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ABSTRACT

Robots have contributed a great deal to manufacturing industry, increasing both

productivity and quality. However, they often achieve accuracy for quality by adding mass to

their links, increasing weight and power required for operation. Once the mass is removed,

though, vibrations in the flexible system make accurate work very difficult.

Some study has been done on active controllers for flexible links in order to damp their

oscillation. The purpose of this investigation is to develop a passive control scheme which takes

advantage of a new configuration of the flexible arm. This configuration has two parallel beams in

every link as opposed to the one found in other investigations. This investigation models the first

link of a flexible planar manipulator.

Two methods of removing the oscillations were modeled. The first involved actively

controlling the distance between the ends of the two beams in the first link. The hypothesis

behind this method was to change the center of rotation of the endmass to remove energy. This

method was not successful. The next involved placing a spring-damper system between each

beam and the endmass and allowing the dampers to remove energy from the system. This method

was successful, having settling times ranging from 0.75 s to 9.75 s.
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CHAPTER 1

INTRODUCTION

INTRODUCTION

One area of engineering which has been the subject of some study is robotics. This field

received a great deal of interest in its infancy due to the promise it offered as an enhancement for

manufacturing. And it delivered. From cars to clothes and from machines to milk, robotics have

enhanced manufacturing and processing both in terms of speed and quality. However, eventually

a point was reached that further improvements would become very costly. At this point, industry

lost some of their interest, and with it went a good deal of support.

However, technology is constantly advancing, and with advancement comes new

opportunities. With the new technology now available in materials and actuators, the field of

robotics has the opportunity for many improvements. One of these possible improvements

involves the dynamics of the manipulator itself.

PROBLEM DESCRIPTION AND HISTORY

Generally, the movement of a robotic manipulator is caused by an actuator, typically an

electrical motor, located at one end of each manipulator "link." When this actuator is activated, it

causes the link to move. However, due to its inertia and compliance, the other end of the link will

"lag" behind the actuator end in its motion. When the actuator stops, the other end can continue

moving. This causes an oscillation of the end of the link, sending vibrations through the structure.

These vibrations make it difficult to perform delicate tasks with any degree of accuracy.

One way to solve this problem is by making the links stiffer and more rigid. Typically, this

is done by adding material to the links. Eventually, enough mass can be added to make them thick

and strong enough to be modeled as rigid. However, this is not desirable. As links become

bulkier, the actuators required to move them become larger as well. If the size of the links were
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to be reduced, then smaller and simpler actuators could be used to move them, reducing cost and

energy consumption and increasing speed. To implement these smaller, inherently flexible, links,

it is necessary to have some method of controlling their oscillatory motion.

Much research has been done concerning flexible manipulators due to the many benefits of

a lighter system. Nathan and Singh [1] used a nonlinear ultimate boundedness controller with a

feedback stabilizer to control the arm about the equilibrium state. Jankowski and van Brussel [2]

used an inverse-dynamics method to develop a discrete time control of a flexible joint arm.

Another method which has been used relatively successfully is a variable structure scheme, where

the control algorithm changes based on the condition of the end of the arm [3, 4, 5]. Finally,

efforts have also been made to develop a "passive" controller, which works with a finite gain,

providing the link is adequately stiff [6].

Although most of the systems above use a single link in order to simplify the problem,

most robotic arms are composed ofmultiple links, arranged as shown in Figure la. However, the

single link assumption will work for multiple links if a specific mass and mass moment of inertia

are given to the endmass. This mass and mass moment of inertia can be found such that they

accurately represent the links which would be located beyond the link being modeled (see

Figure lb).

Endnass

Second link
Center

Gravity

Endnass—
of

Elbow notor

First link

■«— First link

Base Motor

oBase Motor

(a) (b)

FIGURE 1: a) Typical robotic arm configuration and b) Modeling for the first link
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SUMMARY

This approach to the problem of damping the vibrations in the flexible arm was slightly

different than the ones presented above. First, this controller was to be passive. This means that

little or no feedback is to be required for operation. Second, this approach will take advantage of

a different structure than that used in the instances above. Like the other systems, this model will

be horizontally planar and a single link. However, this single link will be composed of two beams

as opposed to the single beam represented in Figure la and lb (see Figure 2). Although this

system will weigh more than a link of a single beam, the weight will still be significantly below

that of a stiff-link system.

Endnass
Endnass

Base Motor
Base Motor

(a) (b)

FIGURE 2: Comparison of a) Single-beam link to b) Dual-beam link

There are two advantages to having two beams. Each of these advantages is the basis for

a method of removing the oscillation from the system. The first method actively changes the

distance between the ends of the two beams as compared to the distance between the two beams

at the base. This changes the geometry of the system and thus alters its dynamics. The second

method uses differences in relative motion between the end of each beam and the endmass to

remove energy from the system by means of linear dampers. In addition, springs are used to
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change the natural length of the distance between the ends of the two beams so that different

geometries can be explored as well.

In order to determine the better of these methods, both were simulated using the

Advanced Continuous Simulation Language (ACSL). In addition to simulating the two different

methods, several parameters were also varied in an effort to determine some relationship between

the parameters and the damping of the vibration.

Before beginning to simulate the system, a model must first be developed. This will be

done in Chapter II. In Chapter III, the actuator method will be discussed, including its theory and

the results of the simulation. The damper-spring method, with its theory and results, will be the

topic ofChapter IV. Finally, Chapter V will summarize the results and recommend future study.
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CHAPTER II

DEVELOPMENT OF MODEL

SIMPLIFICATIONS AND ASSUMPTIONS

Several simplifications were made to the system in order to show the general behavior of

each method. First, the simplification was made that the first link (i.e. the link connected to the

base motor) would be the one modeled, allowing extra links to be modeled by the mass and mass

moment of inertia of the endmass. Furthermore, the oscillation will be damped after the arm has

stopped, allowing the base joint to be modeled as rigid. These simplifications are shown

schematically in Figure 3. The extensions from the endmass represent the fact that the distance

between the ends of the beams is not fixed, but is variable. This schematic leads directly to the

model of the system as shown in Figure 4.

Endmass

Beam 1
Beam 2

(el
Represents
Rigid Base

Base Motor

FIGURE 3: Schematic of the stopped, single-link, dual beam system
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FIGURE 4: Model ofComplete System

Some assumptions were then made. One assumption which was made was that any

deflection in the beams will be small, which allows the assumption of small angles. Also, the

deflection of each beam was modeled as a pseudolink, as done by Mahmood and Walcott [4].

This means that only the deflection of the tips of the beams are taken into account, as seen in

Figure 5. This assumption allows the connection between the beams and the base to be modeled

as pinned.

Actual shape
of beanPseudolink

FIGURE 5: Schematic showing pseudolink
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The pseudolink assumption can be validated by using the beam theory. According to this

theory, the displacement of a beam due to a force applied perpendicularly to the end of the beam

at the end of the beam is

PL3
(i)5 =

3EI

where 5 is the linear deflection of the end of the beam
P is the applied force at the end of the beam
L is the length of the beam
E is Young's modulus for the material of the beam
I is the second moment of area for the beam

We also know that, for a force that is perpendicular to the beam,

(2)T = PL

where T is the restoring torque at the base

In addition, for small angles, the deflection can also be described as

(3)6 = L- sin0

where 0 is the difference in direction between the vector from the base to the

equilibrium point and the vector from the base to the final point

and, by the small angle assumption,

sin0 «0 (4)

Substituting Equation (4) into Equation (3), then substituting (3) and (2) into (1), and

finally with a little algebraic manipulation, we get the equation

3EI
•0 (5)T =

L
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3EI
Here, E, I, and L are all constants, so the —— term can be combined into a single constant k to

JL

give the equation

T=k0 (6)

where k is a stiffness factor for the beam

EQUATIONS OF MOTION

Once these assumptions are made, the system as shown in Figure 4 can be divided into

components. For each of these components, a free-body diagram can be drawn which shows the

outside forces and torques. By summing these forces and using dynamics, differential equations

can be developed which begin to describe the system.

The first component modeled is Pseudobeam 1, whose angular deflection from directly

forward is described by the variable 0. In this case, directly forward is the direction that the beam

would be pointing at equilibrium if the beams were parallel,

schematically in Figure 6.

This component is shown

By
B Bx

G

T
1

AxA

A
y

FIGURE 6: Free-body diagram ofBeam 1
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By summing moments about the base point A, we get

£ma = - x, +Bxz, cos(e)-B/, sin(e) = 1,0 (7)

where Tj is the restoring torque at the base at point A
Bx and By are the forces acting on Pseudobeam 1 at point B
t! is the length ofBeam 1
Ij is the mass moment of inertia ofBeam 1 about point A

Modeling the torque as a torsional spring as described in Equation 6, we get

(8)T, = k,0

and by representing the beam as a thin plate on an edge, becomes

1
I. = —m.£. (9)

3

where mi is the mass ofBeam 1

which simplifies Equation 6 to

1
-k10+Bx^1cos0-By^1 sin0 = —m^S (10)

By the same methods, due to their assumed symmetry, Pseudobeam 2, shown below in

Figure 7, can be modeled by Equation 11.

1
-k3(j) +Cxf 3 cos(|)-Cy^3 sin<j> =—m3^$ (h)

where <|) is the angular deflection ofBeam 2
Cx and Cy are the forces acting on Beam 2 at point C
13 is the length ofBeam 2
m3 is the mass ofBeam 2
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Cy

c

Cx
4>

T3

D Dx

Dy

FIGURE 7: Free-body diagram ofBeam 2

Figure 8 contains the model of the mass at the end of the link. As described before, this

endmass includes everything outward from the end of the link, including additional joints,

additional links, end manipulators, and any objects being carried. For simplicity without

compromising versatility, the mass is represented by a lump mass with a given center of gravity

and mass moment of inertia. For the purposes of this model, both l^and 12g are assumed to have

variable lengths. It is by changing the sum of these two lengths that the geometry of the system is

controlled.

There are three equations of motion within this diagram. First, summing forces in the x-

direction,

(12)C2*“B2x = m2*

where m2 is the mass of the endmass
x is the displacement from base point A to the center ofgravity

of the endmass in the x-direction
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FIGURE 8: Free-body diagram ofEndmass

Next, summing forces in the y-direction

(13)-B2y-C2y =m2y

where y is the vertical displacement from base point A to the center ofgravity
of the endmass

Finally, summing moments about the center of gravity

-B2x(f 2a sinP+ dj cosp+ d2 sinp) + B2y(f 2A cosp-d, sinP + d2 cosp)
- C2x(-f 2B sinP + dj c°sp+ d2 sinp)-C2y(f 2b C0SP + di sinP+d2 cosp) = I2P

where I2 is the mass moment of inertia of the endmass

(14)

The final free-body diagrams to be drawn are for the pins at B and C, as shown in Figure

9. Because these pins are assumed to be essentially massless, the summation of forces in the x-

and y- directions must equal zero for each pin, resulting in the Equations 15-18.

B = B7x 2x (15)

(16)By ~ B2y

C — c'“'x 2x (17)

c =c7y 2y (18)
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C y

B C2xBx Cx2x

B CByBy

FIGURE 9: Free-body diagram of pins B and C

KINEMATICS

Despite the fact that all the components have been modeled, the system is still not

completely described, as proven by the fact that there are still more unknowns than equations.

Now, the interaction of the components with each other must be described using kinematics. To

place the center of gravity of the endmass with respect to the fixed point at A in the x-direction,

Figure 2 is used to produce the equation

x = i jSinQ + f 2a cosP ~ djSinP + d2cosp (19)

Taking the derivative with respect to time involves using the chain rule with 0, 12A, and P
as the intermediate variables. Doing so once gives

x = £ jGcosG + /2AcosP - p(f 2Asinp + d,cosP + d2sinp) (20)

Doing so a second time gives

x = f i0cos0- isin0+ f2A C0SP ~ 2A PsinP - p(f 2A s^nP + ^1 cosP + d2 sinp)
- P2(^2A C0SP ~ sinp + d2 cosp)

(21)
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Placing the center of gravity of the endmass with respect to the fixed point at A in the y-

direction produces the equation

y = - f, cos0 + t2A sinP + d, cosp + d2 sinP

The first derivative of this equation with respect to time gives

y = - £x 0sin0 + l2A sinP + p(^2A cosp - dj cosP + d2 cosp)
The second differentiation of this equation gives

y = - 0sin0 - 02 + 12A sinp + 2£2A PcosP + P(^2a cosP ~ di sinP + d2 cosp)
- P(^2a s‘nP + ^1 C0SP + ^2 sinp)

(22)

(23)

(24)

Next, the angle P and its derivatives will be found. Because the angles 0 and (j) are defined

from the equilibrium positions of the two beams when they are parallel, the assumption can be

made that the line connecting the base points of the two beams is perpendicular to the 0° angles of

0 and 4>. From this, the assumption can be made that the distance in the y-direction to a point

from either of the base points will be the same (see Figure 10).

$

y2yl

YA

X1 X2

FIGURE 10
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Thus we can set up the equation:

yi=y2

^jCos0+(^2A +£2B)sin3 = cos0 (25)

and get the following equations

£3cos4)-^1cos0-1(3 = sin (26)£ 2A + ^ 2B

P = 77 7~T I0sin9-^ 3 it sin<t>-(i?2AV^2A +^2b)C0SP
+ ^2B)sinP] (27)

)|32 sinP-2(^2A + ^2b)PcosP
+ ^b) s*n P ” ^ 3 $ sin<J) - ^3*2 cos*

£10sin0 +£102 cos0 + (£
~(^2A

2A + ^ 2B

2A + ^2b)cosP (28)

Likewise, we can assume that the sum of the x-direction distances will be equal to the

distance between the two bases (see Figure 10). This produces the equation

Xi + x2 = L

^!sin0 + (^2A +^2b)cosP + ^3 sin* = L (29)

which is used to produce

L - sin0- (^2A +^2b)C0SP-1 (30)* = sin

1
) PsinP + (^2A + ^ 2b) cosP][^Ocos©- (i*=- (31)2A + ^ 2B£ 2 COS*

-^I0cos0 + ^j02 sin0 + (f 2A + ^2b) Psinp + (^2A + ^2b) P2 C0SP

+ 2(f2A +^2B)PsinP-(^2A + ^2b) cosP + ^ 3 *2 sin* _

1
$ = (32)

£ 2 cos*

These equations are combined to give a set of differential equations which can be used to

completely describe the system, if given the correct number of inputs. The number of inputs will
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depend on the number of degrees of freedom allowed, which differs for the two damping methods

used, and will therefore be discussed in the respective chapters.

For the simulations, numbers had to be found to use for each of these variables. The

numbers used represented the base link of a flexible two-link planar arm which has been built at

Texas A&M University. From [7], values were found to use for the lengths and masses of the

beams and the base length. An approximate value was found experimentally for the stiffness of

the beams. This stiffness involved measuring the deflections resulting from the application of

known forces perpendicular to the end of the beam. The deflections were then converted to

angles by using the formula

fd-l (33)\j/ = sin

where \\f is the angular deflection
6 is the linear deflection of end of the beam
(. is the length from the pinned end of the beam to the point of force

application

Then the forces applied to the end of the beam were converted to torques using the

formula

(34)T = F^

where F is the force applied
T is the resulting torque

The stiffness was then determined to be the slope of the best straight line curve fit to the

plot of the torque as a function of the angular displacement.

The remaining variables, including mass, mass moment of inertia, and location of the

center ofgravity of the endmass, and the offset of the equilibrium angle of the beams from parallel

were not fixed. This was to allow some flexibility in the simulations to test the reaction of the

system to different situations.
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CHAPTER III

ACTUATORMETHOD

THEORY

The first method considered to damp the vibration of the flexible arm involved controlling

the distance between the endmass and each of the beams in the link. This method was based on

the differences in motion resulting from different configurations of the beams.

Shown in Figure 11 is a schematic of the system with the beams of the link parallel. With

the beams in this configuration, motion of the endmass is purely translational for small deflections.

This can be seen by drawing the velocity vectors at the ends of the beams. If the distance between

the ends of the beam is kept the same as the base distance, then the velocity vectors, which are

perpendicular to the end of the beams, will always be parallel. Since the ends of the beams are

directly connected to the endmass, these connection points on the endmass will have equal

velocity vectors at corresponding points. These velocity vectors place the instantaneous center of

rotation for the endmass at infinity, indicating translational motion.

3^

ll cj

FIGURE 11: Parallel beam configuration
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However, if the beams are drawn inwards such that the distance between the tips is less

than the base distance (see Figure 12), the situation changes. Again, the velocity vectors are

perpendicular to the end of the beams, but now they are no longer parallel. These vectors give a

center of rotation for the endmass at a finite distance beyond the endmass, meaning that the

endmass has some element of rotation.

Center of
Rotation

/ \
/ \

FIGURE 12: In-drawn beam configuration

Likewise, if the distance between the ends is greater than the base distance, or the beams

are pressed outward, the situation is different. Again the direction of the velocity vectors indicate

a center of rotation for the endmass at a finite distance from the base, but this time, the center of

rotation is back behind the base. This gives rotation of the endmass in the opposite direction from

in-drawn beams for the same rotational velocity direction (see Figure 13).

The hypothesis was that changing the rotation of the endmass would remove energy from

the system. This was to be done by changing the lengths of the actuators i 2A and i 2B to give the

in-drawn and pressed-out configurations. This change in length was to be done in a variety of

patterns, including sinusoidally, instantaneously, etc., in order to determine the most effective for

removing energy from the system, and thus damping the oscillation.
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\ /
\ /

6 Center of
Rotation

FIGURE 13: Pressed-out beam configuration

SIMULATION

Before simulating the motion of the system, the number of degrees of freedom had to be

determined to fix the number of state variables required. If the lengths of both 12A and 12B are

known, the system is a simple four-bar system, giving it one degree-of-freedom. However, an

actuator can only provide a finite amount of force, and becomes saturated past that point. For a

saturated actuator, the applied force is known, and the length can be derived from that. For each

saturated actuator, one more degree-of-freedom is added. This gives a maximum of three

degrees-of-ffeedom.

Given a different number of degrees-of-ffeedom, different variables are known.

Therefore, four different means of obtaining the information necessary for each time step had to

be devised. From these, two numerical integrations could be performed on an acceleration value

for each degree-of-freedom to give velocity and position information for the initial conditions for

the next time step.
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conditionsdegree-of-freedom,

i?2A,and^2B. The other variables could be found using a scheme as

initialtheFor wereone

0,0,£2A, £ t £2B » 2A ’ 2B >

shown in Appendix A, Part 1. The ultimate goal was to find 0, which could be integrated to give

0 and 0. From there, a new set of values were calculated for the other variables, and the process

began again.
For a two degree-of-freedom system, the values involving either £ 2A and £ 2B were

removed, depending on which was saturated. This was replaced by values for <j> and (f) which

were found by integrating the value for $ found in the previous time step. Also, the length of the

actuator can be approximated with the following graph:

T Force

Saturation Limit

Length
Desired Length

*
Saturation Limit

FIGURE 14: Force provided by the actuator as a function of length

From this graph, we can see that the actuator can withstand any force within a given limit

to give the desired length. If the force exceeds this saturation limit, either in tension or

compression, the actuator begins to change from its unsaturated length as a function of the forces

acting on it. This can be put into equation form as follows:
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hx - ihx) + /(Forces) (35)UNSATURATED

where £ 2X represents either £ 2A and £ 2B

/Forces) is a function involving the forces at either B or C and
a compliance factor for the actuator

This equation was added to relate the desired length of the actuator to its actual length. Values

were found for the remaining variables in the time step by using formulae in a scheme as described

in Appendix A, Parts 2 and 3.

For the three degree-of-freedom system, values for both £ 2A and £2B were removed from

the list of knowns and replaced by <(), (f>, x, and x. Likewise, Equation (35) with two different

y(Forces)' were added, one each for £ 2A and £ 2B . The scheme of solving the formulae is found

in Appendix A, Part 4.

Once the setup of the formulae were decided on, the simulation could begin. The initial

conditions given to the system were an initial displacement and velocity of 0. The initial length of

the actuators was assumed to be the nominal length, i.e. each half of the base length.

RESULTS

The results of these simulations proved to be unsatisfactory. Several different methods of

varying the lengths of the actuators were tried. These included sinusoidally, instantaneously,

along a ramp surrounding the equilibrium point, and including a hysteresis for the ramp about the

equilibrium point. While these did provide for some strange and interesting dynamics, none

provided any damping effects. In fact, depending on the frequency of the sinusoidal pattern, it

was possible to resonate with the natural frequency of the system and add energy.

DISCUSSION

The first thing done when all of the techniques for varying the lengths of the actuators

were tried was to ensure that the program was running properly. This involved running simple
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test cases where the results were known prior to running the program. These included cases such

as keeping the actuator lengths constant with a given initial displacement of 0. This gave the

expected sinusoidal response for the displacement of the endmass. Then, the initial displacement

of 0 was reduced to zero, and the lengths of both of the actuators were varied sinusoidally, which

should allow the endmass to remain stationary. While this did cause the endmass to move, the

amplitude (five orders ofmagnitude below that of the system) indicate that the error was probably

numerical in nature rather than a problem with the program.

After ensuring that the program was running properly and becoming assured that merely

changing the rotation of the endmass was not going to remove energy from the system, this

method was abandoned.
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CHAPTER IV

SPRING-DAMPER METHOD

THEORY

The next method for controlling the oscillations of the flexible arm was to simply use

springs and dampers for the connections between the end of the beams and the endmass. The

springs were included to add stiffness to the system so that a force acting on the endmass would

cause the whole arm to move rather than merely the endmass. Changing the natural length of

these springs is also the method by which the geometry of the system is changed. The damper is

the mechanism by which the energy is removed from the system. This system uses the movement

of the beams and the endmass relative to each other to damp the oscillation in the system.

Assume the arm has reached the end of its motion and the base has stopped, but the

endmass is displaced from its equilibrium point due to the flexibility in the beams (see Figure 15).

After the base has stopped, the endmass will continue moving due to its inertia and the restoring

torque in the beams as they move toward equilibrium. Once the beams pass equilibrium, they will

try to reverse the direction of their motion, but the endmass will keep moving in the same

direction due to its inertia (see Figure 16). This will cause a significant amount of relative motion

between the beams and the endmass. The dampers use this relative motion to dissipate energy.

FIGURE 15: Diagram of the system immediately after base motion stops
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FIGURE 16: Diagram of the system with the beams past equilibrium

Also, as the beams become more in-drawn, the damping in the system should increase.

This can be attributed to the fact that at least one beam is more likely to be past their equilibrium

point, and thus slowing down, than for the parallel configuration (see Figure 17). Any time this

happens, that damper will be dissipating energy. Thus, the more often this happens, the more

damping will occur. However, increasing the offset angle also increases the rotational motion,

which is not used in dissipating energy, and will increase the settling time.

I ® I
iff-—IF—

/
i
i
i
i

M mA CJ U)

(a) (b)

FIGURE 17: Point of passing equilibrium for a) Parallel and b) In-drawn configuration
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It is also understood that the damping by this system is going to be dependent on the

mass, mass moment of inertia, and location of the center of gravity for the endmass. The exact

relationship is rather vague, but general hypotheses have been developed. As mass of the

endmass increases, settling time should increase because of the increased momentum that is

gained during movement. As the mass moment of inertia of the endmass increases, settling time

should decrease. This is due to the fact that added moment of inertia will let the beams move

much more relative to the endmass, allowing the dampers to dissipate more energy without having

extra mass to build the momentum. The same logic applies to locating the center of gravity

further from the beams.

SIMULATION

Again, finding the number of degrees of freedom was the first objective for the system.

Because the lengths of £ 2A and £ 2B are not known, there are three degrees of freedom. The three

state vectors to correspond to these three degrees of freedom are 0 for the first beam, <|> for the

second beam, and x for the endmass. The equations can be arranged into a scheme where initial

conditions are the displacement and velocity vectors are known for 0, <{), and x, and results are

ultimately found for the second derivatives of these variables. These results are then integrated

twice to proceed to the next time step. This scheme can be found in Appendix B.

Once the general scheme had been determined, the simulation was performed. The initial

conditions were again an initial displacement and velocity in 0, with the initial lengths of

£2A and £2B being set to the natural length of the springs in those connections. These lengths

varied depending upon how much the beams were to be in-drawn.

The results of these simulations looked promising. As expected, the oscillations were

removed within a reasonable amount of time (10-20 seconds). At this point, analysis showed that

any two situations could not be compared due to the differences in stored energy at time t=0.

This value differed according to how much the beams were in-drawn. This can be seen in Figure

18. For the same initial conditions for 0, as the beams become more and more in-drawn, the
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amount of stored energy increases. Naturally, a system with more initial energy will take a longer

amount of time to settle. Therefore, it was decided to put energy into the system by storing it in

the springs connecting the beams and the endmass. This was done by displacing the endmass

close to one of the beams while starting the beams in their equilibrium position. In this way, the

only stored energy was that found in the springs between the endmass and the ends of the beams.

[__EquilibriunnJ
. Position ,

Equilibrium J
Position r

(b)

FIGURE 18: Displacement from equilibrium
for a) Parallel and b) In-drawn beams
for a given initial 0 displacement

However, if this is to work, the natural length of the connecting springs must remain

constant from simulation to simulation. This means that configuration cannot be made in-drawn

by making the equilibrium position for the ends of the beams closer to the endmass. Instead, the
f

base length must be increased.

This method was run varying each of several components. For the purpose of determining

the effect of each component, simulations were run for combinations of three endmasses, and each

of these was run with three different center of gravity displacements. The center of gravity

displacements were calculated by changing the overall mass moment of inertia while assuming that
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the mass moment of inertia of the endmass itself remained constant. Assuming that the

displacements were all in the di direction (away from the base), the formula for finding dj is

h-
di = (36)

V rn2 J

where I2 is the given mass moment of inertia
J is the mass moment of inertia of the endmass

These nine combinations were run for each of six different configurations,

configurations differed in the offset angle, defined as the angle from the y-direction at which the

beam is at equilibrium. Also at equilibrium, the springs was at their natural length. By this

definition, parallel beams were at a configuration of 0°. The values used for these variables is

listed below.

The

Mass : 1 kg, 7 kg, 15 kg
Mass moment of inertia: 0.25 kg-m2 (dj = 0), 0.50 kg-m2, 0.75 kg-m2
Configurations: 0°, 2°, 4°, 6°, 8°, 10°

This gave a total of 54 simulations performed. For each of these simulations, information

concerning the displacement and velocity of 0, (j), and x were recorded. Also recorded was data

on the forces felt in each of the pins, the logarithmic decrement of x, the rotational displacement

and velocity of the endmass, and the lengths and rate of change of the lengths of £ 2A and 12B.

RESULTS

Although a great deal of data was recorded for each simulation that was run, not all of it

was immediately applicable. Of immediate interest was the information concerning the motion of

the endmass. This was characterized by a settling time and a peak value. This information is

presented below in Tables 1-3. These tables show the maximum overshoot of the endmass past

its equilibrium position (x0) and the time required to settle to within 0.5% of the final value (ts).
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Each of the tables represents a different I2, which correspond to different d^s. Within each table,

columns represent constant mass, and rows represent constant offset angles.

m = 1 kg m = 7 kg m = 15 kg
x0 = 2.93 cm
U= 9.09 s

Xq = 1.05 cm
tg = 0.75 s

x0 = 2.5 cm
4.01 s

Offset = 0°
U =

x0 = 2.935 cm
U = 9,09 s

xQ = 1.11 cm
ts = 0.87 s

x0 = 2.5 cm
4.38 s

Offset = 2°
tc =

xG = 1.17 cm
ts = 1.31 s

Xq = 2.93 cm
U= 9.11 s

x0 = 2.5 cm
ts= 4,39 s

Offset = 4°

x0= 1.06 cm
ts = 2.51 s

Offset = 6° x0 = 2.48 cm
t„ = 4,41 s

x0 = 2.90 cm
t„ = 9,13 s

x0 = 2.88 cm
t, = 9.16 s

x0 = 0.87 cm
ts = 5.25 s

Offset = 8° x0 = 2.49 cm
ts= 4,82 s

dx0 = 0.674 cm
ts = 10.7 s

x0 = 2.5 cm
ts = 5.25 s

xQ = 2.84 cm
L = 9,74 s

Offset =10°

TABLE 1: Overshoot and settling time for I2 = 0.25 kg-m2

m = 1 kg m = 7 kg m = 15 kg
x0 = 2.5 cm
ts = 4.01 s

x0 = 2.94 cm
L= 9,09 s

x0 = 1.05 cm
ts= 0.75 s

Offset = 0°

x0 = 0.841 cm
tfi = 0.65 s

xQ = 2.4 cm
U= 3,92 s

x0 = 2.88 cm
U= 8,42 s

x0 = 2.82 cm
t.= 7.77 s

Offset = 2°

x0 = 3.63 cm
tg = 3,43 s

x0 = 2.3 cm
L= 3.49 s

Offset = 4°

UNSTABLE x0 = 2.735 cm
7.66 s

xQ = 2.29 cm
ts= 3.42 s

Offset = 6°

Is
UNSTABLE xQ = 2.75 cm

L= 7.05 s
x0 = 1.975 cm
ts = 3.01 s

Offset = 8°

UNSTABLE x0 = 1.56 cm
ts= 2.05 s

Offset =10° x0 = 2.63 cm
U = 0-95 s

TABLE 2: Overshoot and settling time for I2 = 0.5 kg-m2
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m= 1 kg m = 7 kg m = 15 kg
x0 = 1.06 cm
tR = 0.75 s

x0 = 2.5 cm
ts = 4.01 s

x0 = 2.94 cm
tR= 9.09 s

Offset = 0°

xG = 2.86 cm
tR= 7,84 s

Xq = 0.706 cm
tR = 0.81 s

x0 = 2.36 cm
ts = 3.53 s

Offset = 2°

UNSTABLE Xq = 2.78 cm
tR = 7.67 s

x0 = 2.26 cm
ts = 3.43 s

Offset = 4°

UNSTABLE x0 = 2.03 cm
ts= 2.97 s

x0 = 2.71 cm
ts = 7.01 s

Offset = 6°

UNSTABLE x0 = 2.59 cm
tR = 6.36 s

Offset = 8° x0 = 1.6 cm
ts= 5.46 s

UNSTABLE UNSTABLE x0 = 2.18 cm
t„ = 5.82 s

Offset = 10°

TABLE 3: Overshoot and settling time for I2 = 0.75 kg-m2

From the information in these tables, certain trends were found as functions of changes in

the mass of the endmass, the displacement of the center of gravity of the endmass, and the offset

angle of the beams. Some of these trends are represented below. Shown as well are the two

typical displacements of the endmass from its equilibrium point as a function of time.

0.03 t

0.02 -

a
^

£ a
§ 6
S •§ -0.0PP

0.01 -

/^\0

6.002.b0 4.00 8.00 10.00

J a -o.o2 -
.2 M -0-03 -

-0.04 -I
-0.05 -

Time (s)

FIGURE 19: Typical plot of the displacement of the endmass from equilibrium
as a function of time for a stable system
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FIGURE 20: Typical plot of the displacement of the endmass from equilibrium
as a function of time for an unstable system
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FIGURE 21: Endmass settling time as a function ofmass
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The units for mass are kg
10

The units for offset are degrees
9

-•8 -- "
"
o

o
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FIGURE 22: Endmass settling time as a function of distance to the center of gravity (d^
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FIGURE 23: Endmass settling time as a function of configuration

Also of interest was some method of quantifying the damping achieved by the system.

This was done by taking the logarithmic decrement of x, the displacement of the endmass from its

equilibrium position. This value was found using the formula
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fxAo1
(37)d = -In

2 \x2J

where 5 is the logarithmic decrement
x0 is the value of the first peak of the displacement of the endmass
x2 is the value of the third peak of the displacement of the endmass

DISCUSSION

While the tables provide a great deal of information, ofmore interest are the implications

of several of the trends found within those tables, some ofwhich are shown in Figures 19-23. For

instance, it is interesting to note that for the parallel beams (Offset = 0°), there was no decrease in

settling time for an increase the mass moment of inertia. However, as the offset angle increases,

the settling time began to decrease for a non-zero value of di, as given by the mass moment of

inertia. One possible reason for this is that as the offset angle increases, rotational motion tends

to increase; yet, for a center of gravity placed a finite distance from the ends of the two beams, it

becomes more difficult to rotate the endmass. Thus, although the beams are oscillating, the

endmass cannot rotate at the same rate. This corresponds to increased movement of the beams in

relation to the endmass, increasing the amount of energy dissipated by the dampers.

This theory also explains the decrease in settling time which results from increasing the

mass moment of inertia by increasing the distance to the center of gravity. For a given amount of

rotational motion, as the distance to the center of gravity increases, the resistance to the rotation

will increase. This increases the relative motion between the endmass and the beams, allowing

more energy to be dissipated by the dampers.

An expected trend is the increase in settling time that results from having a greater mass.

This is because of the momentum gained as the endmass moves from the initial displacement;

more energy is required to cause it to change direction than would be necessary for a smaller

mass. This adds credibility to the simulation.



32

One disturbing thing is results obtained for having no distance to the center of gravity

(I2 = 0.25 kg-m2). These results exhibit the opposite trend for settling time as the offset angle

increases. One possible explanation is that the forces acting at pins B and C would for this case

act directly from the spring and damper through the center of gravity. This would greatly reduce,

if not completely eliminate, the amount of rotation produced by the oscillation of the arm. Then,

as the offset angle was increased and the motion went from translational to rotational, the energy

dissipated by the dampers would decrease, requiring a longer amount of time to settling to within

0.5% of the final value. Fortunately, this is a very unlikely situation because most endmasses will

be composed of either additional links, manipulators, or workpieces, which will give a center of

gravity some finite distance away from between the ends of the beams.

Another disturbing aspect of the data presented is the "unstable" systems found for high

dj, low mass, high offset angle situations. Because an unstable system is an impossibility due to

the lack of inputted energy into the system, this is most likely due to an numerical instability in the

program. In reality, this type of system would probably have very little or no damping rather than

the instability.
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CHAPTER V

CONCLUSION

SUMMARY

In the end, damping was achieved in the system. Although the initial method of removing

the oscillations (the actuator method) did not achieve the desired results, a method was found (the

spring-damper method) which did. In addition, the system had the ability to achieved a fairly

quick settling time considering the fact that no other damping was modeled into the system. Also,

the behavior of the displacement of endmass followed the expected trend for an increase in mass

and distance to the center of gravity. Furthermore, the addition of beam offset angles into the

configuration was shown to have added benefits in terms of settling time and overshoot.

Another positive aspect of the spring-damper system is its passiveness: no inputs are

required whatsoever. This includes feedback or even power. This means that the chances of

failure are reduced. Also, because the springs, at least for these simulations, were modeled as

having the same stiffness as the flexible beams, any deflection will be a result of bending of the

beams as well as compression/extension of the springs.

So, overall, the flexible arm with dual-beam links has possibilities for implementation.

Although it will weigh more than one with single-beam links, the arm will still weigh much less

than an equivalent stiff-link arm. Furthermore, the dual-beam link has the benefit of the simplicity

that results from a completely passive system.

RECOMMENDATIONS FOR FUTURE STUDY

Analysis of the remaining data collected for the simulation needs to be done, including the

rotation of the endmass and the forces acting at the pins. Also, experimental work needs to be

done to determine if a real system performs reasonably close to the theoretical system. This could

be done using the flexible arm located at Texas A&M University, although, because it is two-link,

modifications could probably be made to simplify the system.
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If the real system performs close to the prediction, then an effort should be made to

develop a more accurate model of the system. This would include using beam analysis or possibly
finite elements rather than the pseudolink method in modeling the beams. Also, some compliance
can be given to the base to allow for compliance of the motor.

If an accurate model for the system can be developed, other factors could be included

which may aid in removing the oscillations. One possibility includes having the forces at B and C

at equilibrium be a finite value rather than zero. These further investigations should also try to

differentiate between changing the mass moment of inertia of the endmass and the position of the

center ofgravity.
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APPENDIX A

EQUATIONS FOR THE ACTUATOR METHOD

PART 1

The first possible situation for the actuator method is that both of the actuators are

unsaturated, giving a one degree-of-freedom system. For this case, only the equations given in

the modeling portion of the text are used for the equations.

The initial conditions for this situation are given values for

0, 12a > ^ 2B» ^ 2a » ^ 2B > ^ 2a > and 'Kb- To get started, we must for a moment assume that p is a

small angle. With this assumption, we can simplify Eqn. (30) from the text to get

L — £ j sinG — (^2a + ^ 2b)-l (Al-l)(j) = sin
^3

The value obtained from this calculation will go directly into Eqn. (26) from the text to

give

^ 3 cost}) — ^! COS0-1P = sin (Al-2)
^2A +^2B

From there, Eqns. (27) and (31) are solved simultaneously. After combination, the two

equations become

1
[-^0cos(p + 0)-(*2A + ^2B)] (Al-3)* =

£ 3 cos^ p — <{))

0=(^A+i)cOsP^®Sin9-'3<tSin^('2A + ^2B)sinP] (A1-4)

Using these values plus the initial conditions, the rest of the equations must be solved

simultaneously. The variables to be solved for include 0, p, Bx, By, Cx, and Cy

The equations will be set up in the following manner:
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[A].[S]=[C]
where, for this situation,

l

3m'(‘ 0 0 ~£y COS0 £, sin0 0 0

1

3m3*30 0 0 0 -£3 cos4> £ 3 sin 4>
£2A sinp
+ d] cosp
+ d2 sin p

1 1
-£, cos0 0 0 0

m2 m2

-(^2AcosP
- d! sin p +
d2 cos P)

[A] = 1 1
£, sin0 0 0 01

m2 m2

-(^2Asinp ^2A cos p -£ 2B sin p -^2Bcosp
+ djCosp -d,sinp -d^osp -d,sinp
+ d2sinp) +d2cosp + d2sinp +d2cosP

0 0 ~h

-^jsin0 £3sin4> -(^2A + ^2b) cosP
^cos0 ^3cos«j) ~[£2a + ^2B) sinP

0 0 0 0

0 0 0 0

0

$
P

ra- Bx

By
Cx
LCyJ

-k,0

k34>
-£lQ2 sin0 + "£2A cosP - 2£2A J3sinP - p2(^2A cosp - dj sinp + d2 cosp)
-£yQ2 cos0 + "£2A sinp + 2£2A pcosp - p2(^2A sinp + dj cosp + d2 sinp)[C] =

0

£]Q2 cos0-(i!2A +‘^2B)sinp-2(^2A + ^2b) Pcosp + (^2A + ^2B)p2 sinp - ^3<f>2 cos<j)
.I\ 02 sin0 - (£2A + i2B)cosp + 2(t2A + £2B) J3sinp + (^2A + £2B) p2 cosp + £3<f>2 sin<t>_
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PART 2

Another possible schematic for the actuator method is if actuator £2A is saturated. When

an actuator is saturated, the actual length differs from the desired length as a function of the
forces acting on it. When this happens, £2A ,£ 2A >and ^ 2A unknown. This gives the system

two degrees of freedom. As such, integration of two state variables must be performed. In this

case, (|) was chosen as the other state variable. This makes the initial conditions for this situation

^ ^2B> ^2B> and £ 2B-

To begin to solve this set of equations, Equations (25) and (29) are combined to give

L - £1 sin 0 - £3 sin (J)
£ 3 COS(}) ~ £\ COS0

-1 (A2-1)P = tan

Then using Equation (25) again gives

£3 cos<|) - £\ cos0 - £2B s^n P
sinP

Then Equation (Al-3) can be rearranged algebraically and Equation (Al-4) used directly

(A2-2)^2A

to give

£10cos(p + <())-* £3<J)cos(p — 4>) - £2b (A2-3)£ 2A

+ ^2B)sinP] (A2-4)

Again, the remaining equations must be solved simultaneously. The matrices used in this

situation are very similar to those used in the previous part. The difference is the addition of

^2Ato the unknowns. This additional unknown is balanced by the equation which approximates

the saturated length of the actuator based on the forces acting along it. This gives the equation

1
(bx cos P + By sin p)^2A ~ (^2a) (A2-5)UNSATURATED Stiff

where Stiff is the stiffness of the actuator when saturated

which combines with the other equations to give the following system of equations to solve

simultaneously:
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1
-£, COS0 £, sin00 0 0 00

3
1

3m/3 —£ 3 COS<j) £ 3 sin4>0 00 0 0

t2A sin p
+ dj cos (3
+ d2 sin p

1 1
-£\ COS0 -cosP0 0 0

m2m2

~(£2A cos p
-d, sinp +
d2 cos P)

1 1
-sinp£, sin0 00 0[A] = m2

^2AcosP -^2BsinP
- dj sin P - dj cos p
+ d2cosP +d2sinp

~{t2A sinp
+ d, cosp
+ d2 sinP)

-£ 2B cos P
- dj sinp
+ d2 cosp

0~h0 0

~(^2A +^2b)C0SP sinp
cosp

0 0-£jsin0 sin<p
^cos0 ^3cos(f) -(^2A+^2B)sinp

00

00 00

11

iHFcosP sinp 0 0000 0
Stiff

0

$
P
Bx[3] = By
Cx
Cy

-^2A-

-k,0
-k3<t>

-£, 02 sin0 - 2£2A psinp - p2(^2A cosP - dj sinp + d2 cosp)
-^j02 cos0 + 2^2A pcosp- P2(^2A sinp + dj cosp + d2 sinp)

0

£} 02 cos0 - t2B sinp - 2(j?2A + i?2B) pcosp + (*2A + ^2B) p2 sinp -£3<f>2 cos4>
£l02 sin0 - £2B cosp + 2('£2A + £2b)MnP + (^2A + ^2B) J32 cosp + ^3<f>2 sin<|>

^2A ”(*2a)

[21 =

UNSATURATED
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PART 3

The third possible situation for the system when using the actuator method is very similar

to the situation in Part 2. The only difference is that the ^2B actuator ls being saturated rather

This changes the initial conditions slightly to be

but the system still has two degrees of freedom. Also, the variable

than the f2A actuator.

0, 0, (|), ({), £ 2A» ^ 2A ’
and £ 2A ’

<t> is chosen as the other state variable.

The equations used to solve for the other variables in the system also are very close to

those in Part 2. The first is actually a direct copy ofEquation (A2-1)

L - £ j sin0 - £ 3 sin (J)
£ 3 cos({) — £ \ cos0

-l
(A3-1)P = tan

The next two equations are in fact the same as Equations (A2-2) and (A2-3); the only

difference is the variable for which it is being used to solve.

£ 3 cos(j> - £ i cos0 - £ 2A sin P
(A3-2)^ 2B sinp

-^10cos(p + (j)) — ^ 3 <J) cos( P — 4>) - £2a (A3-3)£ 2B

The final variable being solved for uses another equation directly from Part 2 in the form

ofEquation (A2-4).

P = 7-T ~[t i0sin0-<? 3<tsin<f)-(^2A\^2A +^2B/C0SP
+ i?2B)s'Ilp] (A3-4)

Again, the remaining equations must be solved simultaneously. The matrices used in this

situation are almost identical to those used in the previous part. However, for this case, ^2Bis
being solved for rather than i?2A. This changes the equation defining the length of the saturated

actuator to

1
(bx cos P + By sin p)^2A -(^2a) (A3-5)UNSATURATED Stiff
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which combines with the other equations to give the following system of equations to solve

simultaneously:

l
-t\ COS0 sin00 0 0 0 0

1

3^3 ~£ 3 COS<|) £ 3 sin 4>0 0 0 0 0

£2A sinP
+ d!COS P
+ d2 sin p

1 1
-t 1 COS0 0 0 0 0

m2 m2

~(£2a cosP
- d) sinp +
d2 cos P)

1 1
£, sin0 0 0 0 0[A] = 1

m2

-(^2AsinP ^2A cos P £ 2B sin p -^2Bcosp
+ d,cosP -djSinp -d,cosp -djsinp
+ d2 sin P) + d2 cos p - d2 sin p + d2 cos p~h 00 0

-^jsin0 sincp (£2A + £2B) cosP
^jcos0 ^3cos4> ~[£2a + ^2B)sinP

sinp
cosP

— c°sP -—sinp 0

0 0 0 0

0 00 0

1 1
0 0 0 0 0

0

$
p
Bx[5] = By
Cx
Cy

-k,0i

—£j 02 sin0 + £2A cosp - 2£2A Psinp - P2(^2A cosP - dj sinp + d2 cosp)
-^02cos0 + i!2A sinp + 2^2A pcosp- p2(^2A sinp + d, cosP + d2 sinp)

[C] = 0

£x 02 cos0 - "£2A sin p - 2(i?2A + £2B) pcosp + (^2A + ^2B) p2 sin p - £3 <f>2 cos<f>
£} 02 sin0- ^2A cosp + 2(£2A +^2B) Psinp + (^2A +£2b) P2 cosp + f3<f>2 sin<j>

^2B ~(^2b)UNSATURATED
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PART 4

For the final situation, both £2a an<^ ^2Bare modeled as saturated. This gives the system

three degrees-of-freedom. This third degree-of-freedom requires a third state variable so that the

system can be solved. For this case, the third state variable is x, the displacement of the endmass.

This makes the initial conditions for this system 0,0, <j), <f), x, and x.

The same initial equation which has been used for the past two situations will again be

used in this one

L - £! sin 0 - £3 sin <})
£3 COS(|) - £ j COS0

-1
(A4-1)P = tan

The next equation is derived from Equation (19) in the text to give

x - £ i sin0
(A4-2)^2A COsP

The next equation is a copy ofEquation (A3-2):

£3 COS(|> - £ i cos0 - £ 2A sin P
sinp

The next three equations must be solved simultaneously. The three initial equations are

Equation (20) from the text and Equations (Al-3) and (Al-4). Rather than having them solve by

the computer every time, they were done by hand and simple equations used instead. These

equations were

(A4-3)£ 2B

p = 7 —\ ^sinO - <f>sin<J> + sinp(-^10cos(p + 0) + £3<|)cos(p - <j)))l (A4-4)l^2A + ^2B/C0SPL

1
[x - £jOcosO + P(f 2a s^nP + dicosp + d2 sinp] (A4-5)£ 2A COsP

£ 2B = -^I0cos(p+ (())-f3([)COs(p - (j)) - f2A (A4-6)

The next 10 equations must be solved simultaneously in order to give the rest of the

information on the system. The matrices used are
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l

im,<> o o cos0 ly sinO 0 0 0 0 01

1
0 0 0 -£3cos<}>0 £3sin4> 0 0 0

t2A sinp
+ dj cosp
+ d2sinp

1 1
, COS0 0 0 0 -cosp 0 1

m2 m2

~(^2A cosP
- dj sinP +

d2 cosP)
1 1

iy sin0 0 0 -sinP0 0 0
m2 m2

[A] =
“(*2A sinP
+ dj cosp
+ d2 sinP)

^2AcosP -^2BsinP -^2BcosP
-djsinP -djcosp -djsinp
+ d2cosP +d2sinP +d2cosP

0 0 _I2 0 00

^3 sin<|) ~(^2A+^2b)cosP
^cos0 ^3cos<}> ~(^2A + ^ 2B) sin P
-£y sin0 0 sinP sinP 0

cosp cosp 0

0 0 0

0 0 0 0

1 1
cosp sinP0 0 0 0 0 0 0 0

Stiff Stiff
1 1

sinPcosp0 0 0 0 0 0 0 0
Stiff Stiff

0 0 0 -1 0 1 0 0 0 -m2

e

$
p
Bx
By
Cx
Cy
^2A
£ 2B

X

-kj0
-k3(|»

-£lQ2 sin0- 24?2A |3sinp- j32(^2A cosp - d, sinp + d2 cosp)
-l j 02 cos0 + 2t2A p cosp - P2(^2a s^nP + dj cosp + d2 sin p)

0

£l 02 cos0 - 2(^2A + ^b) Pc°sp + (^2a + ^2b) P2 sinp - £3<$>2 cos<p
£! 02 sin0 + 2(i?2A + i?2B) p sinp + (t2A +12B) p2 cos p + £3 <f>2 sintp

UNSATURATED

UNSATURATED

m =

*2A ~2a)
^2B (^2b)

0



44

APPENDIX B

EQUATIONS FOR THE SPRING-DAMPER METHOD

The system which uses springs and dampers between the endmass and the ends of the

beams has three degrees-of-freedom. This means that three state variables are required to

describe the position of the system at any time. For this simulation, these variables are 0, which

describes the angular position ofBeam 1; <|), which describes the angular position ofBeam 2; and

x, which describes the linear position of the endmass. As state variables, these will be the

variables which are integrated to give the initial conditions for the system, which will be

0,0, <J), <f>, x, and x.

The equations as described here are the same as those in Part 4 of Appendix A. This is

because both systems have three degrees-of-freedom and start from the same initial conditions.

The equations will be listed here for the sake of completeness

L - £i sin0- £$ sin({)
£3 COS({) ~ £\ COS0

-1P = tan (B-l)

x - £, sin 0
= (B-2)

cosP

£ 3 COS<() - £\ COS0- £ 2A sinp
(B-3)2B sinp

P = \ |^!0sin0 - ^3<f>sintj) + sinp(^j0cos(p + 0) + £3<j)COs(p - <|)))] (B-4)l^2A + ^2B/ C0SP

1
[x - ^j0cos0 + f>(£2A sinp + d, cosP + d2 sinp]£*-2A (B-5)cosP

e2B = — 0cos(p +«!>) — ^3<j)COs(p-<)>) — ^2A. (B-6)
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We find a difference in the simultaneous equations to be solved, though. Because there

are no actuators, the equations which were formerly used for them in the system of equations will

be replaced with equations describing the forces resulting from the spring and damper. These

equations are of the form:

DAMp(x - tx e) + STIFF^x - - (e2A)Bx cos(3 + By sin (3 = (B-7)Natural Length

Cx cosp - Cy sinp = DAMP(-f 3 <j> - x) + STIFfTl — ^34> — x — 2B) (B-8)Natural Length

where DAMP is the damping coefficient of the dampers between the beam and the
endmass

STIFF is the stiffness of the spring between the beam and the endmass
2x) is the natural length of the springNatural Length

This makes the variables in the system of equations
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l
-£,COS0 £] sin00 0 00 0 00

\m3(23 ~^3COS(J) 3 sin4>0 0 0 0 00 0

e2A sinP
+ dj cosp
+ d2sinP

1 1
-£■> cos0 -cosP 00 0 0 1

m2 m2

~(£2A cosp
- dj sinp +

d2 cosP)
11

£x sin0 -sinp 00 00 0
m2m2[A] =

~(^2A sinP
+ dj cosp
+ d2 sinp)

^2Acosp -^2BsinP -^2Bcosp
-djsinp -d^sp -d,sinp
+ d2cosp +d2sinp + d2cosp

0 0 00 ~h0

3 sin4> -(^2A +^2b)cosP
£2 COS(j> -(^2A +^2B)sinP

sinp sinp
cosp cosp

-£\ sin0
£\ cos0

0 0 0 00

00 0 0 0

sinpcosp 0 0 0 000 0 0

cosp -sinP 0 0 00 00 0 0

0 1 0 0 0 -m2_0 0 0 -1

e

$
P
Bx
By
Cx

cy
^2A
^2B
X

-kjG

:k3<t>
-£162 sinQ-2£2A PsinP - |32(^2A c°sP - d^inp + d2 cosp)
—£j 02 cos0 + 2£2A PcosP - P2(^2A sinp + djcosp + d2 sinp)

£!02cos0-2(j?2A +^2B) PcosP+ (^2A +^2B)p2sinp-£3({)2cos(j)
^!02sin0 + 2(j?2A +i2B)psinP + (^2A + ^2B)p2 cosp + £34>2 sin4>

Natural Length

0

[c] =

DAMPfx - ^6) + STIFF^x - £}0 - (^2A)
damp(-*3<{> - x) + stiff(l - ^34> - x - (*2B) )Natural Length

0


