involved in models of

the left ventricle is the continuous variation of myofibril orienta­

tion throughout the myocardium (Fig. 2). The most effective model of

the left ventricle to analyze myocardial stresses was developed by

Streeter et. al. (4). This study assumed that the ventricle is ellip­

soidal and that the muscle-fibers can only bear tension axially.

Fibre-orientation was measured in post-mortem canine hearts. These

results were used to calculate the distribution of normal and radial

stresses through the wall, treating the wall as a tethered set of

nested ellipsoidal shells, each shell having a single fibre­

orientation which corresponds to the experimentally determined orien­

tation of that level in the wall. The stress ratios calculated by

this model in the left ventricular wall at the end of diastole and at

the end of systole are shown in Fig. 3. The importance of allowing

5
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Fig. 2. Muscle fibre orientation in wall of left ventricle.

(a) Orientation of long axis of fibers at successive depths.

(b) Angle of fibre with circumferentail plane of left ventricle (3).
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for fibre-orientation in studies of this kind is apparent; in models

which assume homogenous wall-properties, both longitudinal (S1) and

circumferential (S2) stresses are found to be highest at the endo-

cardial surface.

Blood Rheo logy

Since blood f l ow through the coronary circulation is being

analyzed, it is important to examine the properties of blood. The

two properties of interest are viscosity and density.

Blood is identified as a non-Newtonian fluid. A Newtonian fluid

is one for which the shear stress is proportional to shear strain rate

.

T = ny

where T = shear stress

.

y = shear strain rate

n = viscosity

Viscosity is defined as a constant and is independent of shear

strain rate. However, in the case of blood, there are variations of

viscosity with shear rate (Fig. 4). The viscosity of blood increases

greatly with increasing hematocrit (1). M normal hematocrit levels

the rheology of blood is dominated by the interaction of fibrinogen

with red blood cells (5). At shear rates above 1000/s, which is

typical for many blood vessels in vivo, non-Newtonian characteristics

of blood become insignificant and viscosity approaches an asymptotic

value of 3-4 mN s/m2 (3). When the blood vessels of interest are

sufficiently small that the particulate structure of blood can no

longer be ignored (100 �m diameter)) then it is not correct to assume
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blood to be Newtonian (3). The density of blood is 1.05 g/cm3 (3).

Elastic Properties of Arterial Walls

The properties of the blood vessel walls of the coronary circu­

lation are of great importance to the development of a model of the

coronary circulation. This is due to the changes in cross sectional

area found in the coronary arteries during the cardiac cycle and the

changes in cross section related to pressure differences. The non­

linear elastic curve for arteries is well known. Evidence exists

that the arterial wall is anisotropic. This is probably due to the

different orientations and elastic properties of elastin and col­

lagen (6). The incremental Young1s modulus relates circumferential

stress to circumferential strain. A graph of the incremental Young1s

modulus vs. diameter for an artery of fixed length is shown in

Fig. 5. It is postulated that elastin causes the low strain part of

the curve, while collagen is stressed at the higher strains. The

elastic properties of arteries differ in different parts of the

arterial system. There are also differences associated with age,

disease, and species (6). The aorta has an incremental Young1s

modulus of approximately 5 x 106 dyne/cm2 (3).

Cross Sectional Configuration Determination

The variations in vascular bed resistance, as noted previously,

are due to changes in cross sectional configuration and area. Katz

et. ale analyzed the relationship between cross sectional area and

transmural pressure (7). Typical transverse cross sections are shown

10
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at various points on the curve in Fig. 6. An approximation to this

curve is used in the development of this model of the coronary blood

flow. Cross section number three is short lived and acts only as a

transient between the elliptical and dumbell configurations. There-

fore, it will be ignored. The linearized representation and the cut

off ratios for the cross sectional configurations are shown in Fig. 7.

Flow impedance characteristics for the circular cross section have

already been determined by other investigators. The impedance charac-

teristics for the elliptical cross section will be determined in this

paper. The impedance characteristics of each lobe of the dumbell

configuration are identical to that for a circular cross section.

By examining Fig. 7 the cutoff ratios for various cross sec-

tional configurations can be determined.

circular range

A 9
- > A --
Ao - E 10

e 11 i pt i ca 1 range
9 ,� 3

TO = AE > Ao � AD = TO

� < AD = 2_
Ao 10

dumbell range

whe re Ao = ci rcu 1 a r area with no collapse or expansion

'\E = elliptical/circular cut off ratio

AD = dumbell/elliptical cut off rati a

A = present cross sectional area

There is a specific advantage to this linearization of cross

sectional area change. Without this technique the analysis of cross

sectional change wou l d become a very difficult problem of cylindrical

shell theory. Linearization avoids this difficulty, greatly reduces

12
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?

Transmural pressure

Fig. 6. Transverse cross section of a flexible tube as a function

of transmural pressure (7).
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Fig. 7. Linearized representation and cut off ratios for cross

sectional configuration.
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the complexity of the problem, and accurately describes the system.

However, to be totally accurate, the cut off cross sectional ratios

wou l d have to be determined using a section of tubing w i th charac-

teristics as similar as possible to the tube section being modelled;

in this case a section of coronary artery.

Governing Equations

The Navier-Stokes equations describe laminar flow of a Newtonian

fluid. If body forces (such as those due to gravity) are disregarded

and no tangential motion is assumed, then the cylindrical coordinate

form of these equations is

ap auz auz auz
az = - p( 3t + Urar + UZdZ )

auz a2uz+ ]J( l.L ( ) + )
r a r rar ""§ZT

ap aUr aUr aUr
ar

- - p( at
+ Urar + Uzaz )

a2ur
+ ]J ( � r (� W rU r)) +

� )

where P = pressure

z = distance along the axis

P = fluid density

]J = viscosity

Uz = longitudinal velocity

Ur = radial velocity

Another expression of interest is the continuity equation expressing

conservation of mass. If blood is assumed to be incompressible this

equation becomes

15
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(6)

The assumption that blood behaves as a Newtonian fluid has given

good results in several other models of blood flow (8-10).

Circular Cross Section Impedance Characteristics

The importance of blood viscosity and density and elastic proper-

ties of the arterial walls will become even more apparent during this

portion of the derivation of the coronary circulation model. According

to Attinger and Attinger (11) no matter what analytical approach is

chosen to analyze circulatory flow the impedance consists of two

components, a longitudinal impedance (a function of the inertial and

viscous properties of the blood) and a transverse impedance (a function

of the mechanical properties of the vessel wall). The derivation of

these three factors will be based, to some extent, on techniques

used by Rideout and Dick (12). The techniques used herein are more

straight fonvard, easily applicable to the cross sectional shapes of

concern, and provide results consistent with those of Rideout and

Dick.

The first derivation deals with the effect of viscosity on

flow. In the case of Poiseuille f l ow the following additional assump-

tions are made:

1. steady flow

2. uniform flow

3. symmetric flow

Assuming Poiseuille flow and a circular cross section, equations

(4-6) give a velocity profile (Uz) as

16



where P = pressure

z = distance along the tube

]J = viscosity

r = radius of the vessel

ri
= radius of interest

The volumetric flow rate (Q) is given as

Q =1 Uz dA

Substituting equation (7) into (8) and integrating yields

Q =
nr4 dP
8]J dz

Rewriting equation (9) in difference form yields

8lJ�z
�P = �Q

A resistance (R) relating �P and Q can be written as

where �P = OR

The value of resistance derived by Rideout and Dick is

This fluid resistance is only 81/64 times larger than that

given by Poiseuille's law. Studies performed on a model of the

arterial system showed that the resistance term of Rideout and Dick

could be optimized by a multiplicative constant (10). Therefore the

differences between assuming Poiseuille resistance and using the

resistance term derived by Rideout and Dick are negligible. This

17
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derivation gives the effect of viscosity on the longitudinal impedance.

The relationship between inertial effects and longitudinal

impedance will now be examined. In this case the assumptions made are

1. uniform flow

2. symmetric flow

Returning to the Navier-Stokes equations (4-6) yields

dUz 1 dP
crt =

P dz

Rearranging equation (12) gives the velocity profile (Uz)

Uz = 1. dPJdtp dz

The flow rate (0) is given as

Q =� Uz dA

(12)

t 13)

(14)

Substituting equation (13) into (14) yields

Q = � ��SI dA dt

A

Rideout and Dick assumed a flat velocity profile as shown in

Fig. 8. This gives a zero velocity beyond R = �. Since the

velocity profile found in the arterial system is basically flat (3)

and the velocity always drops off at the edges of the tube (12),

this velocity profile is a reasonable approximation. Evaluating the

integral over this cross section area gives

Q = i 1T r2 iE. rdt ( i 5 )
9 p dz J<

Taking the derivative of equation (15) with respect to time yields

dO _ 4 rrr2 dP
dt

-

9" -0- dZ
(16)
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Rewriting equation (16) in difference form yields

6P = 9 p6z dQ
"4 1Tr2 dt

(17)

The fluid inductance (L) is

9 p6z
L = '4 1Tr2

where i1P = L �
This fluid inductance term is identical to that derived by Rideout

and Dick and takes into account the effects of fluid inertia upon

flow.

(18)

The transverse impedance is, as stated previously, dependent

upon the elastic properties of the wall. It is therefore necessary

to analyze the effect of pressure on the arterial walls. If a

pressure P is applied to a linearly elastic thin wall vessel of

thickness h and a radius of curvature r (Fig. 9) then the circumfer­

ential stress S is given by the law of Laplace (13) as

S = f.!:
h

(19)

This pressure P will also cause displacement of the wall (Fig. 10).

If the longitudinal strain is assumed to be negligible, which is a

good assumption due to the small strains found in the arteries, then

the circumferential stress is given as (14)

(20)

where dr = change in radius of curvature

E = Young's modulus

v = Poisson's ratio
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Setting equation (19) equal to equation (20) and solving for dr yields

(21)

Also

dV = r d<p dr tsz (22)

where dV = volume of differential element

d<p = differential angle

Substituting the expression for dr into dV yields

dV -

�p (1-v2) �z 3
-

Eh r d<p
(23)

The difference in flow rate in and out of a section of artery can

be related to volume changes by

dV = �Q dt (24)

where �Q = Q - Qin out

Setting equation (23) equal to equation (24) and integrating yields

It'''Q dt : ",p (1_\)2) "'z12�3 d<P (25)
o Eh

0

The fluid capacitance relating blood flow to the elastic properties

of the blood vessel is C where

C = _2'TT_r_3---.-.�z_(_1-_v_2__)
Eh

(26)

and �Q = C �
A dumbell configuration corresponds to two disjoint circular

cross sections. The R, L, and C values for each of these circular

are identical to those found f'or .e circular cross section.
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Elliptical Cross Section Impedance Characteristics

The techniques used to derive the impedance characteristics

for the circular cross section are applicable to the elliptical

cross section. First, the resistance term is desired. The assump-

tions are as before. For an elliptical cross section the axial

velocity Uz is given as (15)

_ 1 dP a2b2U z
-

2i1 dz a
2 + b 2

where � = viscosity

P = pressure

z = axial distance

a = minor axis length

b = major axis length

The volumetric flow rate (Q) is given as (15)

Tf dP a3b3
Q =

4� dz a2 + 62
(27)

Rewriting equation (27) in difference form and solving for 6P yields

6P = 4� 6z(a2 + b2) 0Tfa3b3 .

For an elliptical cross section the resistance term (R) is given

as

(28)

where 6P = RQ

The difference for the elliptical cross section inductance term

arises as a result of the equation

Q = 1. dPS· r dA dt
p dz J,L\

(29)
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A flat velocity profile is once again assumed (Fio. 11). The velocity

falls off to zero on the major axis at A = � and on the minor axis

at 3 = 2�. �valuating equation (29) over this cross sectional area

yields

4 ab dPJQ = "9 -p dZ dt
(30)

Manipulating equation (30) in the same manner as equation (15) yields

the inductance term for an elliptical cross section

L = i p6Z
4 1Tab

(31)

The difference in t�e derivation for an elliptical capaci-

t�nce occurs at equation (25)

fo�Q dt =
6P (lE�2) 6z 12�3 d¢

(25)

For an ellipse the radius of curvature (r) is dependent upon ¢ and

is given as (13)

The manipulation of equation (25) is the same for the elliptical

cross section as the circular cross section. The capacitance (C)

is given as
21T

C =
6Z (,1_\)2)J 3 dr/, (32)

En r 't'

o

where r = radius of curvature of an ellipse

and 6Q = C dP
dt

The values for R, L, and C for both circular and elliptical cross

section are compiled in Table 1. One test of the validity of the ex-
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Fig. 11. Flat velocity profile approximation for elliptical cross

section.
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R
41J6z(a2 + b2)

rra3b3

L 9PLl�4rrr
906.Z
4rrab

c

Table 1. Values of R, L, C for circular and elliptical cross

section.
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pressions for the elliptical cross section is to notice that the ellip-

tical expressions reduce to the corresponding circular expressions

when a = b = r. This is the condition corresponding to the evolu-

tion of an ellipse into a circle.

Concept of the Fluid/Electrical Analog

The model of the coronary circulation developed herein is based

on the derivation of a fluid/electrical analog. The concept behind

a fluid/electrical analog is simple: there are certain characteristics

of a fluid system which allow it to be expressed in the form of an

electrical circuit. This technique allows for conceptual advantages

since it becomes a simple matter to apply circuit analysis techniques

to the analog circuit. The analogs between the fluid and electrical

system are illustrated in Table 2.

If the expressions for resistance, capacitance, and inductance

for the fluid system are known, then a set of analogous equations

re 1 ati ng pressure and flow can be derived.

these equations are

V = IR

V = LQ!.dt

I = c.9..Y..dt

where V = voltage drop

= current

t = time

R = resistance

For an electrical system

a)

b) (33)

c)



ELECTRICAL SYSTE� FLUID SYSTEM

Voltage Pressure

Current Flow rate

Resistance Energy loss due
to friction.

Inductance Energy stored due
to fluid momentum.

Capacitance Energy stored due
to elastic properti
of vessel 1.'10.11.

Table 2. Fluid and electrical analogs.

29
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L = inductance

C = capacitance

Using the fluid analogs these equations are transformed into

the following set of equations:

�P = QR a)

.6.P = L
dQ b) (34)
dt

Q - C
d.6.P c)

-

dt

where .6.P = pressure drop

Q = mass flow rate

t = time

R = fluid resistance

L = fluid inductance

C = fl ui d capacitance

Model Configuration

A section of artery was modelled by Rideout and Dick using an

L network lumped equivalent form (Fig. 12). The electrical analog

has the resistance and inductance terms in series. This is because

both of these terms have the effect of creating drops in pressure

because of flow th rough them. The capacitance tenn is across the

pressure into the next section. This is a consequence of equation

(24) which shows that volume changes are related to differences in

the flow into and out of a section. Placing the capacitance term

in an across position allows the capacitance to add to or subtract

from the section flow rate. Thus the flucturations in volume due

30
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>

(a)

(b)

Fig. 12. (a) Section of artery. (b) L network lumped equivalent

circuit (12).
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to flow rate changes are due to the capacitance term which depends

entirely upon the eiastic properties of the arterial wall. This

arrangement of R, L, and C corresponds to that described oy Attinger

and Attinger (11) where Rand L are the longitudinal impedance terms

and C is the transverse impedance term.

For the model of the coronary circulation developed herein, the

electrical analog shown in Fig. 13 was proposed. A unique feature

of this model is the use of a pressure source (Pext) to represent

the pressure developed in the myocardium during the cardiac cycle.

The validity of this sectional representation can be visualized

by comparing the response of the electrical section to the response

of the arterial section. If a step input of external pressure is

applied to both systems there will be a transient flow of liquid in

the fluid section and a corresponding transient current in the elec­

trical section. Also, if the vessel walls should become rigid the

effects of external pressure becomes less. Similarly, for the elec­

trical section, a rigid wall will have a large Young's modulus which

corresponds to a decreasing capacitance and a lessening of the effects

of external pressure (Pext)'
The system developed by Rideout and Dick was entirely linear.

However, this model allows for variations in cross sectional shape

which is determined from changes in section volume. Since section

volume change (dV) is related to difference in flow rate in and out

of a section 6Q by

dV = 6Q dt

and change in volume is also
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1 Pext,N
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Fig. 13. (a) Section of coronary artery. (b) L network lumped

equivalent circuit.
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dV = dA dz

Therefore, the change in cross section area (dA) is given by

dA = �Q
dt
dz

The change in cross sectional area can be used to determine the

new cross sectional area for the next time interval. Similarly, the

new cross sectional configuration can be dete�ined using the pre-

viously mentioned cut off ratios. From the new cross sectional con-

figuration and area the new values of R, L, and C can be determined.

Examination of Table 1 shows R, L, and C to be sensitive functions

of cross sectional area and configuration. Therefore, the model

becomes highly nonlinear over several intervals.



I I I . METHODS

Derivation of Controlling Equations

The derivation of the controlling equations for a coronary

arterial section (Fig. 13) are based upon state-variable analysis.

The subscript N identifies the section. The subscript T identifies

the period in time.

The first equation necessary is an expression for the inlet

flow QN,T. Summing pressures yields

dQN,T
PN,T - RNQN,T - LN dt

- PN+1,T = 0

Rewriting equation (35) in terms of QN,T yields

dQN T 1
dt' =

LN (PN,T - RNQN,T - PN+1,T)
The final equation necessary is an expression for the outlet

pressure PN+1,T. The flow through the capacitor QCN,T is given

as

Q = Q - QCN,T N,T N+1,T

Writing the flow through the capacitor in terms of the pressure

across the capacitor (PCN,T) yields
dPCN,T

CN dt
= QN,T - QN+1,T

The pressure across the capacitor may be written in terms of the

external pressure (PEN,T) and outlet pressure (PN+1,T)
PCN,T = PN+1,T - PEN,T

Substituting equation (39) into equation (38) and rearranging for

35

(35)

(36)

(37)

( 38)

(39)
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an expression in terms of P yields
N+1,T

dPN+1,T 1 dPEN
dt

=

eN (QN,T - QN+1,T)+ � (40)

The derivation is similar for the dumbell configuration. In

this case the circuit is as shown in Fig. 14. For this analog

circuit the controlling equations are

d QN,T
2 1

( R QN,T
-dt- =

LN PN,T -
. N-y-

- PN+1,T)
dPN+1,T 1 QN,T QN+1,T dPEN

dt = c (z- - 2 ) + atN

(41)

(42)

Implementation of equations (36), (40), (41), and (42) on a

digital computer is necessary. This requires that these equations

be written in finite divided difference form. Assuming that the

pressure and flows are to be calculated over some interval (T1,T2)
and that the length of the interval is 6T yields two sets of

approximating equations.

For the elliptical or circular cross section these are

1
QN T

=

--L (PN T
- RNQN T

- PN+1 T ) 6T + QN T (43)
"2 N'1 '1 1'1 '1

1
P
N+ 1 T

=

-C (QN T
- QN+ 1 T ) 6T + PEN T

- PEN T1'2 N'1 '1 '2'1

+ P
N+1,T1

For the dumbell cross section these are

Q =
2 (P _

QN,T1 )
N,T2 IN N,T1 RN 2

- PN+1,T1 LT + QN,T1

PN+I,T2
= 2�N (ON,TI - QN+I,\) t,T + PEN,T2

- PEN,TI

(44)

(45)

(46)
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Fig. 14. L network lumped equivalent circuit for a dumbell cross

section.
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Equations (43-46) constitute a recursion relationship for cal-

culating pressures and flows in a section of coronary artery.

Several sections of artery may be connected in series and pres­

sure and flow in each section computed. A generalized flow chart

illustratine the implementation of equations (43-46) and the change

in cross sectional configuration is shown in Fig. 15. An ex-

planation of the subroutines involved and a complete program listing

are located in the appendix.

Description of Model Experiments

The implementation of the model of flow through a coronary

vessel required that several parameters describing the arterial ves­

sel be chosen. The choice of these parameters was based on previous

discussions. The value of Young's modulus was 5 x 106 dyne/cm2.

Assuming tha arterial wall to be incompressible, Poisson's ratio

•

11S �. The vessel wall thickness was 0.0096 em. The vessel radius

was 0.048 cm. The viscosity of blood used was 0.03 poise and the

density of blood used was 1.05 g/cm3• Three sections with a length

of 4 cm/section were connected in series. This series represent-

ation of a coronary arterial segment is illustrated in Fig. 16.

The final assumption made concerned the representation of the

pressure developed in the myocardium during ventricular contraction.

There are, as noted previously, great difficulties involved in the

analysis of myocardial stress. Since the time course and trends

of myocardial stress are essentially similar to those of ventricular
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Fig. 16. Implemented model of a coronary arterial segment.
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pressure, the ventricular pressure waveform was used to represent the

myocardial pressure. The aortic pressure was used as a driving pres­

ure for the system. The aortic and ventricular pressures used in the

model are shown in Fig. 17.

An analysis of the general relationship between the R, L, and

C parameters and cross sectional area was performed. The first

model developed modelled the effects of simultaneous ventricular con­

traction on a coronary vessel. The second model was an attempt to

more accurately describe the actual contraction mechanism of the left

ventricle. The second model modelled the effects of a ventricular

contraction beginning at the apex of the heart and propagating

upward.
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IV. RESULTS

Before the implementation of the model of the coronary cir­

culation, an analysis of the impedance terms was performed. The

general trends for the R, L, C and parameters as a function of cross

sectional area are shown in Fig. 18. The resistance and inductance

terms are inversely proportional to the cross sectional area as ex­

pected. The capacitance term exhibits an interesting behavior.

As the elliptical cross section becomes flatter, the capaci­

tance increases. The increasing capacitance for the flatter ellipse

is a result of the dependency of the capacitance on the radius of

curvature of the ellipse. For a flatter ellipse the radius of cur­

vature increases greatly over a significant portion of the ellipse.

Since the capacitance for an ellipse is proportional to fr3d�, the

capacitance increases. This indicates that the ellipse is rela­

tively easily deformed. Once the cross section collapses to a dum­

bell configuration, the capacitance drops off drastically. This

indicates that the dumbell cross section is much more difficult to

deform. The difference between elliptical and dumbell cross sectional

capacitance can also be considered to be a transition from an un­

stable state to a stable state.

Two models of coronary blood flow were implemented. The fi rst

model assumed simultaneous contraction of the left ventricle, that

is, the time course of the external pressure was identical in each

section of artery (Fig. 19). The second model took into account

the effects of ventricular contraction as it propagates from the apex
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of the heart to the aortic valve of the left ventricle (Fig. 20).

The inclusion of the effects of propagating ventricular contraction

is more indicative of the actual situation in the heart.

The first feature of importance in both models is the reach­

ing of the forced response of the system. Fig. 21 shows the contrast

between the system's transient flow response due to one heart beat

and the forced flow response due to thirty heart beats. The transient

curves show the erratic and poorly developed flow curves. The

forced response flow curves are in sharp contrast to the transient

flow curves. The erratic fluctuations have died out and the flow

curves have developed more fully. Running the model through a num­

ber of cycles showed that by thirty heart beats the forced response

had been reached. Similar results appeared in the cross sectional

area curves and the sectional pressure curves.

The pressure, flow, and cross sectional area curves for the

first model are shown in Figs. 22, 23, and 24 respectively. The

pressure, flow and cross sectional area curves for the second model

are shown in Figs. 25, 26, and 27 respectively. Each set of curves

for the first and second model has some similar characteristics.

The curves \"i11 first be considered in terms of general character­

is ti cs.

The fi rs t cu rves to be examined are the pressure curves (Fi gs.

22, 23) . The pressure in each section of artery drops the farther

from the source that section is. Another interesting aspect of the

press ure curves is the degradation of the pressure from the aortic

input pressure curve. Th is is due to the non-linear effects of the
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longitudinal and transverse impedance. The general trend of the sec­

tional pressure curves during diastole is similar to that of the

aortic pressure. All of these effects are quite reasonable.

The next curves to be examined in terms of overall character­

istics are the flow curves (Figs. 23, 26). Flow generally dropped

off in all sections as ventricular contraction began. There is also

an increase in flow as the aortic pressure rises sharply and the ven­

tricular pressure begins to level off. The flow follows the aortic

pressure during diastole. These general flow characteristics are

compatible with measured coronary blood flow characteristics (16).

The final curves to be examined are the cross sectional area

curves (Figs. 24, 27). The most noticeable characteristic of these

curves is the decrease in cross sectional area as ventricular con­

traction occurs. The curves are skewed to the left due to the effect

of the increasing aortic pressure and the leveling off of the ven­

tricular pressure. It is also interesting to note that the down­

stream sections undergo a greater collapse. This is because, as

noted previously, their internal pressure is correspondingly lower.

The lower internal pressure offers less resistance against collapse.

The flow and cross sectional area curves match up quite well.

As the cross sectional area decreases due to ventricular contrac­

tion, the impedance to flow increases and the flow decreases. The

results of the model also seem to indicate that the farther down­

stream one goes, the less important the arterial pressure is and the

more dominant are the effects of ventricular contraction. All of

these results are q�ite reasonable. from a cursory viewpoint.
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It is also interesting to note the differences between the ef­

fects of simultaneous and phased contraction of the left ventricle.

The pressure curves are more perturbed during systole for the phased

contraction. The pressures are also generally lower for the phased

contraction. The phased contraction tends to spread out the flow

curves during the first half of systole. The flows are also lower

for the phased contraction. The cross sectional area curves are

basically the same shape. However, the spreading out of these curves

also is seen. All of these effects are due to the phased contraction

which has a tendency to spread out its effect through space and time.

Finally, a comparison was made between the general character­

istice of the model and measured data. Flow through the coronary

arteries has been analyzed by a number of investigators. No applic­

able pressure curves were found. No measurements of coronary vessel

cross sectional area and configuration as a function of aortic and

ventricular pressure were found. For these reasons only an analysis

of the flows is attempted.

It is important to emphasize that this comparison is made to

examine only the general trends in coronary blood f l ow. The mea­

sured flows are flows through major surface vessels which anastomose

throughout the myocardium� The model flows are for a vessel run­

ning through the myocardium. The assumption is that the general

changes in flow and its relationship to aortic pressure should be

similar for the model and the measured flow rates. The values of

flow shown on the axes pertain only to those generated by the model.

The first flow examined is that through the main left coronary
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artery (16). Since it is proximal to the aortic root pressure it

will be compared to the first section of the model which is proximal

to the aortic pressure source. The results of this comparison for

both the phased and simultaneous contraction are shown in Fig. 28.

The general characteristics match up well. The flow tends to follow

the aortic pressure during diastole in all three cases. There is a

rapid drop in flow at the beginning of systole followed by a gradual

increase. There is also a sudden increase in flow at the beginning

of diastole.

The final flow analyzed was that of the left circumflex

coronary arterial flow (16) (Fig. 29). The left circumflex coronary

artery is more distal to the aortic root pressure than the main left

coronary artery. For this reason, its flow was compared to that in

the final section of the modelled coronary artery. Once again, the

flow tends to follow the aortic pressure during diastole. There is

a general decrease in flow during systole. There is also a sudden

increase and decrease at the geginning and end of systole respec­

tively. The results of the comparisons between the model results

and the actual flow in the coronary arteries is encouraging.

57



x 40

""

E
u

3:
o
r--

u;
20

diastole systole

Model 1.···'·
110de 1 2. - - -.

Measured --

60

to
,:
�

...... - /-
- ......

.... ; ....�'..
.;

�
....

. ,
.. ,

.: .;
>.. I
•

I
l: .. ,
l.. • I

'\ :1\ I
\ r. I
v

()
0 Time (s) 1

(16).

Fig. 28. r�odel1ed and measured flows for the left coronary artery

58



N

,
o
.-4

X 40
II')

..........
m

E
U

3:
o

c: 20

diastole systole diastole

Modell .

Model 2.--­
Measured--

o
0 1

Fig. 29. Modelled and measured flows for the left circumflex

coronary artery (16).

60

Time (s)

59



60

V. DISCUSSION

The development of this model was not without some difficul­

ties. The greatest difficulty involved computational time. The time

constants associated with this circuit presented some difficulties.

By executing the program with the radius used the time constants were

set at a reasonable value making a step size of 0.001 seconds pos­

sible. The majority of computational time involved the calculations

of the elliptical fluid resistance, inductance, and capacitance.

This was due to the large number of calculations involved in the in­

tegration, root search technique, and circumference determination

necessary to calculate the elliptical cross section parameters. The

computational time was greatly reduced by calculating the elliptical

impedance terms for several cross sectional areas and interpolating

the impedance values for other cross sectional areas.

Further validation of this model is necessary. Validation of

a model of the coronary circulation would require accurate simul­

taneous measurements of aortic pressure, myocardial pressure, and

coronary blood flow and pressure in a laboratory animal. The model

could incorporate a detailed network of vessels. The measured aortic

and myocardial pressures could be used as the model inputs. The

flows and pressures determined by the model could be compared to the

measured flows and pressures.

The technique of expanding the model to include the effects

of a number of coronary vessels is a straightforward extension of

the techniques developed herein. The level of sophistication would



be limited only by the amount of computer time and space available.

A more sophisticated model could easily include the variations of

myocardial pressure with depth. It would be a simple matter to take

into account the varying lengths, diameters, and orientations of the

coronary arteries. Effects of such diseases as atherosclerosis on

coronary blood flow could be examined by simulating the effect of

these diseases. In the case of atherosclerosis the arteries would

be narrowed and the Young's modulus of the arteries increased. The

utility of a representational model of the coronary circulation

is evident and worthy of further research.
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APPENDIX

Development of Subroutines

The elliptical capacitance (equation (32)) requires the eval­

uation of the integral

12TIo

r3 d¢

where r = radius of curvature of an elliose

¢ = angle with the x axis

This integral was evaluated using the repeated interval halv-

ing technique (17). If TN is the computed estimate of the integral
b

j[f(X) dx

a

and TN is based upon the composite trapezoidal rule, then the general

recursion relation for TN in terms of TN-1 is

2N_1

TN � y,{TN_1 + b;�_l�(a + (b;�) i)J
�i=2

(47)

where TO = bia {�(f(a) + f(b))}

and N is the number of times the initial integration interval (a,b)

has been halved to produce subintervals of length L = (b-a)/2N.
The recursion relation of equation (47) can be used to com-

pute the sequence T1, T2, T3, ... , TN once TO has been calculated.

The function f(x) need be evaluated just 2N+ 1 times to compute

the entire sequence.
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The error term is

_ (b- a) 3

f I I (�)
12(2)2N

� in (a,b)

(48)

If f(x) has a continuous and bounded second derivative on the inter­

val (a,b), equation (48) assures that the sequence TO' T1, T2, ... ,

T converges to the true integral, assuming that no round off errors
N

enter into the calculation.

The cube of the radius of curvature for an ellipse is eval-

uated by the function F. The integral is computed by the sub­

routine RIHINT.

When the section is in elliptical cross section the cross

sectional area and circumference are known. It is imperative that

the length of the major and minor axis be known to facilitate the

calculation of the resistance, inertance, and capacitance. The

expression for the circumference of an ellipse is (18)

c = 2 aU_(1)2(a2-b2)_(1.3)2(a2-b2)2(1)_(1·3'S)2(a2-b2)3(1)rr
2 a2 2.4 aL 3 2'4·6 aL �

-

... } (49)

where C = circumference

a = length of the major axis

b = length of the minor axis

The expression for the area (A) of an ellipse is

A = rrab

Equation (49) may be written in terms of the cross sectional area

and the major or minor axis. In this form the circumference is

given by
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(�) - ... }
Equation (50) will be abbreviated as

(50)

C = F(b) (51)

Equation (51) may be written as

a = F(b)-C (52)

It then becomes necessary to find b such that equation (52) is

satisfied. This is equivalent to finding the real root of equation

(52). Knowing b allows a to be calculated by

A
a =

'TTb

The technique for finding this real root employed in this

program is the half-interval method (17). This method was applied

for two reasons:

1. Equation (50) is not easily reduced to polynomial form

thus making other root search techniques difficult

to implement.

2. The half interval method provides a technique for assuring

that the root is accurate within a specified range

of uncertainty.

This technique is easily understood with a simple graphical

illustration (Fig. 30). If values xLI and xR1 are known, it gives

a root such that f(XL�) and f(xR1) are opposite in sign. For a

continuous function, the number f{(xL1+ xR1)/2}, which is the value

of the function at the halfway point, will be either zero or have

the sign of f(xLl) or the sign of f(xR1). If the value is not



f(x) f(x)

Fig. 30. Half-interval method.

67



zero, a second pair xL2 and xR2 can be chosen from the three num­

bers xLI' xR1' and (XL1+ xR1)/2 so that f(xL2) and f(xR2) are oppo­

site in sign, while

IXL2-XR21 = �IXL1-xRll
Continuing in this-manner there is always a pOint a in the interval

(XLk'XRk) for which f(a) = O.

If 61 is the length of the starting interval, then the number

n of interval-halving operations required to reduce the interval of

uncertainty 6n is given by

1n(61/6n)
n =

1n2

The calculation of

F(b)-C

is accomplished by the function ZCIRM. The major and minor axes

are found using the half-interval root search 'technique in the

subroutine AXES.

68



Program Listing

c
c
c

c
c
c
c
r:

c
c
C
C
C
C
C
C

C
C
C
C
C
C
I�

THIS PROGRAM MODELS THE EFFECT OF VENTRICULAR CONTRACTION ON
COF::ONAf�,( BLOOD FLOW. r:'1 FLUID/ELECn';:ICAL ANALOG IS IJSED. ��

CORONARY ARTERY IS DIVIDED INTO fHREE SECTIONS. CHANGES IN
CROSS SECTIONAL AREA ARE DETERMINED BY COMPARING FLOW IN AND
OUT OF A SECTION. fHE F(ATIO OF PF:ESENT CROSS SECTIONAL f)RE(-\
TO ORIGINAL CROSS SECTIONAL AREA DEFINES TH[ CROSS SECTIONAL
CONFIGURATION. THREE CONFIGURATIONS ARE POSSIBLE: CIRCULAR,
ELLIPTICf'�'- j)(�D DIJMBELL. THE CONFIGUPATION DETERMINATION
ALLOWS FOR THE CALCULATION QF THE FLUID RESISTANCE (R),
INDUCTANCE (l), AND CAPACITANCE (C) FOR THAT CROSS �ECTIONAL
CONFIGURATION. THE ASSUMED HEART RATE IS 1 BEAr/SECOND. j
IS THE f�Ut1[1Er.: OF ITEI�:f�TIONS F'ER SECOND. [LHI IS THE NUt'mER
OF HEI�F:T «[(Irs ro BE FWN. RII[1 I.::' THE RADTUS OF THE cnROW..\F:Y

f1IHEHY. OELZ IS THE LENGTH or f)NE DF THE THF:EE SEcn flNS .

rlU IS THE FLUID !)!SCUSITY. F:HO r.:; THE FLUID DENSIU. NU I.::'

POISSON'S RATIO_FOR THE ARTERY_ E IS THE YOUNG'S MODULUS
FOR THE I�RTER,(. H IS THE THICKNESS OF THE ')ESSEI. WALL.
r.:TERt1 IS fHE RESISTANCE OF fHE FOUF:TH TEF:MINATING SECTION.
DELUN IS THE INTERVAL OF UNCERTAINTY FOR rHE ROOT SEARCH
TECHNIQUE. NMAX DETERMINES rHE NUMBER OF INTERVAL IfALVINGS
FOR THE INTEGRATION TECHNIQUE.

DIMENSION AF(3, 1(0),PFA(4,100),QFA(4,100)
DOUBLE PRECISION P(4,2),Q(4,2) ,DA,DELZ,RfERH,AO,PI,RAD,MU,NU,
*E,H,RHO,T,AN(3),DELT,PE(3,2),PCAL(4),CIRCMO
COMMON tIN, Q, F' , DELT , PE, MIJ, DELZ, PI, RHO, NU, E, H, N

c
C ..... PARAMETERS ARE SUPPLIED ••••.

DATA j/1000/
DATA rLIM/301
DATA RTERM/S.76D41
DATA RAD/O.048DO/
DAfA PI/3.141SDO/
DATA DELUN/O.0000S/
DAT(·� NMAX/101
I)AT�\ DELZ/4.DOI
OA r(� MU/O. 03DO/
Df.YU't RHO/1. 05D0/
Dt� U; NU/O. 5DO/
1) ('I T Ii E / 5 • D61
T)r'Tf� H/9. ,�D··-3/
M::::'·)

INITIAL CONDITIONS ARE ESTABLISHED .....

DO 95 JJ:::1,4
F' ( J j , I ) "" 1 0 • D �
I) ( J j , 1 )::::0 • .04
CONTINUE
D f) ,i, ? t( t\ : 1 , 3

h 9 r:' E ( t( K , 1 ) c: 0 •

r;
C ..... ORIGINAL AREA IS CALCULATED .....

f:I()::F' I )l'r.:Ai)�H"2
(iN ( 1 ) ==AO
i'tN( 2)0::(,,0
�'1N ( ,5) ::::AO

. . . .. urn G I i'.It-IL C T r.:cur1Ff.r.:EN:�E [S Ci)LClJU�TF.D

CIRCMO:?D0*DSQRT(AO*PI)

c
r: .

T If 0 F T H1 E H'!C F: Ei'1 E NTIS 0 I: T Fr.:M H�ED, . . .

, ••.• IENG .

DELTe:1 .0(1/ j
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c
C

! c-
_)

C
C

�20
C
C

C
C

C
C

C
C
C

C
C
C

..... UNITS ARE PRINTED ..•..

I,.IF:ITE \ 6, ! 5)
I 0 Fa1 A T (' I, I .: r' ) =:m1 * C M / S F..: C )HH I

, 5X,
• U»::-: C 1"\ )1': If 3 /SEC' I 5X, • uu.", C i+� ')1'<2 • )

..... NUMBER OF ITERATIONS PER SECOND IS PRINTED .•...

WFUTE U_" �O) J
For{MAT (' I, I THE NUMBER OF ITERMIONS F'ER SECOND IS I, [8, I

•

I )

LOOP DETEF:MINING NUMBER OF HEr'lRT BEATS
DO 12 IFOR=i ,IUM

LDOP DETERt1 IN r NG NUMBER OF HITH\\)()L S
DO 11 WTER""1,.J

TOTAL EU1PSED TIME t s DETERMINED .....

r::::<INTER-1.DO)*DELT

.•... SUBROUTINE PRESS cnLLED TO DETERMINE
AORTIC AND VENTRICULAR PRESSURES

CALL PRESS(T,PCAL)

..•.. PRESSURES ARE CONVERTED FROM
MM OF HG TO DYNE/CM**2

F' E ( 1 , 2 ) ::::PCAL( 1 ) * 1 • 333D 3
PE(2.2)=PCALC2)*1.333D3
PE ( �5, 2) ::"peAL< 3 ) * 1 • 333D:3
P ( 1 , :;) =F'CAL< -4) x 1 .333D3

c
C .•... PRESSURE AND FLOW IN EACH SECTION
C I� DEfERMINED

DO 10 N::: 1 , -4

IFCN.EQ.1) GOTO S
c
c ..... CROSS SECTIONAL CONFIGURATION
C IS DETERMINED ...•.

[FCAN(N)!AO.GE.0.9DO)CALL CIRCLE
TF(ANCN)/AO.GT.0.3DO.AND.AN(N)/AO.LT.0.?DO)CALL FLLIPS(CIRCMO,

*OELUN, NMt�X)
rr (AN (1'1) / r'lO .1 .. s . o . 3DO) CI�LL DUMElEL
GOIO 10

.

c
c .... : CALCULATION OF FLOW IN TERMINAL SECTION .....

S Q(4,2)=P(4,2)!RTERM
! 0 CONTINUE

C
C ••••• FINAL ARRAYS FOR PLOTTING (PFA,QFA.AF) ARE
C ESTABLISHED. PLOTLP IS A LIBRARY LINE
C PRINTER·PLOTTING SUBROUfINE

[FCIFOR.NE.ILIM)GOTO 6
1F((INTER/H»*i0.i'lE.INTER) GOTD 6
M;;;M+1
DO i 3 1::::1.4
F'F{�(I,M):;;:f'(I.i )

QFI;(I.i1)::."Q(I, i)
1 3 I�ONT I NUE:

DO 22 1:::1,3
riF ( I , M) ::AN ( I)·

22 CONTINUE
6 CONTINUE

DO 8 t{:: 1 ,3
C
C ..... CHANGE IN CROSS JECTIONAL AREA (OA)
C [S DETERMINED ..•..

D A':; ( (� (t( , :2 ) - (� ( I', r i , :2 ) ) � DEL T / D£L l
C
C ..... �EW CROSS SECTIONAL AREA DETERMINED

AN (t,) =r�N (t( ) +l)A
c
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I"

c: . • • " i .lj (,; ::':J� ,\ I;: t:: , I L, [i'il'i' Scr
I �� (�Irl (1\) • L r . 'J. 1580 '::::;1 j,IN I� I,) '"I) ,. j I::<;() ,

r',

s (()NTHWE
c
c . . . .. PRESENT 'h�LUC: l.l)I�d)I��[l 1 !-ITD
C PASr VALUlS

DO '231\::',4
P ( 1'( , 1 ) =p ( 1< , 2 )

23 QO" i )=1)0\,2)
no i LL:;;;i ,3
F' E ( l L , 1 );;;;P E ( lL, 2 )

i B CONTINUe
; 1 CONTINUE
; 2 CONT HIllE
50 CONTINUE

C
C ..... PARAMETERS �OR PLOTlP ESTABLISHED
C AND PLOTlP CALLED .....

:XST t1r';;T=0. 0
XINC;:::0.01
NPLorS:::4
NPTS=iOO
(ID'=4
WR ITE (6, 30 )
CALL PLOTLP(XSfART,XINC,PFA,NPLOTS,NPTS,ND)
WRITE ('S,30)
CALL PLOTLP (XSTART,XINC,QFA,NPLOTS,NPTS,ND)
!.JR rTE (6,30)

,

NPLDTS=3
ND::::)
CALL PLOTLP(XSTART,XINC,AF,NPLOTS,NPfS,MD)

30 FORMAT (1 H1 )

STOP
END

C
'C
C
C
C

SUBROUTINE PRESS DETERMINES AORTIC PRESSURE P(4) AND fHE
SECTIONAL VENTRICULAR PRESSURES P(i), P(2), P(3). T IS
THE TIME.

SUBROUTINE PRESS(T,P)
DOUBLE PRECISION T,P(4)
IFCT .GE.O .. I�ND. T .LT .O.25)F'( 1 )=20.8*T
IF(T.GE.0.25.AND.f.LT.O.3)P(1 ):;;;194.�T-43.J

IF(r.GE.0.3.AND.T.LT.0.37)P(; )=1215.7*f-349.81
IF(T.GE.0.J7.AND.f.LT.O.S)P(1 )=20.*DSIN(3.1415*(T-0.37)/0.26)+
*100.
IF(T .GL0 .. i-IND. f .LT .O.2)P(2):=;20.8�T+1 .(-)4

IF(T.GE.O.2.AND.T.LT.O.2�)P(2)=194.*T-33.6
IF(T.GE.O.25.AND.T.lT.O.32)P(2)�121S.7»T-289.02S
IF(T.GE.O.32.AND.T.LT.0.45)P(2)=20.*DSIN(].141S*(T-0.3�)/0.26)+
*100.
If(T.GE.O.4S.AND.T.lT.0.S)P(2)=i20.
IF(l .GE.O .. AND.r.LT.0.15)P(3):::20.8�T+2.08
IF(l .GE.O.i5.AND.T.lT.0.20)P(3)�194.*f-23.9
IF(T.GE.O.20.AND.T.LT.0.27)P(])=121S.7*f-228.24
IFO .1;E.0.27 .liND. T .LT .O.40)P(3)==20. lI'DSIN(3. i 415)HT-0.27)/O.26) r

*;00.
IF(T.GE.0.4.AND.T.LT.0.S)PC3)=120.
IF(T.GE.0.S.AND. f.LT.0.63)P(1)=P(2)=P(])=20.*DSIN(3.1415*(T-O.37)1
*0.26)+100.
IF <T • GE. 0 • 63. AND. r • LT. O. 7) f' ( 1 ) =p (2) 'F' (3) = - i 290. * T +-9 i 2.7
IF(T.GE.0.7.AND.T.LT.0.77)P(1 )=P(2)=P(3)=-138.6*f+i06.72
IF( r .GE.0. 77)P( 1 )=P(2) "F'(3):;:O.
IF(T.GE.O.9S.AND.T.LT.1 .O)P(2)=20.8�T-19.76
[F(T.GE.O.9.AND.T.LT. I. jP(3)�20.8*T·\8.7�



I F ( T . tJ E . () . . ; i N D • T . LT. () . ,3 5 ) F' ( 4 ) :: - 33 • 0,"'* f j. (;1 1 •

IF(T.Gl.0.69)P(4)=-30.*T�121 .

f�ETUF\f�
l��ND

C
C
C
C
C
C
C

SUBROUTINE CIRCLE COMPUTLS THE FLUID RESISTANCE(RJ,
INDUCTANCE (L), AND CAPACITANCE (C) �OR A CIRCULAR CROSS
SECTION. THE PRESENT VALUES OF PRESSURE (P) AND flOW (Q)
ARE THEN DETERMINED� RADCIR IS THE R�DIUS OF TH� CIRCULAR
CROSS SECTION.

SUBROUTINE CIRCLE
DOUBLE PRECISION R,L,C,AN(3),Q(4,2),P(4,2),DELT,P[(3,2)
*,MU,DELL,PI,RHO,NU,RADCIR,E,H
COMMON AN,Q,P,DELT,PE,MU,DELZ,Pl,RHO,NU,E,H,N
RADCIR=DSQRTCAN(N)/PI)
R=(8.DO*MU*DELZ)/CPI*RADCIR**1)
Lz(9.DO*RHO*DELZ)!C4.DO*PI*RADCIR**2)
C=(DELZ*(1-NU**2)*2.DO*PI*RADCIR**3)!(E*H)
F'< N + i , 2 ) = C Q ( N, 1 ) - QUh 1 , 1 ) HH 1 • DOl C ) * DEL T ..P C N'" 1 , 1 ) + F' E ( N , 2 ) - P E ( N , 1 )

(;j( N , 2 ) = ( 1 • D0/ L )-It( P ( N , 1) R * i� (N, 1 ) - P ( N'" i , 1 ) ) �DEL f+ I� C N, 1 )

I:'.;ETURN
EtID

c
c
c
c
c
c

SUBROUTINE ELLIPS COMPUTES THE FLUID RESISTANCE (R),
INDUCTANCE (L), AND CAP�CITANCE (C) �OR AN ELLIPfICAL CROSS
SECTION. fHE PRESENT VALUES OF PRESSURE (P) AND FLOW (0)
ARE THEN COMPUTED.

,�'IJBROUTINE ELLIP S r c mCMO, DELUN, r�MAX)

DOUBLE PRECISION R,L,C,AN(3) ,Q(4,2),P(4,�),DELT,PE(3,:)
*,MU,DELZ,PI,RHO,NU,CIRCMO,A,B,R3INT,E,H
COMMON AN,Q,P,DELT,PE,MU,DELL,PI,RHO,NU,E,H,N

c
C ••••• SUBROUTINE AXES DET�RMINES THE
C LENGTH OF THE MAJOR AND MINOR AXES (A,lbO

CALL AXES(A,B,DELUN,CIRCMO,AN,N)
C
C ..... �UBROUTINE RIHINT EVALUATES THE
C ' INTEGRAL OF fHE RADIUS OF CURVATURE
C CUm::D (R3INTJ .....

CALL RIHINTCR3INT,A,B,NMAX,PI)
R=(4.D0*MU*DELZ�(A**2+B**2»/(PI*(A**3*B**3»
L=(9.DO*RHO*DELZ)!C4.D0*PI*A*B)
C=(DELZ*<1-NU**2)*R3INT)/CE*H)
j=' ( N + 1 , 2 ) := ( Q C N, 1 )._Q ( N·t- 1 , 1 ) ) * ( 1 . D01 C ) * DEL T + P W + 1 , 1 ) .. P E ( N , 2 ) - P E \ N I 1 )

Q(N,2)=(1.D0!U*(P(N,1) 'R*(�(N, 1 )-P(N+1, 1) ).DELT·H�(N, 1)
F:ETURN
END

c
C .:7UBI:;;OUTINE DUrIBt�L COMPUTES THE FLUID f�ESISTtINCE (Fi:),
C INDUCT':1NCE (L), AND CI-1PACITANCE (C) FOR A DW1BELL CROSS
C SECTION. THE PRESENT VALUES OF PRESSURE (p) AND FLOW (Q)
C ARE DETERMINED. f,ADUM IS fHE RADIUS OF ,; DUMBELL LDE<E.

SUBROUTINE DUMBEL
DOUBLE PRECISION R,L,C,AN(3),O(4,2),P(1,2),DELT,P(C3,2)
*,MU,DELZ,PI,RHO,NU,RADUM,E,H
COMhON AN, Q, P, DELl, PE I MU, DELZ, F'I , F:HO, (IU, E , H, 1'1

RADUM=DSQRT(AN(N)/2.DO!3.1415DO)
R=(8.DO*MU*DELZ)!<PI*RADUM**4)
L=(9.D0*RHO*DELZ)!(4.D0*PI*RADUM**2)
C=(DELZ*(1.DO-NU**2)*2.D0*PI*RADUM**3)/(E*H)
F' (N + 1 , 2 ) = ( Q ( N, 1 ) - 0 ( N + 1 , 1 ) ) * 0EL T·)t 0 . 5 D 0 * 1 . DO / C .. f' ( N + 1 , , ) f PE ( N , :2 ) -

lI'f'E (f�, 1 )

(�U",2)=(F'Ul, j )-R/2.DO)fnn�,1 )-F'(&H1, 1) )�2.D0)tDI'::LT1H ; .00/L)+tl(i'�, i :
F:ETUF:N
END
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c
c
c
c
c
C
C
C

SUI:HWUTINE I;:IHIi'!T [\)r1LUj�i rES THE IrHEGF:Al.. OF fHE F:t.OllJS OF
CURVATURe CUBED OF AN ELLIPSE. THE [NTCGRAL EXTENDS
FROM 0. TO 2*PI. �YMMETRY ALLOWS THE INTCGRAl
TO BE EVALUATED FROM o. TO PI!2. YHIS INTEGRAL [S THEN
MULTIPLIED BY 4. THE INTEGRAL FROM o. TO PI/2.
IS T(NMAX+i).

SUBROUTINC RIHINTCR3INT,A,B,NMAX,PI)
DOUBLE PRECISION F,FR,R3INT,A,B,T(101),PI

C
C ..... FIRST INTEGRAL APPROXIMATION .....

T(1 )=(PI/2.00)*0.5DO*CFCA,B,0.DO)+F(A,B,PI/2.DO»
C
c ..... INTERVAL HALVED REPEATEDLY ..•..

DO 2 L::::1, ,mAX
Tel+-1 )=0.000
FR=(PIJ2.DO)/2.D0**l

2
C
C

C
C
C
C
C

C
C

C
C

IMI�IX=2)uL-1
DO i I:.:1,IMAX,2
T':L+i )=T(l+1 )+FUi,B,FlOAT(l)*FR)
Tel+-1 )=T(L)/2.D0HPI/2.u(»*T(lt-1 )/2.D0·lt*L

..... HHEGI:;;AL (1;:3INT) COMPUTED .•..•

R3INT=4.D0*T(NMAX+1 )

F�ETURN
END

SUBROUTINE AXES DETERMINES THE LENGTH OF rH� MAJOR AND MINOR
AXES (A,B) OF AN ELLIPSE GIVEN A CIRCUMFERENCE AND AREA.
THE 'HALF INTERI)AL ROOT SEHRCH METHOD IS USED.

SUBROUTINE AXES(A,B,DELUN,CIRCMO,AN,N)
DOUBLE PRECISION ZL,ZCIRCM,ZR,CIRCZL,ZHALF,CIRZHF,A,B,AN(]),

)tCIReMO

..... NUMBER OF ITERATIONS DETERMINED
ITER=ALOG(0.05/DELUN)/ALOG(2.0)+1.0

..... ESTABLISH INTERVAL WITHIN WHICH ROOT lIES
2L=0.0(-)500
IF(ZCIRCM(ZL,CIRCMO,AN,N).ZCIRCMtZL�0.0500,CIRCMO,AN,N).IT.O.DO)

JtGOTO 3
ZL:.=ZL. H). 0500
GOTD 1

:3 ZR=ZL +(L 05DO
CIRCZL=ZCIRCMClL;CIRCMO.AN,N)

c
C ...•. BEGIN HALF INTERWIL ITERATION

DO 6 I=1.ITER
ZHALF=(ZL+ZR)/2.0
CIRZHF=ICIRCM (ZHALF, CIRCi1(), AN, N)

c
c . . . .• CHOOSE SUfI INTEI�l)(;L I: Drn A I rH NiJ THE h:OUT ,::" .• - •.

[FCCIRZHF*CIRCZL.lE.0.000) GOTO j
lL;:2:HALF
C H,CZL=C IRZHF
GOTO 6

5 Zf,:.:lHALF·
6 C'OiHINUE

c
C ..... DET RHINE MAJOR AND MINOR AXES

7 B=(ZL+ZR) 2.000
A=AN(N)/( .141500*8)
F:ETURf�
END
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C
C
C
C
C
C
C

FUNCTION ZCIRCM DETERMINES THE DIFFERENCE BETWEEN THE
CIRCUMFERENCE OF �N ELLIPSE AND THE ORIGINAL CIRCUMFERENCE
GIVEN AN �XIS LENGTH AND ARE�. THE EXPRE�SION RELATING �N
AXIS AND AREA TO CIRCUMFERENCE IS AN INFINITE SERIES. THIS
SERIES IS EVALUATED TO TEN TERMS.

FUNCTION ZCIRCM(Z,CIRCMO,AN,N)
DOUBLE PRECISION S,P1 ,D,A,B,P2,ZCIRCM.Z,CIRCMO.AN(3)
S=i .DO
F'1 ::: 1 • DO'
D:::(AN(N)**2-3.i415DO**2.Z**4)/AN(N)**2
D()15I::::1,�0
Pi =P1"*( (2·ltI-i )/(2�1) )'H'2
f':2 "P 1 )f 0 *"* I It ( 1 / ( 2. I - 1 ) )

15 S::::S-F'2
lCIRCH=2.D0*AN(N)/Z*S-CIRCMO
F�ETUF:N
END

c
c
c
C
C

FUNCTION F EVALUATES THE EXPRESSION FOR THE RADIUS OF
CURVATURE CUBED OF AN ELLIPSE. A AND B ARE THE MAJOR AND
i'IINOR AXES. PHI IS THE ANGLE WITH THE X AXIS.

fUNCTION FCA,B,PHI)
DOUBLE PRECISION A.B,PHI,F
F=(A**6*Blt*6)/(CA**2*DSIN(PHI)**2+B**2*DCOS(PHI)**2)**4.5)
r<ETURN
E:i"�i)


