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ABSTRACT

Development of a Digital Computer Model of the
Coronary Circulation.
Laurence Ray Simar jr.

Advisor: Dr. Walter Kuklinski

A model of the coronary circulation which includes the effect
of ventricular contraction is developed. A fluid/electrical analog
is used. The analog incorporates the effects of ventricular con-
traction with a voltage source. Collapse of the corcnary arteries
during ventricular contraction is incorporated into the model. The
resulting trends in arterial flow, pressure, and cross sectional

area are reasonable and anpear to be compatible with published data.
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I. INTRODUCTION

Considerable advances have been made in the area of hemodynam-
ics in the past several years. Physicians and engineers have worked
together to develop mathematical models dealing with various portions
of the circulatory system. These models have dealt with most aspects
of both venous and arterial circulation. The coronary circulation
nas received far less attention. The reason for this Tack of develop-
ment is due to the complexities of the coronary circulation. A well
developed model of the coronary circulation would provide the diagnos-
tician with a valuable tool. A model would allow for accurate predic-
tion of blood flow to various regions of the heart and for an accurate
description of the effect of atherosclerosis and other types of coro-
nary arterial disease on blood flow. The researcher could more accu-
rately analyze the effects of drugs on coronary blood flow by using
information the model could provide about the effects of ventricular
contraction on coronary blood flow. The purpose of this thesis is to
develop a model of the coronary circulation which takes into account

the effect of ventricular contraction on coronary blood flow.

IEEE Transactions on Biomedical Engineering was used as a pattern
for format and style.




II. MODEL DEVELOPMENT
Morpnology of Coronary Circulation

Before developing a model of the coronary circulation,it is impor-
tant to understand the morphology of the coronary circulation. Two
main coronary arteries, the left and right, arise near the aortic valve
(Fig. 1). The left coronary artery supplies the left ventricle and the
anterior half of the septum. The right coronary artery supplies the
right ventricle and the posterior half of the septum. There are many
anastomoses of the two systems at the apex. These anastomoses act as
a safety factor by reducing the area of ischemia when one of the arter-
ies is occluded. The blood flow in the left coronary is comparable to
that in the right coronary artery, 880 ml per 100 gm of left ventricle
per minute. The total flow may amount to 5% of the resting cardiac
output (1).

The primary divisions of the left coronary artery, the anterior
descending and circumflex arteries, give rise to an anastomosing
plexus of vessels. The subepicardial networks give rise to two kinds
of vessels. First, there are vessels which form subsidiary networks
of anastomosing vessels arranged parallel to the surface of the heart.
From these arise precapillaries giving rise to the capillaries supply-
ing the outer portion of the myocardium. Secondly, there are vessels
which branch initially at an acute angle to the horizontal line of the
parent vessels then plunge vertically down through the thickness of
the myocardium. Some of these vessels have a short course and divide

within the thickness of the myocardium; others run with little
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Fig. 1. The coronary vessels (1).



intermediate branching to the subendocardial surface. The subendocar-
dial branches of the nerforating vessels form a complex network of
vessels. The branches may run relatively lengthy distances, brancning
and giving rise to precapillary vessels en route (2).

Capillaries are distributed throughout the myocardium. The cap-
illaries form parallel sheets of anastomosing vessels in the thickness
of the myocardium. The subendocardial sheets of capillaries are very
similar in arrangement to the subepicardial surface (2).

The primary venule is formed by the junction of varying numbers
of venous capillaries. The venules run a very short course before
joining their neighbors and rapidly expand into veins of varying
dimension. Most veins join to form drainage veins which travel in
close relationship to the arteries, usually in a pattern of two veins

flanking one artery (2).
Effects of Ventricular Contraction

The greatest obstacle to the investigation of coronary flow has
been the very marked mechanical effect of ventricular contraction on
the cross sectional configuration of the coronary vessels that run
within the contracting muscle. Contraction is accompanied by a rise
in tissue pressure dependent upon the Tocation of the coronary vessel
in the wall. The increase in tissue pressure surrounding the vessels
reduces their transmural pressure and in the case of the left coronary
vessels, temporary occlusion occurs. Therefore, the resistance to
flow of the coronary vascular bed changes greatly throughout the

cardiac cycle (1). The effect of transmural pressure on the vessel



configuration is much more marked and of more interest in the left
ventricle.

Since the mechanism resulting in changes in cross sectional con-
figuration is the same in the wall of the left ventricle as in the wall
of the right ventricle, it is sufficient to initially examine only what
occurs in either the wall of the left or right ventricle. Because of
its great importance to the systemic circulation, the left ventricle
has been extensively analyzed in the areas of left coronary arterial
flow and wall stresses. For these reasons, the model developed will
deal only with the portion of the coronary circulation supplying the
left ventricle.

The development of stress in the myocardium has been studied
by a number of investigators. The main problem involved in models of
the left ventricle is the continuous variation of myofibril orienta-
tion throughout the myocardium (Fig. 2). The most effective model of
the left ventricle to analyze myocardial stresses was developed by
Streeter et. al. (4). This study assumed that the ventricle is ellip-
soidal and that the muscle-fibers can only bear tension axially.
Fibre-orientation was measured in post-mortem canine hearts. These
results were used to calculate the distribution of normal and radial
stresses through the wall, treating the wall as a tethered set of
nested ellipsoidal shells, each shell having a single fibre-
orientation which corresponds to the experimentally determined orien-
tation of that level in the wall. The stress ratios calculated by
this model in the left ventricular wall at the end of diastole and at

the end of systole are shown in Fig. 3. The importance of allowing
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Fig. 2. Muscle fibre orientation in wall of left ventricle.
(a) Orientation of long axis of fibers at successive depths.

(b) Angle of fibre with circumferentail plane of left ventricle (3).
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Stress ratios in left ventricle at end of diastole and

systole. Sl-1ongitud1na] stress, Sz-circumferentia] stress (4).



for fibre-orientation in studies of this kind is apparent; in models
which assume homogenous wall-properties, both longitudinal (S,) and
circumferential (S,) stresses are found to be highest at the endo-

cardial surface.

Blood Rheology

Since blood flow through the coronary circulation is being
analyzed, it is important to examine the properties of blood. The
two properties of interest are viscosity and density.

Blood is identified as a non-Newtonian fluid. A Newtonian fluid
is one for which the shear stress is proportional to shear strain rate

T =Ny

where T = shear stress

Yy = shear strain rate

n = viscosity

Viscosity is defined as a constant and is independent of shear
strain rate. However, in the case of blood, there are variations of
viscosity with shear rate (Fig. 4). The viscosity of blood increases
greatly with increasing hematocrit (1). At normal hematocrit Tevels
the rheology of blood is dominated by the interaction of fibrinogen
with red blood cells (5). At shear rates above 1000/s, which is
typical for many blood vessels in vivo, non-Newtonian characteristics
of blood become insignificant and viscosity approaches an asymptotic
value of 3-4 mN s/m? (3). !hen the blood vessels of interest are

sufficiently small that the particulate structure of blood can no

Tonger be ignored (100 um diameter), then it is not correct to assume



60

40

20

apparent viscosity (mN s m=?)

asvmototic
values

A A i A

0.1

Fig. 4. Variation of apparent viscosity of human blood with

of shear (3).

10 100 1000
rate of shear (s %)

rate



10

blood to be Newtonian (3). The density of blood is 1.05 g/cm® (3).

Elastic Properties of Arterial Walls

The properties of the blood vessel walls of the coronary circu-
lation are of great importance to the development of a model of the
coronary circulation. This is due to the changes in cross sectional
area found in the coronary arteries during the cardiac cycle and the
changes in cross section related to pressure differences. The non-
linear elastic curve for arteries is well known. Evidence exists
that the arterial wall is anisotropic. This is probably due to the
different orientations and elastic properties of elastin and col-
lagen (6). The incremental Young's modulus relates circumferential
stress to circumferential strain. A graph of the incremental Young's
modulus vs. diameter for an artery of fixed Tength is shown in
Fig. 5. It is postulated that elastin causes the Tow strain part of
the curve, while collagen is stressed at the higher strains. The
elastic properties of arteries differ in different parts of the
arterial system. There are also differences associated with age,
disease, and species (6). The aorta has an incremental Young's

modulus of approximately 5 x 10° dyne/cm® (3).
Cross Sectional Configuration Determination

The variations in vascular bed resistance, as noted previcusly,
are due to changes in cross sectional configuration and area. Katz
et. al. analyzed the relationship between cross sectional area and

transmural pressure (7). Typical transverse cross sections are shown
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at various points on the curve in Fig. 6. An approximation to this
curve is used in the development of this model of the coronary blood
flow. Cross section number three is short lived and acts only as a
transient between the elliptical and dumbell configurations. There-
fore, it will be ignored. The linearized representation and the cut
off ratios for the cross sectional configurations are shown in Fig. 7.
Flow impedance characteristics for the circular cross section have
already been determined by other investigators. The impedance charac-
teristics for the elliptical cross section will be determined in this
paper. The impedanca characteristics of each lodbe of the dumbell
configuration are identical to that for a circular cross section.

By examining Fig. 7 the cutoff ratios for various cross sec-

tional configurations can be determined.

A 9

circular range E;-i AE T o (1)
2 A 3

elliptical range 10 = Ag ” KE'Z.AD =190 (2)
A Ap=3

dumbell range i < I (3)

wnere A

o = Circular area with no collapse or expansion

Ap = elliptical/circular cut off ratio
Ap = dumbell/elliptical cut off ratio
A = present cross sectional area

There is a specific advantage to this linearization of cross
sectional area change. Without this technicue the analysis of cross
sectional change would become a very difficult oroblem of cylindrical

shell theory. Linearization avoids this difficulty, greatly reduces

12
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the complexity of the problem, and accurately describes the system.
However, to be totally accurate, the cut off cross sectional ratios
would have to be determined using a section of tubing with charac-

teristics as similar as possible to the tube section being modelled;

in this case a section of coronary artery.
Govarning Equations

The Navier-Stokes equations describe laminar flow of a Newtonian
fluid. If body forces (such as those due to gravity) are disregarded
and no tangential motion is assumed, then the cylindrical coordinate

form of these equations is

3P Uz 9, U,
3z = - °l 3t + Urgr * Uzoz )
13 Uz 5%U;
Pl R g () ) (4)
3P _ Up .\ Yy Uy
ar =" el gg t U ¥ Vg )
2
3 L3 ' + 2 Ur
ol 5y 3p )) ~577 ) (5)
where P = pressure
z = distance along the axis
o = fluid density
u = viscosity
U, = longitudinal velocity

(o=
-
1]

radial velocity
Another exprassion of interest is the continuity equation expressing

conservation of mass. If blood is assumed to be incompressible this

equation becomes

15
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ou U ou
., r., =

Tt 50 0 (6)

The assumption that blood behaves as a Newtonian fluid has given

good results in several other models of blood flow (8-10).
Circular Cross Section Impedance Characteristics

The importance of blood viscosity and density and elastic proper-
ties of the arterial walls will become even more apparent during this
portion of the derivation of the coronary circulation model. According
to Attinger and Attinger (11) no matter what analytical approach is
chosen to analyze circulatory flow the impedance consists of two
components, a longitudinal impedance (a function of the inertial and
viscous properties of the blood) and a transverse impedance (a function
of the mechanical properties of the vessel wall). The derivation of
these three factors will be based, to some extent, on techniques
used by Rideout and Dick (12). The techniques used herein are more
straight forward, easily applicable to the cross sectional shapes of
concern, and provide results consistent with those of Rideout and
Dick.

The first derivation deals with the effect of viscosity on
flow. In the case of Poiseuille flow the following additional assump-
tions are made:

1. steady flow

2. wuniform flow

3. symmetric flow

Assuming Poiseuille flow and a circular cross section, equations

(4-6) give a velocity profile (Uz) as
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Uz = = & (% - r2) )
where P = pressure

z = distance along the tube

U = viscosity

r = radius of the vessel

ry = radius of interest

The volumetric flow rate (Q) is given as
Q =fA U, dA (e)

Substituting equation (7) into (8) and integrating yields

Q:Eﬁ_qli
8u dz (9)

Rewriting equation (9) in difference form yields

AP =§%%%'Q (10)
A resistance (R) relating AP and Q can be written as
R - Budz (11)
mr
where AP = QR

Tne value of resistance derived by Rideout and Dick is

_ 8luAz
i 8mr

This fluid resistance is only 81/64 times larger than that
given by Poiseuille's Taw. Studies performed on a model of the
arterial system showed that the resistance term of Rideout and Dick
could be optimized by a multiplicative constant (10). Therefore the
differences between assuming Poiseuille resistance and using the

resistance term derived by Rideout and Dick are negligible. This



derivation gives the effect of viscosity on the longitudinal impedance.
The relationship between inertial effects and longitudinal

impedance will now be examined. In this case the assumptions made are

1. uniform flow
2. symmetric flow

Returning to the Navier-Stokes equations (4-6) yields

dUz 1dp (12)
dt T b dz
Rearranging equation (12) gives the velocity profile (U,)
_ldp (13)
The flow rate is given as

Q ,( U, dA (14)

Substituting equation (13) into (14) yields
t

_1ldp
A

Rideout and Dick assumed a flat velocity profile as shown in
Fig. 8. This gives a zero velocity beyond R = %ﬁ_. Since the
velocity profile found in the arterial system is basically flat (3)
and the velocity always drops off at the edges of the tube (12),
this velocity profile is a reasonable approximation. Evaluating the

integral over this cross section area gives

4 wr2 dP e
R Rl b )

Taking the derivative of equation (15) with respect to time yields

dq - 4 mr? dP (16)
dt 9 o dz

18
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Rewriting equation (16) in difference form yields

R @

The fluid inductance (L) is

9 pAz (18)
L = T s

where AP = L %%

This fluid inductance term is identical to that derived by Rideout
and Dick and takes into account the effects of fluid inertia upon
flow.

The transverse impedance is, as stated previously, dependent
upon the elastic properties of the wall. It is therefore necessary
to analyze the effect of pressure on the arterial walls. If a
pressure P is applied to a Tinearly elastic thin wall vessel of
thickness h and a radius of curvature r (Fig. 9) then the circumfer-
ential stress S is given by the law of Laplace (13) as

_ Pr (19)
=

This pressure P will also cause displacement of the wall (Fig. 10).
If the longitudinal strain is assumed to be negligible, which is a
good assumption due to the small strains found in the arteries, then

the circumferential stress is given as (14)

where dr = change in radius of curvature

8
1]

E = Young's modulus

Poisson's ratio

(<
]

20



Fig. 9. Segment of a thin walled tube.

stress (3).
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Fig. 10. Radial wall displacement of a thin walled tube (14).



Setting equation (19) equal to equation (20) and solving for dr yields

2 2
dp = APrEgl-v ) (21)
Also
dV = r dé dr Az (22)
where dV = volume of differential element
d¢ = differential angle

Substituting the expression for dr into dV yields

-v3) A

dv = s (éh\) ) Az r® de (23)
The difference in flow rate in and out of a section of artery can
be related to volume changes by

dv = AQ dt (24)
where AQ = Qin' Qout
Setting equation (23) equal to eguation (24) and integrating yields

t m
f AQ dt = AP (1"\)2) Az r3 do (25)
0 Eh 9

Tne fluid capacitance relating blood flow to the elastic properties
of the blood vessel is C where

c = 2rrd Az (1-v2) (26)
- Enh

andAQ=cg%

A dumbell configuration corresponds to two disjoint circular

cross sections. The R, L, and C values for each of these circular

are identical to those found for a circular cross section.

23



E1liptical Cross Section Impedance Characteristics

The techniques used to derive the impedance characteristics
for the circular cross section are applicable to the elliptical
cross section. First, the resistance term is desired. The assump-
tions are as before. For an elliptical cross section the axial
velocity U, is given as (15)

. 1dP a®b? %< z
rmgare (1- G )

where u = viscosity

P = pressure

z = axial distance

a2 = minor axis length
b = major axis length

The volumetric flow rate (Q) is given as (15)

dP

_m_dP  a’b? (27)
Q= 4y dz 3% + b?

Rewriting equation (27) in difference form and solving for AP yields

- 4u az(a? + b?)

A
AP fa' b

Q

For an elliptical cross section the resistance term (R) is given

as

_ 4u Az(a® + b?) 28
R = Ta’o’ e

where AP = RQ

The difference for the elliptical cross section inductance term

arises as a result of the equation

1l (29)
Q=3 dzjj;dl\ dt

24
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A flat velocity profile is once again assumed (Fig. 11). The velocity

falls off to zero on the major axis at A = g%—and on the minor axis
2h

at 3 = =3 - “valuating equation (29) over this cross sectional area
yields
4 ab dP (30)
Q='9‘_—587fdt

Manipulating equation (30) in the same manner as equation (15) yields
the inductance term for an elliptical cross section

ol (31)

_ 9oz
L= 4 mab

The difference in the derivation for an elliptical capaci-

tance occurs at equation (25)

T 2m
p -v2) A
fAQ i s ALX_)_ﬁj' o (25)
0 B 0

For an ellipse the radius of curvature (r) is dependent upon ¢ and
is given as (13)

Y‘ = azbz b
(a%sin?¢ + bZcos?o) ¥2

The manipulaticn of equation (25) is the same for the elliptical
cross section as the circular cross section. The capacitance (C)
is given as

2T
E = Az Ef'(]].-\)z)jra do (32)
0

wnere r = radius of curvature of an ellipse

dP
. dt

[}

and AQ =

The values for R, L, and C for both circular and elliptical cross

section are compiled in Table 1. One test of the validity of the ex-
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Fig. 11. Flat velocity profile approximation for elliptical cross

section.
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b
a
8uAz 4urz(a® + b?)
R Trt Ta’h?
oAz S0AZ
L e 4mab
21
c Az(1-v?)2mr’ az(1-v?) r3 do
ch
Eh < 9

Table 1. Values of R, L, C for circular and ellipotical cross

section.
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pressions for the elliptical cross section is to notice that the ellip-
tical expressions reduce to the corresponding circular expressions
when a = b = r . This is the condition corresponding to the evolu-

tion of an ellipse into a circle.

Concept of the Fluid/Electrical Analog

The model of the coronary circulation developed herein is based
on the derivation of a fluid/electrical analog. The concept behind
a fluid/electrical analog is simple: there are certain characteristics
of a fluid system which allow it to be expressed in the form of an
electrical circuit. This technique allows for conceptual advantaages
since it becomes a simple matter to apply circuit analysis techniques
to the analoa circuit. The analogs between the fluid and electrical
system are illustrated in Table 2.

If the expressions for resistance, capacitance, and inductance
for the fluid system are known, then a set of analogous equations
relating pressure and flow can be derived. For an electrical system

these equations are

Vv = IR a)
Sl b) (33)
V - L dt
- c)
J. - C dt

where V = voltage drop
[ = current
t = time

R = resistance

28



Table 2.
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ELECTRICAL SYSTEM FLUID SYSTEM
Voltage Pressure
Current Flow rate
e
frdictance to Fu1d momentun.
e
of vessel wall.

Fluid and electrical analogs.



L inductance

€

1]

capacitance
Using the fluid analogs these equations are transformed into

the following set of equations:

AP = QR a)
w1 o) (34)

where AP = pressure drop

Q = mass flow rate

t = time

R = fluid resistance
L = fluid inductance
C = fluid capacitance

Model Configuration

A section of artery was modelled by Rideout and Dick using an
L network lumped equivalent form (Fig. 12). The electrical analog
has the resistance and inductance terms in series. This is because
both of these terms have the effect of creating drops in pressure
because of flow through them. The capacitance term is across the
pressure into the next section. This is a consequence of equation
(24) which shows that volume changes are related to differences in
the flow into and out of a section. Placing the capacitance term
in an across position allows the capacitance to add to or subtract

from the section flow rate. Thus the flucturations in volume due

30
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Fig. 12. (a) Section of artery. (b) L network lumped equivalent
circuit (12).
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to flow rate changes are due to the capacitance term which depends
entirely upon the elastic properties of the arterial wall. This
arrangement of R, L, and C corresponds to that described by Attinger
and Attinger (11) where R and L are the longitudinal impedance terms
and C is the transverse impedance term.

For the model of tne coronary circulation developed herein, the
electrical analog shown in Fig. 13 was proposed. A unique feature
of this model is the use of a pressure source (Pext) to represent
the pressure developed in the myocardium during the cardiac cycle.
Tne validity of this sectional representation can be visualized
Dy comparing the response of the electrical section to the response
of the arterial section. If a step input of external pressure is
applied to both systems there will be a transient flow of Tiquid in
the fluid section and a corresponding transient current in the elec-
trical section. Also, if the vessel walls should become rigid the
effacts of external pressure becomes less. Similarly, for the 2lac-
trical section, a rigid wall will have a large Youna's modulus wnich
corresponds to a decreasing capacitance and a lessening of the effects
of external pressure (Payt).

The svstem developed by Rideout and Dick was entirely Tinear.
However, this model allows for variations in cross sectional shape
which is determined from changes in section volume. Since section
volume change (dV) is related to difference in flow rate in and out
of a section AQ by

dv = AQ dt

and change in volume is also
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Fig. 13. (a) Section of coronary artery. (b) L network lumped

equivalent circuit.
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dvV = dA dz

Therefore, the change in cross section area (dA) is given by
_ g dt
dA = AQ °E

The change in cross sectional area can be used to determine the
new cross sectional area for the next time interval. Similarly, the
new cross sectional configuration can be determined using the pre-
viously mentioned cut off ratios. From the new cross sectional con-
figuration and area the new values of R, L, and C can be determined.
Examination of Table 1 shows R, L, and C to be sensitive functions
of cross sectional area and configuration. Therefore, the model

becomes highly nonlinear over several intervals.



III. METHODS
Derivation of Controlling Equations

The derivation of the controlling equations for a coronary
arterial section (Fig. 13) are based upon state-variable analysis.
The subscript N identifies the section. The subscript T identifies
the period in time.

The first equation necessary is an expression for the inlet

flow QN,T . Summing pressures yields
dQN,T

i T A T T P, T 0 (3%)

Rewriting equation (35) in terms of QN T yields

St 1 (P RO, - - P ) (36)
gt T Pt T R T Pt

The final equation necessary is an expression for the outlet
pressure PN+1,T . The flow through the capacitor QCN,T is given

as

Qn,t = Wt - Qa7 (37)

Writing the flow through the capacitor in terms of the pressure
across the capacitor (PCN T) yields

dp
CN,T _
NaE T Wt T et B

The pressure across the capacitor may be written in terms of the

external pressure (PEN,T) and outlet pressure (PN+1,T)

Pen,T = Pne,T " PENLT (39)

Substituting equation (39) into equation (38) and rearranging for
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an expression in terms of PN+1,T yielss
dP
N+1,T _ 1 EN
—at T gy (T Qe m* R (40)

The derivation is similar for the dumbell configuration. In
this case the circuit is as shown in Fig. 14. For this analog

circuit the controlling equations are

; Qv,T
I S P T p 4
@ =Ly Pt R N+1,T) (41)
®Pyer,t 1 W1 Wer,m. dPey (42)

—d (T -Tz ) tE

Implementation of equations (36), (40), (41), and (42) on a
digital computer is necessary. This requires that these equations
be written in finite divided difference form. Assuming that the
pressure and flows are to be calculated over some interval (Tl,TZ)
and that the length of the interval is AT yields two sets of
approximating equations.

For the elliptical or circular cross section these are

1
B, = oy P - AT - P ) AT Qury (43)
1
P = = (Q -0 ) AT + P - P
N+1,T, Gy N,Tl N+1,T, EN,T, EN, T,
+ PN+1,T1 (44)
For the dumbell cross section these are
5 QN,Tl i .
{ = - T A
Wor, Top Pty T R T Pt AT B Gl
1
p SR -Q ) AT + P - P
N+1,T, — 2Cy N,T1 N+1,T1 EN,T, EN,T,
(46)

* PN+1,T1
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Equations (43-46) constitute a recursion relationship for cal-
culating pressures and flows in a section of coronary artery.
Several sections of artery may be connected in series and pres=-
sure and flow in each section computed. A generalized flow chart
illustratine the implementation of equations (43-46) and the change
in cross sectional configuration is shown in Fig. 15. An ex-
planation of the subroutines involved and a complete program listing

are located in the appendix.
Description of Model Experiments

The implementation of the model of flow through a coronary
vessel required that several parameters describing the arterial ves-
sel be chosen. The choice of these parameters was based on previous
discussions. The value of Young's modulus was 5 x 10® dyne/cm?.
Assuming tha arterial wall to be incompressible, Poisson's ratio
is %. The vessel wall thickness was 0.0096 cm. The vessel radius
was 0.048 cm. The viscosity of blood used was 0.03 poise and the
density of blood used was 1.05 g/cm3®. Three sections with a length
of 4 cm/section were connected in series. This series represent-
ation of a coronary arterial segment is illustrated in Fig. 16.

The final assumption made concerned the representation of the
pressure developed in the myocardium during ventricular contraction.
There are, as noted previously, great difficulties involved in the
analysis of myocardial stress. Since the time course and trends

of myocardial stress are essentially similar to those of ventricular
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pressure, the ventricular pressure waveform was used to represent the
myocardial pressure. The aortic pressure was used as a driving pres-
ure for the system. The aortic and ventricular pressures used in the
model are shown in Fig. 17.

An analysis of the general relationship between the R, L, and
C parameters and cross sectional area was performed. The first
model developed modelled the effects of simultaneocus ventricular con-
traction on a coronary vessel. The second model was an attempt to
more accurately describe the actual contraction mechanism of the Tleft
ventricle. The second model modelled the effects of a ventricular
contraction beginning at the apex of the heart and propagating

upward.
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IV. RESULTS

Before the implementation of the model of the coronary cir-
culation, an analysis of the impedance terms was performed. The
general trends for the R, L, C and parameters as a function of cross
sectional area are shown in Fig. 18. The resistance and inductance
terms are inversely proportional to the cross sectional area as ex-
pected. The capacitance term exhibits an interesting behavior.

As the elliptical cross section becomes flatter, the capaci-
tance increases. The increasing capacitance for the flatter ellipse
is a result of the dependency of the capacitance on the radius of
curvature of the ellipse. For a flatter ellipse the radius of cur-
vature increases greatly over a significant portion of the ellipse.
Since the capacitance for an ellipse is proportional to Sride, the
capacitance increases. This indicates that the ellipse is rela-
tively easily deformed. Once the cross section collapses to a dum-
bell configuration, the capacitance drops off drastically. This
indicates that the dumbell cross section is much more difficult to
deform. The difference between elliptical and dumbell cross sectional
capacitance can also be considered to be a transition from an un-
stable state to a stable state.

Two models of coronary blood flow were implemented. The first
model assumed simultaneous contraction of the left ventricle, that
is, the time course of the external pressure was identical in each
section of artery (Fig. 19). The second model took into account

the effects of ventricular contraction as it propagates from the apex
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of the heart to the aortic valve of the left ventricle (Fig. 20).
The inclusion of the effects of propagating ventricular contraction
is more indicative of the actual situation in the heart.

The first feature of importance in both models is the reach-
ing of the forced response of the system. Fig. 21 shows the contrast
between the system's transient flow response due to one heart beat
and the forced flow response due to thirty heart beats. The transient
curves show the erratic and poorly developed flow curves. The
forced response flow curves are in sharp contrast to the transient
flow curves. The erratic fluctuations have died out and the flow
curves have developed more fully. Running the model through a num-
ber of cycles showed that by thirty heart beats the forced response
had been reached. Similar results appeared in the cross sectional
area curves and the sectional pressure curves.

The pressure, flow, and cross sectional area curves for the
first model are shown in Figs. 22, 23, and 24 respectively. The
oressure, flow and cross sectional area curves for the second model
are shown in Figs. 25, 26, and 27 respectively. Each set of curves
for the first and second model has some similar characteristics.

The curves will first be considered in terms of general character-
fstics.

The first curves to be examined are the pressure curves (Figs.
22, 23). The pressure in each section of artery drops the farther
from the source that section is. Another interesting aspect of the
pressure curves is the degradation of the pressure from the aortic

input pressure curve. This is due to the non-linear effects of the
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longitudinal and transverse impedance. The general trend of the sec-
tional pressure curves during diastole is similar to that of the
aortic pressure. All of these effects are quite reasonable.

The next curves to be examined in terms of overall character-
jstics are the flow curves (Figs. 23, 26). Flow generally dropped
off in all sections as ventricular contraction began. There is also
an increase in flow as the aortic pressure rises sharply and the ven-
tricular pressure begins to level off. The flow follows the aortic
pressure during diastole. These general flow characteristics are
compatible with measured coronary blood flow characteristics (16).

The final curves to be examined are the cross sectional area
curves (Figs. 24, 27). The most noticeable characteristic of these
curves is the decrease in cross sectional area as ventricular con-
traction occurs. The curves are skewed to the left due to the effect
of the increasing aortic pressure and the leveling off of the ven-
tricular pressure. It is also interesting to note that the down-
stream sections undergo a greater collapse. This is because, as
noted previously, their internal pressure is corresoondingly lower.
The Tower internal pressure offers less resistance against collapse.

The flow and cross sectional area curves match up quite well.
As the cross sectional area decreases due to ventricular contrac-
tion, the impedance to flow increases and the flow decreases. The
results of the model also seem to indicate that the farther down-
stream one goes, the less important the arterial pressure is and the
more dominant are the effects of ventricular contraction. A1l of

these results are quite reasonable. from a cursory viewpoint.
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It is also interesting to note the differences between the ef-
fects of simultaneous and phased contraction of the left ventricle.
The pressure curves are more perturbed during systole for the phased
contraction. The pressures are also generally lower for the phased
contraction. The phased contraction tends to spread out the flow
curves during the first half of systole. The flows are also Tower
for the phased contraction. The cross sectional area curves are
basically the same shape. However, the soreading out of these curves
also is seen. A1l of these effects are due to the phased contraction
which nas a tendency to spread out its effect through space and time.

Finally, a comparison was made between the general character-
istice of the model and measured data. Flow through the coronary
arteries has been analyzed by a number of investigators. No applic-
able pressure curves were found. No measurements of coronary vessel
cross sectional area and configuration as a function of aortic and
ventricular pressure were found. For these reasons only an analysis
of the flows is attempted.

It is important to emphasize that this comparison is made to
examine only the general trends in coronary blood flow. The mea-
sured flows are flows through major surface vessels which anastomose
throughout the myocardium. The model flows are for a vessel run-
ning through the myocardium. The assumption is that the general
changes in flow and its relationship to aortic pressure should be
similar for the model and the measured flow rates. The values of
flow shown on the axes pertain only to those generated by the model.

The first flow examined is that through the main left coronary
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artery (16). Since it is proximal to the aortic root pressure it
will be compared to the first section of the model which is proximal
to the aortic pressure source. The results of this comparison for
both the phased and simultaneous contraction are shown in Fig. 28.
The general characteristics match up well. The flow tends to follow
the aortic pressure during diastole in all three cases. There is a
rapid drop in flow at the beginning of systole followed by a gradual
increase. There is also a sudden increase in flow at the beginning
of diastole.

The final flow analyzed was that of the left circumflex
coronary arterial flow (16) (Fig. 29). The left circumflex coronary
artery is more distal to the aortic root pressure than the main left
coronary artery. For this reason, its flow was compared to that in
the final section of the modelled coronary artery. Once again, the
flow tends to follow the aortic pressure during diastole. There is
a general decrease in flow during systole. There is also a sudden
increase and decrease at the beginning and end of systole respec-
tively. The results of the comparisons between the model results

and the actual flow in the coronary arteries is encouraging.
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V. DISCUSSION

The development of this model was not without some difficul-
ties. The greatest difficulty involved computational time. The time
constants associated with this circuit presented some difficulties.
By executing the program with the radius used the time constants were
set at a reasonable value making a step size of 0.001 seconds pos-
sible. The majority of computational time involved the calculations
of the elliptical fluid resistance, inductance, and capacitance.

This was due to the large number of calculations involved in the in-
tegration, root search technigue, and circumference determination
necessary to calculate the elliptical cross section parameters. The
computational time was greatly reduced by calculating the elliptical
impedance terms for several cross sectional areas and interpolating
the impedance values for other cross sectional areas.

Further validation of this model is necessary. Validation of
a model of the coronary circulation would require accurate simul-
taneous measurements of aortic pressure, myocardial pressure, and
coronary blood flow and pressure in a laboratory animal. The modei
could incorporate a detailed network of vessels. The measured aortic
and myocardial pressures could be used as the model inputs. The
flows and pressures determined by the model could be compared to the
measured flows and pressures.

The technique of expanding the model to include the effects
of a number of coronary vessels is a straightforward extension of

the techniques developed herein. The level of sophistication would



be 1Timited only by the amount of computer time and space available.
A more sophisticated model could easily include the variations of
myocardial pressure with depth. It would be a simple matter to take
into account the varying lengths, diameters, and orientations of the
coronary arteries. Effects of such diseases as atherosclerosis on
coronary blood flow could be examined by simulating the effect of
these diseases. In the case of atherosclerosis the arteries would
be narrowed and the Young's modulus of the arteries increased. The
utility of a representational model of the coronary circulation

is evident and worthy of further research.
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APPENDIX
Development of Subroutines

The elliptical capacitance (equation (32)) requires the eval-

uation of the integral

21
‘JP r® do
0

where r = radius of curvature of an ellipse

¢ = angle with the x axis

This integral was evaluated using the repeated interval halv-

ing technique (17). If TN is the computed estimate of the integral
b

‘pr(x) dx
a

and T, is based upon the composite trapezoidal rule, then the general

N
recursion relation for TN in terms of T, , is
2]
b-a (b-a) .
Ai=2

where Tq = 9%5 {35(f(a) + f(b))}

and N is the number of times the initial integration interval (a,b)
has been halved to produce subintervals of length L = (b-a)/ZN.

The recursion relation of equation (47) can be used to com-
pute the sequence Tl, T2, T3, e TN once TO has been calculated.
The function f(x) need be evaluated just 2N+ 1 times to compute

the entire sequence.



The error term is

- (b-a)3 f”(g) (48)
12(2)N

£ in (a,b)

If f(x) has a continuous and bounded second derivative on the inter-
val (a,b), equation (48) assures that the sequence Tgs Tys Tps vees
TN converges to the true integral, assuming that no round off errors
enter into the calculation.

The cube of the radius of curvature for an ellipnse is eval-
uated by the function F. The integral is computed by the sub-
routine RIHINT.

When the section is in elliptical cross section the cross
sectional area and circumference are known. It is imperative that
the length of the major and minor axis be known to facilitate the
calculation of the resistance, inertance, and capacitance. The

expression for the circumference of an ellipse is (18)

¢ = 2nafl-(h) (22013 @Y - d3h s @)
=,k (49)
where C = circumference
a = length of the major axis
b = length of the minor axis

The expression for the area (A) of an ellipse is

A = mab
Equation (49) may be written in terms of the cross sectional area
and the major or minor axis. In this form the circumference is

given by
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_ 2A 1,2,A%2-m2b*\ ,1:3,2,A2-m2b"* 2,1\ ,1-3:5,2 A%-m2p*,3
¢ = Bu-) A -E ) (-5 )

(
Equation (50) will be abbreviated as

Q=

C = F(b) (51)

Equation (51) may be written as

0 = F(b)-C (52)

It then becomes necessary to find b such that equation (52) is
satisfied. This is equivalent to finding the real root of equation
(52). Knowing b allows a to be calculated by

_A
& b

The technique for finding this real root employed in this
program is the half-interval method (17). This method was applied
for two reasons:

1. Equation (50) is not easily reduced to polynomial form

thus making other root search techniques difficult
to implement.

2. The half interval method provides a technique for assuring

that the root is accurate within a specified range
of uncertainty.

This technigue is easily understood with a simple graphical

illustration (Fig. 30). If values X| 1 and x__ are known, it gives

R1

a root such that f(xbl) and f(x_,) are opposite in sign. For a

R1

continuous function, the number f{( le)/Z}, which is the value

+
L1
of the function at the halfway point, will be either zero or have

the sign of f(xLl) or the sign of f(le). If the value is not

Jeoos} (50)

66



L1

.

Fig. 30.

Half-interval method.

R1
R2

67



zero, a second pair X o and Xpo can be chosen from the three num-

bers X 1> Xpy and (xL1+ X..)/2 so that f(x

site in sign, while

) and f(x,.,) are oppo-

Rl) L2 RZ)

- = L -
1% g %pal = X 1% |
Continuing in this manner there is always a point o in the interval

(ka,ka) for which f(a) = 0.
If A4 is the length of the starting interval, then the number
n of interval-halving operations required to reduce the interval of

uncertainty An is given by
1n(A1/An)
n="Tn2
The calculation of
F(b)-C
is accomplished by the function ZCIRM. The major and minor axes

are found using the half-interval root search technique in the

subroutine AXES.
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Program Listing

DIMEN
DOURL
*E,H, R
COMMO

DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
M=)

DO 25
B IS
RCJI,
CONTI
Do A%
PE(RK

#0=FT
ANy
ANC2)
ANCI

VA A e

CIRCM

.
DELT=

THIS FROGRAM MODELS THE EFFECT OF VENTRICULAR CONTRACTION ON
CORONARY BLOOD FLOW. @& FLUID/JELECTRICAL ANALOG IS USED. A
COROMARY ARTERY IS DIVIDED INTO THREE SECTIONS. CHAMGES IN
CROSS SECTIONAL AREA ARE DETERMINED BY COMFARING FLOW IM AND
QUT OF A SECTION. THE RATIO OF FRESENT CROSS SECTIONAL AREN
TO ORIGINAL CROSS SECTIONAL AREA DEFINES THE CROSS SECTIONAL
CONFIGURATION. THREE CONFIGURATIONS ARE FOSSIBLE: CIRCULAR,
ELLIFTICAL AND DUMBELL. THE COMFTIGURATION DETERMINATION
ALLOWS FOR THE CALCULATION NF THE FLUID RESISTANCE (R),
INDUCTANCE (L), AND CAFACITANCE (C) FOR THAT CROSS SECTIONAL
CONFIGURATIOM. THE ASSUMED HEART RATE IS 1 BEATSSECOND. J
IS THE NUMBER OF ITERATIONS FER SECOND.  [LIM IS THE NUMEBER
NF HEART GEATS 70 BE RUN. RaD IS THE RADTUS 0OF THE COROMNARY
ARTERY. DELZ IS THE LENGTH OF 0ONE 0OF THE THREE SECTTONS.

MU IS5 THE FLUID YISCOSITY. FRHO IS5 THE FLUID DEMSITY. MU ID
FOISSON'S RATIO.FOR THE ARTERY. C IS THE YOUNG'S MODULUS
FOR THE ARTERY. H IS THE THICKNESS OF THE VESSEL WalL.
RTERM IS THE RESISTANCE OF THE FQURTH TERMIMATING SECTION.
DELUN IS THE INTERVAL OF UNCERTAINTY FOR THE ROOT SEARCH
TECHNIQUE. NMAX DETERMINES THE NUMHBER OF INTERVAL HALYINGS
FOR THE [NTEGRATION TECHNIQUE.

STON AF(3,100),FFA(Y,100),QFAC4,100)

E FRECISION F4,2),Q¢4,2),DA,DELZ ,RTERH, AO,FT,RAD, MU, NU,
HO, T,ANC3) ,DELT,FE(3,2) ,FCALC4), CIRCMO

N AN,Q,F,DELT,PE,MU,DELZ,FT,RHO,NU,E,H,N

FARAMETERS ARE SUFFLIED
J/71009/
[ILIM/30/
RTERM/S5.746D4/
RAD/H.048DO/
PI/3.141509/
DELUN/O.ON00S/
MMAX/ 10/
DELZ/4.D0/

MU/ 9.03D0S
RHO/1.05D9/
NU/O.5D0O/
E/5.D&7
H/?.6D-3/

4 a e

INITIAL COMDITIONS ARE ESTARLISHED .....
Jd=1,4
fy=10.D4
1)=0.D4
NUE
KK =4 ,3
,10=0.

NRIGIMAL AREA 13 CALCULATED ... ..
XEAD®*D

=m0

=00

=/

ORTGIHAL C[RCU“FEREHPE [S CALEULATED .....
N=2.D0#DSART (AQ*FT)

| ENGTH 0OF TTHE INCREHEHT IS DETERMIHNED
t.00s5d
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..... UNITE ARE FRINTED .....
WRITE(S, 15)
t5  FORMATC' ', (M) =GMrCH/SECH*A " | 5X, " {Q)=CHxx3/5EC" , 55X, ' (A)=Citxex")

« ..., NUMBER OF ITERATIONS FER SECOND IS PRINTED .....
WRITECSH,20) J
20 FORMATC(' ', 'THE NUMBER OF ITERATIONS FER SECOND IS ', I18,'.")

+a... LOOF DETERMINING NUMBER OF HEART HEATS
DO 12 IFOR=1,ILIM

aaaaa

vaaa. LOOP DETERMINING NUMEBER OF INTERVALS .....
DO 11 INTER=9,J

..... TOTAL ELAFSED TIME [S DETERMIMED .....
I'=C(INTER-1.D0O)*DELT

«a.a. SURROUTIME FRESS CALLED TO DETERMINE
AORTIC AND VENTRICULAR PRESSURES .....
CALL PRESS(T,FCAL)

csaa.. PRESSURES ARE CONVERTED FROM
MM OF HG TO DYNE/CM®»*2 .....

FEC, 2)=PCALL(1)*1.,333D3

FE(2,2)=FCAL(2)%{ . 33303

FECS, 2)=FCAL(3)#1.333D3

FO1,2)=FCAL(4) %1 ,333D3

caa.. PRESSURE AND FiLOW IN EACH SECTION
IS DETERMINED .....

DN 1O N=1,4

TF(MLER.Y) GOTO S

..... CROSS SECTIONAL CONFIGURATIOM
15 DETERMINED .....
IF{AN(N) /ADLGE.O.2D9)CALL CTIRCLE
TFCANCNY AL GT.O.3DO.AND.ANCN) /AD LT 2.9D0) CALL FLLIFS(CIRUMO,
*DELUN, NMAX)
TFCANCMY /ADLLLE.9.3D0) CALL DUMEBEL
GOTO 19 '

v.a. CALCULLATION OF FLOW IN TERMINAL SECTIOMN .....
5 RCa,2y=F(4,2) 'RTERM
f9 CONTINUE

v.o... FINAL ARRAYS FOR PLOTTING (FFA,QFA,AF) ARE
ESTABLISHED. FLOTLF IS A LIBRARY LINE
FRINTER -FLOTTING SUBROUTINE .....
[F(IFOR.NE.ILIMIGOTO 4
IFCCINTER/19) %10 ME L INTER) GOTO &
M=M+1
DO 13 I=1,4
FEACT, M) =F{I,1)
AFACT, M) =Q<{1,1)
12 CONTINUE
DO 22 I=1,3
AF (L, M)=ANCT)-
22 CONTINUE
& CONTINUE
DO 8 K=1,3

..... CHANGE IN CRUSS SECTIONAL AREA (DA)
[S DETERMIMNED .....
DA (UK, 2)-QORK+1, 2) ) #DELT/DELZ

..... NEW CROSS SECTIONAL ARES DETERMINED ... ..
ANCK) =ANCR) +DA
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..... LOWER AaRes LINTT SET RSN
[FCAMOR) LT .9 28D 20 aN k) =0 1 550-2
3 CONTINUE

SR FRESENT YALUES LUADED INTO
FAST ”ﬁLUE: AAAAA
DO 23 K=1, :
POR, 1) r(h,“)
23 QUK 1=K, 2D
DO 1 LL=1,3
i FECLL,V)=FECLL, 2)
18 CONTINUE
CONTINUE
12 CONTINUE
50 CONTINUE

..... PARAMETERS FOR FLOTLF ESTABLISHED
AND FLOTLF CALLED .....
XSTART=0.0
XINC=6.01
NFLOTS=4
NP TS=100

D=4

WRITE (&%,30)

CALL FLOTLF(XSTART, XIMC,FFA,NFLOTS, NFTS, ND)

WRITE (5,30)

CALL FLOTLP (XSTART, XINC,QFA,NPLOTS,NFTS,ND)

WRITE (4,30)

NPLOTS=3

ND=3

CALL FLOTLRP(XETART, XINC, AF , NFLOTS, NFTS, D)
30 FORMAT(iH1)

STAQF

END

SUBROUTINE FRESS DETERMINES AORTIC FRESSURE F(4) AND [(HE
SECTIONAL VENTRICULAR FRESSURES P(1), P(2), F(3). T IS
THE TIME.

SUBROUTINE FRESSC(T,F)

DOUBLE FRECISION T,P(4)

IF(T.GE.O. .AND.T.LT.0.22)F({)=20. 8*1

IF(T.GE.O.25.AND.T.LT.O.3)0F(1)=194, #T7T-43.3

IF(T.GE.O.3.AND.T.LT.LO. 3P (i)=1215.7%1~-349 .31
IF(T.GELO.37.ANDLT.LT.O3)F(1)=20.%DSIN(3.1419%(T=-0.37)/0.25)+
€190 .

IFCT.GE.OL ANDL MLLT O 2)P(2)=20.8%T+1 .04

IF(T.GE.O.2.AND.T.LT.O.29)P(2)=194 . %T-33.4

IF(T.GE.O0.25.AND.T.LT.O0.32)F(2)=41245.7%T-289.925

IF(T.GE.O.32.AND.T.LT O AEIP(2) =20, %#DSIN(3.1415%(T-0.32)/0.25)+
*100.

IF(T.GE.O.45.AND.T.LT.0.5)F(2)=120.

IF(T.GE.O. . AND. [.LT.LO15)P(3)=20.3%T+2.98

IF(T.GE.O.15.AND. T LT.9.20)P(3)=1924.%T7-23.9
IF(T.BE.9.20.AND.T.LT.0.27)P(3)=1215.7%T-228.24

IFCT.3E.0.27 .AND.T LT.0.40)P(3)=20.%DSTN(3.1415%(T-0.27)/0.28) +
*100.

IF(T.GE.O.4.AND.T.LT.O.5)F(3)=120.

IF(T.GELO.S.ANDLTLLT 0. O3IF (1) =F(2)=P(3)=20. %DSIN(3 . 1415%(T-0.37)/
*#9.25)+100.

IFCT.GE.O.83. AND. M.LT.O.DIP(1)=P(2)=F(3)=-1290.%T+212.7

IF(T.GE.O.7.AND.T.LT.O. 7P (1) =F(2)=F(3)=-138.6%T+106.72

N IF(T.GE.O.??)P(1)=P(2)=P(3)2O.
IF{T.GE.D.95. nND TLLT. 1. 0)R(2)=20.8%T-192.74
LECTLGGE (0 2 mD oL T hE =20l Gl 18 J72
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IF(T.GE. O ANDLTULT. 0. 351F(4)=-33,08% 1 +71.

IF(T.GE.D.35.AND.T.LT. 0.8V F(4) =40, 2%DIINCT A1 5%iT-0.35),70.38) +

# 79 4
[F(T.BE.O.89)F(4)==30. kT +121 .
RETURN
END
SUBROUTINE CIRCLE COMPUTES THE FLUID RESISTAHCE(R),

INDUCTANCE (L), AND CAFACITANCE (C) FOR A& CIRCULAR CROSS
SECTION. THE FRESENT VALUES OF PRESSURE (F) AND FLOW (@)

ARE THEN DETERMINED. RADCIR IS5 THE R&ADIUS COF THIZ CIRCULAR

CROSS ZECTIUN.

SUBRUOUTENE CIRCLE

DOUBLE FRECISION R,L,C,ANC3),Q¢4,2),¢4,2),DELT,FE(3,2)
*,MU, DELL, FI,RHO, NU,RADCIR ,E ,H

COMMON AN, Q,F,DELT,FE, MU, DELZ,FT,RHO,NU,E, H,N
RADCIR=DSART(AN(N) /FI)

R=(8.DO*MUXDELZ) /(FI*RADCIR**®4)

L=(? . DO*RHO*DELZ) /(4. DO*FIRADCIR*®%2)

C=(DELZ% {1 -NU»*%2)%2 DOxFI*RADCIR*%3)/ (ExH)

FON+T,2)=0(Q(N, 1)—Q{N+1, 1)) % (1 .DO/CI*DELT+P (41, 1) +FE(N,2)-FE(N, 1)

QON, 2)=C1.DO/L)®CF N, 1) R¥QC(N, 1) =F(N+1, 1)) XDELT+E(N, 1)
RETURN
EMD

SUBROUTINE ELLIPS COMFUTES THE FLUID RESISTANCE (K),

INDUCTANCE (L), aAnND CAFACLITANCE (C) FOR AN ELLIPTICAL CROSS

SECTION. THE FRESENT YALUES OF FRESSURE (F) AND FLOW (@)
ARE THEN COMFUTED.

SUBRQUTINE ELLIPS(CIRCMO, DELUN, NMAX)

DOUBLE FPRECISION R,L,C,ANC3),Q¢(4,2),F(4,2),DELT,FE(3,2)
¥, MU, DELZ,PT,RHO,NU,CIRCHO, A, B, R3INT ,E, H

COMMON AN, Q, P, DELT,FE, MU, DELL,FIL,RHO,NU,E,H, N

..... SUBROUTINE AXES DETERMINES THE
LENGTH OF THE MAJUOR AND MINOR AXES (A, $bO .....
Cabkl AXESCA, B, DELUN,CIRCHMO, AN, M)

taeas SUBROUTINE RIHRINT EVALUATES THE
- INTEGRAL OF THE RADIUS OF CURVATURE
CUBRED (R3IINT) .....
CALL RIHINTC(R3INT,A,B,NMAX,FI)
F=(4.DO¥MUDELZ e (A%%2+R%%x2) ) /(FIx*(AXeInD%%T) )
L=(9.DO®RHO#DELZ) /(4. DO*PLrA*R)
C=(DELZ® (1 ~NU*#D)%RIINT) / (E*H)

FONFY,2)=(QIN, 1) -Q(N+1, 1)) %(1 . DO/CI*DELT+P (N+1, 1) +FE(N,2)~FE(N, 1)

QIN,2)=(1 . DO/L) % (P (N, 1) -R*¥Q(N, 1 )~F(N+1, 1)) *DELT+Q(N, {)
FETURN
END

SURROUTINE DUMEEL COMFUTES THE FLUID RESISTAMCE (R),
INDUCTANCE (L), AND CAFACITANCE (C) FOR A DUMEELL CROSS
SECTION. THE FRESENT VALUES OF PRESSURE (F) AND FLOW Q)
ARE DETERMINED. RADUM IS THE RADIUS OF A DUMBELL LOEE.

SYUBROUTINE DUMEBEL

DQURLE PRECISION R,L,C,ANC3),Q¢4,2),F0(4,2),DELT,PE(Z,2)
*, MU, DELZ,PT,RHO, NU, RADUM, Z, H

COMMON AN,Q,F,DELT,FE, MU, DELZ,FIT,RHO, U, E, H, N
RADUM=DSQRTCAN(N) /2.D0/3.1415D0)
R=(B.DO*MUXDELZ) / (FI*RADUM*%4)

={P . DO*RHO%DELZ) /{4 .DO*F [ »RADUM*»2)

C=(DELZ®* (1 . DO-NU*%2) %2 . DO*F L¥RADUM*%3) / (E*H) .
FOM+1,2)=(Q(N, 1 )=Q(N+1 , 1)) *DELT*O.5D0%1 .DO/C+F(N+1,1) tFE(N,2) -
MEE(N, 1)

QON, 2)=(F (M, 1) -R/A2.DO¥AIN, 1) =F G+t 1) %2 DO%DIILT®CF . DO/L) +QIN, 1)

FETURN
EHD

72
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SUBROUTINE RIMINT EVALUATES THE INTEGRAL OF [HE R&aDIUS OF
CURVATURE CURED OF aN ELLIFYE. THE [NTEGRAL EATENDS

FRUOM o, TO 2%FI.  IYRAETRY ALLOWS THE INTLGRAL

TO BE EVALUATED FROM O. TO FL/20  THIS INTEGRAL [S& THERM
MULTIFLIED BY 4. THE [NTEGRAL FROM 9. TO I/ 2.

IS TONMAX+1) .

SUBROUTINE RIHINTCORIINT, &, B, dMax, F L)
DOUBLE FRECISION F,FR,RIINT,A, R, TC101) ,FI

ceaa. FIRST INTEGRAL AFFROXIMATION ...,
T )=(FPI/2.D0) %0 . 5DO%(F(A,B,0.DO)+F{A, B, FI/2.DY))

teaa. INTERVAL HALVED REFEATEDLY .....

DO 2 L=1,dMAX

T{L+1)=0.0D0

FR=C(FTI/2.D00)/2.D0%*0L

IMABA=0%%l —1

DO f [=1,IMAX,2
TiL+1)=T(L+1)+F (A, B, FLOAT (1) %FR)
TALH)=TL) /2 DO« (PI/2.00) *TCL+1) /2. DO®%L

caaas INTEGRAL (R3INT) COMFUTED .....
RIINT=4.DO*T (NMAX+1)

RETURN

END

SUKROUTINE AXES DETERMINES THE LENGTH OF THE MAJOK AND MINOR
AXES (A,B) OF AN ELLIFSE GIVEN A CIRCUMFERENCE AND AREA.
THE 'HALF INTERVAL ROOT SEARCH METHOD IS USED.

SJUBROUTINE AXES(A,B,DELUN,CIRCMO, AN, M)
DOUBLE FRECISION ZL,ZCIRCM,ZR,CIRCZIL, ZHALF,CIRZHF, A, B, ANCD),
*CIRCMO

..... NUMBER 0OF ITERATIONS DETERMINED
ITER=ALOG(O.O5/DELUN) /ALOG(2.0)+1.0

ceoa.. ESTABLISH INTERVAL WITHIN WHICH ROOT LIES
ZI.=0.005D0

IFCZCIRCMCZL, CIRCHO, AN, N) *ZCIRCMEZL +Q . 05DO, CIRCMO, AN, N) .LT.0.DQ)
#GOTO 3

ZL=ZL+0.95D0

GaTo 14

ZR=ZL+9.05D0

CIRCIL=ZCIRCM(ZL,CIRCMO, AN, N)

s ee s

..... BEGIN HALF INTERVAL I[TERATION
D0 & I=1,ITER

IHALF=(ZL+ZR) /2.0
CIRZHF=ZCIRCM(ZHALF , CIRCMO, AN, N)

..... CHOOSE SURINTERVAL CUONTAINING THE ROOTI ... ..
[F(CIRZHF#CIRCZL.LE. 9. 9D0) 15OTH 9

Il =ZHALF

CIRCZL=CIRZHF

GOTO &

IR=ZHALF

CONTINUE

++.+. DETERMINE mMAJOR AND MINOR AXEY (...
B=(ZIL+IR)/2.0D0

A=ANCN) /(3.1 41 5DO*E)

RETURN

END
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FUNCTION ZCIRCM DETERMINES THE DIFFERENCE BETWEEN THE
CIRCUMFERENCE OF AN ELLIFIE AMD THE ORIGINAL CIRCURFERENCE
GIVEN AN AXIS LENGTH AND aRESN.  THE EXFREISTON RELATING AN
AXIE AND AREA TO CIRCUMFERENCE IS AN INFINITE SERIES. THIS
JERIES IS EVALUATED TO TEN TERMS.

FUNCTTION ZCIRCM(Z,CIRCMO, AN, N)

DOUBLE FRECISION S,F{,D,A,B,P2,ZCIRCM,Z,CIRCMO,AN(3)
$=1.D0

Fi=1.0¢

D=CANCN) ¥x2-3 1 31 SDO*# 2% e ) /AN (N) %2
DO 15 I=1,10

Fi=Fi®({2%T~-1)/(2%[))nx2

P2y eDenl®(f, (2%I-1))

S=5-F2

ZCIRCM=2.DOXAN(N) /Z*S-CIRCMO

RETURN

EMD

FUNCTION F EVALUATES (HE EXFRESSION FOR THE RADIUS OF
CURVATURE CUBED OF AM ELLIFZE. A AND B ARE THE MAJOR AND
MINOR AXES. FHI IS THE ANGLE WITH THE X AXIS.

FUNCTION FOA,B,FPHI)

DOUBLE FRECISION A, B,FHI,F

Fa(Ankod®Bx®d )/ ((Are2DSTMOFHT) #%2+B%%2xDCOS (FHI) %%62) %%4 . 5)
RETURN

END



