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ABSTRACT

Strengthening of Tubular Compression Members

April 1988

Kelly D. Payne. Texas A&M University

Fellows Advisor: Dr. James K. Nelson. Jr.

The weakening of tubular compression members in

offshore oil production facilities is a constant problem the

oil industry must deal with. The purpose of this project

was to evaluate different methods to reinforce damaged

tubular compression members. Discussed in this paper are

the results of analytical and experimental

into several reinforcing methods.

investigations
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CHAPTER I

INTRODUCTIOI AID SUXXARY

Tubular Compression Members

Tubular members are the most common component in

offshore oil production facilities, particularly in

jacket-type platform structures. Various reasons exist for

the excessive use of these members: for instance, the

tubular cross sections offer great local strength against

sudden impact loading, have outstanding torsional rigidity,

minimize the hydrodynamic forces, and minimize the surface

area that is subjected to the destructive forces of

corrosion. Far outweighing these characteristics,

is their unique quality of having identical

strength in all directions.

These members are not indestructible, however, and they

however,

buckling

can become damaged by collisions with ships, fatigue in the

steel, corrosion, or destructive weather like hurricanes.

Also, more strength may be required after the structure is

built due to changes in the production needs of the

platform. Underwater welding to repair or further

strengthen these components is very difficult, therefore, an

alternate group of methods is needed to increase the
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strength of these tubular compression members.

Ob1ectives

The purpose of this study was to evaluate different

methods to reinforce tubular compression members. All the

methods considered can be added to the structure before or

after it has been built. These methods were:

(1) To bolt on a simple steel sleeve that will

surround the damaged area;

(2) To completely fill the weakened section with

concretei

(3) To place a second tubular member into the

existing tube and fill the annulus with

concrete.

These methods were first evaluated analytically to

determine their cross sectional characteristics; next models

of the aforementioned repair techniques were taken into the

laboratory and tested in compression to determine their

performance. These cross sections are depicted graphically

in Figure 1.1. The results of the test data were then

compared to the analytical results.

Summary of Results

Specimens from both the inelastic and elastic buckling

modes were tested for hollow, concrete filled, and concrete

grouted cross sections. The results showed good trends
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Figure 1.1 - Cross Sections for the Proposed Repair Techniques



compared to the theoretical strengthening curves that were

calculated. All three sets of test values for the critical

buckling loads were slightly higher than their theoretical

counterparts, but they plotted relatively parallel to the

computed curves. The strengthening methods offered over

fifty percent increase in strength compared to the

unstiffened tube.
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CHAPTER II

XETHODS USED IN ANALYTICAL AIALYSIS

Introduction

In the initial literature review on this strengthening

problem, it became evident that a complete understanding of

several analytical techniques was necessary to compute and

compare these proposed strengthening techniques. These

solution practices are known as Euler or elastic buckling

equations and inelastic buckling techniques.

The loads considered in this analysis were of the

static nature only. Dynamic forces like those due to wave

impact were not dealt with. We also assumed that the ends

of the members were simple pin connections.

Analytical Technigues

Elastic (Euler) Buckling

The swiss mathematician, Leonhard Euler (1707-1783),

developed the method now

critical buckling load for

widely used to

long slender

solve for

columns. This

analytical technique is used to determine the maximum load a

column can support before it buckles. If one takes a simple

like the one incolumn loaded in axial compression

5
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Figure 2.1, imposes a displacement, and cuts out a free body

diagram, the following equation can be formed to

the internal moment, M
r'

in the section:

Mr = EI� = PCeS' - y)dx2

represent

(2.1)

where E is the modulus of elasticity, is the moment of

inertia, P is the load, and eS'-y is the deflection at the

point in question. By simply rearranging this equation, the

relationship can be represented by:

d2y Ey =
PeS'

dx2
+
EI EI

C2. 2)

This equation is a second order linear differential equation

with constant coefficients and a constant on the right side.

Methods beyond the scope of this thesis have established a

solution to equations like Equation 2.2 in the form:

y = Asin(px) + BcosCpx) + C C2.3)

By taking the first and second derivatives of Equation 2.3,

Equations 2.4 and 2.5 can be arrived at as:

� = pAcos(px) - pBsinCpx) C2. 4)

and

d2v
� = -p2AsinCpx) - p2BcosCpx) C2. 5)

Now if Equations 2.4 and 2.5 are substituted into Equation

2.2 and like terms are grouped, we find:

(-p2 + �I) (Asin(px) + BcosCpx» + �� =
PeS'
EI

(2.6)

6
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Figure 2.1 - Euler Buckling Characteristics
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Pc/EI and PS/EI are both constants, and Asin(px)-Bcos(px)

can never equal zero; therefore, p must equal the square

root of P/EI so that the first term in Equation 2.6 will go

to zero. If this is done, the remaining equation then looks

1 ike this:

Pc
=

P&
EI EI

(2.7)

From observation of Equation 2.7, it is evident that c

is equal to S. Therefore, by substituting into Equation

2.3, the expression becomes:

y = ASin[(1r)x] + BCOS[(1r)X] + S (2.8)

The constants A and B can now be solved for by using the

boundary conditions at the end of the column. These

conditions are: at the end of the column (x = O),the

deflection is zero (y = 0), and the slope of the member is

zero (dy/dx = 0). By substituting these conditions into

Equation 2.8 and its derivative, the constants A and Bare

found to be zero and -6, respectively. Therefore:

p
y = s -Scos[ (,[E" I) x l (2.9)

The physical requirement y = &, at one half the length

of the column, must be satisfied. For this to be true:

cos[ (,[E )�] = 0
EI 2

(2. 10)

This is satisfied only when ,[f'/EI times L/2 equals some

multiple of rr/2.

When ,[f'/EI times L/2 equals rr/2, the criterion for the

5



first mode of buckling has been met. Since this is the

first mode of buckling, it is therefore the critical

buckl ing mode. If:

[ (A- ) kJ = 2I
EI 2 2

(2. 11>

is the critical buckling mode, then, by rearranging Equation

2.11, Euler's critical buckling load equation is obtained in

terms of the cross sectional characteristics as:

(2. 12)

Euler's theory is valid for long slender columns having

a slenderness ratio greater than about 140 for steel

columns. The slenderness ratio is:

slenderness
=
kL

ratio r
(2. 13)

where L is the length of the member, k is the effective

length constant, and r is the least radius of gyration of

the member cross section. For members connected at both

ends, the k value ranges from 1 for perfectly pinned ends to

0.5 for a column with two fixed or built-in ends.

If the column is long and slender, Euler's equation can

be used to calculate the critical buckling load. This load

is expressed as:

Pcrit = 1[2EI
(kL> 2

(2. 14)

where Pcrit is the critical buckling load, E is the modulus

of elasticity for the material used in the column, I is the

9



moment of inertia for the column's cross section about its

bending axis, k is the effective length constant, and L is

the actual length of the member.

Inelastic Buckling

Euler's theory is only valid for those columns that

buckle at a stress below the elastic stress of the material.

Since the actual tubular sections are geometrically and

materially imperfect, the effects of inelastic buckling need

to be calculated and considered in any design. The first

theory presented for calculating inelastic buckling loads

for short, non-Euler columns was proposed by F.R. Engesser.

He called his theory the Basic Tangent Modulus Theory, and

it was rooted in Euler's elastic theories. The only

differences in the two concepts were the values used for the

modulus of elasticity in Equation 2.14. From Engesser's

Basic Tangent Modulus and Double-Modulus Theories, it was

learned that the inelastic buckling modulus is not constant

but instead is changing across the cross section at the time

of failure. His tangent modulus is defined as the slope of

the stress-strain diagram for a material at a particular

stress. This modulus is therefore a function of stress for

stresses beyond the elastic limit. Since the values for

this modulus were hard to compute for many different

materials, the American Institute of Steel Construction's

10
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Column Research Council used the theories of Euler and

Engesser as well as actual data to developed the following

equation for the allowable stress in a given cross section:

F = Ey
a

FS
[ 1 _

(kL/r)2
]

2C 2
C

(2. 15)

where F is
a

the allowable stress, F
Y

is the proportional

limit of the material, FS is a factor of safety term, kL/r

is the slenderness ratio, and C
c

is a maximum value of the

slenderness ratio.

C is the column formula that defines whether or not
c

the section in question is likely to buckle in the elastic

or inelastic region. This C term is the slenderness ratio
c

criterion mentioned in the Euler buckling section of this

paper, and it considers the residual stress in the column.

C is defined as:
c

C = 2rr2E 0 5
c [-F-]'

Y

where E is the modulus of elasticity in ksi, and F is the
y

(2.16)

proportional limit in ksi.

Initial Calculations for a Sample

Tubular Section

To become familiar with the analysis techniques used in

the project, buckling curves for several hypothetical cross

sections were calculated. One of the cross sections that

was considered had the following characteristics: an outside



diameter of the tubular cross section was assumed to be

forty-eight inches and a wall thickness of one quarter of an

inch; both ends were assumed to be pinned, which means that

the effective length constant is one; the proportional

I imi t, the modulus of elasticity, E,F ,

Y
was 36 ksi;

29x10�6 psi; and the factor of safety, FS, was one.

After these assumptions were made, the Euler buckling

curve was found by calculating the critical loads at

incremental lengths of five feet starting at five feet and

going to four hundred feet. For a sample calculation with an

L equal to 5 feet, the area and moment of inertia must first

be calculated for the cross section. The equations for the

area and moment of inertia are:

�(Doutside2 - Dinside2)
A =

4
(2. 17)

and

I =
�(Doutside4 - Dinside4)

64
(2. 18)

respectively. The area of the aforementioned cross section

is 37.50 inches2, and its moment of inertia is 10,688.87

.

h
4

lnc es . The critical buckling force, using equation 2.14,

is 849,820.18 kips. Similar calculations were performed for

the lengths mentioned previously. The results are displayed

in Table 2.1.

The inelastic buckling curve was also found

12

was

by
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Table 2.1 - Euler Buckling Curve

FOR t = 0.25

STRESS,F
(ksi)

L

(ft)
LjR LOAD,P

(kips)
========================================

22653.75

5663.44
1415.86

629.27
353.96
226.54
157.32

115.58
88.49

69.92

56.63
46.81
39.33
33.51
28.90
25.17
22.12
19.60
17.48

15.69
14.16
12.84

11. 70
10.71
9.83
9.06
8.38

7.77

7.22

6.73

6.29
5.89

5.53

5.20
4.90
4.62

4.37

4.14
3.92
3.72
3.54

5.00
10.00
20.00

30.00
40.00

50.00
60.00

70.00
80.00

90.00

100.00

110.00
120.00
130.00

140.00
150.00
160.00
170.00
180.00

190.00
200.00
210.00

220.00

230.00
240.00
250.00
260.00

270.00

280.00

290.00

300.00
310.00
320.00
330.00
340.00
350.00

360.00
370.00
380.00
390.00
400.00

3.55
7.11
14.22
21. 33
28.44
35.55
42.65
49.76
56.87
63.98
71. 09
78.20
85.31
92.42
99.53
106.64
113.74
120.85
127.96
135.07
142.18
149.29
156.40
163.51
170.62
177.73
184.83
191. 94
199.05
206.16
213.27
220.38
227.49
234.60
241. 71
248.82
255.92
263.03
270.14
277.25
284.36

849579.10
212394.78

53098.69
23599.42
13274.67
8495.79
5899.85
4334.59
3318.67

2622.16

2123.95
1755.33
1474.96
1256.77
1083.65

943.98
829.67

734.93
655.54
588.35
530.99
481. 62
438.83
401. 50
368.74
339.83
314.19
291. 35
270.91
252.55
235.99
221. 01
207.42
195.04
183.73
173.38
163.88
155.15
147.09
139.64
132.75



calculating the critical buckling loads at the incremental

lengths from five feet to two hundred fifty feet at a step

of five feet. A sample calculation for L equal to 5 feet

can be illustrated as before. The area of steel and moment

of inertia for the cross section are still 37.50 inches2 and

10,688.87 inches4. The radius of gyration is also needed

for the inelastic calculation. Its formula is:

r = [ 1 ]0.5
A

(2. 19)

and its value for this cross section is 16.88 inches. The

value for C in this case was found to be 126.1 usingc

Equation 2.16, and the stress was computed as 35.99 ksi

using Equation 2.15. the critical loadFinally,

calculated to be 1,349.63 kips by multiplying the stress

with the area of the cross section. This was also done for

the length sequence previously mentioned and the results are

displayed in Table 2.2.

Buckling Curves for a Sample

Tubular Section

In Figure 2.2 the data in Tables 2.1 and 2.2 have been

presented graphically. At a kL/r value of about 130 to 140,

the two curves are tangent. This area of the curve is known

as the transition zone where the column buckling ceases to

be controlled by the inelastic buckling and starts to be

characteristic of Euler buckling. Thisor elastic

14
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Table 2.2 - Inelastic Buckling Curve

FOR t = 0.25

STRESS,F L LjR LOAD,P
(ksi) (ft) (kips)

=======================================

35.99 5.00 3.55 1349.56
35.94 10.00 7.11 1347.95
35.77 20.00 14.22 1341. 48
35.48 30.00 21. 33 1330.71
35.08 40.00 28.44 1315.63
34.56 50.00 35.55 1296.24
33.93 60.00 42.65 1272.54
33.18 70.00 49.76 1244.53
32.32 80.00 56.87 1212.21
31. 35 90.00 63.98 1175.58
30.25 100.00 71. 09 1134.64
29.05 110.00 78.20 1089.40
27.73 120.00 85.31 1039.84
26.29 130.00 92.42 985.98
24.74 140.00 99.53 927.80
23.07 150.00 106.64 865.32
21. 29 160.00 113.74 798.53
19.40 170.00 120.85 727.43
17.39 180.00 127.96 652.02
15.26 190.00 135.07 572.30
13.02 200.00 142.18 488.27
10.66 210.00 149.29 399.93
8.19 220.00 156.40 307.28
5.61 230.00 163.51 210.33
2.91 240.00 170.62 109.06
0.09 250.00 177.73 3.49
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transition is point A on Figure 2.2. When the column is

long enough to be called an Euler column, the member will

buckle in the elastic region before the material's yield

strength is reached. In other words, the elastic curve to

the right of point A on Figure 2.2. is the controlling

factor. To the left of this point, however, the columns are

getting shorter. This causes the columns to have the

capability of withstanding forces only up to the critical

yield stress for that particular kL/r value. These columns

do not buckle in the elastic region, instead they buckle in

the inelastic region. As one can see in Figure 2.2,

buckling loads calculated for a short column by Euler's

equation are much higher than the loads needed to buckle the

column inelastically. For this reason, the inelastic

buckling curve controls to the left of point A on Figure

2.2. In Figure 2.3 the non-controlling ends of

inelastic and elastic curves have been removed, and the

buckling load characteristics can be seen as a function of

the dimensionless term kL/r.

17
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CHAPTER III

THEORETICAL ANALYSIS

Introduction

To fabricate columns that could be safely tested in the

laboratory, typical copper tubing like that used in plumbing

work was chosen as the model. The loads required to fail

these columns were within the limits of the equipment in the

laboratory and provided

relative merits of the

indicationa comparative of the

different strengthening systems.

Further explanations of the cross sectional and material

characteristics of this and other materials used in testing

will be given in the following sections of this chapter.

Cross Sectional and Material Characteristics

As mentioned previously, the material used for the

column model was simple copper plumbing pipe obtained at a

local plumbing supply

Wolverine Tube Type

The kind used is knowncompany.

M rigid pipe with an

The Type M

0.032 inches.

inside

refers

From

copper

diameter of three quarters of an inch.

the material's thickness which is

research in several material handbooks, a modulus

elasticity value of 17,000,000 psi and a yield strength of

19
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45,000 psi were obtained for use in theoretical calcula-

tions.

Theoretical Calculations for Hollow Cross Section

The calculations made for this were very similar to

those made for the sample tube mentioned in Chapter Two.

The first items calculated were the area of copper and the

moment of inertia for the hollow cross section. They were

0.0786 inches2
4

0.006019 inches, usingand respectively,

Equations 2.17 and 2.18. The radius of gyration was

computed as 0.2767 inches using Equation 2.19. With these

values and Equations 2.14 and 2.15, the values in Table 3.1

were formulated. Finally, using the values in Table 3.1,

Figure 3.1 was created as a theoretical curve of buckling

loads for the hollow copper cross section.

Theoretical Calculations for Concrete Filled Cross Section

The area of copper tube for this cross section was

0.0786 inches2 like before, but now there was an added area

of concrete equal to 0.4417 inches2. To compute a moment of

inertia and radius of gyration, however, it was necessary to

convert the area of concrete into an equivalent area of

copper. This is done by multiplying the area of concrete by

the appropriate modular ratio. This ratio is no more than

the modulus of elasticity of concrete divided by the modulus

of elasticity of copper. The equivalent area of concrete

20



Table 3.1 - Buckling Curves for Hollow Members

EULER CURVE INELASTIC CURVE

LOAD, P L Ljr LOAD, P STRESS, F

(lbs) (in) ( lbs) (ksi)
==================================================

0 0 3537.68 45.00
40398.52 5 18.07 3460.24 44.01
10099.63 10 36.14 3227.89 41. 06
4488.72 15 54.21 2840.65 36.13
2524.91 20 72.28 2298.51 29.24
1615.94 25 90.35 1601. 47 20.37
1122.18 30 108.42 749.54 9.53
824.46 35 126.49 -257.29 -3.27
631. 23 40 144.56 -1419.02 -18.05
498.75 45 162.63 -2735.64 -34.80
403.99 50 180.69 -4207.16 -53.52
333.87 55 198.76 -5833.58 -74.20
280.55 60 216.83 -7614.89 -96.86
239.04 65 234.90 -9551.10 -121. 49
206.11 70 252.97 -11642.21 -148.09
179.55 75 271.04 -13888.22 -176.66
157.81 80 289.11 -16289.12 -207.20

21



THEORETICAL BUCKLING CURVE
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was 0.09459 inches2 of copper.

After this area was calculated, the total area, in

copper terms, was found by summing the area of actual copper

and the equivalent area of copper for the concrete; this

came out to be 0.1732 inches2• At this point an inside

diameter for this area was needed to calculate the moment of

inertia for the cross section. This was done by using the

known total area, the copper tube's outside diameter,

Equation 2.17 and back calculating for the inside diameter.

This value was found to be 0.66 inches.

Now that all the terms were known, the moment of

4
inertia of 0.01196 inches was computed using Equation 2.18.

Likewise, the radius of gyration was obtained using Equation

2.19. It was found to be 0.26276 inches.

Finally, the values for the elastic buckling loads were

calculated using the information computed above and Equation

2.14. The inelastic buckling stresses were calculated for

the copper tube using the radius of gyration found above and

Equation 2.15. This value was then multiplied by the area

of the copper and added to the real area of the concrete

section multiplied by its yield stress of 4000 psi. A

sample of these values are presented in Table 3.2, and a

plot of the theoretical buckling curve for the concrete

filled section is presented in Figure 3.2.
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Table 3.2 - Buckling Curves for Concrete Filled Members

EULER CURVE

LOAD, P

(lbs)
L

(in)
L/r

INELASTIC CURVE

LOAD, P

(lbs)
STRESS, F

(ksi)
==================================================

80260.81
20065.20
8917.87
5016.30

3210.43
2229.47
1637.98
1254.08
990.87
802.61
663.31
557.37
474.92
409.49
356.71

o
5

10
15
20
25
30

35
40
45
50
55
60
65
70
75

o
19.03
38.06
57.09
76.11
95.14
114.17
133.20
152.23
171.26
190.29
209.31
228.34
247.37
266.40
285.43

5304.83
5218.94
4961.27
4531. 83
3930.61

3157.60
2212.82
1096.27
-192.07
-1652.18
-3284.07
-5087.74
-7063.19
-9210.42
-11529.42
-14020.21

45.00
43.91
40.63
35.17
27.52
17.69
5.67
-8.53
-24.92
-43.49
-64.25
-87.20
-112.32
-139.64
-169.13
-200.82



THEORETICAL BUCKLING CURVE
FOR CONCRETE FILLED TUBE
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Theoretical Calculations for Concrete Grouted Cross Section

As in the two previous cross sections, the standard

copper tube with a cross sectional area equal to 0.0786

inches2 was once again used. In addition to this copper

piece, a second copper tube with an inside diameter of one

quarter of an inch and a thickness of 0.030 inches was used

for the center pile. It was found to have an area of 0.0264

inches2 using Equation 2.17. The annulus, with a computed

area of 0.3663 inches2 using Equation 2.17, between the

inner pile and the tubular member was filled with concrete.

Its equivalent area in terms of copper was found to be

0.0784 inches2 using the method described in the previous

section. The total area for the cross section, in terms of

copper, was 0.1834 inches2.

Following these initial calculations, the circular

dimensions for the equivalent concrete area were needed to

calculate the moment of inertia of the cross section. This

was done by assuming that the outside diameter of the

equivalent concrete section was equal to the inside diameter

of the outer tubular member. Using this value, three

insidequarters of an inch, as the outside diameter, the

diameter of 0.68 inches for the equivalent concrete section

was computed using Equation 2.17.

The moment of inertia for the cross section were now

calculated by using Equation 2.18 for each of the three



cross sections: the outside copper tube, the equivalent

concrete annulus, and the inside copper tube. These values

were then summed to obtain a value for the moment of inertia

for the cross section equal to 0.0113 inches4. With the

moment of inertia and the area for the cross section, the

radius of gyration was then computed, using Equation 2.19,

to be 0.248384 inches.

After these values were established, the elastic

buckling curve was computed using Equation 2.14. The

inelastic buckling stresses were calculated as in the

previous section and once again multiplied by the area of

copper in the cross section. This area is equal to the area

of the copper tubular member and the area of the inner pile.

The critical buckling loads were found by summing the load

calculated above with the load value of the concrete. This

concrete load was computed by multiplying the real area of

the concrete and its yield stress together. An sample of

the values for various lengths of columns are given in Table

3.3. The theoretical curve is graphically depicted in

Figure 3.3.

Observations Based on Theoretical Analysis

The first comparison of the two strengthening

techniques was done in the creation of Figure 3.4. As one

can see, this is a plot of all three proposed test samples
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Table 3.3 - Buckling Curves for Concrete Grouted Members

EULER CURVE INELASTIC CURVE

LOAD, P L Ljr LOAD, P STRESS, F

(lbs) (in) (lbs) (ksi)
==================================================

0 0 6070.42 45.00

75952.13 5 19.14 5942.03 43.78

18988.03 10 38.28 5556.88 40.11

8439.13 15 57.43 4914.95 34.00

4747.01 20 76.57 4016.26 25.44
3038.09 25 95.71 2860.79 14.43

2109.78 30 114.85 1448.55 0.98

1550.04 35 134.00 -220.46 -14.91

1186.75 40 153.14 -2146.23 -33.25

937.68 45 172.28 -4328.78 -54.04

759.52 50 191. 42 -6768.10 -77.27

627.70 55 210.56 -9464.19 -102.94
527.45 60 229.71 -12417.05 -131. 06

449.42 65 248.85 -15626.68 -161.63

387.51 70 267.99 -19093.08 -194.64

337.57 75 287.13 -22816.25 -230.10
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superimposed on each other. From this graph, several

conclusions were reached. First, the grouted tube appeared

to be a better strengthening technique than the concrete

filled tube. Both methods of reinforcement, however,

created stronger members than the original plain hollow

section. The two repair methods also gave relatively

similar results in the elastic region of the curve, and this

increase in strength over the plain hollow tube was minimal.

From the theoretical analysis of the hollow cross

section, the concrete filled cross section, and the concrete

grouted cross section, the repair techniques proposed showed

marked improvement to column strength in the inelastic

buckling region of the buckling curves. In the elastic

buckling region, however, the strength gained by the repair

methods was minimal.



CHAPTER IV

TEST PROCEDURES AID RESULTS

Sample Characteristics

As mentioned in the previous chapter, the compression

members used to model the strengthening techniques were

simple copper plumbing pipe with an inside diameter of three

quarters of an inch and a wall thickness of 0.032 inches.

In addition to the main hollow tubular member, in the

grouted column, a copper pile member was chosen with an

inside diameter of one quarter of an inch and a wall

thickness of 0.030 inches. The last material that was used

was portland cement concrete purchased at the local hardware

store. The manufacturer's specifications were found to be

3.64 x 10�6 psi for the modulus and 4000 psi for the yield

strength.

The sample lengths were decided upon as 36, 28, 20, 12,

6 inches. A sample of each of the three test specimens, the

hollow cross section, the concrete filled cross section, and

the concrete grouted cross section, were prepared for each

of the five test lengths. These lengths were selected so

that a representative test curve, with points in the

inelastic, transition, and elastic zones of the buckling
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could be created for the test data and later compared

to the appropriate theoretical curves.

Test Procedures

The test specimens, fifteen in all, were tested in the

structures testing laboratory on the first floor of the

Wisenbaker Engineering Research Center on the Texas A&M

University campus. The testing apparatus used was an

Instron compression/tension testing machine with a 20 kip

load cell. Each of the specimens were tested in compression

by displacing them at a rate of 0.02 inches per minute.

This loading machine had a chart that plotted the results on

graph paper. For testing purposes, the instron plotted load

versus time on the chart plotter.

For each sample, the test procedure was as follows.

The specimen was placed into the machine, and the

compression heads were placed against the ends of the test

specimen. The instron's control board was then cleared and

checked to make sure the setting were correct. The chart

and compression heads were then started simultaneously, and

the chart and specimen were observed closely. After the

load peaked on the chart and a general decreasing trend was

established, the loading was halted, the specimen was

removed. This process was repeated for all of the test

specimens.



Test Results

A table of the results is presented in Table 4.1. This

table was created by using the graphs plotted by the instron

to obtain the peak loads for each test. Samples of these

plots are presented in Figures 4.1, 4.2, and 4.3.The results

obtained in the tests of the samples supported the original

theoretical hypotheses. The concrete grouted tubular

members buckled at higher loads than the concrete filled

columns, and they both proved to be stronger than their

hollow section counterparts.

All three sets of test data results showed good trends,

that is they paralleled their theoretical compliments.

The one exception to this was the six inch concrete filled

sample. Its buckling load seemed to be too low and did not

follow the trend represented by the rest of the data for

this type of column. This anomaly was probably due to the

specimen being released from the loading too early. On

these concrete filled specimens, the test loading curve

peaked once initially, but after falling off, the loads

increased once again to a higher crest than the first one

encountered. From observations of all other test data

collected, it was determined that this test sample was only

allowed to reached one peak before the load was released.

The test was probably stopped too soon, which can account

for the low critical buckling load obtained for this

34
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Table 4.1 - Test Results

LENGTH HOLLOW FILLED GROUTED
================================================

6 in. 4700 lbs 5300 lbs 6800 lbs

12 in. 4500 lbs 6200 lbs 5600 lbs

20 in. 3600 lbs 4800 lbs 4400 lbs

28 in. 3000 lbs 3200 lbs 3700 lbs

36 in. 2300 lbs 2600 lbs 2800 lbs



Figure 4.1 - Example of Instron Test Chart

For Hollow 6" Sample
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Figure 4.2 - Example of Instron Test Chart

For Concrete Filled 20" Sample
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Figure 4.3
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Example of Instron Test Chart

For Concrete Grouted 12" Sample
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specimen.

Overall, the test result were good, and the Figures

4.4, 4.5, and 4.6 were obtained by superimposing the test

data points on the theoretical curves for each of the three

cross sections tested. In each of the three cases, the test

data was also slightly higher than the theoretical curve.

Conclusions for these results and recommendations for the

use of these strengthening techniques are presented in

Chapter Five.

39
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CHAPTER V

CONCLUSIONS AND RECOMKEIDATIONS

Conclusions

The test results obtained from the testing of the

samples described in Chapter Four supported the original

hypothesis that the grouted tubular cross section was a

better repair technique, in terms of strength gained, than

the concrete filled cross section. This data also indicated

that strength was increased from ten to forty-five percent

by the filling and grouting methods as compared to the

simple hollow compression member.

The data gained from testing was also higher than the

calculated critical loads in all cases. Several possible

explanations could account for this increase. First, the

material properties of modulus of elasticity and yield

strength were found in reference tables and volumes. The

variation in material characteristics could have had

something to do with these increases in buckling load as

compared to theoretical values. Secondly, the concrete,

since it is confined by the copper tubular members,

withstand pressure beyond its yield strength.

This increase in yield strength of the concrete can be

could
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explained as follows. If a deflection analysis is computed

for the filled concrete section, it is found that the

concrete yield controls the yield of the column. From

deflection analysis, the deflection of the concrete has to

equal the deflection in the copper. This is explained by

the condition:

o = 0
concrete copper

where 0 is the deflection in the concrete and
concrete

(5. 1)

o is the deflection in the copper. By rewriting
copper

Equation 5.1 in terms of cross sectional characteristics,

the equation becomes:

ercL
Ec

=
ercuL
Ecu

(5.2)

where erc is the yield stress for concrete, ercu is the yield

stress for copper, L is the length of the member before

compression, Ec is the modulus of elasticity of concrete,

and Ecu is the modulus of elasticity of copper. If the

appropriate modulus values are substituted into Equation

5.2, and it is rearranged, the relationship becomes:

ere = O.21410"cu (5.3)

When the yield stress of 45 ksi for copper is substituted

into Equation 5.3, the yield stress in the concrete is

calculated to be 9.64 ksi. This is greater than the

theoretical yield stress in the concrete, therefore, the

yield stress of 4 ksi in the concrete controls failure.



From this knowledge, the stress that the copper reaches at

the point the concrete fails can be found. Using Equation

5.3 and the 4 ksi theoretical yield stress of the concrete

to back calculate for the stress in the copper at failure.

This was computed to be 18.68 ksi, well under the

theoretical yield stress of the copper. With this being the

case, the critical buckling load can be found by multiplying

these stresses of 4 ksi for the concrete and 18.68 ksi for

the copper with their appropriate cross sectional areas. If

the maximum critical buckling load is 3236this is done,

pounds.

From real experience, however, the buckling load of

3236 pounds is well under the actual value. One hypothesis

as to why this is the case is that the copper confines the

concrete and allows it

above the yield point

explain why the test

to take higher loads that are

of the concrete. This could

well

also

results were higher than

theoretical values, since these theoretical values were

calculated using 4 ksi as the yield stress of the concrete.

Recommendations

To conclude, I will offer several recommendations for

further research and applications of these strengthening

techniques. Firstly, the strengthening techniques proposed,

filling the cross section with concrete and grouting the

45
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cross section, do in fact strengthen the tubular compression

member. This strengthening is considerable in the inelastic

regions of column failure, but minimal for the elastic

failure. Secondly, the grouting method is a better

strengthening technique than filling the tube with concrete

when the tubular members are short inelastic buckling

columns. When these techniques are done on the longer

elastic buckling columns, however, the differences in

strength are almost nonexistent. Lastly, further testing

could be done to determine whether or not the concrete does

withstand yield stresses above its limit. A strengthening

technique in which the cross section was simply filled with

sand would also provide for an interesting comparison with

the techniques researched above.
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