
INCORPORATING FUZZY LOGIC IN AN

ARTIFICIAL NEURAL NETWORK

A Thesis

by

ELIZABETH ANN RAMIREZ

April 1996

Major Subject: Electrical Engineering

INCORPORATING FUZZY LOGIC IN AN

ARTIFICIAL NEURAL NETWORK

A Thesis

by

ELIZABETH ANN RAMIREZ

April 1996

Major Subject: Electrical Engineering

Karen L. Butler

(Advisor)

Undergraduate Fellows Director

iii

ABSTRACT

Incorporating Fuzzy Logic in an Artificial

Neural Network. (April 1996)

Elizabeth Ann Ramirez, Texas A&M University

Advisor: Dr. Karen L. Butler, P.E.

A clustering neural network that uses unsupervised learning to generate clusters is

described. A fuzzy logic classifier is used in conjunction with the network to assign

membership functions to patterns that describes the degree ofmembership that the pattern

has for a cluster. The input that is fed into the neural network are nonfuzzy (crisp) values.

A two-stage clustering neural network that uses unsupervised learning in the first stage

and supervised learning in the second stage is to be revised so that the supervised

function is disabled. Therefore, the resulting clusters will be generated from the

unsupervised stage of the original neural network. The fuzzy logic classifier is developed

by implementing a similar algorithm used by fuzzy c-means for generating fuzzy

membership functions. By assigning a membership function to the data points, the

patterns are allowed to hold membership to more than one cluster. This is in contrast to

the crisp membership that is held by the patterns in the original neural network. Data that

is ambiguous can be represented and processed using an algorithm such as this. The

neural network is written in FORTRAN and the fuzzy logic classifier is written in

MATLAB.

iv

TABLE OF CONTENTS

Page

ABSTRACT... iii

TABLE OF CONTENTS... iv

LIST OF FIGURES.. vi

CHAPTER

I. mTRODUCTION.. 1

II. RELEVANT SUBJECT MATTER... 1

Neural Networks... 1

Fuzzy Logic.............................. 2

Clustering Algorithms... 3
ISODATA Clustering Algorithm........................ 3

Fuzzy C-Means Clustering Algorithm ..

4

m. PROBLEM STATEMENT 5

IV. DESCRIPTION OF COMPUTER PROGRAMS....................................... 6

Original Neural Network.. 7
Neural Network Input 7
Cluster Generation.. 8
Neural Network Output.. 9

Revised Neural Network.. 9
Neural Network Input.. 9
Cluster Generation... 11
Neural Network Output... 11

Fuzzy Membership Function........ 11

V. JUSTIFICATION... 11

VI. SUMMARY OF REVISIONS.. 12

v

VIT. STUDIES AND RESULTS.. 13

Input Patterns... 13

Original Neural Network Clusters... 14
Revised Neural Network Clusters.. 15
Revised Neural Network Membership Functions........................... 16

VITI. SUMMARY AND CONCLUSION.. 18

REFERENCES.. 20

APPENDIX A: Original Neural Network FORTRAN Programs.......................... 21

A.1 TRAIN.COM.. 21
A.2 TRAIN.FOR... 21
A.3 PARAMS.INC.. 23
A.4 UNSUPER.FOR... 25
A.5 SUPER.FOR...... 36

APPENDIX B: Revised Neural Network FORTRAN Programs......................... 45

B.1 TRAIN.FOR.. 45
B.2 SUPER.FOR.. 47

APPENDIX C: Revised Neural NetworkMATLAB Programs........................... 51

C.1 FUZZYMF.M... 51
C.2 MFPLOT.M... 52

VI

LIST OF FIGURES

HGURE PAGE

1 Original Neural Network Algorithm 8

2 Revised Neural Network Algorithm 10

3 Normalized Input Patterns.. 14

4 Cluster Centers in Normalized Pattern Space 16

5 Membership Function Plot for Cluster 1................... 17

6 Membership Function Plot for Cluster 2................... 18

I. INTRODUCTION

The topic to be investigated is incorporating a fuzzy logic classifier in an artificial

neural network. The neural network is a two-stage model that was developed based on

the ISODATA algorithm for clustering. Unsupervised learning is used in the first stage

and supervised learning is used in the second stage. The classifier uses fuzzy

classification in it's reasoning system to define clusters rather than using conventional

crisp classification. The fuzzy membership function used to define the fuzzy clustering

follows the fuzzy c-means algorithm.

Section I gives a brief introduction of the research project that is to be covered in

this thesis. Section IT covers the topics of neural networks, fuzzy logic, and clustering

algorithms which are relevant subjects to this project. Section lIT states the problem that

the research is to investigate and the tasks that need to be accomplished. Section IV gives

a description of the software that will be manipulated in this research. Section V justifies

why this thesis topic is relevant. Section VI summarizes the changes that are to be made

to the original software. Section vn reports the studies performed and the results

obtained for this research project. Finally, Section VITI summarizes and concludes the

findings found during this research project.

II. RELEVANT SUBJECT MATTER

A. Neural Networks

Artificial neural networks consist of several simple processing elements called

neurons arranged in a massively paralleled architecture that collectively function in order

2

to simulate the processes of the human brain [5]. They can be used for pattern matching,

classification, or other nonnumeric problems by employing many parallel computations

and approximations without logical rules or mathematical equations.

The neurons are related to each other through weighted arc links. A network can

be trained to recognize a pattern by strengthening the relevant arc weights associated with

a pattern and weakening the incorrect weights. It can learn a pattern and remember it

when processing new data. Learning is usually accomplished using supervised or

unsupervised learning procedures.

In supervised learning, the pattern recognition process uses data that are assigned

class labels [8]. The network uses these labels to create boundaries between classes that

minimize misclassification of the labeled data. These class labels serve as the

supervision and establishes validity which the neural network uses to find clusters and

learn patterns.

Unsupervised learning is a learning mode utilized by a neural network. using

unlabeled data in order to find natural groupings that are independent of class labels [9].

Therefore, the neural network is allowed to find clusters without supervision provided

from class labels.

B. Fuzzy Logic

Fuzzy logic is an extension of conventional Boolean logic that can handle the

concept of partial classification [10]. Traditional logic systems assign precise class

values to an element. Fuzzy logic has unclear values that can represent a range of

numbers.

3

A classical, nonfuzzy (crisp) function describes an element as either 1, meaning it

is 100% classified to a set, or 0, meaning it is 100% not classified to a set. Alternatively,

the fuzzy function allows an element to be classified to a set with a degree ofmembership

that is anywhere in the interval [0,1]. This means it can hold any value between 0% and

100% to describe if it is classified to a set or not classified to a set. The membership

function describes the degree ofmembership that an element has for a set.

Fuzzy logic does not require an element to be true OR false, but true AND false to

varying degrees as described by the membership function. By using fuzzy sets as pattern

classes, data with built-in ambiguities can be described allowing artificial logic to deal

with vague information. Dynamic real systems need fuzzy sets and fuzzy logic in order to

represent the uncertainty that is inherent in their complexity.

C. Clustering Algorithms

Clustering is a method that tries to define the relationship between patterns of a

data set by organizing them clusters so that patterns within a cluster are more similar to

each other than to patterns that belong in different clusters [4]. These clusters contain

data in the same group that are close to each other and not close to points in other groups.

A classical clustering algorithm divides and assigns data to only one cluster.

Alternatively, a fuzzy clustering algorithm assigns data to more than one cluster and gives

a degree ofmembership that relates how strongly an element belongs to that cluster. The

advantage of fuzzy representations in cluster analysis is that patterns which represent

uncertainties, such as stray or isolated points, can be classified as such.

1. ISODATA Clustering Algorithm

4

The ISODATA algorithm used in unsupervised cluster analysis partitions a data

set into clusters using an iterative process and also finds the cluster centers which are

major representative elements of a data set [2]. The ISODATA algorithm first partitions

up the data set into initial clusters and finds the centers of these clusters. A new set of

clusters is then constructed where the distance between the data points and the cluster

center is minimized. If the new clusters are the same as the old clusters, the process

stops. Iteration continues until all of the clusters have a minimum distance from their

respective data points to their centers. The process is done using the following method

[7]:

(1) Initial partition of the data set into m clusters, F=Fl, ... , Fm

(2) Compute the centers Vi of the cluster F,

(3) Create a new partition of clusters, F', if dtx.v.) = min d(x,vj)

(4) If F'=F stop iteration, otherwise set F'=F and go to step (2)

2. Fuzzy C-Means Clustering Algorithm

A procedure similar to that used by the fuzzy c-means algorithm for obtaining a

fuzzy membership function was used in designing the fuzzy logic classifier [7].

Therefore, only the membership function process used in fuzzy c-means will be

described, as opposed to describing the complete clustering algorithm.

The membership function, J.iij, is obtained by first being initialized to an arbitrary

value. The distance, d, between the cluster centers, V, and the data points, X, are found.

The process is done using the following method [1]:

(1) Initialize the membership function, Jlij, of point X belonging to cluster i such

that

(1)

5

6

(2) Compute the cluster centers, Vi, for i=L, ... ,c using the formula

n

L (� ij)
m X

Vi =
J= 1 (2)

n

L (� ij)
m

j= 1

(3) Update the fuzzy membership function, f..Lij, using the formula

(3)

Where c is the number of clusters, j is the index of the data points, i is the index of the

cluster centers, and exp is the defined fuzziness index.

Incorporating fuzzy logic with neural networks provides complementing methods

of reasoning and computing. Neural networks learn rules for fuzzy logic and fuzzy logic

infers from unclear neural network parameters [6]. The network has learning capabilities

that produce output from fuzzy input while avoiding time-consuming arithmetic

operations.

III. PROBLEM STATEMENT

There are several tasks which must be accomplished in order for the fuzzy

classifier to be implemented in the neural network. The first task is to revise the original

neural network so that the supervised stage is disengaged and only the unsupervised stage

can generate clusters based on the input patterns spatial proximity. The neural network

FORTRAN programs must be manipulated in order for this to occur.

7

Another task to be accomplished is developing the fuzzy logic classifier that will

assign a degree ofmembership to an input pattern. This task involves developing the

membership function algorithm which will be used in conjunction with the new neural

network clusters. The fuzzy logic classifier must be created so that it can be implemented

in software that is compatible to the neural network's output format.

IV. DESCRIPTION OF COMPUTER PROGRAMS

A. Original Neural Network

The neural network utilized in this research consists of a two-stage clustering

model that uses distinct, crisp classes to define the membership of input data to the

clusters [3]. The input data set used in the neural network represent patterns that have a

class and a position in space associated with them. The first stage is the unsupervised

learning mode that "blindly" processes the input set without knowing the class

membership labels. A natural set of clusters representing decisive regions in the pattern

space is formed which are defined by a spherical radius [9].

The second stage of the neural network is the supervised learning mode that uses

the class membership labels of the input data set to evaluate the resulting clusters

generated from the first stage of the algorithm [8]. Only the clusters which contain

patterns of the same class are placed into the final output subset. The remaining

heterogeneous clusters are repeatedly executed through the two-stage process, which

reduces the spherical radius in the unsupervised learning mode after each subsequent

execution, until a set of homogeneous clusters is formed.

8

The final output set of clusters contain patterns that belong to the same class [3].

The spherical radius for each cluster varies according to the number of times the patterns

were executed through the network. Each cluster is assigned a distinct, crisp class

according to the class of the patterns that it contains. The following sections describe the

steps used by the network in further detail.

1. Neural Network Input

The input information used by the original neural network to create clusters for

two dimensional patterns is the dimension, the total number of patterns, the pattern class,

and the pattern position in space [3]. These values are read from the input file

ANNIN.DAT which is shown in Section VII.

2. Cluster Generation

The information from ANNIN.DAT is fed into the two-stage neural network

algorithm until homogeneous clusters are formed with crisp classes. FORTRAN

programs implemented by the algorithm are TRAIN.FOR, UNSUPERFOR, and

SUPER.FOR [3]. The code and a brief description of the FORTRAN programs used by

the original neural network is given in Appendix A.

The first step that the neural network does is process the data from the input file

ANNIN.DAT through the program UNSUPERFOR Clusters are generated that are

dependent on the patterns position in space where all patterns are contained within a

radius RHO. All class membership information is disregarded in this step [3].

The second step that the neural network does is process the data from the program

UNSUPERFOR through the program SUPERFOR This information includes the

9

dimension, the number of patterns, the normalized pattern position, the class membership

of the pattern, and the cluster number that the pattern belongs to.

The supervised stage merges clusters of the same class that are close together and

tightens the radius of the clusters so that RHO is the minimum possible distance.

Clusters that are determined to be homogeneous are placed into the output subset and the

remaining clusters are fed back to UNSUPER.FOR. The clusters that are fed back have

their value of RHO decremented before they are reprocessed [3]. The steps performed

along with their corresponding FORTRAN programs are shown in Figure 1.

fl1e: train.for

file : annin.dat

file: unsuper.for Genera.te clusters

a.cco:rd:ir!g to position
(ra.dius=RHO)

file: super.for

fl1e: super.for

Figure 1: Original Neural Network Algorithm

3. Neural Network Output

The clusters generated through the training procedure are output to a file that

gives the number of clusters, the dimension, the cluster number, the radius, the number of

patterns in the cluster, the cluster class, and the cluster center [3]. These values are given

in the output file ANNOUT.OUT which is shown in Section VII.

10

B. REVISED NEURAL NETWORK

The research revised the clustering neural network algorithm by affecting how it

partitions up the pattern space into clusters. Originally, the generation of the final set of

clusters was based on class membership of the patterns and whether the clusters were

homogeneous. The altered neural network partitions up the pattern space into equal

clusters with a radius ofRHO and assigns a membership function to each pattern that

describes it's cluster membership.

The final set of clusters uses an unsupervised mode because they are independent

of the class labels of the contained patterns. The clusters have the same radius, but can

contain different classes of patterns.

1. Neural Network Input

The information used by the revised neural network is identical to that used by the

original neural network. The information includes the dimension of the pattern, the total

number of patterns, the pattern class, and the pattern position in space [3]. These values

can be seen by referring to the input file ANNIN.DAT in Section VIT.

2. Cluster Generation

The information from ANNIN.DAT is fed into the revised neural network

algorithm using the FORTRAN programs TRAIN.FOR, UNSUPER.FOR, and

SUPER.FOR. The code and a brief description of the FORTRAN programs used by the

revised neural network is given in Appendix B.

The first step that the neural network does is process the data from the input file

ANNIN.DAT through the program UNSUPER.FOR [3]. This step is identical to the first

11

step performed by the original neural network. Clusters are generated that are dependent

on the patterns position in space where all patterns are contained within a radius RHO.

All class membership information is disregarded in this step.

The second step that the neural network does is process the data from

UNSUPERFOR through the program SUPERFOR This information includes the

dimension, the number of patterns, the normalized pattern, the class membership of the

pattern, and the cluster number that the pattern belongs to. SUPERFOR places the data

from UNSUPERFOR into the output file CLUSTERDAT. The steps performed along

with their corresponding FORTRAN programs are shown in Figure 2.

me: train.for

fIle: annin.dat

file: 'IJl1SUper.for Generate clusters

according: to position
(ra.dius=RHO)

fJle: super.for

file: fuzzymf.m

Figure 2: Revised Neural Network Algorithm

12

3. Neural Network Output

The clusters generated through the training procedure are outputted to a file that

gives the number of clusters, the dimension, the cluster radius, and the cluster center.

These values are given in the output file CLUSTER.DAT which is shown in Section VII.

4. Fuzzy Membership Function

The information from CLUSTER.DAT is used by the MATLAB file

FUZZYMF.M to create the fuzzy membership function matrix, U [7]. The process used to

create the matrix follows the fuzzy c-means algorithm for membership function
generation.

IV. JUSTIFICATION

The reason for incorporating fuzzy logic in the neural network's classification

system was to model events that do not have an absolute value. By using fuzzy theory,

the degree to which an event occurs can be measured. Clustering uses information to

organize data into categories so that patterns within a cluster are more similar to each

other than to patterns of another cluster [9]. Fuzzy clustering allows a pattern to belong

to several clusters with varying degrees depending on the membership function [2].

By using the fuzzy logic classifier in a mode that uses unsupervised learning, the

class membership of the patterns can be disregarded and natural clusters can be generated.

The fuzziness that is used in the clustering classification is important when modeling real

events that can have many dynamic parameters involved with them. Data that holds traits

to more than one class can be effectively represented.

13

VI. SUMMARY OF REVISIONS

The most drastic change made to the original neural network was removing the

supervised mode used for cluster generation. Originally, the supervised stage was used

for cluster verification and merging and tightening of the radius that describes the clusters

[3]. Alternatively, there is no supervised stage, SUPERFOR simply places the data from

the unsupervised stage into the output subset without checking for overlapping or

homogeneous clusters.

The lack of supervision affects the output file that describes the cluster's

properties. The number and center of clusters will not remain the same because of the

different processes used to generate them and the characteristics of its cluster radius are

also affected. Originally, the radius varied depending on how many times the data was

looped through the two stages. The revised process assigns each cluster the same radius

value and executes the process once.

The original two-stage unsupervised and supervised approach assigns each data

point an absolute class and uses these classes to group the data points together. However,

the revised unsupervised approach creates a membership function matrix that describes

the degree ofmembership that a data point has to a cluster. Therefore, a data point can

belong to more than one cluster.

14

VII. STUDIES AND RESULTS

A. Input Patterns

The information given in the input file ANNIN.DAT includes the dimension of

the pattern, the total number of patterns, the pattern class, and the pattern position in

space [3]. The input file and a plot of the normalized patterns is shown below.

Input file: ANNIN.DAT

Line Variable Record Format File
1 N No. of dimensions Integer*4 2
2 P No. of patterns Integer*4 11
3 Xl Data point 1 Real*8 1.0
4 Y1 Data point 1 Real*8 1.0
5 C1 Class membership Character*25 a

6 X2 Data point 2 Real*8 2.0
7 Y2 Data point 2 Real*8 3.0
8 C2 Class membership Character*25 b
9 X3 Data point 3 Real*8 2.0
10 Y3 Data point 3 Real*8 7.0
11 C3 Class membership Character*25 a

12 X4 Data point 4 Real*8 1.0
13 Y4 Data point 4 Real*8 7.0
14 C4 Class membership Character*25 b
15 X5 Data point 5 Real*8 1.5
16 Y5 Data point 5 Real*8 9.0
17 C5 Class membership Character*25 b
18 X6 Data point 6 Real*8 2.0

19 Y6 Data point 6 Real*8 10.0
20 C6 Class membership Character*25 c

21 X7 Data point 7 Real*8 1.0

22 Y7 Data point 7 Real*8 10.0

23 C7 Class membership Character*25 a

24 X8 Data point 8 Real*8 7.0

25 Y8 Data point 8 Real*8 2.0
26 C8 Class membership Character*25 b

27 X9 Data point 9 Real*8 6.5
28 Y9 Data point 9 Real*8 4.0

29 C9 Class membership Character*25 c

30 X10 Data point 10 Real*8 7.5

31 YlO Data point 10 Real*8 4.0

32 C10 Class membership Character*25 c

33 Xll Data point 11 Real*8 7.0

34 Yll Data point 11 Real*8 8.0

35 Cll Class membership Character*25 a

15

1)1�;;')k*)'j(
I , I

)r(

0.9 -

.j,(
0.8 -

1¥

0.7 - * -

>- 0.6 -

)(
0.5 -

*"

0.4 - -

0.3 -

7(

0.2
I I , I

0 0.2 0.4 0.6 0.8 1
X

Figure 3: Normalized Input Patterns

B. Original Neural Network Clusters

The clusters generated through the training procedure for the original neural

network are output to a file that gives the number of clusters, the dimension, the cluster

number, the radius, the number of patterns in the cluster, the cluster class, and the cluster

center to the output file ANNOUT.OUT which is shown below [3].

Output file: ANNOUT.OUT

Variable File
number of clusters

8
size of centroid vector

2
CLUS# RHO NUM MEMBER CLASS

1 0.20095157473000 2 c

0.867418335624768
0.497579572552930

CNUM

N

CLUS1, RH01, NUM1, CLASS1
Xl
Y1

16

CLUS2, RH02, NUM2, CLASS2
X2
Y2

CLUS3, RH03, NUM3, CLASS3
X3
Y3

CLUS4, RH04, NUM4, CLASS4
X4
Y4

CLUS5, RH05, NUM5, CLASS5
X5
Y5

CLUS6, RH06, NUM6, CLASS6
X6
Y6
CLUS7, RH07, NUM7, CLASS7
X7
Y7

CLUS8, RH08, NUM8, CLASS8
X8
Y8

2 0.20000000000000 1 b
0.961523947640823
0.274721127897378
3 0.20000000000000 1 b
0.554700196225229
0.832050294337844
4 0.12642232844643 2 a

0.683184085542186
0.730246194965703
5 0.20000000000000 1 a

0.274721127897378
0.961523947640823
6 0.20013515340158 2 b
0.152910171771333
0.988171708746655
7 0.20000000000000 1 c

0.196116135138184
0.980580675690920
8 0.20000000000000 1 a

9.950371902099892E-002
0.995037190209989

C. Revised Neural Network Clusters

The clusters generated through the training procedure of the revised neural

network are output to a file CLUSTERDAT that gives the number of clusters, the

dimension, the cluster radius, and the cluster center. The output file and the cluster

centers plotted against the normalized patterns are shown below.

Output file: CLUSTER.DAT

Variable Record File
CNUM No. of clusters 2

RHO Cluster radius 0.719540875323049
Xl Cluster 1 center 0.256402173381587
Y1 Cluster 1 center 0.966570186528220
X2 Cluster 2 center 0.830732249398834
Y2 Cluster 2 center 0.556672192415566

17

I I I

0.9 -

-

0.8 -

0.7 -

>- 0.6"
+

0.5"

0.4 - -

0.3"" -

0.2�------�1�------�1--------�1-----------'------�
o 0.2 0.4 0.6 0.8 1

x

Figure 4: Cluster Centers in Normalized Pattern Space

D. Revised Neural Network Membership Function Matrix

The membership matrix formed using fuzzy logic describes how much a point

belongs to a cluster according to its degree ofmembership. These values can be seen by

referring to the membership function matrix below. The membership function plotted in

the normalized pattern space is also shown for both clusters in Figure 5 and Figure 6.

The two rows of the matrix represent the two clusters that were generated from

the revised neural network. The eleven columns of the matrix represent the eleven input

patterns that were used to create the clusters. The element that is in the ith column of the

jth row is the degree ofmembership that the ith pattern has for the jth cluster. For

18

example, J.ill=O.1229 and J.i12=O.8771 means that pattern 1 holds 12.29% membership for

cluster 1 and 87.71% membership for cluster 2.

Membership FunctionMatrix

u=

0.1229 0.5867 0.9992 0.9797 0.9861 0.9935 0.9662 0.0901 0.0027 0.0156 0.2470
0.8771 0.4133 0.0008 0.0203 0.0139 0.0065 0.0338 0.9099 0.9973 0.9844 0.7530

1

1

LL

�O.5

o
1

y o 0 x

Figure 5: Membership Function Plot for Cluster 1

19

1

1

u.

�O.5

o
1

y o 0 x

Figure 6: Membership Function Plot for Cluster 2

VIII. SUMMARY AND CONCLUSION

Fuzzy classification is an important tool that describes events which lie between

absolute values. The characteristics of real life data sets can be represented with fuzzy

logic and processed accordingly using neural networks in order to model actual events. A

system that incorporates both fuzzy logic and neural networks is capable of processing

commonsense knowledge with the capacity to expand its base of information.

The goal of this research was to implement a fuzzy logic classifier within a

clustering neural network. This was accomplished by using the classifier in the

unsupervised stage of the network. The major steps involved in accomplishing this

20

project included designing the fuzzy logic classifier, creating the membership function

algorithm, and altering the neural network so that only the unsupervised stage generates

cluster. This area shows great promise in the development of predictive and estimative

systems that model real systems dealing with inexact parameters in inexact environments.

Further research will investigate ways to implement fuzzy logic classification in the

supervised stage of the neural network.

21

REFERENCES

1. James C. Bezdek, "A Physical Interpretation of Fuzzy ISODATA", IEEE

Transactions on Systems, Man, and Cybernetics, May 1976, pp. 387-389.

2. James C. Bezdek, "A Convergence Theorem for the Fuzzy ISODATA Clustering

Algorithms", IEEE Transactions on Pattern Analysis andMachine Intelligence, Vol.

PAMI-2, No.1, January 1988, pp. 1-8.

3. Karen L. Butler, Arcing Distribution Fault Diagnosis System Users Manual (Version

1.0), Center for Energy Systems and Controls, Howard University, May 1994.

4. Didier Dubois and Henri Prade, Fuzzy Sets and Systems: Theory andApplication,

Academic Press, Inc., 1975.

5. Richard P. Lippmann, "An Introduction to Computing with Neural Nets", IEEE

Acoustics, Speech, and Signal Processing Magazine, April 1987, pp. 4-22.

6. Sushmita Mitra and Sankar K. Pal, "Logical Operation Based Fuzzy MLP for

Classification and Rule Generation", Neural Networks, Vol. 7, No.2, pp. 353-373.

7. F. Martin McNeill and Ellen Thro, Fuzzy Logic A Practical Approach, Academic

Press, Inc., 1994.

8. Patrick K. Simpson, "Fuzzy Min-Max Neural Networks-Part 1: Classification", IEEE

Transactions on Neural Networks, Vol. 3, No.5, September 1992, pp. 776-786.9.

9. Patrick K. Simpson, "Fuzzy Min-Max Neural Networks-Part 2: Clustering", IEEE

Transactions on Fuzzy Systems, Vol. 1, No.1, February 1993, pp. 32-45.

10. Lofti A. Zadeh, "Fuzzy Logic", IEEE ComputerMagazine, April 1988, pp. 83-93.

22

Appendix A: Original Neural Network FORTRAN Programs

A.I TRAIN.COM

TRAIN.COM is a command file that compiles and links the FORTRAN programs

TRAIN.FOR, UNSUPER.FOR, and SUPER.FOR for training the neural network.

$!This command routine calls the files to train the fault diagnosis sytem
$fortran unsuper.for
$fortran super.for
$fortran train.for
$link train,super,unsuper
$del * .obj;*
$!run train

A.2 TRAIN.FOR

TRAIN.FOR is a FORTRAN program that trains the neural network using the input

file ANNIN.DAT and the FORTRAN programs UNSUPER.FOR and SUPER.FOR.

PROGRAM TRAIN

** THIS PROGRAM TRAINS THE CLUSTERING ANN
** (1) EACH TRAINING PATTERN AND ITS RESPECTIVE MEMBERSHIP CLASS
** IS READ
** (2) THE ANN IS TRAINED WITH THE DATA
** (3) THE GENERATED CLUSTERS AREWRITTEN TO AN OUTPUT FILE
**

IMPLICIT NONE
INCLUDE 'PARAMS.INC'

INTEGER*4 I,J,K,M !Indexes for DO loops
INTEGER*4 L,R !Indexes
INTEGER*4 FIN_CNUM !Number of Final Clusters
INTEGER*4 P !Number of Patterns
INTEGER*4 N !Size of Pattern Vector

INTEGER*4 ICNTR,CNTR,PTRAIN

INTEGER*4 NUM_PATTS !Number of training patterns

STRUCTURE IXPATTERNI

23

REAL* 8 XP(NMAX) !Normalized Input Pattern:
INTEGER*4 XELEM !# of Cluster pattern belongs to
CHARACTER*25 CLASS !The class membership of the pattern
END STRUCTURE

STRUCTURE !FIN_CLUSTER!
REAL*8 B(NMAX) !Centroid Vector
REAL*8 CRHO !Square of Sphere Radius
INTEGER*4 NUM !Number of Patterns in the Cluster
CHARACTER*25 CLASS !The class membership of the pattern
REAL*8 PROB !Probability of cluster
END STRUCTURE

RECORD /xpATIERNI X(PP),XI(PP)
RECORD /xpATIERNI FINAL_X
RECORD !FIN_CLUSTER! FINAL_C

COMMON IBLKS!FINAL_X(PP)
COMMON IBLK6!FINAL_C(PP)
COMMON IBLK7!FIN_CNUM

OPEN(UNIT=5,STATUS='OLD',ERR=900,FILE='ANNIN.DAT')
OPEN(UNIT=6,STATUS='NEW' ,ERR=900,FILE='ANNOUT.OUT')

300 FORMAT(l4,2X,F18.14,3X,14,3X,A25)
360 FORMAT('CLUS#',4X,'RHO',13X,'NUM',4X,'MEMBER CLASS')

100 FORMAT(A5)
150 FORMAT(lX,F17 .14, 1X,F17 .14,1X,F17 .14, 1X,F17 .14)
160 FORMAT(lX,F17.14,2X,F17.14)
200 FORMAT(A5)
250 FORMAT(2X,F13.9,5X,F13.9)
350 FORMAT(2X,F15.9,2X,F15.9,2X,F15.9,2X,F15.9)
355 FORMAT(Tl,A25)

rEAD (5,*) N
rEAD (5,*) NUM_PAITS

READ(5,*) !Skip blank line

DO J = 1,NUM_PAITS

! Read pattern
DOM= 1,N
READ(5,*) XI(J).xP(M)

END DO !(K= 1 ,N)
! Read Membership class

READ(5,355) XI(J).CLASS

END DO !(J=l,num_patts)

PTRAIN = NUM_PAITS
DO I = 1,PTRAIN

24

DOJ= I,N
X(I).xP(J) = XI(I).xP(J)
END DO

X(I).CLASS = XI(I).CLASS
END DO

CALL SUPERVISED(N,PTRAIN,X)

write(6, *) 'number of clusters'
write(6,*) fin_cnum

write(6, *) 'size of centroid vector'

write(6,*) n

WRITE(6,360)
DO I = I,FIN_CNUM
WRlTE(6,300) I,FINAL_C(I).CRHO,FINAL_C(I).NUM,FINAL_CCI).CLASS

doj = Ln
write(6,*) final_c(i).bU)

end do
END DO !(I=I,FIN_CNUM)
WRlTE(6,*)' ,

GO TO 999 !End of Program

**

***** ERROR PROCESSING **********

***** **********

**

!800 WRITE(6, *) 'ERROR OPENING THE INPUT FILE'

WRITE(6,*) 'CHECK FILE AND TRY AGAIN'
GO TO 999 !Exit Program

900 WRlTE(6,*) 'ERROR OPENING THE OUTPUT FILE'

WRlTE(6,*) 'CHECK FILE AND TRY AGAIN'
GO TO 999 !Exit Program

999 END ! (* program *)

A.3 PARAMS.INC

PARAMS.INC is an include file which sets limits on the arrays that are generated

by the SUPER.FOR and UNSUPER.FOR programs.

! Maximum number of cycles allocated
INTEGER*4 CP
PARAMETER (CP=40)

parameter (cp= 1)

25

! Maximum number of points allocated for the input vector
! before feature extraction

INTEGER*4 NP
PARAMETER (NP=60oo)

PARAMETER (NP=l) !ISAP
! Maximum number of channels allocated

INTEGER*4 LP
PARAMETER (LP=4)
PARAMETER (LP=l) !ISAP

! Maximum number of points allocated for a vector
! after feature extraction

INTEGER*4 NMAX
PARAMETER (NMAX=15OO)

Parameter (nmax=160) !reg ANN
parameter (nmax=240) !Damage Diagnosis--Scenerio 1

parameter (nmax=Z)

! Maximum number of final clusters
INTEGER*4 FCMAX
PARAMETER (FCMAX = 80) !Scenario 1

parameter (fcmax = 1(0) !Scenario 2

! Maximum number of reflection coefficients to be computed
INTEGER*4 MP
PARAMETER (MP=8)
PARAMETER (MP=l) !ISAP

! Maximum number of patterns allocated
INTEGER*4 PP

PARAMETER (PP=5000)
PARAMETER (PP=80) !Scenario 1

parameter (pp=100)

INTEGER*4
PARAMETER

KMAX

(KMAX=20)

!5/24/95 --- Not needed when not running with feature extraction module
c COMPLEX*16 FPhaN(NP)
! COMPLEX* 16 FPhaA(NP)

COMPLEX*16 FPhaB(NP)
COMPLEX*16 FPhaC(NP)

c COMMON
! COMMON

COMMON
COMMON

IBLK11IFPhaN
IBLK12IFPhaA
IBLK13IFPhaB
IBLK14IFPhaC

A.2 UNSUPER.FOR

26

UNSUPER.FOR is a FORTRAN program that creates a set of clusters using

unsupervised learning so that a group of patterns lie within a radius RHO.

SUBROUTINE UNSUPERVISED

**

**

**

**

**

**

THIS SUBROUTINE IMPLEMENTS AN UNSUPERVISED Learning ALGORITHM
The Algorithm is a Clustering type
We are given a set of P patterns, X
We want to find a family of clusters (hyper)spherical clusters, Ck
so that all patterns in a cluster are within some sphere radius,Rho

IMPLICIT NONE
INCLUDE 'PARAMS.INC'

INTEGER*4 I,J,K,M
INTEGER*4 R
INTEGER*4 CNUM
INTEGER*4 CLUS
INTEGER*4 PAIT !
INTEGER*4 CHAN_CTR !Counts num of passes wi no change in stab run

LOGICAL*2 DONE !Two passes through stab run wi no changes
LOGICAL*2 FINISHED !Loop Control
INTEGER*4 P !Number of Patterns
INTEGER*4 N !Size of Pattern Vector
REAL*8 RHO !Sphere Radius
REAL*8 RHOTWO !Square ofRHO
REAL* 8 RAD !Distance bet pattern and cluster centroid
REAL*8 INTSUM !Intermediate Sum Term
REAL*8 BP(NMAX) !Centroid of Data Set
REAL* 8 DT(PP) !Distance between each pattern & the center

REAL*8 D(FCMAX) !Distance between each pattern and all clusters
REAL*8 DIS,MIN
LOGICAL FIRST !Signifies first iteration through program

integer*4 epoch !counts # of times patts are presented to ANN
INTEGER*4 II,JJ
LOGICAL NEAR
LOGICAL BAD_SET !Signifies patts couldn't be placed in 1 cluster
REAL*8 JTOTAL,JT(FCMAX) !Sum of all Jk ; Jk
REAL*8 OLD !Intermediate variable

!Indexes for DO loops
!lndexes

!Counter of clusters

STRUCTURE IXPATTERNI
REAL*8 XP(NMAX) !Normalized Input Pattern: index reps vector pos'n
INTEGER*4 XELEM !# of Cluster pattern belongs to
CHARACTER*25 CLASS !The class membership of the pattern
END STRUCTURE

RECORD IXPATTERN/X

STRUCTUREICLUSTER!
REAL*8 B(NMAX) !Centroid Vector
REAL*8 CRHO !Sphere Radius
INTEGER*4 NUM !Number of Patterns in the Cluster

27

INTEGER*4 PAIT_NUM (PP) !Identifies patterns that belong to Cluster
END STRUCTURE

RECORD ICLUSTER! C

COMMON IBLK11X(PP)
COMMON IBLK2/C(PP)

common Iblk3/rho,rhotwo,n,p,cnum
!3119/95 COMMON IBLK3IFIRST,RHO,RHOTWO,N,P,CNUM,BAD_SET

common Iblk4/frrst,bad_set

!2/3/95

open(unit= 11 ,file='jtotal.out' .status='new')
open(unit=12,file='distance.out' .starus='new')

!2/3/95

**** BEGIN INITIALIZATION PHASE *******************

**** EXECUTED ONE TIME! *******************

Find the center of the entire data set

001= 1,N
INTSUM=O.O
DO 1 = 1,P
INTSUM = INTSUM + X(l).xP(l)
END DO !(I)
BP(l) = INTSUMI(FLOAT(P))
END DO !(J)
CALL NORM(N,BP) !NORMALIZE BP

Compute distances between each pattern and Bj
001= 1,P
CALL DISTANCE(DIS,X(l).xP,BP,N)
DT(l) = DIS

END DO
Reorder the patterns in increasing order based on distance
CALL SORT(P,DT,N,x)
Select the RHO as the value of the largest distance to ensure

that all patterns fall in one cluster

IF ((FIRST) .AND. (CNUM .GT. 1)) THEN
RHOTWO = RHOTWO+(0.05*rhotwo)

if (rhotwo .gt. 1.0000) then
! patterns are more than rho=1.0 distance away from the center

bad_set = .true.

go to 1000
end if

RHO = SQRT(RHOTWO)
ELSEIF (FIRST) THEN

rhotwo = 1.05*dt(p) !3/10
rho = sqrt(rhotwo) !3/19/95

if (rhotwo .gt. 1.0000) then
if (rho .gt. 1.00000) then
rhotwo = 1.0

28

rho = 1.0 !3/19/95
end if

!3/19/95 RHO = SQRT(RHOTWO)
END IF

!3/19/95 want to see what the values of the distances are

if (first) then

write(1l, *) 'dt(i)'
do i = 1, P
write(1l,*) dt(i)

end do

write(ll, *) 'end'
end if

!3/19/95

*

Form Cluster 1 with pattern #1
DOI= 1,N
C(l).B(I) = X(l).:xP(I)
END DO

C(1).CRHO = RHO

C(l).NUM= 1

C(l).PATI_NUM(l) = 1

X(1).:xELEM = 1
For remaining patterns,
Check to see if pattern belongs to existing cluster or if a
new cluster should be created
CNUM= 1

DOJ=2,P
FINISHED = .FALSE.
M= 1
DO WHILE (.NOT. FINISHED)

Compute distance between pattern and center of clusterM
CALL DISTANCE(DIS,X(J).:xP,C(M).B,N)
RAD=DIS
IF (RAD .LE. RHOTWO) THEN

If distance is <= RHO, pattern in placed in cluster M
DO K= 1,N
C(M).B(K) = (C(M).B(K) + (1.0/(C(M).NUM+1.0))*

(X(J).xP(K)- C(M).B(K)))
END DO !(K)
CALL NORM(N,C(M).B)
C(M).NUM = C(M).NUM + 1

C(M).PATI_NUM(C(M).NUM) = J

X(J).xELEM =M

FINISHED = .TRUE.
ELSE

If distance is > RHO
M=M+1

Have all clusters been checked
Else check next cluster

IF (M .GT. CNUM) THEN !All clusters checked?
CNUM = CNUM + 1 !Form new cluster
DO 1= 1,N !Update cluster params
C(CNUM).B(I) :::: X(J).xP(I)

END DO
CALL NORM(N,c(CNUM).B)
C(CNUM).NUM = 1

C(CNUM).PATI_NUM(1) ::: J

C(CNUM).CRHO = RHO

X(J).:xELEM = CNUM !lJpdate pattern ptr to cluster
FINISHED =

.TRUE.
END IF !(M>=CNUM)

END IF !(RAD<RHOTWO)
END DO !(DOWHILE)
END DO !(J)

!2/3/95

write(ll,*) 'first = ',fIrst
write(11,*) 'initialization phase'

write(ll,*) , ,

!2/3/95

!3/27/95
!Calculate the original value of Jt(l) for each cluster to be minimized

if ((rho .It. 0.430) .and. (rho .gt. 0.410)) then
write(11, *) 'JT(l)'
write(ll, *)

, ,

DOl= 1,CNUM
IT(I) = 0.0
DO J = 1,C(I).NUM
CALL DISTANCE(DIS,X(C(I).PATI_NUM(J)).:xP,C(I).B,N)
IT(I) = JT(I) + DIS

END DO

write(11,*) JT(I)
END DO

write(11, *)
, ,

end if
!3/27/95

**

END OF INITIALIZATION PHASE

**

**

BEGIN STABILIZATION PHASE ****************

**

write(11,*) 'stabilization phase'
!3/27/95

!Compute ITotal for intital partition
ITOTAL=O.O
DOl= 1,CNUM
DO J = 1,C(I).NUM
CALL DISTANCE(DIS,X(C(I).PATI_NUM(J)).:xP,C(I).B,N)
ITOTAL = ITOTAL + DIS
END DO

29

30

END DO

write(ll,*) 'JTOTAL ',JTOTAL
!3/27/95

!Initialize Counter that records the num of patterns that changed clusters
CHAN_CTR = 0 ! # of changes
DONE = .FALSE.

IF (CNUM .NE. 1) THEN !ifmore than one cluster

epoch = 0 11-25-94
DO WHILE (.NOT. DONE)

epoch = epoch + 1 11-25-94
! Calc shortest distance between each pattern and each cluster's centroid

DO K= I,P

DOM= I,CNUM
CALL DISTANCE(DIS,X(K).xP,C(M).B,N)
D(M) = DIS

END DO
! Sort the distances in increasing order, the min distance is in MIN
! The num of the cluster whose centroid rep the min distance is in PAIT

CALLMIN_DIS(CNUM,D,MIN,PAIT)

! If the min_dis is the same for the 1st and 2nd nearest cluster, and
! the pattern already resides in one of these clusters. Leave it
! in the cluster in which it resides

NEAR = .FALSE.
DO II = I,CNUM

IF «ABS(MIN-D(II» .LT. le-15) .AND.
(II .NE. PAIT» THEN

NEAR = .TRUE.
JJ=II

*

END IF
END DO
IF (NEAR) THEN

IF (JJ .EQ. X(K).xELEM) THEN
PAIT = X(K).xELEM

END IF

END IF

CLUS = X(K).xELEM !old cluster number
IF (MIN .LE. RHOTWO) THEN

IF (CLUS .NE. PAIT) THEN
Remove the pattern from old cluster, CLUS
Move the pattern new cluster, PAIT
Adapt the params for CLUS & PAIT

*

DO R = I,N !add pattern to other cluster

C(PAIT).B(R) = (C(PAIT).B(R) +
(1.0/(C(PAIT).NUM+1.0))*(X(K).xP(R)- C(PATT).B(R»)
END DO !(R)
CALL NORM(N,C(PAIT).B)
C(PAIT).NUM = C(PAIT).NUM + 1

C(PAIT).PAIT_NUM(C(PATT).NUM) = K

31

X(K).:xELEM == PATI

!Before deleting pattern from cluster, check if last pattern in cluster
IF ((C(CLUS).NUM-l) .EQ. 0) THEN !last patten in CLUS

!delete cluster, CLUS
!switch last cluster, C(CNUM), wI cluster being deleted

IF (CLUS .NE. CNUM) THEN !switch clusters
DOR= 1,N
C(CLUS).B(R) = C(CNUM).B(R)
END DO !(R=l,N)
C(CLUS).CRHO = C(CNUM).CRHO
C(CLUS).NUM = C(CNUM).NUM
DO R = 1,C(CLUS).NUM !switch pattern nums & clus ptr
X(C(CNUM).PATI_NUM(R».:xELEM = CLUS

C(CLUS).PATI_NUM(R) = C(CNUM).PATI_NUM(R)
END DO !(R=l,C(CLUS).NUM)

END IF !(CLUS .NE. CNUM) -- else do nothing
CNUM = CNUM - 1

!Remove pattern from cluster
ELSE !(not last pattern in cluster)
R=l
DOWHILE (C(CLUS).PATI_NUM(R) .NE. K)
R=R+1
END DO

!pattern not in last position, switch last pattern into place of deleted pattern
IF (R .NE. C(CLUS).NUM) THEN !switch pattern
C(CLUS).PATI_NUM(R) = C(CLUS).PAIT_NUM(C(CLUS).NUM)
END IF
DO R = 1,N !adjust centroid
C(CLUS).B(R) = (C(CLUS).B(R) -

* (1.0/(C(CLUS).NUM-1.0))*(X(K).xP(R)- C(CLUS).B(R»)
END DO
CALL NORM(N,C(CLUS).B)
C(CLUS).NUM = C(CLUS).NUM - 1

END IF !(c(clus).num-l = 0)

END IF !(clus .ne. patt)

ELSE !remove pattern from old cluster and form a new cluster

!Before deleting pattern from cluster,CLUS, check if last pattern in cluster
IF ((C(CLUS).NUM-l) .EQ. 0) THEN !last patten in CLUS

!delete cluster, CLUS
!switch last cluster, C(CNUM), wI cluster being deleted

IF (CLUS .NE. CNUM) THEN !switch clusters
DO R= 1,N
C(CLUS).B(R) = C(CNUM).B(R)
END DO !(R=l,N)
C(CLUS).CRHO = C(CNUM).CRHO
C(CLUS).NUM = C(CNUM).NUM
DO R = 1,C(CLUS).NUM !switch pattern nums & clus ptr
X(C(CNUM).PATI_NUM(R».:xELEM = CLUS

C(CLUS).PATI_NUM(R) = C(CNUM).PATI_NUM(R)

32

END DO !(R=l,C(CLUS).NUM)
END IF !(CLUS .NE. CNUM) -- else do nothing
CNUM = CNUM - 1

!Remove pattern from cluster
ELSE !(not last pattern in cluster)
R=l
DO WHILE (C(CLUS).PATI_NUM(R) .NE. K)
R=R+1
END DO

!pattern not in last position, switch last pattern into place of deleted pattern
IF (R .NE. C(CLUS).NUM) THEN !switch patterns
C(CLUS).PATI_NUM(R) = C(CLUS).PATI_NUM(C(CLUS).NUM)
END IF
DO R = 1,N !adjust centroid
C(CLUS).B(R) = (C(CLUS).B(R) -

* (1.0/(C(CLUS).NUM-1.0))*(X(K).xP(R)- C(CLUS).B(R»)
END DO
CALL NORM(N,C(CLUS).B)
C(CLUS).NUM = C(CLUS).NUM - 1

END IF !(c(clus).num-1 = 0)

CNUM = CNUM + 1 !Form new cluster
DO R = 1,N !Update cluster params
C(CNUM).B(R) = X(K).xP(R)

END DO !(R)
CALL NORM(N,C(CNUM).B)
C(CNUM).NUM = 1

C(CNUM).PATI_NUM(1) = K
C(CNUM).CRHO = RHO

X(K).xELEM = CNUM !Update pattern ptr to cluster

END IF !(RK .NE. RHOTWO)

!3/27/95
!Calculate the value of Jt(I) for each cluster

if «rho .It. 0.430) .and. (rho .gt. 0.410» then
DOI= 1,CNUM
old = jt(i)
JT(I) = 0.0
DO J = 1,C(I).NUM
CALL DISTANCE(DIS,x(C(I).PATI_NUM(J».xP,C(I).B,N)
IT(I) = JT(I) + DIS
END DO
if (jt(i) .ne. old) then
write(ll,*) k,i,c(i).num,IT(I)

end if
END DO

write(ll, *)
I I

end if
!3/27/95

ENDDO !(K)

33

!Calculate the value of objective function to be minimized
OLD=JTOTAL
JTOTAL=O.O
DOI= 1,CNUM
DO J = 1,C(I).NUM
CALL DISTANCE(DIS,x(C(I).PATT_NUM(J))Jep,C(I).B,N)
JTOTAL = JTOTAL + DIS
END DO
END DO

! We want to continue looping if the JTotal value is changed
! If it doesn't change values for two consecutive iterations, stop
! If the new value of JTOTAL changed, init chan_ctr =0
! Else incr chan_ctr (no change)

IF (JTOTAL .EQ. OLD) THEN
CHAN_CTR = CHAN_CTR + 1
ELSE

CHAN_CTR= 1
END IF

IF (CHAN_CTR .GE. 2) THEN
DONE = .TRUE.
END IF

END DO !(DO WHILE)
END IF !(CNUM .NE. 1)

**

END STABILIZATION PHASE

**

!2/3/95
write(ll, *) 'after stabilization'

write(ll,*) 'epoch number ',epocH
write(ll,*)

, ,

1000 RETURN

END ! (* program *)

SUBROUTINE SORT(NN,RA,P,XX)

***** From "Numerical Recipes" (p. 231)
***** Sorts an array RA of length NN into ascending numerical order
***** using the Heapsort algorithm, while making the corresponding
***** rearrangement of the array xx. NN is input; RA is replaced on

***** output by its sorted rearrangement
***** The Heapsort Algorithm is a NN(1og2)NN process
**

IMPLICIT NONE
INCLUDE 'PARAMS.INC'

INTEGER*4 NN !Array Size

INTEGER*4 P !Vector Size

REAL*8 RA(PP)
REAL* 8 RRA

REAL*8 RRB(PP)
CHARACTER*25 RRC

INTEGER*4 L,IR,K,I,J

STRUCTURE IXPATIERNI
REAL*8 XP(NMAX) !Normalized Input Pattern: index reps vector pos'n
INTEGER*4 XELEM !# of the Cluster that pattern belongs to
CHARACTER*25 CLASS !Class membership label

END STRUCTURE

RECORD IXPATIERNI XX(PP)

L :: (NN/2) + 1

IR:: NN
***** The index L will be decremented from its initial value down to
***** 1 during the "hiring" (heap creation) phase. Once it reaches 1
***** the index IR will be decremented from its initial value down
***** to 1 during the "retirement-and-promotion" (heap selection)
****** phase.
10 CONTINUE

IF (L.GT.l) THEN !Still in hiring phase
L=L-l

RRA=RA(L)
DO K= 1,P
RRB(K) = XX(L).xP(K)
END DO
RRC = XX(L).CLASS
ELSE !In retirement-and-promotion phase
RRA = RA(IR) !Clear a space at end of array
DO K= 1,P
RRB(K) = XX(lR).xP(K)
END DO
RRC = XX(IR).CLASS
RA(lR) = RA(l) !Retire the top of the heap into it
DO K= 1,P
XX(IR).xP(K) = XX(l).xP(K)
END DO

XX(lR).CLASS = XX(l).CLASS
IR = IR -1 !Decrease the size of the corp.
IF (IR.EQ.l) THEN !Done with the last promotion
RA(l) = RRA !The lease competent worker of all!
DO K= 1,P
XX(l).xP(K) = RRB(K)
END DO

XX(l).CLASS = RRC
RETURN
END IF
END IF
1= L !Set up to sift down element RRA
J = L+L Ito its proper level

20 IF (J.LE.lR) THEN !"Do while J.LE.IR"
IF (J.LT.lR) THEN
IF (RA(J).LT.RA(J+l)) THEN !Compare to the better underling

34

35

J=J+l
END IF
END IF

IF (RRA.LT.RA(J)) THEN !Demote RRA

RA(I) = RA(J)
DO K= I,P
XX(I).xP(K) = XX(J).xP(K)
END DO

XX(I).CLASS = XX(J).CLASS
I=J
J=J+J

ELSE !This is RRA's level.
J = IR + 1 !Set J to terminate the sift-down
END IF

GO TO 20
END IF

RA(I) = RRA !Put RRA into its slot
DO K= I,P
XX(l).xP(K) = RRB(K)
END DO

XX(l).CLASS = RRC

GO TO 10
END

SUBROUTINE MIN_DIS(NUM,D,MIN,CLUST)
**

**** This subroutine finds the minimun distance between the
**** test pattern and each cluster. MIN represents the distance
**** and CLUST represents the number of the cluster that is the
**** minimum distance from the test pattern
**

IMPLICIT NONE
INCLUDE 'PARAMS.INC'

INTEGER*4
REAL* 8

I,NUM,CLUST
D(FCMAX),MIN

MIN = 100000000
DOI= I,NUM
IF (D(I) .LT. MIN) THEN
MIN = D(I)
CLUST=I

END IF
ENDDO !(I)
RETURN
END

SUBROUTINE DISTANCE(DIS,X,B,NN)
**

This subroutine computes the distance between
the test pattern and the center

IMPLICIT NONE
INCLUDE 'PARAMS.INC'

36

REAL* 8 X(NMAX)
REAL*8 B(NMAX)
REAL*8 DIS,INTSUM
INTEGER*4 J,NN

INTSUM=O.O
DOJ= 1,NN
INTSUM = INTSUM + ((X(J) - B(J))**2)
END DO
DIS=INTSUM
RETURN
END

SUBROUTINE NORM(N,x)

IMPLICIT NONE
INCLUDE 'PARAMS.INC'

INTEGER*4 N,J
REAL*8 XNORM,X(NMAX)

XNORM=O.O
DOJ= 1,N
XNORM = XNORM + (X(J)**2)
END DO !(J=l,N)
XNORM = DSQRT(XNORM)
IF (XNORM .EQ. 0.0) THEN
XNORM = 0.0000001
END IF
DOJ= 1,N
X(J) = X(J)/XNORM

END DO !(J=l,N)

RETURN
END

A.S SUPER.FOR

SUPER.FOR is a FORTRAN program that uses supervised learning to determine

if the clusters generated from UNSUPER.FOR are homogeneous.

SUBROUTINE SUPERVISED(NTRAIN,PTRAIN,XTRAIN)

** THIS PROGRAM IMPLEMENTS A SUPERVISED Learning ALGORITHM
** The Algorithm is a Clustering type
** We are given a set ofPTRAIN patterns, XTRAIN

37

** We want to find a family of clusters (hyper)spherical clusters, Ck
** so that all patterns in a cluster are within some sphere radius,Rho
** The supervised learning calls the unsupervised learning algorithm
** which generates a set of natural clusters. Then the supervised
** learning removes those clusters which are composed of homogeneous
** elements.
**

**

** This supervised algorithm has been enhanced to include:

(1) merging of clusters, (2) tightening of clusters,
(3) adding probabilities to clusters

**

**

**

**

**

**

**

**

**

**

**

**

Inputs:
NTRAIN -- Vector size of training patterns
PTRAIN -- Number of training patterns
XTRAIN -- PTRAIN Structures of Training patterns

Common:

Final_C -- contains the clusters generated by the routine
Fin_CNUM -- final number of clusters

IMPLICIT NONE
INCLUDE 'PARAMS.INC'

INTEGER*4 NTRAIN,PTRAIN
INTEGER*4 I,J,K,M !Indexes for DO loops
INTEGER*4 L,R !Indexes
INTEGER*4 CNUM !Number of ActiveClusters
INTEGER*4 FIN_CNUM !Number of Final Clusters
INTEGER*4 P !Number of Patterns
INTEGER*4 N !Size of Pattern Vector
REAL*8 RHO !Sphere Radius
REAL*8 RHOTWO !Square ofRHO
REAL*8 NORM !Normalized Value of Input Pattern
REAL*8 D(FCMAX) !Distance between each pattern & the center
REAL* 8 DECR !Interval by which RHO will be decremented
LOGICAL STOP !Parameter that stops DO loop
INTEGER*4 FX_CTR !Number of patterns in final set
INTEGER*4 P_CTR !Total Number of patterns
LOGICAL FIRST !Signifies first iteration through program
INTEGER*4 MATCH !Counts num of patterns in cluster that match
REAL*8 DIS !Distance between two vectors

REAL*8 NEW_DIS !Used to hold distance value until an update
INTEGER*4 NEW_CLUS !Used to hold value of cluster until an update
REAL*8 DEPSILON !Min distance between two cluster
REAL*8 PEPSILON

!Distance to be added to fartherest pattern in cluster to adjust radius
! PARAMETER (PEPSILON = 0.15)

parameter (pepsilon = 0.20)
LOGICAL BAD_SET !Signifies patts couldn't be place in 1 cluster

STRUCTURE IXPATTERNI
REAL* 8 XP(NMAX) !Normalized Input Pattern:
INTEGER*4 XELEM !# of Cluster pattern belongs to

38

CHARACTER*25 CLASS !The class membership of the pattern
END STRUCTURE

STRUCTURE /CLUSTER!
REAL*8 B(NMAX) !Centroid Vector
REAL*8 CRHO !Square of Sphere Radius
INTEGER*4 NUM !Number of Patterns in the Cluster
INTEGER*4 PATI_NUM(PP) !Identifies patterns that belong to Cluster
END STRUCTURE

STRUCTURE!TEMP_XPATIERN/
REAL*8 XP(NMAX) !Normalized Input Pattern: index reps vector pos'n
CHARACTER*25 CLASS !The class membership of the pattern
END STRUCTURE

STRUCTURE !FIN_CLUSTER!
REAL*8 B(NMAX) !Centroid Vector
REAL*8 CRHO !Square of Sphere Radius
INTEGER*4 NUM !Number of Patterns in the Cluster
CHARACTER*25 CLASS !The class membership of the pattern
REAL*8 PROB !Probability of this cluster
END STRUCTURE

RECORD IXPATIERN/ X,XTRAIN(PP)
RECORD /CLUSTER! C
RECORD /xpATIERN/ FINAL_X
RECORD !FIN_CLUSTER! FINAL_C
RECORD !TEMP_XPATIERN!TEMP(PP)

COMMON IBLKIIX(PP)
COMMON IBLK2/C(PP)

!3/19/95 COMMON IBLK3IFIRST,RHO,RHOTWO,N,P,CNUM,BAD_SET
common Ihlk3/rho,rhotwo,n,p,cnum
common Ihlk4/frrst,bad_set

COMMON IBLKS!FINAL_X(PP)
COMMON IBLK6!FINAL_C(PP)
COMMON IBLK7IFIN_CNUM

C OPEN(UNIT=5,STATUS='OLD',ERR= 1 (0)
c OPEN(UNIT=6,STATUS='NEW',ERR=200,)

305 FORMAT(I5)
310 FORMAT(F6.4)
315 FORMAT(10F7.4)
316 FORMAT(1OF7.3)
350 FORMAT(A25)
351 FORMAT(2X,A25)
205 FORMATC' VECTOR SIZE:',3X,I5,1' NUMBER OF PATIERNS:',3X,I51)
210 FORMATC' NUMBER OF PATIERNS IN CLUSTER:',3X,I51)
215 FORMAT(' CLUSTER NUMBER:',3X,I51)
220 FORMAT(lOFlO.6)
230 FORMAT(' CLASS MEMBERSHIP OF CLUSTER:',3X,"",A25,""jl)
240 FORMAT(' RHO OF CLUSTER:',3X,F8.61)

39

P_CTR = PTRAIN
P=PTRAIN
N=NTRAIN
DO 1= 1,P
DOJ= 1,N
X(I).xP(J) = XTRAIN(I).xP(J)
END DO

X(I).CLASS = XTRAIN(I).CLASS
END DO

Normalize each pattern, using IIXiII = 1
DOJ= 1,P
NORM =0
DOK= 1,N
NORM = NORM + (X(J).xP(K)**2)
END DO !(K)
NORM = SQRT(NORM)
IF (NORM .EQ. 0.0) THEN
NORM = .0000001
END IF
DOK= 1,N
X(J).xP(K) = (X(J).xP(K)/NORM)
END DO !(K)
END DO! (J)

!***
!**** Set up One Cluster that Contains all Patterns ****

!**** ***

!***
FIRST = .TRUE.

BAD_SET = .FALSE.
CNUM=O
CALL UNSUPERVISED

!Check to see if there is more than one cluster
DO WHILE (CNUM .GT. 1)
CALL UNSUPERVISED

IF (BAD_SET) THEN
rhotwo = 1.0 + (1.0175.0)
cnum = 1

END IF
END DO !(DO WHILE) !Set up interval to decrement
DECR = RHOTW0I75.0
RHOTWO = RHOTWO - DECR
RHO = SQRT(RHOTWO)

!Initialize Main Loop Variables
FIN_CNUM=O
FX_CTR=O
STOP = .FALSE.
FIRST = .FALSE.

40

Main Loop of Program

DO WHILE «RHO .GT. 0.0) .AND. (.NOT. STOP»
CALL UNSUPERVISED ! Check each Cluster

IF «CNUM .NE. 1) .OR.
* «CNUM .EQ. 1) .AND. (FX_CTR .GT. 0))) THEN

DOJ= 1,CNUM

IF (C(J).NUM .EQ. 1) THEN leone pattern in cluster)
FIN_CNUM = FIN_CNUM + 1 !insert cluster in final set

FINAL_C(FIN_CNUM).CRHO = C(J).CRHO
FINAL_C(FIN_CNUM).NUM = 1
DOM= 1,N
FINAL_C(FIN_CNUM).B(M) = C(J).B(M)
END DO !(M)
FINAL_C(FIN_CNUM).CLASS = X(C(J).PATT_NUM(l».CLASS

! Insert pattern in final set
FX_CTR = FX_CTR + 1
DOL= 1,N
FINAL_X(FX_CTR).xP(L) = X(C(J).PATT_NUM(l».xP(L)
END DO

FINAL_X(FX_CTR).xELEM = FIN_CNUM
FINAL_X(FX_CTR).CLASS = X(C(J).PATT_NUM(l».CLASS
CNUM = CNUM - 1 ! remove cluster from active set

X(C(J).PATT_NUM(1».xELEM = 0 !remove pattern from active set

! If there is more than one pattern in cluster
! Determine if all patterns in the cluster belong to the same class

ELSE !(C(J).NUM > 1)

MATCH = 0
DO K = 2,C(J).NUM
IF (X(C(J).PATT_NUM(K».CLASS .EQ.

X(C(J).PATT_NUM(l».CLASS) THEN
MATCH = MATCH + 1
END IF
END DO !(K)

! If they belong to the same class, remove the cluster from consideration
IF (MATCH .EQ. (C(J).NUM - 1» THEN ! Insert cluster in final set

FIN_CNUM = FIN_CNUM + 1

FINAL_C(FIN_CNUM).CRHO = C(J).CRHO
FINAL_C(FIN_CNUM).NUM = C(J).NUM
DOM= 1,N
FINAL_C(FIN_CNUM).B(M) = C(J).B(M)
END DO !(M)
FINAL_C(FIN_CNUM).CLASS = X(C(J).PATT_NUM(l».CLASS

*

! Insert patterns in final set
DO M = 1,C(J).NUM
FX_CTR = FX_CTR + 1
DOL= 1,N
FINAL_X(FX_CTR).xP(L) = X(C(J).PATT_NUM(M».xP(L)
END DO !(1=l,N)
FINAL_X(FX_CTR).xELEM = FIN_CNUM

41

FINAL_X(FX_CTR).CLASS = X(C(J).PATT_NUM(M».CLASS
END DO !(M) ! Remove cluster from active set

CNUM = CNUM - 1 ! Remove patterns from active set

DO L = 1,C(J).NUM
X(C(J).PATT_NUM(L».xELEM = 0
ENDDO !(L)
END IF ! (Match = C(J).NUM)
END IF !(C(J).NUM > 1)

END DO !(J)
END IF !(FX_CTR NE 0 AND CNUM NE 1)

! If all patterns have not been placed in final set,
! Assemble set of patterns remaining in active set

! Place remaining patterns in a temporary holder, TEMP
IF ((FX_CTR .GT. 0) .AND. (FX_CTR .LT. P_CTR» THEN
M=O
DOL= I,P
IF (X(L).xELEM .NE. 0) THEN
M=M+l
DOR= I,N
TEMP(M).xP(R) = X(L).xP(R)
END DO !(R)
TEMP(M).CLASS = X(L).CLASS
END IF !(X(L).xELEM .NE. 0)
END DO !(L)
P=M

! Take patterns from temporary holder and place back in
! original structure, X

DOL= I,M
DOR= I,N
X(L).xP(R) = TEMP(L).xP(R)
END DO !(R)
X(L).CLASS = TEMP(L).CLASS
END DO !(L)
ELSEIF (FX_CTR .EQ. P_CTR) THEN
STOP = .TRUE.
ENDIF !((FX_CTR > 0) and (FX_CTR < P_CTR»

! Update Rho
IF (.NOT. STOP) THEN
RHOTWO=RHOTWO-DECR

IF (RHOTWO .LT. 0.0) THEN
RHOTWO=O.O
END IF

RHO = SQRT(RHOTWO)
END IF !(NOT STOP)

END DO !(DO WHILE)

IF (RHO .LE. 0.0) THEN
! Insert remaining patterns in final set

DOJ= I,P
FIN_CNUM = FIN_CNUM+ 1

42

FINAL_C(FIN_CNUM).NUM = 1
DOM= 1,N
FINAL_C(FIN_CNUM).B(M) = X(J).xP(M)
END DO !(M)
FINAL_C(FIN_CNUM).CLASS = X(J).CLASS

FINAL_C(FIN_CNUM).CRHO = PEPSILON

FX_CTR = FX_CTR + 1
DOL= 1,N
FINAL_X(FX_CTR).xP(L) = X(J).xP(L)
END DO

FINAL_X(FX_CTR).xELEM = FIN_CNUM
FINAL_X(FX_CTR).CLASS = X(J).CLASS
X(J).xELEM = 0 !remove pattern from active set

END DO !(J)
END IF !(RHO <= 0)

**** End of Main Loop ***

**** ***

**** Enhancements to Clusters

**

! Tighten the radius of the clusters
! Find the pattern in cluster that is the fartherest distance from the center

! Change RHO to that distance plus PEPSILON
DO I = 1,FIN_CNUM
IF (FINAL_C(I).NUM .EQ. 1) THEN
FINAL_C(I).CRHO = PEPSILON

ELSEIF (FINAL_C(I).NUM .GT. 1) THEN
K=O

!1-1-94 DO J = 1,P_CTR
DOJ= 1,FX_CTR

IF (FINAL_X(J).XELEM .EQ. I) THEN
CALL DISTANCE(DIS,FINAL_X(J).XP,FINAL_C(I).B,N)
K=K+1

D(K) = DIS
END IF !(FINAL_X(J).XELEM = I)
END DO !(J=l,P_CTR)
NEW_DIS = 0.0
DOJ= 1,K
IF (D(J) .GT. NEW_DIS) THEN
NEW_DIS = D(J)
END IF !(D(J) > NEW_DIS)
END DO !(J=1,K)
NEW_DIS = NEW_DIS + PEPSILON

! The distance between the fartherest pattern plus PEPSILON is less than
! the radius of Cluster I, then change it to that value

IF (NEW_DIS .LT. FINAL_C(I).CRHO) THEN

! Merge Clusters that are close to each other
! Compare Cluster I with all clusters to see if there is a cluster of
! the same class that is closer than DEPSILON

DO 1= 1,FIN_CNUM
IF (FINAL_C(I).NUM .NE. 0) THEN
NEW_DIS = 5.0
DO J = 1,FIN_CNUM
IF ((I .NE. J) .AND. (final_cG).num .ne. 0) .and.

(FINAL_C(I).CLASS .EQ. FINAL_CCJ).CLASS» THEN
CALL DISTANCE(DIS,FINAL_CCI).B,FINAL_CCJ).B,N)

!Cluster I is closer to Cluster J than to other clusters
IF (DIS .LE. NEW_DIS) THEN
NEW_DIS = DIS

NEW_CLUS=J
END IF !(DIS <= NEW_DIS)
END IF !(I .NE. J)
END DO !(J=l,FIN_CNUM)

!Cluster I is closer than sum of the two cluster radii
! and the two clusters are of the same class

!Merge Cluster I and Cluster NEW_CLUS
IF (NEW_DIS .LE. 0.05*(FINAL_CCI).CRHO +

FINAL_C(NEW_CLUS).CRHO» THEN

FINAL_C(I).NUM = 0
DO J = 1,P_CTR

IF (FINAL_X(J).XELEM .EQ. I) THEN !Pattern belongs to Cluster I
FINAL_X(J).XELEM = NEW_CLUS
DO K = 1,N !Add pattern to Cluster NEW_CLUS
FINAL_C(NEW_CLUS).B(K) = (FINAL_C(NEW_CLUS).B(K) +

(1.0/(FINAL_CCNEW_CLUS).NUM + 1.0» *

(FINAL_X(J).XP(K)-FINAL_C(NEW_CLUS).B(K»)
END DO !(K=l,N)
FINAL_CCNEW_CLUS).NUM = FINAL_C(NEW_CLUS).NUM + 1
END IF !(FINAL_X(J).XELEM = I)
END DO !(J=l,P_CTR)

!Set radius equal to distance of fartherest pattern plus PEPSILON
DEPSILON = 0.0
DOJ= 1,P_CTR
IF (FINAL_X(J).XELEM .EQ. NEW_CLUS) THEN
CALL DISTANCE(DIS,FINAL_X(J).XP,FINAL_C(NEW_CLUS).B,N)
IF (DIS .GT. DEPSILON) THEN
DEPSILON = DIS

END IF !(DIS > DEPSILON)
END IF !(FINAL_X(J).XELEN = NEW_CLUS)
END DO !(J=l,P_CTR)
FINAL_C(NEW_CLUS).CRHO = DEPSILON + PEPSILON
END IF !(NEW_DIS <= sum of the radii of the two clusters)
END IF !(FINAL_C(I).NUM .NE. 0)
END DO !(I=l,FIN_CNUM)

43

FINAL_C(I).CRHO = NEW_DIS
END IF !(NEW_DIS < FINAL_C(I).CRHO)
END IF !(FINAL_C(I).NUM = 1)
END DO !(I=l,FIN_CNUM)

*

*

*

*

Remove the empty clusters from the list after merging complete
J=O
DO I = 1,FIN_CNUM
IF (FINAL_C(I).NUM .NE. 0) THEN
J=J+1
DOK= 1,N
FINAL_C(J).B(K) = FINAL_C(I).B(K)
END DO

FINAL_C(J).CRHO = FINAL_C(I).CRHO
FINAL_C(J).NUM = FINAL_C(I).NUM
FINAL_C(J).CLASS = FINAL_C(I).CLASS
END IF !(FINAL_C(I).NUM .NE. 0)

END DO

FIN_CNUM=J

! Add a probability value to the final clusters
! Probability equals the number of patterns in the cluster divided by
! the total number of training patterns

DOI= 1,FIN_CNUM
FINAL_C(I).PROB = (DFLOAT(FINAL_C(I).NUM)/DFLOAT(PTRAIN))

END DO !(I=1,FIN_CNUM)

**** Enhancements to Clusters

**

GO TO 999 !End of Program
**

***** ERROR PROCESSING **********

***** **********

**

CIOO WRITE(6,*) 'ERROR OPENING THE INPUT FILE'
C WRITE(6,*) 'CHECK FILE AND TRY AGAIN'
C GO TO 999 !Exit Program

C200 WRITE(6,*) 'ERROR OPENING THE OUTPUT FILE'
C WRITE(6,*) 'CHECK FILE AND TRY AGAIN'
C GO TO 999 !Exit Program

cIOOO WRlTE(6,*) 'COULD NOT GENERATE CLUSTERS FOR PATTERNS'
GO TO 999

999 END ! (* program *)

44

45

Appendix B: Revised Neural Network FORTRAN Programs

B.l TRAIN.FOR

TRAIN.FOR is a FORTRAN program used by the revised neural network for

training in conjunction with SUPERFOR and UNSUPERFOR

PROGRAM TRAIN

** THIS PROGRAM TRAINS THE CLUS1ERING ANN
** (1) EACH TRAINING PAITERN AND ITS RESPECTIVE MEMBERSHIP CLASS
** IS READ
** (2) THE ANN IS TRAINED WITH THE DATA
** (3) THE GENERA1ED CLUS1ERS AREWRIITEN TO AN OUTPUT FILE
**

IMPLICIT NONE
INCLUDE 'PARAMS.INC'

IN1EGER*4 I,J,K,M !Indexes for DO loops
INTEGER*4 L,R !Indexes
IN1EGER*4 FIN_CNUM !Number of Final Clusters
IN1EGER*4 P

IN1EGER*4 N
!Number of Patterns
!Size of Pattern Vector

IN1EGER*4 ICNTR,CNTR,PTRAIN

IN1EGER*4 NUM_PATTS !Number of training patterns

STRUCTURE IXPAITERNI
REAL*8 XP(NMAX) !Normalized Input Pattern:
IN1EGER*4 XELEM !# of Cluster pattern belongs to
CHARAC1ER*25 CLASS !The class membership of the pattern
END STRUCTURE

STRUCTURE /FIN_CLUS1ERI
REAL*8 B(NMAX) !Centroid Vector
REAL*8 CRHO !Square of Sphere Radius
IN1EGER*4 NUM !Number of Patterns in the Cluster
CHARACTER*25 CLASS !The class membership of the pattern
REAL*8 PROB !Probability of cluster
END STRUCTURE

RECORD /xPAITERNI X(PP),XI(PP)
RECORD IXPAITERNI FINAL_X
RECORD /FIN_CLUS1ERI FINAL_C

COMMON IBLKS/FINAL_X(PP)

46

COMMON IBLK6IFINAL_CCPP)
COMMON IBLK71FIN_CNUM

OPEN(UNIT=5,STATUS='OLD',ERR=900,FILE='ANNIN.DAT')
OPEN(UNIT=6,STATUS='NEW' ,ERR=900,FILE='ANNOUT.OUT')

300 FORMAT(I4,2X,FI8.14,3X,I4,3X,A25)
360 FORMAT('CLUS#',4X,'RHO',13X,'NUM',4X,'MEMBER CLASS')

100 FORMAT(A5)
150 FORMAT(1X,F17.14,1X,F17.14,1X,F17.14,1X,F17.14)
160 FORMAT(1X,F17.14,2X,FI7.14)
200 FORMAT(A5)
250 FORMAT(2X,F13.9,5X,F13.9)
350 FORMAT(2X,F15.9,2X,F15.9,2X,F15.9,2X,F15.9)
355 FORMAT(T1,A25)

rEAD (5,*) N
rEAD (5,*) NUM_PATIS

READ(5,*) !Skip blank line

DO J = 1 ,NUM_PATIS

! Read pattern
DOM= I,N
READ(5,*) XI(J).xP(M)

END DO !(K=1,N)
! Read Membership class

READ(5,355) XI(J).CLASS

END DO !(J=1,num_patts)

PTRAIN = NUM_PATIS
DO I = 1,PTRAIN
DOJ= 1,N
X(I).xP(J) = XI(I).xP(J)
END DO

X(I).CLASS = XI(I).CLASS
END DO

CALL SUPERVISED(N,PTRAIN,x)

write(6,*) fin_cnum

do 1= 1 ,fin_cnum
do j=1,n

write(6,*)final_c(i).bG)
end do

end do

GO TO 999 !End of Program

47

**

***** ERROR PROCESSING **********

***** **********

**

!800 WRITE(6, *) 'ERROR OPENING THE INPUT FILE'

WRITE(6, *) 'CHECK FILE AND TRY AGAIN'
GO TO 999 !Exit Program

900 WRITE(6, *) 'ERROR OPENING THE OUTPUT FILE'

WRITE(6,*) 'CHECK FILE AND TRY AGAIN'
GO TO 999 !Exit Program

999 END ! (* program *)

B.2 SUPER.FOR

SUPERFOR is a FORTRAN program used by the revised neural network that

disengages the supervised learning used in the old neural network and instead places the

clusters generated by UNSUPERFOR directly into the output subset CLUSTERDAT.

SUBROUTINE SUPERVISED(NTRAIN,PTRAIN,XTRAIN)

** THIS PROGRAM IMPLEMENTS A SUPERVISED Learning ALGORITHM
** The Algorithm is a Clustering type
** We are given a set ofPTRAIN patterns, XTRAIN
** We want to find a family of clusters (hyper)spherical clusters, Ck
** so that all patterns in a cluster are within some sphere radius,Rho
** The supervised learning calls the unsupervised learning algorithm
** which generates a set of natural clusters. Then the supervised
** learning removes those clusters which are composed of homogeneous
** elements.
**

**

** This supervised algorithm has been enhanced to include:

(1) merging of clusters, (2) tightening of clusters,
(3) adding probabilities to clusters

**

**

**

**

**

**

**

**

**

**

**

**

Inputs:
NTRAIN -- Vector size of training patterns
PTRAIN -- Number of training patterns
XTRAIN -- PTRAIN Structures of Training patterns

Common:

Final_C -- contains the clusters generated by the routine
Fin_CNUM -- final number of clusters

IMPLICIT NONE

48

INCLUDE 'PARAMS.INC'

INTEGER*4 NTRAIN,PTRAIN
I,J,K,M !Indexes for DO loops
L,R !Indexes
CNUM !Number of ActiveClusters

FIN_CNUM !Number of Final Clusters
P !Number of Patterns
N !Size of Pattern Vector

RHO !Sphere Radius
RHOTWO !Square ofRHO
NORM !Normalized Value of Input Pattern
D(FCMAX) !Distance between each pattern & the center
DECR !Interval by which RHO will be decremented
STOP !Parameter that stops DO loop
FX_CTR !Number of patterns in final set
P_CTR !Total Number of patterns
FIRST !Signifies first iteration through program
MATCH !Counts num of patterns in cluster that match

DIS !Distance between two vectors

NEW_DIS !Used to hold distance value until an update
NEW_CLUS !Used to hold value of cluster until an update

DEPSILON !Min distance between two cluster
PEPSILON

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
REAL*8
REAL*8
REAL* 8
REAL*8
REAL*8
LOGICAL
INTEGER*4
INTEGER*4
LOGICAL
INTEGER*4
REAL*8
REAL*8
INTEGER*4
REAL*8
REAL*8

!Distance to be added to fartherest pattern in cluster to adjust radius
! PARAMETER (PEPSILON = 0.15)

parameter (pepsilon = 0.20)
LOGICAL BAD_SET !Signifies patts couldn't be place in 1 cluster

STRUCTURE IXPATTERNI
REAL*8 XP(NMAX) !Normalized Input Pattern:
INTEGER*4 XELEM !# of Cluster pattern belongs to
CHARACTER*25 CLASS !The class membership of the pattern
END STRUCTURE

STRUCTURE ICLUSTER!
REAL*8 B(NMAX) !Centroid Vector
REAL*8 CRHO !Square of Sphere Radius
INTEGER*4 NUM !Number of Patterns in the Cluster
INTEGER*4 PATT_NUM(PP) !Identifies patterns that belong to Cluster
END STRUCTURE

STRUCTURE !TEMP_XPATTERNI
REAL*8 XP(NMAX) !Normalized Input Pattern: index reps vector pos'n
CHARACTER*25 CLASS !The class membership of the pattern
END STRUCTURE

STRUCTURE !FIN_CLUSTER!
REAL*8 B(NMAX) !Centroid Vector
REAL*8 CRHO !Square of Sphere Radius
INTEGER*4 NUM !Number of Patterns in the Cluster
CHARACTER*25 CLASS !The class membership of the pattern
REAL*8 PROB !Probability of this cluster
END STRUCTURE

49

RECORD IXPATfERN/X,XTRAIN(PP)
RECORD ICLUSTER! C
RECORD IXPATfERNI FINAL_X
RECORD !FIN_CLUSTER! FINAL_C
RECORD !TEMP_XPATfERN!TEMP(PP)

COMMON IBLK11X(PP)
COMMON IBLK2/C(PP)

!3/19/95 COMMON IBLK3IFIRST,RHO,RHOTWO,N,P,CNUM,BAD_SET
common Iblk3/rho,rhotwo,n,p,cnum
common Iblk4/first,bad_set

COMMON IBLKS!FINAL_X(PP)
COMMON IBLK6!FINAL_C(PP)
COMMON IBLK7!FIN_CNUM

C OPEN(UNIT=5,STATUS='OLD',ERR= 1 (0)
c OPEN(UNIT=6,STATUS='NEW',ERR=200,)

OPEN(UNIT=8,FILE='CLUSTER.DAT',STATUS='NEW')

305 FORMAT(l5)
310 FORMAT(F6.4)
315 FORMAT(10F7.4)
316 FORMAT(10F7.3)
350 FORMAT(A25)
351 FORMAT(2X,A25)
205 FORMAT(, VECTOR SIZE:',3X,I5,1' NUMBER OF PATfERNS:',3X,I51)
210 FORMAT(' NUMBER OF PATfERNS IN CLUSTER:',3X,I51)
215 FORMAT(, CLUSTER NUMBER:',3X,I51)
220 FORMAT(lOF10.6)
230 FORMAT(' CLASS MEMBERSHIP OF CLUSTER:',3X,"",A25,"",I1)
240 FORMAT(' RHO OF CLUSTER:',3X,F8.61)

P_CTR = PTRAIN
P=PTRAIN
N=NTRAIN
DO 1= 1,P
DOJ= 1,N
X(I).xP(J) = XTRAIN(I).xP(J)
END DO

X(I).CLASS = XTRAIN(I).CLASS
END DO

Normalize each pattern, using IIXi II = 1
DO J = 1,P
NORM =0
DOK= 1,N
NORM = NORM + (X(J).xP(K)**2)
END DO !(K)
NORM = SQRT(NORM)
IF (NORM .EQ. 0.0) THEN
NORM = .0000001
END IF
DOK= 1,N

50

X(J).xP(K) = (X(J).xP(K)/NORM)
END DO !(K)
END DO ! (J)

CNUM=O
FIRST=.TRUE.
BAD_SET=.FALSE.
CALL UNSUPERVISED

FIN_CNUM=O
FX_CTR=O
FIRST=.FALSE.
RHO=1

CALL UNSUPERVISED

WRITE(8,*) CNUM
WRITE(8, *) RHO
DOJ=I,CNUM

DOM=I,N
final_c(j).b(m)=c(j).b(m)
WRITE(8,*) FINAL_C(J).B(M)

end do
end do

GO TO 999 !End of Program
**

***** ERROR PROCESSING **********

***** **********

**

CIOO WRITE(6,*) 'ERROR OPENING THE INPUT FILE'
C WRITE(6,*) 'CHECK FILE AND TRY AGAIN'
C GO TO 999 !Exit Program

C200 WRITE(6,*) 'ERROR OPENING THE OUTPUT FILE'
C WRITE(6,*) 'CHECK FILE AND TRY AGAIN'
C GO TO 999 !Exit Program

c1000 WRITE(6,*) 'COULD NOT GENERATE CLUSTERS FOR PATTERNS'
GO TO 999

999 END ! (* program *)

51

Appendix C: Revised Neural NetworkMATLAB Programs

e.l FUZZYMF.M

FUZZYMF.M is aMATLAB M-file that generates a fuzzy membership function

matrix using the algorithm described by fuzzy c-means clustering.

load datax;
load datay;
data = [datax datay];
data_n = size(data, 1);

load clusterx;
load clustery;
cluster = [clusterx clustery];
cluster_n = size(cluster,l);

expo = 2;
max_iter = 100;
min_impro = 1e-5;

obj_fcn = zeros(max_iter,l);

U = rand(cluster_n,data_n);
col_sum = sum(U);
U = U .I col_sum(ones(cluster_n,l),:);

for i = l:max_iter,
mf = U .A expo;
dist = zeros(cluster_n,data_n);
for k = 1 :cluster_n,

dist(k,:) = sqrt(sum(((data-ones(data_n,1)*cluster(k,:)).A2),));
end

obj_fcn(i) = sumtsumudist.oz) .

* mf));
tmp = dist ." (-2/(expo-1));
U = tmp .I (ones(cluster_n,l)*sum(tmp));
if i»I

if abs(obj_fcn(i)-obj_fcn(i-1))<rnin_impro,break; end,
end

end

iter_num = i;
obj_fcn(iter_num + l:max_iter) = [];

52

e.2 MFPLOT.M

MFPLOT.M is aMATLAB M-file that generates a plot which shows the fuzzy

membership function of a pattern in relation to it's position in space.

for num = 1 :cluster_n
figure;
[x,y] = meshgrid(O:O.l:l,O:O.l:l);
tmp = U';
z = griddata(data(:,1),data(:,2),tmp(:,num),x,y);
mesh(x,y,z);
title=['MF Plot for Cluster ',int2str(num)];
xlabel('X'),ylabel('Y'),zlabel('MF');

end

