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I. Introduction

Charge-coupled device (CCD) image sensors have evolved quickly over the past

twenty years. In the process, they have transformed the world of video technology [19].

These analog integrated circuits rapidly convert spatial distributions of radiation (i. e.

optical images) into electronic output. The output is in the form of a time-distributed

voltage signal which can be digitally processed, modulated, and broadcast. Likewise, the

signal can be demodulated and reconstructed on a television screen. As a result, CCD's

have seen remarkable success in practically every type ofTV camera as well as in single­
field image acquisition systems [18].

Nevertheless, the need for real-time image processing cannot be met by CCD's.

Standard CCD's rely on external digital processing engines to filter out the relative

illumination level (i.e contrast) and to extract edges, detect motion, etc [18].

Consequently, valuable time is wasted transferring the image from the CCD to DSP. In

the early eighties the need for high-speed real-time processing of images led to the

implementation of neural networks and cellular automata; two analog information­

processing systems [6]. Neural networks provided the advantage of processing signals in

real-time and cellular automata introduced the concept of interconnected circuit clones.

From the start these architectures evidenced the real-time parallel processing capabilities
of networks; an ability which has recently seen remarkable success in processing images

[7,8,12,13,14].

Within the last five years a vast breadth of literature has been published on advances in

analog image processing tasks such as real-time machine vision, robotics, motion

detection, range finding, etc. If fact, a specific neural network architecture, the CNN

(cellular neural network), has been used effectively as an analog image processing

computer [5]. Other image processing architectures, such as the silicon controlled retina,

have also been successfully implemented [1,2,3]. Still, the CCD's used in current image

capturing devices perform faster and more reliably than the experimental neural networks.

In fact, no CNN image processor to date can function at the high frequencies needed for
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video acquisition. But as feature sizes shrink and manufacturing technologies improve the

exploitation of CNN processors for video applications is inevitable.

In the near future the prospect of using CNN processors in conjunction with CCD

video imagers is good. CCD's may soon have on-chip neural networks capable of

performing quick and valuable processing of the image before it is scanned. In spite of

that, it is unlikely that the first dual imager/processor chips will use charge coupling.

Instead, the first video imaging/processing chip will probably be a pin for pin neural

network replacement for an existing CCD product. Rather than integrate the charge

storage and transfer methods of CCD's, the prototype chip will likely retain the isolated

photoconducting pixels associated with current neural network architectures. This

scenario will allow the network to be thoroughly tested as a video imager/processor.

Afterwards, a scheme will be designed to integrate neural network architecture with the

channel MOS structure associated with CCD's. Thus CCD charge transfer methods will

replace the discrete pixels and allow the chip to be fully compatible for Raster scanning.
The incorporation of analog processors into video technologies will require an

interface which is compatible with existing CCD chip designs. This paper describes an

initial video interface architecture which has been designed for current neural network

processing systems. The on-chip interface translates a processed image from a network

array to a serial digital data stream. The data is then carried off chip to a computer screen

for display. This paper details the image collecting and processing features and notes the

utility of this video interface as an important step towards a dual imaging/processing IC.

The next two sections explain relevant image processing information to the reader.

Section II, describes optical imaging by looking at both the charge coupled device and

CMOS photodetecting pixels. Section III describes image processing with "smart-pixel"
neural networks. In section IV the video interface is explained including the CMOS chip

design and the hardware and software necessary for test and operation. Conclusions and

acknowledgments follow.
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II. Optical Imaging

Overview

The evolution ofmonolithic systems for image processing has seen the success of two

important building blocks. First, charge-coupled devices have been widely used as video

imagers [19]. Second, neural network algorithms have been successfully implemented as

VLSI image processors [4]. This section discusses the imaging techniques used in CCD's

as well as those used in neural network applications. Together these devices have the

potential to perform video acquisition and processing simultaneously. First, however, we

must fully understand their operation.

Charge-Coupled Devices

The most widely used method of gathering optical data is the charge-coupled device.

In essence, a CCD is made up of metal-insulator-semiconductor junctions operating in the

deep depletion mode. This regime is a special case of semiconductor inversion which

never reaches thermal equilibrium. A voltage applied to the metal electrode will repel
electrons and create a depletion region similar to that in a reversed biased p-n junction.
The time that is takes electrons to leave the semiconductor region is much less than the

time it takes thermally generated holes to congregate in the potential well. As a result the

well exists for enough time for external charge to be introduced to the region. Since the

MOS junctions are placed adjacent to one another the charge can be transferred in an

analog shift register fashion.

Consider the case of several adjacent electrodes like that shown in Fig. 1. Each

electrode is a MOS junction which can be independently biased. Additionally, each MOS

junction acts as a photodiode generating charge in proportion to the incident light energy.
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Figure 1 The charge generating and storage device of a CCO

In Fig. 2 a three electrode charge transfer scheme is shown. Suppose at t=O there is a

potential applied to the first electrode. At this time photogenerated holes will migrate to

the potential well. In order to transfer this charge to the second MOS device a potential
well must be induced under the second electrode while the original potential well is being
reduced. This is done by applying a potential to the second electrode while gradually

decreasing the potential on the first electrode. The same mechanism is used to pass the

charge onto the third electrode and eventually to an output stage. The miracle of video is

that a large array of photo generated charge can be quickly transferred off of the CCD by

applying appropriate voltages to adjacent electrodes.
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Figure 2 (a) Charge transfer in a CCO (b) Electrode Voltages

Realistically, a typical CCD contains thousands of adjacent pixels aligned in a compact

2-D array. The structure is highly efficient and can even be made immune to noise by

using buried channels (i.e. P+ implant). Unfortunately, the continuous transfer scheme

used in CCDls coupled with the need for high density CCD arrays will not accommodate

analog processing circuitry at each pixel. Until this problem is solved the discrete pixel

imaging technique of CNNls must be used in analog image processors.

Discrete Photodiodes

Neural network image processors are a special type of optoelectronic integrated
circuit. Their hybrid nature provides the advantages of both technologies including high­

speed parallel optical computing and data transmission with reduced crosstalk, high­

density logic, and standard interfaces. Recently, optoelectronic CMOS memory circuits

and neural networks have been successfully tested. In both cases the optical detection was

accomplished by discrete photodetectors. These pixels are placed in repeated cells as light

dependent current sources. Fig. 3 shows a typical photodevice. As with the CCD, light
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detection occurs by photoconduction. Photons incident on the semiconductor generate

extra carriers whose density is proportional to the input light.
The photogenerated carriers of these photosensors have many practical applications.

Often they are used in interface circuitry with optical cables or in optical memory devices

[15]. For image processing purposes, however, these devices provide the inputs to the

interconnected cells of neural network imagers. The network can then processes the

Image.

Vdd Load

�Photons
__••l--P+ Implant

........._Depletion Region

n-substrate
Current Flow

Figure 3 Profile of a p-n junction photodiode in a p-well CMOS fabrication process
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III. Neural Network Image Processing

History
In 1988 Leon O. Chua, an IEEE Fellow, combined the best features of neural networks

and cellular automata into a new architecture called the cellular neural network (CNN).
His ground breaking papers, "Cellular neural networks: Theory" and "Cellular neural

networks: Applications," suggested several general uses for CNN's including pattern

recognition and computer vision. Two years later, Chua along with several other

researchers elaborated on the applications ofCNN's in "CNN Cloning Template:
Connected Component Detector [12]", "CNN Cloning Template: Hole Filler [13]", and

"Image Thinning with a Cellular Neural Network[14]." Soon after Chua and J. M. Cruz

introduced the first monolithic CNN chip for connected component detection.

Theory

The fundamental unit ofmost neural networks is the cell; a self-contained circuit

connected via inputs and outputs to its neighbors. Fig. 4a shows a 2-D 5x5 CNN. Each

cell is the CNN is represented by a square. The r-neighborhood of a cell, C(i,j) consists of

all the cells within a distance 'r' ofC(i,j). The simplest neighborhood and that used most

frequently in CNN development is the r= 1 neighborhood shown in Fig. 4b. Three

variables are associated with each cell; u is the input, x is the cell state, and y is the cell

output. The summation of the inputs and outputs of interconnected neighbor cells (see

Fig. 4c) and a cell's own positive feedback determine the input and output variables. The

state variable follows from circuit analysis. Additionally, the weights associated with the

input control and feedback summation are programmable.
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Figure 4 A 2-D 5X5 CNN is shown in (a) with C(i,j) denoted in each cell. The
r=1 neighborhood of C(3,3) can be seen in (b). The input control and
feedback interactions are indicated in a 3X3 CNN in (c).

The cell is implemented with capacitors, resistors, independent sources, and linear and

nonlinear voltage controlled current sources. Through simple analysis a circuit equation

can be derived for a cell. For example, the state equation for the circuit in Fig. 5 is:

C dvxij(t)
= - _1_ Vxil(t) + LA (ij;k,l)Vykl(t) + L B(iJ:k,!)Vukl + 1

dt R x C(k.0ENr(iJ) C(kJ)ENr(IJ)

where A and B are the feedback and input control operators determined by Ixu and Ixy, I
is the independent current source, and Nr(i,j) is the r-neighborhood ofC(i,j). The set of all

such nonlinear differential equations from each cell characterize the CNN. These

equations can be modified by changing the feedback and control operators, A and B.

Thus there is a certain programmability to the CNN which allows for the various

applications that Chua and others have explored [4,5,7,8,11,12,13,14,]'
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Vuij (input voltage)

Eij

Vxij (cell state) Vyij (celloutput)

c Rx

RyIyx
Ixu(i,j;k,l) Ixy(i,j;k,O

Fig. 5 Chua's original CNN cell schematic including an input voltage, linear circuit
components, and a nonlinear output voltage-controlled current source, Iyx.

Applications
Chua published a paper on CNN applications simultaneously with his theoretical

description of the neural networks [7]. Whereas the theoretical description emphasized
the steady state-behavior of CNN's, the paper on applications highlighted their transient

behavior. The fact that CNN's settle to equilibrium in a dynamic fashion makes it possible
to extract features from a picture. This behavior also allows for various other image

processing tasks.

In essence, any analog input image to a CNN can be mapped into a specific output

image with binary values. The output image will vary depending upon the dynamic rule of

the particular CNN. For example, a CNN may be implemented with a dynamic rule which

gives the circuit the ability to recognize and extract certain patterns from input images.
Chua originally suggested the use of CNN's for noise filtering and feature extraction.

He showed that CNN's are effective for removing noise in image processing as long as the

objects are relatively large and contain few corners. Unfortunately, eNN's suffer from the

same problem experienced by two-dimensional low-pass filters (i.e. the high frequency

components which delineate sharp corners are filtered out with the noise). In feature

extraction applications the first CNN's simulated performed extremely well. They

performed the same task that digital processors do but in less time -- usually about 1 J.lS

independent of array size. Thus, as VLSI techniques improve, it will be possible to
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implement larger-sized cellular neural networks capable of processing very large images at

high speeds.
Within the last several years Chua and others have fabricated CNN chips which

perform tasks vital to image processing. Chips have been implemented for connected

component detection, image thinning, hole filling, etc. Consider the simplified tree and

road scene in Fig. 6a. An intelligent motor vehicle of the future would need to have this

image processed. Each of the CNN chips above could perform one step in the image

processing. Of course, a chip which performs all three steps (and more) is needed. This

concept will be discussed later. Fig. 6b shows the output of an image thinning CNN.

Similarly, Fig. 6c shows the output of a hole filling CNN. Finally, Fig. 6d reveals the

completely processed image. Each task is performed by analog parallel processing. This

technique differs from the digital and sequential methods used in the past. Most

importantly, the experimental CNN chips implemented these global image processing tasks

by using simple local interconnection topology patterns. Again, it is clear that CNN chips
are ideally suitable for VLSI implementation.
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Figure 6 CNN image processing scenario. The original image (a) is processed by a

CNN image thinner (b) or a hole filler (c) or both (d).



The Universal Chip
Within the last year a CNN chip has been designed and tested which implements

multiple dynamic rules [5]. The chip, built by a team of researchers at the University of

Sevilla, is basically an analog ALU where a CNN invokes the instruction set. The "CNN

Universal Chip" consists of an array of 32 x 32 completely programmable CNN cells

capable of realizing any CNN application. A density of 33 cells/rum' has been

implemented in 1 urn technology.

Fig. 7 shows the cell architecture of the CNN universal chip [5]. Every cell in the

programmable CNN incorporates a photosensitive device. Thus the chip can be initialized

optically or electrically. In either case, the processed image is downloaded via 32 l/O

bonding pads on a row by row basis.

The external chip control is accomplished by digital circuitry. Likewise, analog

weights (i.e. the cell coefficients) are stored in on-chip digital memory. As a result, cell

parameters for each template value are insensitive to process variations. Furthermore,

each cell has a four-bit static memory (LLM), a programmable two-input digital gate

(LLU), and initialization and control circuitry (LCCU). The memory allows the chip to

store four complete images. These images can be used as input, U, or as initial conditions,

X, of the network. The network, in turn, performs the eight instructions stored in the

analog and logic program registers (APR and LPR). Therefore the array can perform

multiple processing tasks on any given image. Once a CNN universal video machine can

be implemented it will have numerous applications in the fields of robotics, control

systems, prosthetic devices for the blind, smart-vehicle navigation, etc.

11



Programmable CNN �

1'x 1'u Wy
-71 I B

Local
LLM Logic

J t \
Unit

LLM-
Address LLM-I/O
Control

Multiplexer

Figure 7 Schematic cell architecture of a CNN universal chip

In summary we have seen that cellular neural networks have the ability to carry out

significant image processing at each photosensor cell. This is because each pixel in a CNN

is accompanied by an analog computing unit which interacts with the cells of nearby

pixels. Of course, such "smart-pixels" are not currently possible in CCD technology.

Nevertheless, the goal is to eventually incorporate the intelligence ofCNN universal

machine pixels into charge-coupled devices. In the meantime, however, the discrete

photosensors of current CNN's must be capable of driving networks faster and faster -­

ideally into the realm of video.

12

Contrast Sensitivity using an Auto-zero Scheme

To reduce processing time in CNN's, Dr. E. Sanchez-Sinencio of Texas A&M

University has collaborated with the design team at the University of Sevilla to produce an

contrast sensitive analog design technique for smart-pixel CMOS chips [9]. The

photosensors in their current-mode CNN are simple photodiodes which have been made

more light sensitive by using a vertical CMOS-compatible BIT. This technique provides a

�+ 1 current gain compared to the typical well-substrate photodiode. A Darlington

phototransistor further amplifies the current to a level in the range of lOJ.lA. Fig. 8 shows

the CMOS compatible Darlington photosensor cross-section and schematic.
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Figure 8 CMOS compatible Darlington photosensor (a) cross-section
and (b) schematic

In order to insure proper behavior under different illumination conditions, Sanchez et.

al. used a simple auto-zero scheme to set an average photosensor current. By replicating
the photosensor current twice and routing one replica to a global-node SUM, the CNN

cell input current is made relative to the average current ITH. Thus the light threshold is

automatically adjusted to the average illumination. For example, in Fig. 9 suppose the

photogenerated current, Is, is lOJ,lA. This current is mirrored twice in the PMOS devices.

Since MNI is diode connected to the global-node SUM, the average current, ITH, will flow

through MN1. IfITH = 7.5J.lA then a resultant 2.5J,lA must flow to the SUM node and to

the CNN cell input, 10, Clearly, the cell's input is a current relative to the image average.

This property, termed contrast sensitivity, prevents the CNN from having to waste time

deciphering contrast levels. Thus more time is available for edge detection, etc.
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Figure 9 Photosensor with auto-zero scheme

Contrast Sensitivity using a Silicon Retina

Ironically, nature solved the contrast sensitivity issue long ago. The biological

processing algorithm in the outer-plexiform layer of the vertebrate retina performs
contrast sensitivity and edge detection. The process involves two non-spiking neurons

and electrical gap junctions, all of which can be modeled with analog VLSI. Fig. lOa is a

one-dimensional model of neurons and synapses in the outer-plexiform layer. The

photoreceptors, like CMOS photoconductors, produce currents in proportion to light

intensity. In biological systems the current is carried via excitatory chemical synapses to

horizontal cells. The horizontal cell/photoreceptor pairs are interconnected by electrical

synapses. As a result, currents can flow from one cell to another. CNN cells

communicate via similar local connectivity (see Fig. 4c).
In contrast to the global auto-zero scheme previously discussed, the vertebrate retina

produces a local average light intensity. The horizontal cells compute this value and adjust
the cone membrane conductance proportionately. The net result is that the cone's

response to input light changes depending on the ratio of the photoreceptor current to the

local average current. This "local-automatic gain control" provides contrast sensitivity.
Andreas Andreou of Johns Hopkins University mapped this biological algorithm onto

an analog Silicon Controlled Retina (SCR) [1]. Fig. lOb shows the neurocircuitry as

reported in [1,2,3]. Chemical synapses are modeled by presynaptic voltage control current
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sources and the cone is implemented by a light-sensitive BIT in saturation. Finally, MOS

diffusors model the porous gap junction membranes. In [2,3] Andreou reports a fully
functional 48,000 pixel, 590,000 transistor SCR. The contrast sensitivity and local­

automatic gain control of his CMOS imager improved upon the gray level images from a

standard CCD camera.

Horizontal Cell Gap Junclion

Photo-receptors

Electrical '?1 ___ - - -__ Chemical

SynapsesSynapses
�

Horizontal Cells

(a) (b)

Figure 10 One dimensional model of neurons and synapses in the outer-plexiform layer
(a) and its analog VLSI implementation (b)

Summary

The current trend in feature size reduction coupled with the successful implementation
of cellular neural networks could soon yield optoarrays with programmable on-chip CNN

architectures. Photosensors compatible with CMOS technology are allowing us to link

the process of video acquisition with neural network image processing. The successful

implementation of local and global contrast sensitivity on imaging chips has paved the way

for complex real-time video processing. A single universal video chip will incorporate the

image processing algorithms ofCNN's as well as the imaging techniques of current CCD

arrays. To reach this goal a functional imager/processor chip must be built. Initially, this

CNN array will retain the isolated photoconducting pixels associated with current neural

network architectures. Later, charge-coupled technology may be added to the device.
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m. A Video Interface Architecture

Overview

The current attempts to link optical imagers with neural network processors have

yielded remarkable image processing devices. Nevertheless, little focus has been placed
on implementing neural network image processors into existing video technology. In

recognition of this problem, a simple video interface architecture has been designed. The

interface will allow further investigation of video/neural network issues and will allow

TAMU to pursue research in this area.

The first step in implementing a CNN video processor is the design of an interface

compatible with existing CNN's and with video protocols. On standard CCO chips the

image is sent to a serial readout register and then to a OSP for processing. The first video

CNN's will need to be pin for pin compatible with current CCO's so that the devices can

be tested in off-the-shelf video cameras, etc. The video interface architecture described

here allows video to be directly generated from the CNN. Unlike other CNN output

architectures, this prototype video design sends data off-chip via a serial readout register.

As seen in Fig. II, the CNN video interface architecture consist of three components;

an optical chip, external control hardware, and a personal computer. An image projected
onto the optical chip is captured by a 15 X 21 array of pixels. Then, under management of

the external control hardware, the array converts the image to a one-dimensional digital

output stream. Standard read signals from the PC pipe the data to the EISA bus on the

computer. Software then reassembles the two-dimensional image and displays it on the

CRT.

Optoarray . . . . . . . . . . . . . . . . .

::::::::::::::::::::::.�......---...,._..-.....
;:::::�

�i ,] 1 •.•.. 1..:1;.:•..;••: ..•:'•..:•.•.••..•..;1.•.••.·1:·.•1�.:·.1.·�.::.:·.··.·•.·1;.·•.·1·.·.:-,

·

.••:·•.•..�.·•.·.:.l.1:.:•..•:.•.•.1 .•..•.•••••....::::00::::( 11.11
.......................

.................. .

;.;.;.;.;;.:;.:·:::.;::·:·:luuoJ-----
....

Figure 11 Video architecture components (a) the optical chip wftmage,
(b) the external control hardware, and (c) the PC.
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ic Design
The IC mimics a 15 X 21 CNN capable of running at video speeds. Each cell has a

CMOS compatible Darlington photosensor [9] as seen in Fig. 8 as well as digital video

interface logic. Fig. 12 shows the video architecture as it would appear for a small 3 X 3

array. The standard cell has been outlined. It consists of several logic gates and aD-type

flip-flop. The CNN analog computing portion of each cell has been omitted for this first

generation prototype. The output shift register row is also made up ofD flip-flops.
Pixel information flow is handled by four control inputs; I_CLK, D_

CLK, DP
_

CLK,

and 0
_

CLK. D
_

CLK clocks the D flip-flops in each cell and 0
_

CLK clocks the shift

register at the bottom of the chip. The other inputs are used as masks to select the input
to the flip-flops. Each of these control inputs is generated by the external control

hardware.

Essentially, chip operation consists of three phases. First the optoarray captures an

image. During this phase, I _ CLK is high and each pixel is latched into a flip-flop. During

phase two the image is shifted down a row. This is accomplished by latching the output of

each flip-flop into the input of the flip-flop below. I
_

CLK must be low during this phase.
Also during phase two the bottom row of the image moves into the output shift register.
Phase three involves transferring this image row off-chip. DP

_

CLK must be high and

0_CLK active during phase three. Phases two and three can then be repeated until each

image row has been shifted off-chip. Then another image can be recaptured and off­

loaded in the same manner. The faster this process is accomplished the closer we will be

to real-time video. Unfortunately, the time required by an on-chip CNN to process the

image bottlenecks the procedure. Furthermore the complexity and size of each CNN cell

decreases the image resolution drastically. We must overcome both of these issues as we

build the first neural network video processors.
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Figure 12 3 X 3 optoarray video architecture
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Simulations

The large number of transistors in the optoarray made an entire chip simulation

unfeasible. However, the repeated cell nature of the device allowed the chip to be scaled

down to a practical size for HSpice analysis. A transient simulation was performed on a 3

X 3 optoarray like that in Fig. 12. Preliminary results revealed a problem with the on-chip
D flip-flops. Rather than shift the information down row by row, the flip-flops latched the

data. This caused an unpredictable progression of data through the array. Since the

device was already in the fabrication process an external solution was implemented. The

correction involved changing D
_

CLK and 0_CLK to very narrow glitches several

nanoseconds long.

The image ofFig. 13 was used to test the 3 X 3 array. The expected results are given

in Fig. 13 and the actual results are in Fig. 14. The figure below shows that the bottom

left should be shifted out first. Five clock pulses later the top three bits follow. This

occurs because the image is shifted off the chip from the bottom to the top. Simulations

verified that image data was time distributed left to right and bottom to top as expected.

Figure 13 3 X 3 Chip Image with Output

Layout

The 15 X 21 array was laid out using the Berkeley Magic software. A standard CMOS

digital technology was used with a 1.2J.!m minimum feature width. Metal and polysilicon
wires were used for interconnects. Second metal covers the entire array, shielding the

substrate from undesirable photo-generated carriers. All digital transistors are minimum

size (2. 7!J/ 1. 8 J.!). Fig. 15 shows the pixel layout. Each pixel, including the Darlington

amplification and auto-zero scheme, is 54 X 57 urn. Fig. 16 and Fig. 17 give the cell

layout and the chip layout respectively. The cells occupy 114 X 78 urn and the entire

optoarray is 1475 X 1715 urn.
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5 Pixel layoutFigure 1



16 Cell layoutFigure
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Figure 17 Optoarray layout



Control interface

The external management of the chip is all digital and is represented by the block

diagram in Fig. 18. It is also given schematically in Figure 19. Software on a personal

computer generates an VO read signal (/IOR) which is fed from the EISA bus to a PLD.

The PLD monitors other standard EISA signals (ALE, AEN, etc.) and generates the

appropriate control signals with each IIOR pulse. The control signals are then routed

through flip-flop correction circuitry which generates glitches for two of the signals. The

corrected signals cause the optoarray to capture images and to output the data in a one­

dimensional fashion. The serial data steam is sent back to the EISA bus where software

reassembles the image to its two-dimensional form. It is then displayed on a CRT.

Fig. 20 shows the timing diagram for the four input signals. The PLD state machine

implements these signals. For reference, however, the original TTL state machine

implementation is given in Fig. 21 Note also that a flip-flop correction block is included in

the figure below. It consists of simple feedback connected D flip-flops which generate the

short glitches for each input clock signal. The feedback path uses inverters to provide

multiple delay times.

15X21
Optbarray

Image Out

DATA_EN

ADDR[O 7]

ADDR[O .. 7]

IIOR

Figure 18 Optoarray interface block diagram
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Figure 19 External interface schematics
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Figure 20 15 X 21 optoarray timing diagram
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Experimental Results

A circuit board has been built to realize the schematics of Fig. 20. It is two sided as

seen in Fig. 22a and 22b and includes the flip-flop correction circuit. The board fits into

the standard EISA slot on the XT. An image is focused onto the chip by an 8mm video

camera lens. Preliminary test results are expected to be available for presentation at the

time of the honors symposium.

Conclusions

The video optical interface is expected to capture and display images at high speeds. The

design will then be modified to operate at video frequencies. Afterwards, analog circuitry
will be added into each cell to form a functional CNN. The microelectronics group at

Texas A&M University will pursue this work in conjunction with previous neural network

research [9, 10, 16, 17]. The end result will be a fully functional CNN video

imager/processor.
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Figure 22 (a) Circuit board mask - top
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Figure 22 (b) Circuit board mask -bottom
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