THE EFFECTS OF DIETARY FAT ON HEMOSTASIS

Cori L. Sanders University Undergraduate Fellow, 1988-89 Texas A&M University Department of Biochemistry

APPROVED Fellows Advisor___ Honors Director

TABLE OF CONTENTS

	page
List of Figures	ii
List of Tables	iii
Introduction	1
Materials and Methods Subjects and Diet Blood Collection and Storage Radioimmunoassays	5 5 6
Results	6
Discussion	11
Future Research	16
References	18

LIST OF FIGURES

		page
Figure1: I	Percent saturated fat in each test fat	3
Figure 2:	Thromboxane A ₂ standard curve	10
Figure 3:	Influence of butter, crude palm oil, and refined palm oil on plasma thromboxane A ₂ levels	12
Figure 4:	Influence of sunflower oil, parkay, and sunflower/palm oil mix on plasma thromboxane A ₂ levels	13
Figure 5:	Influence of butter, crude palm oil, and refined palm oil on plasma prostacyclin levels	14
Figure 6:	Influence of sunflower oil, parkay, and sunflower/palm oil mix on plasma prostacyclin levels	15

LIST OF TABLES

	page
Table I: 6-keto prostaglandin $F_{1\alpha}$ radio-	
immunoassay counts per minute by diet	8
Table II: Thromboxane B ₂ radioimmunoassay	
counts per minute by diet	9

INTRODUCTION

In recent years, concern over diet has grown tremendously due to the discovery of a possible correlation between diet and heart disease. Diets high in saturated fat are thought to increase a person's likelihood to have a heart attack or a stroke. This is because some saturated fats appear to increase serum cholesterol levels, and high cholesterol levels often lead to heart disease. Diets that are high in saturated fats may elevate serum cholesterol levels. When patients with high cholesterol levels change their diets to avoid saturated fats, usually decreasing total dietary fat as well, cholesterol levels often come down (1).

Fats and oils contain a variety of fatty acids. Some of these fatty acids are saturated; all their carbon atoms are completely saturated with hydrogen. Other fatty acids are unsaturated. These acids contain at least one carbon/carbon double bond. Unsaturated fats, such as sunflower oil, safflower oil, soybean oil, and some margarines contain only 5-20% saturated fatty acids. Palm oil, which is 47% saturated, is considered to be a saturated fat. It is popularly considered to be as bad for you as butter, which is 55.7% saturated (2), and coconut oil, which is 92%

saturated (3)(Figure 1). Hornstra's lab, however, in experiments with rats and rabbits showed that dietary palm oil behaved more like sunflower oil than coconut oil in its effects on hemostasis. Both the palm oil diet and sunflower oil diet showed distinct antithrombotic effects (4-6).

Prostaglandin I_2 , or prostacyclin, and thromboxane A_2 , both derivatives of arachidonic acid, have important blood clotting effects. Prostacyclin is a potent inhibitor of platelet aggregation, preventing clots from forming, while thromboxane A_2 is a strong inducer of platelet aggregation (7,8). Often the ratio of thromboxane A2/prostacyclin is used as an indication of the blood's tendency to clot (4). O'Dea found that rats placed on a butter diet for three weeks had decreased prostacyclin production, indicating a higher thromboxane A2/prostacyclin ratio and an increased tendency for blood clotting (9). Hornstra's lab, however, showed that rabbits eating a diet of 32% palm oil for 1.5 years had a decreased ratio when compared to rabbits eating a 32% sunflower oil diet. This result indicated that the palm oil diet reduced the blood clotting tendencies in the rabbits (4). He also demonstrated a similar blood clotting time in rats on a palm oil diet and rats on a sunflower oil diet. These clotting times were much longer than those of the rats on a coconut oil diet (5,6).

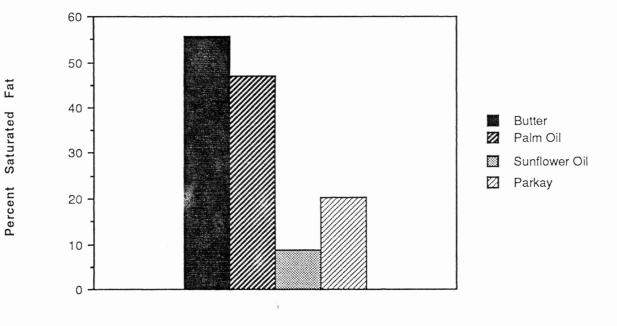


Figure 1: Percent saturated fat in each test fat.

Test Fats

This initial experimentation with animal models indicated that dietary palm oil did not behave as a saturated fat but rather as an unsaturated fat. Because little research with palm oil has been performed with human subjects, the following experiment involving a human dietary study to compare the effects of palm oil to sunflower oil, butter and margarine was performed. Blood samples taken from the subjects were used to determine the levels of prostacyclin and thromboxane A2. The normal levels of prostacyclin and thromboxane A_2 in the blood are less than 5 pg/ml (8,10,11). It is therefore necessary to use a sensitive assay such as radioimmunoassay to measure these compounds. In a radioimmunoassay, a radiolabeled compound competes with an identical naturally occurring compound in the sample for binding sites on an antibody. Unbound components are seperated from the bound components, and the bound componenets are measured for radioactive activity by a gamma scintillation counter. The more the sample compound binds, the less the radioactive compound is able to bind. A standard curve is prepared using standards of known concentrations. When these standards are plotted versus the radioactive activity, a curve is produced which can be used to determine the concentration of a sample. This technique is senstitive, it is able to detect levels of prostacyclin and thromboxane $\rm A_2$ as low as 5

pg/ml, and has little problem with cross-reactivity (12). It was therefore used to determine prostacyclin levels and thromboxane A_2 levels in the serum of the subjects in this study. The hypothesis of the experiment was that palm oil could behave as sunflower oil with both diets having antithrombotic effects.

MATERIALS AND METHODS

Subjects and Diet

Thirty male subject between the ages of thirty and sixty with normal cholesterol levels and normal blood pressure levels were placed on six diets. Each of the six diets used a specific test fat to derive approximately 60% of the fat intake or 24% of the total caloric intake. The test fats were incorporated into a fat spread, milk, ice cream, and cookies. The test fats used were

butter
crude palm oil
refined, bleached, and deodorized (RBD) palm oil
RBD sunflower oil
Parkay margarine
80% RBD palm oil + 20% RBD sunflower oil

The diet period lasted for six weeks, and each subject had to keep a diet

record for part of the diet period to insure he was eating the correct

percentage of test fat.

Blood Collection and Storage

Blood samples were collected from each subject the week prior to the diet period in order to establish a baseline and during weeks one, three, five, and six of the diet period. The blood was collected in 7 ml vacutainer tubes containing EDTA, an anticoagulent. Immediately after collection, 0.07 ml of a 0.4% aspirin solution was added to each tube to act as a prostaglandin synthase inhibitor (13). The tubes were then centrifuged at 6000xg for fifteen minutes. The plasma was pipeted off and stored at -70°C in plastic tubes until the time of the assay.

Radioimmunoassays

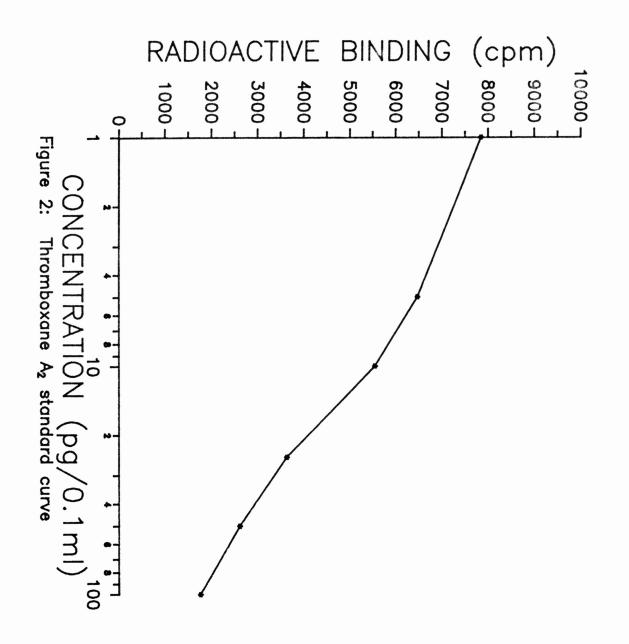
The two compounds of interest, prostaglandin I₂ and thromboxane A₂, have short half-lives and must be measured indirectly through their stable metabolites 6-keto prostaglandin $F_{1\alpha}$ and thromboxane B₂, respectively. Radioimmunoassay kits for these two metabolites were obtained from Biotecx Laboratories, Inc., and their procedures for the radioimmunoassays of the samples and standards were followed. Six samples were run in triplicate to insure repeatability.

RESULTS

All samples for both the 6-keto prostaglandin $F_{1\alpha}$ assay and the thromboxane B_2 assay had radioactive counts higher than the counts for

the zero standard. This is probably the result of non-specific binding occurring in the samples. Something in the plasma, in addition the the rabbit antiserum of the radioimmunoassay kit, could have bound the radioactive and sample 6-keto prostaglandin $F_{1\alpha}$ and thromboxane B_2 (Tables I and II).

Normally, a standard curve, such as the curve in Figure 2, plotting the radioactive counts per minute of various standards versus their respective metabolite concentrations is used to determine the concentration of the metabolite in the sample. Because none of these samples had counts per minute in the range of a standard curve, the average counts per minute for each diet were plotted versus weeks of the diet study in order to show any change in binding.

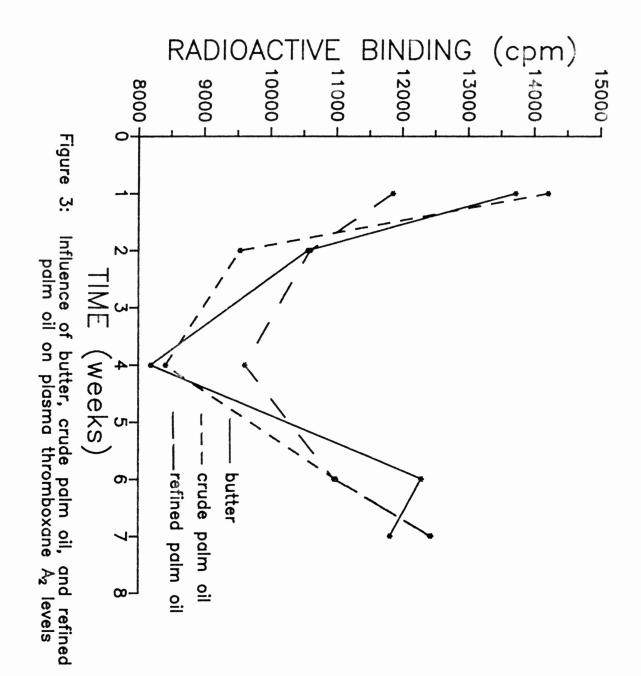

The samples in weeks one and three of the thromboxane B_2 assay were incubated for a shorter time than those of weeks zero, five, and six. The samples incubated for shorter times had lower radioactive and sample binding. Similarly incuabated standards, however, still produced a zero standard with less radioactive binding than the samples. The thromboxane B_2 radioactive counts per minute varied from week to week, but overall the change in counts per minute was minimal (Table I). The butter, crude palm oil, sunflower oil, and sunflower/palm oil mix diets showed a

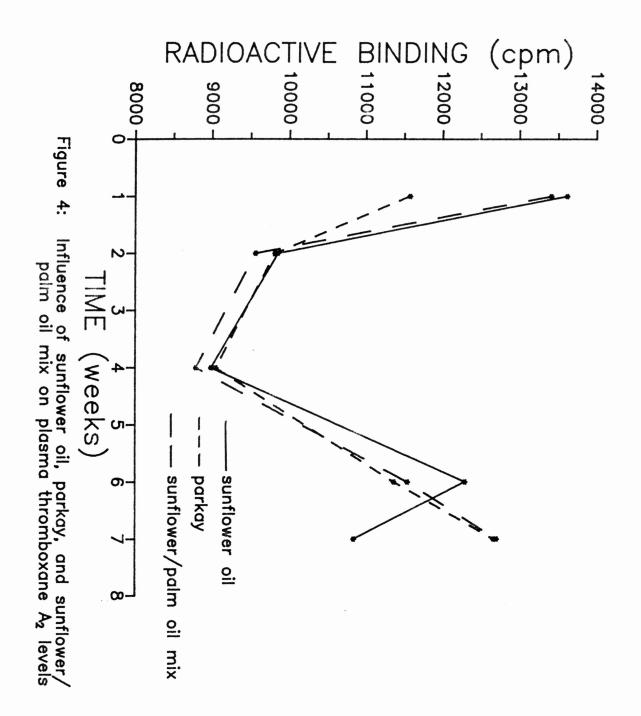
Dy					1	
WEEKS OF DIET 0 1 3 5 6						
	0	I	3	5	6	
1	12476		12798.9	13084.7	13020	
2	12636.2	11782	12937.7	13021.7	12760.4	
BUTTER 3	12415	11501.3		11350.3	12165	
DIET 4	13122.9		12267.8	13988	13358.2	
5	13945.9	13288	12687.8		13118.9	
Average	12919.2	12190.4	12673.1	12861.2	12884.5	
CRUDE 1	11124.7	13412.7	12337.8	12395.9	12173.8	
PALM 2	12523.1	13364.2	12719.7	12428.7	12260.7	
OIL 3	12581.2	13408.6	13197	11664.6	13062	
DIET 4	12895	12878.1	13284.1	12873.5	11918.8	
Average	12281	13266.2	12884.7	12340.7	12353.8	
REFINED 1	11260.5	11119.6	12332	12279	11251.3	
PALM 2	10668.5	13012.7		11802	12185.1	
OIL 3	13537.1	14030	13478	12661.3	12445.2	
DIET 4	13167	12686.3	12442.1	12376.9	12304.8	
Average	12158.3	12712.2	12751.0	12280.1	12046.6	
SUN- 1	13763.3	13075.8	14023	13615.3	12415.4	
FLOWER 2	13118.6	12743	11534	13439.4	12477	
OIL 3	13512	12977	12949	13397.3	12296	
DIET 4		12764.8	11895.3	13128		
5	13086.8	13924.7	14182	13395	11589.1	
Average	13370.2	13097.1	12916.7	13395	12194.4	
1	12847.5	11533	10866.5	10577.7	10634.6	
2	13730	11486	12029.8	12600.2	12626	
PARKAY 3	14135.5	14509.7	11887.1			
DIET 4	11317.6	13165.9	12893.5	12553.6	12928	
5	14183	13734	12026.9	13791.1	12852	
Average	13014.5	12885.7	11940.8	12380.7	12260.2	
SUN- 1	113212	12254.5	12807.4	11407.4	11216.6	
FLOWER 2	13862.8	13136	12274.5	12770.4	12195	
PALM OIL3	12968	12491.3	13323.3	12589.2	12755.4	
MIX DIET 4	12787.4	12031	12747.4	13235	11402.3	
Average	13207.6	12478.2	12788.2	12500.5	11892.3	

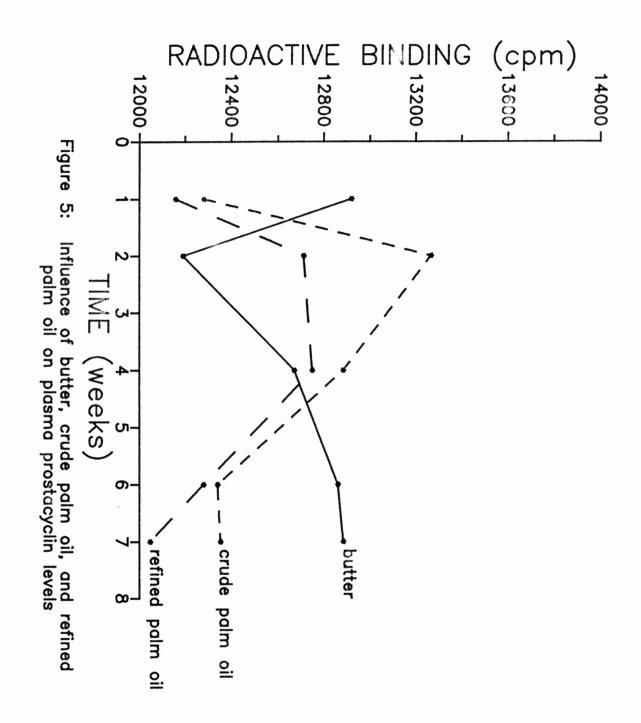
Table I: 6-keto prostaglandin $\mathsf{F}_{1\alpha}$ radioimmunoassay counts per minute by diet

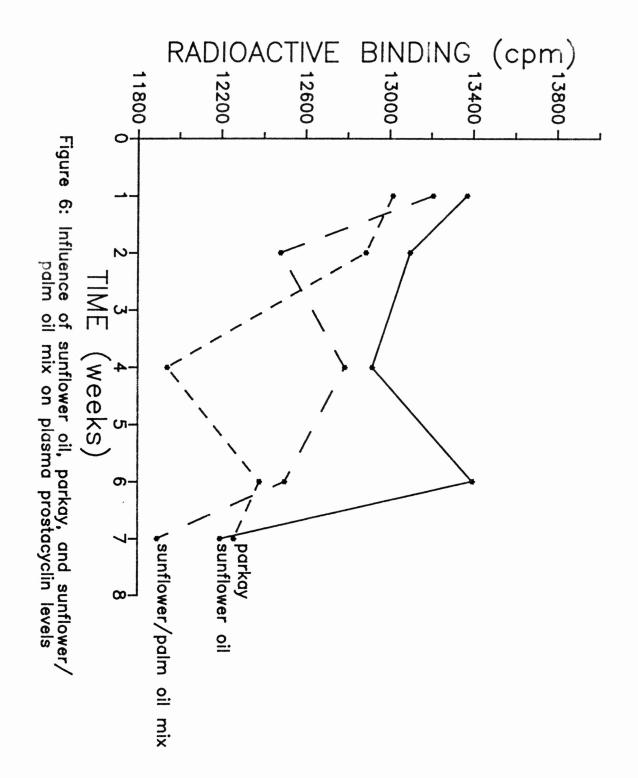
Table II: Thromboxane B₂ radioimmunoassay counts per minute by diet

	WEEKS OF DIET				
	0	1	3	5	6
1	13943.7		7538.3	9719.5	12795.4
2	14735	10953	8716.1	13684.1	8608
BUTTER 3	16096.2	9366		13289	12562.1
DIET 4	13001.6		7308.6	12464	12241.7
5	10801.8	11364	9190		12844.5
Average	13715.7	10561	8188.3	12289.2	11810.3
CRUDE 1	14936.2	10816.6	8223.5	9067.6	11658.5
PALM 2	14244.7	10450.4	8466	12852.4	11747.1
OIL 3	13014.9	8098.6	8519.9	13167	13249
DIET 4	14633.1	8778.3	8446.6	8857.9	13031
Average	14207.2	9536.0	8414	10986.2	12421.4
REFINED 1	8363.7	9980.6	8080.3	10438	12975.1
PALM 2	12680.3	9596.1		8532.9	10968.6
OIL 3	14459	11337.9	10524	9752.5	11691.5
DIET 4	11906	11469.7	10236.7	15134.5	14095.1
Average	11852.3	10596.1	9613.7	10964.5	12432.6
SUN- 1	13876	9887.4	10053	13272.9	11395.4
FLOWER 2	15392	9557.2	9116.1	13696.7	14820.3
OIL 3	10059.9	9310	5962	11991.2	9847.6
DIET 4		10056	8739.5	12343	
5	15112	10426.9	11050.2	10122	7280.1
Average	13610.0	9847.5	8984.2	12285.2	10835.9
1	10998.1	9405	8704	11492.1	12054.5
2	9691	9262.1	9016.2	8404.7	12990.7
PARKAY 3	14142	11914.7	9727		
DIET 4	14721.9	8480.3	8308.9	12757.7	13185
5	10865.9	9974	9479.5	12794.8	12412
Average	11569.2	9807.2	9047.1	11362.3	12660.6
SUN- 1	14639.3	8615	7675.8	11462.5	13263
FLOWER 2	10587.6	10802	941903	12122.4	12127
PALM OIL3	15181.2	9755	8639.9	7978.8	13589.6
MIX DIET 4	13529.3	9058	9412.1	14584	11809.6
Average	12404.8	9557.5	8787.7	11536.9	12697.3




decrease in counts per minute, indicating a probable increase in the sample thromboxane B_2 present, while the refined palm oil and margarine diets showed an increase in counts per minute, indicating a decrease in the thromboxane B_2 present. These results are shown in Figure 3 and Figure 4.


In the protaglandin assay, the butter, crude palm oil, and refined palm oil diets showed very little change from baseline to week six of the diet (Table II). There was some variation in weeks one, three, and five, but overall, the average counts per minutes were virtually the same in weeks zero and six (Figure 5). The sunflower oil, margarine, and sunflower/palm oil mix diets showed a downward trend, with only slight variablity, in average radioactive binding (Figure 6). This would indicate an increase in the levels of prostaglandin in the blood.


DISCUSSION

The results of this experiment cannot be used directly because the sample radioactive counts could not be plotted on a standard curve, probably due to non-specific binding. Even though a trend in the prostaglandin assay of the sunflower oil, margarine, and sunflower/palm oil mix diets was present, as well as changes in all the thromboxane assays, the decrease in average counts per minute might not have been due

to an increase or decrease in prostacyclin or thromboxane A_2 levels, but rather to a change in the assumed element in the plasma which is causing the non-specific binding. The large variability, especially in the thromboxane B_2 assay, in the radioactive binding seems to indicate that the non-specific binding element is variable in all the plasma samples. If this is true, any changes in average counts per minute could be due to a change in this element rather than a change in the compound of interest.

The results indicate that there is very little change in the concentrations of prostacyclin and thromboxane A_2 due to diet. If dramatic increases in the concentrations of either of these elements had occurred, the radioimmunoassays would have indicated it. The most that can be concluded from the results obtained is that none of the subjects had the abnormally high plasma levels of prostacyclin or thromboxane A_2 that can be seen in some heart patients. It appears that the human body is able to adjust to changes in diet without major changes in the levels of these compounds.

Because the results were inconclusive, however, the study should be continued to determine whether or not prostacyclin and thromboxane A_2 levels in the blood change with changes in dietary lipid intake.

FUTURE RESEARCH

This dietary study is scheduled to continue through five more diet periods. Each of the subjects will spend six weeks on each of the diets. Blood sample will continue to be collected for determination of prostacyclin and thromboxane A2. This time, however, unless a means of eliminating the non-specific binding is found, a different assay method will be used. Mass spectroscopy is a sensitive assay method which could be used to measure these compounds. It is extremely specific as it is based on the structure of the compound (12). Also, high performance liquid chromatography could be used as an assay method. It is less sensitive than mass spectroscopy, but it is able to analyze serum without any additional sample preparation, unlike mass spectroscopy. Using these assay methods, perhaps the hypothesis of this study can be proven or disproven.

REFERENCES

- Leninger, A. L., "Principles of Biochemistry," Worth Publishers, Inc., New York, 1982, pp. 759-760.
- 2. Galli, C., E. Agradi, A. Petroni, and E. Tremoli, *Lipids* 16: 165 (1981).
- Weast, R. C., M. J. Astle, and W. H. Beyers, eds., "CRC Handbook of Chemistry and Physics," CRC Press, Inc., Boca Raton, Florida, 1984, pp. D-221-D-222.
- 4. Olson, R. E., D. H. Baker, and R. Russell, eds., *Nutrition Reviews* 45: 205 (1987).
- Hornstra, G., and E. Haddeman in "Platelets and Thrombosis," edited by D. C. B. Mills, and F. I. Pareti, Academic Press, New York, 1977, pp. 115-124.
- 6. Hornstra, G., and R. N. Lussenburg, *Atherosclerosis* 22: 499 (1975).
- Longnecker, G. L. in "Prostaglandins: Organ- and Tissue-Specific Actions," edited by S. Greenberg, P. J. Kadowitz, and T. F. Burks, Marcel Dekker, Inc., New York, 1982, pp. 266-268.
- 8. Vestergvist, O., *Scandinavian Journal of Clinical Laboratory Investigation* 48: 401 (1988).
- 9. O'Dea, K., M. Steel, J. Naughton, A. Sinclair, G. Hopkins, J. Angus, G. Ho, M. Niall, and T. J. Martin, *Lipids* 23: 234 (1988).
- 10. Mehta, J. L., D. Lawson, P. Mehta, and T. Saldeen, *Proceedings of the National Academy of Sciences* 85: 4511 (1988).
- 11. Kumlin, M., and E. Granström, *Prostaglandins* 32: 741 (1986).
- Cattabeni, F., S. Nicosia, G. C. Folco, D. Longiave, and R. Paoletti, in "Prostaglandins, Prostacyclin, and Thromboxanes Measurement," edited by J. M. Boeynaems, and A. G. Herman, Martinus Nijhoff Publishers, Boston, 1980, p. 58.

13. Morris, H. G., N. A. Sherman, and F. T. Shepperdson, *Prostaglandins* 21: 771 (1981).