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ABSTRACT

An important question in evolutionary biology today is
exactly how and when do the genetic changes which accompany
evolutionary divergence occur? This study examines two competing
hypotheses, with the major difference between the two being the
tempo in which organismal and or genetic changes occur. The
traditional view that most evolutionary change is gradual and
cummulative within lineages - phyletic gradualism - is challenged
by the more recent theory that the majority of evolutionary
change is concentrated within speciation episodes - rectangular
evolution. These two models lead to distinct predictions of mean
amounts of genetic distance between species in species-rich
versus species-poor phylads of equal evolutionary age. Genetic
distance may be measured with any of a number of quantifiable
parameters, i.e. gross karyotype, structural genes, morphologies,
or DNA. In this study, the DNA of North American cyprinid fishes
(minnows) was examined quantitatively. Results were consistent
with earlier work done with these fishes using different
parameters of measurement. Despite the extensive speciation of
Cyprinidae, changes in nuclear genome size, as well as
karyotypic, structural gene, and morphological changes do not

support a rectangular mode of evolution.
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INTRODUCTION:

An important problem in evolutionary biology is how and when
the organismal or genetic changes which accompany evolutionary
divergence occur. Currently, there exist two conflicting
hypotheses. The first is phyletic gradualism (Eldridge and
Gould, 1972), which holds that most evolutionary change is
gradual and occurs by the slow and even transformation of
populations within established species into reproductively
isolated units. Genetic change under the hypothesis of phyletic
gradualism is essentially Darwinian and is thought to occur
primarily as a result of natural selection. The second and more
recent hypothesis is that of rectangular evolution (Stanley,
1975), or punctuated equilibria (Eldridge and Gould, 1972), which
proposes that most evolutionary change in both morphology and
genotype occurs during speciation episodes with a relatively slow
rate of change in intervening periods. The resulting phyletic
patterns appear stepwise, or rectangular. Schematic
representations of gradual versus rectangular models of
evolutionary change are shown in Figure 1.

The two models above, which describe amounts of genetic
differentiation expected between species within a group, lead to
distinct predictions of mean amounts of genetic distance between
species in species-rich versus species-poor phylads of equal
evolutionary age (Avise and Ayala, 1975). Tests of these two
models can be carried out utilizing the logic of theoretical

models devised by Avise and Ayala (1975, 1976) and Avise (1977,



1978) which compare expected means and variances of genetic
distance among living members of rapidly versus slowly speciating
taxa. Briefly, if genetic distance between species is a function
of time (gradual evolution), the ratio of mean genetic distances
separating species in species-rich versus species-poor taxa
should be very nearly one, and the ratio of variances should be
less than one. If genetic distance between species is a function
of speciation episodes (rectangular evolution), the ratio of both
means and variances of genetic distance in species-rich versus
species-poor taxa should be considerably greater than one (Gold,
1980). This test can be carried out using any of a number of
quantifiable measures of evolutionary change. Avise et. al.
(1977) have carried out this test using electrophoretic analyses
of structural genes, Gold (1981) has used karyotypic comparisons,
and Douglas (1982) has used a set of morphological characters.
The use of this type of approach is important in that compgrisons
of living taxa can be made without having to rely completely on
the fossil record to resolve the rectangular evolution - phyletic
gradualism controversy. ''We can now make reliable inferences
directly from the morphologies, gene products, chromosomes, or
DNA of organisms alive today" (Avise, 1977).

Finally, it is important to note that phyletic gradualism
and rectangular evolution represent extreme hypotheses with a
large range of intermediates; however, the two models are
important because if rectangular patterns do exist, then the

theory of phyletic gradualism becomes less important to the



process of evolution (Avise, 1977; Gold, 1980).

The principle objective of this research effort was to
assess the role of change in nuclear genome size in the
speciation of North American cyprinid fishes. The family
Cyprinidae (minnows) is the largest family of North American
freshwater fishes containing some 35 genera and about 250
species. Most of these species are thought to have originated
from one or a few ancestors which migrated to North America from
Eurasia during mid- to late- Miocene times (Miller, 1975). Of
these 250 species, about 125 belong in the single genus Notropis
making it by far the most diverse of minnow genera. Thus, the
North American cyprinid fishes represent a group with an
extremely rapid rate of speciation; however, Avise's (1977),
Gold's (1981), and Douglas' (1982) studies of genic, chromosomal,
and morphological change, respectively, in North American
cyprinids did not support a rectangular mode of evolution in
these fishes.

Nuclear genome size, or DNA content has been correlated with
the speciation process (Price, 1980; Cavalier-Smith, 1982), and
is another measurable parameter of genetic change. Whether
variations in genome size are causal, or merely consequence of
speciation is not known., This study includes an assessment of
variations in genome size among 20 cyprinid species. The same
logic applied in comparison of other parameters was used to
compare the species-rich genus Notropis to other species-poor

genera. In this manner the rate of evolutionary change in genome



size within Notropis could be compared to that within other

genera.

MATERIALS AND METHODS:

There are numerous ways in which genome size can be
quantified. Densitometric measurement was utilized in this
study. For each cyprinid species examined (Table 1), 10
specimens were collected by seine and slides prepared in the
manner used in Gold's laboratory. Fish blood was collected in 50
mcl heparinized microhematocrit capillary tubes via heart
puncture. Chicken blood, used as an internal standard to test
validity of comparison in slides prepared at different times, was
obtained by venipuncture of full sibs from an inbred line of
domestic chicken. One drop of fish blood and one drop of chicken
blood were placed on opposite ends of a microscope slide and
wedge smears of the two (using different coverslips) were made.
Two slides were made from each individual. After allowing the
blood to dry, slides were stored in the dark under dessicated
conditions at 4 degrees C for 24 hours.

Fuelgen hydrolysis was carried out en bloc at 37 degrees C

in 3.5N HC1 for 35 min. (35 min. was found in preliminary studies
to be the time at which optimal fuelgen staining for both fish
and chicken was obtained). Following hydrolysis, slides were
rinsed for 5 sec. in distilled water and stained with Schiff's
reagent for 2 hr. at room temperature. After 2 hr., the slides
were bleached twice in SO,-water (10 min.each), rinsed 10 min. in

distilled water, air-dryed, cleared in xylenes for 10 min., and



then mounted in Permount. Slides were stored in the dark until
analyzed to prevent fading. Fuelgen-stained erythrocytes were
measured using a Zeiss Universal II scanning microdensitometer.
Fifteen fish nuclei and five chicken nuclei were measured per
slide at a wavelength of 560 nm. Nuclear genome size of fish
erythrocytes was estimated via absorbancy comparisons with the
internal standard (there is approximately 2.5 picograms of DNA in
chicken RBC nuclei). Table 2 gives the picograms of DNA

determined for each of the species examined.

RESULTS:

The Statistical Analysis System (SAS) was used for data
analyses. Average genome sizes were computed as a percentage of
the chicken standard and multiplied by 20. This coded data is
designated Fuelgen Absorbancy Units (FAU). Averages were
computed by slides, individuals, and species, with coefficients
of variation at each level about 4 or less for all species.
Frequency distributions were plotted at each level, and gl and g2
tests run on these distributions to test for deviations from
normality. The majority (12 of 20) of species distributions were
normal; a few were either skewed or kurtotic. The latter may be
due to small sample size, i.e., these distributions might be
normal given a larger sample size since tests for skewness and
kurtosis are unduly sensitive to small sample size. Deviations
from normality can mean several things. If the distribution is

drawn out in one direction (skewed), it indicates that there may



be selection for or against organisms falling in one of the tails
of the distribution, or possibly that the scale of measurement
chosen is such as to bring about a distortion of the distribution
(Sokal and Rohlf, 1969). The distributions of genome size of
most of the species were normal. This suggests that changes in
genome size occur in small incremental steps - a gradualistic
pattern. Analysis of variance showed there was significant
heterogeneity between population means; a Duncan's multiple range
test was used to discriminate among significantly different
species means. Table 3 shows descriptive statistics for 20
cyprinid species and includes the results of the multiple range
tests. Normal distributions are designated N, skewed right - SR,
skewed left - SL, and leptokurtic - L. A nested analysis of
variance was carried out to assess the percentage of the
variation occurring at each hierarchical level (Table 4).
Distance matrices were constructed using the mean FAU for
each species for the calculations of average distance and
variance. The first matrix was constructed with the 12 Notropis
species (species-rich group), and the second matrix was
constructed with the 8 non-Notropis species (species-poor group).
Average distances and variances were used in ratio comparisons
and the results are shown in Figure 2. Since the average
distance ratio is near one, and the variance ratio is less than
one, they are consistent with the predictions of phyletic
gradualism, and inconsistent with a rectangular model of

evolution. The richly speciated Notropis does not appear to be



any more differentiated in terms of genome size than less
speciated genera.

A phenogram (Figure 3) showing possible evolutionary
relationships among the species studied was constructed from the
species by species distance matrix using the UPGMA algorithm
(Sneath and Sokal, 1973). The cophenetic correlation coefficient
is indicated in the lower right-hand corner of the phenogram.

The species by species distance matrix for the 15 cyprinid
species included in the phenogram is given in Table 5. Distances
between pairs of species were computed by taking the difference
between mean genome sizes in pair-wise coombinations. There does
appear to be some phyletic component. As noted earlier, the
distributions of genome size in each species overlap, but

certain groups do pull out at lower levels (taxons) as shown in

the phenogram. Pimephales notatus, Pimephales promelas, and

Pimephales vigilax (not shown in the phenogram, but falls just

below P. promelas) all have similar mean genome sizes.

Campostoma oligolepis and Campostoma anomalum (not shown, falls

just above C. oligolepis) are very close in genome size.

Notropis nubilus and Notropis rubellus are very closely related

being in the same subgenus Hydrophlox, and clump together at the

first level of the phenogram. Notropis stramineus and N. girardi

are at opposite extremes in their subgenus Alburnops, and are
separated in the phenogram. The same can be said for N.

chrysocephalus and N. pilsbryi both of the subgenus Luxilus.




DISCUSSION:

The distributions of genome size in most of the species
examined were normal, and there were no consistent patterns to
those that were not normal. The distribution of all nuclei
measured from all species also was normal. This pattern of
distribution normality suggests normalizing selection for genome
sizes where extremes are removed and most individuals are at or
near an adaptive norm (= the mean). It also suggests that the
variation in genome size follows the assumptions of the normal
probability density function, i.e., contributing factors are
small, frequently occurring, independent and cumulative in
effect. This is interpreted to mean that both gains and losses
of DNA occur, and that all such events are independent and
cumulative (Gold, personal communication); they occur in small
incremental steps resulting in a gradualistic evolutionary
pattern. A

It does not appear that speciation in these fishes is
concurrent with large changes in genome size. The mean genome
size of a certain species does not indicate its place in
taxonomic order. Although closely related species may share
similar mean genome sizes, very distantly related species may
also have similar mean genome sizes, and more closely related
species may be separated by larger differences in mean genome
size. Genome size does not dictate membership in a particular
species, genus, etc.

This study does not support a rectangular mode of evolution.



These data will be increasingly important as they are meshed with
genome size data to be collected in the future on other
cyprinids. A larger data base will lead to greater ease in
examining phylogenetic relationships, and questions concerning

modes of speciation in these fishes.
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Table 2. Nuclear Genome Size Measured in Picograms (lOﬁz'g)

Taxon Mean+S.E.
Campostoma anomalum 2.29+40.02
Campostoma oligolepis 2.26+0.02
Notimegonus crysoleucas 2.28+0.02
Notropis boops 2.19+40.01
Notropis chrysocephalus 2.31+40.01
Notropis girardi 2.3540.02
Notropis lutrensis 2.37+40.01
Notropis nubilus 2.38+0.01
Notropis pilsbryi 2.48+40.01
Notropis rubellus 2.38+0.01
Notropis shumardi 2.7040.02
Notropis stramineus 2.5140.01
Notropis umbratilis 2.65+0.01
Notropis venustus 2.42+40.01
Notropis whipplei 2.50+40.01
Phoxinus erythrogaster 2.6340.02
Pimephales notatus 2.24+40.01
Pimephales promelas 2.2240.01
Pimephales vigilax 2.2140.01
Semotilus atromaculatus 2.5140.01
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