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ABSTRACT

New insight into the choice of the number of hidden nodes

for three layered neural networks is presented. I have conceived

a method to reduce the total complexity and size of a network by

testing for linear dependence of nodal relationships. Limitations

imposed by choice of the training algorithm and training set is

introduced. A discussion of training and its effects on neural

net performance completes the discussion of neural networking.

These evaluation procedures are very important for the physical

construction of neural networks.

I. Introduction

Neural nets are linear combinations of nodes which have

nodal output related to the weighted sum of the nodal input.

Conglomerations of these nodes can recognize complex linear rules

from multi-dimensional input patterns and apply these rules to

input patterns which have not been explicitly taught to the

network. In general, non-linear patterns, rules, and functions

cannot be implemented by neural nets.

The original impetus for development of neural nets came

from the known biological structure of human brain neurons.

Simplistic models of neurons were devised and eventually refined

for use as the nodes of a neural network. These nodes have a

response to their input called an activation function. This
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function is arbitrary. Generally, increasing the total nodal size

of the network while keeping the number of layers constant (and

greater than two) allows a neural network to map more complex

data; however, additional size and consequent complexity can

overpower a working solution and impair network performance.

In the 1960s, M. Minsky and S. Papert of MITt thoroughly

analyzed the neural networks of the time, particularly the two

layered (input and output) network of perceptrons invented by

Frank Rosenblatt. These networks were simple systems and their

analysis demonstrated that such two layered networks could only

solve problems that were absolutely linearly separable.

Absolutely linearly separable means each linear division of the

input space perfectly slices the output into the same number of

different areas. No two regions can have the same output on an

absolutely linearly separable input space.

Restricting input to be absolutely linearly separable

removes too many useful functions (exclusive-or for example) for

this to be a tenable architecture. This problem has begun to be

overcome by adding a third layer of additional complexity between

the input and output layers. With the additional middle layer,

the input space requirements are reduced to any combination of

linearly separable regions which is an obvious improvement.

Different linearly separated regions may have the same output

(note: their regional definitions are still linear). This allows

many problems of pattern matching to be implemented, including

the exclusive-or paradigm.

Research in neural nets continues in many diverse areas.

Obtaining poles and zeros of data sets by adaptive filters with
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and without feedback, system modeling of observable input and

output signals, statistical prediction to estimate future values

of time correlated digital signals from present and past input

data, noise cancellation in signal processing of medical

equipment, adaptive echo cancellation in long distance telephone

lines, and channel equalization for non-flat frequency response

and non-linear phase response in telephone signal passbands are

examples of modern problems which neural networking techniques

hope to solve.

Rumelhart networks (R-nets)2 constitute a fundamental

configuration of neural networking. They predominately have three

layers of nodes (figure 1): input, middle, and output with the

number of nodes in the input and output layer constant and known

for a particular application. Each node is connected to every

node on the following layer. These connections may have differing

strengths modeled by a linear multiplier called the weight of a

particular connection. The complexity of the middle layer is the

only mutable parameter and is normally chosen eclectically. This

is obviously an inefficient process, and methods need to be

devised to intelligently choose the degree of complexity of the

middle layer and to pare any redundancy in existing networks.

3



II. Choosing the Complexity of the Middle Layer

In general, R-nets can be represented as a series of array

processes upon an input data set (see Appendix A). These array

processes are linear matrices of known dimension. The network

output depends upon a weighted linear sum of the result of the

middle layer's interpretation of the input (which is a weighted

linear sum dependent upon the original set of input data). The

individual weights connecting each node to every node of the

preceding layer may vary widely, but, once established, remain

constant for all inputs, allowing this matrix interpretation of

the network activity.

Currently, methods of choosing the complexity (size) of the

middle layer and training are sorely lacking. Several methods are

discussed in this paper with reference to a three layered neural

network where every node is connected by a differing set of

constant weights to every node on the following layer. All nodes

are assumed to have the same sigmoidal activation function.

In order to choose the complexity of the middle layer, a

knowledge of the performance of these nodes must be made. A

simple geometric proof3 gives the number of regions an arbitrary

number of nodes can represent. In n-dimensional space, the

maximum number of regions that are linearly separable using M

nodes is given by:

M(H,n) =

where
o when H < k.
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The calculation of the number of nodes required to separate

a linearly separable problem is perfunctory if an exact

relationship for the n-dimensional input space is given. Simply

find the minimum number of nodes to represent the requisite

number of input spaces. Since the input and output layer are

immutable, the middle layer will be the location of these nodes

necessary to distinguish all areas on the input.

If the input space is not known in absolute detail,

approximations may be made over the region of points known. These

approximations (such as for sonar return data4) from groups of

data points to input data regions exist, but are not well defined

in the neural networking community.

The number of hidden layer nodes is a function only of the

number of input spaces, and not of the training patterns. Proper

training is dependent upon the architecture of the input space

regions and has no real relationship to the choice of the number

of middle layer nodes. This distinction needs to be made to

prevent confusion of considerations in construction architecture,

proper training, and final operation.
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III. Removing Unnecessary Complexity in the Middle Layer

If a network exists, it would be useful to identify excess

complexity of the middle layer. I will note here that a reduction

in complexity will result in an improved design. Speed will not

increase due to the massively parallel nature of the constructs,

but total nodal size and complexity will decrease. Viewing the

network's finite number of inputs as a n-dimensional space, one

quickly assesses whether any of the array processes implemented

by the neural network can be reduced. A reduction can be made if

the array processes are linearly dependent upon each other.

The reasoning behind reduction is intuitive. If we are

dealing with a weighted linear combination, combinations which

duplicate function (by being non-orthogonal) may be removed. The

overall network is benefited by the simplification. Again, the

simplification comes in terms of complexity and total nodal

count, not in terms of speed.

Since the network can be modeled by matrices (see Appendix

A), we can write a number of equations equal to the number of

middle layer nodes times the number of input nodes and analyze

the result. We can also write a number of equations equal to the

number of nodes on each layer and analyze them separately because

they should all be linearly independent. This latter method will

be used for simplicity.

If a system of n homogeneous equations in n unknowns has a

non-trivial (that is not all zeroes) solution, then necessarily

the determinant of the coefficient matrix is zero. The Gramm

Determinant5 may be calculated for further reinforcement of the

linear independence of the network's nodes.
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Given p vectors xv(l .. p) in an inner product space E, the

Gramm determinant G(xl .. xp) is defined by:

] .

where the parenthetical operator is the inner measure. It will be

shown that

G(Xl .. xp) L 0

and that equality holds if and only if the vectors (xl .. xp) are

linearly dependent.

To prove this assertion, assume first that the vectors

xv(v=l .. p) are linearly dependent. Then the rows of the matrix

are also linearly dependent whence

If the vectors xv(v=l .. p) are linearly independent, they

generate a p-dimensional subspace El of E. El is an inner product

space. Denote by dell a normed determinant function in E1. Then

it follows

The linear independence of the vectors xv(v=l .. p) implies that

de1l(xl .. xp) is not 0, whence

G(xl .. xp) > O.

Once a determination of linear dependence has been made, the

linearly dependent terms can be excised from the net. These

dependent terms manifest themselves during triangularization.

They are rows (nodes) with zeros along the diagonal or constants

under the triangularization line after triangularization. Each
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row represents a specific node's equation. Error in

triangularization for a particular row (node) discloses the

dependence of that row (node) upon another row (node). In order

to complete triangularization to find these interdependencies,

remaining constants below the triangularization line should be

chosen instead of zeros along the diagonal. Removal of a node

will usually necessitate a recalculation of the Gramm determinant

and a new triangularization of the Gramm determinant.

Due to the linear nature of the weights, replacement of a

single pair of dependent nodes may be done analytically. Both of

of the dependent nodes are removed and a new node is added. Each

weight of the new node to the preceding and following layer is

the sum of the dropped nodes weights to the preceding and

following layers:

wnew = wI,old + wII,old·
This will not necessarily force a retraining of the network. If

more than one dependency exists in a particular set of nodes, it

will be necessary to recalculate the triangularization before an

additional substitution may be made.

There is a need for a slight redundancy of about ten percent

of the total middle layer size in which to train. This is

necessary due to the imperfect nature of the training algorithm

(gradient descent). For small networks (number of nodes less than

eight or ten) at least one node is usually required and for very

large networks (number of nodes greater than fifty of sixty) the

additional nodal requirement becomes relatively static at four or

five additional nodes (see Figure 2).
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IV. Training Methods and Their Importance

Training is second in importance only to the choice of

network structure. Poor training algorithms or training data will

make even a well designed network ineffective. Deficient training

data can leave blank spaces in the network output and inferior

training algorithms can make the training inordinately lengthy.

During training, the internodal weights are altered

according to a training algorithm6 (e.g. backpropagation as shown

in Appendix 8). The ability to optimize the network's weighting

is dependent upon the particular methodology, but certain

absolutes do exist.

If the network does not receive a proper training data set,

the output may have regions of untrained space where the network

has never had a known output with which to compare. These areas

can be dangerous due to their unpredictability. A set of proper

training data incorporates at least one training example for each

region on the input space that the network is supposed to

recognize and also one training example for every linearly

separable area that the network would not normally receive an

input upon. This last addition protects against the possibility

that a garbled or otherwise spurious input may produce apparently

valid output.

As an example, simple logic gate neural network models have

these blank spaces if the training data does not include

supposedly invalid input. For logic gate operation, the input is

binary and the neural network approximation to this falls within
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an error bound, E, of one or zero (for the sigmoid nodal

activation function), If the network is supplied an input in the

forbidden range, O+E to l-E, a valid output may result. This is

obviously not desirable because the input had no meaning for the

logic gate model (fuzzy logic models are not considered).

Methods for allocating additional training patterns to

eliminate valid output from undesirable input have not been

presented up to now. Quickly, they must satisfy two broad

conditions. They must not overlap with areas of valid input

(linear separability) and they must provide training in a region

normally not associated with valid output (perhaps a particular

region for error control in the normed output space or a region

outside of the normed output space for error detection alone).

Considerations for choosing the location of error control

(error trapping) and methods of the mathematical definition of

any region need to be developed. Considerable difficulty arises

here due to the possible inability of the network to distinguish

between an input generating valid output and an invalid input

pattern generating "good" output. This follows usually from an

improper training algorithm or improper training set, but there

are limitations imposed upon all neural networks.

The network's inability to guarantee that each combination

on the input space will be mapped into an exact and unique point

on the output space also raises problems. Because of this

limitation, there is no way of analytically extrapolating the

values of the inputs from a known output for at least one input

value (e.g. zero input versus zero weighted sum) and possibly

more. Indeterminate mapping can limit reconstruction of the
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network as a single multiple variable function and restricts our

ability to gain analytical insight into the network.

A large number of training patterns increases the training

time and is undesirable. Allowing one pattern for each definable

region boundary on the input (including error trapping regions)

compensates for the needed definition on the input space and

keeps the total training size fairly low for most applications.

Giving more than one training example for each region is not

absolutely necessary as the information content of the additional

training patterns is redundant to other training information.

In some cases, a reduction of the broadest training set is

possible. Certain contiguous areas of the input space with

equivalent outputs may not need to be explicitly noted as long as

all input region boundaries are specified in some way by the

training set. This reduction of the training set by analysis of

the input space regions is easily realized, particularly when,

the input space is well defined. Very little has been published

on analyzing the input space, but common sense and simple

analytic tools will suffice to analyze these multi-dimensional

linear regions in many instances.

11



v. Conclusions

Neural networks are useful models for linearly separable

pattern matching problems. Their construction and optimization is

not complex and follows mainly intuitive rules. The number of

linearly separable regions on the input space dictates the choice

of training data and R-net middle layer complexity. Network nodes

and training examples are needed to cover all regions of input

including any regions for error trapping. The final network may

need only one node for groups of contiguous input regions and a

method to test for simplification was discussed. Recommendations

to not trim a network to a minimum level of complexity came from

the non-ideal considerations of the backpropagation training

algorithms. Overall, this paper has covered construction,

training, and optimization of general Rumelhart nets (R-nets).
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Appendix A --- Matrix equations for R-nets.

Suppose RK is the finite dimensional input space, RL is the finite

dimensional middle layer space, and RM is the finite dimensional output

layer space. Suppose XK belongs to space RK, YL belongs to space RL, and

\" L[e] X L[e] .

(L = K*'K· K 1S the mapping from RK to RL. That is each row of

[e] is the set of weight values connecting the K inputs to a middle

layer node.

The expansion for L[e]K is:

[ W11_ 1 Wt2L[e]K = t

wLl wL2

where there are K input nodes, L middle layer nodes, and wKL is the

weight between them respectively.

Suppose OM = M[P]L*'lL where M[P]L is the mapping from RL to RH.

That is each row of [P] is the set of weight values connecting the L

middle layer inputs to an output layer node.

The expansion for M[P]L is:

M[P]L = [Pt1PHl Pl2
I

The mapping from input space to output space is, by substitution:

OM = M[p]L*L[e]K*xK = M[T]K*XK
where M[T]K = M[p]L*L[e]K.

A number of conclusions may be drawn from the matrix representation

of the input to output mapping. A zero row in [T] implies the output

node is always zero and independent of all possible input vectors. This

is intuitive since the value of that node is always zero in the output.

A zero column in [P] shows that the corresponding mid-layer node

contributes nothing toward any output node value (the network solution)

and could be eliminated. Similar arguments hold for [e].



Appendix B --- Backpropagation Networks.

Backpropagation networks are usually hierarchical; that is,

they consist of at least three layers of nodes. An input layer,

middle layer, and output layer exist with each layer fully

connected to the next layer. Before beginning training, all nodal

interconnection weights undergo a normed randomization.

During training, the network is repeatedly presented with a

set of input patterns and a set of correct output patterns from a

previously identified static training set. For each input pattern

of the training set, the internodal weights are adjusted

according to a given teaching algorithm. Eventually, if the

teaching algorithm is a good algorithm, the network's performance

will correctly generate the desired output.

The summed nodal input, I, is determined by multiplying each

input signal by the weight on that interconnection:

where the sum is taken over all nodes in the previous layer. The

terms wand x are the weight of interconnection and the magnitude

of a particular input signal, respectively.

The function f(x) is called the activation function of the

node. It determines the excitation level generated as a result of

the input signal. For a backpropagation network, this function is

taken to be a sigmoid. Any continuous and monotonically

increasing function asymptotically approaching fixed values as

the input approaches plus or minus infinity may be used, but a

sigmoid is the standard.



The general sigmoid function is:

f(xi) = l/[l+e-(xi+T)]
Where T is a constant threshold shifter, x· is a single nodal

1

input, and e is the mathematical exponential constant. To make a

network even more understandable, the threshold is usually set to

zero (figure Ai).

This function generates the node's output as a function of

the summed input calculated as I. This output is propagated to

every connection a particular node has with the next layer of the

neural net (usually all following layer nodes).

The output is not binary since x would have to be infinite

for a 0 or a +1 output. Since the weights must be able to be

positive or negative, an output of zero will be termed negative

output and an output of one will be termed positive output for

binary problem discussion. Due to the infinite amount of input

strength needed to reach these values; they will be arbitrarily

changed to two regions: greater than 1-E for positive and less

than E for negative. E is generally referred to as the output

error bound.

Once the nodal outputs are all defined by the functions

above, input signals may be applied. A comparison may be made

between the network output generated from the input signal and

the desired output. The nodal weights are changed according to a

gradient descent technique using the desired output, actual

output, previous iteration change, and current weighting:

Wnew = Wold + �*E*X/(IXI2) + a*(Wnew-Wold)prev
where �new is the new value for the weight, Wold is the old value

for the weight, 0 is an arbitrary constant whose increasing value



speeds the arrival at a solution while making it more unlikelY to

stabilize (usually between 0 and 1), E is the error of the nodal

output to the desired output, X is the input, iXl is the

magnitude of the input, and a is a constant for weighting the

momentum term to allow the algorithm to escape from local minima

on the route to optimization.

On the output layer, the weight changes can be readily

calculated because the desirable output is provided by the

training set. To assign blame on the middle layer, backpropagate

the errors for each output layer node to the middle layer using

the same interconnections and weights as the middle layer used to

transmit outputs to the output layer. Compute the error term for

each node in the middle layer based on their portion of the blame

for the output layer's error. This is computed as:

where e· is the error in the ith middle layer node and the sum is
1

taken over j, where j indicates the jth output layer node. The

remaining term is the derivative of the activation function of

the middle layer node for the net input it received.

It is relatively easy to show that:

f'(I) = f(I) * [l-f(I)]

Applying this derivative serves two purposes. First, it

contributes to the stability of the network since it ensures

that, as the outputs approach 0 and 1, only very small changes

can occur. Second, it helps compensate for excessive blame

attached to a middle layer node. When the connection between a



middle layer node and an output node is very strong (extreme

values for the weight on the interconnection) and the output node

has a very large error, the weights of a middle layer node may be

assigned a very large error also, even if that node had a very

small output and thus could not have contributed much to the

output node's error. By applying the derivative of the signal

function, this error is moderated, and only small to moderate

changes are made to the middle layer node's weights.

The weights are not actually changed until after the error

has been propagated back to the previous layer. Once the

activation has flowed forward through the network and the error

has flowed backward through the network, a single iteration of a

pattern in the training is complete and the next pattern in the

training set is administered.
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Figure One
Three Layer Rumelhart Network

(Typical Backpropagation Network)
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NEURAL NETWORK SIGMOIDAL ACTIVAiIO'J FUNCT10N
FIGURE Ai
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EXAMPLE ONE

Calculate the Gramm matrix and its determinant given the

following matrix (set of simultaneous equations):

3 2
6 3

Gramm (A) - [9+4 18+6]18+6 36+9

Det [Gramm (A)] = 13*45-24*24 = 9

The Det [Gramm (R)] is not zero, therefore the system of

equations is linearly independent as is obvious from the initial

vector =,

EXAMPLE TWO

The following vector represents one solution of the mapping

from the input layer to the middle layer for an R-net

approximation to an OR logic gate.

[ -2_5811 -2_2012 ]f\ -

Weightsln-Mid
- -0.0156 3.5977r'l -
-

0.5811 -3.8408

[ 11. 51 - 7.87 6_95 ]Gramm (A) = 7.87 12.94 -13.83
6.95 -13.83 15.09

Det [Gramm (A)] = 46.18 - 178.05 + 131.86 = -0.01
�

0

Since the Det [Gramm (A)] is zero, there is linear

dependence between the rows (and consequently nodes as each row

represents the input to one node's activation function). One node

may be removed, training repeated, and the Gramm test

administered again to check for independence or triangulation may

be attempted. If the triangulated matrix has rows of zeros, these

zero rows are linearly dependent upon the row that zeroed them

during triangulation. These two rows (the original and the newly



zeroed) can simply add their weights (before zeroing) and form a

single node. Their output weights should be summed, also. If the

triangulation does not produce zero rows, one recourse is to

retrain the network after paring a single node.

Triangulate the matrix (A) to attempt to algebraically

reconstruct an independent matrix.

RTRIANGULATED =

1 0.58
o 1
o 1

=

1 0
o 1
o 0

Here, the final row was zeroed out by the second.

Reconstruct the original matrix as one summed row:

H = Weightsln-Mid
- -2.5811

0.5655
-2.2012 ]-0.2431

Gramm (A) = [11.51 -0.925]-0.925 0.379

Det [Gramm (A)] = 3.51.

Since this is greater than zero, the matrix (A) represents

a set of linearly independent equations. Replacing the original

matrix by this construct results in a good match on output and a

reduction of node count. The expected error is about ten percent

of the error bound (E) experimentally. A rigorous proof has not

been performed.

The final matrix representing the mapping from middle layer

to the output node is:

AMid-Out = [-8.8955 2.5820 1.1963]

which becomes after reconstruction

AMid-Out = [-8.8955 3.7788].


