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ABSTRACT

Development ofAircraft Flight Instruments Graphics Display Software in the Eiffel

Object-oriented Environment. (April 1991)

Eric Trenk, University Undergtaduate Fellow

Advisor: Dr. John H. Painter

This thesis reports the results of research to develop, using the Eiffel object

oriented programming language, aircraft flight instruments display software to graphically

display output from a passenger jet transport simulatioh. The display will be used in the

development of a knowledge-based flight mode interpreter and controller for the aircraft

simulation. The results of this project reinforce Eiffel's suitability for graphical.

applications.

.

\
,

\



iii

TABLE OF CONTENTS

Page

I INTRODUCTION......... 1

II BRIEF OVERVIEW OF OBJECT-ORIENTED PROGRAMMING................ 3

A. Tenets of Object-oriented Programming.......... 3
B. Advantages over procedure based programming......................... 7

III BRIEF OVERVIEW OF THE EIFFEL PROGRAMMING LANGUAGE ......... 10

A. Reasons for selecting Eiffel.......... 10
B. Key concepts of the Eiffel Language 12

N DESIGN OF AIRCRAFT FLIGHT INSTRUMENTS blSPLAY SOFTWARE .. 16

A. Specifications............................................... 16
B. Approach

·

18
C. Design Issues � 21

V CONCLUSIONS AND RECOMMENDATIONS 25 /

A. Review.. 25
B. Remarks 25
C. Future work -

.. : 26

REFERENCES 27

.. APPENDIX � \;30 -

A. Sample Eiffel source code 30
B. Sample C intermediate source code. 32

\



iv

LIST OF FIGURES

Figure Page

1 Flow Diagram: Knowledge-Based Management for Dynamic Systems.......... 2

2 Eiffel map metaphor '............................. 15

3 User interface class relationships 20

4 Software gauge displays................................................................ 23

\



1

I INTRODUCTION

"Object-oriented" has replaced "structured" as the high tech adjective for "good"

software design [1]. For software development within this new programming paradigm, a

variety of programming languages and environments have emerged as possible standards.

This research is an attempt to evaluate the suitability of one of these environments, the

Eiffel object-oriented programming language, for graphical applications such as a display

of aircraft flight instruments. The key questions about Eiffel hoped to be answered by this

investigation include the following:

1) ease of learning the language - how long will someone with moderate experience in

procedure based programming require to become adept at Eiffel?

2) speed of coding - after learning Eiffel, how long will be required to produce a given

program?

3) efficiency of code - how will a completed Eiffel program compare in size and execution

time to a program with equivalent functions written in another language?

4) readability of code - how readily will another programmer be able to determine the

function of an Eiffel program?

5) extendibility/adaptability to future requirements - how easily will past Eiffel prograIl!,s
-

be able to be adapted to new needs?
.
'\,

The aircraft flight instruments display was developed as part of a software package

for research in the automatic control of dynamic systems. The display will be used in

conjunction with a passenger jet transport simulation, a knowledge-based flight mode

interpreter, and a knowledge-based aircraft controller (see figure 1). Ideally, all parts of the

Journal model is IEEE Transactions on Automatic Control
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system will run concurrently and share data in real time. Except for the simulation, which

is written in the C language, all parts are to be written in Eiffel. This display research will

also determine to some extent the suitability ofEiffel to non-graphical applications such as

the flight mode interpreter and the controller.
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Figure 1. Top Level Data-Flow Diagram
Knowledged-Based Management for Dynamic Systems

(Figure courtesy of J.H. Painter [1])
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II BRIEF BACKGROUND OF OBJECT-ORIENTED PROGRAMMING

Object-oriented does not refer to a programming language; it refers to programming

concepts that can be implemented through new object-oriented languages or through most

existing languages [2]. In recent years, this approach has received a great deal of attention,

especially from those interested in graphical applications. An overview of object oriented

programming is appropriate before a discussion of the application of this technique to

particular display software.

A. Tenets of Object-oriented Programming

Although the idea of object-oriented programming has been around for twenty years,

the specifics and terminology are still not fixed (see [3] for more on standardizing object

oriented terminology). This section will discuss in general terms the principles common to

most object-oriented implementations.

1. Classes and Objects

Predictably, the object is the basic building block of objected-oriented programming.

.

\
,

Objects are often chosen to simulate real world objects, such as a plant, abank account, or

a graphics window. These objects include all of the relevant data plus all of the functions

and routines that may be applied to that data. This combination.of data and functions

makes an object more than a data structure from a procedure-based program.

\
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In most languages, objects are instances of classes. A class can be thought of as a

specification for an object, but note that the object does not exist until it is explicitly created.

The class is a list of features, which can be attributes or procedures or functions. In

comparison with traditional programming, a class can be thought of as a type definition and

an object as a variable declaration [4].

2. Encapsulation

To take full advantage of object-orientedness, the objects must be as self-contained

and independent.of their environment as possible. The idea of autonomous constructs is

not new (it is a basic principle of structured programming); what is new is the idea of self

contained units containing both data and procedures [2]. Organizing programs into objects

containing data that is generally not shared with other objects is known as encapsulation or

information hiding.

Encapsulation provides many benefits, especially in large, complex systems. The

software is simplified by reducing the amount of interaction between modules (objects).

Also, the specification of a module is separated from its implementation, reducing the

impact of later changes to the implementation method.

3. Inheritance

.

\
,

Inheritance provides an organizational structure for classes. The structure is

hierarchical, like the biological classification system which starts at the very general

(Kingdom) and becomes progressively more specific (Subkingdom, Phylum, ... ,Species),

. or, even more similarly, like the directory tree structure of DOS or UNIX which begins

with a general root directory that may contain files or subdirectories containing

\
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progressively more specific files or subdirectories. With inheritance, a class may be

instantiated and/or a more specific class can become an "heir" to it. This heir class inherits

all attributes, procedures, and routines, just as if the text of the previous class were copied

directly into it. The heir is then free to add or modify features as needed. This saves the

programmer from duplicating code unnecessarily.

As an example, the Eiffel libraries provide a class FIGURE, which contains

features such as display, which is common to all graphical figures [5]. Classes for specific

figures such as CIRCLE or RECTANGLE inherit from class FIGURE and make use of

these general features. The more specific class will then add features which are unique to

that class, such 'as "draw," which is implemented differently for a circle than for a

rectangle.

Inheritance minimizes the amount of new code needed when classes are added 'to

a system by providing a simple method to take advantage of existing code. Inheritance also

simplifies the debugging process because a modification to a single general class will affect

all of the classes that inherit from it. There are some problems associated with inheritance,

however. Name conflicts can arise if the name of a feature in the more general class is �lso
used in the heir class. Conflicts can also arise because the data type created by the heir

class does not exactly conform to that of the general class.

4. Polymorphism
'\

,

Polymorphism means "many shapes" in Greek, and in object-oriented terms

means the ability for different objects to respond to the same message or function call in

different ways. This individualized response relieves a procedure from the responsibility

of knowing what kind of data it is dealing with, therefore allowing more generic and

reusable code. Using the previous example of graphical figures, a procedure could execute

\
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the call "A.draw," where, if taking advantage of polymorphism, "A" could refer to a circle

or a rectangle. The draw procedure for a circle would be different than that for a rectangle,

but the proper method would be implemented for the reference of "A" at the time of the call.

The procedure making the call "A.draw" does not need to know the correct implementation.

Closely tied to the concept of polymorphism are the concepts of typing and

binding. The degree of typing a language allows determines to what extent it allows

polymorphism. A statically typed language demands that an object retains the same data

type from compile-time throughout run-time. The validity of calls to the object are checked

during compilation. Because the datatype is always the same, polymorphism can not

exist. A weakly typed language allows full flexibility with data types; that is, little or no

type checking occurs during compilation. This method allows full use of polymorphism,

but can result in run-time errors since a feature can be called on an object (data type) that

does not have that feature. For example, if "A" is declared of type integer (continuing the

previous example), "A.draw" would not be valid. A weakly typed language may not catch

this error during compilation, but a statically typed language would.

Eiffel is one language that provides a compromise between these two typing
,/

styles: strong typing. A strongly typed language does some type checking during

compilation, but also allows polymorphism. In Eiffel, the type checking restriction is as

follows:
If the type used to declare an entity is called its static type, and the
type of the object associated with it at some run- time instant is called
its dynamic type, the type rule expresses that the dynamic type must
be a descendant of the static type [6].

If the dynamic type inherits (is a descendant of) the static type, it logically has all of the

features associated with the static type and should not produce a run-time error due to a call

to an unavailable feature. Actually, this type rule does not preclude run-time errors caused

. by type discrepancies (see [7] for a discussion of this Eiffel flaw). Strength of typing is

\
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important in the versatility of a language, but presents a design compromise between

flexibility and robustness.

Binding is a term associated with typing. Early binding means that calls to a variable

feature are fixed at compile-time because the variable's data type is fixed (statically typed).

Late or dynamic binding means that calls can not be fixed and must be made during run

time since the data type of a variable can change. Early binding produces no execution time

overhead, while late binding does result in some performance loss. Again, this issue is a

language design compromise.

B. Advantages over procedure based programming

Brad Cox, in [8], compares the current paradigm for software development to the

Aristotelian cosmological model. This model of the universe placed the earth at the center,

with the sun, moon, and planets circling around in spheres. To account for observed

discrepancies in planetary motion, Ptolemy began to add epicycles to these spheres. By the

sixteenth century, 90 epicycles were needed, resulting in enough complexity for the Pope
to ask Copernicus to investigate the matter. 'Copernicus's solution was a change .of

paradigm-- a universe with planets rotating around the sun.

The software revolution, Cox argues, will be an equivalent change of paradigm, from

procedure-based to object-based. This change will similarly allow a simplification of t�e
complexity that has evolved over time. .

\
,

This analogy may overstate the magnitude of object-oriented programming's impact

on software design, but is in general consistent with the opinion of many scholars and

industry experts. Software lacks the modularity and reusability found in mechanical parts,

electrical components, or even computer hardware. In order to keep up with the increasing

demand for quality code, the software industry must reassess its development methods.

\
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Eiffel author Bertrand Meyer expresses his strong views on the need for a restructuring of

software development practices in [9].

Object-oriented programming may not be the final solution to problems in the

software industry, but it does provide advantages over traditional programming styles.

1. Ease of design

Traditional top-down software design philosophy mandates that a task be defined at

its most general level, then divided into subtasks, divided further, and so on until the

modules are specific enough to code. Object-oriented design rejects this philosophy for
several reasons. A task is never completely specified, so to define it in its most general

terms is not possible. In reality, the focus of a project may shift after coding begins 'or

even after it is finished. Some modules may also require additional features after the design

is specified. Top-down design does not accommodate this possibility well.

Object-oriented programming does not demand that the final structure be frozen

before coding begins. Any anticipated need for a class can be filled before its relations/hip
to the rest of the system is fully specified. Additional features can be added to a class at

any time, without any impact to other classes in the system.
-

This ability allows for the

rapid prototyping of a system, since skeletons of classes can be written and later filled in.

Object-oriented design is not necessarily bottom-up, as the class relationships must be well

planned. This planning, however, does not later limit the flexibility of the coge. .

\
,

Object-oriented programming has been shown in some cases to provide a productivity

gain over procedure-based programming with respect to the size of code [10], though code

length is not guaranteed to be shortened and may in fact increase. Old objects can (and
.

ideally should) be reused in new systems, however, so code does not have to be written

from scratch. This reuse usually results in faster development and fewer bugs.

\
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2. Ease ofMaintenance

It has been estimated that seventy percent of the cost of any software system is due to

maintenance [9]. One of the goals of object-oriented programming is to make this

maintenance easier and therefore less expensive. Maintenance of software usually includes

fixing bugs, adapting to new formats, and modifying to fit revised user requirements. All

of these activities are made easier by using object-oriented techniques.

Errors are easier to trace when dealing with classes not because the program flow is

simpler (it is definitely not), but because there is less interaction between classes. Thanks

to encapsulation, a problem will remain more localized and easier to find than in a system

where the same data is touched by dozens of modules. Also, the complexity of code 'is

controlled by the forced use of a hierarchical structure, making the program more easily

read and understood. And for modifications, inheritance provides a perfect tool to make

small additions without jeopardizing the existing program and without writing extensive

new code.

\
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III BRIEF BACKGROUND OF THE ElFFEL PROGRAMMING

LANGUAGE

The Eiffel language was designed by Bertrand Meyer and his group at Interactive

Software Engineering [6]. Currently, Interactive Software is the prime resource for Eiffel

products, but the language specification is in the public domain and anyone is permitted to

write compilers, interpreters, tools, or libraries for Eiffel. The International Eiffel

Consortium was founded to take full control over the evolution of the language, and

Interactive plans to relinquish the Eiffel trademark to the consortium.

A. Reasons for using Eiffel

There are about a dozen object-oriented languages commonly in use today [11].

Choosing the proper one for a given application can be a difficult matter, since there are

many factors to compare. Included here is some explanation for why Eiffel was chosen for

this project.

1. Object-oriented factors

./

Choosing an object-oriented language implies choosing among the language design

trade-offs discussed previously, such as strength of typing and flexibility of inheritance.

Some languages are heavy on object-orientedness at the expense of clear structure while

othe� offer the opposite. Eiffel provides somewhat of a compromise when compared to

other popular languages.
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c++ and Objective-C are object-oriented languages that are built as extensions to

standard C. They offer the possibility ofwriting procedure-based routines that can coexist

with objects when (if) that is advantageous. Unfortunately, this ability relaxes the

programmer's responsibility to write very object-oriented code. Especially for newcomers

to the object-oriented paradigm, this freedom fosters bad habits. Languages built object

oriented from the ground up, like Smalltalk or Eiffel, force stricter compliance with the

underlying principles of object-oriented programming.

Many languages, such as Smalltalk, Actor, Objective-C, and Object Pascal do not

support multiple inheritance (therefore a class may be the heir of only one class). This

restriction Iimitsdesign creativity and code reusability. Some languages like Ada do not

support any inheritance or dynamic binding. Eiffel seems quite powerful in comparison.

Eiffel allows unlimited inheritance, strong typing (providing polymorphism but also some

type checking), and dynamic binding.

2. Other factors

Although not an extension of C, Eiffel allows easy interfacing with C or other

existing languages. Eiffel supports call-out of utilities written in other languages and call-in

of Eiffel routines from those other languages [6]. Eiffel also incorporates the ability to

interface with X-Windows, a feature important for graphical applications. Eiffel comes

with extensive libraries including 300 classes totaling about 5000 accessible . features '

[6],[9]. These libraries will probably form the fou�dation for any software system written

in Eiffel. Some other positive aspects are that the Eiffel environment includes graphical

browsing and debugging tools, Eiffel code is very readable, and finally, although all

.

object-oriented languages suffer from a lack of good documentation, Eiffel has (in addition

\
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to user's manuals) a companion book written by the author of the language, which explains

the motivation for and correct implementation ofEiffel constructs.

B. Key concepts of the Eiffel language

The principle reference for programming theory for Eiffel is Bertrand Meyer's Object

oriented Software Construction [9]. For a thorough treatment of this theory the Meyer

source is suggested. This section will attempt only to identify briefly some of the key

concepts of Eiffel.

1. Guidelines

Meyer has identified several factors that influence the quality of any software. His

assertion is that object-oriented programming, particularly in Eiffel, encourages quality

code. The factors are:

correctness - ability to perform specified tasks

robustness - ability to function in abnormal conditions

extendibility - ease with which may be adapted to changes in specifications

reusability - ability to be reused for new applications

compatibility - ease with which may be combined with others.
-...,

Also identified as significant are efficiency, portability, verifiability, integrity, and ease of

use. This research did not intend to investigate the importance of these listed factors. They

are presented here because they are an integral part of working in the Eiffel environment,

and when considered, provide good checks on the quality of written code.

\
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2. Class relationships

Classes in Eiffel can have only one of two relationships: ancestor/descendent or

client/supplier. Anytime a class must be aware of another class's presence, the decision of

which type of relationship to use must be made. Being a client means accessing features

through the official interface, while being an heir means having access to the

implementation of the features and having the ability to redefine or adapt class properties

[6]. A client is given less authority and flexibility, but is more insulated from errors in or

future changes inimplementation in other classes. Usually a class is made a client of

another class unless it meets the "is a" criterion. A class should only inherit if it "is a"

whatever the ancestor class is. For example, a POLICEMAN class should inherit the

PERSON class, but should be a client of the BADGE class. Apoliceman needs a badge,

but is not one.

Classes that are intended for inheritance only (will never be instantiated) are explicitly

tagged "deferred" in Eiffel. These deferred classes have at least one deferred feature; that
r

is, a feature that is named but whose implementation is not set. The implementation for this

deferred feature is left to the heir class to define. In the aircraft flight instruments graphics

display software, both client/supplier and ancestor/descendent relationships were used, as

well as deferred classes.

.

\
,

3. Variable sharing

Generally in Eiffel, a feature is not available anywhere outside the class it belongs to
.

unless absolutely necessary. This is to protect both the feature and the potential user of the

feature (refer to the concept of encapsulation). In an Eiffel class, features that are to be

\
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made available to the outside are listed in the "export" clause, so a feature that is not

exported can not be accessed or seen by another class (unless the other class inherits it, in

which case nothing is hidden).

Within a given class, there is also encapsulation. Each feature can declare local

variables, meaning other features even of the same class can not access them. It is tempting

to view this another layer of information hiding within the class level information hiding;

however, it is not exactly the same. The value of a non-exported variable (attribute)

declared within a class does not change value unless the change is made explicitly, but a

variable declared as local to a feature (routine or procedure) is re-instantiated every time the

feature is entered ..
, Before it was understood, this difference caused significant problems

with the display software. A sound guideline for desigrt is to declare outside a feature (that

is, not declare as local) any variable that needs to maintain its value after the feature is called

or between occurrences of the feature being called.

There is no Eiffellanguage construct for global variables or the creation of objects

that need to be visible to all classes. The method used in the display software for

effectively creating global objects is discussed in the display design section of this work.

4. Graphics "map" metaphor

Implementing graphics in Eiffel is analogous to manipulating a geographical map (see

[5} for more on Eiffel graphics). All figures, in this case gauges, are drawn on a "world,"
I

\
,

-

./
.

First the world is created (it is possible to create more then one world), then the graphical

figures are attached. The world is two-dimensional, extends infinitely, and has scale not

tied to that of the device or window. Next a window is created to look at part of the world .

. The 'window has a size on the display and a separate size coverage area on the world. This

\
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allows implicit scaling of figures from world size to display size. Figure 2 portrays this

map metaphor.

For this display, subwindows were established and tied to a common root or parent

window. Subwindows are assigned a display size and location just like independent

windows, and are only distinguishable from an independent window because of an "attach"

command to tie them to their parent. The portion of the world displayed in a subwindow is

in no way related to the subwindow's position.

I I Figures,>< I I
I 1;>< <:::)

I I

�-----_Y

World

Display

.

\
,x

Xo

\

Figure 2. Eiffel graphics "map" metaphor
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IV DESIGN OF AIRCRAFT FLIGHT INSTRUMENTS DISPLAY
,

I
SOFTWARE

The increasing popularity and complexity of graphical user interfaces has sparked

interest in object-oriented programming for this application [12],[13]. This research project

is one example of the use of the object-oriented paradigm for graphics.

A. Specifications

The requirements for the aircraft flight instruments display were loosely defined,

partially because it was to be used as part of a system that was still under development and

not fully specified itself, and to an even greater extent because the capabilities ofEiffel were

not completely known (to determine these capabilities was one of the primary motivations

for the project).

1. Appearance

The goal was to create a display as similar as possible in gauge layout and appearance

to that of a transport jet, within the constraints of reasonable hardware and software. S�ce !

. -

\

none of the navigational gauges that are prominent in modern instrument panels were' used,

the display could not really conform to the real world model. Also many of the details of

the gauges' were modified for programming efficiency whenever the extra code required

exceeded the benefit of a more faithful reproduction. For example, all of the display

gauges were created with linearly proportional scales, even though many of the actual

\
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gauges have graduated scaling. The time and distance (DME) gauges were replaced with

simple numeric displays also because the extra detail was deemed unnecessary.

2. Interprocess Communication

The display was designed to be supplied with data from the aircraft simulation

running on the workstation concurrently. With the current release of Eiffel, concurrent

processes are not supported (concurrent processes are expected in a later release), so the

system was designed to alternate between simulation processing and graphics display

processing. Eiffelhas incorporated the ability to interface with C, so from the instruments

display side, the only requirement was to provide a feature which accepts eight real

numbers (representing the values of eight gauges), and updates the display with these new

values if appropriate. This feature is provided in the root class of the instruments display

software.

3. Code Complexity

The aircraft flight instruments display was also constrained by processing power.

The efficiency of a graphics program written in Eiffel was not known, but for this

application the display code certainly could not requite a "disproportionate" amount of CPU

time. Eiffel is very structured from the programmer's viewpoint, but the- Eiffel code is
-

./

compiled to C as an intermediate step before being compiled to an executable form. This

intermediate step allows for portability to a variety of hardware platforms, but it also

irttroduces inefficiency in the implementation ofEiffel commands. The C code generated is

so complex that the Eiffel manuals [5] discourage the programmer from even looking at his

own program once it is compiled to C (a portion of this code is included as Appendix B).

\
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The final user interface consisted of 122 Eiffel classes which were compiled to 122 C

listings which were then linked together. The display performance was improved

considerably by eliminating assertion checking, a feature of Eiffel which provides ongoing

verification of the code's correctness. This reduced the size of the executable code and

decreased the display time by a factor of about three. Assertion checking is disabled by

setting the appropriate compilation option in the Eiffel system description file.

The initialization of the display requires about two seconds when running exclusively

on a Sun 386i workstation. Time for updating the gauges, the key speed consideration, is

yet to be determined for the fully operating system, but appears to be around one half to

one second. Processing demands can usually be met with faster hardware, and this

solution was attempted by porting the code to a Sun SparcStation (14 Mips vs. 3.5 Mips

for the 386i). The speed improvement was much less than expected, indicating that the

delay was not primarily from the Eiffel code, but from the X-Windows interface. The

delay in updating the display is such a critical issue that it may prevent the current

implementation from being considered a long term solution. Again, determining this type

of information was a primary purpose of this research.

B. Approach

1. Objects

,

\
,

To design any object-oriented program, the first step is to find the objects. For this

project the primary objects were gauges -- not gauges in the physical sense of a circle with

a needle, but in an abstract sense of an entity that displays a value. This definition was

'necessary since the display window was designed with six square subdivisions, but with

eight separate values to be displayed. As a result, more than one value or "gauge" was to

\
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be displayed in some of the physical gauge sites. For example, the Mach number is passed

from the simulation separately from the air speed, even though they are related (the

relationship is based on temperature, which is not passed from the simulation, so one can

not be derived from the other by the display code). The Mach number is displayed as a two

digit number on the dial face of the airspeed gauge, but exists as a separate gauge-- a

parallel, not subordinate, entity to the airspeed gauge.

2. Structure

The instrument display was constructed with these eight gauges as the primary

objects. Ideally, they could be eight "instances" of the same gauge class since they were all

the same "type" of object. This would be the equivalent of running the same procedure

eight times with different input data. The differences between the gauges were so

numerous, however, this tactic was judged not feasible. It should be noted, however, that

an equivalent display could be achieved in this manner. It would require a single gauge

class containing every feature any of the instances of gauge required. Then the root class

could pass every parameter needed when it created the instance, including location, size,

title, start and end values, and tick placement value information.

A more modular approach was taken by using inheritance. All of the features of the

gauges that were common (to at least two of the eight) were made part of a base class called

GAUGE. Then a class was written for each of the inore specific gauge types, such as the
-

.

\
,

altitude gauge, airspeed gauge, and artificial horizon gauge. The more specific gauge types

inherited the general class GAUGE and therefore contained all the primary features of a

"gauge." Any feature specific to a particular gauge type was then added only to that type,

'reducing the number of unnecessary features in some of the classes. This implementation

took advantage of the commonalties between the gauges, but also allowed for unlimited

\
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differences. A root class (called GUI) was established as a client of the individual gauge

classes, and it is from this class that the calls to create actual gauge objects are made. No

parameters need to be passed from the root class for initialization, and additional features

can be added later to one or all of the gauges without changing the interface between the

root class and the indi�idual gauge classes. In fact the root class need not be aware of any

changes. This is entirely consistent with the principle ofmodularity basic to object oriented

programming. Figure 3 shows the relationships between the principle Eiffel classes of the

flight instruments display software.

\
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c. Design Issues

1. Global Variables

As has been mentionedpreviously, Eiffel has no facility for declaring global variables

[14]. This was a conscious design decision, made because global variables are not

consistent with encapsulation. In some instances, however, global variables are necessary

(actually, global variables are never absolutely necessary, but can be considered necessary

when compared to the complexity of the alternatives in some cases). In the display

software, the same world needed to be used by each of the individual gauge classes as well

as the root class. With no modifications to the code, the world class could be accessed by

all of them, but they would not be dealing with the same instance of the class (object). The

solution presented by Meyer (see [14] for details) is to create the global objects in a single

class (can be called GLOBAL_OBJ), and inherit GLOBAL_OBJ into every class that needs

the objects. The GLOBAL_OBJ class is not shown on the class diagram in figure 3, but it

is inherited by both GUI and GAUGE, and so is seen by all of the classes (it is seen by

ALTITUDE_G for example because ALTITODE_G inherits GAUGE). This method of

achieving global variables, although not entirely straightforward, worked without error.

2. Window refresh
\

,

An unexpected problem arose When the gauges were actually updated on the screen;

the old needle positions were displayed in addition to the new positions. This was

surprising since there existed only one needle object per gauge in the code, and this object

was rotated to update the displayed value. It seemed impossible to have more than one

\
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needle on the screen. The problem, it is now known, arises from the Eiffel to X-Windows

interface and the X-Windows method for maintaining graphics on the screen. Pixels are

not reset automatically (it is assumed that this would be too computationally burdensome),

so to refresh the screen, it has to be explicitly filled with white. The current version of the

display software fills with white all subwindows containing a gauge that has been updated,

then redisplays the window. This method is effective but slow. Another alternative would

be to draw white over the previous needle anytime a hew needle is drawn.

Figure 4a shows the aircraft flight instruments graphics display; figure 4b shows the

display as it appears on the workstation screen under X-Windows.

.

\ ,

\
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Figure 4b. Workstation monitor with gauge display
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V CONCLUSIONS AND RECOMMENDATIONS

A. Review

Object-oriented programming represents a shift in software design and development

paradigm. Although there are many different languages available, the underlying principles

of object-oriented programming remain the same. They irtclude encapsulation, inheritance,

and polymorphism and result in increased reliability, adaptability, and extendibility of

software. To create a flight instruments graphics display, the specifications were

established, the approach and class structure determined, and the major design problems

were overcome. From this exercise a better understanding of object-oriented programming

was established, and object-oriented programming in general and Eiffel in particular were

determined to be overall well suited for this type of application. This conclusion is not

unqualified, however, as code performance issues have not been resolved and the lar�e
learning curve associated with object-oriented programming has not been unequivocally

justified.

B. Remarks

Learning object-oriented programming is more difficult than simply learning a new

language. Object-oriented programming requires a fuhdamental change in thinking [2].

The magnitude of this learning curve is one of the major results of this research, as its size

was originally underestimated. It may in fact deter future forays into object-oriented

programming except for applications that absolutely demand this method.

\
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This research was also hampered by other problems, including workstation bugs not

associated with Eiffel, bugs in Eiffel still in existence because of the newness of the

language, and lack of Eiffel documentation also attributable to newness. These problems

were not in general preventable and probably must be endured by any other researchers

following this path.

c. Future Work

Many questions still remain unanswered at the conclusion of this work. This display

software can possibly be optimized now that more is known about the behavior of Eiffel.

Also, comparisons can be made to similar applications written in other object-oriented

languages and even non-object-oriented languages. Object-oriented programming is still

evolving, and its suitability for many types of software projects is still to be determined .

.

\
,

\
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APPENDIX A

Sample Eiffel Source Code

The following is the Eiffel source code for one class of the display software. This

class is titled"ALTITUDE_G" and represents the specification for the altitude gauge. Most

of the features called are inherited form the more general class GAUGE. Note how this

inheritance allows the class to be more abstract and readable.
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class ALTITUDE_G export
set value

inherit

GAUGE;
feature

Create is
do

center.Create(lOO.O,90.0);
radius:=BO;

set parameters for dial face

draw_dial;

title len:=B;
title.Create(B);
title. set (

II

ALTITUDE
II

,1, B) ;
-- set parameters for displaying title

display_title;

units len:=5;
units.Create(6);
units.set("IOO FT",1,6);

-- set parameters for gauge units display
display_units;

start_val:=O.O;
end_val:=lO.O;
start_pos:=O.O;
end_pos:=2*pi;
start_label:=O.O;
end_label:=9.0;
label_inc:=l.O;
hash_inc:=O.25;

set parameters for hash marks and

hash mark labels

draw_hash;

box_label_len:=3;
box_label.Create(4);
box_label.set("Feet",1,4);

-- set parameters for numeric value display box

value_power:=lOO.O;
value_len:=5;
set_value(O.O);

set parameters for display of

gauge value (needle & box)
end; -- Create

set_value (value: REAL) is
do

set_needle(value);
set_box(value);

end; set value

end; --class ALTITUDE G
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APPENDIX B

Sample C Intermediate Source Code

The following is the intermediate source code for the Eiffel class ALTITUDE_G.

The Biffel class is first compiled to this form, then to object code for execution. Note the

difficulty in determining the function of this code.

\
,
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#include " eiffel.h"

extern int16 *D02A, *DD02A; /*{ 02A altitude_g */
extern void Dive02B (); /*{ 02B gauge */
extern int16 *D02B, *DD02B; /*{ 02B gauge */
extern int16 *D002, *DD002; /*{ 002 string */
DATUM _02AOOO_altitude_g_create ();
extern DATUM _02B001_gauge_draw_dial (); /* gauge draw dial */
extern DATUM _00200h_string_set (); /* string set */
extern DATUM _02B004_gauge_draw_hash (); /* gauge draw hash */
extern DATUM _02B003_gauge_display_units
extern DATUM _0�B002_gauge_display_title
DATUM _02A001_altitude_g_set_value ();
extern DATUM _02B007_gauge_set_needle ();
extern DATUM _02B008_gauge_set_box ();
void keep02A ();
/*% altitude_g 02A 2 2 */

() ; /* gauge display_units */
() ; /* gauge display_title */

/* gauge set needle */
/* gauge set box */

static int class= 160 ;

/*% create */DATUM

_02AOOO_altitude_g_create (BCurrent)
OBJPTR BCurrent;
{

static int routine -1;
GACDECI

TRACEDEC

DATUM *DCurrent;
float *FCurrent;
OBJPTR tl;
int16 type;
GACINl;
TRACEIN;
SETJMP2;
_CR_INVARIANT;
_C_INVARIANT;
DCurrent=Access(BCurrent)+/*@ */D02B[DType(BCurrent»);
FCurrent=(float *)DCurrent;
type = /* point create */ Attributes[DType(BCurrent»)[/*@ */D02B[DTyperBCurrent)J+

0) ;

/* center */ (DCurrent[O) = DATOBJ (Allocate (type));
TRACELINES(8,"Create",
/* center */ OBJDAT(DCurrent[O)) SEMICOLONFORTRACE

(*create_array [type)(
/* center */OBJDAT(DCurrent[O]),

DATREAL(lOO.O),
DATREAL(90.0»;

FCurrent[3 /* radius */] = «float) (int32)80)
\

,

(_02BOOl_gauge_draw_dial(BCurrent»);
DCurrent[17 /* title len */] = DATINT«int32)8)
type = /* string create */ Attributes[DType(BCurrent)][/*@ */D02B[DType(BCurrent)]

+4J;
./* title */ (DCurrent[4]) == DATOBJ (Allocat;e (type»;
TRACELINES(14,"Create",
/* title */ OBJDAT(DCurrent[4]) SEMICOLONFORTRACE

(*create_array [type])(
/* title */OBJDAT(DCurrent[4),

DATINT«int32)8}};
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(CALL(tl,
/* title */OBJDAT(DCurrent[4]),
(_00200h_string_set(tl,

DATOBJ(Oncestr ("********ALTITUDE"»,
DATINT«int32)1),
DATINT( (int32) 8»), "set", IS»;

( 02B002 gauge display title(BCurrent»;
Dc�rrent[18 /* �nits_le� */] = DATINT«int32)S)
type = /* string create */ Attributes[DTYpe(BCurrent)][/*@ */D02B[DType(BCurrent)]

+5] ;

/* units */ (DCurrent[S]) = DATOBJ (Allocate (type»;
TRACELINES(20, "Create",
/* units */ OBJDAT(DCurrent[S]» SEMICOLONFORTRACE

(*create_array [type])(
/* units */OBJDAT(DCurrent[S]),

DATINT«int32)6»;

(CALL(t1,
/* units */OBJDAT(DCurrent[S]),
(_00200h_string_set(t1,

DATOBJ(OnceStr ("********100 FT"»,
DATINT«int32)1),
DATINT ( (int32 ) 6) ) ) , "set" , 21) ) ;

(_02B003_gauge_display_units(BCurrent»;
FCurrent[7 /* start_val */] = (0.0) ;

FCurrent[9 /* end_val */] = (10.0) ;

FCurrent[8 /* start_pos */] = (0.0) ;

FCurrent[lO /* end_pos */] = «(int32)2 * 3.141592653S8979323846»
FCurrent[ll /* start_label */] = (0.0)

.

FCurrent[12 /* end_label */] = (9.0)
FCurrent[13 /* label inc */] = (1.0)
FCurrent[14 /* hash inc */] = (0.25)

(_02B004_gauge_draw_hash(BCurrent»;
DCurrent[20 /* box_label_len */] = DATINT«int32)3)
type = /* string create */ Attributes[DType(BCurrent)][/*@ */D02B[DType(BCurrent) 1

+6] ;
/* box_label */ (DCurrent[6]) = DATOBJ (Allocate (type»;
TRACELINES(38, "Create",
/* box_label */ OBJDAT(DCurrent[6]» SEMICOLONEORTRACE

(*create_array [type])(
/* box_label */OBJDAT(DCurrent[6]),

DATINT«int32)4»;

(CALL (t1,
/* box_label */ OB,JDAT(DCurrent[6]),
( 00200h_string_set(tl,

DATOBJ(Oncestr ("********Feet"»,
DATINT«int32)1),
DATINT«int32)4»),"set",39»;

FCurrent[16 /* value_power */] = (100.0) ;

Dcurrent[19 /* value_len */] = DATINT«int32)S)

(_02AOOl_altitude_g_set_value(BCurrent,
DATREAL(O.O»);



35

_CR_INVARIANT;
_C_INVARIANT;
GACRSETi
TRACEOUT;
OUTJMP2;
return;

rescue:

TRACERES;
SETRES12;

end_rescue: i

PROJMP12;
VIOLAT12;
ERRJMP12;

}/*;*/

/*% set_value */DATUM

_02A001_altitude_g_set_value (BCurrent,LocalOON_value)
OBJPTR BCurrent;
DATUM LocalOON_value; /* B2 */

{
/*& redefine gauge set value */
static 4nt routine=122;
GACDECl

TRACEDEC

C INVDEC

int16 type;
GACIN1;
TRACEIN;
SETJMP2;
_

C
_

INVARIANT i

_C_SETINVl i

(_02B007_gauge_set_needle(BCurrent,(LocalOON_value»);

(_02BOOB_gauge_set_box(BCurrent,(LocalOON_value»);

�C_SETINV2;
_

C
_
INVARIANT;

GACRSET;
TRACEOUTi
OUTJMP2;
return;

rescue:

TRACERES;
SETRES12;

end_rescue: ;

PROJMP12;
VIOLAT12i
ERRJMP12;

}/*;*/

/*% keep02Ap */
void

keep02A(BCurrent)
OBJPTR BCurrent;
{ ,

#ifdef KEEP

static int routine -4;
DATUM *DCurrent;
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float *FCurrent;
OBJPTR tl;

in_keep++;
DCurrent=Access (BCurrent)+/*@ */D02A[DType(BCurrent)];
_FCurrent = (float *)DCurrent;
(*keep_array [DT[161]])(BCurrent);
in_keep--;

#endif

}/*;*!

/*% Dive */
void
Dive02A (class_index, attr_off, feat_off)

int16 class_index, attr_off, feat_off;

D02A[class_index] = attr_off;
DD02A[class_index] = feat_off;
Dive02B (class_index, attr_off + 0, feat_off + 0);

void Deal02A ();
Deal02A (class index, feat_off); }

/*% Deal */
void
Deal02A (class_index, feat_off)

int16 class index, feat_off;

InitRoutine (class index, 122 + feat_off,_02A001_altitude_g_set_value,"set_value")

}

void

Init02A ()
{

int16 DT160;
DT160 DT [160];
Class_names[DT160] = "altitude_g";
InitKeep(DT160,keep02A);
Object_size[DT160] = 40;
Interf_size[DT160] = 123;
Routines[DT160] = (ROUT_PTR *) malloc(sizeof(ROUT_PTR) * 123);
AlIocRout_names (DT160 ,123);
Attributes [DT160] = (inti6 *) malloe (sizeof (int16) * 40);
AlIocAttr_names (DT160, 40);
Initcreate (DT160,_02AOOO_aItitude_g_create);
Dive02A (DT160, 0, 0);

\
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